151226

RESEARCHING
XML AND RELATED TECHNOLOGIES

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of
Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering, Computer Engineering Program

(52%

by
Deniz KILINC

June, 2004
IZMIR

Ms.Sc. THESIS EXAMINATION RESULT FORM

We certify that we have read the thesis, entitled “Reseaching XML and Related
Technologies” completed by Deniz KILINC under supervision of Prof.Dr. Recep Alp
KUT and that in our opinion it is fully adequate, in scope and in quality, as a thesis for

the degree of Master of Science.

PCOA» .SX VA«Q[) <N

Supervisor
Do De N r\\cTi N Cel (
P . ; . .
Committee Member Committee Member
Approved by the

Graduate School of Natural and Applied Sciences

Prof.Dr?a@A{elv%ﬁl
Dire

it

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor Prof.Dr. Recep Alp KUT for his advises and
great guidance. He has always motivated me. Secondly, I want to thank my wife Sibel
KILINC and my family for their understanding. Because, during the writing of this

thesis, I was not be able to interested in them.

Finally, thank to W3C (World Wide Web Consortium) XML working group for the

development of most powerful integration and web technology XML.

Deniz KILINC

iii

ABSTRACT

This thesis is a research for XML and its related technologies. XML is easy to learn,
implement, read, and test. It has shortened product development time for most XML-

related and data exchange projects like B2B.

XML, XSL, XSLT, XPath and DTD technologies are examined deeply and explained
with rich samples. In addition to these technologies, XML’s EBNF architecture is with
its 89 EBNF rules and real life XML application scenarios are studied. It is also cleared

that XML technology is not a programming language or not a database alone.

Keywords: XML, DTD, XSL, XPath, XSLT, EBNF, SGML, HTML.

iv

OZET

Bu tez, XML ve ilgili teknolojilerini inceleyen bir ¢alismadir. XML 6grenmesi,
okunmasi, uygulanmasi ve test edilmesi kolay bir teknolojidir. B2B gibi uygun

uygulamalarda gelistirme zamanni kisaltir.

XML, XSL, XSLT, XPath ve DTD teknolojileri detayl: olarak incelenmis ve zengin
orneklerle agiklamalar getirilmistir. Bu teknolojilere ek olarak, XML teknolojisinin 89
tane EBNF kuralim1 igeren EBNF altyapis1 ve gercek yasamdaki XML uygulamalar
ortaya konulmustur. Cesitli avantajlarina ve XSL gibi yardimci teknolojilerine ragmen,
XML teknolojisinin tek bagina bir programlama dili veya veritabani olmadigi

goriilecektir.

Anahtar Sozciikler: XML, DTD, XSL, XPath, XSLT, EBNF, SGML, HTML.

CONTENTS
Page
L0703 017 1L PPt v
| 1S o) 1 o) (- PRI xi
LSt Of FIUIES. . o.eeiiiiieciiriesie ettt esre e et s resbt et e st s ete s be s e e saaesasensestesaeesnaseanes Xviii
Chapter One
INTRODUCTION TO XML TECHNOLOGY
Chapter Two
XML TECHNOLOGY BASICS

2.1 SIMPly HTML...coiie ettt ettt st st s sre s 5

2.2 What iS XML? ..coeoiiiieeeeericist et e st cre e te s ere s eeres e e nnenaerannes 8

23 SIMPLY XML ottt e re et s 9

24 Differences Between XML and HTML......cccccoovvivvennreireciecececrcce e, 10

2.5 Design Goals of XML......cccoivermiiiiienieeincrinietste et sne e e se e, 10

2.6 XML Features and Approaches.......cc.oceeoreevermeceeeeecrnieneneesenneceseseennnns 12
2.6.1 Xml Has Structural Text Formatcoccoovvvevvvneeneceeinenience e 12

2.6.2 XML Is Readable......ccocoveveviiniinininiecrinnerenee et 13

2.6.3 XML Processing Is Easy And Cheapccceveereerieeeeeinvcrirerrnenna 14

264 XML Technology Supports Existing Security Solutions 14

2.6.5 XML Is Not A Programming Language...........ccecevvenivveenrenrercrennnnn, 15

2.7 XML Real Life SCeNarios........cccuevevuerueeveericrieieneeereereeiseeereeeestcsseseensssreenens 17

2.7.1 Using XML Documents As Data Sources.........ccocueevevevivveeveeiiereenenn. 17

3.1
32
33
34
3.5
3.6
3.7
3.8
3.9

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

vi

2.7.2 Use of XML Documents For Integration of Different Systems 18
2.7.3 Use of XML Documents for Standardization of User Interfaces........ 20
274 XML As The Structural Content Of ActiveX Components 22
2.7.5 XML For Defining Web Resources.........c.ccouvveeeevirveeneeinncennneercnneen 23

Chapter Three

FIRST XML DOCUMENT

INTOAUCHION. ...ttt st 24
Creation of XML DoCUMENL.........cccoovriiemiereiiieieeenr e 24
Processing Instruction (PI)ccoveeinieninieninetece e 25
ELBMENLS.eviiiiiiiiriciieec ettt ettt 26
Saving an XML DOCUMENtc..cccoirinmeeiiiiiiiieiiierieneee et e 28
Displaying XML Document by a BroWSerc.cccceveveeveriierinnireieneneesieenns 29
Displaying XML Document by Using Cascade Style Sheet (CSS) 31
Creation Of CSS ...ttt et e 31
Integrating CSS Style Sheet with XML Document.c.c..ceceeeriecerererierennens 32

Chapter Four

RESEARCHING XML 1.0 EBNF RULES

BNF GIAMIMAT ..ottt ettt se st essbe e ttesnae e saaesteesanaan 34
BasiC BNF ...ttt sr s st et sttt a e aeeens 36
Well-Formed Documents...........ccoeeeeeeiinniennceniiinieneeeinieesseesesenseeeeeeseaeens 37
DIOCUIMIENES ..oeevvireeeeeiiierercre et eittestessreesubesesessaneesaeesseessaeesrnsesssessssessesssesnsenes 37
CRATACTETS ..ec.uveueeicerceiiritrre ettt e st e e e e str et seeaba e e sre e sbeeseesbesbennnenes 38
Common Syntactic CONSLIUCES......c.cceoerverreereeriiiee e ertreiesrreesreereesreeesseesneens 40
Character Data and Markup..........cc.ceeeverererveemuecrereeessesesseeeseresessssssssessennes 44
COITMEBNLS ..o iurieniiinecrieiereeeterte sttt seee s sere s csaaesbs e s sbe e s aesesasesetaessaesssessensabenns 45
Processing INSIIUCHIONSccviiveeveeirininieiire e sieese s taa et seeseesea 46
CDATA SECLIONScoveuveuerveeerecrieceeetecsenessesssesassessesssssaessasssessessensessersesesnsens 47
Prolog and Document Type Definitions.........ccccveveevienencriccieeieenieceereerneeens 48
Standalone Document Declarationcc.cceeceeevereceecenveecrieeseeciesreeeeceereeenes 56
WHRILE-SPACESoecviiiiiiiciicicict ettt ettt et e sassb e s e e s naas 57
Language Identificationcccocevvvceiiiinieieninnncceee e reaaas 58
ELOIMENLS. ... eeiiiiirieictinieecrttctte s etesstcrnie s st s ssana et s esseeeveseeassesbeensesensensesresen 59
Element Type Declarations..........cccceecerierenieieriniennnneece e estesreee et 63

Flement COmENLovvviieiiie ittt eeeettreeeeeeseeeseessesesesnsnsaneeessessssrnsareses 63

4.18
4.19
4.20
4.21
4.22
4.23
424
4.25
4.26
4.27
4.28
4.29
4.30

5.1
52
53
5.4
5.5
5.6
5.7
5.8
59

6.1
6.2
6.3

6.3.1
6.3.2

6.3.5

vii

MIXEA CONLENL ...cvevveeeieirieirreeeetereeeteerseeeeeeeesssaeessntaassseesaeesasaeesssnaeasssseessees 65
Attribute-List Declarationscvvieeierrrreeiieiiirrenieirierraeirereeirnrreeesessesnsesesessenes 65
ATIDULE TYPES oerveiiiiiiiciireiiee et b e 66
Enumerated AIDULES ...cco.vvvivevitiiisriereescerreeeesstnreeeeesererteesrnreseseeeeasenseesensnreens 68
ATIDULE DETAULES 1.ovvviiiiiiiee ettt st e srnrrreecnreeretaesesessssaaraesansnnnes 69
Attribute-Value Normalizationcccceevveeeriereciveereseeeireesieeecsnneessnnssesessenne 70
Conditional SECHONScccviiveeeieieecieeecnreeeseeseeeeseerrereeesrnreesrereeesesaesesanesnsns 71
Character And Entity Referencescceceeiriceviiniinnnnnciieciree e 72
Entity Declarationsccccveveevieeiniecininininiciesieieieteise st sseseesnesasseens 74
TeXt DECIarationccveiveierireirieeiteeeeeeteeeieeeseeraeeesereeesreesreseessesesesaeanenseasnnes 76
Encoding Declarationsueeevrerreerernirereeneerireeeseereeseesrevseseseeenarseesesssene 77
Notation DECIArationsc.vevveervriiiriieriicreeeieeeereesesrreeseesreesesnnssessnseeessensans 78
Character ClaSSES....icinrreerirrreccrnrerirererrraresieesrssasrreesesissassessssnseesssssssssessssaseses 79
Chapter Five
XML DOCUMENTS
N8 (oY 1 (od 5 (o) ¢ FORR OO U T PR 82
Character And Markup Data.........cccoeoiiviininieniiiiictcrieeeeceeee e 82
Elements And TaZS.....covveeeeriiniiineiiiinteeieetine et st s ne s 83
ATITIDULES ...veeveeveeeieteere ettt e steeseeetae s e eseebesenresssesaeessesrestsesssesneessesnssenessaess 85
Processing INSIUCHONScovecerrrieseeeiiienieeenerie et ene et ss e enens 86
COIMIMIEIIES ...uuvverriieeieriiereeeecerrrreetsseeesisisesrenerseeseerseeeresesssssesesssssesessssssssssssssess 89
CDATA SECHOMS ..ceveceieirerciirrneiiorcrerereisssrerssisrerteseessssrssoseressessssssssssessssssserssns 89
Entity RETErenCescvvevuiiereieriicictene ettt snssbestesr e s seanen 90
Well-Formed XML DoCUmEnts......c..cooouieeirericiiieeroreeicriesscreeerenesesereeseveeenns 92
Chapter Six
DTD TECHNOLOGY

INETOAUCHION......oiitiieeieete ettt e e s e sbneeeere s e sneean 94
Valid DOCUMENILScoceeiiiiiiiieciereecrereete et ee e e st e cesre e e e e e asr s eraaresonneresanes 94
Document Type Declaration..........cccoovreerreeirnicenecnninnne s ese s 95
Internal DTD ...ttt e s br e 96
EXternal DTD....cuoiiiiie ettt serr et sennee e 99
6.3.3 General External DTDccoooiviiiieecciee e seeas 100
6.3.4 Special External DTDcccoeoiiiivineniiiene e 103
Using External And Internal DTDs Together..........ccocoovveevevceninrininnenn, 104

viii

6.4 Element Declarations........c.cceeceeierreeeenreiniescnnenieniesseeeneesee e sresseeeeeesnesaes 106
6.4.1 Elements with Normal Content..........cccoeveevvenircreeniennenneencecenn e 106
6.4.2 Elements Has Only Character Datacccoccveveiniienenvenerinec e 108
6.4.3 Elements Has Mixed Contentc...cocceveminvenseniiinceneeninneeieeessinanes 108
6.4.4 Elements Have Any Kind Of Content Typeccoccevverneniinicnrenennnenes 110
6.4.5 Empty Elements........cccoivcniniiiiiiinniininin e 110

6.5 Element Declarations............cecevueveirerserienesneeneenireneesseesnesessessranmeneeseeserssenses 112

6.6 Order IAentifiers.cccvvrereeieereciiiriee et ee e ne s ee st e b e et et sre e 112

6.7 Alternative Identifiersccoeeevivenienreienee et 115

6.8 Using Order and Alternative Identifiers By Groupingcccooeevevvcnniucencnn 116

6.9 Specifying Exact Number of Elements in DTDs........ccocceccviiiiininninicncns 118

6.10 Attribute List DecClarationcoovveveeerrtrnveenirercteneeneeesaieeseressvesseessesesenaenvens 119

6.11 Attribute Default Declarations..........ccocoveerereeiienenierneeenieceneeienieeen e 122

6.12 AUIDULE TYPES coooverriiieiicictiteeene it 123

6.12.1 Character Data TYpe(CDATA)....cccccvvimierrcrinieniereeie et eeieenens 124
6.12.2 Named Token Data Type (NMTOKEN)ccceeevrmrrieceriumieierernnene 125
6.12.3 Named Token List Data Type (NMTOKENS).......cccoovvvvvivccrrieviinenne 126
6.12.4 ID Data TYPE ..coveerreeeeiieeieiesieeteerriti ettt eee e s e e e aeeees 126
6.12.5 Reference To ID Data Types (IDREF)cccccocvrvirviininineneneirnnnnnn 127
6.12.6 Reference Lists to Unique Identifiers (IDREFS).......cccccoovevveeninnnns 130
6.12.7 Enumerated Attribute TYPecccocevvvviiriiiivieiiiieniicteccieeeens 132
6.12.8 ENTITY Afribute TYPE ..ocvereerereeierieieieeeseenrecsriercetaneeseeeeesasasaees 132
6.12.9 ENTITIES Attribute TYPe ..c.ccovvereeriiiiienie ettt 133

6.13 Entity Declarationsccceeiiiimvrinnienenineceeeeenee ettt 134
6.13.1 General Internal Parsed Entitiesc.ccecceviivvieneenieeneenenrenneeeeeeeenns 135
6.13.2 Predefined General ENtitiesc.cccocveerciniinienenniiniee e esiesese e sveenns 138
6.13.3 General Internal Entity References Usage Situations............cceeevevrnneane 138
6.13.4 General External Parsed Entitiescccoccvevvreiieeviiiniiececceccee e, 139
6.13.5 General External Entity References Usage Situations...........coceeeernenen. 141
6.13.6 . General External Unparsed Entities.......cccccecvevinrinncriinininecincnenienennen 141
6.13.7 Notation Declarationsccoeeeeevirreererneninniesrienuesserserereesssesssesseenns 142
6.13.8 External Unparsed Entity Definitions........ccccoceeveviieneneennnnccenniennennnn 143
6.13.9 Internal Parsed Parameter Entities........ccccveveneeirncesecionveninenenennnes 146
6.13.10 External Parsed Parameter Entities..........ccocevvvveverceverivicrvenrenennnnns 148

6.14 Conditional SECHIONSccvevverveeriiriirererteierereesesesreeeesseesssessaesseeressseensessns 154

6.15 Character ENtities.......ccccvvereeniiirinieninieriee et st ssres e sae et e e e s s baennaeees 155

6.16 Language Identifiersccceoiiivieieniniinennc et 158

6.17 Document Validation Constraints............ceceecevieneereerenivesseeseeneseensesneenens 159

X

Chapter Seven
INTRODUCTION TO XSL. TECHNOLOGY

7.1 INtrOQUCHION. ...ttt e e sra st e b e 161
7.2 XSL (Extensible Stylesheet Language)cc.coceevveeeeniininenciinienecreeenen, 161
7.3 XSLT (Extensible Stylesheet Language Transformations)ccccveevenne. 162
7.4 First XSL EXamPIE ..cc.ooviiiiiriiiineiiie ittt ss e 163
7.5 XSLT Transformation and XML Document Structures..........c.ccoceeevrrerennn 166
7.6 XSL Stylesheet StruCtUresc.ccvverereiierierineencereeseenreeirr e ereseesneveseas 167
7.6.1 XSL Declarationeccecuevueeerereveensesenrenceseessrenieseessessesseesseseessessssesses 167
7.6.2 Declaration of Transformation TYPecccecvrvvrecviceceereenreceeeerecrennen 168
7.6.3 Determination of Transformation Format as HTML...........ccccecveueneee. 169
7.6.4 Determination of Transformation Format as TexXt.........cccevereenrerrerennen. 172
7.6.5 XSL TeMPLALESeeevereeiiieieeenees e eee s e seee st e s ae et eaaee e ssreeveeseenns 174
7.6.6 <xsl:value-of select> Elementccccocvevierniinniniinierienieeiccee e 177
7.6.7 Processing XML Elements Iteratively.......ccccccvevverceeerieenneiicieceeeee, 178
7.6.8 Conditional PrOCESSINGcuevevrereririereeerairsnsesssesesessesesessesessesssssenssenes 181
7.6.9 <xsl:if> Flement USagecccceevueieriineneecieneeeneeeeeree s eveeresaeese s enes 182
7.6.10 <xsl:choose> Element Usage..........ccevvirererenienieeneicee e 183
7.6.11 Adding PIs to Output Document - xsl:processing-instruction............... 186
7.6.12 Adding Comments to Output Document - xsl:comment........................ 187
7.6.13 Adding Elements to Output Document - xsl:element.............cceenneeee. 188
7.6.14 Adding Attributes to Output Document - xsl:attribute...........cccccueue..e. 189
7.6.15 Adding Attribute Sets to Output Document - xsl:attribute-set 191
7.6.16 Copying Document Nodes - XSL:COPY ...ooovrvvivriiviriirceecrececeececeenens 192
7.6.17 Using Script Language — xsl:script, xsl:evalccovevvveeorviiineenciriennns 193
7.6.18 Merging XSL Pages.........ccoveveerimirnerreniescesieisiees s esnesseeneeveesesseens 195
7.6.18.1 Using <xsl:include> Elementccecvvvurrreviriievienveerieceecrcreesenns 196
7.6.18.2 Using <xsl:import> Element...........c.ccccerrieriveiiiiieeeeieiceereennes 197
7.6.19 <xsl:call-template> Element USage.........cccceeveeveeveevreeecnriereeeeneneerenenes 197
7.6.20 USING Parametersoccceueeeinenarernteniinieeesesiese e ese e enecresnneseeresenns 198
7.6.21 Using <xsl:param> Element To Work With Parameters....................... 198
7.6.22 = Passing Parameters To Templatesccoceeeeerereerveeseeceeeceeeneceeeeneerenne 202
7.6.23 General Parameters........ccocoveeeeeenineeiiieie e 203
7.6.24 Using <xsl:variable> Element To Work With Variables 203
7.6.25 General Variablesc.cocevvivinienenininiecinesee e 204
7.6.26 Difference Between XSLT Parameters And Variables 205
7.6.27 Optimization Over Complex Documents - <xsl:key>.........ccccoueuruenen... 205
7.6.28 Ordering XML Elements - <XSI:SOTt>......ocevuerreereineneeeeeiiceeeereseeeenne 207
7.6.29 Converting Values To String Data — string().....c.coeeveeeereveeerrieineennen. 210
7.6.30 Working With White-Spaces........ccceevuverimiereneneiicieeeceeeec e 211
7.6.31 Normalizing Whit€-SPaces......cceceeeeverriirieieireciiecre et sreesens 212

7.6.32 XSLT String FUnNCHiONS......c.eveveeecrceeneecersccsitenimsieeiiniressie s ssseseeeinons 213
7.6.33 Joining String Values — concat()........cocoeivimvininneciininiienenceeeees 214
7.6.34 Controlling Containing String Values — contains()c.ccoeeverrnerenns 215
7.6.35 Finding Number of Characters in Strings — string-length()................... 216
7.6.36 Comparing Starting Substrings - starts-with()ccccovevrviireniinneennn. 217
7.6.37 Choosing Substrings - SUDSIING()....c.cevvecreriminnninieniiiiiicicne 218
7.6.38 Choosing Substrings Before Substrings — substring-before()................ 219
7.6.39 Choosing Substrings After Substrings — substring-after().........c...co.c.... 220
7.6.40 - Replacing String Characters — translate()ccooeeveernrccinnnvenencnenes 220
7.6.41 Converting Values To Numeric Data — number()c.ccccevivueecunecnnn. 221
7.6.42 XSLT Number FUnctions..........cceevvereenirsieeninenesncsierecnieneeseeeeseeereeenans 223
7.6.43 XSLT round() FUNCLION ...cc.eevirmmiiiiirinieiseencccie s 223
7.6.44 XSLT Ceiling() FUnction.........eeccvceeveenrenicreincreiiescceeneenet e 224
7.6.45 XSLT Floor() FUNCHOM. ..c.c..vvveeriieeiiitiiieiinitiecne e 224
7.6.46 XSLT Sum() FUnCHONcoveireirirenieineieeiece e 225
7.6.47 XSLT decimal-format FUNCHON.cccovtvieieireieeererece e 226
7.6.48 XSLT format-number FUNCHONcoveevviiieceiiiiieniiiicceicre 227
7.6.49 Combining More Than One XSLT Documents........c.cccoccevuerneerenneennenns 229
CONCLUSION......cooteertieeteeircest e teeee e seeebessestestesees st e ssesessaeersestensensetasmesneseansenss 234
RETEIENCES. . ctireeeiitiiiereierre ettt r et et s ee s e be s atn e s sra e bee sae e e stesbnesaesasesane 237

xi

LIST OF TABLES

Page
Table 2.1 KIBELENET Camera Categories HTML sample........ccccccevivvenienineneennne.. 5
Table 2.2 Basic HTML Tags (WEB_7, 2000)........cccccovrrimrmrenenrnereeenrereereeeenneeeesnennane 7
Table 2.3 XML and HTML differences.......cccccovveveeevrvnrnveeieieereeeeercevsevee e eeeevenns 10
Table 2.4 Use of XML Documents as DataBase........cccccoeuveeveeveeerieeinninercrecienreceennn, 18
Table 2.5 XMLHTTP Technologycocccoviiiviennicniecer e, 19
Table 2.6 SOAP MESSAZEcooviciirieirierienieiesnie ettt eae s seeereesttesaseseebeessesnrsanas 20
Table 2.7 XAML (WEB_27, 2004).....cciriivvriireeirereieereeeereeeeeseeseeseeseeeseessesreesseseones 21
Table 2.8 XML Data of An Excel Application........c.ccovveverveiereceeeenerceereeee e, 22
Table 3.1 First XML DOCUMENLccccoieieiririienerieceeneeeeseereeveeere st st enreseeveenenas 24
Table 3.2 Processing InStruction Linecc.cccovivveirieciveniievennneneseeseeeeeei e, 26
Table 3.3 EISMENTS ...cccoieienieiiitiiereeieirsieste st se s e et ere e s ene v s aeeereennens 26
Table 3.4 EIemMent SYNtAX........ccvivviereieriiirriiiieiiniiresteetnseeestesne s esesseenssvesse e e esnssnanas 27
Table 3.5 Root Element and Sub-Elements..........ccoecceveveeeieieeiecice e 27
Table 3.6 Cameras.css Style Sheetcccoocvveririiiciecece e 31
Table 3.7 Cameras.css processing inStruCtionc.cocevrveveererereeereererierrereseseeseereseesenns 33
Table 3.8 First XML DOCUMENLc.coviiieiriritiririenenerreieceie e sae s e e v ere e 33
Table 4.1 Basic BNF Symbols and Characters (Harold E.R, 1999)........cccccccveveveennnnn. 36
Table 4.2 Document Rule (WEB _12, 2004)......c.cccoovveeeinininnieieeee et 37
Table 4.3 Well-formed XML dOCUMENLc..cccveviivieeereiitecee e 38
Table 4.4 Non-well formed XML dOCUMENtccccvevvevirieeiiieirierenreceeceene e 38
Table 4.5 Character Range Rule (WEB_12, 2004)ccoeveivueeerecreerecerercvceeeee 39
Table 4.6 White Space Rule (WEB 12, 2004)........ccccvveriminenrerieceeenrecicreeeerreee e 40
Table 4.7 Names and Tokens Rule (WEB_12, 2004)..........ccceovevieereveicrieeieeeenenene 40
Table 4.8 Names and Tokens (WEB 12, 2004)ccocoovvvvvmrerieieeeeieseeeeeeeresinene 41
Table 4.9 Valid and non-valid XML NAMESc.ccovevriviimeericeiieecreereee e eete e, 41
Table 4.10 Names and Tokens Rule (WEB_12, 2004).........cccoveeieremvieieeereeeenenen, 42
Table 4.11 Attribute in NMTOKEN and CDATA tyPeS.....oevviveeeeerieirereeerereeeeene 42
Table 4.12 Valid and non-valid NmtoKens...........ccoeveereiiriveeviciee et 42
Table 4.13 Literals Rule (WEB_12, 2004)cccoererinmrrerreeieerereeeeeeee v 42
Table 4.14 ENtity USAZEcccoveevrireieeirieinietee e cteee e er e er et te e eeees e e esneaeeane 43
Table 4.15 Valid and non-valid entities..........cvevviierieeinicieieicecececeeeeeee e se e 43
Table 4.16 Literals Rule (2) (WEB_12,2004)ccoceoeveriereeeeceeeee et eeeveeas 43

Xii

Table 4.17 Valid and non-valid attributescccceeevviiiviiiniiniinnie s 43
Table 4.18 Literals Rule (3) (WEB 12, 2004)cccooimiiiiiiitiineeeecce e 44
Table 4.19 Valid and Non-Valid SystemLiteralsccccooeevevvniieviniiininiinincneieeens 44
Table 4.20 Literals Rule (4) (WEB_12,2004)ccoooimiiiiirieieeeietetcece s 44
Table 4.21 Character Data Rule (WEB_12, 2004)coccoviiviniiiinienieiiiineiicne 45
Table 4.22 Comments Rule (WEB_12,2004).......cccooveminieniniineiininnrinceereencnees 45
Table 4.23 Valid and non-valid COMMENLS........cccceervrminiiiiiiiniiieee e 46
Table 4.24 Processing Instructions Rule (WEB_12, 2004)cococovvriviinnnrernnrcnnnnns 46
Table 4.25 Valid and Non-valid PIScccovueeerrenneniiieciiinic i 46
Table 4.26 CDATA Sections (WEB_12, 2004)ccovviiiimminiiinnine. 47
Table 4.27 CDATA USAZE.......ceoireirveeiesieeesesssessassessnessens 47
Table 4.28 Valid and non-valid CDATA Sectionsccccervvvueivveriiininniinniicnneneeenns 48
Table 4.29 Prolog Rule (WEB _12, 2004)cccoocvimiimiiiieniicnerss st 48
Table 4.30 Valid and non-valid Prologsccccuemreriiiiiciiiiiniininnicnnciicie e 48
Table 4.31 Prolog Rule (2) (WEB_12, 2004)........cccocniiimmniniinirceeeciesreisae s 49
Table 4.32 Valid and non-valid XML declarationsc..cccceeeeeeeeeienniinieniennininnennnens 49
Table 4.33 Prolog Rule (3) (WEB_12,2004)ccoovivrmimininiiinrinicesniseinneen 49
Table 4.34 Valid and non-valid XML VerSiOnsc.cccocceerirmriiieriiiiuienennenniiiieenens 50
Table 4.35 Prolog Rule (4) (WEB_12, 2004)coonimiiiniiinicieneneeeneenieress e 50
Table 4.36 XML document that references external entities..........ccovvevevviinriniiiiniens 50
Table 4.37 Document Type Definition Rule (WEB_12, 2004)..........ccooeveiiiinnncniann. 51
Table 4.38 XML Sample which has all declarations...........ccocevvcvevininiininiinnieninens 52
Table 4.39 WFC for internal DTD declarationsc.ccevvveeeniiniiiiniiniiiiecccnn 53
Table 4.40 External Subset Rule (WEB 12, 2004)c.ccooiviviivinnviiniiiccniienen, 54
Table 4.41 URI 1€fereNCes ..c..eovviuiriernerieneniiiiecciete ittt ae e 54
Table 4.42 Using PE references in external sSubsets...........cocooevvviiiineiiicnnicnene, 54
Table 4.43 Using internal and external declaration together..........cccooeiiiiiiiniicnnins 55
Table 4.44 Standalone Document Declaration Rule (WEB_12, 2004).........cccocoenunneneee 56
Table 4.45 Valid and non-valid Standalone attributes........c..ccoccevveivcnienncciiiinecn 56
Table 4.46 White-SPACES....ccccriirerrrtiiircriiritiet e s saa s 57
Table 4.47 Usage xml:Space attribULe........coccvirviiiiminiiniiiiiiince s 57
Table 4.48 Language Identification Rule (WEB_12, 2004)..........cccoeienininnnnninnnns 58
Table 4.49 Valid and non-valid ISO639Code codes (WEB_12, 2004)..........ccccuvvnne 58
Table 4.50 Valid and non-valid IanaCode codes (WEB_12,2004)ccccccvvreennnnne. 59
Table 4.51 Valid and non-valid UserCode codesccccoverveiiiiererniiirennceiirncnnnnes 59
Table 4.52 xml:1ang attribULE.........ccceoeriereceriiiiciie e 59
Table 4.53 Element Rule (WEB 12, 2004)......ccccooiiimmmiiiceiieicecnreneenees 60
Table 4.54 Element Rule (2) (WEB_12,2004)ccooivmimeiiinnennrineneneerereeennas 60
Table 4.55 Valid and non-valid start-elements..........cccoceevreiiiveeninncnnieernceeeeens 61
Table 4.56 Valid and non-valid attributescccoccovereercrccinieccnniiceeciie e 61
Table 4.57 Element Rule (3) (WEB _12,2004)covoriirieeiireneeeeeeesecerreesieees 61
Table 4.58 Valid and non-valid cloSe-tagsc..cceveerereeririeneeniecen e 62
Table 4.59 Element Rule (4) (WEB_12, 2004)c.coeevmriereerenrinreeneecaneneneeeseeaeennens 62
Table 4.60 Element Rule (5) (WEB_12,2004)cccoocerereeeninieneeenternneeeseesinerenenes 62

Table 4.61 Valid and non-valid empty elements

Xiii

Table 4.62 Element Type Declaration Rule (WEB_12, 2004).......cccccccevvvevrvrvvrrnnne. 63
Table 3.63 Element type definitionsccoovveeerearienreerrrinnineereeennieeeesseeeesressseesseesanens 63
Table 4.64 Element Content Models Rule (WEB_12, 2004)c.ccooveieiiieccinncneenenn 64
Table 4.65 ChOICE USAZEueevviereerieiiertrrreerieesreeeteeeesre e eteeesveeseeenraesasesesneenbeessseseenes 64
Table 4.66 SEQ USAZE .. eeevrerrreerieerieetiritirseeerece e e see s eeasesteestresstaasssasssesssseanssaessesseenns 64
Table 4.67 Mixed Content Declaration Rule (WEB 12, 2004)ccccooveerveererveeveennns 65
Table 4.68 Valid and non-valid mixed CONENtScceevreveeiirvenrenrecireecieceese e 65
Table 4.69 Attribute-List Declaration Rule (WEB 12, 2004).......ccccocevvvrveereeerierennene. 66
Table 4.70 Attribute-list declarationsc.ceecervereeveirienenrnicenneneene e 66
Table 4.71 Attribute declarations.........cc..coeeerrereeriericereiieesierinere e sreesae e eseeseenees 66
Table 4.72 Attribute Types Rule (WEB_12,2004)ccooveiiveniieeciecieneeesereee e 67
Table 4.73 Enumerated Attributes (WEB_12, 2004)cccooieveninircnienineesireeeennnne 68
Table 4.74 Valid and non-valid notation definitionscceeeverveeereceieceerreernecesennn, 68
Table 4.75 Valid and non-valid enumeration types.......ccceeeverveeiieenieeecinreereeeeecnennnen 69
Table 4.76 Attribute Defaults Rule (WEB_12, 2004)c.cooovvrevereceecrereee e 69
Table 4.77 Attribute-list declarationsceceeeiieverenieesieceeeceeeee e e 70
Table 4.78 Conditional Sections Rule (WEB 12, 2004)........ccccccvivivincincreresecreeeenn, 71
Table 4.79 INCLUDE SECLIONS......cc.cecieiieieeiriieriienrecieaenteseeseesseessessesssasnsesssesnsesseneens 71
Table 4.80 IGNORE SECLIONScccceeivevarerieerieniierestesstreriaeseeeenseeseesseesseessesssessesaeens 72
Table 4.81 Conditional SECHONS.c..coceererrtrrteriniereereertiresecstesetenae e ees e eraessaesnesse e e 72
Table 4.82 Character Reference Rule (WEB _12,2004)cccocvevvevecceevre e 72
Table 4.83 Entity Reference Rule (WEB 12, 2004)ccoovivivenieeinierereee e, 73
Table 4.84 Valid and non-valid entity references........ccocvrecievreecireveerieereeneeseeeesvenns 74
Table 4.85 Valid and non-valid parameter entity references............cccceeevevveevevevennnnns 74
Table 4.86 Entity Declarations Rule (WEB 12, 2004)ccooemiviiemieeeeeiereeennn, 74
Table 4.87 Valid and non-valid general entity declarations (WEB 12, 2004)............. 75
Table 4.88 Valid and non-valid parameter entity declarations...........ccecceevvereecvernennnne. 75
Table 4.89 External Entities Rule (WEB_12,2004)cc.ccooovvvrviereciereececreeeeren, 75
Table 4.90 Valid and non-valid external entity declarations..............coccovcveereeveveneenn. 76
Table 4.91 Text Declaration Rule (WEB_12, 2004)cccooeerererieinierecree e, 76
Table 4.92 Valid and non-valid text declarations........ccoc.eeeveeveererereeireesveneeseeeeeeenins 77
Table 4.93 Well-formed External Parsed Entities Rule (WEB 12, 2004).................... 77
Table 4.94 Encoding Declarations Rule (WEB_12, 2004)........ccccoovvivriecviveereirennn, 77
Table 4.95 Valid and non-valid encoding declarationscceceeveeeeceenicesesrerennane, 78
Table 4.96 Notation Declarations Rule (WEB 12, 2004)cceceeeveveeceiciiiierenee, 78
Table 4.97 Valid and non-valid notation declarations...........cccoceevvevvrereereeeeeevesennnne 78
Table 4.98 Characters Rule (WEB_12, 2004)cccoeeveeerierieeecreeerecreereeieecrc e 79
Table 4.99 Characters Rule (2) (WEB_12,2004)ccceceveviericreneerieeeeeeceee e 81
Table 5.1 Using empty elements..........cccvvreeniiniiniinieneeiner e 84
Table 5.2 Valid and non-valid XML type namesccccoveeveevevinrieeee e 85
Table 5.3 Valid and non-valid attributesec.ccueeeeievereiieinreeiece e 86
Table 5.4 Supported eNCOAINES......ccceerrrrrerrerierieriere et eereene et erennes 87
Table 5.5 USAZE OF PIS......c.ovirriiererieeieieieeete e s s ses st se et sesneneaes 88
Table 5.6 Valid and non-valid PIS.......cc.cocvueeeirrireereeeeceiceinreereeeee s eeeeseaen 88

Table 5.7 Usage of COMMENLS.......c.coceeriririrrniiriiecirieiene et serer e ere et reve s &9

Xiv

Table 5.8 Valid and non-valid cOmMmMENtS..........coceeeieiriieeveeneeerenee e 89
Table 5.9 CDATA USAZEcconiiireeieieriiirrreereeesteseesesssseneeese st eesseesereessesssoeessesseans 90
Table 5.10 Valid and non-valid CDATA SeCtiOnS........ccceeueereeveereerieeeeceeeseeeeeeeneenen 90
Table 5.11 Predefined entities (WEB_12, 2004).........ccocovuvenrinmecriiiereeereeseeveeenns 91
Table 5.12 Entity reference declaration and usage..........ccooecvvveevirriiecreveseeceeeeeneas 91
Table 5.13 ROOt 1E€MENL.........covevireeeeriririeiircree e serte et ee et e st b ere e ensereeseeteas 92
Table 5.13 Starting and closing element...........coceeveeveineieiieieiieeeeiieeeee e enens 92
Table 5.14 NESHING....veveerirrirrererrreeeienertrnreetestesesestesresseerseesesssassessssresssasessessensenssinns 92
Table 5.15 Parameter entity references........cooceveeeevevveeieeceenniciesreeeeeeeeee e 93
Table 6.1 DTD units (Pitts N., 2004).....ccccvevireeirenerererieere ettt ereennenens 96
Table 6.2 Simple DTD archit€Ctureccvceeveeeriieiierenrenie e creereeeeetecnese e siesereeseerens 97
Table 6.3 SImple DTD USAZE.cccvveerecerieiiiecterii ettt neeneas 97
Table 6.4 DTD COMPATINGc.coovueirreerrmrinierecetereienretsteetestessesessesesiessessssenssssesenesesees 98
Table 6.5 E1ement OTAEIScouevvieerenieeniriirieie e cetesie s eve et seee st se e eevens 98
Table 6.6 Internal DTD USAZE.........occoeeurerrireninientienienteieeseeseeseesesteseerseseessesaeseesesnas 99
Table 6.7 XML declaration for external DTDcccoceeimieiicieiecieecieceeeeeee 100
Table 6.8 XML 1.0 version DTD declaration (WEB_38, 2004)cccoecevervvrnnnnnn. 100
Table 6.9 ISO639 COAES......corrrrerirrereterisie sttt ee e et e 101
Table 6.10 External general DTD USAZE......cccevvereeervieenriieeceeereceieeeee e eenas 102
Table 6.11 Special external DTDc.cccoueivieriiinniinie e 103
Table 6.12 External special DTD USAZEccccvereereeenrrrierecrienereenctiiecseeeseeseeneeneens 103
Table 6.13 External and internal DTD USaZEccccceeeveveeireveceeiirreecieese e 104
Table 6.14 Entities in external and internal DTDScccccoeevvirieievieiiciiieeeeeeeee 105
Table 6.15 Elements with normal CONenteevereveeiiieeieeieeeeeeeeereeeeee e 107
Table 6.16 Valid and non-valid elements with normal content...............ccceerevueenennn. 107
Table 6.17 Elements have sub-elements with normal content..............cc.ccccerveennne. 107
Table 6.18 Elements have only character datacccoovveiveeeeneeeeiciceiieeeeeeenenn, 108
Table 6.19 Elements have mixed cONtentccocueveeverceeiieeeeeeineciee e 108
Table 6.20 Valid and non-valid elements with mixed contentccoooeeveueennee... 109
Table 6.21 Elements have any kind of content type........c..coeeveeeeviveveeevverreeeeeeeeenn. 110
Table 6.22 Valid and non-valid elements with any kind of content............................ 110
Table 6.23 EMPLY €lementsccceeevererireieeneinineee et 111
Table 6.24 Valid empty elementsc.ocuvveerieriirreieeeieenreee st e e 111
Table 6.25 XML 1.0 first EBNEF 1ule........ccccevimininiiiieenceeeee s 112
Table 6.26 Element order and number identifiers (Harold E.R, 1999) 112
Table 6.27 Element declaration using order identifiers............coveeverveeeeivveresreneenen. 113
Table 6.28 XML €lemMent USAZE........ccceveererreeienrertisreeenteeeeesesseesesseeseseeeseesssssssessens 113
Table 6.29 XML element usage with order and number identifiers............vouee........ 114
Table 6.30 Order and number identifiers..........cooeiereereiririiieicee e se v 114
Table 6.31 Sub element usage that is not defined..............c.ocovevvvveeeeeceeeeeeeeeeerenn 115
Table 6.32 Element declaration using alternative identifier...........ocoevvveveeeveererinnnn. 115
Table 6.33 Element declaration using alternative identifier...........cocovvveveeovereererennnn. 116
Table 6.34 Defining elements using order and alternative identifiers by grouping ... 116
Table 6.35 Using order and alternative identifiers by grouping..........ccc.covevveneennnn... 116

Table 6.36 Using order and alternative identifiers by grouping..........cccocoovvveevenn... 117

XV

Table 6.37 Using order and alternative identifiers by grouping (2)cccoecevvrveeverencne 118
Table 6.38 Expanding number CONSIIAINL.cccevrrrerireiniiriiece e seesseeennes 119
Table 6.39 Declaration of an attributec..cc.covieeerriiinininee s 120
Table 6.40 Using elements and attribute declarations together............cceeevevninncne. 120
Table 6.41 Defining more than one attribute........c.cccevvevviiiiniccnniincinicccene 121
Table 6.42 Attribute default declarations (WEB_12,2004)..........ccovenieeennnnnneennens 122
Table 6.43 Attribute types and categories (WEB_12,2004).........cccccovminevvncvennn. 123
Table 6.44 Valid character data type declarationc.cceeeeeveiieeerennnccnienienneeneens 124
Table 6.45 Non-valid character data typescccoccevverrveviiceieniinnireeennceneceneeescecaesnnee 124
Table 6.46 Valid and non-valid named tOKeNSccccceermeeerereeienreveneeneere e nesneenes 125
Table 6.47 Valid named token declarations.........cceeeeeeevciiiininiiinnierseniesese e 125
Table 6.48 Valid named token list declaration and usageccoeecevveriirrenenieeceene 126
Table 6.49 Valid and non-valid ID attribute typescccoveeveerevcrerneenenreenenceneeeens 126
Table 6.50 Non-valid ID attribute type declarationscccocueevveceirnenneseneniennenns 127
Table 6.51 Valid ID attribute type declaration and usagec..cceeevevceivienircrecnnns 127
Table 6.52 Stock Module XML Design ID and IDREF usage.......ccccccvvereriecnnnnnne 128
Table 6.53 IDREFS attribute type and usageccocceevvvvriviiniiscricnincieee 131
Table 6.54 ENUMERATION attribute type declaration and usage.......c.c.ccoceeeeeenne. 132
Table 6.55 ENTITY attribute type declaration...........ccoeceeeivininiecinnninenccncinecnn 133
Table 6.56 ENTITY attribute type USage......cccceveieriiiievuriiiniinieeniienieenecie e 133
Table 6.57 ENTITIES attribute type and Usage.........cocveevuerreenvierivennneenienenrenreseeseenne 133
Table 6.58 Types of entities (WEB_12, 2004)cc.cccoviriniiiienincniiiinencieenen 135
Table 6.59 Internal parsed entity declaration............ccocceevervinivinieeecinineneenciese s 136
Table 6.60 Internal parsed entity definition and usage..........ccoceeeverevccninieiceecnens 136
Table 6.61 Using internal and external declarations togethercccccecvveereniennene 137
Table 6.62 Predefined entities (WEB_12, 2004)cociiveiniininiecernesenieceere e 138
Table 6.63 Using entity references in entity declarations..........cccecveeveercrivrncniricrnenenns 138
Table 6.64 Using markup as the content of entities........cccoverrveieececrecininnneneenneens 139
Table 6.65 Cross dependent entity declarationsc.ccceeceevueeniersicirenrenienienseeseeenes 139
Table 6.66 Entity usage in element definitioncocceecueeivnrineincensenneereneee 139
Table 6.67 General external parsed entity definition..........cccooeverveninininincniencenns 139
Table 6.68 External Key file.........ccerieriinineiniieeecee e 140
Table 6.69 General external parsed entity USAZEccceeeeereeieeriiereeseereereeeee e, 140
Table 6.70 ENTITY tyPE USAZE....ccoctevurvrmreeciiiieirreeeieeeneenresenenesrese e ssraeseeeeseesneees 142
Table 6.71 External Unparsed Entity Declarationsccceccevvvvernrecenninnnncennvennne. 144
Table 6.72 Referencing to external unparsed entities..........cccoercvrrrrereenirnvennereesennnes 145
Table 6.73 Internal parsed parameter entity definition..........ccoocvvvveeieevcnnininencnenn, 146
Table 6.74 Dependent parameter entity definitions...........ccceveeverevevreerireneieenierieerenen, 146
Table 6.75 Internal parsed parameter entity definitionsc.cocveveeeierievierinvisveeceenn, 147
Table 6.76 Parameter entity usage in element definition.........ccccecevvereerevieevrireenennn. 147
Table 6.77 Valid and non-valid parameter entity USaGes........ccecveevererverrrrnsrereeceennens 148
Table 6.78 External parameter entity references StockMaster........ccccoccevvrverencrvennens 149
Table 6.79 External parameter entity references StockOperation............ccceeveveeeennnns 150

Table 6.80 External parameter entity references StockTransaction
Table 6.81 External parameter entity references StockModule.........ccccovvvnvrvncenenss 152

Xxvi

Table 6.82 Using conditional SECHIONS......c..cveviiiceriiniinienineinicnciine e 154
Table 6.83 Using parameter entities or conditional SECtIONSccerererrreveereereneaenes 155
Table 6.84 Using character entities.co.ceveerererrererneenienciinienesieneneeereeeneeseesreeerenees 156
Table 6.85 Language 1dentifiersccoueeevreiiineencriiiienene e 158
Table 7.1 First XSL and XSLT transformationc..ccceeveeverienicnvcnneneneenenccereenennes 163
Table 7.2 XSL declarationcoceeeerivonirncririnnirenees e nner et sereeee e ssee s ere e 168
Table 7.3 Transformation formats and attributes (WEB_16, 2004)........cccocevenennne. 168
Table 7.4 Usage of HTML transformation formatcccccovvviiniiicinnininnicinnininn. 169
Table 7.5 XMLContent2.xsl dOCUMENLccooivrerrerrieieienereenenseere et eeeseneeene 170
Table 7.6 Determination of Transformation Format as Text..........cccccoemirnericrnnnne. 172
Table 7.7 Determination of Transformation Format as Text - 2ccccoeivreeiennnnee 173
Table 7.8 Simple template USAZEceceevirienircrieer et 174
Table 7.9 Traversing elements iteratively with xsl:apply-templates element 175
Table 7.10 xsl:value-of element.........c.ccoieiiniiiiiine e 177
Table 7.11 xsl:for-each element..........coooiviiiviiiiiiiiie e 178
Table 7.12 xsl:if conditional processing elementccccoeeereeirciierceeinreresienveeernnnes 182
Table 7.13 xsl:choose conditional processing element skeletoncocoevereniennnne 184
Table 7.14 XSI:Ch00SE €leMENnLt.......ccccviriirereereieniereese sttt sre s e e naas 184
Table 7.15 xsl:processing-instruction elementccoccvveiireeniieicenrneienne s 187
Table 7.16 xsl:comment element.c.coeeereeeiiiereniinreneeiesesiene e 188
Table 7.17 XSL:elemMent USAZE........cecvereeruierreriveririerseeeieesre st eeeessse e s s s e e saeseeerennanns 188
Table 7.18 XS1:attriDULE USAZEcververiririiririeniirieeicee ittt e et seve e see e 190
Table 7.19 Direct attribute adding method........cocooverieeiinnicniinieereee e 190
Table 7.20 XSL:attribUte-SEt USAZEvvvvevreereireerirriireeiteeeeeeteeeeirneeeereeeeeeereeeerseeensreeanes 191
Table 7.21 Identity transformation using Xsl-COPY......cceccvrverviniincinieinieccecesrenne, 192
Table 7.22 Script 1|anguage USAZEccvcvvveereirreriiinreeeenieriee et sresieesseesnresaessessesnenses 193
Table 7.23 Using <xsl:include> element ..., 196
Table 7.24 Using <xsl:import™ elementc..eccereereeneeneninnreniecereeiee e sreeresreseenees 197
Table 7.25 Using <xsl:call-template> element..........cocceeeevercveeenieineieceieecriceeenen, 198
Table 7.26 Using <xsl:param> €lement..........ccceceveerirerceeiinienreninnienesecesesseressnannns 199
Table 7.27 Using <xsl:param> element in attribute valuesc.ccecvveeerveveecernnnenen, 200
Table 7.28 Using <xsl:param> element’s select attributeccccoeeeeereeiieceinens 200
Table 7.29 USING PATAIMELETScovcrueereercirienetrerireeeesreessuesssesseesresssesseessneeseessessesssenes 201
Table 7.30 Passing parameters to templatesccoocervieriiienienienieenieccreenreenre e 202
Table 7.31 General parameter desCriptiOn.......coceceeeveerrreiueeceeiieeeeeeeeneeieseeseeneennes 203
Table 7.32 Using <xsl:variable> element.........ccccecvverniriiniinenicicieceee s 204
Table 7.33 General variablesccvvecveriereirenieenrentinre et 205
Table 7.34 Using <xsl:key> elementcccccevvrerreriiinenniinininccteee e 206
Table 7.35 Ordering elements.cccocererereceeiiniereeere ettt s eneenas 208
Table 7.36 Result according to first ordering Keycoveveeeveeierieiccicciiece e 209
Table 7.37 Result according to first and second ordering key.........cccoceevvervevrenrenenne. 210
Table 7.38 Using string() funCtion.......o.eeeveveiiririeesnniieitisereneceee e 210
Table 7.39 Working with Whit€-Spacescccocveirieriierenreniriininesee e 212
Table 7.40 Working with White-Spacesccccvuvererrereenieiieiccierece e 213

Table 7.41 XSLT string functions (WEB_16, 2004).......c.ccceveevevrcceereeerinirrceereeens 214

XVii

Table 7.42 Usage of concat() function............coeevevecrerecemiiencnncecnienininne e 214
Table 7.43 Usage of contains() function..........cocceevvevievieninnrenersnnenennrcereneeneeseenees 215
Table 7.44 Usage of string-length() function...........cccceeveeivrirncriecenininrceeeieeae 217
Table 7.45 Usage of starts-with() functionccceceeveeevieneniniivcnenencnniecnnns 217
Table 7.46 Usage of substring() functioncccceccvveercrniinieniineinincnenenneiceennenneas 218
Table 7.47 Usage of substring-before() function.........ccvcevveeviviniiienccnnincnnnens 219
Table 7.48 Usage of substring-after() function..........ccccceerverirerevccninnnicnnrcienennnn 220
Table 7.49 Usage of translate() fUnCLiONcccecveeereceerirrenereeeeeinnneeseeeaeeeens 221
Table 7.50 Using number() fUnCHon.......cccevevermrrineeriierceeeeeiee e 222
Table 7.51 XSLT number functions (WEB_16, 2004)........ccccoviiiiriinenviiciiniiiiennen. 223
Table 7.52 Using round() fUNCHIONc.ccerverrmernrvrerenceeteer e 223
Table 7.53 Using ceiling() function........cccceveeeeeiiieneiicnieeneeeee s 224
Table 7.54 Using floor() function........cccecceveinriiiniiniiniiieniiecenecneereseeee e 224
Table 7.55 Using sum() fUnCtionccccevirrieieninncincninse s st 225
Table 7.56 Attributes of <decimal-format> element (WEB_16, 2004)...................... 226
Table 7.57 Pattern characters of format-number function (WEB_16, 2004) 228
Table 7.58 Usage of format-number functioncccceeceeevieniieeeieniinieeceneeienienes 228
Table 7.59 Usage of document function..........cecuveeevuerereriieneceeenrennnneneeeeeeeennnans 229

Table 7.60 Usage of document function without parameters..........c.cocvvvecevcerrinennnne 233

xviii

LIST OF FIGURES

Page
Figure 1.1 General view for markup [anguages..........cccceevevvrecrerieveiecrecreeeeecerrceenns 3
Figure 2.1 KIBELENET HTML page presentation...............c.ccueeveeivieveriereeeeeeeeseeeenes 7
Figure 3.1 Camera categories tree hi€rarchycc..ccoeeeeeeeiiieiviieicceccceee e, 28
Figure 3.2 Saving XML dOCUMENLS.......ccceeuererreririrenteeenrerereseeeereseeseneseseessseseseseeneens 29
Figure 3.3 Viewing XML documents via Internet Explorer..............ccoevvvevveevivennnne. 30
Figure 3.4 Expanding and collapsing XML documentscccceeververeeeeneereuirvineerennen. 30
Figure 3.5 Display of XML Document by using CSS style sheetccouvvuveeennne. 33
Figure 6.1 Hierarchical structure of entity types in DTD fileS.......cccoooevevvivveeennennnen 135
Figure 6.2 Rendering of table 5.60 using Internet Explorer..........cccccveveveveinnnnnee. 137
Figure 6.3 Web rendering of external parsed entities...........ccocervvrecrreerrireenneinenennn, 141
Figure 6.4 Rendering unparsed entities using browsersccococeecevvvvveievinereennnn. 146
Figure 6.5 ASCII table’s first 128 characterscccoeeeeeeveciececeeccescceeeee e, 156
Figure 6.6 Web rendering of XML documents which have character entities........... 157
Figure 7.1 XSLT Transformations.........cccceecverereniesreiinienceeeeseceeece s 163
Figure 7.2 First XSL without reference..........cccccoominieeeiivcieieie e 165
Figure 7.3 Simple transformation oUtPUL.........cccecverereerrerieeeiiriieciccceteeaeeeeene 165
Figure 7.4 XSLT Processing StEPSccecvrererrriruerirrerenieresseriseereneeseseressessssssssssesseesenes 180

Figure 7.5 Merging XSLT DOCUMENLScccevverirrrrinininierineeetece e 232

CHAPTER ONE
INTRODUCTION TO XML TECHNOLOGY

In 1967, William Tunnicliffe gave a conference at Canada Government Press Office
(WEB_1, 2002). It was about the necessity of separating content and format information

which were mixed together in one document.

In 1968, a book publisher from New York, Stanley Rice, prepared a standard tag set,
to standardize the book chapter formats (WEB_1, 2002). GCA (Graphic
Communications Association) helped this project and standard tag set was developed.

GCA GenCode (WEB_2, 2003) community joined the tagging and marking up logic.

In 1969, three people from IBM research team, Goldfarb, Mosher and Lorie were
designed GML (Generalized Markup Language) which was accepted as the first formal
markup language (WEB_1, 2002). The objective of GML is to be able to transport and

share the legal documents.

In 1978, GML, ancestor of all markup languages, started to improve by special team
under ANSI (American National Standard Institute). In 1986, GML markup language
was named as SGML (Standard Generalized Markup Language) (WEB_3, 2002) and
appointed as an international standard (ISO8879) by ISO (International Organization for

Standardization).

SGML is a meta language, by meaning it has the capability of describing other
languages (WEB_3, 2002). Like in all other meta languages, it defines some basic rules
and validity constraints and lets you to create your own tag set using these rules. SGML
has been used in complex industries such as flying and automotive. So SGML has been

too complex for application development.

In 1989, HTML (Hypertext Markup Language) was designed as an SGML
Application by Tim Berners-Lee and Anders Berlung (WEB_4, 2004). The main
objective of the project was making easy sharing and transferring procedures for
documents over internet. SGML application had the meaning of all HTML standard tags
were designed using SGML markup language (WEB_3, 2002).

HTML language has been only used for data representation by providing s tandard
tags for content, like header, font, image and table (WEB_6, 1999). Although there has
been no possibility to define your own markup tags in HTML, learning and using it, in
applications has been really easy, So, it has constituted the basis of new constructed Web

Architecture.

Because of some HTML weakness like, not to be extensible, not to be a meta
language, not to be designed for content management, necessity of a new markup
language over internet. This new markup language has to been neither complex like

SGML nor simple like HTML.

In 1996, W3C (World Wide Web Consortium) (WEB_5, 2004) was gathered to
overcome this necessity and design new markup language XML. First design works of
XML, started at the end of August and after intensive works, in a short time, in 11
weeks, XML’s first draft version was announced at SGML’96 conference (WEB_1,
2002). Other formal details of XML taken one more year and in 1998 XML 1.0 was
published as a standard markup language by W3C.

GML

Markup Languages

XML App |
HTML N

XHTML

b

MathML

Figure 1.1 General view for markup languages

In figure 1.1, a general and historical view of markup languages is showed. After
development of XML technology, other subset markup technologies like XHTML,
MathML (WEB_8, 2004) and CML (WEB_9, 2004) have been also developed.

Thesis chapters and their contents are summarized below;

In the second chapter, basics of XML technology, XML and HTML differences,
XML design goals, XML features-approaches and real life XML usage scenarios are

explained.

In the third chapter, a simple XML document is created, examined with its document
components, saved, displayed by the browser and formatted using a CSS style sheet on a

browser,

In the fourth chapter, BNF grammar and its components are defined. XML 1.0
technology’s 89 EBNF rules are declared and sampled.

In the fifth chapter, XML document’s physical and logical structure units (elements,

PI, comments, CDATA sections, and entity references) are tried to explain shortly.

In the sixth chapter, DTD (Document type definition) mechanism that specifies XML
document’s logical structure and controls document’s markup units for validation

purposes is told with much samples and explanations.
In the seventh chapter, XSL technology that is used to format and transform XML
documents to another type of documents like HTML, WML and PDF is explained with

real life samples.

Finally, in the last chapter, a conclusion about thesis is given.

CHAPTER TWO
XML TECHNOLOGY BASICS

2.1 Simply HTML

HTML (Hypertext Markup Language) is an SGML application which formats web
pages (WEB_6, 1999). It has predefined standard tag set. Each tag has a special meaning
for page formatting. Tags are rendered by web browsers and formatted content is
presented. To be able to view web pages clearly in all browsers, tags or functions that

are not standard should not be used within web pages.

When HTML pages firstly appeared, they were written in simple text editors. With
the introduction of powerful web editors and code generators like Macromedia, all
developers supposed themselves as web engineers. Main HTML page of a camera

selling web site is showed below.

Table 2.1 KIBELENET Camera Categories HTML sample

<HTML>
<HEAD>
<TITLE>KIBELENET CAMERA SELLING SITE</TITLE>
</HEAD>
<BODY BGCOLOR="WHITE">

<P><H2>WELCOME TO OUR STORE...</H2></P>
<TABLE BORDER=0>
<TR><TD><H2>Camera Categories</H2></TD></TR>

Table 2.1 Continued...
<TR>
<TD><H3>

35MM ZOOM
APS

CHILD CAMERAS
DIGITAL
POLAROID

</H3></TD>
</TR>
<TR><TD><H2>Frequently Asked Questions</H2></TD></TR>
<TR>
<TD>

Is begin a member free?

1t is free.
When my order reaches

 Normally, in 2 days, your order reaches.

According to distance of address, it delivers 1-3 days
What can I do, if my order is defected?

A new order product will be sent without additional payment.

</TD>
</TR>
</TABLE>
</BODY>
</HTML>

WELCOME TO OUR STORE...

Camera Categories

o 3ISMM ZOOM

. APS

« CHILD CAMERAS
- DIGITAL

« POLAROID

Frequently Asked Questions

o Ishegin a member free?

Itis fee.
+ When my order reaches

Mormally, in 2 days, your order reaches. According to distance of address, it delivers 1-3 days
« What can 1 do, if my order is defectad?

A new order product will be sent without additional payment.

Figure 2.1 KIBELENET HTML page presentation

Example HTML page contains different start-end tags and their attributes. Tags start

with < character and end with > character. End tags also contain / character before the

name of the element. Between start and end tag, element content is located. HTML tags

are not interested with content, they only make representations.

Table 2.2 Basic HTML Tags (WEB_7, 2000)

<HTML></HTML> Specifies page as HTML page
<HEAD></HEAD> Keeps header information
<BODY></BODY> Keeps body information
<TITLE></TITLE> Title information on the web browser
<H1><H2>..<H6> Specifies text size

<pP></P> Specifies a paragraph

Table 2.2 Continued...
 Bolds the text
 Provides to show images
<A> Provides to link other web pages
<TABLE></TABLE> Provides to add tables
<TR></TR> Adds rows to tables
<TD></TD> Adds columns to tables
 Specifies an unordered list
 Specifies list items

 Pages breaks
2.2 What is XML?

XML (eXtensible Markup Language) (WEB 10, 2004) is a new simplified extensible

markup language which has SGML’s power and flexibility. XML is showed as a subset
of SGML and uses markup tags, like HTML. Difference between XML and HTML is

XML’s power to define content’s metadata. Like SGML, XML is also a meta language.
But, although HTML becomes an SGML application, HTML is not a meta language.

Some XML descriptions are below;

LISP without functionality,

PDF without acrobat,

EDI without commercial semantic,
RTF without word processing,

ZIP without compression,

FLASH without multimedia,

Morse Alphabet with more characters,
Unicode with more control characters,

Microsoft’s secret power against to Sun,

+ Sun’s open power against to Microsoft.

2.3 Simply XML

At first glance, XML technology which is developed by W3C (World Wide Web
Consortium) (WEB_5, 2004) organization may be looked like the most popular web
technology, HTML. Both technologies include some tags and properties. When details
scraped, it is understood that the similarity between HTML and XML is only the name
tag. HTML technology just formats the content but XML has special futures.

® Suitable with SGML.
® Tt holds both data and metadata which is data about data.

® . Learning, reading, implementing and testing the XML technology is
really easy.

® [t shortens the application development time like B2B.

" Although XML is a simple document format, it is used in complex
application scenarios like RPC messaging.

® XML is an open standard and developed from day to day. Also New
auditing tools have been written.

¥ With the assistance of XSL, XSLT, XPath and XLink technologies,

filtering, ordering, calculation and integration processes must be fulfilled

® Since XML technology supports internet and network technology, HTTP

- and SSL protocols are spontaneously supported.

® XML processing and traversing tools are world-wide and very cheap.
With the development of DOM which is a tree based processing tool,
document traversing have become a world standard.

® There is no need to prerequisite to read and understand XML documents.

® There is no need for high cost XML auditing editors.

10

2.4 Differences Between XML and HTML

Table 2.3 XML and HTML differences

Code Sample:
<Personnel>
<No>0001</No>
<Name>Sibel KILINC</Name>
<Telephone>053290194</Telephone>
<Email>sibel@hotmail.com</Email>
</Personnel>

Code Sample:
<P> Personnel Information

No: 0001
Name:Sibel KILINC
Telephone:053290194
Email: sibel@hotmail.com
</P>

Has an extensible structure. You can
define your own tags. It has predefined
rules.

Is not extensible. It has predefined
element tags. So you can not define
additional tags.

It keeps data and data about data
(metadata) in structure manner.

Aim is to make presentation. There is no
metadata.

Separates content from presentation.
Presentation is done using XSL
technology.

Content and presentation is mixed.

Readability is high.

There is no readability.

XML is a meta language. It is used to
define other markup languages.

It is not a meta language.

Provides integration between different
systems like in B2B.

It has no ability for integration. Because
there is no semantic definition.

Parsing of XML documents are
processed using DOM and SAX world
standards.

Parsing is not important for HTML.

2.5 Design Goals of XML

» “XML should be straightforwardly usable over the Internet” (WEB_11, 2004).

This requirement seems almost to go without saying; of course you’d want a new

markup language to be usable on the Internet, particularly the World Wide Web.
But straightforwardly adds a subtle extra layer of meaning: like HTML, XML is

not rocket science.

11

“XML shall support a wide variety of applications” (WEB_11, 2004).
XML technology does not only stores and represents data it can also be used for

communication between different systems.

“XML shall be compatible with SGML” (WEB_11, 2004).

XML is not an SGML application; it is the subset of SGML. While the official
definition of SGML is 400 pages, XML is only 26 pages. This small subset is
compétible with SGML. Most of the SGML auditing tools can also be worked
with XML documents.

“It shall be easy to write programs which process XML documents” (WEB 11,
2004).

Since SGML is a complex language, application development using SGML is
very hard and time consuming. One important reason why XML programs need

to be simple to write lies in the very extensibility of the language.

“The number of optional elements in XML is to be kept to the absolute
minimum, ideally zero” (WEB_11, 2004).

While XML is a direct descendant of SGML (much more so than HTML), it does
away with hundreds of optional “features” added to its parent over the course of

many years.

“XML documents should be human-legible and reasonably clear” (WEB 11,
2004).
XML documents holds data and metadata in a structure manner. So, it is very

easy to read and process XML documents.

“The XML design should be prepared quickly” (WEB_11, 2004).
Design duration of XML is not long as SGML which took 9 years. The basic

design of XML was accomplished in eleven weeks. The work started in the last

12

few days of August 1996, and ended with the release of the first XML draft at the
SGML '96 conference in November (WEB_1, 2002). So, XML’s draft workings
took 11 weeks.

= “The design of XML shall be formal and concise”. (WEB_11, 2004).
XML technology is constructed using EBNF (Extended Backus-Naur Form)
grammar (WEB_10, 2004). BNF grammars are an outgrowth of compiler theory.
A BNF grammar defines what is and is not a syntactically correct program or, in

the case of XML, a syntactically correct document.

* “XML documents shall be easy to create”. (WEB_11, 2004).
There must be no prerequisites for XML development. It must be easy to create

and manage XML documents.

* “Terseness in XML markup is of minimal importance”. (WEB 11, 2004).
The cost of this terseness is often clarity, determining what is intended at a given
point where the optional markup might be expected. And the drafters of the XML

spec set clarity as one of their guiding principles hence, this design goal.
2.6 XML Features and Approaches
2.6.1 Xml Has Structural Text Format

Advantages:

With this native feature, XML documents keep metadata, which says what data mean,
in addition to content information. For example, information about a book in turn
contains information about the title, author, chapters, body and index. Body c ontains
paragraphs, line text, footnotes, etc. A document that describes a book has information

that a person or machine can understand it. (WEB_13, 2004)

13

Most text files simply cannot offer this clear advantage. They either represent simply
the content without metadata, or include metadata in a flat, one-level manner like .INI
files. Files without metadata, must have separators like comma for processing. Since

these files are not structured, readability is lost.

Disadvantages:
Although XML documents have a great advantage by keeping information and
metadata together in a structured manner, using simple text files may be more efficient

in some applications. (WEB_13, 2004)
2.6.2 XML Is Readable

Advantages:

Thatis one of the most talked advantages of XML. XML documents are readable
both for human and machine. Readability not only makes debugging and diagnosis
easier, but actually speeds up implementation time (WEB_13, 2004). Readability also
provides writebility advantage by itself. There is no need to high-cost editors to write

XML documents. You simply write them using “Microsoft Notepad™ like text editors.

Disadvantages:

Main profit of XML technology is that is universal data exchange format between
systems (WEB_5, 2004). Since humans may never need to actually touch or look at the
XML document, after the application infrastructure has started to work once. But, for

readability advantage, file size and network traffic utilization is increased.

If humans want, they can still create quite unreadable XML documents. Many
developers code tags that having meaning for their application but are quite illegible to
other humans (WEB 13, 2004). For example, element "<denopas981>" may not be

meaningful to others.

14

2.6.3 XML Processing Is Easy And Cheap

Advantages:

One of the primary issue faced by alternative data file formats and database languages
is that processing tools are expensive (WEB_13, 2004). XML technology has not had
this disadvantage, because processing tools have become relatively widespread and
inexpensive. Since XML is a structured document that shares many of the processing
and parsing requirements, lots of parsers have been built. Many of these parsers are now
built-in to general browsers. Document Object Model (DOM) (WEB_14, 2004) has been
created by the W3C as a general model for how parsers and processors should interact
and process XML documents for representation as trees. As a result, the DOM has
produced a generic, universal method for processing XML documents (WEB_13, 2004).
Most of the built parsers support DOM model

Disadvantages:

“Processing XML documents does not stop at parsing. The data from those
documents then needs to be acted on. For most bussines applications, parsing is the first
process step at all” (WEB_13, 2004). Some business organizations have found the DOM
to be impractical for use in their business application environment due to its high

execution cost, inefficient memory management and other implementation problems.

2.6.4 XML Technology Supports Existing Security Solutions

Advantages:
Since XML technology supports existing Internet and network infrastructure, it can
take advantage of the increasing framework for providing security for these

infrastructures (WEB_13, 2004). Supported security concepts are;

B Authentication, making sure receiver and sender are really who they say

~ are.

15

® Encryption, protecting data; XML documents can be transferred over
HTTP using SSL protocol.

® Authorization, rights to access data (read, write, change, execute);
Techniques work just as well with XML as they do for other

documents and protocols

Disadvantages:

XML supports existing security solutions but also introduces new security risks of its
own that could pose serious threat to the integrity and exchange of data. XML
documents may have reference to external DTDs (WEB_15, 2004). Any change that
produces a fatal error in this DTD can then produce a chain reaction damaging XML

processing. These changes may be;
® OPTIONAL typed can be changed to REQUIRED.
® Intruder can redefine default values for attribute (WEB_13, 2004)

® Intruder can manipulate entities so that they insert text into documents,
it's possible to insert malicious content where an entity is used
(WEB_13,2004)

2.6.5 XML Is Not A Programming Language

XML technology is not a programming language. It is simply a document format
which contains metadata. “This misalignment in understanding causes confusion not
only about what XML is, but what itis capable of doing. X ML require p arsers and
applications to process them” (WEB_13, 2004). XML itself is simple. However all the
"action" really occurs in the next few layers of technology: schema validation, parsing,
processing, integration, mapping, messaging and transformation. XML gives us a
standard way to define a document format. That makes writing a parser easier. However,

most businesses and industries will create their own versions of the language, which will

16

then require more than just parsing to get an understanding of what that document means
(WEB_13, 2004).

It is incorrect to call XML as a programming language, since there is no manner in
which it instructs a computer how to process information, such as Delphi or C++
(WEB_13, 2004). XML is only a markup language not a programmatic language.
Actually, some people have tried to replace scripting and programming languages with

XML equivalents. But it has not been usable.

Function HelloWorld : Boolean; <Function Name="HelloWorld”
Begin Type="Boolean” >
Write(‘Helloworld'); <call function="Write”>
Result := True; <param type="String”s
End; Hello World
</param>
</calls>
</Function>

XML is easy to learn, implement, read, and test. It has shortened product
development time for most XML-related and data exchange projects like B2B. “XML is
an effective, portable, easily customized data format that can easily sent over virtually
any protocol” (WEB_13, 2004). While it is just a data format, it can be used for many
different purposes, ranging from messaging to RPC.

The problem is that XML is being applied in every possible scenario even when it is
not appropriate. This is primarily a problem in human nature in that people like to use

new technologies for all problems.

17

2.7 XML Real Life Scenarios

Although XML technology has disadvantages, the number of projects which uses
XML technology increases from day to day. Application areas of XML technology is

below;

® Using XML documents as data sources
o Processing documents using DOM model
o Processing and presentation using XSL, XSLT (WEB_16, 2004) and
* XPath (WEB_17, 2004) technologies

" Using XML documents in the integration of different systems
o B2B applications
» XMLRPC, XMLHTTP (WEB_21, 2004)
o Web Services
= SOAP (WEB_18, 2004)
o BizTalk

® Using XML documents to standardize GUI(Graphical User Interface)
o UIML (User Interface Markup Language) (WEB_20, 2004)
o XAML (XML Application Markup Language) (WEB_19, 2004)

® . Using XML data as ActiveX component’s content

" Using XML technology to define web resources
2.7.1 Using XML Documents As Data Sources

Tables in relational database management systems can easily be converted into XML
documents. W3C developed DOM tree based model to process XML documents
(WEB_14, 2004). There are lots of parsers which use DOM for processing XML
documents. One ofthe most used XML p arsers is Microsoft X ML Parser (MSXML)
(WEB_22, 2004). Following example shows an XML document, includes inventory

information and code to process this XML document.

18

Table 2.4 Use of XML Documents as DataBase

<?xml version="1.0"?> | (1)DomDoc:= CreateObject ('MSXML.DOMDocument ') ;

<STOCKLIST> (2) DomDoc . LoadXML (' <STOCKLIST>
<STOCK> + ' <S8TOCK> !
<CODE>01</CODE> + ! <CODE>01</CODE> '
</STOCK> + ' </STOCK>'
</STOCKLIST> ' </STOCKLIST>');
(3)kod := DomDoc.DocumentElement.

SelectSingleNode ('STOCK') .
SelectSingleNode ('CODE') .Text ;

Table 2.4 shows processing XML documents with MSXML DOM parser.
® (1) An instance of MSXML.DOMDocument (WEB 23, 2004) class which
is named

DomDoc is created.
¥ (2) XML data is loaded into DomDoc instance.

" (3) DomDoc is traversed to get the node value of the node “CODE”

Another two ways to process and view XML documents are using XSL and XPath
technologies. XPath is used to traverse all nodes of an XML document (WEB 17,
2004). XSL is used to traverse all units of an XML document (elements, attributes,
comment lines, processing instruction lines) and make all possible queries and
conversions (WEB_16, 2004). XSLT allows us to convert an XML document into
different document formats such as HTML, WML, PDF, CSV etc.

2.7.2 Use of XML Documents For Integration of Different Systems

One of the primary advantages of the XML technology is that it allows integration of
different systems. In the past, some unformatted data types or EDI messages (WEB 24,
2004) were used for integration of different systems. Today, EDI messages still used in

some sectors such as automotive and health.

19

Microsoft BizTalk server (WEB_25, 2004) is used for integration and communication
between different organizations. It supports both XML and EDI technologies and allows

conversion between these two technologies.

Building B2B applications with XMLHTTP and XMLRPC allow us to communicate
different s ystems. For e xample, Online B anking and D istribution A pplication transfer
functions of Netsis Commercial Packet is built with XML technology. XMLHTTP
technology is used to send XML messages from client to server over HTTP. After

processing the received messages, server sends an XML message to the client.

Table 2.5 XMLHTTP Technology

(1)Set xmlhttp = CreateObject ("Microsoft .XMLHTTP")
(2) Set objXMLDoc = CreateObject ("Microsoft.XMLDOM")
(3)objXMLDoc.LoadXML ("<?xml version='1.0' ?>" & _
"<NETSIS_DAGITIM>< ></NETSIS_DAGITIM> ")
(4)xmlhttp.Open "POST", "http://www.netsis.com.txr/Dagitim", False
(5)xmlhttp.Send objXMLDoc
(7)msgbox xmlhttp.ResponseXML.DocumentElement . XML

Response.ContentType = "text/xml"
(6)Response. Write (Request)

Table 2.5 shows use of XMLHTTP technology for XML messaging between client

and server.
® (1) xmlhttp object of Microsoft. XMLHTTP class is created.
" (2) objXMLDoc object of MSXML.DOMDocument is created.
® (3) XML message is loaded into objXMLDoc
® (4) Connection established between client and server by using Open method
® (5) XML message is sent to the server by using Send method.
"6 Séwer sends back the received XML message.

" (7) Client displays the received XML message.

20

SOAP applications and Web services take advantage of XML technology. SOAP
allows us to access and activate objects on the servers by using of HTTP and XML

technology. SOAP uses XML envelopes (WEB 18, 2004) to activate remote objects.

Table 2.6 SOAP Message

POST /WebServicel/Matematik.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length

SOAPAction: "http://tempuri.org/Topla"

<?xml version="1.0" encoding="utf-8"7>
<soap:Envelope
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<Topla xmIns="http://tempuri.org/">
<xX>int</x>
<y>int</y>
</Topla>
</soap:Body>
</soap:Envelope>

Table 2.6 shows SOAP message which activates Topla function of a Microsoft .Net

Web Service Matematik.asmx. Message consists of two parts, a header and an envelope.

® Header includes service machine name, URL resource address and

content type.

® Envelop includes structure and parameters of the “Topla” function in
XML format

2.7.3 Use of XML Documents for Standardization of User Interfaces

If we want our applications to support different platforms such as pocket-pc, web or

win32 we have to change the design of our application or we have to build different user

21

interfaces for different platforms. For example, it is not easy to use all objects or styles
of a win32 application in a web application. Because of these difficulties, organizations
such as ISO and IEEE developed different standards and languages like UIML (User
Interface Markup Language) (WEB_26, 2004).

These kinds of standardizations are insufficient because we also need a strong
framework such as JVM (Java Virtual Machine) or .Net Framework. New operating
system of Microsoft (LongHorn) Avalon (WEB_27, 2004) is used XAML to standardize
user interfaces (XML Application Markup Language) (WEB_19, 2004).

Table 2.7 XAML (WEB_27, 2004)

<Canvas xmlns="http://schemas.microsoft.com/2003/xaml" >
<Rectangle
Fill="#33CC66" Width="2in" Height="1in"
Canvas.Top="25" Canvas.Left="50" StrokeThickness="6px"
Stroke="Qrange" />
<Ellipse
Fill="yellow"
CenterX="1.5in"
CentervY="1.1in"
RadiusX=".5in"
RadiusY="1in"
StrokeThickness="4px"
Stroke="Blue" />
<Text
Canvas.Top="50" Canvas.Left="60"
Foreground="#000000" FontWeight="Bold" FontFamily="Arial"
FontStyle="Normal"
FontSize="25">
Hello Shapes!
</Text>
</Canvass

22

Table 2.7 shows a simple user interface developed in Avalon Operating System by
XAML.

2.7.4 XML As The Structural Content Of ActiveX Components

Another application area of XML is the activation of ActiveX components. XML
support of Microsoft Office Components (WEB_28, 2004) is a good example for such
applications. Following example shows an XML code of a basic Excel application. You
can also save an Excel document as an XML document by using Save As option of

excel.

Table 2.8 XML Data of An Excel Application

<?xml version="1.0"?>

<Workbook
xmlns="urn:schemas-microsoft-com:office:spreadsheet"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:x="urm:schemas-microsoft-com:office:excel"
xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"
xmlns:html="http://www.w3.org/TR/REC-htmi40">

<Styles>
<Style/>
</Styles>
<Worksheet ss:Name="Sheet1">
<Table>
<Row>
<Cell> <Data ss: Type="String">deneme</Data> </Cell>
</Row>
</Table>
</Worksheet>
</Workbook>

In Table 2.8, XML data of Excel application shows that the data in the first column of

the first row of Sheet1 is String and its value is deneme.

23

2.7.5 XML For Defining Web Resources

HTML deals with documents views more then their contents and Web is full of
HTML documents. As a result Web became a collection of garbage. B ecause of this

W3C developed RDF (WEB_29, 2004) to analyze resources and determine the relations.

RDF technology is more than a markup or formatting language but it is an API. Dom
process XML documents by the help of the physical tree structure of XML documents
but RDF is interested in the logical structure of an XML Document instead of its
physical structure. Elements of RDF define some expressions about sources. On these
expressions each resource can have more than one attribute. Each attribute include an

attribute name and its value

Table 2.9 RDF

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description about="http://www.deu.edu.tr/BilMuh">
<Author>
Deniz KILINC
</Author>
</rdf:Description>
</rdf:RDF>

In Table 2.9 a web resource with the URL of http://www.deu.edu.tr/BilMuh. The
author attribute of the resource is Deniz KILINC.

24

CHAPTER THREE
FIRST XML DOCUMENT

3.1 Introduction

This chapter tells how to create a basic XML document, examine document
components, save the document, document display by the browser, and lastly how to

format the document using a CSS style sheet on a browser.
3.2 Creation of XML Document

XML documents can be created in simple text editors like Microsoft Notepad. Of
course tools like XML Spy (WEB_30, 2004), Macromedia Dreamweaver (WEB_31,
2004) can be used to create and arrange XML documents. First XML document example
written in Notepad includes camera categories, and relative camera information.
Readable special tags (KCAMERA>, <BRAND>, <MODEL>...) are used for categories
and cameras. Even someone who does not know XML or web technologies can

understand the content of this document by reading it.

Table 3.1 First XML Document

<?xml version="1.0" standalone="yes"?>
<CAMERA_CATEGORIES>
<CATEGORY NAME="35MM">
<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>

25

Table 3.1 Continued...
<PRICE>1875000</PRICE>
<WEIGHT>120 gr.</WEIGHT>

</CAMERA>
<CAMERA>
<BRAND>Nikon</BRAND>
<MODEL>S5Z</MODEL>
<PRICE>1725000</PRICE>
<WEIGHT>130 gr.</WEIGHT>
</CAMERA>
</CATEGORY>
<CATEGORY NAME="DIGITAL">
<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>EOS 10D</MODEL>
<PRICE>2249985</PRICE>
<WEIGHT>135 gr.</WEIGHT>
</CAMERA>
<CAMERA>
<BRAND>Minolta</BRAND>
<MODEL>Dimage</MODEL>
<PRICE>5999850</PRICE>
<WEIGHT>110 gr.</WEIGHT>
</CAMERA>
<CAMERA>
<BRAND>Nikon</BRAND>
<MODEL>D100</MODEL>
<PRICE>25499850</PRICE>
<WEIGHT>140 gr.</WEIGHT>
</CAMERA>
</CATEGORY>
</CAMERA CATEGORIES>

3.3 Processing Instruction (PI)

XML documents start with a line called processing instructions. Processing
instructions start with <? and end with 7> characters. The first word after the leading
characters is the name of the processing instruction. Instructions are passed to
applications using XML documents by the processor, and technically, they are not

counted as a component of the document (Harold E.R, 1999). Documents have the

26

processing instruction given in the example above. The instruction has version,
standalone and encoding attributes. Attributes are name-value pairs which have equals
sign (=) between them. Value of an attribute is written in quotation marks after equals

sign.

Table 3.2 Processing Instruction Line

[<?xml version="1.0" standalone="yes"?>]

® version attribute is for telling XML parser which XML version published by

W3C the document is compatible with this document. Now, there are two

versions published by W3C which are version 1.0.

" standalone attribute tells whether the document is composed of only one
document. An XML document may be composed of many XML documents

and may reference other objects.

3.4 Elements

After the processing instruction line, element comes that is known as document
element or root element. Elements are the basic units of XML documents (Harold E.R,
1999);

An element, which is not an empty element, is composed of an opening tag,

content information, and a closing tag.

Table 3.3 Elements

“</BRAND>

® All tags include element type name.

® Element type names are placed between < > characters. Closing tag has /

character before element type name.

27

® Element type name can start with letters, or _ underscore character, but not

with numbers or - character.

® Element type names should not start with xml, XML, Xm!, XMI, xML,
xmL, xM1

® Element type names do not contain spaces.

Table 3.4 Element syntax

”<BRAND>Can0n<bRANd> <BRAND>Canon<brand>

® Elements must be nested properly.

Table 3.5 Root Element and Sub-Elements

<CAMERA_CATEGORIES>
<CATEGORI NAME="35MM">
<CAMERA> ... </CAMERA>

</CATEGORY>
<CATEGORY NAME="DIGITAL">

</CATEGORY>

</CAMERA_CATEGORIES>

In the example, CAMERA_CATEGORIES element is the root element, and has two
sub-elements. CATEGORY sub-element has CAMERA sub-elements, which have
BRAND, MODEL, PRICE, WEIGHT child elements. Child elements include content
data. CAMERA sub-element is the parent element of child elements.

28

HAME=1saNe|

[canen || 2158 Jhwsssos || s20ar | | o [z lirasena[130ar |

’ Lanan “e% 1%0”32«3@5&5“ 13547, l l Winsitn ” Darvgn "59%&5@” g ge l

R ma%]

Figure 3.1 Camera categories tree hierarchy

3.5 Saving an XML Document

After writing XML document, we must save the document such that its save as type
will be xml (first.xml, Cameras.xml). If an editor like Microsoft Word is used, document
must be saved as plain text. Figure 3.2 shows how to save the document written in

notepad as Cameras.xml.

29

<7xm
<CAMERA_CATEGORIESY
<CATEGORY NAME="35MM">
<CAMERAS
<BRAND>CANON</BRAND> sk
<MODEL>ZL55</MODEL>
<PRICE>1875000</PRICE
<WEIGHT>120 gr.</WEIG
<JCAMERAY>
<CAMERAS
<BRAND> NIk On</BRAND>
<MODEL >S52</MODEL>
<PRICE>1725000</PRICE
<WEIGHT>130 gr.</WEIG
< SCAMERAS
</CATEGORY >
<CATEGORY MAME="DIGITAL">
<CAMERA>
<BRAND>CAaNoN</BRAND>
<MODEL>ECS 100</MODEL
<PRICE»2249985</PRICE
CWEIGHT>135 gr.</WEIG
< /CAMERA>
CCAMERAS
<BRAND>Minolta</BRAND
<MODEL >Dimage</MODEL>
<PRICE>SBOUE50</PRICE
<WETGHT>110 gr.</WEIG
< /CAMERAY>

Figure 3.2 Saving XML documents

3.6 Displaying XML Document by a Browser

XML documents, just like HTML pages, can be displayed in Internet Explorer which
is a2 web browser. Hence tags in HTML pages are predefined standard tag set, web
browser knows a tag’s style. For example, an HTML browser reading tag, makes
the following text bold. Since elements in XML documents are defined by developers,
they are recognized only as character data by Internet Explorer. Internet Explorer

displays XML elements in a properly nested, and a treeview fashion as colored.

30

<turmnl version="1.0" standalone="yes" 7>
- <CAMERA_CATEGORIES>
- <CATEGORY NAME="35MM">
~ <«CAMERA>
<BRAND>Canon</BRAND>
<MODEL>Z188</MODEL>
<PRICE>1875000</PRICE>
<WEIGHT>120 gr.</WEIGHT>
</CAMERA>
- <CAMERA>
<BRAND>Nikon</BRAND>
<MODEL>8SZ</MODEL>
<PRICE>1725000</PRICE>
CWEIGHT > 130 gr.</WEIGHT >
</CAMERA
</CATEGORY >
- <CATEGORY NAME="DIGITAL">
- <CAMERA>

TAML

o

Figure 3.3 Viewing XML documents via Internet Explorer

Root and sub-elements can be expanded and collapsed. So elements can be identified
and logical structure of document can be grasped easily. Clicking + character near the
elements expand the collapsed sub-elements. Clicking - character near the elements
collapses the e xpanded sub-elements. Figure 3.4 shows how collapsed Canon c amera

under the 35MM camera category is expanded by clicking.

<tuml version="1.0" standalone="yes" 7>
- <CAMERA_CATEGORIES>
- <CATEGORY NAME="35MM">
& «CAMERA>
+ <CAMERA>
</CATEGORY>
- <CATEGORY NAME="DIGITAL">
+ <CAMERA>
+ <CAMERA>
+ <CAMERA>
</CATEGORY>
</CAMERA_CATEGORIES>

& T e Cpae T
Figure 3.4 Expanding and collapsing XML documents

31

3.7 Displaying XML Document by Using Cascade Style Sheet (CSS)

Since XML document is composed of tags defined by developer, it does not
recognized by the web browser as a document, style and format. So, a style sheet, which
shows the format of document for web browser, should be defined with the document.
Cascade style sheet (CSS) (WEB 32, 2004) is a kind of style sheet. CSS is originally
designed for formatting elements of HTML p ages. CSS provides the creation o f font
family, size, and type. CSS is also developed by W3C (WEB_5, 2004) like XML. Since
HTML develbpers are used to CSS, it has been a great advantage in its usage with XML.

3.8 Creation of CSS

Create a new file in a text editor; write the CSS content in table 3.6, save the file as

Cameras.css.

Table 3.6 Cameras.css Style Sheet (WEB_32, 2004)

CATEGORY
{
Font-Family : Verdana,;
Font-Weight : Bold;
Font-Size : 14pt;
Color : DarkBlue;
Border-Style : Outset;
Border-Width 14
Display : Block;
Text-Align : Center
}
CAMERA
{
Font-Family : Times New Roman;
" Font-Weight : Normal;
Font-Size : 12pt;
Color : Blue;
Border-Style : Groove;
Border-Width 0 1;
Display : Block;

32

Table 3.6 Continued...
Text-Align : Left;
Text-Decoration : Underline;
Margin-Left : 10px;

}

CSS in table 3.6 is written to format CATEGORY AND CAMERA tags.

W Font-Family; which font family is used, Font-Weight; whether the font is

bold, normal or italic,
B Font-Size; size of the font, Color; color of text,
® Border-Style; style of borders, Border-Width,; width of borders,
® Display; display of text,
B Text-Align; whether text is displayed left-aligned, centered, or right-
;clligned,
Text-Decoration; whether subscript or superscript is used,

™ Margin-Left; left margin, Margin-Bottom, right margin.
3.9 Integrating CSS Style Sheet with XML Document

After forming XML document and CSS style sheet, the browser should know how to
integrate XML document with CSS. Thus, a new processing instruction which declares
the style sheet of XML document must be added. PI line is written as <7xmi-

stylesheet?> ,and has two attributes;
" ppe attribute shows language of style sheet,

B href attribute shows URL of style sheet.

Open Cameras.xml document in table 3.1 with Notepad, and add the following

instruction as the second processing instruction to the document.

33

Table 3.7 Cameras.css processing instruction

| <?xml-stylesheet type="text/css" href="Cameras.css"?> |

For easy formatting of document by Cameras.css, NAME attributes of CATEGORY
tags should be transformed into <NAME> child tags. After adding new PI line and the

transformation, XML document is saved as “CamerasCssi.xml”.

Table 3.8 First XML Document

<?7xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="Cameras.css"?>
<CAMERA_CATEGORIES>
<CATEGORY>
<NAME>35MM</NAME>
<CAMERA>.. </CAMERA> <CAMERA>.. </CAMERA>
</CATEGORY>
<CATEGORY>
<NAME>DIJITAL</NAME>
<CAMERA>...</CAMERA> <CAMERA>...</CAMERA>
<CAMERA>..</CAMERA>
</CATEGORY>
</CAMERA CATEGORIES>

The rendered view of XML document by the browser is shown in Figure 3.5.

T

. [Canon Z155 1875000 120 gr.

Nikon S5Z 1725000 130 gr.

DIJITAL
Canon EOS 10D 2249985 135 ar,

" BEinolta Dimage 5399850 110 gr.

Nikon D100 25499850 140 ar.

Figure 3.5 Display of XML Document by using CSS style sheet

RESEARCHING
XML AND RELATED TECHNOLOGIES

by
Deniz KILINC

June, 2004
iZMIiR

34

CHAPTER FOUR
RESEARCHING XML 1.0 EBNF RULES

4.1 BNF Grammar

The main reason of XML’s much popularity according to its ancestor SGML, is its
simplicity and usability for web applications. This simplicity and usability advantage
comes from W3C’s compact XML specification framework, with other words, from

compact EBNF grammar (WEB_33, 2004).

BNF is a shortcut for Backus-Naur-Form. BNF grammars are an outgrowth of
compiler theory (WEB_10, 2004). “A BNF grammar defines what is and is not a
syntactically correct or not. It is possible to compare a document to a BNF grammar and
determine precisely whether it does or does not meet the conditions of that grammar”

(Harold E.R, 1999). BNF grammar has three parts;
B Terminals, some special characters and words like <, >,]]>, CDATA,

#REQUIRED in XML grammars.

® Non-terminals; Elements which will be converted to terminals by using rules.
Document element of XML starts with first EBNF rule, and then converted to

terminals.

" Productions-Rules; Mappings from non-terminals to non-terminals or other

sequences of terminals.

35

For example, we assume a BNF grammar for Turkish language words, start with
vowel, followed by one or more consonants, ends with a vowel. The solution of the

problem is below;
B Three rules are defined for grammar
" TrueWord, Vowel and Consonant words are non-terminals

B gerioduii letters are terminals

[1] TrueWord ::= Vowel Consonant+ Vowel
[2] Vowel

[3] Consonant

[aer1iobui]

[faeriodui]

If arti word is controlled for BNF grammar, firstly non-terminal first rule is
processed. According to rule TrueWord must be start with Vowel. Then Vowel non-
terminal is searched and second rule is processed. It tells us Vowel non-terminal
includes all Turkish vowel letters. Because first letter of art#i is a vowel, processing
continues for other letters. First rule is processed again and it says one or more
Consonant must be occurred. Consonant non-terminal is searched and third rule is

processed. It tells us Consonant non-terminal includes all Turkish consonant letters.

Because, second and third letters of arti are consonants processing continues for the
last letter. First rule is processed again and encountered with last non-terminal Vowel.
second rule is processed again. Since, last letter of ari fits to Vowel rule, processing is
finished. As a result arti word fits to the BNF grammar. Some suitable words for
grammar are atki, etki, igki, arsa, atklkdbfbi, ehjhjhi and some not are katki, etek, aidat,
artkgiklw.

4.2 Basic BNF

36

BNF grammar has special characters and rules. Characters are used to create rules

and rules are used to create grammar.

Table 4.1 Basic BNF Symbols and Characters (Harold E.R, 1999)

#xN N is a hexadecimal integer, and #xN is the Unicode
character with the number N

[a-z A-Z] Matches character range a-z or A-Z

[#xN-#xN] matches any character in the specified range where N
is
the hexadecimal value of a Unicode character

["a-Z] matches any character not in the specified range

[~abc] matches any character not in the list

A* Zero or more occurrences of A

A+ One or more occurrences of A

A? Zero or one occurrences of A

AB A comes after B

Al|B Matches A or B but not both

A-B matches any string that matches A and does not
match B

A Matches except A

(A* BH) | (C?)

(Zero or more A and one or more B) Or zero or one C

/* Comment */

Comment lines

[WEFC:]

Well-formedness constraint associated with this
production that documents must meet in order to
qualify as well-formed. Well-formedness constraints
will be found in the specification, but are not
encapsulated in the

BNF grammar.

[VC:]

Validity constraint associated with this production
that documents must meet in order to qualify as valid.
Validity constraints will be found in the specification,
but are not encapsulated in the BNF grammar.

XML 1.0.version has 89 EBNF rules (WEB_10, 2004). EBNF (Extended-BNF)
grammar is the next version of BNF. Technically, EBNF has some extra capabilities

which are not supported by conventional, compiler based BNF.

37

4.3 Well-Formed Documents

“A data object is an XML document if it is well-formed” (WEB_12, 2004). Document
parsing depends on well-formedness. “A well-formed XML document may in addition

be valid if it meets certain further constraints” (WEB_12, 2004).

4.4 Documents

An XML document becomes physical and logical structures. Document’s p hysical
structure is a set of units called entities. Entities can reference each other. XML
document starts with “document” entity. Document’s logical structure includes

elements, character references, comments and processing instructions.

Table 4.2 Document Rule (WEB_12, 2004)

[1] document prolog element Misc*

The first rule has 3 non-terminal elements.

1. According to rule, an XML document must start prolog element. Simply, a
prolog element includes DTD and XML declaration definitions.

2. A root element must follow the Prolog element. Elements have start- and end-
tags, and may have character data, other elements, or both between these tags.
Empty elements may use an empty-element tag instead of a start- and end-tag
pair(<emptyelement attrib="1"/>). There is exactly one element, called the root,
or document element, no part of which appears in the content of any other
element. If an <X> element has <Y> element as a child, <X> element is the
parent of <Y> element. With other words, <Y> element is the child of <X>

element.

38

3. Third non-terminal “Misc” element is optional. Misc element includes white-

spaces, comments or processing instructions.

If an XML document fits the first EBNF rule, then document is called as “well-
formed document” (WEB_12, 2004).

Table 4.3 Well-formed XML document

<?xml version="1.0" encoding="is0-8859-9"?>
<!-- DTD declaration-->
<ROOT_ELEMENT>

<PARENT>

<CHILD> Content Information</CHILD>

</PARENT>
</ROOT_ELEMENT>
<?Processing Instruction1?>
<?Processing Instruction2?>

According to rule, an XML document includes only one root element. If an XML

document has more than one root element, it is not well-formed.

Table 4.4 Non-well formed XML document

<?7xml version="1.0" encoding="is0-8859-9"7>
<!-- DTD declaration-->
<ROOT_ELEMENT>abc </ROOT_ELEMENT>
<ROOT_ELEMENT>def </ROOT _ELEMENT>
<?Processing Information?>

4.5 Characters

The ISO/IEC 10646 standard created by a commission of the ISO and the
International Electrotechnical Commission in 1993 specifies the Universal Multiple-
Octet Coded Character Set (UCS). The Universal Character Set is a collection of

characters (usually, elements of alphabets, numeric digits, and other characters such as

39

punctuation) that aims to represent all the written languages of the world (WEB_12,
2004).

An octet is a grouping of \eight bits of information. An octet can represent 256
different values. This is enough for all the characters on an English-language keyboard
and some other miscellaneous ones, but certainly not enough to cover all the characters
in all the laﬁguages that people want to use when storing documents on computers.

Doing this requires multiple octets for each character.

Using two octets per character, you can represent 65,536 different characters; the ISO
10646 version of this is known as UCS-2. Four octets, UCS-4, can represent over two
billion different characters (of the 32 bits in the four octets of a UCS-4 character, the
first must be “0”, leaving over two billion possible combinations of the remaining thirty-
one bits) (WEB 12, 2004).

Unicode is a standard developed by the Unicode Consortium for representing
characters with 16 bits. This group is a separate organization from the ISO. “These two
standards, in order to remain backward-compatible with existing text files, have the
same first 128 characters as the 128 characters in the ASCII character set” (WEB_12,
2004).

XML supports both UCS-2 and Unicode standards. In addition to these standards,
UTF-8 and UTF-16 (UTF, UCS Transformation Format) are also supported. Character
ranges of XML documents are declared in 2nd EBNF rule.

Table 4.5 Character Range Rule

T

(WEB_12, 2004)

#x9 | #xA |#xD | [#x20-#xD7FF] |
[#xE000-#xFFFD] | [#x10000-#x10FFFF]

40

#x at the beginning of a number shows that it’s written in hexadecimal, or base 16
notation, as opposed to the decimal, base 10 notation that non-programmers are
accustomed to. Hexadecimal notation represents the decimal notation numbers 10
through 15 using the letters. For example, 9 and 10 numbers are mapped to #x9 and
#xA. According to ond rule, characters in the range of 9, 10, 13, 32 — 55295, 57344 —
65533, 65536 — 1114111 can be use as XML characters. Using hexadecimal character

system is more efficient than base 10 system.
4.6 Common Syntactic Constructs

In XML EBNF grammar, there exist mostly used characters. White-space characters

are in this category.

Table 4.6 White Space Rule (WEB_12, 2004)

BIS = (#x20]#x0 | #xD | FxA)t

By space (#x20) characters, it means ASCII character 32—the character you type by
pressing your keyboard’s space bar. #x9 is the character that you type with your Tab

key. Carriage returns and line feeds are two different characters.

Table 4.7 Names and Tokens Rule (WEB_12, 2004)

[4] NameChar

Letter | Digit|*.” |7 | " |’ |
CombiningChar | Extender

Characters are specified as letters, digits and other characters. Letters can be
alphabetic simple letters or combinations of more than one element. For example, g

character in Turkish alphabet, is the combination of g and ~ characters.

41

Table 4.8 Names and Tokens (WEB_12, 2004)

T

}4[‘5] ame 3 K | ’:”) (NameChar)
[6] Names = ::= Name (S Name)*

Names are very important units or concepts for XML documents. “Tokens or non-
terminal elements are atomic units of XML documents” (WEB_12, 2004). Tokens are
integrated according to XML EBNF rules and non-terminal elements are becomes, whit

the non-terminal elements.

Table 4.9 Valid and non-valid XML names

; <Book> <Book 1>

<Book1> <.Book>
< Book.1> <1.Book>
< 1.Book> . <Book!>
<:Book> <-Book>
< > <Book,1>

Element Type Name can although start with any combination of XML word,
CXPx) CM’'m’) CL’’T)); XML, xML, xmL, xml, XmL, Xml, XMl and xMl words
are reserved for future use. An xml element can be named as <xmlelement>, but if W3C
decides to create a new element using this name, applications using <xmlelement> must

be changed.

Namespaces are special XML units to specify element type names. For example, if
there exist two DTDs with the names #ypel.dtd and type2.dtd, and each of DTD uses the
element <common>, namespaces must be used to separate logic of documents.

(<typel :common> <type2:common>). Name Tokens are similar to element type names.

42

Table 4.10 Names and Tokens Rule (WEB_12, 2004)

V [7] Nmtoken = (NaniéChar)+
[8] Nmtokens := Nmtoken (S Nmtoken)*

Nmtokens can be constructed using NameChars. Nmtoken can be start with a letter,
number and an underscore. They must not start with a letter like element type names
(WEB_12, 2004). If address information wants to be kept in an XML document, the type
of this element or attribute must be considered deeply. Since, NMTOKEN type can not
contain special characters and the type of attribute must be set as CDATA.

Table 4.11 Attribute in NMTOKEN and CDATA types

<IATTLIST personnel address NMTOKEN #REQUIRED>
<IATTLIST personnel address CDATA #REQUIRED>

Table 4.12 Valid and non-valid Nmtoekens

Book Book 1
Book 1 Book,1
Book.1 Book!
1.Book (Book)

: Book # Book

Kitap$1
- Book
1. Book

Entities are special XML units which provide to define and reference audio, mpeg

like binary and unparsed files. The values of entities are shown between double or single

quotes.

Table 4.13 Literals Rule (WEB_12, 2004)
[9] EntityValue :: (["%&"] | PEReference | Reference)* ™’
‘ """ (["%é&’] | PEReference | Reference)* ™"

43

Values between single or double quotes are named “Literal Data”. According to 9™

EBNF rule, entities can not include “%” and “&” characters.

Table 4.14 Entity usage
| <lENTITY DEU ’Dokuz Eylul University’>

Table 4.15 Valid and non-valid entities

“Dokuz Eylul” “Dokuz Eylul
‘Dokuz Eylul* ‘Dokuz Eylul”
“Deniz & Sibel ” “Deniz & Sibel ”
“H20 %,801” “H20 %801~

Attribute values are also located between single and double quotes. They can include

all values except <, & and “ characters.

Table 4.16 Literals Rule (2) (WEB_12, 2004)
- — -

B

[10] AttValue :: " (["<&"] | Reference)* ™
" ([*<&’] | Reference)* ""

Table 4.17 Valid and non-valid attributes

Value alue’
“Value* ‘Value”
“Deniz & Sibel ” “Deniz & Sibel ”
“H20 %801~ “H20 %801
“x1It; y” “x<y”

SystemLiterals are not recognized as markup and are not parsed. So, characters like
&, <, > and % can be assigned as SystemLiteral value. Values are located between

single or double quotes.

44

Table 4.18 Literals Rule (3) (WEB_12, 2004)

Literals
[11] SystemLiteral

Table 4.19 Valid and Non-Valid SystemLiterals

“‘Value alue’

‘Value !* ‘Value”
“Deniz <and/> Sibel ” “Deniz”’s Book”
“H20 %801” ‘Deniz’s Book’

“Deniz’s Book”

Public Id Literal values are the combination of PubidChars and PubidChars include
white-spaces, a-z and A-Z letter range, 0-9 digit range and characters - '()+,./:=?; I*# @
3 %.

Table 4.20 Literals Rule (4) (WEB_12, 2004)
Lite)

[12] PubidLiteral " PubidChar* *" | """ (PubidChar - """)* "*"
[13] PubidChar = #x20|#xD | #xA | [a-zA-Z0-9]
| [0+, /=01 4@$_%]

4.7 Character Data and Markup

XML markup has the format of start tags, end tags, empty element tags, entity
references, character references, comments, CDATA sections, document type
declarations (DTD) and processing instructions (PI). “Data except XML markup is
called character data” (WEB_12, 2004).

® Start and end tags; <BRAND>Canon</BRAND> shows start and end tags
together

B Empty elements; <BRAND NAME="Canon’/>
® Entity references; <\ENTITY DEU ’Dokuz Eylul University’> and “>”

8 Character references; P

45

" Comments; <!-- CAMERA BRAND ELEMENT-->

B CDATA sections; Data in this section is cancelled by XML parser.
<![CDATA[<BRAND NAME="Canon’/>]}>, in this example <BRAND>

is not recognized as an XML element. It is only simple text.

® Document type declarations; Elements, attributes and entities are defined in

DTDs. <IDOCTYPE category SYSTEM ‘category.dtd’>

" Processing instructions; Used for to transfer data to applications using

XML processors. <?xml version="1.0" standalone="yes’?>

Table 4.21 Character Data Rule (WEB_12, 2004)

 Character Data
[14] CharData ::= [M<&]* - (["<&T* ’1>° ["<&]*)

CharData can not include <, & characters and]]> CDATA closing sections. These

characters can be used within PIs, comments and CDATA sections.
4.8 Comments

“Comments may appear anywhere in a document outside other markup; in addition,
they may appear within the document type declaration at places allowed by the
grammar” (WEB_12, 2004). Comment lines are generally used to put some explanation
to XML code line.

Table 4.22 Comments Rule (WEB_12, 2004)

C nt -
[15] Comment = <!--> ((Char - ’-") | (-’ (Char - ’-")))* *-->’

Comment element starts with the </-- string, then all characters except -- can follow

2™ Char rule. Finally, it is finished with -> string.

46

Table 4.23 Valid and non-valid comments

1l
<!-- Camera --> <!--Deniz -- Sibel -->
<!-- & Camera & - <!--Deniz -~ Sibel -->>
<!-- Deniz <and/> Sibel -->
<!-- Deniz
<and/> Sibel -->

4.9 Processing Instructions

“Processing instructions are used to transfer data to applications which use XML
documents” (WEB_12, 2004). PI lines are also not recognized as XML character data
like XML comments. They start with <? literal and ends with ?> string. PITarget is the
name of processing instruction. These PI names can be got the all values except the

XML word’s upper and lower case combinations.

Table 4.24 Processing Instructions Rule (WEB_12, 2004)

[16] PI_ "5<7’ PITarget (S (Char* - (Char* 7>’ Char*)))? *7>’
[17) PITarget 5= Name- (CX’ | ’x’) CM |’'m’) CL’ | 1)

PI element starts with <? string, then P ITarget element, white-space c haracter and
characters specified in 2™ rule except ?> string follows, finally it is finished with 7>

string.

Table 4.25 Valid and Non-valid PIs

<?delphi version="6.0" param1="X"?7>

<? delphi version="6.0"
param1="X"7>

<?P1I for a delphi application?> <?delphi sample!>
<7xml-stylesheet type="text/css" <?xml PI line?>
href="Cameras.css" 7>

4.10 CDATA Sections

47

CDATA section is some text to be identified that should escape parsing. In other

words, if there’s anything in that text that would normally be considered as XML

markup, treat it as character data. CDATA sections begin with the string <//{CDATAf

and end with the string //>.CDATA sections are popular for showing demonstration

XML, HTML or SGML markup within an XML document.

Table 4.26 CDATA Sections (WEB_12, 2004)

[18] CDSect CDStart CData CDEnd

[19] CDStart = <!|CDATA[’

[20] CData = (Char* - (Char* >’ Char*))
[21] CDEnd = P

In table 4.27, it is shown that how HTML elements can be hold within other HTML

fixed markup. XML parser does not process these lines and recognized as character data

not markup.

Table 4.27 CDATA Usage

<HTMLLESSON>
<I[CDATA[
<HTML>
<BODY>
<P>First lesson about HTML technology...</P>
</BODY>
</HTML>
11> .
</HTMLLESSON>

48

Table 4.28 Valid and non-valid CDATA Sections

RS

<I[CDATA][<sample> &/.
<XMLDERSI>
<I[CDATA[

CDATA sections start with <!/[CDATA[
string

1>

</XMLDERSI>

> <I[CDATA[data J]>....]]>

4.11 Prolog and Document Type Definitions

“XML documents may, and should, begin with an XML declaration which specifies
the version of XML being used” (WEB_12, 2004). This section of the XML
specification describes markup that can make a document even more useful, because it

provides extra information to a processing program about the document and its structure.

Table 4.29 Prolog Rule (WEB_12, 2004)

Prolog =
[22] prolog

XMLDecl? Misc* (doctypedecl Misc*)?

Prolog element starts with an XMLDecl element, then an o ptional Misc element, a

doctypedecl element and an optional Misc follows.

Table 4.30 Valid and non-valid Prologs
Vali

xml version="1.0"7>

<?

<7?xml version="1.0"7>
<?xml version="1.0"7> <!-- Comment Line-->
<!—Comment Line--> <7xml version="1.07>

<?xml version="1.0" standalone="yes”?>
<?xml-stylesheet type="text/css"
href="Cameras.css"?>

<7xml version="1.0"7> <?xml-stylesheet type="text/css"
<!--Comment Line--> href="Cameras.css"?>
<?xml-stylesheet type="text/css" <7xml version="1.0"7>

href="Cameras.css"?> <!--Comment Line-—>

49

Table 4.31 Prolog Rule (2) (WEB_12, 2004)

P
[23] XMLDecl

’<?xml’ Versionlnfo EncodingDecl? SDDecl? S? *?>’ |

XML declaration line starts with <?xml string, then follows with an Versionlnfo
element, then follows an optional EncodingDecl element, an optional SDDecl element

and finally a white-space character.

Table 4.32 Valid and non-valid XML declarations

<?xml version="1.0"7> <7?xml 7>
<?xml version="1.0" encoding="utf-8”7> <?xml standalone="no”?>

<?xml version="1.0" encoding="utf-8” <?xml encoding="utf-8”7>
standalone="yes”?>
<?xml version="1.0" standalone="no”?> <?xml version="1.0"?7?7>

Versionlnfo element starts with white-space character, then follows fixed version
keyword, an Eg element which is = sign. There can be a space at the left and right of
sign. Finally, VersionInfo element ends with VersionNum element within single or

double quotes.

Table 4.33 Prolog Rule (3) (WEB_12, 2004)

[24] VersionInfo
[25] Eq
[26] VersionNum

S ’version’ Eq (’VersionNum’ | " VersionNum")
S? =87
([a-zA-Z0-9 ..]|’-)+

VersionNum element can include letters in the range of a-z and A-Z, characters like .,

:, _ and digits between 0-9.

50

Table 4.34 Valid and non-valid XML versions

Version="1.0"

Version="1.0"

Version="1.0’

Version="1.0°

Version ="1.0”

”1.0”= version

Version="1.a"

Version="v1,6”

Version="1.2.1"

Version="1 6”

Version="1.2RE4”

Version="1 . 2RE4”

Version= “verl.0 L” Version="ver 1.0 L”

Table 4.35 Prolog Rule (4) (WEB_12, 2004)

[27] Misc : Comment | PI| S

Misc element can be in the form of comment line, processing instruction line or white

space character. It is a non-terminal element in the first Document rule.

Document type definition is a mechanism that specifies XML document’s logical
structure (WEB_34, 2004). Definitions are saved in files which has DTD e xtensions.
These files are declarations for elements, attributes, entities and external reference
definitions. An XML document which includes DTD file or references to a DTD file is

formed and named as valid document.

Table 4.36 XML document that references external entities

<?xml version="1.0" encoding="is0-8859-9"7>
<IDOCTYPE OKUL SYSTEM " OKUL.DTD">
<SCHOOL>
<NAME>&deu;</NAME>
<FACULTY>
<FID>ENGINERRING</FID>
<DEPARTMENT>COMPUTER</DEPARTMENT>
<PARTDEP>INDUSTRY</PARTDEP>

</FACULTY>
<FACULTY>
<FID>LEARNIG</FID>

51

Table 4.36 Continued...
<DEPARTMENT>MATHMATIC</DEPARTMENT>
<PARTDEP>STATISTIC</PARTDEP>

</FACULTY>

</SCHOOL>

<!IELEMENT SCHOOL (NAME, FACULTY+)>
<!IELEMENT NAME (#PCDATA)>
<!ELEMENT FACULTY (FID, PARTDEP+)>
<!ELEMENT FID (#PCDATA)>

<!ELEMENT PARTDEP (#PCDATA)>
<IENTITY deu “Dokuz Eyliil University”>

In table 4.36, SCHOOL.DTD file defines root element and its descendants, its orders
and its types and ENTITY definitions. DTD is similar to grammar declaration of XML

document.

[28] doctypedecl = <IDOCTYPE’ S Name (S ExternallD)? S?

([’ (markupdecl | PEReference | S)*
T S7? >
[VC: Root Element Type]

[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl
| NotationDecl | PI | Comment
[VC: Proper Declaration/PE Nesting]
[WEC: PEs in Internal Subset]

DTD declaration starts with </DOCTYPE string, then a white-space character, a valid
XML Name, an optional white-space character, an ExternallD and again optional white-
space character, a [character, a markupdecl element, a PEReference element or a white-
space character and finally end with an] character, optional white-space character and
an > character. Markup declaration (markupdecl) can be in the six declaration form;

® (1)Element Declaration(elementdecl)

B (2)Attribute List Declaration (AttlistDecl)

(3)Entity Declaration(EntityDecl)

(4)Notation Declaration (NotationDecl)

(5)Processing Instruction (PI)

(6)Comments

Table 4.38 XML Sample which has all declarations

<7xml version="1.0" encoding="is0-8859-9"7>
<IDOCTYPE SCHOOL |
<INOTATION EPS PUBLIC "+//ISBN 0-201-18127-4::Adobe//
NOTATION PostScript Language Ref. Manual//EN">
<IENTITY file SYSTEM "image/image.eps" NDATA EPS>
<!IENTITY % nameDecl "<!ELEMENT NAME (#PCDATA)>">
<!ENTITY deu "Dokuz Eyliil University">
<!IELEMENT NAME (NAME,IMAGE)>
%nameDecl;
<IELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE PATH ENTITY #REQUIRED>
<!-- DTD Ends -->
>
<SCHOOL>
<NAME>&deu;</NAME>
<IMAGE PATH="file"/>
</SCHOOL>

52

In table 4.38, an XML document sample which has all XML declarations is shown.

DTD and XML document is mixed. This type of DTD documents are named as internal
DTD declaration. SCHOOL root element is made NAME and IMAGE elements. NAME

element’s declaration is defined in the nameDecl parameter entity. Parameter entities are

XML units which provide to define content of markups. IMAGE element is an empty

element and has no content. Content of PATH attribute is file entity which accepts EPS

file format. EPS definition is a notation declaration.

53

Constraints in [28] and [29] EBNF rules;
" “VC: Root Element Type” (WEB_12, 2004); The Name in the document type

declaration must match the element type of the root element. This validity
constraint tells us that the Name in a document type declaration can’t be just any
Name. It has to be the element type name of the root element of the document.

" “VC: Proper Declaration/PE Nesting, Parameter-entity replacement text must
be properly nested with markup declarations” (WEB_12, 2004).

" “WFC: PEs in Internal Subset” (WEB_12, 2004), In the internal DTD subset,
parameter-entity references can occur only where markup declarations can occur,

not within markup declarations.

Table 4.39 WFC for internal DTD declarations

<?xml version="1.0" encoding="is0-8859-9"7>
<IDOCTYPE SCHOOL [
<!IELEMENT OKUL (NAME,CITY)>
<!--Since it hold the whole declaration of element, it is a valid parameter entity
definition -->
<!ENTITY % nameDecl "<!ELEMENT NAME (#PCDATA)>">
%nameDecl,;
<1--Since it hold the part of declaration of element, it is not a valid parameter entity
definition -->
<IENTITY % cityDecl "CITY (#PCDATA)">
<IELEMENT %cityDecl ;>
->
<IELEMENT CITY (#PCDATA)>
>
<SCHOOL>
<NAME>Dokuz Eyliil University</NAME>
<CITY>1zmir</CITY>
</SCHOOL>

In table 4.39, XML document’s root element has the name SCHOOL which contains
NAME and CITY element. NAME element is defined using parameter entity reference.
nameDecl reference includes all information which will be used in element declaration.

So it is also a valid declaration. But, PE reference that is defined for CITY element is not

54

fulfilled, because it does not include the characters <, >,! and the ELEMENT keyword.
Usage of cityDecl entity like <!ELEMENT %cityDecl;> does not fit WFC.

Table 4.40 External Subset Rule (WEB_12, 2004)

[30] extSubset : TextDecl? ExtSubsetDecl
[31] extSubsetDecl ::= (markupdecl | conditionalSect | PEReference | S)*

External subset consists of an optional text declaration followed by an external subset
declaration. Rule 31 shows that the latter is a combination of zero or more of the markup

declarations, conditional sections, and parameter-entity references.

External subsets and external PE references has rules and declarations like internal
ones. If an external subset is wanted use from an internal DTD, an URI (Uniform
Resource Identifier) reference to external subset must be constructed. (URI) is a notation
for naming resources on the Web. A URL (Uniform Resource Locator) such as

http.//www.deu.edu.tr is one kind of URL

Table 4.41 URI references

<7xml version="1.0" encoding="1s0-8859-9"7>

<!IDOCTYPE SCHOOL SYSTEM "ext.DTD" [...

<?xml version="1.0" encoding="is0-8859-9"7>

<!IDOCTYPE SCHOOL SYSTEM "http://www.deu.edu.tr/ext. DTD" [...

Well-formed constraints for parameter entity references are not true for external
parameter entities (WEB_12, 2004). It means that external parameter entities must not

define all part of declaration.

Table 4.42 Using PE references in external subsets

<?xml version="1.0" encoding="is0-8859-9"7>

<!DOCTYPE SCHOOL SYSTEM "ext.DTD" [

<!IELEMENT SCHOOL (NAME,CITY)>

<!--Since it hold the whole declaration of element, it is a valid parameter entity

Table 4.42 Continued...

definition -->

<IENTITY % nameDecl "<!ELEMENT NAME (#PCDATA)>">

%nameDecl;

]>

<SCHOOL>
<NAME>Dokuz Eyliil University</NAME>
<CITY>1zmir</CITY>

</SCHOOL>

| <!-- Although it does not hold the whole declaration of element, it is a valid
parameter

entity definition, because this DTD is used as external subset
-

<IENTITY % cityDecl "CITY (#PCDATA)">
<IELEMENT %cityDecl;>

55

“If both the external and internal subsets are used, the internal subset is considered to

occur before the external subset. This has the effect that entity and attribute-list

declarations in the internal subset take precedence over those in the external subset”

(WEB_12, 2004). In table 4.42, schoolname entity reference is used both in internal
DTD and in external DTD. Since the priority of internal DTD, SCHOOL element will

has DEU content.

Table 4.43 Using internal and external declaration together

<?xml version="1.0" encoding="is0-8859-9"7>
<IDOCTYPE SCHOOL SYSTEM "ext.DTD" [
<IELEMENT SCHOOL (#PCDATA)>

<IENTITY schoolname "DEU">
]><SCHOOL>&schoolname;</SCHOOL>
<IENTITY schoolname "Dokuz Eylul University">

56

4.12 Standalone Document Declaration
An XML document can get by with no declarations at all. It can also have

declarations as part of an internal subset, and it can have declarations in an external

subset such as a separate DTD file.

Table 4.44 Standalone Document Declaration Rule (WEB_12, 2004)

[32] SDDecl M:A:: S ’standalone’ Eq (("" ("yes’ |
7no’) H’ll) I (,"’ (’yes’ I ’no7)1ll’))
[VC: Standalone Document Declaration]

According production rule, SDDecl element starts with white-space character, then
follows with standalone keyword string, = sign character and yes-no values. “If the
value yes, indicates that there are no markup declarations external to the document entity
which affects the information passed from the XML processor to the application. The
value no indicates that there are or may be such external markup declarations”
(WEB_12, 2004). If there are no external markup declarations, the standalone document
declaration has no meaning. If there are external markup d eclarations but there is no

standalone document declaration, the value zo is assumed.

Table 4.45 Valid and non-valid Standalone attributes

Standalone="yes” Standalone="yes’
Standalone="yes’ Standalone="yes”
Standalone="no” Standalone="no’
Standalone="no’ Standalone="no”

According to 32" EBNF rule, the circumstances that value of standalone attribute can

not be no;
B If default values of attributes is located outside of the document.

B If XML document have elements or attributes which have external values.

57

" If XML document has entity references except amp, lt, gt, apos and quot.
4.13 White-Spaces

Management of white spaces in XML document is a complex job like in all text
based technologies. Especially, when XML documents are converted or transformed to
other type of documents, impotency of white-space is increases. For example, two XML
documents below may look like same with their contents but XML parser processes two

documents differently.

Table 4.46 White-spaces

<xml version="1.0"> <xml version="1.0">

<ROOT> <ROOT> <SubElement> 1 </SubElement>
<SubElement>1</SubElement> <SubElement> 2 </SubElement>
<SubElement>2</SubElement> | </ROOT>

</ROOT>

In XML documents, xml:space attribute is used to manage white-spaces. This
attribute can take two values;

" default;, XML parser manages white-space management itself. If xml:space
attribute is not specified, “default” value is processed

® preserve; Provides to keep spaces.

Table 4.47 Usage xml:space attribute

<PERSONNEL> <PERSONNEL xml:space="preserve'">
<CODE>00001</CODE> <CODE>00001</CODE>
<ADR xml:space="preserve"> <ADR>Kazim Dirik Mah. Gediz Cad.
Kazim Dirik Mah. Gediz Cad. Apt.No 344 - Kat5
Apt. No 344 - Kat5 BORNOVA
BORNOVA </ADR >
</ADR > </PERSONNEL>
</PERSONNEL>

58

In table 4.47, two different usages of preserve attribute in the same XML document is
showed. In the first one, it is assigned to ADR and in the second one it is assigned to
root element PERSONNEL. Two XML documents “ADR” element’s white-spaces are

kept. But in the second XML document all elements’ white-spaces are kept.
4.14 Language Identification

“In document processing, it is often useful to identify the natural or formal language
in which the content is written. xml:lang attribute may be inserted in documents to

specify the language used in the contents of any element in document” (WEB_12, 2004).

Table 4.48 Language Identification Rule (WEB_12, 2004)
[33] LanguageID ::= Langcode (‘-’ Subcode)*

[34] Langcode = IS0639Code |lanaCode |UserCode
[35]1S0639Code ::= ([a-z]|[A-Z]) ([a-z]]|[A-Z])
[36] IanaCode = (‘1°]'1) - (Ja-z] | [A-Z D+

Il

[37] UserCode (‘x| ‘X)-"(Ja-z] | [A-Z]+
[38] Subcode = ([a-z] | [A-Z]+

LanguagelD, starts with the Langcode element. V alues that L angcode element can
take are below;
A two-letter language code as defined by [ISO 639], Codes for the representation of

names of languages. There exist 2704 language codes.

Table 4.49 Valid and non-valid ISO639Code codes (WEB_12, 2004)
Vald1S06 — : A v

En

Tr

TR

FR French
Tr Spanish
JP Japan
tR Turkey

59

A language identifier registered with the IANA (Internet Assigned Numbers

Authority). Begins with the -i or -I prefixes.

Table 4.50 Valid and non-valid IanaCode codes (WEB_12, 2004)

i-no-bok No-bok
i-no-nyn No-nyn
i-navajo Navajo
i-mingo Mingo

A language identifier assigned by the user, or agreed on between parties in private

use; these must begin with the prefix x- or X- in order to ensure that they do not conflict

with names later standardized or registered with JANA.

Table 4.51 Valid and non-valid UserCode codes

x-klingon Klingon
X-Elvish Elvish

In table 4.52, color keyword’s usage in different grammars (United States and Great

Britain) is showed.

Table 4.52 xml:lang attribute

<xml version="1.0">
<list>
<p xml:lang="en-GB ”>What colour is it?</p>
<p xml:lang="en-US ”>What color is it?</p>
</list>

4.15 Elements

“Each XML document contains one or more elements, the boundaries of which are

either delimited by start-tags and end-tags, or, for empty elements, by an empty-element

60

tag. Each element has a type which is defined in a related DTD or XML schema”
(WEB_12, 2004). Each XML element can have one or more attributes.

Table 4.53 Element Rule (WEB_12, 2004)

[39] élement : EmptyElemTag | STag content Etag

[WFC:Eleament Type Match] [VC:Element Valid]

“Element Type Match (WFC): The Name in an element’s end-tag must match the
element type in the start-tag” (WEB_12, 2004).

“Elementv Valid (VC): An element is valid if there is a declaration matching
elementdecl where the Name matches the element type, and one of the following holds”
(WEB_12, 2004):

" If EMPTY, element must not include content

® If ANY, all children’s types, sequences must be defined properly.

" If Mixed, the content of element must include both character data and child

elements. All children’s types, sequences must be defined properly.

Table 4.54 Element Rule (2) (WEB_12, 2004)
E) : S T T

[40] Stag . ::
[WFC:Unique Att Spec]
[41] Attribute ::= Name Eq AttValue

[VC:Attribute Value Type] [WFC:No External Entity References]

[WFC:No < in Attribute Values]

(S Attribute)*S?>"

Stag starts with < character, then it is followed 5" Name in the start-tags and end-tags
gives the element’s type. The Name-AttValue pairs are referred to as the attribute
specifications of the element, with the Name in each pair referred to as the attribute

name and the content of the AttValue as the attribute value.

61

“Unique Att Spec (WFC): No attribute name may appear more than once in the
same start-tag or empty-element tag” (WEB_12, 2004).

Table 4.55 Valid and non-valid start-elements

<CATEGORY> < CATEGORY>
<CATEGORY > <1CATEGORY>
< > < >
<CATEGORY ID="0"
NAME="DIGITAL">
Attribute starts with Name element followed by an “=" equal character which is

followed attribute name.

“Attribute Value Type (VC): The value of an attribute must be of the type declared
for it” (WEB. 12, 2004).

“No External Entity References (WFC): Attribute values can not contain direct or
indirect entity references to external entities” (WEB_12, 2004).

“No < in Attribute Values (WFC): The replacement text of any entity referred to

directly or indirectly in an attribute value must not contain a <” (WEB_12, 2004).

Table 4.56 Valid and non-valid attributes

name="digital” name="digital’
name="digital’ name="digital”
Attl="x & y” attl="x & y”
Att]l="x < y” attl="x <y”
att1="1234" att1=1234

Table 4.57 Element Rule (3) (WEB_12, 2004)

[42] Etag

Etag element starts with string </, then followed by an XML name, optionally
followed by white-space, followed by the >character.

62

Table 4.58 Valid and non-valid close-tags

</ CATEGORY>

</CATEGORY‘>W

</CATEGORY > </1CATEGORY>
</ > <[>
</ CATEGQRYNAME> </CATEGORY NAME="digital”>

Table 4.59 Element Rule (4) (WEB_12, 2004)

U [43] content ;=

(element | CharData | Reference | CDSect | PI | Comment)*

Content element can be form of any number of elements, character data, references,
CDATA sections, processing instructions, and comments in any order. This production

lists everything that can appear inside an element.

Table 4.60 Element Rule (5) (WEB_12, 2004)

[44] Er!;f;tyElemTag 5 <’ Name (S Attribute)* S? />

Empty-element tags may be used for any element which has no content, whether or
not it is declared using the keyword EMPTY. EmptyElemTag starts with the character <,
followed by an XML name, followed by white-space, followed by zero more attributes
separated from each other by white-space, optionally followed by white-space, followed

by the string “/>”. For example and
 elements are empty elements in HTML.

Table 4.61 Valid and non-valid empty elements

<CATEGORY > < CATEGORY/>

</CATEGORY/ > <1CATEGORY/>

</ > <>

<CATEGORY NAME="digital” /> </CATEGORY NAME="digital”>
</CATEGORY NAME="digital” /> </CATEGORY/>

63

4.16 Element Type Declarations

Element type declarations are used for to give some constraint to element content.
Element type declarations often constraints the element types that can appear as children
(WEB_12, 2004).

Table 4.62 Element Type Declaration Rule (WEB_12, 2004)
 Elemen

[45] élémentdecl = ‘<IELEMENT’ S Name S contentspec S'7 >?
[VC:Unique Element Type Declaration]
[46] contentspec 2= ‘EMPTY’ | ‘ANY’ | Mixed | children

Elementdecl element starts with string <!IELEMENT, followed by white-space,
followed by an XML name ([5]), followed by a content specification ([46]), optionally
followed by white-space, followed by the >character.

“Unique Element Type Declaration (VC) : No element type may be declared more
than once” (WEB_12, 2004).

Table 3.63 Element type definitions

<IELEMENT img EMPTY>
<IELEMENT temp ANY>
<IELEMENT templ (#PCDATA | temp2)*>

4.17 Element Content

“An element type has element content when elements of that type must contain only
child elements, optionally separated by white space. In this case, the constraint includes
a content model, a simple grammar governing the allowed types of the child elements

and the order in which they are allowed to appear” (WEB_12, 2004).

64

Table 4.64 Element Content Models Rule (WEB_12, 2004)

[47] children ::= (choice | seq) (‘7° | ‘¥’ | “+")7

[48] cp u= (Name | choice | seq) (‘7’| **’ | ‘+°)?
[49] choice ::= ‘(“S?2cp(S?) S?cp)*S?7°y
[VC:Proper Group/PE Nesting]

[50] seq 0= ‘(“S?cp(S?°¢,S?cp)*S?°Yy
[VC:Proper Group/PE Nesting]

Children element can be form of choice or seq element in any order or ?, * and +
characters zero or one times. Cp (content particle) can be form as an XML name, choice,
or sequence, optionally suffixed with a ?, *, or +. Choice element may have one or more
content particles enclosed in parentheses and separated from each other by vertical bars

and optional white-space.

Table 4.65 Choice usage

(EL1 |EL2 [EL3 | EL4 | EL5 |EL6 | EL7 | EL8? | EL9)
(EL1|EL2[EL3[EL4EL5|[EL6EL7|EL8?[EL9)

(MAN | WOMAN)

(MAN | WOMAN)

(FAMILY [(MOM, DAD, CHILD+))

Seq element (sequence) may have one or more content particles ([48]) enclosed in

parentheses and separated from each other by commas and optional whites-pace.

Table 4.66 Seq usage

(EL1,EL2,EL3,ELA4, EL5,EL6, EL7,EL3?, EL9)
(EL1,EL2,EL3,EL4,EL5,EL6,EL7,EL8?,EL9)
(MAN,WOMAN)

(MAN, WOMAN)

(FAMILY)

(MEMBER , (MOM | DAD| CHILD?))

“Proper Group/PE Nesting (VC): Parameter-entity replacement text must be

properly nested with parenthesized groups. If either of the opening or closing

65

parentheses in a choice , seq , or Mixed construct is contained in the replacement text for
a parameter entity, both must be contained in the same replacement text” (WEB_12,
2004).

4.18 Mixed Content

If an elemént type includes both character data and child elements, it is called element

with mixed content.

Table 4.67 Mixed Content Declaration Rule (WEB_12, 2004)

{(* S? “#PCDATA’ (S? ‘' S? Name)* S? ©)*’
| (* S? ‘4PCDATA’ S?)’

Mixed element (mixed content) is either the string (#PCDATA) or a choice that
includes the string #PCDATA as its first content particle.

Table 4.68 Valid and non-valid mixed contents

“(#PCDATA)

@)
(#PCDATA) (CATEGORY [#PCDATA)
(#PCDATA | CATEGORY) (#PCDATA |ELI [#PCDATA |EL3)
(#PCDATA | CATEGORY) | (#PCDATA | (CATEGORY,EL1,EL2))
(#PCDATA | EL1 |EL2 | EL3)

4.19 Attribute-List Declarations

Attributes are special XML units which are name-value pairs. Attribute specifications

may appear only within start-tags and empty-element tags. Usage of attributes may be as

below;
® To bring some properties to elements

® Giving constraints to element attributes

66

® Giving default values to element attributes

Table 4.69 Attribute-List Declaration Rule (WEB_12, 2004)

[52] AttlistDec] = ‘<!ATTLIST’ S Name AtiDef* S? ‘>
[53] AttDef 1= S Name S AttType S DefaultDecl

AttlistDecl element consists of the keyword string <!ATTLIST , followed by white-
space, followed by an XML name, followed by zero or more attribute definitions,

optionally followed by white-space, followed by the > character.

Table 4.70 Attribute-list declarations

<IATTLIST CATEGORY NAME CDATA #REQUIRED>
<!IATTLIST CATEGORY NAME CDATA #IMPLIED>
<IATTLIST CATEGORY NAME CDATA #FIXED “DIJITAL”>
<!ATTLIST CATEGORY NAME NMTOKEN #REQUIRED>
<IATTLIST CATEGORY NAME NMTOKENS #REQUIRED>
<!ATTLIST TEL NO ID #REQUIRED>

<!ATTLIST TELNOS PLACE ENTITIES #REQUIRED>

AttDef element (attribute definition) starts with white-space, an XML name, more

white-space, an attribute type, more white-space, and a default declaration.

Table 4.71 Attribute declarations

CATEGORY NAME CDATA #REQUIRED
CATEGORY NAME CDATA #IMPLIED
CATEGORY NAME CDATA #FIXED “DIJITAL”
TEL NO ID #REQUIRED

TELNOS YER ENTITIES #REQUIRED

4.20 Attribute Types

Attribute types can be examined in three categories, string type, tokenized type and

enumerated type.

Table 4.72 Attribute Types Rule (WEB_12, 2004)

[54] AttType

67

ng ;rpe iMTo emzed yp |E umerated ype

[55] StringType 2= ‘CDATA’

[56] TokenizedType ::= ‘D’ [VC:ID]

[VC:One ID per ElementType]
[VC:ID Attribute Default]

| ‘IDREF’ [VC:IDREF]

| ‘IDREFS’ [VC:IDREF]

| ‘ENTITY’ [VC:Entity Name]

| ‘ENTITIES’ [VC:Entity Name]

| NMTOKEN’ [VC:Name Token]

| NMTOKENS’ [VC:Name Token]

AttType element can be in the form of StringType, TokenizedType or

EnumeratedType. StringType element specifies strings as CDATA type. TokenizedType
element can be form in the seven strings ID, IDREF, IDREFS, ENTITY, ENTITIES,
NMTOKEN or NMTOKENS. Validation constraints for TokenizedType element are

below;

“VC:ID, Values of type ID must match the Name production. A name must
not appear more than once in an XML document as a value of this type”
(WEB_12, 2004).

“VC:0One ID per ElementType, No element type may have more than one ID
attribute specified” (WEB_12, 2004).

“VC:ID Attribute Default, An ID attribute must have a declared default of
#IMPLIED or #REQUIRED” (WEB_12, 2004).

“VC:IDREF, Values of type IDREF must match the Name production, and
values of type IDREFS must match Names” (WEB_12, 2004).

“VC:Entity Name, Values of type ENTITY must match the Name production,
values o f t ype ENTITIES must match N ames, each N ame must match the
name of an unparsed entity declared in the DTD” (WEB_12, 2004).

68

W “VC:Name Token, Values of type NMTOKEN must match the Nmtoken
production; values of type NMTOKENS must match Nmtokens” (WEB_12,
2004).

4,21 Enumerated Attributes

Table 4.73 Enumerated Attributes (WEB_12, 2004)

b (i oy L
[57] EnumeratedType NotationType | Enumeration
[58] NotationType = ‘NOTATION’ S ‘(* S? Name (S? ‘" S? Name)* S? ‘)’

[VC:Notation Attributes]
[59] Enumeration
[VC:Enumeration]

‘(° S? Nmtoken (S? ‘|’ S? Nmtoken)* S?)’

EnumeratedType element can be either a notation type or an enumeration.
NotationType element starts with the string keyword NOTATION, followed by white-
space, followed by one or more XML names, separated by vertical bars, and enclosed in

parentheses.

Table 4.74 Valid and non-valid notation definitions

TATION (BCC NOTATION)
NOTATION (BCC | PDF) NOTATION (BCC PDF)
NOTATION (bec | gee | delphi32) NOTATION (bcc, gec, delphi3?2)
NOTATION (A |B | C) NOTATION (“A” “B” “C”)

Enumeration element as one or more XML name tokens separated by vertical bars

and enclosed in parentheses.

“Enumeration (VC): Values of this type must match one of the Nmtoken tokens in
the declaration” (WEB_12, 2004).

69

Table 4.75 Valid and non-valid enumeration types

(mom) 0

(mom | dad | brother) (mom dad brother)

(mom | dad | brother) (mom , dad , brother)
(AT1|AT2 [AT3 [AT4 [ATS) ATI1 |AT2 | AT3 | AT4| AT

4.22 Attribute Defaults

Attribute declarations provide information about attribute’s presence. Three attribute

defaults exist.

Table 4.76 Attribute Defaults Rule (WEB_12, 2004)

‘Attribute
[60] DefaultDecl ::

#REQUIRED’ | ‘#IMPLIED’ | ((‘#FIXED’ S)? AttValue)
[VC:Required Attribute][VC:Attribute Default Legal]
[WFC:No <in Attribute Values][VC:Fixed Attribute Default]

® #REQUIRED, defined element attribute must be included within the XML

document.
® #IMPLIED, defined element attribute can not have default attribute value.

#FIXED, defined element attribute must always have the default attribute value.

DefaultDec] element has three validity constraints;

¥ “Required Attribute: If the default declaration is the keyword string
#REQUIRED, then the attribute must be specified for all elements of the
type in the attribute-list declaration” (WEB_12, 2004).

B “Attribute Default Legal: The default value must meet the constraints of

the declared attribute type” (WEB_12, 2004).

" “Fixed Attribute Default: If an attribute has a default value declared with
the #FIXED keyword, instances of that attribute must match the default
value” (WEB 12, 2004).

70

Table 4.77 Attribute-list declarations

<!ATTLIST Personnel
.id ID #REQUIRED
name CDATA #IMPLIED>
<!ATTLIST List
tipi (ordered | unordered) “ordered”>
<!IATTLIST Country
code CDATA #FIXED “TR™>

4.23 Attribute-Value Normalization

XML processor’s normalization steps b efore the attributes values are controlled or

validated:

® A character reference is processed by appending the referenced character to

the attribute value.

An entity reference is processed by recursively processing the replacement

text of the entity.

® A white-space character (#x20, #xD, #xA, #x9) is processed by appending
#x20 to the normalized value, except that only a single #x20 is appended
for a “#xD#xA” sequence thatis part of an external parsed entity or the

literal entity value of an internal parsed entity.

Other characters are processed by appending them to the normalized value.

If the declared value is not CDATA, then the XML processor must further process
the normalized attribute value by discarding any leading and trailing space (#x20)
characters, and by replacing sequences of space (#x20) characters by a single space
(#x20) character.

71

4.24 Conditional Sections

“Conditional sections are units in document type declaration external subset which
are included in, or excluded from, the logical structure of the DTD based on the
keyword” (Harold E.R, 1999). Conditional sections can include comment lines,

processing instructions, element declarations and other conditional sections.

If the keyword in conditional section is INCLUDE, the part within the keyword is
accepted as the DTD part. If the keyword in conditional section is IGNORE, the part
within the keyword is not accepted as the DTD part. An INCLUDE part in the IGNORE
part is discarded (WEB_12, 2004).

Table 4.78 Conditional Sections Rule (WEB_12, 2004)

 Conditi

[61] conditionalSect :: includeSect | ignoreSect
[62] includeSect = ‘<![*S? ‘INCLUDE’ S? ‘[‘ extSubsetDecl ‘]]>’

[63] ignoreSect = ‘<I[*S? ‘IGNORE’ S? ‘[iganoreSectContents* ‘]]>’
[64] ignoreSectContents ::= Ignore (‘<![* ignoreSectContents ‘]]>’ Ignore)*
[65] Ignore ::= Char* - (Char* (‘<![*| ‘]}>’) Char*)

ConditionalSect element can be either an include section or an ignore section.
IncludeSect element (include section) can be an external subset declaration between
<![INCLUDE []]>, modulo white-space.

Table 4.79 INCLUDE sections

<I[INCLUDE [>
<I[INCLUDE []]>
<I[INCLUDE [>

IgnoreSect element defines an ignore section as ignore section contents ([64])
between <![IGNORE []]>, modulo white-space. IgnoreSectContents element defines an
ignore section contents as an ignore block ([65]), optionally followed by a block of text

72

sandwiched between <![and]]> strings, followed by more text. Ignore element defines

an ignore block as any run of text that contains neither the <![or]]>literals.

Table 4.80 IGNORE sections

<I[IGNORE [>
<I[IGNORE []]>
<I[IGNORE [][>

Table 4.81 Conditional sections

<!{INCLUDE[
<IELEMENT book (comment¥* title, content, add?)>
1>
<![IGNORE[
<!IELEMENT book (title, content, add?)>
11>

4.25 Character And Entity References

Character references are referred to characters in the ISO/IEC 1046 character-set and

range specified in 2" Char rule.

Table 4.82 Character Reference Rule (WEB_12, 2004)
6] CharRef ‘&# [0-91+ ¢ | ‘&#x’ [0-9a-fA-F]+)’
[WFC:Legal Character]

"Characte
(6

CharRef element defines two forms for character references. The first is the string
&# followed by one or more of the ASCII digits O through 9. The second form is the
string &#x followed by one or more of the hexadecimal digits O through F. The digits

representing 10 through 16 may be either lower- or uppercase.

“Legal Character (WFC): Characters referred to using character references must

match the production for Char” (WEB_12, 2004).

73

Entities can be either parsed or unparsed;

® Parsed entities’ contents are atomic unit within the XML document.

¥ Unparsed entities are references to external sources. Source may not be

simple text. Each unparsed entity must have a related notation type

declaration to define external resource’s format.

Table 4.83 Entity Reference Rule (WEB_12, 2004)

))[67‘] Reference
[68] EntityRef

EntityRef | CharRef
‘&’ Name °;’
[WFC:Entity Declared]
[VC:Entity Declared]
[WFC:Parsed Entity]
[WFC:No Recursion]
‘%’ Name °;’
[VC:Entity Declared]
[WFC:No Recursion]
[WFC:In DTD]

[69] PEReference

Reference element defines a reference as either an entity reference or a character
reference. EntityRef element defines an entity reference as an XML name between the
ampersand character and a semicolon. PEReference element defines a parameter entity

reference as an XML name between the percent character and a semicolon.

Well-formed constraints and validity constraints fro references are below;

= «Entity Declared (WFC): In a document without any DTD, a document with only
an internal DTD subset which contains no parameter entity references, or a

92

document with “standalone="yes’”, the Name given in the entity reference must

match that in an entity declaration” (WEB_12, 2004).

" “Entity Declared (VC): In a document with an external subset or external
parameter entities with “standalone="no’”, the Name given in the entity r eference
must match that in an entity declaration. Valid documents should declare the entities

amp, It, gt, apos, quot” (WEB_12, 2004).

74

® “Parsed Entity (WFC): An entity reference must not contain the name of an

unparsed entity. Unparsed entities may be referred to only in attribute values
declared to be of type ENTITY or ENTITIES” (WEB 12, 2004).

® “No Recursion (WFC): A parsed entity must not contain a recursive reference to

itself, either directly or indirectly” (WEB_12, 2004).

" “In DTD (WFC): Parameter-entity references may only appear in the DTD”
(WEB_12, 2004).

Table 4.84 Valid and non-valid entity references

&It <

&agt; & gt;
' & apos ;

Table 4.85 Valid and non-valid parameter entity references

%%name; %name
%per no; & per no;
%per no; Y%per no;

4.26 Entity Declarations

If entity is declared like in the rule EntityValue, it is called as internal entity the other

entities are called as external entities.

Table 4.86 Entity Declarations Rule (WEB_12, 2004)

B ’\

[70] EntityDecl GEDecl | PEDecl
[71] GEDecl ::= ‘<IENTITY’ S Name S EntityDef S? >’
[72] PEDecl ‘<IENTITY’ S ‘%’ S Name S PEDef S? >’
[73] EntityDef EntityValue | (ExternallD NDataDecl?)
[74] PEDeaf ::= EntityValue | ExternalID

I

75

EntityDecl element defines an entity declaration as either a general entity declaration
or a parameter entity declaration. GEDecl element defines a general entity declaration as
the literal <!ENTITY followed by white-space, followed by an XML name, followed by

an entity definition, optionally followed by white-space, followed by the >character.

Table 4.87 Valid and non-valid general entlty declarations (WEB 12,2004)

<'ENTITY DEU “Dokuz Eylul <IENTITY DEU Dokuz Eylul University>
University”>
<IENTITY img SYSTEM “img.gif’> | <IENTITY img SYSTEM img.gif>

<IENTITY copy “Copyright Netsis”> | <IENTITY copy right “Copyright Netsis”>

PEDecl element defines a parameter entity declaration as the string <!ENTITY
followed by white-space, followed by a percent sign and more white-space, followed by
an XML name, followed by an entity definition, optionally followed by white-space,

followed by the “>” character.

Table 4.88 Valid and non-valid parameter entity declarations

<IENTITY % nameDecl TY & nameDecl "<'ELEM T
"<|ELEMENT NAME NAME (#PCDATA)>">

(#PCDATA)>">

<IENTITY % deu “Dokuz Eylul <IENTITY % deu ; “Dokuz Eylul
University”> University”>

<IENTITY % homeadr "(city | town | | <!ENTITY % homeadr "(city | town | post |
post | apt)"> apt)">

Table 4.89 External Entities Rule (WEB_12, 2004)

/ [75] ExternalID ‘SYSTEM’ S SystemLiteral
| ‘PUBLIC’ S PubidLiteral S SystemLiteral
S ‘NDATA’ S Name

[VC:Notation Declared]

[76] NDataDecl

ExternallD element is specialized for system or general. This element defines an

external ID as either the keyword SYSTEM followed by white-space and a system literal

76

or the keyword PUBLIC followed by white-space, a public ID literal, more white-space,

and a system-literal.

“Notation Declared (VC): The Name must match the declared name of a notation”

(WEB_12, 2004).

Table 4.90 Valid and non-valid external entity declarations

SYSTEM “image.gif” SYSTEM image.gif
SYSTEM “/images/image.gif” SYSTEM “/images/image.gif’
SYSTEM SYSTEM
“http://www.netsis.com.tr/image.gif” | http://www.netsis.com.tr/image.gif
SYSTEM “../images/image.gif”’ SYSTEM ../images/image.gif
<IENTITY file SYSTEM <!ENTITY file SYSTEM image/file.eps
"image/file.eps" NDATA EPS> NDATA EPS>
PUBLIC “-//IETF//NONSGML Media | PUBLIC “-//IETF//NONSGML Media
Type image/gif//EN” Type image/gif/EN”
“http://www.isi.edu/in- = — -
nottteI:)s/iana/assignments/media- PUBL.IC hﬁp://www.lsl.edglln-
types/image/gif” notes/}ana/ ass1.g1:1ments/med1a—
types/image/gif’

4.27 Text Declaration

Table 4.91 Text Declaration Rule (WEB_12, 2004)

xt Declaratic
7] TextDecl = <?xml’ Versionlnfo? EncodingDecl S? ‘7>’

TextDecl element defines text declaration almost like an XML declaration except that
it may not have a standalone document declaration. It starts with string “<?xml”,
followed by optional Versionlnfo element followed by EncodingDecl element optional

white-space character and “7>" string.

77

Table 4.92 Valid and non-valid text declarations

<7xml version="1.0"7> <?xml 7>
<7xml version="1.0" encoding="utf-8”7> | <?xml standalone="no”?>

<?xml version="1.0" encoding="utf-8”
standalone="no”?>

<?xml encoding=""utf-8”
version="1.0"7>

Table 4.93 Well-formed External Parsed Entities Rule (WEB_12, 2004)

B

Z 7

. Well-fo
[78] extParsedEnt TextDecl? Content
[79] extPE == TextDecl? extSubsetDecl

extParsedEnt element consists of an optional text declaration followed by content.
This content may not include a DTD or any markup declarations. ExtPE element

consists of an optional text declaration followed by an external subset declaration.

4.28 Encoding Declarations

“Each external parsed entity in an XML document may use a different encoding for
its characters. All XML processors must be able to read entities in either UTF-8 or UTF-
16. Entities encoded in UTF-16 must begin with the Byte Order Mark described by
ISO/IEC 10646 Annex E and Unicode Appendix B” (WEB_12, 2004).

Table 4.94 Encoding Declarations Rule (WEB_12, 2004)

i

[80] EncodingDecl ::= S ‘encoding’ Eq (“’* EncName ‘¢ | “’“ EncName “’*
[81] EncName 1= [A-Za-z] ([A-Za-z0-9.]| ‘-)*

EncodingDecl element defines an encoding declaration as white-space followed by
the string “” followed by an equals sign, followed by the name of the encoding enclosed

in either single or double quotes. EncName element defines the name of an encoding

78

begins with one of the ASCII letters A through Z or a through z, followed by any
number of ASCII letters, digits, periods, underscores, and hyphens.

Table 4.95 Valid and non-valid encoding declarations

ncoding=""utf-8” encoding="utf-8’
encoding="1s0-8859-9” encoding=iso-8859-9
encoding = "utf-8” encoding = ‘utf-8”
encoding = ‘is0-8859-9’ encoding = ‘is0-8859-9
encoding = ‘utf-16’ encoding = ‘utf 16’

4.29 Notation Declarations
Notations identify by name the format of unparsed entities, the format of elements.

Table 4.96 Notation Declarations Rule (WEB_12, 2004)

Nota
[82] NotationDecl ::
[83] PublicID

‘<INOTATION’ S Name S (ExternallD | PublicID) S? ‘>’
‘PUBLIC’ S PubidLiteral

NotationDecl element starts with the string <INOTATION, followed by white-space,
followed by an XML name for the notation, followed by white-space, followed by either
an external ID or a public ID, optionally followed by white-space, followed by the literal
string “”. Publilc element defines a public ID as the literal string PUBLIC, followed by
white-space, and followed by a public ID literal.

Table 4.97 Valid and non-valid notation declarations

at on | Non-valid notation dec
<INOTATION GIF SYSTEM <! NOTATION GIF SYSTEM
“image/gif”> “image/gif”>
<INOTATION GIF SYSTEM “image/gif” | < INOTATION GIF SYSTEM
> “image/gif”>
<INOTATION GIF PUBLIC <! NOTATION GIF SYSTEM
“-//IETF//NONSGML Media Type image/gif>
image/gif//EN ”

79

http://www.isi.edw/in- <INOTATION GIF “image/gif”>
notes/iana/assignments/media-
types/image/gif' >

4.30 Character Classes

Three types of character classes exist;

® BaseChar
Class includes alphabetic Unicode characters and does not contain digits
and punctuation marks. Base character class includes Arabic, Hebrew,

Cyril and other alphabets in addition to English alphabet.
" Ideographic Characters

These characters are Chinese, Japanese and Korean alphabets which are

located in the range of #x4E00-#x9FAS.

" CombiningChar

These characters are the combination form of more than one base character.

[43-%4] [{ P}

For example, “g” character is created using base character “g” and

(14451

character 7.

Table 4.98 Characters Rule (WEB_12, 2004)

"[84] Letter

[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6] |
[#x00D8-#x00F6] | [#x00F8-#x00FF] | [#x0100-#x0131] | [#x0134-#x013E] |
[#x0141-#x0148] | [#x014A-#x017E] | [#x0180-#x01C3] | [#x01CD-#x01F0] |
[#x01F4-#x01F5] | [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] |
#x0386 | [#x0388-#x038A] | #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE] |
[#x03D0-#x03D6] | #x03DA | #x03DC | #x03DE | #x03E0 | [#x03E2-#x03F3] |
[#x0401-#x040C] | [#x040E-#x044F] | [#x0451-#x045C] | [#x045E-#x0481] |
[#x0490-#x04CA4] | [#x04CT-#x04C8] | [#x04CB-#x04CC] | [#x04D0-#x04EB] |
[#x04EE-#x04F5] | [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559 |
[#x0561-#x0586] | [#x05D0-#x05EA] | [#x05F0-#x05F2] | [#x0621-#x063A] |
[#x0641-#x064A] | [#x0671-#x06B7] | [#x06BA-#x06BE] | [#x06C0-#x06CE] |
[#x06D0-#x06D3] | #x06D5 | [#x06ES-#x06E6] | [#x0905-#x0939] | #x093D |
[#x0958-#x0961] | [#x0985-#x098C] | [#x098F-#x0990] | [#x0993-#x09A8] |

80

Table 4.98 Continued..

[#x09AA-#x09B0] l#xO9B2 | [#x09B6-#x09B9] | [#x09DC-#x09DD] |
[#x09DF-#x09E1] | [#x09F0-#x09F1] | [#x0A05-#x0A0A] | [#x0AOQF-#x0A10] |
[#x0A13-#x0A28] | [#x0A2A-#x0A30] | [#x0A32-#x0A33] | [#x0A35-#x0A36] |
[#x0A38-#x0A39] | [#x0AS59-#x0AS5C] | #x0ASE | [#x0A72-#x0A74] |
[#x0A85-#x0A8B] | #x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8] |
[#x0AAA-#x0ABO] | [#x0AB2-#x0AB3] | [#x0AB5-#x0AB9] | #0ABD | #x0AEQ |
[#x0B05-#x0B0C] | [#x0BOF-#x0B10] | [#x0B13-#x0B28] | [#x0B2A-#x0B30] |
[#x0B32-#x0B33] | [#x0B36-#x0B39] | #x0B3D | [#x0B5C-#x0B5D] |
[#x0BSF-#x0B61] | [#x0B85-#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-#x0B95] |
[#x0B99-#x0B9A] | #x0BIC | [#x0BIE-#x0BIF] | [#x0BA3-#x0BA4] |
[#x0COE-#x0C10] | [#x0C12-#x0C28] | [#x0C2A-#x0C33] | [#x0C35-#x0C39] |
[#x0C60-#x0C61] | [#x0C85-#x0C8C] | [#x0C8E-#x0C90] | [#x0C92-#x0CAS8] |
[#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] | #x0CDE | [#x0CE0-#x0CE1] |
[#x0D05-#x0DO0C] | [#x0DOE-#x0D10] | [#x0D12-#x0D28] | [#x0D2A-#x0D39] |
[#x0D60-#x0D61] | [#x0E01-#x0E2E] | #x0E30 | [#x0E32-#x0E33] |
[#x0E40-#x0E45] | [#x0E81-#x0E82] | #x0E84 | [#x0E87-#x0E88] | #x0E8A |
#x0E8D | [#x0E94-#x0E97] | [#x0E99-#x0E9F] | [#xOEA1-#x0EA3] | #X0EAS |
#X0EA7 | [#xOEAA-#x0EAB] | [#x0EAD-#x0EAE] | #x0EBO | [#x0EB2-#x0EB3] |
#X0EBD | [#x0ECO-#x0EC4] | [#x0F40-#x0F47] | [#x0F49-#x0F69] |
[#x10A0-#x10CS5] | [#x10DO0-#x10F6] | #x1100 | [#x1102- #x1103] | [#x1105-
#x1107] | #x1109 | [#x110B-#x110C] | [#x110E-#x1112] | #x113C | #x113E | #x1140
| #x114C | #x114E | #x1150 | [#x1154-#x1155] | #x1159 | [#x115F-#x1161] | #x1163
| #x1165 | #x1167 | #x1169 | [#x116D-#x116E] | [#x1172-#x1173] | #x1175 | #x119E
| #x11A8 | #x11AB | [#x11AE-#x11AF] | [#x11B7-#x11B8] | #x11BA | [#x11BC-
#x11C2] | #x11EB | #x11F0 | #x11F9 | [#x1E00-#x1E9B] | [#x1EA0-#x1EF9] |
[#x1F00-#x1F15] | [#x1F18-#x1F1D] | [#x1F20-#x1F45] | [#x1F48-#x1F4D] |
[#x1F50-#x1F57] | #x1F59 | #x1F5B | #x1F5D | [#x1F5F-#x1F7D] |
[#x1F80-#x1FB4] | [#x1FB6-#x1FBC] | #1FBE | [#x1FC2-#x1FC4] |
[#x1FC6-#x1FCC] | [#x1FDO-#x1FD3] | [#x1FD6-#x1FDB] | [#x1FE0-#x1FEC] |
[#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | #x2126 | [#x212A-#x212B] | #x212E |
[#x2180-#x2182] | [#x3041-#x3094] | [#x30A1-#x30FA] | [#x3105-#x312C] |
[#xACO00-#xD7A3]

[86] Ideographic __::= [#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029]

[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] |
[#x0591-#x05A1] | [#x05A3-#x05B9] | [#x05BB-#x05BD]

| #x05BF | [#x05C1-#x05C2] | #x05C4 | [#x064B-#x0652] | #x0670 |
[#x06D6-#x06DC] | [#x06DD-#x06DF] | [#x06E0-#x06E4] | [#x06E7-#x06E8] |
[#x06EA-#x06ED] | [#x0901-#x0903] | #x093C | [#x093E-#x094C] | #x094D
|0020[#x0951-#x0954] | [#x0962-#x0963] | [#x0981-#x0983] | #x09BC | #x09BE |
#X09BF | [#x09C0-#x09C4] | [#x09CT7-#x09CRg] | [#x09CB-#x09CD] | #x09D7 |
[#x09E2-#x09E3] | #x0A02 | #x0A3C | #x0A3E | #x0A3F | [#x0A40-#x0A42] |
[#x0A47-#x0A48] | [#x0A4B-#x0A4D] | [#x0AT70-#x0A71] | [#x0A81-#x0A83] |

#x0ABC | [#x0ABE-# x0AC5] | [#x0ACT-#x0AC9] | [#x0ACB-#x0ACD] |

81

Table 4.98 Continued...

[#x0B01-#x0B03] | #x0B3C | [#x0B3E-#x0B43] | [#x0B47-#x0B48] |
[#x0B4B-#x0B4D] | [#x0B56-#x0B57] | [#x0B82-#x0B83] | [#x0BBE-#x0BC2] |
[#x0BC6-#x0BC8] | [#x0BCA-#x0BCD] | #x0BD7 | [#x0C01-#x0C03] |
[#x0C3E-#x0C44] | [#x0C46-#x0CA48] | [#x0C4A-#x0C4D] | [#x0C55-#x0C56] |
[#x0CD5-#x0CD6] | [#x0D02-#x0D03] | [#x0D3E-#x0D43] | [#x0D46-#x0D48] |
[#x0D4A-#x0D4D] | #x0D57 | #x0E31 | [#x0E34-#x0E3A] | [#x0E47-#x0E4E] |
#x0EBI1 | [#x0EB4-#x0EB9] | [#xOEBB-#x0EBC] | [#x0ECS8-#x0ECD] |
[#x0F18-#x0F19] | #x0F35 | #x0F37 | #x0F39 | #x0F3E | #x0F3F | [#x0F71-#x0F84] |
[#x0F86-#x0F8B] | [#x0F90-#x0F95] | #x0F97 | [#x0F99-#x0FAD] |

[#x0FB1-#x0FB7] | #x0FB9 | [#x20D0-#x20DC] | #x20E1 | [#x302A-#x302F] |
#x3099 | #x309A

Table 4.99 Characters Rule (2) (WEB_12, 2004)

T

[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-#x06F9] |
[#x0966-#x096F] | [#x09E6-#x09EF] | [#x0A66-#x0AG6F] | [#x0AE6-#x0AEF] |
[#x0B66-#x0B6F] | [#x0BE7-#x0BEF] | [#x0C66-#x0C6F] | [#x0CE6-#x0CEF] |
[#x0D66-#x0DGF] | [#x0ES0-#x0E59] | [#x0EDO-#x0EDY] | [#x0F20-#x0F29]

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #x0E46 |
#x0EC6 | #x3005 | [#x3031-#x3035] | [#x309D-#x309E] | [#x30FC-#x30FE]

82

CHAPTER FIVE
XML DOCUMENTS

5.1 Introduction

XML documents have physical and logical parts. Document’s physical structure is
the combination of units which are named entities. All XML documents start with the
root entity and include logical units below;

® Elements, attributes, processing instructions, comments

® Entity References, CDATA Sections
5.2 Character And Markup Data

XML documents hold both data and metadata which is data about data in a structure
manner (Harold E.R, 1999). Formatted text is the constitution of character. Units of

characters are below;
¥ Alphabetic Unicode letters (English, Arabic, Hebrew and other alphabets)
® Numbers in the range of 0-9 (Europe, Arabic, Persian, Urdu and Egypt

numbers and the others)
Punctuations (; (semicolon), (dot), - (hyphen) and other signs)

Combination of more than one characters

83

Characters in XML text format constitute character data and markup data. Markup

data specifies document logical structure. Logical structure of an XML document

contains start tags, end tags, empty element tags, entity references, character references,

comments, CDATA sections, document type declarations (DTD) and processing
instructions (Goldfarb C.F., 2001);

Start and end tags; <BRAND>Canon</BRAND> shows start and end tags.
Empty elements; <BRAND NAME="Canon’/>

Entity references; <!ENTITY DEU ’Dokuz Eylul University’> and “>”
Character references; P

Comments; <!-- CAMERA BRAND ELEMENT-->

CDATA sections; Data in this section is cancelled by XML parser.
<![CDATA[<BRAND NAME="Canon’/>]]>.

Document type declarations,; Elements, attributes and entities are defined in

DTDs. <!IDOCTYPE category SYSTEM ‘category.dtd’>.

Processing instructions; Used for to transfer data to applications using XML

processors. <?xml version="1.0" standalone="yes’?>

5.3 Elements And Tags

Tags are used with character data and constitute XML elements. In XML documents,

there exist three types of tags; start tag, end tag and empty element tag.

Element Type Name Element Type Name

<BRAND>Canon</BRAND>

Start Tag Content End tag
I

BRAND Element

84

BRAND element starts with <BRAND> start tag then Canon content is followed and
at the end </BRAND> end tag is occurred. BRAND name is called as element type
name. Element type names are located between < and > characters. End tags have the /
character before element type name. All element type names in XML technology must
match some rules;

® It can not start with any combination of XML word’s upper and lower letters.

XML, xML, xmL, xml, XmL, Xml, XMl and xMIl words are reserved for
future use.

® It can not start with digits (0-9), - (hyphen) character or . (Dot) sign. And can

not contain, (comma) character or ! (exclamation) sign
® It can not contain white spaces.

® Element type names are case sensitive. Start and end tag names must be

exactly same.

All elements may not contain content in XML documents. Elements which have no
content called empty elements (Harold E.R, 1999). The difference of empty elements
from start and end tags is the / character. Empty element tag starts with < character, then
followed element type name and at the end “/>” string occurs.
 and <HR/> tags
are empty tags which are used in HTML language. <BRAND/> or <BRAND>
</BRAND?> writing techniques are both same.

Table 5.1 Using empty elements

<CATEGORY NAME="35MM">
<CAMERA brand="Canon" model="Z155" price="1875000" weight="120 gr." />
</CATEGORY>

<CATEGORY NAME="35MM">
<CAMERA brand="Canon" model="Z155" price="1875000" weight="120 gr.">
</CAMERA>

</CATEGORY>

85

All XML documents have one root element. If we think XML documents as thee
structures, root element is at the top of tree and ancestor of all other elements (Goldfarb
C.F, 2001). If an <X> element includes <Y> element as child, <X> element is the

parent of <Y> and <Y> element <X> is the child of <X>.

Table 5.2 Valid and non-valid XML type names

% B = " e

<BRAND>

Can contain only letters Can not contain white-space

<BRANDI> <.MARKA>

Can contain digits Can not start with dot character

< BRAND.1> <1.BRAND>

Can start with underline character Can not start with digits

< 1.BRAND> <BRAND!>

Can start with underline character Can not contain exclamation

<:BRAND> <-BRAND>

Can start with colon character Can not start with hyphen

< > <MARKA,1>

Can contain only underline characters Can not contain comma character
5.4 Attributes

Attributes are name-value pairs which are used in start-end and empty element tags
(Goldfarb C.F., 2001). Between name and value = character is located. Value of an
attribute is written in q uotation mark. T o read attributes e asily in simple text editors,

white spaces can be used before and after the occurrence of equal character.

® Attribute names, can not start with any combination of XML word’s upper
and lower letters. XML, xML, xmL, xml, XmL, Xml, XMl and xMl words

are reserved for future use.

B Attribute names can not start with digits (0-9), - (hyphen) character or . (Dot)

sign. And can not contain , (comma) character or ! (exclamation) sign.
® Attribute names are unique

B Attribute values can not contain < and & characters

86

Table 5.3 Valid and non-valid attributes

, i 1
name="digital” name="digital’ Non-suitable quotes
name="digital’ name="digital” Non-suitable quotes
Oz1="x & y” 0z1="x & y° & character exists
Oz1="x < y” Oz1="x<y” < character exists
0z1="1234” 0z1=1234 No quotes exist

5.5 Processing Instructions

Processing instructions start with <? string and ends with ?> string. Closing string can
not be included more than once. The first word after starting string is the name of PI. PI
names can not start with digits (0-9), - (hyphen) character or “.” (Dot) sign and can not

contain “,” (comma) character or

PI lines as XML data. Widely used PI types;

“',,

(exclamation) sign. XML parser does not process

W (CSS (Cascade Style Sheets) and XSL references (WEB_32,2004)
CSS and XSL technologies provide representation of XML pages via web browsers.
References to style sheets are added XML pages using PI.

<7xml-stylesheet type="text/css" href="Cameras.css"?>

" XML declarations

XML declarations are one of the most widely used PI type. There is no obligation to
write declarations. But if this PI is used, it must be the first line of XML document.
Other Pls, white spaces and comment lines can not be added before XML
declarations. XML declarations have the xml as PI name. Version, standalone and
encoding are the attributes of declaration PlIs..
<7xml version="1.0" encoding="UTF-8” standalone="yes”?>

" Version attribute specifies W3C consortium rules which XML technology

must follow. There is two proposed version of XML technology. These

versions are “1.0” and “1.1”.

87

® Standalone attribute, XML document can get by with no declarations at all.
It can also have declarations as part of an internal subset, and it can have
declarations in an external subset such as a separate DTD file. “If the value
of this attribute is yes then there is no possibility to giving references to
external documents such as parameter entity references” (WEB_12, 2004).
If there is no external reference in an XML document, there is no need to
use standalone attribute. Although external declarations are not located in
XML PI, default value no is accepted. The circumstances that value of
standalone attribute can not be no;
» If default values of attributes is located outside of the document.
(WEB_12, 2004)
» If XML document have elements or attributes which have external
values (WEB_12, 2004).
= If XML document has entity references except amp, It, gt, apos
and quot (WEB 12, 2004).
® FEncoding attribute, specifies the encoding characteristic of XML
documents. XML parsers accept UTF-8 or UTF-16 encodings as default.

Then this encoding is converted Unicode.

Table 5.4 Supported encodings

ISO-10646-UCS-2, ISO-10646-UCS-4

1SO-2022-JP

ISO-8859-1, ISO-8859-2, ISO-8859-3, ISO-8859-4, ISO-8859-5, ISO-
8859-6, ISO-8859-7, ISO-8859-8, ISO-8859-9

¥ Special PIs to pass parameters to Applications
This type of PI is used when special parameters is wanted to pass XML application

(desktop, web, wap).

Table 5.5 Usage of PIs

<!-- CSS reference-->

<CAMERA_ CATEGORIES>
<CATEGORY NAME="35MM">
<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>
<PRICE>1875000</PRICE>
<WEIGHT>120 gr.</WEIGHT>
</CAMERA>
<CAMERA>
<BRAND>Nikon</BRAND>
<MODEL>S5Z</MODEL>
<PRICE>1725000</PRICE>
<WEIGHT>130 gr.</WEIGHT>
</CAMERA>
</CATEGORY>
<CATEGORY NAME="DIGITAL">
<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>EOS 10D</MODEL>
<PRICE>2249985</PRICE>
<WEIGHT>135 gr.</WEIGHT>
</CAMERA>
</CAMERA_CATEGORIES>
<!--Special PIs-->

<?params paraml="X” param2="Y”?>

<?xml version=""1.0" encoding="1S0-8859-9" standalone="yes" ?>

<?xml-stylesheet type="text/css" href="Cameras.css"?>

88

Table 5.6 Valid and non-valid PIs

<?delphfiw version="6.0" param1="X"7>

There is white space before PI name

<? delphi version="6.0" param1="X"7> {

<?special PI for Delphi application?>

<?delphi sample!>
Not closed properly

<7xml-stylesheet type="text/css"
href="Cameras.css"?>
Acceptable style sheet reference

<?7xml PI line?>
PI name can not be “xml” unless it is a
declaration

89

5.6 Comments

“Comments may appear anywhere in a document outside other markup; in addition,
they may appear within the document type declaration at places allowed by the
grammar” (WEB_12, 2004). For compatibility, the string “--” (double-hyphen) must not

occur within comments.

Table 5.7 Usage of comments

<?xml version="1.0" encoding="ISO-8859-9" standalone="yes"?>
<!--All camera categories-->
<CAMERA_CATEGORIES>
<!-- Cameras of 35MM category -->
<CATEGORY NAME="35MM">
</CATEGORY>
<!-- Cameras of DIJITAL category-->
<CATEGORY NAME="DIJITAL">
</CATEGORY>
</CAMERA_CATEGORIES>
<!--End of category list -->

Table 5.8 Valid and non-valid comments

<!-- Camera --> <!--Deniz -- Sibel -->

includes -- character
<!-- & Camera & -> <!--Deniz and Sibel -->>

end character is not valid

<!—Deniz <and/> Sibel -->

5.7 CDATA Sections

CDATA section is some text to be identified that should escape parsing (WEB_35,
2004). After an XML parser sees the <![CDATA[sequence that indicates the beginning
of a CDATA section and before it sees the]]> markup that indicates the end, it assumes
that all the characters it sees are character data even any left angle brackets and

ampersand characters.

90

CDATA sections are used to escape blocks of text containing characters which would
other-wise be recognized as markup (WEB_35, 2004). CDATA sections begin with the
string </[CDATA[and end with the string //>. CDATA sections are popular for
showing demonstration XML or HTML markup within an XML document. The markup
can be shown as-is with no modifications, but the parser won’t confuse the

demonstration markup with actual document markup.

Table 5.9 CDATA usage

<HTMLLESSON>
<![CDATA[
<HTML>
<BODY>
<P>First lesson about HTML technology...</P>
- </BODY>
</HTML>

1>
</HTMLLESSON>

Table 5.10 Valid and non-valid CDATA sections

...... <I[CDATA[data J]>...]>
includes “]]>" string

<XMLLESSON>

<I[CDATA]

CDATA section starts with <![CDATA[
1>

</XMLLESSON>

5.8 Entity References

Entities are special XML units which provide to define some internal and external
unparsed content like image, video and audio formatted files. References are replaced
with their real values during X ML d ocuments’ parsing processes. 5 predefined entity

references are defined in XML technology.

91

Table 5.11 Predefined entities (WEB_12, 2004)

e

& & (and) character. Used as the first character of entity
references.

< < character. It is the starting character of XML element’s
tags.

> - > character. It is the closing character of XML element’s
tags.

" "(quote) character. Used for to keep XML attribute
values.

' ' (apos) character. Used for to keep XML attribute values.

If instead of reference usage predefined entity references’ real values are used within
XML documents outside of CDATA sections, they can be realized as XML markup. So

they can cause error.

Table 5.12 Entity reference declaration and usage

<?xml version="1.0" encoding="is0-8859-9"7>
<IDOCTYPE SCHOOL [

<!ENTITY deu "Dokuz Eyliil University">
<!ELEMENT SCHOOL (NAME)>
<!IELEMENT NAME (#PCDATA)>

<!-- DTD Ends-->

>

<SCHOOL>
<NAME>&deu;</NAME>
</SCHOQOL>

Entity references are defined in the DTD files. There exists a prototyping mechanism
which defines the logical structure of XML document. DTD files also define the

elements, attributes and notations in addition to entities.

92

5.9 Well-Formed XML Documents

To parse and process XML documents, documents must meet the well-formed rules
and constraints at least (Harold E.R, 1999). Some of the well-formalness rules defined
for XML 1.0 technology is below.

® XML document has only one root element that includes all other sub and child
elements (WEB_12, 2004).
Table 5.13 Root element

<7xml version="1.0" encoding="is0-8859-9"7>

<!--DTD declaration-->

<ROOT_ELEMENT>
<CHILD>Content</CHILD>

</ROOT_ELEMENT>

<?Processing Instruction1?>

® All start tags must be ended with a suitable closing tag. Element type names
within start and end tag must be same sensitively (WEB_12, 2004).
Table 5.13 Starting and closing element
| <CHILD> Content Info </CHILD> |

® Elements must be nested properly in the tree hierarchy. One element can contain
other elements. Sub-elements start and end tags must be opened and closed with
the préper order (WEB_12, 2004).

Table 5.14 Nesting

R0

<TOP> <BQTTOM> content </BOTTOM></TOP> |

<TOP> <BOTTOM:> content </TOP> </BOTTOM>

¥ Parameter entity declarations in the internal DTDs must include the whole

definition of element declaration (WEB_12, 2004).

" Attribute names are unique and can not use more than once (WEB_12, 2004).

Table 5.15 Parameter entity references

<?xml version="1.0" encoding="is0-8859-9"7>
<IDOCTYPE SCHOOL |
<!IELEMENT OKUL (NAME,CITY)>
<!--Since it hold the whole declaration of element, it is a valid
parameter entity definition -->
<IENTITY % nameDecl "<!ELEMENT NAME (#PCDATA)>">
%nameDecl;
<!--Since it hold the part of declaration of element, it is not a valid
parameter entity definition -->
<IENTITY % cityDecl "CITY (#PCDATA)">
<IELEMENT %cityDecl ;>
-
<IELEMENT CITY (#PCDATA)>
>
<SCHOOL>
<NAME>Dokuz Eyliil University</NAME>
<CITY>Izmir</CITY>
</SCHOOL>

Attribute values can not include external entity references (WEB 12, 2004).

93

In a standalone document declaration, the value “yes” indicates that there are no

markup declarations external to the document entity (either in the DTD external

subset, or in an external parameter entity referenced from the internal subset)

which affect the information passed from the XML processor to the application

(WEB_12, 2004).

94

CHAPTER SIX
DTD TECHNOLOGY

6.1 Introduction

Document type definition is a mechanism that specifies XML document’s logical
structure and controls document’s markup units for validation purposes (WEB_ 34,
2004). Many predefined DTD exists for many sectors. If you want you can use these

predefined DTDs or you can create your own DTD.

On the contrary of XSL, XPath and XML Schema technologies, DTD mechanism is
created using EBNF like regular expressions (WEB_33, 2004). The sub-topics that can

be researched under DTD are below;
® Reading, interpreting and creating DTDs.
B Valid XML Document, Internal and external DTDs
® Element Declarations, Attribute Declarations
® Entity Declarations, Conditional Sections

B Language Declarations, Validation Constraints

6.2 Valid Documents

An XML document must wholly match the well-formedness rules and constraints of

W3C to be able to parse and process by browsers. Document’s validity depends on well-

95

formalness. An XML document must be firstly well-formed for validation (WEB_12,
2004). A non-well formed XML document can not be valid.

“An XML document is called “Valid Document” if and only if it is well-formed and
has a DTD or schema mechanism” (WEB_12, 2004). It is possible to control XML

element and attribute types and their contents.
6.3 Document Type Declaration

DTD mechanism specifies the XML document structure by providing declaration of
markup units. Working logic of DTD seems header files in C programming language
which defines the prototypes of functions and variables. Three types of DTD can use
with XML technology (WEB_36, 2004);

® Internal DTD is defined in XML documents. It is used to define only
related XML document’s markup units. The other XML documents can not
use these declarations. It is easy to distribute and test internal DTDs. But
they can not use commonly by more than one XML documents (Pitts N.,
2004).
® External DTD is defined external file with the extension of .dtd and
referenced from XML document. This type of DTD is can be used more
than one XML documents (WEB_36, 2004). When DTD changes, it is not
necessary to change XML document. Two types of external DTD exists;
» General External DTD
= Special External DTD

R Using internal and external DTD together, (Pitts N., 2004) with this
method both DTD can use commonly within more than one document and

personalized according to each XML document.

96

When number of elements and attributes are increased, document control is got hard.
At this point, a DTD mechanism is needed which will define document logical structure.

XML units that can use in DTD mechanism are below;

Table 6.1 DTD units (Pitts N., 2004)

ELEMENT Defines elements’ orders, content and content
types.

ATTLIST Defines attributes’ names, types, default
values and containment sub or child elements.

ENTITY Provides to use different types of parsed or
unparsed content.

NOTATION Defines unparsed audio, image and video
formats.

Processing Instructions It is used for XML declarations and special
purposes.

Comment Lines It is used to give some information and
attention.

6.3.1 Internal DTD

DTD declaration starts with </DOCTYPE string literal, then followed by root

element name.

<!DOCTYPE root_element |

dtd_declarations

>

Root element name must be presented within mechanism. After root element name, [/

character is followed, then DTD declarations (element, attribute, entity) are defined. And
finally, string literal /> is located. DOCTYPE declaration binds DTD mechanism and
XML document. It is located between xml declaration and root element. Processing
instructions or comment lines can be located before DOCTYPE declaration. General

structure of DTD mechanism is below;

97

Table 6.2 Simple DTD architecture

<?xml version="1.0"?> ——— Xml declaration
<IDOCTYPE SAMPLE DTD root element name
Starting Char. [<!ELEMENT SAMPLE (#PCDATA) > Element Type N.
Closing Char 1>
String <SAMPLE>A SIMPLE SAMPLE</SAMPLE>

Root element

In table 6.2, It is showed that a simple DTD architecture in an XML document.
According to declaration XML document constituted one element. SAMPLE is the name

of root element and can only include character data.

Table 6.3 Simple DTD usage

<IDOCTYPE CAMERA_CATEGORIES [

<!IELEMENT CAMERA_CATEGORIES (CATEGORY+)>
<IELEMENT CATEGORY (NAME, CAMERA+)>
<IELEMENT NAME (#PCDATA)>

<IELEMENT CAMERA (BRAND,MODEL,PRICE,WEIGHT)>
<IELEMENT BRAND (#PCDATA)>

<IELEMENT MODEL (#PCDATA)>

<!IELEMENT PRICE (#PCDATA)>

<IELEMENT WEIGHT (#PCDATA)>

>

In table 6.3, a dtd declaration is created which includes camera categories and their
cameras. T here ¢xist 8 elements which are CAMERA CATEGORIES, CATEGORY,
NAME, CAMERA, BRAND, MODEL, PRICE and WEIGHT. The root element is
CAMERA_ CATEGORIES which includes CATEGORY elements. CATEGORY
element has NAME and CAMERA element. And CAMERA element has BRAND,
MODEL, PRICE and WEIGHT child elements. Child elements are #PCDATA type

which can contain parsed character data.

98

Table 6.4 DTD comparing

N

<IDOCTYPE CAMERA_CATEGORIES [
<!ELEMENT WEIGHT (#PCDATA)>
<IELEMENT PRICE (#PCDATA)>
<IELEMENT MODEL (#PCDATA)>
<IELEMENT BRAND (#PCDATA)>
<!ELEMENT CAMERA (BRAND,MODEL PRICE,WEIGHT)>
<!ELEMENT NAME (#PCDATA)>

<!ELEMENT CATEGORI (NAME, CAMERA+)>
<IELEMENT CAMERA_CATEGORIES (CATEGORY+)>

>
[DTD2
<IDOCTYPE CAMERA_CATEGORIES [
<IELEMENT CAMERA (BRAND,MODEL,PRICE,WEIGHT)>
<IELEMENT PRICE (#PCDATA)>

<IELEMENT MODEL (#PCDATA)>

<IELEMENT CATEGORY (NAME, CAMERA+)>
<IELEMENT WEIGT (#PCDATA)>

<!ELEMENT CAMERA_CATEGORIES (CATEGORY+)>
<IELEMENT BRAND (#PCDATA)>

<IELEMENT NAME (#PCDATA)>

]>

In table 6.4, row orders are changed in DTD. Technically, it is not different from the
DTD in table 6.3. The important point that the element declarations, element names and

content order is not changed.

<IELEMENT CAMERA (BRAND MODEL,PRICE, WEIGHT)>

[Ord
<IELEMENT CAMERA (WEIGHT, BRAND, PRICE, MODEL)>

In table 6.5, child elements’ orders are changed and technically these elements must
match this order. Otherwise, XML document that has this DTD will not be a valid

document.

Table 6.6 Internal DTD Usage

<?xml version="1.0" standalone="yes"?>
<IDOCTYPE CAMERA_CATEGORIES [
<IELEMENT CAMERA_CATEGORIES (CATEGORY+)>
<IELEMENT CATEGORY (NAME, CAMERA+)>
<!ELEMENT NAME (#PCDATA)>
<IELEMENT CAMERA (BRAND,MODEL,PRICE,WEIGHT)>
<!IELEMENT BRAND (#PCDATA)>
<!IELEMENT MODEL (#PCDATA)>
<!ELEMENT PRICE (#PCDATA)>
<!ELEMENT WEIGHT (#PCDATA)>
1>
<CAMERA_CATEGORIES>
<CATEGORY>
<NAME>35MM</NAME>
<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>
<PRICE>1875000</PRICE>
<WEIGHT>120 gr.</WEIGHT>
</CAMERA>
<CAMERA>
<BRAND>Nikon</BRAND>
<MODEL>S5Z</MODEL>
<PRICE>1725000</PRICE>
<WEIGHT>130 gr.</WEIGHT>
</CAMERA>
</CATEGORY>
</CAMERA CATEGORIES>

99

In table 6.6, it is showed an internal DTD declaration which is in camera categories

XML. DTD declaration follows after XML declaration and DOCTYPE name is same as

KAMERA_KATEGORILERI.

6.3.2 External DTD

External DTDs must match some rules and declarations like internal DTDs. If a

reference from XML documents to external DTDs is constructed an URI (Uniform

Resource Identifier) is used (WEB_36, 2004). URI is a notation for naming resources

100

on the Web. An URL (Uniform Resource Locator) such as http://www.deu.edu.tr is one
kind of URIL. An XML processor treats a relative URI as being relative to the entity

where it’s stored, not relative to the document entity ultimately containing the reference.

Standalone attribute of XML declaration which has external DTD reference has
another importance. Because the value yes indicates that there are no markup
declarations éxtemal to the document entity and the value no indicates that there are or
may be such external markup declarations. So the value of this attribute must be no

within external DTDs.

Table 6.7 XML declaration for external DTD

[<?xml version="1.0" standalone="no"?> |

Two types of external DTDs exist (Pitts N., 2004). General External DITD,
commonly used standard DTDs which are used by sectors and associations. Financial,
transport or academic associations generally uses this type of DTDs. Special External

DTD, are created for special purposes by persons or societies (WEB 36, 2004).

6.3.3 General External DTD

General external DTDs are constructed using PUBLIC literal string within
DOCTYPE declaration (Pitts N., 2004). General DTDs have official FPIs (Formal
Public Identifier) (WEB_37, 2004). FPIs can be thought as keys over some servers to

control DTDs versions.

Table 6.8 XML 1.0 version DTD declaration (WEB_38, 2004)

<!DOCTYPE spec PUBLIC "-//W3C//DTD Specification V2.0//WIDTH"
"/ XML/1998/06/xmlspec-v20.dtd">

In table 6.8, an external DTD reference declared for DTD 2.0 version is showed.

Reference starts with </DOCTYPE string literal, then followed root element spec.

101

PUBLIC keyword which comes after PUBLIC string is the keyword used in references

to general external DTDs. Reference includes two types of information;

L

DTD owner info, "-//W3C//DTD Specification V2.0/WIDTH" (WEB_38, 2004)

Starts with - character. This character tells that the reference is not a common

standard accepted by ISO like associations (WEB_38, 2004).

If plus character + was located instead of - it would tell that the reference is a

common standard accepted associations (WEB_38, 2004).

W3C (World Wide Web Consortium), is the owner association of DTD, all rights
reserved for W3C and DTD has been developed by W3C (WEB_38, 2004).

DTD Specification V2.0, is the defining name of DTD file. This can contain all
characters except // literal (WEB_38, 2004).

WIDTH, defines the language of xml which includes DTD. These two character
codes are named ISO639 language codes. WIDTH shows that the language is
English (WEB_38, 2004).

Table 6.9 ISO639 codes

En (English)
Tr (Turkish)
TR (Turkish)
FR (French)

In table 6.9, some ISO639 standard language codes are located. It is possible
to research all codes from http://lcweb.loc.gov/standards/is0639-2/bibcodes.html
URL address. Now, 2704 defined language code exists.

Location information of DID, "/XML/1998/06/xmlspec-v20.dtd" (WEB_38,
2004)

Location information is defined in URL (Uniform Resource Locator) standard.
Address tells us DTD definition of XML 1.0 technology is saved in a .dtd

extension file which has the name xmilspec-v20.dtd. Extension may not have been

102

.dtd, but for common usage and easiness purposes this naming convention is

important.

Table 6.10 External general DTD usage

<?xml version="1.0" standalone="no"?>
<!DOCTYPE CAMERA CATEGORIES
PUBLIC "-//CameraWorld//Camera Definition 1.0//TR"
» "http://www.CameraWorld.com.tr/CamSpec.dtd">
<CAMERA CATEGORIES>
<CATEGORY> <NAME>35MM</NAME>
<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>
<PRICE>1875000</PRICE>
<WEIGHT>120 gr.</WEIGHT>
</CAMERA>
<CAMERA>
<BRAND>Nikon</BRAND>
<MODEL>S5Z</MODEL>
<PRICE>1725000</PRICE>
<WEIGT>130 gr.</WEIGHT>
</CAMERA>
</CATEGORY>
<CATEGORY> <NAME>DIJITAL</NAME>
<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>EOS 10D</MODEL>
<PRICE>2249985</PROCE>
<WEIGHT>135 gr.</WEIGHT>
</CAMERA>
</CATEGORY>
</CAMERA_CATEGORIES>

In table 6.10, an XML document which has general external DTD is shoed.
Document’s root element name CAMERA_CATEGORIES is same as dtd declaration
name and PUBLIC keyword is used to specify the reference as general. Owner
information of DTD is a URN address and it tells us that the DTD is not a common

standard accepted associations, because it is started with the - character.

103

CameraWorld is the name of owner association and Camera Definition 1.0 is the
defining name of DTD. TR code specifies the language Turkish.
http://www.CameraWorld.com.tr/CamSpec.dtd is the URL address maps the physical
location of DTD.

6.3.4 Special External DTD

These types of DTDs are created for special purposes by persons or societies. They

" are not open to common usage and not general standards.

Table 6.11 Special external DTD

<!IDOCTYPE CAMERA_CATEGORIES SYSTEM
"http://www.KibeleNet.com/CamKat.dtd">

In table 6.11, a reference is showed which is defined a DTD file for camera categories
file. Reference starts with </DOCTYPE literal and is followed with root element name
CAMERA_CATEGORIES that is the name of root element. http://www.KibeleNet.com/
KamKat.dtd address is the URL (Uniform Resource Locator) location information.
SYSTEM, is the keyword for special external DTD files.

Table 6.12 External special DTD usage

<7xml version="1.0" standalone="no"7>
<!IDOCTYPE CAMERA CATEGORIES SYSTEM
"CamKat.dtd">
<CAMERA CATEGORIES>
<CATEGORY>
<NAME>35MM</NAME>
<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>
<PRICE>1875000</PRICE>
<WEIGHT>120 gr.</WEIGHT>
</CAMERA>
</CATEGORY>
<CATEGORY>

Table 6.12 Continued...
<NAME>DIITAL</NAME>
<CAMERA>

<BRAND>Canon</BRAND>
<MODEL>EOS 10D</MODEL>
<PRICE>2249985</PRICE>
<WEIGHT>135 gr.</WEIGHT>
</CAMERA>
</CATEGORY>
</CAMERA_CATEGORIES>

104

In table 6.12, an XML document is showed which special external DTD. Location of

document’s DTD location address is specified using local file path instead of URL web

address. According to file system path DTD file must be located same folder with XML

document.

Both in general DTDs and in special DTDs one of the most important point is validity
of the location address (URL web address or file path). If DTD can not be found by

XML parser, DTD processing etror is occurred.

6.3.5 Using External And Internal DTDs Together

Using external and internal DTDs together, both DTD can be used commonly within

more than one document and personalized according to each XML document. External
DTDs are referenced using “SYSTEM?” literal and then internal DTD definition begins.
Internal DTD definition starts with [character and ends with /> literal (Pitts N., 2004).

Table 6.13 External and internal DTD usage

<?xml version="1.0" standalone="yes" 7>

<IDOCTYPE CAMERA_CATEGORIES SYSTEM "Parent.dtd" [
<IELEMENT NAME (#PCDATA)>

<IELEMENT BRAND (#PCDATA)>

<!IELEMENT MODEL (#PCDATA)>

<!ELEMENT PRICE (#?CDATA)>

<!ELEMENT WEIGHT (#PCDATA)>

105

Table 6.13 Continued...
]>
<CAMERA_ CATEGORIES>
<CATEGORY>
<NAME>35MM</NAME>
<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>
<PRICE>1875000</PRICE>
<WEIGHT>120 gr.</WEIGHT>
</CAMERA>
</CATEGORY>
</CAMERA_CATEGORIES>

In table 6.13, an XML document is showed which has both internal DTD and external
DTD. External DTD is referenced using SYSTEM keyword. “Parent.dtd” is the external
DTD file includes parent element declarations and internal DTD includes child element

declarations.

If both external and internal subsets are used, the internal subset is considered
to occur before the external subset (Pitts N., 2004). This has the effect that entity and
attribute-list declarations in the internal subset take precedence over those in the external

subset.

Table 6.14 Entities in external and internal DTDs

<?xml version="1.0" encoding="is0-8859-9"?

<!DOCTYPE SCHOOL SYSTEM "ext.DTD" [

<IELEMENT SCHOOL (#PCDATA)>

<!ENTITY schoolname "DEU">

]>
<SCHOOL>&schoolname;</SCHOOL>

| <!ENTITY schoolname "Dokuz Eylul University">

106

In table 6.14, schoolname entity reference is used both in internal DTD and in
external DTD. Since the priority of internal DTD, SCHOOL element will has DEU

content.
6.4 Element Declarations

All element type declarations in an XML documents must be defined within DTD
files for validation purposes. It is possible to define element name and content type using
element type declarations. The general structure of element type declaration is below.

 <!ELEMENT elementName contentDefinition>

Element declaration starts with “<!ELEMENT” literal, then followed white-space
character, followed element name, followed content descriptor, optional white-space
character and ends with “>” character (Pitts N., 2004). Element type name must match

some constraints;

® It can not start with any combination of “XML” word’s upper and lower
letters. XML, xML, xmL, xml, XmL, Xml, XMl and xMl words are

reserved for future use.

® It can not start with digits (0-9), “-” (hyphen) character or “.” (Dot) sign.

(12824

And can not contain “,” (comma) character or

L"”
.

(exclamation) sign

® It can not contain white spaces.

Element type name has 5 types of content; normal content, only character data, mixed

content, any kind of content type, empty elements.
6.4.1 Elements with Normal Content

They include one or more sub element. Technically, an element type which has only

one sub element is called base element (Pitts N., 2004).

107

Table 6.15 Elements with normal content
EELEMENT PERSONNEL (PERSONNEL INFO)> j

In table 6.15, PERSONNEL element which has normal content is declared. This
element has only one element called PERSONNEL INFO. PERSONNEL element does
not include other sub elements (except PERSONNEL_INFO element) or character data.
It does not mean that if PERSONNEL element declaration exists, automatically
PERSONNEL_INFO element is declared.

Table 6.16 Valid and non-valid elements with normal content

<PERSONNEL>
<PERSONNEL,_INFO>01-Ahmet Tan</PERSONNEL_INFO>
</PERSONNEL>
<PERSONNEL>
<PERSONNEL,_INFO>01-Ahmet Tan</PERSONNEL_INFO>
<PERSONNEL,_INFO>02-Sibel KOPARAN</PERSONNEL_INFO>
</PERSONNEL>

In table 6.16, PERSONNEL element’s two types o f usage in X ML d ocuments are
showed. First usage is a valid. It has only one sub element called PERSONNEL INFO
and does not contain any character data or sub element. Second usage is not valid, since

PERSONNEL element two PERSONNEL _INFO elements.

Elements with normal content can also contain more than one element. Sub elements

are located in parenthesis with commas and with ordering.

Table 6.17 Elements have sub-elements with normal content

| <TELEMENT PERSONNEL (PERSONENLNO, PERSONNELNAME)> |

108

In table 6.17, defined PERSONNEL element has normal content and has two sub
elements. These sub elements are also child elements which are named
PERSONENLNO and PERSONNELNAME.

6.4.2 Elements Has Only Character Data

Elements which have only character data are c alled child element. These elements
contain parsed character data (Pitts N., 2004). Parsed character data can not include “<”,
“&”, “>” characters, but can include character references which are mapped to ignored

characters “<”, "&” and “>”

Table 6.18 Elements have only character data
| <TELEMENT BRAND (#PCDATA)> |

In table 6.18, BRAND element is declared which has only character data. BRAND

element can not contain any elements.
6.4.3 Elements Has Mixed Content

Elements which have mixed content may have both parsed character data and other
sub elements (Pitts N., 2004).

Table 6.19 Elements have mixed content
| <TELEMENT PERSONNEL (#¥PCDATA | PERSONNEL_INFO)*>]

In table 6.19, an element is showed which has character data and child element
PERSONNEL_INFO. Pipe character in the content declaration means logical OR and
PERSONNEL element can contain character data OR PERSONNEL INFO child

cekrr’

element. character outside of the right parenthesis means content in the parenthesis

109

can be used in XML document zero or more times. But it is not possible to say the exact

number of occurrences of child elements.

Table 6.20 Valid and non-valid elements with mixed content

<PERSONNEL>

0001-SOFTWARE

<PERSONNEL_INFO>Ahmet Tan-iZMIR</PERSONNEL_INFO>
</PERSONNEL>

<PERSONNEL>
0001-SOFTWARE
<PERSONNEL_INFO>Goksel UCER-IZMIR</PERSONNEL INFO>
<PERSONNEL_INFO>Ahmet Tan-IZMIR</PERSONNEL_INFO>
</PERSONNEL>

 Non-valid document
<PERSONNEL>
<PERSONNEL_INFO>Ahmet Tan-iZMIR</PERSONNEL_INFO>
</PERSONNEL>

An element which has mixed content at least must have the declaration in table 6.20.

Below element type declarations do not match the mixed content element type.

® TFlement declaration which has mixed content must start with #PCDATA
keyword before other sub elements.

<!ELEMENT PERSONNEL (PERSONNEL_INFO | #PCDATA)*>,

® Element declaration which has mixed content can not include “,” (comma)
character instead of “|” (pipe) character between sub element #PCDATA
string literal.
</ELEMENT PERSONNEL (PERSONNEL_INFO , #PCDATA)*>,

® Element declaration which has mixed content can not specify sub elements
number of occurrences.

</ELEMENT PERSONNEL (PERSONNEL_INFO , #PCDATA)>,

110

6.4.4 Elements Have Any Kind Of Content Type

If an element is wanted to define with capability that can contain any kind of content,

must be declared using ANY keyword within DTD file (Pitts N., 2004).

Table 6.21 Elements have any kind of content type
| <TELEMENT PERSONNEL (ANY)> (

PERSONNEL element in table 6.21 may have normal content, only character data or
mixed content. These elements can be thought as joker elements. When you design
XML applications, in first step defining elements in ANY can be easier and decrease
your development time. But you can forget that element. In real life applications
although it is technically possible defining ANY types, it would not be realistic an
element with' ANY type.

Table 6.22 Valid and non-valid elements with any kind of content

<PERSONNEL>
<ID>0001</ID>
<NAME>Sibel KOPARAN</NAME>
</PERSONNEL>
N
<PERSONNEL>
0001-Sibel KOPARAN
</PERSONNEL>

In table 6.22, some content of PERSONNEL element which is defined with mixed

content.
6.4.5 Empty Elements

Empty elements have no content. The difference of empty elements from start and

end tags is the / character. Empty element tag starts with < character, then followed

111

element type name and at the end /> string occurs. When an element is wanted define as

empty element, EMPTY keyword must be used in DTDs (Pitts N., 2004).

Table 6.23 Empty elements
| <TELEMENT PERSONNEL EMPTY>]

In table 6.23, PERSONNEL element has an element d eclaration as e mpty element
using EMPTY keyword. This element can be showed in an xml document like below.

@))
<PERSONNEL></PERSONNEL> or <PERSONNEL/>

These two declarations are same technically. But in second empty element
declaration usage must be important to distinguish normal XML elements from empty
XML elements. Empty elements can not have any content but it does not mean they can
not have attributes. In real life, empty elements generally used with attributes like
 HTML element.

Table 6.24 Valid empty elements

. docuni
<PERSONNEL ID="0001" NAME="Sibel KOPARAN">
</PERSONNEL>

@0
<PERSONNEL ID="0001" NAME="Sibel KOPARAN"/>

In table 6.24, empty PERSONNEL element is showed in two different XML
declarations. Second XML declaration is more clear (more readable and distinguished

from normal elements easily) than first one.

112

6.5 Element Declarations
“BNF is an abbreviation for Backus-Naur-Form. BNF grammars are an outgrowth of
compiler theory. A BNF grammar defines what is and is not a syntactically correct or

not” (WEB_10, 2004).

Table 6.25 XML 1.0 first EBNF rule

| [1] document ::= (prolog element Misc*)]

In table 6.25, according to rule, an XML document must start prolog element.
Simply, a prolog element includes DTD and XML declaration definitions. A root
element must follow the “Prolog” element. Third non-terminal “Misc” element is

optional. Misc element includes white-spaces, comments or processing instructions.

| Means logical OR operation

, Means logical AND operation
() Groups elements

A* Zero or more occurrences of A
A+ One or more occurrences of A
A? Zero or one occurrences of A

AB | Acomes after B
A |B | Matches A or B but not both

6.6 Order Identifiers

Order identifier character (comma character), specifies the exact order of sub
elements or child elements. Using this identifier you set the occurrence order of element.
XML elements’ orders are very important for errorless XML parsing (Pitts N., 2004). So

order identifiers within DTD files are same importance.

113

Table 6.27 Element declaration using order identifiers

<!IELEMENT CAMERA (BRAND, MODEL, PRICE, WEIGHT)
1. 2. 3. 4.

In table 6.27, a CAMERA element with 4 sub elements is defined. Sub elements are
located in an exact order within CAMERA element structure. In first order BRAND

element, in second order MODEL element, in third order PRICE element and finally in
forth order WEIGHT element follows.

When this CAMERA element is used in an XML document, element’s order must be

same as above. Otherwise the XML document will not be valid.

Table 6.28 XML element usage

<CAMERA:
<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>
<PRICE>1875000</PRICE>
<WEIGHT>120 gr.</WEIGHT>

<BRAND>Canon</BRAND>

<MODEIL>Z155</MODEL>

<WEIGHT>120 gr.</WEIGHT>

<PRICE>1875000</PRICE>
</CAMERA>

In table 6.28, two CAMERA element usage is showed. Although first usage is valid,
the second one is not valid. Second CAMERA element’s children PRICE and WEIGHT

elements’ orders are changed.

When using order identifiers, the only way to change the elements’ orders is using
optional occurrence character *, at most one occurrence character ?, at least one

occurrence character (WEB_10, 2004). For example in a real world XML example

114

which includes camera information as content, knowing all camera’s weight can be
impossible. So WEIGHT element is wanted to be skipped in some cases. In a such

application CAMERA element can be declared in two ways;

1. <!ELEMENT CAMERA (BRAND, MODEL, PRICE, (WEIGHT)*)
2. <!ELEMENT CAMERA (BRAND, MODEL, PRICE, (WEIGHT)?)

In first declaration WEIGHT element can be used optional, it means zero or more
occurrences of element is possible and legal. But in second declaration WEIGHT

element can be use at most once.

Table 6.29 XML element usage with order and number identifiers

<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>
<PRICE>1875000</PRICE>
</CAMERA>

In table 6.29, CAMERA element and its sub elements matches both first declaration

and second declaration.

The other way to change the order of elements is repeated of sub elements. For
example in a real world XML example which includes camera information as content, it
can be wanted to define two types of prices for franchisers and customers. In a such

application CAMERA element can be declared in two ways;

1. <!ELEMENT CAMERA (BRAND, MODEL, (PRICE)*, WEIGHT)
2. <!IELEMENT CAMERA (BRAND, MODEL, (PRICE)+, WEIGHT)

Table 6.30 Order and number identifiers

<CAMERA>
<BRAND>Canon</BRAND>

115

Table 6.30 Continued...
<MODEL>Z155</MODEL>
<PRICE>18750000</PRICE> <!--Franchiser Price-->
<PRICE>20000000</PRICE> <!--Customer Price-->
<WEIGHT>120 gr.</WEIGHT>
</CAMERA>

An element which is not defined in DTD mechanism can not be used as an element in
XML documents.

Table 6.31 Sub element usage that is not defined

<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>
<PRICE>18750000</PRICE>
<WEIGHT>120 gr.</WEIGHT>
<FOCUS>4x8</FOCUS>
</CAMERA>

6.7 Alternative Identifiers

Alternative identifiers let elements to be located selectively instead of defining an
exact order. Pipe character “|” is used as an alternative identifier (WEB_10, 2004). By
using this character between elements or element groups, it is provided to define

alternative element declarations.

Table 6.32 Element declaration using alternative identifier

[<IELEMENT PERSONNEL (ID | NAME)> |

In table 6.32, according to PERSONNEL element, it may have one of the ID or
NAME sub elements.

116

Table 6.33 Element declaration using alternative identifier

~ <PERSONNEL>
<ID>0001</ID>
</PERSONNEL>

<PERSONNEL>
<NAME>Sibel KOPARAN</NAME>
</PERSONNEL>

<PERSONNEL>

<ID>0001</ID>

<NAME>Sibel KOPARAN</NAME>
</PERSONNEL>

6.8 Using Order and Alternative Identifiers By Grouping

"If it is needed to group some elements which are in same concept, parenthesises are
used for grouping. By grouping technique, it is possible to use orders within alternatives
or alternatives within orders. It is also possible to assign “?”, “+” and “*” characters to

groups (WEB_10, 2004).

Table 6.34 Defining elements using order and alternative identifiers by grouping
| <!IELEMENT PERSONNEL (ID, NAME, (PHONE | FAX | EMAIL))> |

PERSONNEL element defined in table 6.34, can be formed as an ID element and a
NAME element and one of the PHONE, FAX or EMAIL element. The last three
elements are Agrouped alternatively. PERSONNEL element can not contain two or three

of these elements at the same time.

Table 6.35 Using order and alternative identifiers by grouping

<PERSONNEL>
<ID>0002</ID>
<NAME>Ahmet Tan</NAME>
<PHONE>02323457869</PHONE>

117

Table 6.35 Continued...
</PERSONNEL>

<PERSONNEL>
<ID>0002</ID>
<NAME> Ahmet Tan </NAME>
<EMAIL>dkilinc@deu.edu.tr</EMAIL>
</PERSONNEL>
 Non
<PERSONNEL>

<ID>0002</ID>

<NAME> Ahmet Tan </NAME>
</PERSONNEL>
<PERSONNEL>

<ID>0002</ID>

<NAME> Ahmet Tan</NAME>

<PHONE>02323457869</PHONE>

<EMAIL>dkilinc@deu.edu.tr</EMAIL>
</PERSONNEL>

In table 6.35, valid and non-valid PERSONNEL XML elements are showed. In the
first non-valid PERSONNEL element one of the PHONE, FAX or EMAIL elements is
not used. And in the second non-valid PERSONNEL element PHONE and EMAIL

elements are used together.

Table 6.36 Using order and alternative identifiers by grouping
| <!ELEMENT PERSONNEL ((ID) | NAME, (PHONE)+, (FAX)* , (EMAIL)))> |

In table 6.36, PERSONNEL eclement can be created in two ways in an XML
document. In the first PERSONNEL element can be formed as using only one ID
element. In the second PERSONNEL element can be formed as one NAME element,
one or more, PHONE element, zero or more FAX element and one or more EMAIL

clement.

Table 6.37 Using order and alternative identifiers by grouping (2)

' Va me
<PERSONNEL>
<ID>0002</ID>
</PERSONNEL>
<PERSONNEL>
<NAME> Ahmet Tan</NAME>
<PHONE>02327659334</PHONE>
<PHONE>05324853032</PHONE>
<EMAIL>dkilinc@deu.edu.tr</EMAIL>
</PERSONNEL>

<PERSONNEL>

<ID>0002</ID>

<NAME> Ahmet Tan</NAME>
</PERSONNEL>

<PERSONNEL>
<NAME> Ahmet Tan</NAME>
<PHONE>02323457869</PHONE>
<FAX>02323457769</FAX>
</PERSONNEL>

118

In table 6.37, valid and non-valid PERSONNEL XML elements are showed. In the

first non-valid element ID and NAME elements are located together. In the second non-

valid element EMAIL element is not used.

6.9 Specifying Exact Number of Elements in DTDs

In DTD technology, it is not possible to give constraints directly to number

occurrences like at least 3 times, at most 5 times. Some occurrence constraints that can

be applied to elements; exactly one element, at least one element, at most one element,

optional number of occurrences of element (Pitts N., 2004). In DTD technology the only

way to give occurrence constraint is to locate element more than one times in the

element declaration.

119

<!ELEMENT PERSONNEL (ID, PHONE, PHONE)>

With the declaration above, the number of ID element is set to 1 and the number of

PHONE element is exactly set to 2.

Table 6.38 Expanding number constraint

<CAMERA>...</CAMERA>

<CAMERA>...</CAMERA>
<CAMERA>...</CAMERA>
</CATEGORY>

In table 6.38, CATEGORY element must have at least three occurrences of CAMERA
elements. The number of CAMERA elements can be more than 3 but can not be less
than 3.

6.10 Attribute List Declaration

Attributes are name-value pairs which are used in start-end and empty element tags.
Between name and value = character is located. Value of an attribute is written in
quotation mark. All attributes for an element are declared in the DTD unit called
“attribute list” declaration (Pitts N., 2004). The information that attribute-list declaration

can include is below;

B TIncludes the names of element’s attributes. All elements’ attributes must be

declared here.
® Includes the types of element’s attributes.

B Specifies whether or not element’s attributes are required. And default

values of attributes are also defined.

120

Attribute list declaration is defined using the keyword string <!ATTLIST in DTD

mechanism. The structure of attribute list declaration is below;
</ATTLIST Element_Name Attribute List>

Declaration starts with the literal string </4TTLIST, then followed Element Name
which specifies the name of element to which attributes are assigned. Finally declaration
ends with Astribute_List which lists the one more attributes (Pitts N., 2004). An attribute

list declaration which includes only one attribute is below;
Attribute_ Name Attribute_Type Default Value
Declaration starts with the name of attribute. Attribute names are unique and can not

be assigned to more than one element. Attribute name also can not start with any

combination of XML word’s upper and lower letters.

Table 6.39 Declaration of an attribute
| <!ATTLIST PERSONNEL ID CDATA #REQUIRED>]

In table 6.39, PERSONNEL element has only one attribute called ID which has the
data type CDATA. The default value of attribute is #REQUIRED which means that the

attribute must contain a value within XML document.

Table 6.40 Using elements and attribute declarations together

<?xml version="1.0" standalone="yes"?>

<!IDOCTYPE PERSONNELLIST [

<!ELEMENT PERSONNELLIST (PERSONNEL+)>

<IATTLIST PERSONNEL ID CDATA #REQUIRED>
<!IELEMENT PERSONNEL (NAME, EMAIL, (PHONE | FAX))>
<!IELEMENT NAME (#PCDATA)>

<IELEMENT EMAIL (#PCDATA)>

<!ELEMENT PHONE (#PCDATA)>

<IELEMENT FAX (#PCDATA)>

121

Table 6.40 Continued...
]>

<PERSONNELLIST>
<PERSONNEL ID="0001">
<NAME>SIBEL KOPARAN</NAME>
<EMAIL>SIBELK@EGETIP.EDU.TR</EMAIL>
<PHONE>0543898709</PHONE>
</PERSONNEL>
<PERSONNEL ID="0002">
<NAME> Ahmet Tan</NAM>
<EMAIL>Ahmet. Tan@NETSIS.COM.TR</EMAIL>
<PHONE>05328450709</PHONE>
</PERSONNEL>
</PERSONNELLIST>

In table 6.40, an internal DTD in which element and attributes are defined and an
XML document is showed. The XML document that contains personnel information
starts with the root element PERSONNELLIST. R oot element must have at least one
PERSONNEL element. PERSONNEL element is the form of an ID attribute, followed
NAME and EMAIL element and followed one of the PHONE or FAX elements.

Table 6.41 Deﬁning more than one attribute

sa

"<IATTLIST CAMERA BRAND CDATA #REQUIRED
' MODEL CDATA #REQUIRED>
2. -

<IATTLIST CAMERA BRAND CDATA #REQUIRED>

<IATTLIST CAMERA MODEL CDATA #REQUIRED>

In table 6.41, according to PERSONNEL element declaration it has two attributes.
Declaration of more than one attribute can define in two ways. Technically these two

declarations are same. But the first technique decreases the size of XML document.

122

The name of first attribute is BRAND and type of this attribute is CDATA. The
default value of attribute is #fREQUIRED. And the name of first attribute is MODEL and
type of this attribute is CDATA. The default value of attribute is also #AREQUIRED.

6.11 Attribute Default Declarations
Attribute values specify that whether or not attributes are required, and if attributes

are not required the fixed values are defined. 4 types of default declaration can be

assigned to element attributes;

Table 6.42 Attribute default declarations (WEB_12, 2004)

t
#IMPLIED A default value can | These types of attributes may not have an
be assigned to this | obligation to be used in XML document.
value.
<JATTLIST Personnel name CDATA
#IMPLIED>
#REQUIRED | A default value can | If attribute default is defined as
not be assigned to #REQUIRED, declared element must have
this value. this attribute value within XML document,
If this attribute is not used, XML document
will not be valid.

<IATTLIST Personnel id ID

#REQUIRED>
#FIXED | A default value The attribute types which have #FIXED
must be assigned to | attribute default are constant and fixed
this value. within XML documents. Their values can

not be changed in documents. If this
attribute is not used, XML document will be
generate the default value automatically.
But if a value different from default value is
used, XML document will not be valid.

<IATTLIST LangCode CDATA #FIXED

‘ITR ’)>
A default value is If attribute default is defined using this type
assigned to this with no keyword, the declared attribute may

value. not be used in within XML document. If

123

this attribute is not used, XML document
will be generate the default value
automatically.

<!ATTLIST List
tipi (ordered | unordered)
“ordered’’>

6.12 Attribute Types

After attribute names are defined, the attribute types are declared that will constraint

the attribute value. They can be examined in three categories;

" StringType, is the base type. This type of attributes can be any character

except some exceptional characters.
B TokenizedType, brings many constraints to attribute values.

EnumeratedType, provides to assign some value lists to attribute values.

Table 6.43 Attribute types and categories (WEB_12, 2004)

Character Data Type | CDATA Includes character data.

Tokenized Type ENTITY Includes an unparsed entity name.

Tokenized Type ENTITIES Includes more than one unparsed
entity names.

Tokenized Type ID Includes a unique XML name
declaration.

Tokenized Type IDREF Includes a reference to a unique XML
name declaration.

Tokenized Type IDREFS - | Includes a reference list to a unique

: XML name declaration.

Tokenized Type NMTOKEN Includes an XML name token.

Tokenized Type NMTOKENS Includes an XML name token list.

Numbered Type NOTATION Includes the name of notation which is
declared in DTD.

Numbered Type ENUMERATION | Includes the value list of attributes in
DTD.

124

6.12.1 Character Data Type(CDATA)

Character data types are base data types. This type of attributes can be any character
except some exceptional characters which are “&” and “<”. These characters are
reserved for XML markup and c alled markup d ata. Instead o f using these c haracters,
character references (& and <) which carry out mapping process must be used
(WEB_35, 2004). If a double or single quote is wanted to use, they must be the opposite

character of the bound quote characters.

Character data type is declared using CDATA keyword string literal. Character data
types can be used one of the attribute defaults #IMPLIED, #FIXED and #REQUIRED.

Table 6.44 Valid character data type declaration

1. <!ATTLIST CAMERA BRAND CDATA “DEFAULTBRAND>
2. <!ATTLIST CAMERA BRAND CDATA #IMPLIED>

3. <!IATTLIST CAMERA MODEL CDATA #REQUIRED>

4. <IATTLIST CAMERA TYPE CDATA #FIXED “FIXEDTYPE”>

In table 6.44, the first BRAND attribute of CAMERA element has the default value
DEFAULTBRAND. Although CAMERA element is used without BRAND attribute in
XML document, XML parser realizes the default attribute value. 2" BRAND attribute
can not have an attribute value. In the 3™ sample, MODEL attribute must be used within
CAMERA element in the XML document. In the 4™ sample, TYPE attribute must have
attribute type “FIXEDTYPE”.

Table 6.45 Non-valid character data types

1. <!ATTLIST CAMERA BRAND CDATA #IMPLIED “DEFAULTBRAND”>
2. <!ATTLIST CAMERA MODEL CDATA #REQUIRED “FIXEDTYPE”>
3. <IATTLIST CAMERA TYPE CDATA #FIXED>

125

In table 6.45, the reason of first and second attributes are not valid, is that they have
default values. The third attribute is not valid, although it is declared with #FIXED
keyword, it has a default value.

6.12.2 Named Token Data Type (NMTOKEN)

“Named token data types can contain attribute values; a-z and A-Z range letters, 0-9
range digits, -, _ and . characters, token characters, combination characters” (WEB_12,
2004). Named tokens can not include white-space characters but can start with

alphabetical, numerical and tokenized characters.

Table 6.46 Valid and non-valid named tokens

:Book B Book 1

Bookl Book,1
Book.1 Book!
_1.Book (Book)
:Book #Book

Book$1
-Book
1.Book

Named token data types can be used one of the attribute defaults #IMPLIED,
#FIXED and #REQUIRED like character data.

Table 6.47 Valid named token declarations

1. <!ATTLIST KAMERA BRAND NMTOKEN “FIXEDBRAND>
2. <IATTLIST KAMERA BRAND NMTOKEN #IMPLIED>

3. <IATTLIST KAMERA MODEL NMTOKEN #REQUIRED>

4. <!ATTLIST KAMERA TYPE NMTOKEN #FIXED “FIXTYPE”>

In table 6.47 all attribute declarations are valid, since all declarations are well-formed

and match validity constraints.

126

6.12.3 Named Token List Data Type (NMTOKENS)

Named Tokens List Data Type includes more than one NMTOKEN in a list. List
elements are separated with white spaces within double quotes (WEB_12, 2004).

Table 6.48 Valid named token list declaration and usage

D n
<IELEMENT PERSONNEL (#PCDATA)>

<!IATTLIST PERSONNEL PHONE NMTOKENS #REQUIRED>

S <PERSONNEL PHONE="4567438 0532783423">Sibel
KOPARAN</PERSONNEL>

6.12.4 ID Data Type

ID attribute type is used to distinguish XML elements to which it is assigned to.
Technically, it seems tables’ primary keys in relational database management systems.
There can not be two XML elements which have the same ID attribute value in XML
documents (WEB_12, 2004). The attribute’s name may have not to be ID which has the
attribute type

In real life XML applications, numeric values are wanted to be used for ID attribute
types. But, Since ID attribute values which start with numeric values are not valid, “ ”

or alphabetical characters are added as the first character of the values.

Table 6.49 Valid and non-valid ID attribute types

127

In table 6.49, the attribute value which starts with numeric value is not valid. If the
value of attribute is exactly wanted to be constructed using numeric values, an

underscore character is added as the first character like in the second example.

Table 6.50 Non-valid ID attribute type declarations

1. <!IATTLIST PERSONNEL ID ID #REQUIRED “s001”>
2. <IATTLIST PERSONNEL ID ID #IMPLIED “s001”>

3. <!ATTLIST PERSONNEL ID ID #FIXED “s001”>

4. <IATTLIST PERSONNEL ID ID “s001”>

In table 6.50, all ID type attribute declarations are non-valid. In the first one although
default type is set to #REQUIRED, “s001” default attribute value is used, which is
prohibited. In the second one although default type is set to #IMPLIED and has default
value like in the first one. Third and fourth non-valid declarations’ problems are same as

with first and second one.

Table 6.51 Valid ID attribute type declaration and usage

<!ELEMENT PERSONNEL (#PCDATA)>
<IATTLIST PERSONNEL ID ID #REQUIRED>

<PERSONNEL ID="s001">Ahmet Tan</PERSONNEL>

6.12.5 Reference To ID Data Types (IDREF)

In real life applications it 1s wanted give references to XML elements which has
attributes with ID types. This situation seems referential keys in relational database

management 4systems. IDREF and IDEREFS literals are used in DTDs (WEB_12, 2004).

Think a system which manages stock master information and stock transaction
information. Transaction information for stocks can be stock entries or stock exits. For

example, to make out an invoice is an out is a stock exit process because stock is sold.

128

To producing a new stock is an entry process. In this system, a reference is wanted to

give to stock master information probably to a stock number.

Table 6.52 Stock Module XML Design ID and IDREF usage

<7xml version="1.0" encoding="ISO-8859-9"7>
<IDOCTYPE STOCK_MODULE [
<IELEMENT STOCK_MODULE
(STOCK_MASTER_INFORMATION,TRANS OPERATION,STOCK_TRANSA
CTIONS)>
<IELEMENT STOCK_MASTER INFORMATION (STOCK+)>
<!IELEMENT STOCK
(SNAME,SAIL_PRICE,BUY_ PRICE,VAT RATIO,GROUP_CODE)>
<IELEMENT SNAME (#PCDATA)>
<!ELEMENT SAIL PRICE (#?CDATA)>
<!IELEMENT BUY_ PRICE (##CDATA)>
<IELEMENT VAT RATIO (#?CDATA)>
<IELEMENT GROUP_CODE (#PCDATA)>
<IATTLIST STOCK CODE ID #REQUIRED>
<IELEMENT TRANS OPERATION (OPR+)>
<!ATTLIST OPR TYPE ID #REQUIRED>
<!IELEMENT OPR (NAME)>
<!ELEMENT NAME (#PCDATA)>
<IELEMENT STOCK_TRANSACTIONS (TRANS+)>
<IATTLIST TRANS NUM ID #REQUIRED>
<IATTLIST TRANS REFSTOCKCODE IDREF #REQUIRED>
<!ATTLIST TRANS OPR_TYPE IDREF #REQUIRED>
<IATTLIST TRANS TYPE CDATA #REQUIRED>
<!IELEMENT TRANS (DOCNO,EXPLN,QUANTITY)>
<IELEMENT DOCNO (#PCDATA)>
<IELEMENT EXPLN (#PCDATA)>
<!IELEMENT QUANTITY (#PCDATA)>
1>
<STOCK_MODULE>
<!-- Stock Master Information -->
<STOCK_MASTER_INFORMATION>
<STOCK CODE="S001">
<SNAME>VR1-ONE CHANNEL RADIO CARD</SNAME>
<SAIL_PRICE>9000000</SAIL_PRICE>
<BUY_PRICE>8800000</BUY_PRICE>
<VAT RATIO>18</VAT_RATIO>
<GROUP_CODE>RADIO</GROUP_CODE>
</STOCK>

129

Table 6.52 Continued...
<STOCK CODE="S002">
<SNAME>REMOTE CONTROL DEVICE</SNAME>
<SAIL_PRICE>8000000</SAIL_PRICE>
<BUY_PRICE>7000000</BUY_PRICE>
<VAT_RATIO>15</VAT_RATIO>
<GROUP_CODE>KUMANDA</GROUP_CODE>
</STOCK>
</STOCK_MASTER_INFORMATION>
<!-- Operation TRANS Information -->
<TRANS OPERATION>
<OPR TYPE="F">
<NAME>TO MAKE OUT AN INVOICE</NAME>
</OPR>
<OPR TYPE="U">
<NAME>STOCK PRODCUTION</NAME>
</OPR> .
</TRANS_OPERATION>
<!-- Stock TRANS Information -->
<STOCK_TRANSACTIONS>
<TRANS NUM="H1" REFSTOCKCODE="S001" OPR_TYPE="U"
TYPE="ENTRY">
<DOCNO>00001</DOCNO>
<EXPLN>S001 STOCK PRODUCTION</EXPLN>
<QUANTITY>5</QUANTITY>
</TRANS>
<TRANS NUM="H2" REFSTOCKCODE="S002" OPR_TYPE="F"
TYPE="EXIT">
<DOCNO>00002</DOCNO>
<EXPLN>S002 STOCK SAILING</EXPLN>
<QUANTITY>2</QUANTITY>
</TRANS>
</STOCK_TRANSACTIONS>
</STOCK_MODULE>

In table 6.52, an XML design of a part of stock module is showed which is included

in commercial packets. According to stock module design, stock sub parts are below.
B Stock Master Information, is the section which includes stock master information.
Each stock has an unique identifier. This attribute is the CODE of STOCK. This

value can not be same within two STOCKSs. Stock master information includes

130

name, sail price, buy price, vat ratio and group code in addition to code. Two
stocks exist in the example;
<STOCK CODE="S001">
<STOCK CODE="§002">

Stock Transaction Operation Types includes operation information which
constitutes stock transaction. Each operation has an unique identifier called
TYPE. Except the type information, operation also contains the operation name.
<OPR TYPE="F"> 2 Invoice Operation

<OPR TYPE="U"> - Production Operation

Stock Transactions includes entry and exit processes after stock sailing or
invoicing operations. Each transaction has a unique identifier. This attribute is the
number “NUM?” of transaction. The other attributes of transaction is OPR_TYPE
which is the type of operation and code of the stock REFSTOCKCODE. In
addition to these attribute information, the type of transaction, document number,
explanation and quantity information is kept within each stock transaction.
<TRANS NUM="H1" REFSTOCKCODE="S001" OPR_TYPE="U"
TYPE="ENTRY">

<TRANS NUM="H2" REFSTOCKCODE="S002" OPR_TYPE="F"
TYPE="EXIT">

6.12.6 Reference Lists to Unique Identifiers IDREFS)

IDREFS keyword is used to give reference to unique attribute lists which is defined
using ID type (WEB_12, 2004). With the assistance of IDREFS type, an XML element
can be related with more than one XML elements. This relation seems (One to N

Relation) in relational database management systems.

131

If we want to create an XML report which will display stock transactions, we need to

an attribute in IDREFS type which will give reference each transaction.

Table 6.53 IDREFS attribute type and usage

<7xml version="1.0" encoding="I1SO-8859-9"7>

<!IDOCTYPE STOCK_MODULE [

<!ELEMENT STOCK_MODULE
(STOCK_MASTER_INFORMATION,TRANS_OPERATION,STOCK TRANSA
CTIONS, TRANS_REPORT)>

<!ELEMENT STOCK_TRANSACTIONS (TRANS+)>
<!ELEMENT TRANS (DOCNO,EXPLN,QUANTITY)>

<!ELEMENT TRANS_REPORT (REPORT)>

<!IELEMENT REPORT (#PCDATA)>

<!ATTLIST REPORT REFLIST IDREFS #REQUIRED>

>

<STOCK_MODULE>
<STOCK_MASTER_INFORMATION>

</STOCK_MASTER_INFORMATION>
<TRANS_OPERATION>

</TRANS_OPERATION>
<STOCK_TRANSACTIONS>
<TRANS NUM="H1" REFSTOCKCODE="S001" OPR_TYPE="U"
TYPE="ENTRY">
...</TRANS>
<TRANS NUM="H2" REFSTOCKCODE="S002" OPR_TYPE="F"
TYPE="EXIT">
... ITRANS>
</STOCK_TRANSACTIONS>

<TRANS _REPORT>
<RAPOR REFLIST="HI H2"> Entry Exit Transactions </RAPOR>
</TRANS REPORT>
</STOCK_MODULE>

In table 6.53, TRANS_REPORT element is added to stock module which displays
stock operation transactions. This element is constituted from an REPORT sub element.

To give reference to stock transactions REFLIST attribute is defined which is in the type

132

of IDREFS. According to sample REFLIST attribute includes H1 and H2 values which

means the transactions will be reported with these numbers.
6.12.7 Enumerated Attribute Type

If you want to assign an exact attribute value from a value list, you must define the
attribute type as enumerated type. It is not necessary to use CDATA, NMTOKEN and
ID like literal keywords to define enumerated types. All values are located within

parenthesis by putting logical OR character “|” between them (WEB_36, 2004).

Table 6.54 ENUMERATION attribute type declaration and usage

<

IATT
“Local™>

In table 6.54, a TYPE attribute which is enumerated type is defined for OPERATION
element. One of the Invoice, Account, Production, Check and Local values is assigned to
TYPE attribute. If nothing is assigned to TYPE attribute of OPERATION element, the

default value Local is assigned.

One of the #REQUIRED or #IMPLIED types can be used as default types. But these
types can not take fixed default values. Values in the list must match the rules of named
tokens (NMTOKEN).

6.12.8 ENTITY Attribute Type
Attributes which are in ENTITY types, include the name of unparsed entities that are

referenced. These attributes provide to define and reference audio, mpeg like binary and

unparsed files (WEB_12, 2004).

133

Table 6.55 ENTITY attribute type declaration

<!ELEMENT IMAGE EMPTY>
<IATTLIST IMAGE RESOURCE ENTITY #REQUIRED>

In table 6.55, RESOURCE attribute for IMAGE element is defined. RESOURCE
attribute is a type of ENTITY and must take the entity name as the attribute value which
is located in DTD file.

Table 6.56 ENTITY attribute type usage
| <IMAGE RESOURCE=“IMAGEREFERENCE"/>]

In table 6.56, IMAGE element and RESOURCE attribute usage in an XML document
is showed. IMAGEREFERENCE attribute value is the name of entity that is declared in

DTD mechanism.
6.12.9 ENTITIES Attribute Type

ENTITIES attribute type takes more than one ENTITY reference as attribute value.

Reference names are located within double single quotes between commas (WEB_12,
2004).

Table 6.57 ENTITIES attribute type and usage
D

"< IMAGE RESOURCELIST="RESOURCEREF1 RESOURCEREF2” />

In table 6.57, RESOURCELIST attribute is defined which belongs to IMAGE
element and has the type of ENTITIES. RESOURCELIST attribute must contain more

134

than one entity name. RESOURCEREF1 and RESOURCEREF?2 attribute types are

entity references declared in DTD.

6.13 Entity Declarations

Entities are special XML units which provide to define some internal and external

unparsed content like image, video and audio formatted files. For example; since XSL

documents are actually inherited from XML documents, they can be thought as entities
(WEB_12, 2004).

General Entities reference to string literals or data types within XML

documents (WEB_12, 2004).

Parameter Entities include string literals or text declarations in D TD files
(WEB_12, 2004).
Internal Entities are string literals within single or double quotes and located

in the same place within XML document (WEB_12, 2004).

External Entities are located in different physical files. These types of
entities are referenced using URN and URI. Reference to entity content exists
in XML document. <IMAGE> element in HTML markup language provides
rendering of image files (WEB_12, 2004).

Parsed Entities are in the form of character or markup data and are replaced
with their real content during parsing processing. While content is replacing,
it is controlled by parser. Content of parsed entities must be well formed XML
text (WEB_12, 2004).

Unparsed Entities can be character either in the range of valid XML
boundaries or non-valid XML boundaries. Non-valid characters contained in
image, audio or mpeg like binary files. Unparsed entity names can be assigned
to attributes in the type of ENTITY or ENTITIES. Most of the XML parsers
do not support usage of unparsed entities (WEB_12, 2004).

135

Entity
A A
General Parameter
y External
Internal External Internal
! | I '
Parsed Parsed Unparsed Parsed Unparsed

Figure 6.1 Hierarchical structure of entity types in DTD files

Table 6.58 Types of entities (WEB_12,2004)

? General

Internal Parsed

Special XML units. These entities are
validated during replacement process.
And after controlling, they are replaced
by their real content.

External Parsed

Located in different physical files. These
entities are validated during replacement
process and they are replaced by their
real content.

External Unparsed

Located in different physical files and
are not validated during replacement
process. Content of these entities are
image, video audio like binary files.

Parameter

Internal Parsed

They provide to define DTD units like
ATTLIST, ELEMENT. They can be
thought as shortcuts for DTD unit
declarations.

External Parsed

Technically same as Internal Parsed
Entities. But they are located different
location from DTD.

6.13.1 General Internal Parsed Entities

General internal parsed entities (WEB_12, 2004) are special XML units. These

entities are validated during replacement process. And after controlling, they are

replaced by their real content. Content of parsed entities must be well-formed XML text.

136

They are declared using ENTITY keyword in the DTD file. “&” and “,” characters are

used to reach internal entities in XML documents.

Table 6.59 Internal parsed entity declaration
| <IENTITY deuEF “Dokuz Eyliil University Engineering Faculty”> |

In table 6.59, deuEF entity is like a shortcut for the Dokuz Eyliil University
Engineering Faculty content. Instead of writing this lengthy content, simple &deuEF; is

used.

Table 6.60 Internal parsed entity definition and usage

<7xml version="1.0" encoding="is0-8859-9" standalone="yes" 7>
<IDOCTYPE DECL[
<!ENTITY deuEF “Dokuz Eyliil University Engineering Faculty”>
<IENTITY engPlace "Bornova-IZMIR">
<!ELEMENT DECL (HEADER,PHONE,ADDRESS)>
<IELEMENT HEADER (#PCDATA)>
<!IELEMENT PHONE (#PCDATA)>
<IELEMENT ADDRESS (#PCDATA)>
>
<DECL>
<HEADER>&deuEF;(&engPlace;)</HEADER>
<PHONE>02326548393</PHONE>
<ADDRESS>Ege University Campus &engPlace;</ADDRESS>
</DECL>

In table 6.60, deuEF and engPlace entities’ declaration and usage within XML
document are showed. engPlace entity is use both in ADDRESS element’s content and
HEADER element’s content. Although HEADER AND ADDRESS elements are
defined in PCDATA type, they include & character, since that is the start character of
entity.

137

\Documents and Séttings

2] C:\Documents and Settings\Administrator{My Documents\Yuk =]

<78mi version="1,0" encoding="is0~8859-9"
standalone="yas" 7>
<IDOCTYPE OECL (View Source for full doctype...)>

| - «DECL>
| <HEADER>Dokuz Eylil University Engineering
Faculty(Bornova-izMIR)</HEADER>
<PHONE>02326548393 </PHONE>
<ADDRESS>Ege University Campus Bornova-
fzmir</4DDRESS>
</DECL>

Figure 6.2 Rendering of table 5.60 using Internet Explorer

In figure 6.2, web representation of table 6.60 is showed using Internet Explorer
browser. Declaring frequently used text in the general entity form is very useful. When
content will be changed, it will not be necessary to find and replace the all used literals,

only DTD declaration is changed.

If an XML document has both internal definition and external definition and has the
entities or attribute list which have the same names, internal definitions are always more

priority then external.

Table 6.61 Using internal and external declarations together

“<7xml version="1.0 encoding="is0-8859-9"7>
<IDOCTYPE SCHOOL SYSTEM "ext.DTD" |
<IELEMENT SCHOOL (#?CDATA)>
<IENTITY schoolname "DEU">

>
<SCHOOL>&schoolname;</SCHOOL>
<IENTITY schoolname "Dokuz Eylul University">

138

In table 6.61, schoolname is defined both in internal DTD and in external EXT.DTD.
Since internal DTD has more precedence, SCHOOL element will have the “DEU”

content.
6.13.2 Predefined General Entities

In XML technology 5 predefined entity references are defined (WEB 12, 2004). It is

not needed to define these entities in DTD again.

Table 6.62 Predefined entities (WEB_12, 2004)

- USsa C1

& | <!ENTITY amp “&#38;”> & (and) character. Used as the first
character of entity references.

< <IENTITY It “&#60;”> < character. It is the starting character
of XML element’s tags.

> <IENTITY gt “>”> > character. It is the closing character
of XML element’s tags.

" | <!ENTITY quot “"”> "(quote) character. Used for to keep
XML attribute values.

' | <!ENTITY apos “'”> ' (apos) character. Used for to keep
XML attribute values.

6.13.3 General Internal Entity References Usage Situations

® Tt is possible to use an entity reference in entity definition.

Table 6.63 Using entity references in entity declarations

<!ENTITY deuEF “Dokuz Eyliil University Engineering Faculty”>
<IENTITY engPlace "&deuEF; Bornova-IZMIR">

" All characters except %, & and " can be used in entity declarations. If one of
these characters must be used, character references which are mapped then are
chosen (WEB_12, 2004).

139

Table 6.64 Using markup as the content of entities

<!IENTITY declContent
"<HEADER>&deuEF;(&engPlace;)</HEADER>
<PHONE>02326548393</PHONE>
<ADDRESS>Ege University Campus &engPlace;</ADDRESS>">

® Entities can not be used with cross dependencies.

Table 6.65 Cross dependent entity declarations

<!ENTITY deuEF "Dokuz Eyliil University Eng. Faculty
&engPlace;">
<IENTITY engPlace "&deuEF; Bornova-IZMIR">

® Entity references can not be use within DTD element type definitions.

Table 6.66 Entity usage in element definition

<!ENTITY deuEF "#PCDATA">
<IELEMENT HEADER &deuEF;>
<!IELEMENT PHONE &deuEF;>

6.13.4 General External Parsed Entities

Located in different physical files and are validated during replacement process.
Since they are validated their text content must be well-formed. General external parsed
entities are defined using ENTITY keyword in DTD mechanism. After ENTITY
keyword external DTDs are referenced using “SYSTEM” literal (WEB _39 2004).
Finally, URI (Uniform Resource Identifier) address follows which holds the location
information of content (WEB_12, 2004).

Table 6.67 General external parsed entity definition

<!ENTITY generalKey SYSTEM "http://www.netsis.com.tr/key. XML">
<!ENTITY generalKey SYSTEM "/keyList/key. XML">

140

In table 6.67 two different entity declarations is showed which are named
generalKey. Two definitions are specified using different SYSTEM address. In the first
definition an URL address and in the second definition an URI address is used.

Table 6.68 External key file

<?xml version="1.0"7>
<KEY>

<ID>0192883</ID>
<CONTENT>FDEFKI1.1234354DFH45RJLPG456AD46V46NMCK</CONTENT>
</KEY>

In table 6.68, an XML key file is showed that can be used in real life security
applications. The security file can be used as key content in encryption or decryption

algorithms.

Table 6.69 General external parsed entity usage

<?xml version="1.0" standalone="no"?>
<IDOCTYPE ENCRYPTEDDOC|
<IELEMENT ENCRYPTEDDOC (DOCNAME,KEY)>
<!ELEMENT KEY (ID,CONTENT)>
<!ELEMENT ID (#PCDATA)>
<IELEMENT CONTENT (#PCDATA)>
<!IELEMENT DOCNAME (#PCDATA)>
<!ENTITY enKEY SYSTEM "externalKEY.xml">
]>
<ENCRYPTEDDOC>
<DOCNAME>Secure Document</DOCNAME>
&enKEY;
</ENCRYPTEDDOC>

In table 6.69, an entity named “enKEY” is defined which references an external XML
file externalKEY.xml. By using &enKEY; entity after DOCNAME element, external files
content is added to XML document. If it is paid attention, DTD definition of external

XML file is declared in the internal one.

141

"3 £ Documents and éeitings&;;{!raéinistrai:rsr

<?xml version="1.0" standalone="no" >
<IDOCTYPE ENCRYPTEDDOC (View Source for full doctype... }»
- <ENCRYPTEDDROC>
<DOCNAME>Secure Document</DOCNAME>
~ <KEY>
<1D>0192883</10>
<CONTENT>FDEFKL1234354DFH4SRILPG4S6AD46V46NMCK</CONTENT >
</KEY>

</ENCRYPTEDDOC»

Figure 6.3 Web rendering of external parsed entities

6.13.5 General External Entity References Usage Situations

It is possible to use another entity reference in the definition of general

external declaration.

If entity declaration wholly contains markup data, data must be well-formed.
Starting and closing tags must match each other and well-formedness

constraints.

Since Internal XML document has already a root element, it is not necessary

that entity XML content must contain a root element.

Single or double quotes used in entities’ contents must be different from

boundary characters.

Cross dependency is forbidden.

6.13.6 General External Unparsed Entities

Located in different physical files but they are not validated during replacement

process like general external parsed entities. They can not be in the form of XML text.

XML parser does not control these entities’ content and pass them directly to application

(WEB_

12, 2004). Shortly, XML parser believe content’s reliability.

142

External unparsed entities are generally used when GIF, JPEG, WAV and AVI like
binary files are wanted to attach XML documents (WEB_39, 2004). For example, a
stock’s image can be demanded in the XML file or an XML document which contains

films’ information may contain film previews.

External unparsed entities can not be specified using entity references. That is to say
a declaration like &entity_name; cannotbe done (WEB_12, 2004). A ttributes in the
type of ENTITY or ENTITIES literals must be used to reach unparsed entity resources.

Table 6.70 ENTITY type usage

<!ELEMENT IMAGE EMPTY>
<IATTLIST IMAGE SOURCE ENTITY #REQUIRED>

In table 6.70, an empty IMAGE element and its SOURCE attribute is defined.
Attributes which are in ENTITY types can be used with #IMPLIED or #FIXED attribute
defaults. To able to use general external entities, two definitions must be created in DTD
mechanism.

B Notation Declarations

® External Unparsed Entity Definitions
6.13.7 Notation Declarations

“Notations identify by name the format of unparsed entities, the format of elements”
(WEB_12, 2004). Notations use URL and MIME types to identify content environment.
One method of rendering of these types of content is creating fix markup names. For
example tag in HTML is used represent GIF, JPEG, PNG and BMP like image
files. Approach for fixing tags obstructs to define our tag set. Somewhat apart

understanding file type from its format may not be a smart method.

143

Notations bring a good solution to specify the content type of non-XML data.
Notations are defined with the same level elements and attributes using NOTATION
literal string in DTD mechanism. Each notation definition has a notation name and an

external identifier. A typical notation declaration is below;

<INOTATION notation_name SYSTEM “external_identifier >
(WEB_12, 2004)

Notation name is the name of format information which specifies content types in
DTD.

External identifiers are used to specify content format type. There exist three ways to

define external identifiers;

» MIME types can be used;
<INOTATION GIF SYSTEM ‘“image/gif”">

* PUBLIC identifiers can be used instead of SYSTEM identifiers since
SYSTEM identifiers may be change frequently (WEB_37, 2004).
<INOTATION GIF PUBLIC
“-//IETF//NONSGML Media Type image/gif//WIDTH "~
“http://www.isi.edu/in-notes/iana/assignments/media-types/image/gif ">

* ISO and IETF like universal standards can be used; For example ISO

8601 standard specifies date and time format.
6.13.8 External Unparsed Entity Definitions

They provide to reach to real content path of unparsed content (WEB_12, 2004). A
typical external unparsed entity definition is below;

<IENTITY entityName SYSTEM contentinfo NDATA notationName>

® entityName is the name unparsed entity. Entity name must match the XML

naming rules.

144

" contentlnfo is the content path of URI which is mapped to unparsed entity’s real

content.
™ NDATA string literal shows that external entity contains unparsed content.

notationName is the location of program which specifies entity content

information.

Table 6.71 External Unparsed Entity Declarations

<7xml version="1.0" encoding="I1SO-8859-9"7>
<IDOCTYPE STOCK_ MASTER_INFORMATION |
<!ELEMENT STOCK_MASTER_INFORMATION (STOCK+)>
<'ELEMENT STOCK (NAME,PRICE,IMAGE)>
<!ELEMENT NAME (#PCDATA)>

<!ELEMENT PRICE (#PCDATA)>

<IATTLIST STOCK CODE ID #REQUIRED>
<IELEMENT IMAGE EMPTY>

<IATTLIST IMAGE PATH ENTITY #REQUIRED>
<INOTATION GIF SYSTEM "image/gif ">
<!ENTITY s01Res SYSTEM "S01.gif" NDATA GIF>

<!ENTITY sO01Res SYSTEM "S02.gif" NDATA GIF>
>

<STOCK_MASTER_INFORMATION>
<STOCK CODE="S001">
<NAME>VR1-ONE CHANNEL RADIO CARD </NAME>
<PRICE>1.000.000</PRICE>
<IMAGE PATH="s01Res"/>
</STOCK>
<STOCK CODE="S002">
<NAME>TO3- THREE CHANNELS REMOTE CONTROL
DEVICE</NAME>
<PRICE>1.500.000</PRICE>
<IMAGE PATH="s02Res"/>
</STOCK>
</STOCK_MASTER INFORMATION>

In table 6.71 an XML document which contains company stock information and DTD
declaration which constraints XML. An IMAGE element which is in the type of
ENTITY is defined to keep stock images. GIF notation declarations specifies format of

145

images. PATH attribute of IMAGE element may include s0/Res or sO2Res entities as
attribute value which maps S01.gif and S02.gif image files.

If it is wanted to reference more than one entity content from an element attribute,
ENTITIES literal must be used. Entities are lined up between spaces in the attribute

value.

Table 6.72 Referencing to external unparsed entities

<?7xml version="1.0" encoding="1SO-8859-9"7>
<!IDOCTYPE STOCK_MASTER_INFORMATION [
<!IELEMENT STOCK_MASTER_INFORMATION (STOCK+)>
<IELEMENT STOCK (NAME,IMAGE)>
<!IELEMENT NAME (#PCDATA)>
<!ATTLIST STOCK CODE ID #REQUIRED>
<!IELEMENT IMAGE EMPTY>
<IATTLIST IMAGE PATH ENTITIES #REQUIRED>
<INOTATION GIF SYSTEM "image/gif ">
<!ENTITY sO1Res_1 SYSTEM "S01_1.gif" NDATA GIF>
<!ENTITY sO1Res_2 SYSTEM "S01_2.gif" NDATA GIF>
>
<STOCK_MASTER_INFORMATION>
<STOCK CODE="S001">
<NAME> VR1-ONE CHANNEL RADIO CARD </NAME>
<IMAGE PATH="s01Res_1 sO1Res 2"/>
</STOCK>
</STOCK MASTER INFORMATION>

In table 6.72 an IMAGE element in the type of ENTITIES instead of ENTITY is
defined to keep c ompany stocks which may have more than one image resource. For
example one of the stock’s images can be small and another one can be in larger sizes. It
is not to be forgotten that unparsed entity content can not be rendered by web browsers
directly without using CSS files. These entities are passed to application which

processes XML document and are used by application.

146

<ml version="1.0" encoding="1S0-8459-8" 75
<!DOCTYPE STOCK_MASTER_INFORMATION (View Source for full doctype... }>
- <STOCK_MASTER INFORMATION>

- <GTOCK CODE="S001">

<NAME>VR1-ONE CHANNEL RADIO CARD</NAME>

<IMAGE PATH="sD1Res_1 sD1iRes_2 />

</STOCK>

</ETOCK_MASTER_INFORMATION>

Figure 6.4 Rendering unparsed entities using browsers

6.13.9 Internal Parsed Parameter Entities

Although general entities can be defined in DTDs, they are not a piece of DTD file
and they belong to XML document body (WEB_39, 2004). They provide to define DTD
units like ATTLIST, ELEMENT. They can be thought as shortcuts for DTD unit
declarations. | They can not be used in except DTD definition in XML document.

Parameter entity references are located between “%” and “;” characters.

Table 6.73 Internal parsed parameter entity definition

| <!ENTITY % deuEF “Dokuz Eyliil University Engineering Faculty”> |

In table 6.73 a parameter entity definition declaration with the name of deuEF is
showed. Technically they seemed to general entity definitions. The only difference that

before parameter entity name “%?” character is used.

Table 6.74 Dependent parameter entity definitions

<!ENTITY % engPlace "Bornova-IZMIR">
<!ENTITY % deuEF “Dokuz Eyliill University Engineering Faculty %engPlace;”>

In table 6.74, it is possible to use another parameter entity reference in a parameter

entity definition. Parameter entities prevent to define most frequently used DTD

147

elements and attributes. When content will be changed, it will not be necessary to find

and replace the all used literals, only DTD declaration is changed.

Table 6.75 Internal parsed parameter entity definitions

<IELEMENT FRUITLIST (APPLE,PEAR,BANANA, CHERRY)>
<!IELEMENT APPLE (PRODUCTION_LOC, PRICE)>
<!ELEMENT PEAR (PRODUCTION_LOC, PRICE)>
<!ELEMENT BANANA (PRODUCTION_LOC, PRICE)>
<!IELEMENT CHERRY (PRODUCTION_LOC, PRICE)>
<!ELEMENT PRODUCTION_LOC (#PCDATA)>
<IELEMENT PRICE (#PCDATA)>

<IELEMENT FRUITLIST (APPLE,PEAR,BANANA, CHERRY)>
<IENTITY % fruit_sublist "(PRODUCTION_LOC, PRICE)">
<IENTITY % sublist_type "#PCDATA">

<IELEMENT APPLE %fruit sublist;>

<IELEMENT PEAR %fruit_sublist;>

<IELEMENT BANANA %fruit_sublist;>

<!IELEMENT CHERRY %ftuit_sublist;>

<IELEMENT PRODUCTION_LOC %sublist_type;>
<IELEMENT PRICE %sublist type;>

In table 6.75 a DTD definition is showed which contains DTD definitions. According
to definition' each fruit element has PRODUCTION _LOC and PRICE sub elements
(child elements) and all of the child elements are in the form of parsed character data
#PCDATA. If it is wanted to add a new child element to fruit elements, all of the fruit
elements would have to be updated one by one and that’s time c onsuming. With the
usage o f parameter entities fruit_sublist and sublist_type this problem is solved since

from it will be enough to change only these parameters.

Table 6.76 Parameter entity usage in element definition

<IENTITY deuEF "#PCDATA">
<IELEMENT HADER &deuEF;>
<IELEMENT PHONE &deuEF;>

148

Internal pérameter entities must contain the whole element definition they can not

contain a part of definition.

Table 6.77 Valid and non-valid parameter entity usages

<IDOCTYPE SCHOOL [
<!IELEMENT SCHOOL (NAME,CITY)>
<!--Since it contains whole element type definition, it is a valid parameter entity
definition -->
<!ENTITY % nameDecl "<!ELEMENT NAME (#PCDATA)>">
%nameDecl;
<!--Since it does not contain whole element type definition, it is not a valid
parameter entity definition -->
</ENTITY % cityDecl "CITY (#PCDATA)">
<!/ELEMENT %cityDecl ;>
>
<!IELEMENT CITY (#PCDATA)>
1>
<SCHOOL>
<NAME>Dokuz Eyliil University</NAME>
<CITY>Izmir</CITY>
</SCHOOL>

In table 6.77, NAME element is d efined using a p arameter entity reference. Since
nameDecl reference includes all data that will be used in element declaration, it is a true
definition. But, PE reference that is defined for CITY element is not fulfilled, because it
does not include the characters <, >,! and the ELEMENT keyword. Usage of cityDecl
entity like <IELEMENT %cityDecl;> does not fit WFC. If it had all element definition,

it would be valid.
6.13.10 External Parsed Parameter Entities
External parameter entities are defined out of the XML documents and they are like

as shortcuts for DTD unit declarations (WEB_12, 2004). The difference of external

parsed parameter entities from internal parsed entities is the usage SYSTEM keyword

149

after the entity name and it is followed entity content path in URI (Uniform Resource
Identifier) standard (WEB_39, 2004).

Internal parameter entities can be used only DTD mechanisms to which belong to.
From another documents it is not possible to access internal parameter entities. External
parameter entities provide to call a DTD from another DTD by attaching shortcuts to
external DTDs. Bigger DTDs are created from smaller ones by using common external

parameter entities

Table 6.78 External parameter entity references StockMaster

<!.-Stock Master Information-->

<IELEMENT STOCK (SNAME, GROUP_CODE, MEAS UNI, LOT 1,
DENOM _1, MEAS UN2, LOT 2, DENOM_2, MEAS UN3,
ACC_DETAILCODE, UNIT_WEIGHT, VAT _RATIO, STORE_CODE, LOCK,
SAILLOCK, BARCODE1, BARCODE2, WIDTH, HEIGHT, WIDENESS,
ISCOMPONENT, ISPRODUCT, EXC_BUYING PRICE,

EXC SAILING_PRICE, SAIL PRICEIL, SAIL_PRICE2, BUY PRICEI,
BUY PRICE2)>

<IATTLIST STOCK CODE ID #REQUIRED>

<IELEMENT SNAME (#PCDATA)>

<IELEMENT GROUP_CODE (#PCDATA)>

<IELEMENT MEAS_UN1 (#PCDATA)>

<!ELEMENT LOT 1 (#PCDATA)>

<!ELEMENT DENOM 1 (#PCDATA)>

<IELEMENT MEAS UN2 (#PCDATA)>

<!IELEMENT LOT 2 (#PCDATA)>

<!ELEMENT DENOM 2 (#PCDATA)>

<IELEMENT MEAS UNS3 (#PCDATA)>

<!--Account Detail Code-->

<IELEMENT ACC DETAILCODE (#PCDATA)>

<!ELEMENT UNIT_WEIGHT (#PCDATA)>

<IELEMENT VAT RATIO (#PCDATA)>

<!-- Store Code-->

<IELEMENT STORE_CODE (#PCDATA)>

<!-- Locked Stocks-->

<!ELEMENT LOCK (#PCDATA)>

<!-- Sailed Locked Stocks-->

<IELEMENT SAILLOCK (#PCDATA)>

<!ELEMENT BARCODE!1 (#°CDATA)>

150

Table 6.78 Continued...

<IELEMENT BARCODE?2 (#PCDATA)>

<IELEMENT WIDTH (#PCDATA)>

<!IELEMENT HEIGHT (#PCDATA)>

<!IELEMENT WIDENESS (#PCDATA)>

<!-- It is a sub product in the BOM (Bill of Materials) and it can not include any
sub product -->

<IELEMENT ISCOMPONENT (#PCDATA)>

<!-- Tt is a product in the BOM (Bill of Materials) and it can include sub products
-

<IELEMENT ISPRODUCT (#PCDATA)>

<!--Exchange Buying Price-->

<IELEMENT EXC_BUYING_PRICE (#?CDATA)>

<!--Exchange Sailing Price-->

<IELEMENT EXC_SAILING PRICE (#PCDATA)>

<IELEMENT SAIL_PRICE!l (#PCDATA)>

<IELEMENT SAIL PRICE2 (#PCDATA)>

<IELEMENT BUY_PRICE1 (#PCDATA)>

<!ELEMENT BUY_PRICE2 (#PCDATA)>

In table 6.78 a DTD file which will be used as external parameter entity reference
from another DTD. This file defined sub elements of a stock element. By using this

DTD a common stock declaration is created.

Table 6.79 External parameter entity references StockOperation

<!--Stock Transactions Operation Information-->
<!IELEMENT TRANS_OPERATION (OPR+)>
<!ATTLIST OPR TYPE ID #REQUIRED>
<!ELEMENT OPR (NAME)>

<!IELEMENT NAME (#PCDATA)>

In table 6.79, a DTD file which will be used as external parameter entity reference

from another DTD that contains stock transactions’ operation information.

Table 6.80 External parameter entity references StockTransaction

<!--Stock Transaction Information-->
<!IELEMENT STOCK TRANSACTIONS (TRANS+)>

151

Table 6.80 Continued...

<IATTLIST TRANS NUM ID #REQUIRED>

<!IATTLIST TRANS REFSTOCKCODE IDREF #REQUIRED>
<IATTLIST TRANS OPR_TYPE IDREF #REQUIRED>
<IATTLIST TRANS TYPE CDATA #REQUIRED>
<IELEMENT TRANS (DOCNO, EXPLN, QUANTITY, DATE,
NETPRICE, GROSSPRICE, TRANS VAT, TRANS ROWDIS,
TRANS_PROADDDIS, TRANS FTIRSIP, TRANS PAYDAY,
TRANS_ORDNUM, TURN, WAYBILL_ NO,

TRANS DELDATE, ACC _CODE)>

<IELEMENT DOCNO (#PCDATA)>

<!ELEMENT EXPLN (#PCDATA)>

<IELEMENT QUANTITY (#PCDATA)>

<!IELEMENT DATE (#PCDATA)>

<!--Net Price-->

<IELEMENT NETPRICE (#PCDATA)>

<!--Gross Price-->

<!IELEMENT GROSSPRICE (#PCDATA)>

<!--KDV-->

<IELEMENT TRANS VAT (#?CDATA)>

<!--Row Discount Sum-->

<IELEMENT TRANS ROWDIS (#PCDATA)>

<!--Production Addition Discount-->

<IELEMENT TRANS PROADDDIS (#PCDATA)>
<!--Invoice/Waybill Type-->

<IELEMENT TRANS FTIRSIP (#PCDATA)>

<!--Pay Day-->

<IELEMENT TRANS PAYDAY (#PCDATA)>

<!--Order No-->

<IELEMENT TRANS_ORDNUM (#PCDATA)>
<IELEMENT TURN (#PCDATA)>

<IELEMENT WAYBILL NO (#PCDATA)>

<IELEMENT TRANS DELDATE (#PCDATA)>

<!--Account Code-->

<IELEMENT ACC_CODE (#PCDATA)>

In table 6.80, a DTD file which will be used as external parameter entity reference

from another DTD that contains stock transaction information.

Table 6.81 External parameter entity references StockModule

152

<?xml version="1.0" encoding="ISO-8859-9"7>
<IDOCTYPE STOCK_MODULE [

<IELEMENT STOCK_MODULE

(STOCK_MASTER INFORMATION,TRANS OPERATION,STOCK TRANSA
CTIONS)>

<IENTITY % entStMaster SYSTEM "extStockMaster.dtd">
%entStMaster;

<IENTITY % entStOprType SYSTEM "extStockOpr.dtd">
%entStOprType;

<IENTITY % entStTrans SYSTEM "extStockTrans.dtd">
%entStTrans;

| g

<STOCK. MODULE>
<STOCK_MASTER_INFORMATION>
<STOCK CODE="S001">
<SNAME>VR1-ONE CHANNEL RADIO CARD</SNAME>
<GROUP_CODE>RADIO</GROUP_CODE>
<MEAS_UNI>AD</MEAS_UN1>
<LOT_I>1</LOT 1>
<DENOM_1>12</DENOM_1>
<MEAS_UN2>KL</MEAS_UN2>
<LOT_2>1</LOT 2>
<DENOM_2>36</DENOM_2>
<MEAS_UN3>PK</MEAS_UN3>
<ACC_DETAILCODE>102-01-01-0001</ACC_DETAILCODE>
<UNIT_WEIGHT>20</UNIT_WEIGHT>
<VAT RATIO>18</VAT RATIO>
<STORE_CODE>1</STORE_CODE>
<LOCK>H</LOCK>
<SAILLOCK>H</SAILLOCK>
<BARCODE1>S005</BARCODE1>
<BARCODE2>S006</BARCODE2>
<WIDTH>5</WIDTH>
<HEIGHT>12</HEIGHT>
<WIDENESS>3</WIDENESS>
<ISCOMPONENT>H</ISCOMPONENT>
<ISPRODUCT>E</ISPRODUCT>
<EXC_BUYING_PRICE>100</EXC_BUYING_PRICE>
<EXC_SAILING _PRICE>120</EXC_SAILING PRICE>
<SAIL_PRICE1>9000000</SAIL_PRICE1>
<BUY_PRICE1>8800000</BUY PRICEI>
<SAIL_PRICE2>9100000</SAIL_ PRICE2>

153

Table 6.81 Continued...
<BUY_PRICE2>8900000</BUY_PRICE2>
<VAT RATIO>18</VAT RATIO>
</STOCK>
</STOCK_MASTER_INFORMATION>
<TRANS OPERATION>
<OPR TYPE="F">
<NAME>TO MAKE OUT AN INVOICE</NAME>
</OPR>
</TRANS_OPERATION>
<STOCK_TRANSACTIONS>
<TRANS NUM="1" REFSTOCKCODE="S001" OPR_TYPE="F"
TYPE="EXIT">
<DOCNO>00001</DOCNO>
<EXPLN>SAILING OF S001 STOCK</EXPLN>
<QUANTITY>2</QUANTITY>
<DATE>29/10/2003</DATE>
<NETPRICE>9000000</NETPRICE>
<GROSSPRICE>9000000</GROSSPRICE>
<TRANS VAT>18</TRANS _VAT>
<TRANS ROWDIS>0</TRANS_ROWDIS>
<TRANS_ PROADDDIS>0</TRANS_PROADDDIS>
<TRANS FTIRSIP>1</TRANS_FTIRSIP>
<TRANS PAYDAY>0</TRANS PAYDAY>
<TRANS ORDNUM>SIP0001</TRANS ORDNUM>
<TURN>1</TURN>
<WAYBILL. NO>IRS0001</WAYBILL_NO>
<TRANS DELDATE>29/10/2003</TRANS_DELDATE>
<ACC_CODE>102-01-01-0001</ACC_CODE>
</TRANS>
</STOCK_TRANSACTIONS>
</STOCK_MODULE>

In table 6.81, main stock module XML document and its DTD declaration is showed.
Form this document three references are given by using external parameter entity
references that are below;

<IENTITY % entStMaster SYSTEM "extStockMaster.dtd">
%entStMaster;

<IENTITY % entStOprType SYSTEM "extStockOpr.dtd">
%entStOprType;

154

<IENTITY % entStTrans SYSTEM "extStockTrans.dtd">
%entStTrans;

These references provide to decrease the size of XML document and make easier to
manage the whole domain. With the modularity references can be used from other XML

documents.
6.14 Conditional Sections

“Conditional sections are units in document type declaration external subset which
are included in, or excluded from, the logical structure of the DTD based on the
keyword” (Harold E.R, 1999).

“If the keyword of the conditional section is INCLUDE, then the contents of the
conditional section are part of the DTD. If the keyword of the conditional section is
IGNORE, then the contents of the conditional section are not logically part of the DTD”
(Harold E.R, 1999). Note that for reliable parsing, the contents of even ignored
conditional éections must be read in order to detect nested conditional sections and

ensure that the end of the outermost (ignored) conditional section is properly detected.

Table 6.82 Using conditional sections

<IELEMENT Book (comment*, header, content, add?)>
1>
S

<I[IGNORE[
<IELEMENT Book (header, content, add?)>
1>

I[IGNORE[
<!ELEMENT Book (header, content, add?)>
<![INCLUDE]

<IELEMENT header (headl, head2, head3)>

155

Table 6.82 Continued...
1>
11>

In table 6.82, definitions are showed which belong to INCLUDE and IGNORE
sections. In the third definition, inner INCLUDE conditional section has no function
since it is located in an IGNORE section. Conditional sections can be more productive

with the parameter entities.

Table 6.83 Using parameter entities or conditional sections

<IENTITY % entlgn “IGNORE”>

<'ENTITY % entInc “INCLUDE”>

<![%entlgn; [
<!ENTITY % entStMaster SYSTEM "extStockMaster1.dtd">
%entStMaster;

11>

<![%entlgn; [
<IENTITY % entStMaster SYSTEM "extStockMaster2.dtd">
%entStMaster;

1>

In table 6.83, entlgn and entInc entities contain the IGNORE and INCLUDE
keywords which specifies conditional sections. In this manner when content will be

changed, it will not be necessary to find and replace the all used literals.

6.15 Character Entities

XML supports both UCS-2 and Unicode standards. In addition to these standards,
UTF-8 and UTF-16 (UTF, UCS Transformation Format) are also supported. “UCS and
Unicode standards, in order to remain backward-compatible with existing text files, have
the same first 128 characters as the 128 characters in the ASCII character set”

(WEB_12, 2004). Character references can be described with two methods;

156

® In the first method, the characters are declared using base 10 system which are
mapped to ISO/IEC 10646 codes. Character reference starts with &# literal. The

string ɻ represents upper case “A” character.

" In the second method, the characters are declared using base 16 system
(hexadecimal) which are mapped to ISO/IEC 10646 codes. Character reference
starts with &#x literal. The string] represents upper case “A” character.

Figure 6.5 ASCII table’s first 128 characters

In figure 6.5, ISO/IEC 10646 character set’s first 128 characters is showed. They are
also same with ASCII table’s first 128 characters

Table 6.84 Using character entities

<?xml version="1.0"?>
<IDOCTYPE PERSONNEL][
<!IELEMENT PERSONNEL (NAME,EMAIL PHONE)>
<!IELEMENT NAME (#PCDATA)> <!ELEMENT EMAIL (##CDATA)>
<!IELEMENT PHONE (#PCDATA)>
<IENTITY enName "K,I,L,&H#73;N,&H6T;">
<IENTITY izmSectCode "0232">
<!ATTLIST PERSONNEL
DEPEMAIL CDATA "YAZILIM@NETSIS.COM.TR">
>
<PERSONNEL>

157

Table 6.84 Continued...
<NAME>DE&H#78;IZ &enName;</NAME>
<EMAIL>
&HO8,&H#69; &H#78; &H#73;Z.&enName; @NETSIS.COM.TR
</EMAIL>
<PHONE>&izmSectCode; 463 90 00</PHONE>
</PERSONNEL>

In table 6.84, three types of character entity usage is described;

™ Using character entities in element declarations, in NAME and EMAIL element
definitions, characters entities are used. The whole characters of DENIZ name is

constituted from 5 character entities.

B Using character entities in attribute declarations, PERSONNEL element’s
DEPEMALIL attribute includes the character entity which is mapped to “&”.

B Using character entities in other character entity definitions, enName entity is
4 Yy

constituted from character entities which has KILINC name.

<hunl version="1,0" 7>

{ <IDOCTYPE PERSONNEL (View Source for Rl doctype...)>

| - <PERSONNEL DEPEMAIL="YAZILIM@NETSIS.GOM.TR">

: <NAMESDENIZ KILINC</NAME>
<EMAILS>DENIZ . KILINC@ONETSIS .COM. TR</EMAIL>
<PHONE=0232 463 90 00</PHONE>

</PERSONNEL>

Figure 6.6 Web rendering of XML documents which have character entities

In figure 6.6, web rendering of and XML documents is showed which have character

entities.

158

6.16 Language Identifiers

In document processing, it is often useful to identify the natural or formal language in
which the content is written. A special attribute named xml:lang may be inserted in
documents to specify the language used in the contents and attribute values of any
element in an XML document (WEB_12, 2004). In valid documents, this attribute, like
any other, must be declared if it is used. The values of the attribute are language
identifiers as defined by [IETF RFC 1766]. Language identifiers may have three types of

value;

® A two-letter language code as defined by [ISO 639], “Codes for the
representation of names of languages” (WEB_12, 2004).

En (English) Tr (Turkish)
Tr (Turkish) JP (Japanese)
TR (Turkish) tR (Turkish)
FR (French) Fr (French)

® A language identifier registered with the JANA (Internet Assigned Numbers
Authority). Begins with the -i or -1 prefixes (WEB_12, 2004).

i-no-bok i-navajo
1-no-nyn 1-mingo

® A language identifier assigned by the user, or agreed on between parties in private
use; these must begin with the prefix “x-” or “X-” in order to ensure that they do
not conflict with names later standardized or fegistered with JANA (WEB_12,
2004).

| x-klingon | X-Elvish]

Table 6.85 Language identifiers

<xml version="1.0">

<list>
<p xml:lang="en-GB ”>What colour is it?</p>
<p xml:lang="en-US ”>What color is it?</p>
<p xml:lang="en-GB ”>Normalization</p>

</list> '

159

6.17 Document Validation Constraints

When an XML document matches or W3C validation rules and constraints, it is

named “valid”. Some of these constraints are below;

DTD name and root element name must be same.

Parameter entity definitions’ orders and locations in XML documents must

be well-arranged.

If there exist attribute default values which reference to extermal DTD
documents, XML declaration’s standalone attribute can not be no.

If EMPTY keyword is used, element must not include content.

If ANY keyword is used, all children’s types, sequences must be defined
properly.

If Mixed keyword is used the content of element must include both character
data and child elements. All children’s types, sequences must be defined
properly.

Attribute value must match the attribute’s type.

An attribute can be defined only once.

If element type declarations are defined using parameter entity references,

reference text can not be empty.

ID attribute’s value can be able to identify its attached element from other

elements.
An element can have only one ID attribute.

Elements’ ID attributes must have the #IMPLIED or #REQUIRED attribute
defaults.

IDREF attribute’s value must reference ID attribute’s value. And IDREFS
attribute must be constituted from more than one IDREF.

160

An attribute value which is in the ENTITY type must match one of the
defined notations and all notation names must be declared in DTD

mechanism.

If an attribute default is defined using #REQUIRED keyword, defined

element must have this attribute in XML document.
Default attribute value must match the attribute’s type.

If an attribute default is defined using #FIXED keyword, defined element’s
attribute can only have this default value.

161

CHAPTER SEVEN
INTRODUCTION TO XSL TECHNOLOGY

7.1 Introduction

XSL (Extensible Stylesheet Language) technology is a derivate of XML technology.
XSL technology’s development goal is to format and transform XML documents to
another type of documents like HTML, WML (WEB_42, 2004), and PDF (WEB_16,
2004). The processing logic of an XSL parser is like below;

® An XML input document is passed to XSL document.
® XML document is processed using XSL technology.
® A result document is constituted.

B Although XSL looks like CSS technology, it supports many features that CSS

cannot success.
7.2 XSL.(Extensible Stylesheet Language)

XSL (Extensible Stylesheet Language) technology (Gardner C. & Rendon Z., 2002)
is created using XML language. With another definition, it is an XML application. XSL
technology seems CSS technology that formats HTML pages. However, XSL is more
powerful and flexible than CSS. While CSS can only make changes about presentations

(font, color, border), XSL technology’s functionalities are below;

162

® Filtering, Provides to be chosen only worked data. For example, stocks

with the percentagel8 value added tax could be wanted to query.

B Arithmetic Calculation, Arithmetic summary, multiplication, division and
subtraction processes can be done over XML data. For example; by adding

stock entry and exit transactions, stock balance amounts can be calculated.

® Composition, More than one XML documents can be combined in one
document. For example, stock transactions of different areas can be

composed in one XML document.

¥ Ordering, XML elements can be ordered within some rules. For example, a

stock report in which all elements are ordered according to their names.

XSL provides to make each type of query and transformation by accessing all XML
units like elements, attributes, comments and processing instructions (WEB_16, 2004).
XSLT and XPath are used technologies within XSL language. That is to say, XSLT and
XPath are sub parts of XSL.

7.3 XSLT (Extensible Stylesheet Language Transformations)

XSLT language provides XML documents to be transformed other XML (WEB_16,
2004) documents, HTML pages, WML pages, PDF (Portable Document Format)
(WEB_40, 2004) and CSV like formatted documents and programming language source
files that are written in Delphi or Java. During transformation process, rules and
declarations in the XSL file are used. Most popular transformation usages of XSL are
HTML and WML produced ones. For example, WML pages provide to render data via
WAP (Wireless Application Protocol) (WEB_41, 2004) browsers. WML language is
developed using XML technology moreover, with its structure it is possible to transform
XML documents to WML pages (WEB_42, 2004) using XSLT technology.

163

ToHTML.XSL Result.HTML

content. XML ToWML.XSL Result. WML

ToPDF. XSL Result.PDF

Figure 7.1 XSLT Transformations

7.4 First XSL Example

It is always useful to start with, a simple and easy sample to understand how XML

documents are converted and transformed to other formats using XSL and XSLT.

Table 7.1 First XSL and XSLT transformation

<?xml version="1.0" encoding="is0-8859-9"7>
<?xml-stylesheet type="text/xsl" href="HelloXSL.xsl"?>
<ROOT>

<Content>First XSL Sample</Content>
</ROOT>

[oF

<xsl:stylesheet xmlns:xsl="http://www.w3.
version="1.0">
<xsl:output method="html"/>
<xsl:template match="/">
<HTML>
<BODY>
<table border="1">
<tr><td bgcolor="silver">/ROOT/Content Query Result</td>
<td bgcolor="silver">
<xsl:value-of select="/ROOT/Content"/>

Ep

org/1999/XSL/ Transform”

164

Table 7.1 Continued...
</td></tr>
</table>
</BODY>
</HTML>
</xsl:template>
</xsl:stylesheet>

In table 7.1, HelloXSL.xml content document and a transformation file with the name
of HelloXSL.xs! are showed. XML document is transformed to an HTML file using
XSLT technology. As it seen, XSL file includes many HTML elements and all of them
must be well-formed unlike in HTML pages. For example; each element must have start
and tags which are case sensitive. <xsl:stylesheet> is the root element of an XSL file that
contain XSL, templates and XSLT transformation rules (WEB_16, 2004). The root
element’s xmlns:xsl attribute is the namespace that identifies which suitable XSL
elements can be used within document. xs/ key after xmins literal specifies all XSL

elements must start with xsl: prefix in the XSL file.

XSL files may include one or more templates in the <xsl:stylesheet> root element.
Templates are defined using <xsl:template> elements. Templates’ match attribute
contains an X Path s pecification query to access XML units by starting from the root
element. match="/" attribute value provides to be chosen all elements including the
XML root element (Gardner C. & Rendon Z., 2002). With other words, it provides

matching of document and XSL template one by one.

165

<l version="1,0" encoding="i50-8859-9° 7>
H <le= <Puml-suyleghest cype="ieNt/wgl” href="EelloX¥l.xslv -->
1 - <ROOT>
<Content>First XSL Sample</Content>
</ROOT>

Figure 7.2 First XSL without reference

In figure 7.2, first XSL sample is tried to render using Internet Explorer web browser,
but style-sheet reference line of XML document is closed using comment line

characters. So rendering will not be successful.

*’3 U Documents and Setting

Figure 7.3 Simple transformation output

In figure 7.3, HelloXSL.xml document is rendered and transformed to HTML form in
the Internet Explorer web browser. This presentation with XSL is more readable than

before.

166

7.5 XSLT Transformation and XML Document Structures

To achieve transformation process, XSLT creates a tree structure by parsing the XML
document (Gardner C. & Rendon Z., 2002). Then it traverses tree starting from the root

element. Finally, transformation process is done according to rules in the XSL file.

While XSLT processor traverses tree structure, it uses XPath declarations to access
tree’s different locations and nodes. That is to say, XPath technology is used to address
the nodes in the created XML tree and provides to walk around chosen tree nodes
(Gardner C. & Rendon Z., 2002).

The nodes in the tree structure are elements, attributes, element-attribute text,
comment lines and processing instruction lines. At the top of tree, root element is
located and sub-nodes are placed at bottom (WEB_16, 2004). XPath technology

describes special nodes in tree to which parser can access. These node types are below;

® Root node symbolizes the root element that contains whole XML
document. There can not be other nodes above the root element (Gardner C.
& Rendon Z., 2002).

® Element node symbolizes all elements include root node. Element nodes
may have sub or upper nodes. Although the root node is an element node at
the same time, it has no upper elements. Lower node can also include other

nodes or text nodes (Gardner C. & Rendon Z., 2002).

® Attribute node symbolizes all elements’ attributes in an XML document.
Attribute nodes are located at the lower level than the elements to which
they belong to or at the same level with the elements’ text nodes. Unless it
is not accessed an attribute directly from schema or DTD, no attribute node

is added to XML document (Gardner C. & Rendon Z., 2002).

B Text node symbolizes all elements’ contents in an XML document. If
element has CDATA sections, their c ontent are marked as textnodes. If

element has both CDATA sections and text content, CDATA sections’

167

contents are added to text content. When text content has one or more
character or entity references, firstly entities are replaced their real values

and then text node is constituted (Gardner C. & Rendon Z., 2002).

Comment node symbolizes comment lines in the document. These
comment lines must be located in the XML document but out of the DTD

or schema (Gardner C. & Rendon Z., 2002).

® Pl node symbolizes processing instruction lines in the document. This node

includes PI’s name and parameters (Gardner C. & Rendon Z., 2002).

7.6 XSL Stylesheet Structures

XSL stylesheet pages that provide to transform XML pages to other page formats are

constituted from three sections;
B XSIL declaration
¥ Declaration of transformation type

® Templates and XPath rules

7.6.1 XSL. Declaration

XSL pages can start with XML declaration line. However, it is not an obligatory to
use XML declarations. XSL declaration is an attribute in <xsl:stylesheet> root element
(WEB_16, 2004) and has an XSL namespace in addition to version information which is
also included in XML declarations. XSL pages are saved with the “.xs/” extension as

standard. Web browsers know this type of extension and format their content.

W3C organization has two types of XSLT version. Each version’s name-space is
different. Versions’ name-spaces are in the form of URI (Uniform Resource Identifier)
standard. x s/ key after x mins (WEB_16,2004) literal specifies all X SL elements must
start with xsl: prefix in the XSL file.

168

Table 7.2 XSL declaration

<xsls yléshééf) xmlns:xsl "htt;;://vi}ww.3;org/ 1999/XSL/Transform"
version="1.0">

</xsl:stylesheet>

'éxs styleseet Xml\i\lxms)l;"vht'tp'://wwwb - M.w3.ormg/
version="1.1">

i/XSLran;fofm")

</xsl:stylesheet>

7.6.2 Declaration of Transformation Type

output element is used to specify XSLT transformation type. method attribute of
output element may have some specific values that are also format names (WEB 16,

2004). Three format types are described;
® method="html”, the transformation type is HTML.

® method="text”, the transformation type is text characters or whatever

programming languages source code.

® method="xml”, the transformation type is SVG (Scalable Vector
Graphics), MATHML, CML or WML like and XML formatted documents.

Table 7.3 Transformation formats and attributes (WEB_16, 2004)

Encoding method="html”,method="xml”, | Specifies language coding
method="text” for character or text.

Doctype-system method="htm!”,method="xml” | Specifies document
descriptor.

doctype-public method="html”,method="xml” | Specifies document
general descriptor.

Version . method="html”,method="xml” | Specifies the version of
XML or HTML document
declarations.

Standalone method="xml” Specifies whether or not an
XML document can

169

reference external
resources.

media-type method="html”,method="xml”, | Specifies the MIME
method="text” (Multipurpose Internet
Mail Extension) type of
transformed document.

Method Specifies the format of

transformed document.
Html, XML or text can be
used.

omit-xml- method="xml” Specifies whether or not
declaration XML declaration will be
discarded in the XML
document which will be
transformed.

Indent method="html!”,;method="xml” | Specifies the indentation
of tags in the XML
document, which will be
transformed.

cdata-section- method="xml” Specifies the elements
elements which must be included in
CDATA sections.

7.6.3 Determination of Transformation Format as HTML

To determine transformation format as HTML, “html” value is assigned to o utput

element’s method attribute. With the usage of this format, it is provided to choose

HTML tags like <HTML>, <BODY> or <P> (WEB_16, 2004).

Table 7.4 Usage of HTML transformation format

<?xml version="1.0"7>
<CAMERA_CATEGORIES>
<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>
<PRICE>1875000</PRICE>
<WEIGHT>120 gr.</WEIGHT>
</CAMERA>
</CAMERA CATEGORIES>

B

170

Table 7.4 Continued...
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="html"/>
<xsl:template match="/[*">
<HTML>
<BODY>
<p>
<xsl:value-of select="CAMERA CATEGORIES/CAMERA/BRAND"/>
</P>
</BODY>
</HTML>
</xsl:template>

<BODY>

<P>Canon</P>
</BODY>
</HTML>

In table 7.4, <HTML>, <BODY>, <P> HTML tags and XSLT template rules are
used together. The main template is described using <xsl:template match="/*"> XSL
and XPath expressions. It is provided to access all element nodes and root node by using

“/|*” XPath expression.

<xsl:value-of select="CAMERA_ CATEGORIES/CAMERA/BRAND"/> XPath

expression provides to choose all brand elements of cameras.

Table 7.5 XMLContent2.xsl document

<?xml version="1.0" encoding="is0-8859-9"7>
<xsl:stylesheet xmlns:xsi="http://www.w3.0org/1999/XSL/Transform"
version="1.0">
<xsl:output method="html"/>
<xsl:template match="/{*">
<HTML>
<HEAD>
<TITLE>XMLContent2.xsl page</TITLE>
<STYLE TYPE="text/css">

171

Table 7.5 Continued...
<xsl:comment>
trHead {background-color:silver; font-family:Verdana;
font-size:11;font-weight:bold}
trRow {background-color:silver; font-family:Verdana;
font-size:11}
</xsl:comment>
</STYLE>
</HEAD>
<BODY>
<TABLE>
<TR><TD class="trHead">Brand</TD>
<TD class="trRow">
<xsl:value-of
select="CAMERA_CATEGORIES/CAMERA/BRAND"/>
</TD>
</TR>
<TR>
<TD class="trHead">Model</TD>
<TD class="trRow">
<xsl:value-of
select="CAMERA CATEGORIES/CAMERA/MODEL"/>
</TD>
</TR>
<TR><TD class="trHead">Price</TD>
<TD class="trRow">
<xsl:value-of
select="CAMERA CATEGORIES/CAMERA/MODEL"/>
</TD>
</TR>
</TABLE>
</BODY>
</HTML>
</xsl:template>
</xsl:stylesheet>

In table 7.5, XMLContent.xml document is transformed to an HTML document using
XSLT transformation rules and XPath matching expressions all of which are defined in
XMLContent2.xsl document. The most frequently used HTML tags <TABLE>, <TR>

and <TD> are mixed with cascade style sheets and “trHead”, “trRow” classes are

172

assigned to <TD> table cells. <xsl:comment> element is provided to be added string

literals “</--“and “-->".

7.6.4 Determination of Transformation Format as Text

To determine transformation format as HTML, “text” value is assigned to output
element’s method attribute. Text is located between “<xsl:text>" and‘“‘</xsl:text>"

elements. They are used together with other xsl elements, template rules and XPath
expressions (WEB_16, 2004).

Table 7.6 Determination of Transformation Format as Text

<?xml version="1.0" encoding="is0-8859-9"?>
<?xml-stylesheet type="text/xsl" href="TextContent.xsl"?>
<BOOK>
<HEADER>XML Technology</HEADER>
<AUTHOR>Deniz KILINC</AUTHOR>
</BOOK>

<7xml version="1.0" encoding="is0-8859-9"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="text"/>
<xsl:template match="/}*">
<xsl:text>
Writer of the Book:
</xsl:text>
<xsl:value-of select="BOOK/AUTHOR"/>
</xsl:template>
</xsl:stylesheet>
pu
Writer of the Book: Deniz KILINC

In table 7.6 TextContent.xml document is transformed to text output using
“TextContent.xs]” XSL document. <xsl:output method="text"/> provides to select

output format as native text.

173

XPath expressions (xsl:value-of select) in the main XSL template can not be included
in the “<xsl:text>" element content which are added to document as native text. “iso-
8859-9” encoding attribute value is chosen to preview Turkish characters in XML

declaration.

It is possible to transform XML document to programming languages’ source codes
by using XSL rules. The main point in this type of transformation is to use programming

language elements correctly with other text elements (WEB_16, 2004).

Table 7.7 Determination of Transformation Format as Text - 2

<?xml version="1.0" encoding="is0-8859-9"7>
<?xml-stylesheet type="text/xsl" href="TextContent1.xsl"?>
<FUNCTION>
<NAME>Carp</NAME>
<RESULTTYPE>Double</RESULTTYPE>
<PARAMTYPE1>Integer</PARAMTYPE1>
<PARAMTYPE2>Integer</PARAMTYPE2>
</FUNCTION>
<?xml version="1.0" encoding="is0-8859-9"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="text"/>
<xsl:template match="/*">
<xsl:text>Function </xsl:text><xsl:value-of select="FUNCTION/NAME"/>
<xsl:text>(X:</xsl:text>
<xsl:value-of select="FUNCTION/PARAMTYPE1"/><xsl:text>;Y:</xsl:text>
<xsl:value-of select="FUNCTION/PARAMTYPE2"/><xsl:text>):</xsl:text>
<xsl:value-of select="FUNCTION/RESULTTYPE"/><xsl:text>;</xsl:text>
<xsl:text>
Begin
Result := X*Y;
End;
</xsl:text>
</xsl:template>
</xsl:stylesheet>
o

F{mction Multiply(X:Integer; Y:Integer):Double;

174

Table 7.7 Continued...
Begin

Result .= X*Y;
End;

In table 7.7, a simple code section that is written in Pascal programming language is
produced using XML and XSL technologies. Function gets two parameters in integer
type and multiplication of them that is in double type is returned as output of the

function.
7.6.5 XSL Templates

XSL uses XML to describe these rules, templates, and patterns. Template rules
defined by the xsl:template (WEB_16, 2004) element is the most important part of the
XSL style sheet. Each template rule is an xsl:itemplate element which starts with
<xsl:template> starting element and ends with </xsl:template> closing element
(WEB_16, 2004). These associate particular output with particular input. Each
xsl:template element has a match attribute that specifies which nodes of the input

document the template is instantiated for.
Each of XSL template rules are also an XSL element. In addition to XSL rules,
templates may have native text. However, both native text and template rules must be

exactly well-formed.

Table 7.8 Simple template usage

<?xml version="1.0" encoding="is0-8859-9"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="html">
<xsl:template match="/">
<HTML>
<BODY>
Simple template usage which has no XSL rule
</BODY>

175

Table 7.8 Continued...
</HTML>
</xsl:template>
</xsl:stylesheet>

In table 7.8, one template rule is showed. This template matches XML document’s
root element by assigning the “/” value to match attribute. Although XSL template has
no additional pattern rule or xsl element (value-of select etc.), it contains some HTML

specific tags and native text data.

The xsl:apply-templates rule (Gardner C. & Rendon Z., 2002) inserts the text of the
matched source element into the output document. In general, to include content in the
child nodes, you have to recursively process the nodes through the XML document. The
element that does this is xsl:apply-templates . By including xsl:apply-templates in the
output template, you tell the formatter to compare each child element of the matched
source element against the templates in the style sheet; and, if a match is found, output

the template for the matched node.

Table 7.9 Traversing elements iteratively with xsl:apply-templates element

<Ixml- stylesheet type="text/xsl" href="UseTemplate.xsl"?>

<7xml version="1.0"?>

<CAMERA_CATEGORIES>
<CAMERA>
<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>
</CAMERA>
<CAMERA>
<BRAND>Nikon</BRAND>
<MODEL>S5Z</MODEL>
</CAMERA>

</CAMERA CATEGORIES>

<7xml vers1on—"1 0" encoding="is0-8859-9"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">

<!--1.Iteration-->

176

Table 7.9 Continued...
<xsl:template match="/">
<HTML>
<BODY>
<xsl:apply-templates/>
</BODY>
</HTML>
</xsl:template>
<!--2.Iteration-->
<xsl:template match="CAMERA_CATEGORIES">
<TABLE BORDER="1">
<xsl:apply-templates/>
</TABLE>
</xsl:template> .
<!--3.Iteration-—>
<xsl:template match="CAMERA">
<TR>
<TD>Each camera</TD>
<TD>
<xsl:apply-templates select="BRAND"/>-
<xsl:apply-templates select="MODEL"/>
</TD>
</TR>
</xsl:template>
</xsl:stylesheet>

. ut
<HTML>
<BODY>
<TABLE BORDER="1">
<TR><TD>Each camera</TD><TD>Canon-Z155</TD></TR>
<TR><TD>Each camera</TD><TD>Canon-Z155</TD></TR>
</TABLE>
</BODY>
</HTML>

In table 7.9, XSL document has three XSL templates. Each template works with
connected to each other to provide iteration. XSL document’s processing steps by XSLT
parser is below;

® In the first template XML document’s root element is matched by assigning

the “/” value to match attribute. For now, there is no iteration process.

® <HTML> and <BODY> opening tags are added to output document.

177

® First <xsl:apply-templates/> element is the start point of iteration. Root
element (CAMERA _CATEGORIES) is begin to be processed
o A template is searched that is within root element. Since second template is
in the root template. Second template is begin to be processed and <TABLE
BORDER="1"> HTML element is added to output document.

» Second <xsl:apply-templates/> element specifies the iteration
process over the child elements’ of root element. When it is meeting
with the first child element named CAMERA, a new template is
searched within the XSL document that belongs to CAMERA.

» Third <xsl:apply-templates/> element that belongs to the CAMERA
element is found and HTML elements <TR> <TD>Each
camera</TD> is added to output. Then first CAMERA element’s
BRAND and MODEL child elements’ content and </TD></TR>
HTML elements are added to output.

= The same process is executed for the second CAMERA element.

o </TABLE> HTML element is added to output document.
® Finally </BODY> and </HTML> closing HTML elements are added to

output document.

7.6.6 <xsl:value-of select> Element

Value-of select (WEB_16, 2004) element copies the element node’s value that is in
the input document into the output document. Select attribute’s value is an XPath

expression and specifies the taken value.

Table 7.10 xsl:value-of element

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:template match="CAMERA_CATEGORIES">
<xsl:apply-templates/>
</xsl:template>

178

Table 7.10 Continued...
<xsl:template match="CAMERA">
<xsl:value-of select="BRAND"/>
<xsl:value-of select="MODEL"/>
</xsl:template>
</xsl:stylesheet>

In table 7.10, two XSL templates are used. In the second template, BRAND and
MODEL elements that belong to the CAMERA element are chosen and their values are

added to output document by using value-of select XSL element.
7.6.7 Processing XML Elements Iteratively

Iterative processing is the one of the most important processing technique in all
programming languages. In XSL technology iterative or recursive processes can be

carried out in two ways (Harold E.R., 1999);

® By using XSL template technology and <xsl:apply-templates> element that
is showed in table 7.9.

® By using <xsl:for-each> element.
For-each statement is a standard looping command common to most programming
languages, which instructs the parser to loop through all the element children matching

against the value of the select attribute (Harold E.R., 1999).

Table 7.11 xsl:for-each element

ration.

<?xml-stylesheet type="text/xsl" href="Uselteration.xsl"?>

<?xml version="1.0"7>

<CAMERAS>

<CAMERA>

<BRAND>Canon</BRAND>
<MODEL>Z155</MODEL>
<PRICE>1000000</PRICE>

<WEIGHT>120 gr.</WEIGHT>

179

Table 7.11 Continued...
</CAMERA>
<CAMERA>
<BRAND>Nikon</BRAND>
<MODEL>S5Z</MODEL>
<PRICE>1500000</PRICE>
<WEIGHT>130 gr.</WEIGHT>
</CAMERA>
</CAMERAS>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:template match="/CAMERAS">
<HTML>
<HEAD><TITLE>Selling Cameras</TITLE></HEAD>
<BODY>
<TABLE>
<xsl:for-each select="CAMERA">
<TR>
<TD><xsl:value-of select="BRAND"/></TD>
<TD><xsl:value-of select="MODEL"/></TD>
<TD><xsl:value-of select="PRICE"/></TD>
<TD><xsl:value-of select="WEIGHT"/></TD>
</TR>
</xsl:for-each>
</TABLE>
</BODY>
</HTML>
</xsl:template>
<HTML>
<HEAD><TITLE>Selling Cameras</TITLE></HEAD>
<BODY>
<TABLE>
<TR> <TD>Canon</TD><TD>Z155</TD>
<TD>1000000</TD><TD>120 gr.</TD>
</TR>
<TR><TD>Nikon</TD><TD>S5Z</TD>
<TD>1500000</TD><TD>130 gr.</TD>
</TR>
</TABLE>
</BODY>
</HTML>

180

In table 7.11, XML document template pattern is constituted by choosing the
CAMERAS element. By using <xsl:for-each select="CAMERA"> XSL rule, all
<CAMERA> elements are processes recursively in a loop that can be considered as a

node list.

XELT
Parser
]
T e . {CAMERAS
i declaration
[<xslitemplate match="/CAMERAS™> | """ """ <CAMERAS>
o m e COAMERR |
H
<xshfor-gach ! , A o
seloct="CAMERA'"> [ifgrating = 7 B et n
! <MODEL>
elements 1 v
<TR 1 2135
& <PRICE>
) peeedenbe S TG00
N gl
<X§I\"8b& of ! : : : S R
splect="BRAND"/> | 1 4 [::::]
11 : ; - <C£’MERA>
‘ <TD> i ; : !
Choosing ; A
glement <xshvalue-of “‘f)
values select="MODEL'/> |=-»; ! | <MODEL>
»J’-im-«-w"—u-# 552
<TD3| 1 <PRICE> .
—— LR g - 1500000
LRELVaeQ | WEIGHT>
select="PRICE'f> < _
/
10> | //
<xslvale-of e
select="WEIGHT"/>

Figure 7.4 XSLT processing steps

181

In figure 7.4, XSLT processing mechanism of the example in table 7.11 is showed by
XSLT parser. XSLT parser behaves different for each XSL element or rule. XSLT

processing steps are below;
® CAMERAS root node is chosen with the first template pattern matching.

® <TABLE>HTML element is added to output document.

CAMERA sub elements is started to be processed iteratively.
o CAMERA element’s BRAND, MODEL, PRICE and WEIGHT child
nodes’ values are added to output document with <TR> and <TD>
HTML elements..

® </TABLE> closing HTML element is added to output document.

® Processing is finished.
7.6.8 Conditional Processing

Conditional processing provides to query XML elements by using specific
conditions. They look like if-then, if-then-else and switch-case structures that are used in
traditional programming languages. XSL provides two elements that allow you to
change the output based on the input;

® By using <xsl:if> element (WEB_16, 2004).

® By using <xsl:choose>, <xsl:when>, <xsl:otherwise> elements (WEB_16,

2004).

Most of what you can do with xsl:if and xsl:choose can also be done by suitable
application of templates. However, sometimes the solution with xsl:if or xsl:choose is

simpler and more obvious.

182

7.6.9 <xsl:if> Element Usage

The <xsl:if> element provides if-then functionality, similar to if-then clauses found in
programming languages like Delphi, Microsoft Visual Basic. <xsl:if> conditional
processing element provides a simple facility for changing the output based on a pattern.
The test attribute of xsl:if contains a select expression that evaluates to a Boolean. If the
expression is true, the contents of the xsl:if element are output (Harold E.R., 1999).

Otherwise, they are not.

Table 7.12 xsl:if conditional processing element

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:template match="/">
<TABLE>
<TR><TH>STATE</TH><TH>BRAND</TH><TH>MODEL</TH>
<TH>PRICE</TH> <TH>WEIGHT</TH>
</TR>
<xsl:for-each select="CAMERAS/CAMERA">
<xsl:if test=""PRICE > 1000000'">
<TR bgcolor="red">
<TD>Expensive</TD>
<TD><xsl:value-of select="BRAND"/></TD>
<TD><xsl:value-of select="MODEL"/></TD>
<TD><xsl:value-of select="PRICE"/></TD>
<TD><xsl:value-of select="WEIGHT"/></TD>
</TR>
</xsL:if>
</xsl:for-each>
</TABLE>
</xsl:template>
</xsl:stylesheet>

In table 7.12, <xsl:if> conditional processing element’s usage is showed. This
condition provides to be chosen CAMERAS whose prices are greater than 1000000. To
constitute condition, PRICE > 1000000 value is assigned to fest attribute. >
predefined entity reference is used 1nstead o f mathematical o perator > (greater than).

The other samples of <xsl:if> elements are showed below;

183

B <xsl:iftest="CAMERAS/CAMERA">;
If one or more CAMERAS element and at the lower level of it one or more

CAMERA element is existed, then conditional define is true.

" <xsl:if test="count(CAMERAS/CAMERA) >= 3">
If the number of CAMERA element under the CAMERAS root element is
equal or greater than 3,