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PREDICTION OF SYNERGISTIC DRUG COMBINATIONS BY USING 

MACHINE-LEARNING METHODS 

 

ABSTRACT 

 

Cancer is still one of the challenging diseases to develop new therapies due to 

the late diagnosis and its complex progression nature. There is an urgent need for new 

therapy regimes for cancer patients having late stage diagnosis or recurrence. New 

computational approaches can help to identify more effective drug combinations as 

new treatment options for cancer. For this purpose, we developed a classification 

model to identify more effective drug pairs out of all possible combinations by using 

gene expression of single drug treatment and biological network data. Three different 

machine-learning methods which are Artificial Neural Network (ANN), Random 

Forest (RF) and Support Vector Machine (SVM) were trained with six features derived 

by using different biological data. The model was evaluated on two different drug 

treatment data sets that contain both positive (more effective) and negative (not 

effective) drug combinations. The proposed model has achieved successful results in 

the test case to find promising features and a machine-learning method, which might 

be suitable for the prediction of more effective drug combinations.  

 

Keywords: Bioinformatics, Drug combinations, Gene expression, SVM, ANN, RF. 
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MAKİNE ÖĞRENMESİ YÖNTEMLERİYLE ETKİLEŞEN İLAÇ 

KOMBİNASYONLARININ TAHMİN EDİLMESİ 

 

ÖZ 

 

Kanser geç teşhis edilmesi ve karmaşık ilerlemesinden dolayı hala yeni tedavilerin 

geliştirilmesi için ilgi çeken hastalıklardan birisidir. İleri safhada teşhis edilen veya 

kanseri nükseden hastalar için yeni tedavi yöntemlerine acil olarak ihtiyaç 

duyulmaktadır. Yeni hesaplamalı yaklaşımlar, daha etkili ilaç birleşimlerini yeni 

tedavi seçenekleri olarak tanımlamada yardımcı olabilirler. Bu amaçla, daha etkili ilaç 

ikililerini olası tüm kombinasyonlar içinden tanımlayabilmek için, ilaç uygulanmış 

gen ifadesi ve biyolojik ağ verilerini kullanan bir sınıflandırma yöntemi geliştirdik. 

Farklı biyolojik verilerden türetilmiş altı öznitelik ile üç farklı makine öğrenmesi 

yöntemi, Yapay Sinir Ağları (YSA), Destek Vektör Makineleri (DVM) ve Rasgele 

Orman (RO), eğitildi. Bu yöntem, içinde hem etkili hem de etkisiz ilaç birleşimlerini 

bulunduran iki farklı ilaç verisi üzerinde sınandı. Önerilen yöntem, umut verici 

öznitelikleri ve daha etkili ilaç birleşimlerinin kestiriminde uygun olabilecek makine 

öğrenmesi yöntemini bulmak için sınama verisi üzerinde başarılı sonuçlar elde 

etmiştir.  

 

Anahtar Kelimeler: Biyoenformatik, İlaç birleşimleri, Gen ifadesi, DVM, YSA, RO. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Motivation 

 

Cancer is a malignant disease that is formed by the irregular division and 

proliferation of cells in a tissue or organ. All organs are composed of cells, which are 

the smallest building blocks of our body. Healthy body cells (excluding muscle and 

nerve cells) have the ability to divide. They can divide to regenerate dead cells and 

repair injured tissues. But they cannot make division infinitely. Throughout its life, 

number of divisibility is determined for every healthy cell. However, the cancer cells 

lose this conscious and cannot control the division. Cancer cells get together to form 

tumors, which compress normal tissues, infiltrate or destroy them. There are stages of 

cancer. If cancer is diagnosed in early stages, it can be treated quite efficiently and the 

patient can continue daily life.  However most of the cancer cases are usually 

diagnosed in the later stages due to limited symptoms of cancers in early stages. The 

cancer treatment is very costly. Therefore, a lower cost and effective treatment method 

is needed for the late stages of cancers. 

 

There are many researches for the cancer treatment. One of the most remarkable 

studies has been the recognition of the effects of non-cancer treatment drugs on cancer 

treatment (Boguski, Mandl, & Sukhatme, 2009; Gupta, Sung, Prasad, Webb, & 

Aggarwal, 2013). Especially, combinations of these drugs (as pair or triple etc.) 

emerge as new treatment method. However, testing all combinations of drugs to find 

synergistic drug combinations, which mean they have positive effects on cancer 

treatment, in wet-lab experiments is laborious and very expensive. Therefore, our 

motivation is to find new computational methods to suggest chemically more 

synergistic (effective) drug combinations that can be easily verified by wet-lab 

experiments.  

 

Nowadays, machine-learning methods are applied different application domains. 

In the last decades, these methods have been used in medical applications and they 
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provided many improvements in different levels. Specifically, various machine-

learning methods have been proposed to understand the disease developments. We 

also aim to use machine learning methods in the classification of drug combinations.  

 

The motivation of this thesis is to apply machine-learning methods on predicting 

synergistic drug combinations for cancer treatments. We developed a classification 

method that aims to identify effective drug pairs out of all possible combinations by 

using single drug treatment and biological network data. Six metrics (i.e., features) 

have been computed on two different drug treatment data sets to train three different 

machine-learning methods to classify drug pairs into combination classes (i.e., positive 

or negative). 

 

1.2 Problem Definition 

 

The prediction of more effective drug combinations for cancer treatment is a 

challenging problem for several reasons. We proposed several hypotheses to approach 

this problem with the computational methods. The main data source of this study is 

microarray experiments that measure gene expression levels of cells before and after 

drug treatment. Gene expression data can be significant to understand the relations 

between two drugs. So, we will investigate whether gene expression data is one of the 

appropriate data for predicting drug combinations.  

 

Another important factor is what kind of features we should compute to train 

machine-learning model. There might be various metrics to represent the relations 

between two drugs. However, not all metrics can fit machine-learning model well. We 

should identify the best combination of features that will be the input of machine-

learning models. Can this combination change from one machine-learning model to 

another? At that point, finding the most successful machine learning model with best 

fitting features is very critical. Therefore, we will experiment different machine-

learning models with these features. 
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Machine-learning methods should be well trained by using enough data samples. 

As much as the need for enough samples, the samples of in each target class must be 

balanced as well. It is very difficult to find such a balanced data for drug combinations 

for cancer treatment. Moreover, another challenge is related with cross validation 

methods. So, we should use the appropriate data partitioning method to train the 

system well with the unbalanced data set.  

 

1.3 Contribution  

 

We have tested the proposed method with two different data sets to measure the 

consistency. One of our contributions is the generation of the second data set after 

obtaining the first data set from NCI-DREAM consortium (Bansal et al., 2014). 

Another novelty of the study is the extraction of Drug Perturbation Network (DPN) of 

each drug before calculation of drug combinations. 

 

Two of six features which are named as GO Term Similarity and Overlap of DPN 

are calculated in this study for the first time. Another contribution is the application of 

a special cross-validation method to use in imbalanced data sets. 

 

1.4 Organization of the Thesis 

 

This thesis includes five chapters and the rest of the thesis is organised as follows: 

 

Chapter 2 explains the main data sources of the study. Analysis of microarray data 

have been reviewed. Protein-protein interaction (PPI) networks have been explained. 

We have discussed the differences of our method from other synergy prediction 

methods. Furthermore, we have reviewed related studies about SVM, ANN and RF. 

  

Chapter 3 gives an overview about our system. Two different drug treatment data 

sets have been described. We have explained why and how we used the DEMAND 

algorithm. Six features with their formulas have been explained. After that, machine 

learning methods have been disscussed with their specific parameters. Then, two 
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cross-validation methods have been discussed. Lastly, we have introduced evaluation 

methods used in the study. 

 

Chapter 4 presents a detailed discussion of the results 

 

Chapter 5 covers the conclusion and future works. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Microarray Data and Analysis 

 

The rapid development of computer technology in parallel with molecular biology 

has brought two disciplines closer to each other. Thus, a gene chip (microarray), one 

of the endpoints that biotechnology can arrive conceptually, has emerged. In 

traditional methods in molecular biology, expression of a gene at a time is focused. 

This means that it is difficult to see all of the gene functions at the same time with 

conventional methods such as “reporter gene”, “northern blotting”, “southern blotting” 

etc. Because these methods are focused on specific genes or proteins at a time. Gene 

chip technology is met with great interest because it allows the whole genome to be 

visualized on a simple chip, allowing scientists to see the interactions of thousands of 

genes at the same time. 

 

Microarray is a kind of microscopic DNA spot that is formed in an array by 

attaching to a solid surface like glass, plastic, or silicon chip. In a microarray, there 

can be tens of thousands of these spots. The DNA fragments attached to the surface 

(usually 20-100 nucleotides in length) are defined as probes. Microarray technology is 

derived from the "Southern Blotting" technique, in which DNA can be identified by 

binding a substrate and probing with a known gene or fragment.  

 

2.1.1 How are microarrays produced and how do they work? 

 

A variety of methods can be used in the production of microarrays: fine-tipped 

needle printing on glass slides, photolithography with pre-prepared masking, 

photolithography with dynamic micro devices, ink-jet printing, electrochemistry in 

microelectrode arrays etc. 

 

Gene array experiments are typically aimed at determining the level of gene 

expression in different tissues or conditions for different time points. For this purpose, 
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RNA extraction is performed based on different tissues, conditions or times according 

to the subject studied. These RNA samples are diluted to ensure that each sample is of 

equal density. For each mRNA molecule in the original RNA population, a single-

stranded labeled cDNA (complementary fragment of mRNA) is produced. As the 

density of a particular mRNA increases, the amount of cDNA increases. Probes are 

produced by reverse transcription of mRNA into single stranded cDNA in the presence 

of labeled nucleotides. For this reason, the labeled probe is actually a population of 

cDNA molecules representing the mRNA population. Generally, the labeled 

nucleotides are labeled with fluorescent markers such as Cy3 and Cy5 or digoxigenin 

(DIG), which can be detected by chemical luminescent detection. Probes are 

hybridized with filters containing cDNAs spotted in a two-dimensional array (Figure 

2.1). The amount of hybridization in a given gene corresponds to the amount of mRNA 

found for the gene of interest. Filter arrays are incubated with probe and washed as in 

Southern or Northern blotting. The hybridized probe is detected by chemical 

fluorescence for DIG labeling and direct UV fluorescence for microarrays. The 

sequence density of each spot is measured with a CCD camera and the data is acquired 

as a TIF image. 
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Figure 2.1 A microarray image. Red spots are marked only with Cy3 whereas green spots are marked 

only with Cy5. Yellow spots are marked with both Cy3 and Cy5. (Figure is adapted from (Bajcsy, Liu, 

& Band, 2014)). 

 

2.1.2 Related Works   

 

Microarrays are used in many areas. Some of the best-known areas are gene 

expression analysis, genetic and mutation analysis, environmental research, as 

diagnostic tools and identifying antimicrobial genes (Kumar, Goel, Fehrenbach, 

Puniya, & Singh, 2005). 

 

As gene expression analysis, using a cDNA microarray, Escherichia coli bacteria 

were exposed to a large number of toxic chemicals, and gene expression levels were 

characterized and differentiated (Kim & Gu, 2007). After generating subsets of the 

Escherichia coli genome, DNA microarray technology was also used in detection of 

differential transcription profiles these subsets (Oh & Liao, 2000). The different gene 

expression of Oral Gingival Epithelium (OGE) and Epithelial Rests of Malassez 

(ERM) cells are analyzed using a DNA microarray technique (Kurashige et al., 2008). 

Cassone M. et al. used DNA microarrays to detect genetic elements carrying 
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glycopeptide resistance clusters in Enterococcus (Cassone, Del Grosso, Pantosti, 

Giordano, & Pozzi, 2008). DNA microarrays were also used to study on 

microorganisms which can’t be cultured such as nitrification, methanogenesis and 

denitrification (Saleh-Lakha et al., 2005). Another study was about Mycobacterium 

spp detection using DNA microarrays with real-time PCR. Not only detection but also 

species identification of Mycobacterium spp was studied. (Tobler, Pfunder, Herzog, 

Frey, & Altwegg, 2006). 

 

There may be a change in gene expression after drug treatment. Microarrays can be 

used to monitor these changes (Debouck & Goodfellow, 1999). Profiling the action of 

large numbers of chemicals when biological targets used is a challenging but can be 

solved by using chemical microarrays (Ma & Horiuchi, 2006). 

 

2.1.3 Gene Expression Profiles from Microarrays 

 

One of the most known usages of the microarray technique is to measure the 

differences in gene expression. All genes transcribed from genomic DNA are called 

transcriptomic or gene expression profiles. The phenotype and function of a cell is 

determined by its transcriptome. Although the genome is fixed from the cell to another, 

the gene expression profile can rapidly change according to the conditions in which 

the cell is located. Under various conditions, changes in the expression levels of genes 

can be analyzed to extract important information about the function of the proteins 

encoded by these genes. Microarrays are used to monitor changes in gene expression 

patterns in various processes. For example, the microarray can be used in a highly 

comprehensive manner with the characterization of gene expression differentiation in 

cancer cells and also in the diagnosis of other diseases. 
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Figure 2.2 Gene expression value is measured at different times. Columns show time and rows show 

genes. Reduced expression is indicated with green and increased expression is indicated with red. 

 

Statistically significant gene expressions are called as differential gene expression 

that is computed by comparing two experimental conditions. So, a gene may have 

different values at different times (Figure 2.2) or experimental setup. Some of the best-

known methods of measuring differential gene expression are CuffDiff (Trapnell et 

al., 2012), DESeq (Anders & Huber, 2010), edgeR (Robinson, McCarthy, & Smyth, 

2010). 

 

2.2 Protein Interaction Networks 

 

The biological activities in the cells take place when the proteins interact with each 

other or with other molecules. For example, some molecules in the environment of cell 

are recognized by proteins in the cell membrane, and this interaction turns out a signal 

that the same protein interacts with other cell proteins that this molecule exists. The 

relevant units in the cell that receive this signal adjust their functions accordingly. For 

example, the presence of a dangerous substance or nutrient in the outside of a cell will 

send a signal through signal transduction, consequently either cell defense mechanisms 

will be active or physiological events will start in case of food. Another example is 

that some proteins bind to another protein to form a pair of proteins and transport this 

formed protein complex to the required region of the cell. To perform such cellular 
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tasks, proteins should form either physical or functional interactions with other 

proteins.  

 

Studies have been done to find protein interactions on different organisms (Gavin 

et al., 2006; Giot, 2003; Li, 2004). As the interactions between the proteins were found, 

these interactions began to be represented as a graph structure. These topological 

representations are called as Protein-Protein Interaction (PPI) networks. In PPI 

networks, proteins are represented with nodes. Interactions observed between two 

individual proteins are represented with edges. (Figure 2.3). The type of edge can vary 

depending on the type of interaction. For example, the binding of two proteins is shown 

as an undirected edge. Another example is that If a gene expression is regulated by a 

transcription factor (TF) there will be a directed edge from TF to the gene (Cho, Kim, 

& Przytycka, 2012). 

 

 

 

Figure 2.3 Simple structure of a graph. Nodes represent proteins whereas edges represent interactions. 

 

The earliest known PPI networks were built by using yeast-two-hybrid (Y2H) 

(Fields & Song, 1989), protein complementation assays (PCA) (Tarassov et al., 2008) 

and affinity purification followed by mass spectrometry (AP-MS) (Gavin, Maeda, & 

Kuhner, 2011) technologies. Y2H and PCA are based on direct interaction between 
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proteins which are called physical interaction networks. AP-MS establishes a link 

between proteins that are physically interacting due to a common function in a cell.  

 

Many interactions between proteins are still not known. Efforts are being made to 

find unknown interactions and also to test the correctness of known interactions (von 

Mering et al., 2002). Integrating the different networks is also an important 

development for the future of unknown interactions. These integrated PPI networks 

have also different purposes, e.g., use in disease classification or survival time 

prediction (Dao et al., 2010; Lee, Chuang, Kim, Ideker, & Lee, 2008). Some of the 

highly used integrated PPI networks are; STRING (D. Szklarczyk et al., 2015), 

GeneMANIA (Zuberi et al., 2013), mentha (Calderone, Castagnoli, & Cesareni, 2013). 

These global integrated PPI networks have a wide range of uses such as in 

understanding complex diseases (Cho et al., 2012), system biomedicine (Sevimoglu & 

Arga, 2014) etc. 

 

2.3 Synergistic Drug Combinations 

 

Synergistic Drug Combinations mean that drugs have positive effects in the 

treatment when these drugs are combined. Here, we have reviewed previous works 

made on synergistic drug combinations. 

 

Different diseases can share common molecular pathways or targets in a cell. For 

this reason, a drug can be used for another purpose. Repurposing non-cancer drugs as 

an anti-cancer treatment offers a new opportunity, notably when drugs are used in 

combination (Boguski, Mandl, & Sukhatme, 2009; Gupta, Sung, Prasad, Webb, & 

Aggarwal, 2013). Identification of ultimate drug combinations (e.g., pairs, triples etc.) 

as a new therapy regime is very expensive and time-consuming procedure even for the 

cell-line experiments. Therefore, new in-silico methods have been proposed to suggest 

chemically more effective drug combinations for later wet-lab experiments.   

 

Recently, systems biology approaches have made promising contributions to 

identify better (synergistic) drug combinations as new treatment regimes (Chen, Liu, 
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Yang, Yang, & Lu, 2015; Ryall & Tan, 2015). Huang et al. developed the 

DrugComboRanker algorithm that ranks potential drug combinations by choosing 

drugs with high overlap in the disease network and affecting multiple signalling 

pathways (Huang et al., 2014). Another study proposed the DIGRE model to predict 

drug combination effects by modelling drug response dynamics and gene expression 

changes after individual drug treatments (Yang et al., 2015). The DEMAND algorithm 

is another recent study, which developed a regulatory network-based approach that 

elucidates genome-wide drug mechanisms after drug treatments (Woo, Shimoni, 

Yang, Subramaniam, Iyer, Nicoletti, Rodríguez Martínez, et al., 2015). 

 

Sun et al. developed the Ranking-system of Anti-Cancer Synergy (RACS) to rank 

drug combinations from the most synergistic to non-synergistic (Sun et al., 2015). To 

do this, they combinied features of targeting networks and transcriptome profiles. They 

focused on three types of cancer. RACS is a semi-supervised learning model which 

addresses the limited positive/labelled samples and a set of unlabelled combinations. 

 

2.4 Artificial Neural Networks 

 

With the inspiration of the biological nervous system, artificial neural networks 

(ANN) were developed. Biological nerve cells communicate with each other through 

synapses. A nerve cell sends information to the other cells via its axons (Figure 2.4). 

Similarly, the artificial nerve cells generate an output by passing the information from 

the outside through an aggregation function and an activation function, and send it to 

the other cells (process elements) over the network connections.  
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     Figure 2.4 Biological nervous system. (Figure is adapted from (“Neural Networks - Neuron,” n.d.) 

 

When transforming Figure 2.4 to Figure 2.5, soma becomes neuron, dendrites 

become inputs, axon becomes output and synapses become weights. ANN with single 

neuron is called perceptron. 

  

 

 

Figure 2.5 Basic ANN structure resembles biological nervous system.  
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The values of the links connecting artificial neural networks to one another are 

called weight values. The process elements form a network with three parallel 

layers; input layer, intermediate layer (hidden layers), output layer (Figure 2.6). 

 

 

Figure 2.6 Layers of ANN 

 

Information is transmitted to the network through the input layer. They are 

processed in intermediate layers and the results are sent to the output layer. The 

network weight values are used in this process. At the beginning, these values are 

assigned randomly. As the network is trained with training data, the weights will reach 

the optimum values. Although what individual weights mean is not known, it can be 

said that the network's intelligence about the inputs is given by using these weights. It 

is possible for the network to learn an event well by choosing the most accurate 

artificial neural network model for that event. This can be accomplished by 

determining the number of hidden layers in the intermediate layers and the 

corresponding weight values.  

 

2.4.1 Layers and Neurons 

 

A sufficient number of hidden layers must be used to make a better classification. 

We can draw a decision plane according to chosen ANN’s layer size and its total 

neurons in each layer (Figure 2.7).  
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                                   Figure 2.7 Significance of hidden layers. 

 

Addition to the importance of hidden layers in the data classification, there is a 

crucial role of number of neurons used in hidden layers. ANNs with more hidden 

neurons can express more complicated functions as classifiers (Figure 2.8). However, 

over-fitting might occur when a model with high capacity fits the noise in the training 

data. 

 

         

 

Figure 2.8 Significance of neurons in a hidden layer. (Figure is adapted from (“CS231n Convolutional 

Neural Networks for Visual Recognition,” n.d.) 

 

In fact, there is no method to set the exact number of hidden layers and the number 

of neurons in each layer to represent the training data in the best way. These can be 

found by experimentally. Each of the neurons in the input layer is connected to all of 
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the neurons in the hidden layer. And all of the neurons in the hidden layer are 

connected to all of the neurons in the next hidden or the output layer.  

 

2.4.2 ANN Types 

 

Basically two different ANN methods can be mentioned. The first one is a feed-

forward neural network, which doesn’t have any loop-back to previous layers or to the 

same layer (Figure 2.9).  

 

        

 

       Figure 2.9 Feed-forward neural network. 

 

The second type of ANN is feed-back neural networks (Figure 2.10), which have 

some loops returning to previous layers or to the same layer.  

 

 

 

                                     Figure 2.10 Feed-back neural network. 
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2.4.3 Training of ANN 

 

ANNs are commonly designed as multi-layer perceptron (MLP) instead of single 

perceptron. Due to MLP networks work in a supervised manner, both inputs and 

outputs are provided to the network during the training. The philosophy of the learning 

is that the difference (error) between the output produced by the network during 

training and the expected output is distributed to the weights of the network to reduce 

this learning error in time (Figure 2.11).  

 

 

Figure 2.11 Training ANN using the error of the result. 

  

The distribution to the weights are adjusted by multiplication of a specific 

coefficient. This coefficient is called learning rate. 

 

2.5 Support Vector Machines 

 

Support Vector Machine (SVM) is a machine learning method proposed for 

classification and regression problems in data sets where the inter-variable patterns are 

unknown. SVM aims to make accurate estimation and generalization of new data by 

firstly learning in training data. SVM is a nonparametric classifier, i.e., there is no 

presupposition assumption about the distribution of the data. Inputs and outputs are 

matched in training sets.  

 



18 

 

 

SVM is basically divided into two categories according to the linearity of the data 

set. If the data can be separated linearly, it is called linear SVM (Figure 2.12, (a)). 

When the data are not linearly separable, it is called non-linear SVM (Figure 2.12, (b)).  

 

 

 

(a)                                                      (b) 

          Figure 2.12 (a) Linear SVM versus (b) Non-linear SVM. 

 

2.5.1 Linear SVM 

 

If two classes are to be classified, an infinite number of planes can pass between 

these classes (Figure 2.13). The aim of the SVM is to find the hyper-plane that 

maximizes the distance between the nearest samples of two classes. As seen in Figure 

2.14, SVM makes calculations to find two support vectors with the highest margin 

value. 

 

 

 

Figure 2.13 Infinite number of planes pass between two classes.  

 



19 

 

 

When classes are seperated without noise, it is called hard-margin. 

 

 

 

Figure 2.14 Support vectors with maximum margin 

 

Suppose that the blue points represent +1 class and the red points represent -1 class 

in Figure 2.14. If we call the support vector passing through the +1 class SP1 and the 

other is SP2, then,  

 

                                        𝑆𝑃1 = < 𝑤, 𝑥1 >  + 𝑏 ≥ 1,                                      (2.1) 

 

                                        𝑆𝑃2 = < 𝑤, 𝑥𝟐 >  + 𝑏 ≤ −1                                    (2.2) 

 

where, w is weight vector, b is bias, x1 and x2 represent the sample points. Taking the 

inequalities 2.1 and 2.2 into consideration, SP1 plane with w normal and perpendicular 

distance |1-b | / ||w|| from origin and SP2 plane with w normal and perpendicular 

distance |-1-b| / ||w|| from origin are parallel planes. SP1 and SP2 boundary planes are 

therefore equidistant from the separation hyper-plane. There are no training samples 

between the SP1 and SP2 boundary planes. However, the training examples existing 

on the planes become the support vectors that are the training examples closest to the 

hyper-planes. The separation hyper-plane is the plane passing through the center of the 
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boundary, which maximizes the distance between the support vectors of both classes. 

After support vectors are determined, new test samples can be given to separation 

hyper-plane which is known as the plane passing through the middle of the support 

vectors; 

 

                SH= <w, xn> + b = 0                            (2.3) 

 

When the data can be separated by some noisy samples, it is called soft-margin. In 

soft margin, calculations are done in the similar way as in the hard-margin. The data 

can be separated by a few noises at the same dimension. 

 

2.5.2 Non-Linear SVM 

 

Nonlinear SVMs can be used when data samples cannot be separated by a linear 

function. In real life problems it is often not possible to linearly separate a data set with 

a hyper-plane. Therefore, the separation of classes is possible by estimating a 

separation curve. However, in practice it is difficult to predict such a curve (Figure 

2.15).  

 

 

 

Figure 2.15 Separation of non-linear SVM with a curve 

 

In this case, it is necessary to map the data to a higher dimensional space. If a data 

set cannot be linearly separated in an n-dimensional space, the data points are mapped 

to an upper dimension by using the kernel trick as shown in Figure 2.16.  
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Figure 2.16 Non-linear SVM in an upper dimension 

 

Kernel trick is used to map data from input space to a higher dimensional space 

which is called feature space. The choice of kernel function has an important role in 

the performance of the classification. The most commonly used kernel functions are: 

-linear function: K (x, x’) = xTx’ 

-polynomial function: K (x, x’) = (1 + xTx´)d 

-radial basis function: K (x, x’) = exp (−||x – x’||2/2σ2) 

-sigmoid function: K (x, x’) = tanh (η x x’ + θ) 

 

After obtaining future space, SVM try to find a hyper-plane with maximum margin.  

To do this, decision function uses dot product between feature vectors of samples. 

Instead of symbolizing the space clearly for ideal hyper-plane, kernel functions apply 

a dot product in the future space. (Vapnik, 1998) 

 

2.6 Random Forests 

 

Random Forest (RF) is a combination of multiple decision trees. Instead of 

producing a single decision tree, RF aims to combine the decisions that result in the 

training of multiple and multivariate trees with different training clusters. It generates 

multiple classifiers instead of only one, and then classifies new data with votes from 

their estimates. 
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The algorithm begins with the division of the training data into a predetermined 

number of subsets. The data consist the records, features and class information of each 

record (Table 2.1). Subsets do not have to be completely different from each other, 

i.e., subsets can contain overlapping records (Figure 2.17). This method is called 

bootstrap aggregating (i.e., bagging). 

 

Table 2.1 Data for RF consist records, features and class information 

 

 Feature

1(F1) 

F

2 

F

3 

F

4 

F

5 

F

6 

F

7 

F

8 

F

9 

Cl

ass 

Record

1(R1) 

          

R2           

…           

R90           

 

 

 

                                                 Figure 2.17 Overlap of subsets 

  

The next step of the algorithm is to obtain feature subsets from each subset (Table 

2.2). There are many combinations of feature selection. The algorithm finds different 

combinations of features by running a few iterations. The best feature subsets of each 
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subset can be found by using misclassification rate (Equation 2.4) after running of all 

iterations. To calculate misclassification rate, confusion matrix is calculated by using 

an unseen data when a subset is obtained (Table 2.3, Figure 2.18).  

 

Table 2.2 A record subset of data 

 

 F1 F5 F8 Class 

R1     

…     

R35     

…     

R75     

Total 

Record=60 

    

 

Table 2.3 Confusion matrix 

 

 Predicted NO Predicted YES 

Actual NO TN FP 

Actual YES FN TP 

 

 

                𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝐹𝑁+𝐹𝑃

𝑇𝑜𝑡𝑎𝑙
               (2.4) 

 

where TN is true negative, FP is false positive, FN is false negative and TP is true 

positive. 
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Figure 2.18 Unseen data is the rest of data after extracting a subset 

 

The best feature subset is the one, which has the lowest misclassification rate. After 

finding the best feature subset, these subsets are transformed into decision trees. 

 

For instance, the data set contains 90 records with 9 features and target class 

information. To generate 500 decision trees, 500 subsets must be obtained from the 

data. Each subset contains 60 records of the data, the remaining 30 records will be used 

in the calculation of the performance by a confusion matrix. For each subset, feature 

subsets will be generated. Feature subsets include 3 features for 60 records as seen in 

Table 2.2. After calculating the confusion matrix and misclassification rate for each 

feature subset, a feature subset with the smallest misclassification rate is represented 

as a decision tree. Thus, 500 decision trees are obtained from 500 different subsets. In 

this case, there is now a trained RF. For a new record whose class is unknown, RF runs 

all decision trees. Whichever class label is generated mostly from the 500 decision 

trees, that class is assigned as the target class for the new record. Continuing the 

previous example, supposing that there are 2 classes, which are A and B. For a new 

record, if 251 decision trees generated class A as a result and 249 decision trees 

generated class B, the target class of new record will be decided as class A. 
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2.7 Novelty of the Proposed Study 

 

We have reviewed some studies made about finding synergistic drug combinations 

in Section 2.3. These studies developed tools to rank drug combinations calculating 

features or tried to predict drug combination effects. 

 

We used similar drug data and calculated some similar features to classify drug 

combination effects using well-known machine-learning algorithms. We developed a 

classifier of drug combination effects. Our model is currently able to work on gene 

expression data. As a novelty, Drug Perturbation Networks (DPN) are extracted 

instead of only using gene expression data for feature calculation. We compared the 

features to find better combinations and machine-learning methods to reach the best 

performing classifier.  

 

Novelty of this study is building a new classifier which produces the best feature 

combinations out 6 with a compatible machine-learning method out of three methods 

using DPNs of each drug extracted from gene expression data. After finding the most 

efficient classifier, we expect to find synergistic drug combinations for later wet-lab 

experiments.   
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CHAPTER THREE 

METHOD 

 

3.1 System Overview 

 

We developed a classification tool that aims to identify effective drug pairs out of 

all combinations. When we look at the overall flow of the system it is possible to 

explain it in five steps (Figure 3.1). In the first step, Drug Perturbation Network (DPN) 

was extracted from a single drug treatment data for each drug (see Section 3.2 and 

3.3). As a second step, six features were calculated for all combinations of drugs (see 

Section 3.4). Thirdly, these combinations were divided into a test set and a training set 

with a predetermined percentage. Three different standard machine-learning methods, 

which are ANN, SVM and RF, are trained using only the training data in the fourth 

step. Finally, we used an evaluation method to assess the performance of trained 

models on the test set. 

 

 

 

Figure 3.1 The pipeline of the proposed model. 



27 

 

 

3.2 Drug Treatment Data 

 

It is quite challenging situation to obtain a drug data set that contains the best and 

worst drug combinations information. However, we managed to find out two different 

data. They contain different number and types of drugs, but they both contain gene 

expression samples for each drug.  

 

The first drug treatment data we used is provided from drug synergy prediction 

competition conducted by the NCI-DREAM Consortium (Bansal et al., 2014). It 

contains gene expression data for fourteen FDA-approved drugs before and after drug 

treatment on B-cell lymphoma cancer cells. Each drug experiment contains gene 

expression values, which are measured after six hours, twelve hours and twenty-four 

hours of drug treatment. Untreated (control) samples are also measured. There were 

three replicates for each measurement. The NCI-DREAM Consortium also provided 

labels for pairwise drug combinations: positive or negative. Fourteen drugs present 

ninety-one pairwise combinations but we removed five of these combinations as a 

result of division by zero due to the ratio of shared Gene Ontology (GO)) terms by two 

drugs in the third feature (Mutual Information on Biological Process) which is 

explained in Section 3.4, Eighty-six drug pairs are labelled in this dataset: seventeen 

drug pairs are positive (synergistic) samples, sixty-nine of them are negative ones. We 

call this data as DREAM data in the rest of the thesis.  

 

As a second data set, we aimed to obtain drug data used in different cancer 

treatments. Therefore, we searched pairwise drug combinations used in treatment of 

breast (MCF7), leukemia (HL60) and prostate (PC3) cancer cells in Drug Combination 

Database (DCDB) (Liu et al., 2014). We identified seventeen drug pairs out of twenty 

different drugs. We considered these seventeen drug pairs as positive and the rest of 

combinations of twenty drugs became our negative set. We removed some 

combinations in results of some calculations as it happened at DREAM data. As a 

result, seventeen positive and one hundred eighty-seven negative pairs formed our 

second data. Gene expression data of these drugs are collected from CMap (Lamb, 

2007) and GEO (“Home - GEO - NCBI,” n.d.). Drug data from CMap contain fold 
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change (FC) value and p-value for each gene affected due to the drug treatment. So we 

arranged the drug data from GEO as there will be FC value and p-value for each gene. 

This data set is named as Mixture data. 

 

3.3 Extracting Drug Perturbation Networks (DPN) 

 

We aimed to design more effective features for the classification of drug 

combinations. The biological network (i.e., drug perturbation network - DPN), which 

is affected due to the drug treatment, might be beneficial to predict better drug 

combinations.  

 

We applied a new algorithm – DEMAND – to compute a drug perturbation network 

(DPN) for each drug in DREAM data (Woo, Shimoni, Yang, Subramaniam, Iyer, 

Nicoletti, Rodriguez Martinez, et al., 2015). The DEMAND algorithm requires both 

control and treated samples of a compound with a PPI network as an input. The 

DEMAND algorithm generates a network by using the Gaussian Kernel method to 

calculate interaction probability density. And it uses KL-divergence to evaluate 

probability density difference of control and treated samples. Then, the DEMAND 

algorithm computes p-value according to dysregulation of each gene.  Gene expression 

samples for control, 12 and 24 hours were given as the input of the DEMAND 

algorithm. The other input parameter is the biological network that is a publicly 

available protein-protein interaction (PPI) network: STRING (D. Szklarczyk et al., 

2015). The DEMAND algorithm computes a DPN for each drug. We applied 0.05 p-

value threshold for the selection of significant genes of each DPN (Figure 3.2). 
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      Figure 3.2 Summary of DEMAND algorithm. 

For the Mixture data, we computed DPNs for each drug using the FC value and the 

p-value that we mentioned in the previous section. We selected the same p-value 

applied for DREAM data, while FC value has been greater than 1,25. 

 

3.4 Computation of Features 

 

After obtaining a DPN for each drug for both data sets, we calculated six features 

as the input for machine-learning methods. 

 

3.4.1 Shortest Distance of Two Drugs  

 

For this feature we used the known target proteins of each drug. A drug target is a 

protein or enzyme, which is affected by the designed drug, and its original function in 

the cell is changed or corrupted after binding of the given drug to its binding pocket. 

We utilized the STITCH database for finding the targets of drugs. STITCH is a 

searchable database that coordinates data obtained from metabolic pathways, crystal 

structures and drug–target connections (Damian Szklarczyk et al., 2016). The distance 

between two proteins (one target of different two drugs) is the shortest path length 

between these proteins in the PPI network. Each drug generally has more than one 
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protein target. So, in order to normalize shortest path lengths for all possible pair of 

drug targets, we take the average of summation of all possible shortest path lengths. 

Assume that i and j are the index of drugs; the x and y indexes represent the targets of 

drug i and drug j, respectively. 

 

   𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

𝑀.𝑁
∑ ∑ 𝑆𝑃(𝑇𝑦, 𝑇𝑥)𝑁

𝑦=1
𝑀
𝑥=1      (3.1) 

 

where M is total number of targets of drug i, N is the total number of targets of drug j, 

SP is the shortest path of length of two proteins in the STRING - PPI network. 

 

3.4.2 GO Term Similarity 

 

Gene Ontology (GO) is one of the well-established databases for the functional 

analysis of a given protein set. There are three fundamental categories available in GO: 

Biological Process (BP), Molecular Function (MF) and Cellular Component (CC). We 

only focused on the BP annotations. To find GO term similarity of BP annotations of 

proteins covered in DPN, we used the “GOSemSim” package in R-Bioconductor. The 

‘clusterSim’ function which uses “Resnik” method to compute the similarity of two 

given proteins based on their BP annotations. 

 

         𝑅𝑒𝑠𝑛𝑖𝑘(𝑐1, 𝑐2) = 𝐼𝐶 ( 𝐿𝐶𝑆 (𝑐1, 𝑐2))                                    (3.2) 

 

where LCS is the lowest common subsumer which is a concept in lexical taxonomy 

that defines the shortest distance of two clusters and IC is the information content 

which is the logarithm of the probability of finding the concept in a given corpus.  

 

3.4.3 Mutual Information of Biological Processes 

  

Only the cancer related BP annotations from Gene Ontology for target proteins of 

two drugs are considered for this metric.  
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𝑀𝐼(𝑖, 𝑗) = 𝑃(𝑖, 𝑗)  ∗  𝑙𝑜𝑔 
𝑃(𝑖,𝑗)

𝑃(𝑖)∗𝑝(𝑗)
            (3.3) 

 

where P(i) and P(j) are the ratio of cancer related BP annotations for the targets of 

drug i and j; P(i, j) is the ratio of these GO terms shared between targets of drug i and 

j. 

 

3.4.4 Overlap of DPN 

 

Each DPN network covers several proteins that are affected after the application of 

a drug to the cells. To observe the similarity between two drugs, we computed the 

Jaccard index by using proteins covered in the individual DPNs of two drugs. So, 

assume that Dx and Dy contain the set of proteins in the DPN of drug x and y, 

respectively. 

                𝐽𝐼(𝐷𝑥, 𝐷𝑦) =
𝐷𝑥∩𝐷𝑦

𝐷𝑥∪𝐷𝑦
             (3.4) 

 

 

3.4.5 Efficacy based on Degree  

 

Degree indicates how many edges (neighbors) a node has in a graph. In this case, 

the ratio of sum of degrees of known protein targets of a drug in DPN to sum of degrees 

of known protein targets of the drug in STRING-PPI network generates our fifth 

feature. 

 

                          𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦 𝐷𝑒𝑔𝑟𝑒𝑒 =
∑ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) 𝑖𝑛 𝐷𝑃𝑁

∑ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) 𝑖𝑛 𝑆𝑇𝑅𝐼𝑁𝐺
  (3.5) 

 

where i represents total protein targets of both drugs whereas DPN is the combination 

of DPNs of both drugs. 
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3.4.6 Efficacy based on Betweenness 

  

Betweenness gives the number of occurrences in the shortest distances between 

every two nodes in a graph. Similar to fifth feature, we calculated betweenness of all 

protein targets of a drug in DPN and in STRING-PPI and the ratio of them generates 

the sixth feature. 

 

𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 =
∑ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠(𝑖) 𝑖𝑛 𝐷𝑃𝑁

∑ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠(𝑖) 𝑖𝑛 𝑆𝑇𝑅𝐼𝑁𝐺
           (3.6)

  

where i represents total protein targets of both drugs whereas DPN is the combination 

of DPNs of both drugs. 

 

3.5 Machine-Learning Methods 

 

We have selected three different machine-learning methods to test data sets with 

these features. We mentioned the algorithms of these methods in Chapter 2. Here we 

will explain the parameters we chose in the implementations of these methods. 

 

We used “neuralnet” R package for the implementation of ANNs. The structure has 

had one hidden layer with 3 neurons. Learning rate was 0.3 and “backpropagation” has 

been chosen as the learning algorithm. 

 

To implement SVM, “e1071” package is utilized in R-Bioconductor. Basically, 

three parameters have to be set. The first one is choosing the kernel function. We 

decided to run SVM with two different kernel functions to select the best one. The 

kernel functions we tested are “sigmoid” and “radial”. For the rest two parameters, we 

used a function called “svm.tune” from the same package, which produces optimum 

‘cost’ and ‘gamma’ values for kernel functions. 

 

RF algorithm only needs a parameter, which is the number of trees that it creates. 

For RF, we used a package called “randomForest” in R-Bioconductor. 
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3.6 Cross-Validation 

 

When a data set contains limited number of samples, it is more convenient to test 

the performance of machine learning methods by applying a cross-validation (CV) 

scheme. We used two different CV methods in our study. The first one is Monte Carlo 

simulation. We implemented a different idea for data as a second approach. 

 

In Monte Carlo simulation, training data are chosen randomly with a predetermined 

percentage and the rest of data becomes the test data (Figure 3.3). We applied 10-fold 

cross validation to get consistent results.  

 

              Figure 3.3 Presentation of Monte Carlo simulation 

 

As a second approach, we partitioned the negative sets so that each part of the 

partition would be equal to the size of the positive sets. Then, we combined each 

negative part with positive set and applied 10-fold Monte Carlo simulation to each 

part. Finally, we computed average performance over all parts. For DREAM data, we 

got 4 negative parts in equal size to positive set and for the second data, we got 11 

negative parts in equal size to positive set in Mixture data. 

 

3.7 Evaluation 

 

We used some evaluation methods to measure the performance of the system. All 

of these metrics are based on the true and false estimates mentioned in Table 2.3 
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(Section 2.6). To remember the variables used in Table 2.3, we constructed Figure 3.4 

that is a confusion matrix. 

 

          Figure 3.4 Confusion matrix based on conditions and predictions 

 

TP is true positive prediction in which the method predicted the label of drug pair 

as positive that is also positive in the original data. TN is true negative, true label of 

the drug pair is predicted by the method as negative, which is the same in the original 

data. FP is false positive whose true label is negative but the method predicted as 

positive. Similarly, FN is false negative, whose true label is positive but the method 

assigned as negative. 

 

3.7.1 Accuracy 

 

Accuracy gives the percentage of correct estimated results. Classification 

algorithms are used to classify all classes correctly. In this case, as well as the TP, the 

performance of the system is affected by the TN. 

 

                                     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
      (3.7) 
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3.7.2 Precision and Recall 

 

Precision is the measure of certainty or quality while recall is the measure of 

completeness or quantity. For example, assume that there are 10 letter of A and 6 letter 

of B in a text. A method identifies 8 letter of A but actually 5 of them is letter A, 

precision is 5/8 while recall is 5/11.  

 

    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
             (3.8) 

 

     𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                         (3.9) 

 

When we consider the class of positive as a relevant element in our problem, if 

precision value is high, results of the algorithm are more relevant than irrelevant ones 

whereas high recall value is an indicator of that most of the results are relevant. 

 

3.7.3 F-measure 

 

This measure is a harmonic mean of precision and recall. This measure can be 

considered as an average of these two measurements.  

 

     𝐹1 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                        (3.10) 

 

This measure is also called F1 measure because recall and precision are evenly 

weighted in this formula. F0.5 and F2 are kinds of this measure where weight of recall 

higher than precision in F2 while precision’s weight is higher than recall in F0.5. We 

used F1 measure in our method. 
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CHAPTER FOUR 

RESULTS 

 

The proposed supervised model aims to classify drug pairs into positive (more 

effective) and negative (not useful combinations) classes. Six new features were 

implemented to incorporate various biological information for the improvement of the 

solution. Machine-learning methods were trained by using six features with two 

different drug data sets.  

 

Different configurations were experimented to analyse the performance of the 

machine-learning models in this challenging classification problem. We first 

compared the kernel functions to determine which kernel to use in next experiments. 

Another configuration is the effect of partitioning the data into training and test sets in 

different sizes. After deciding percentages of partitioning, we tested individual 

performance of features and the best combinations of features. Then, the effects of data 

on the method have been discussed. Finally, we compared the methods of machine 

learning with each other. 

 

4.1 Comparison of Kernel Functions for SVM 

 

The performance of SVMs can change due to various parameters of the model. We 

compared two kernel functions that are radial and sigmoid functions using two 

different data sets. For this purpose, we applied the Monte Carlo simulation in which 

the DREAM data was partitioned as training (70%) data and test data (30%) samples. 

Monte Carlo simulation selects 70% of data as training set randomly and the rest 30% 

becomes test set. The training accuracy of SVM with radial kernel reached 100% for 

DREAM data while sigmoid kernel was 72%. The test performance was 80% when 

radial function is used for DREAM data, while sigmoid function’s accuracy was only 

67% (Table 4.1). 
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Table 4.1 The performance comparison of kernel functions in the DREAM data. 

 

  Accuracy 

 Kernel Functions Train Test 

Sigmoid 0.720 0.670 

Radial 1.000 0.800 

 

We tested both kernels on the Mixture data by applying the second cross-validation 

method. The second type cross-validation divides negative set into parts which have 

the same size of positive set and then combines each negative part with positive set. 

After using Monte Carlo simulation for all parts, average of all parts are calculated. 

The same partitioning of training and test set was applied. Sigmoid kernel forcibly 

passed 50% accuracy for both training and test set (Table 4.2). Radial kernel reached 

99% accuracy in training set and 72% for test set. 

 

Table 4.2 The performance comparison of kernel functions in the Mixture data. 

 

  Accuracy 

 Kernel Functions Train Test 

Sigmoid 0.550 0.580 

Radial 0.990 0.720 

 

These performances were calculated as the average accuracy of the 10 fold cross-

validation using six features together. The results show that the radial kernel function 

has a more successful classification performance than sigmoid one. As a result of these 

experiments, we decided to use the radial function in the rest of SVM computations. 

 

4.2 The Effects of Data Partitioning 

 

We aimed to find the most efficient partitioning percentage while separating data 

samples into training and test set. Three types of partitioning have been tested: 80%-

20%, 70%-30% and 60%-40% as training and test set, respectively. RF and SVM with 
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radial kernel were run for each partition. The Mixture data were used with the second 

type cross-validation and all features together.   

 

Table 4.3 SVM results in different partitioning using all features as input 

 

  Accuracy Precision Recall F1 

  Train Test Train Test Train Test Train Test 

%60-40 0.999 0.696 1 0.753 0.998 0.694 0.999 0.708 

%70-30 0.999 0.718 1 0.787 0.997 0.722 0.999 0.738 

%80-20 0.999 0.723 0.999 0.785 0.998 0.72 0.999 0.744 

 

The results in Table 4.3 show that 60%-40% partitioning is behind the others. The 

partitioning of 80%-20% has the best accuracy on test set with a small difference. 

Precision and recall values give information about the success of predicting true 

positive values. Partition of 70%-30% and 80%-20% are very close to each other while 

they are more preferable than the partition of 60%-40% at the test set. F1 measure, 

which balances precision and recall, also supports these results. Results for training set 

don’t differ from each other. 

 

Table 4.4 RF results in different partitioning using all features as input 

 

  Accuracy Precision Recall F1 

  Train Test Train Test Train Test Train Test 

%60-40 0.692 0.671 0.659 0.739 0.707 0.67 0.678 0.691 

%70-30 0.723 0.736 0.686 0.771 0.742 0.762 0.71 0.744 

%80-20 0.736 0.73 0.705 0.782 0.753 0.76 0.726 0.737 

  

When we check RF results in Table 4.4, it has similar results with SVM. The 

partition of 80%-20% and 70%-30% are similar while the partition of 60%-40% are 

behind them as a result of all evaluation metrics. 

 

We have observed better performances by separating our data by 80%-20% and 

70%-30% based on these experiments. For further implementations, we considered 

these results. 
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4.3 Comparison of Features 

 

In this section, we have discussed features with their single performance as an input 

to machine-learning methods. Firstly, we split the DREAM data by 70%-30% and gave 

each feature separately to the RF and SVM. For DREAM data, we applied the Monte 

Carlo simulation.  

 

Table 4.5 Accuracy of single feature performance as RF input using DREAM data 

 

  Train Test 

Shortest Path of Two Drugs 0.672 0.68 

Mutual Information of BP 0.688 0.68 

GO Term Similarity 0.786 0.72 

Overlap of DPN 0.704 0.64 

Efficacy based on Betweenness 0.77 0.52 

Efficacy based on Degree 0.655 0.76 

 

The features Efficacy Degree and GO term similarity have reached 76% and 72% 

accuracy, respectively. These results can be misleading, due to outnumbered samples 

in negative class (i.e., for 70%-30% partitioning, 20 negative samples and 5 positive 

samples are used for testing). Here, we have to check precision and recall values but 

they are not provided in Table 4.5 due to less than 50% performance. Using the 

DREAM data with Monte Carlo simulation and 70%-30% partitioning, Efficacy 

Degree and GO term similarity features performed more accurately on classifying 

negative class. 

 

Table 4.6 Accuracy of single feature performance as SVM input using DREAM data 

 

  Train Test 

Shortest Path of Two Drugs 0.808 0.788 

Mutual Information of BP 0.829 0.788 

GO Term Similarity 0.803 0.8 

Overlap of DPN 0.803 0.8 

Efficacy based on Betweenness 0.847 0.76 

Efficacy based on Degree 0.844 0.784 
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With the same condition, the performance of each feature on SVM was very close 

to each other (Table 4.6). However, it is quite difficult to compare features as it 

happened in RF calculations for the DREAM data using Monte Carlo simulation.  

 

Due to this challenging situation, we used the Mixture data with the second type of 

cross-validation. With the same setup, the partition of 70%-30% is used for all machine 

learning methods. 

 

Table 4.7 Single feature performance as ANN input using Mixture data 

 

  Accuracy Precision Recall F1 

  
Trai

n 
Test Train Test Train Test Train Test 

Shortest Path of 

Two Drugs 
0.51 0.52 0.49 0.49 0.57 0.6 0.53 0.56 

Mutual 

Information of BP 
0.62 0.58 0.59 0.58 0.64 0.61 0.63 0.59 

GO Term 

Similarity 
0.56 0.49 0.53 0.45 0.57 0.48 0.58 0.52 

Overlap of DPN 0.53 0.48 0.58 0.52 0.53 0.48 0.59 0.55 

Efficacy based on 

Betweenness 
0.64 0.54 0.63 0.53 0.67 0.53 0.63 0.55 

Efficacy based on 

Degree 
0.79 0.72 0.73 0.64 0.85 0.83 0.8 0.69 

 

According to ANN results in Table 4.8, Efficacy Degree is clearly outperforming 

others. We check the precision and recall values to avoid having the same problem we 

faced in the DREAM data. Precision is 0.638 while recall is 0.833; these results show 

Efficacy Degree is even ahead of other features for classifying positive samples. The 

feature of Mutual Information on BP (MI on BP) is as the second best feature (Table 

4.7). 
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Table 4.8 Single feature performance as RF input using Mixture data 

 

  Accuracy Precision Recall F1 

  Train Test Train Test Train Test Train Test 

Shortest Path of 

Two Drugs 
0.5 0.49 0.48 0.61 0.5 0.49 0.49 0.54 

Mutual 

Information of BP 
0.53 0.55 0.54 0.56 0.53 0.56 0.53 0.55 

GO Term 

Similarity 
0.62 0.57 0.67 0.69 0.61 0.57 0.63 0.6 

Overlap of DPN 0.51 0.49 0.52 0.56 0.51 0.48 0.51 0.51 

Efficacy based on 

Betweenness 
0.52 0.52 0.5 0.55 0.52 0.53 0.51 0.52 

Efficacy based on 

Degree 
0.78 0.79 0.75 0.76 0.8 0.86 0.77 0.78 

 

 

The feature of Efficacy Degree has the highest performance in RF calculations 

(Table 4.8). In accuracy, GO term similarity and MI on BP comes after the feature of 

Efficacy Degree. In contrast to results obtained in ANN, the feature of GO term 

similarity is performed higher values than MI on BP according to not only accuracy 

but also F1 measure. 

 

Table 4.9 Single feature performance as SVM input using Mixture data 

 

  Accuracy Precision Recall F1 

  Train Test Train Test Train Test Train Test 

Shortest Path of 

Two Drugs 
0.89 0.56 0.85 0.57 0.92 0.6 0.88 0.55 

Mutual 

Information of BP 
0.88 0.56 0.85 0.54 0.91 0.59 0.87 0.55 

GO Term 

Similarity 
0.9 0.66 0.94 0.68 0.87 0.68 0.9 0.66 

Overlap of DPN 0.86 0.54 0.85 0.57 0.87 0.54 0.85 0.55 

Efficacy based on 

Betweenness 
0.89 0.52 0.9 0.58 0.89 0.51 0.89 0.56 

Efficacy based on 

Degree 
0.9 0.79 0.84 0.7 0.96 0.89 0.89 0.76 
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The feature of Efficacy Degree showed that it is the best performing one for all 

methods even with unbalanced data. In SVM, the feature of GO term similarity became 

the second best feature with a better result than it performed in RF (Table 4.9). 

 

In addition to these results, the results of the partition of 80% -20% were obtained 

to compare features. As we discussed in the previous chapter, there was not much 

difference between partitioning 80% -20% and 70% -20%.  

 

As an addition to this chapter, we combined two features, which provided the 

highest performances. We calculated all the calculations by feeding these two features. 

We combined the features of Efficacy Degree and GO term similarity as the input of 

RF and SVM in which these features provided the best performance (Table 4.10). The 

experiments showed that combining these features improved the performance in SVM 

but decreased in RF. 

 

Table 4.10 Results of combined two features, Efficacy Degree and GO term similarity 

 

  Accuracy Precision Recall F1 

  Train Test Train Test Train Test Train Test 

RF(70%-30%) 0.779 0.76 0.737 0.722 0.808 0.798 0.769 0.738 

SVM(70%-30%) 0.963 0.8 0.934 0.747 0.992 0.879 0.959 0.783 

 

4.4 The Effects of Data on the Method 

 

The DREAM data set has seventeen positive with sixty-nine negative pairs while 

the Mixture data has seventeen positive pairs with one hundred eighty-seven negative 

pairs. When the Monte Carlo method is used directly, it is evident that the system 

classifies negative pairs better than positive ones due to outnumbered negative 

samples. For this reason, the second cross-validation method is chosen for both data. 

All features have been calculated for both data sets and given as input to RF. Training 

set forms 70% of the data while the rests become test data for all iterations. 
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Table 4.11 The DREAM data versus the Mixture data using the second type cross-validation 

 

  Accuracy Precision Recall F1 

  Train Test Train Test Train Test Train Test 

The DREAM data 0.551 0.605 0.573 0.62 0.549 0.605 0.558 0.597 

The Mixture data 0.723 0.736 0.686 0.771 0.742 0.762 0.71 0.744 

 

According to second type cross-validation, the negative sample for DREAM data 

have been divided to four parts, while the Mixture data have eleven parts. Results in 

Table 4.11 shows the average of all parts belong to their own data. The Mixture data 

under the same conditions is more promising than the DREAM data. The main reason 

of this result is the size of data samples.  

 

4.5 Comparison of Machine-Learning Methods 

 

Machine learning methods constitute one of the most crucial point of our method. 

Because it is critical to choose a machine-learning method that is compatible with these 

kind of data and features. We ran the method with the three different machine-learning 

methods (ANN, RF, and SVM) to compare with each other.  

 

We kept all variables constant out of these three methods to make an appropriate 

comparison. The Mixture data with the second type cross-validation have been selected 

with the combination all features. Training set have been selected as 70% of all 

samples and test set became the rest for each iteration. 
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Figure 4.1 Comparison of Machine-Learning methods in training set and test set 

 

When the accuracy of training sets is compared, SVM shows almost perfect result 

with 99%. However, the accuracy of test set for SVM is not as successful as the 

training set (Figure 4.1). RF has consistent results in both training and test sets. ANN 

shows 50% accuracy in test set which means ANN is not effective with this method. 

 

Table 4.12 Comparison of machine-learning methods using the Mixture data 

 

  Accuracy Precision Recall F1 

  Train Test Train Test Train Test Train Test 

ANN 0.58 0.502 0.578 0.547 0.669 0.508 0.597 0.655 

RF 0.723 0.736 0.686 0.771 0.742 0.762 0.71 0.744 

SVM 0.999 0.718 1 0.787 0.997 0.722 0.999 0.738 

 

RF and SVM have similar results in all evaluation methods for the test set. Although 

SVM is the best for training set, RF has slightly better results for test set (Table 4.12). 

SVM was one step ahead of RF (Table 4.10). In general terms, while RF shows 

balanced results, SVM draws up the results with better feature combinations. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

 

The prediction of more effective drug combinations is challenging problem even 

for the wet-lab experiments. In this study, we proposed a supervised model to classify 

better and useless drug combinations by implementing six features, testing two 

different data sets, and running three different machine-learning methods. The type of 

cross-validation method has a significant role in this model due to imbalanced data. 

Sometimes, the size of the data samples may not be sufficient to train the model. 

Although these challenging problems, the model has achieved very successful results 

in the test case to find prospective promising features and a machine-learning method 

which may be appropriate for this purpose. 

 

Combination of better features carries up the success of machine-learning 

methods. Finding more effective features based on gene expression of drugs will 

contribute to the development of this model. Another important contribution to model 

is to find cross-validation method which suits imbalanced data. Unsupervised learning 

method can be an option for the improvement in prediction. Another important point 

in this method is the step of extracting the DPN. A new algorithm to extract DPN may 

be more useful. Eventually, another improvement for this study is to generate 

synergistic drug combination. 
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