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AKTAŞ under supervision of ASSIST. PROF. DR. HAKAN EPİK and
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THE BOUND EXCITON TO AN IONIZED DONOR IMPURITY

IN SEMICONDUCTOR SPHERICAL

QUANTUM DOT

ABSTRACT

The effects of quantum confinement on the ground state energy of a bound

correlated electron-hole pair as an exciton to an hydrogenic ionized donor

impurity which placed at the center of an infinite spherical microcrystal in

interior dielectric medium have been investigated constitutively as a function of

quantum dot size. Most of formulas and results obtained are compared for cases

with and without impurity or have been checked for accuracy in a

number of special case. A mathematically rigorous study confirms, in a

unified and simpler manner, several results obtained earlier in the literature but

not necessarily in the same contexts. Unlike the conventional procedure, the

Fourier transforms have been used for evaluating three-particle integrals terms

including interparticle distance rij in Hylleraas coordinates are given formulae

are obtained for the Hamiltonian matrix elements of various operators arising in

Hylleraas-type variational calculations for states of arbitrary angular momenta.

The integrals have been generated from Hamiltonian matrix are well suited to

computer implementation. To construct an exact analytical expression for the

expectation value of the Hamiltonian have been used a numerically fast and well

stable algorithm for the calculation of the relevant integrals with high powers of

interparticle coordinates. The optimum value of the variational parameter have

been vary in the range of λ = [0.055, 0.300].

The behaviors of the complexes X and D+, X are similar cause of the

values of the two additional interparticle interaction integral terms IG1 and IG2

are completely the same by a difference opposite notation. Consequently the main

inference is that injecting a donor impurity to the X complex would not change

the stationary state of the system.

Keywords: Quantum Dot, Exciton, Hylleraas-type wave function, Rayleigh-

Ritz’s variational method.
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YARIİLETKEN KÜRESEL KUANTUM NOKTASINDA İYONİZE

OLMUŞ BİR VERİCİ SAFSIZLIĞINA

BAĞLI EGZİTON

ÖZ

Bir dielektrik ortam içerisinde sonsuz küresel mikrokristal merkezinde

konumlanmış olan hidrojenik verici safsızlığına bağlı egziton görüngüsünde

ilintili elektron-deşik çiftinin kuantum kuşatma altında taban durum enerjisine

kuantum noktasının boyutunun etkisi incelenmiştir. Birçok eşitlik ve sonuç verici

safsızlığının mevcut olduğu ve olmadığı durumlar için karşılaştırılmış ya da

kesinlik açısından bir özel duruma indirgenerek kontrol edilmiştir.

Matematiksel olarak özenli çalışma, literatürde önceleri elde edilmiş olan sonuçlar

ile birebir örtüşmese dahi, şeklen bütünleştirici ve daha basitçe gerçekleyici

sonuçların eldesini mümkün kılar. Geleneksel izlekten farklı olarak, keyfi açısal

momentum durumları için Hylleraas-tipi varyasyonel hesabında çeşitli işlemciler

bütünü biçiminde Hamiltonyan matris elemanlarından elde edilen, eşitlikte

verilmiş olan Hylleraas koordinatlarında parçacıklar arası rij uzaklığını içeren

üç-parçacık integrallerinin hesaplanmasında Fourier dönüşümü kullanılmıştır.

Hamiltonyan matrisinden türemiş integraller bilgisayar uygulamasına oldukça

elverişlidir. Hamiltonyan’ın beklenen değerine ait kesin analitik ifadesinin inşası

için, parçacıklar arası koordinatların yüksek mertebeden kuvvetlerini içeren

integrallerin hesaplanmasında nümerik olarak hızlı ve kararlı bir algoritma

kullanıldı. Varyasyonel parametresinin optimum değeri λ = [0.055, 0.300] aralığına

yayılmaktadır.

İki ek IG1 ve IG2 parçacıklar arası etkileşim integral terimlerinin bir işaret

farkı ile tamamen aynı olmasından ötürü, X ve D+, X yapılarının davranışları

benzerdir. Dolayısıyla temel çıkarımsama, X yapısına bir verici safsızlığı enjekte

etmenin sistemin dingin durumunda bir değişikliğe neden olmayacağıdır.

Anahtar sözcükler: Kuantum Nokta, Egziton, Hylleraas-tipi dalga fonksiyonu,

Rayleigh-Ritz varyasyonel yöntemi.
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CHAPTER ONE

PROLOGUE

During the past few years, research in semiconductors has taken on, quite

literally, new dimensions. Their numbers are two, one and zero. Electrons in

recently developed devices can be confined to planes, lines or mathematical points-

quantum dots. The QD1 concept is 21st century theory of atomic reductionism.

Microchip manufacturers have developed a toolbox of nanofabrication

technologies capable of creating structures almost atom by atom. These

techniques have opened up a new realm of fundamental physics and chemistry as

workers make and study artificial analogues of atoms, molecules and

crystals. Experimenters are no longer limited by the atomic shapes, sizes and

charge distributions available in nature (Reed, 1993).

New research directions are emerging. One that is now in embryonic stage is the

combination of QD molecules. Many of the QD systems currently being studied

have the potential to be combined into molecular complexes with one-, two- or

three-dimensional structures. One can imagine growing this solid-state atoms or

molecules within structures containing electronic or magnetic gates and optical

cavities, perhaps all connected together by quantum wires (Gammon, 2000).

QDs have great flexibility because their properties can be artificially

engineered, but this comes at a price. Nature has given atoms; scientists must

make QDs. Further advances in this exciting field of science and technology will

depend heavily on the creativity of physicists, chemists and materials scientists

who make this tiny structures.

1Quantum dot
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CHAPTER TWO

QUANTUM DOT PHENOMENA

2.1 A Brief Overview: Designer Atoms

With dimensions of only 1 to 100 nanometers and containing somewhere

between 103 and 106 atomic nuclei in a crystalline lattice, semiconductor QDs

are often described as solid-state, artificial atoms (MRS Bull, 1998) or designer

atoms (Reed, 1993) by some experts. In this sense, most experts would concur

that a QD is a semiconductor whose excitons are confined in all three spatial

dimensions. As a result, they have properties that are between those of bulk

semiconductors and those of discrete molecules. They were discovered by Louis

E. Brus, who was then at Bell Labs. The term QD was coined by Mark A. Reed.

Researchers have studied QDs in transistors, solar cells (Hanna et al., 2005),

LEDs2, diode lasers and many other areas. They have also investigated QDs as

agents for medical imaging (Nie et al., 2007) and hope to use them as qubits

(Loss, & DiVincenzo, 1998).

2.2 Exciting The Electrons In Pointlike Structures

If photons of energy comparable to the band gap are incident on a

semiconductor, then they can be absorbed by the electrons forming atomic bonds

between neighboring atoms, and so provide them with enough energy to break

free and move around in the body of the crystal. Within the band theory of solids,

this would be described as exciting an electron from the valence band across the

2evidot LEDs
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Figure 2.1 Fluorescence from CdSe QD solids in
environments varying from stable to high
unstable show that small deviations from
uniform stress distribution greatly affect the
electronic properties. In the VMD-Visual Molecular
Dynamics picture, the red represents cadmium, the
blue represents selenium and the green represents a
cloud of electrons in their excited state. Image by
Sebastien Hamel/LLNL.

band gap into the conduction band. If the energy of the photon is larger than the

band gap, then a free electron is created and an empty state is left within the

valence band.3 The empty state within the valence band behaves very much like

an air bubble in a liquid and rises to the top-the lowest energy state. This hole

behaves as though it were positively charged and hence often forms a bond with

a conduction-band electron.4 The attractive potential leads to a reduction5 in

the total energy of the electron and hole. This bound electron-hole pair is known

as an exciton. Photons of energy just below the band gap can by absorbed, thus

3High energy excitation
4Exciton formation
5by an amount EX
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creating excitons directly.

As the hole mass is generally much greater than the electron mass, then the

two-particle system resembles a hydrogen atom, with the negatively charged

electron orbiting the positive hole. The exciton is quite stable and can have a

relatively long lifetime, of the order of hundreds of ps to ns. Exciton

recombination is an important feature of low, temperature photoluminescence,

although as the binding energies are relatively low, i.e. a few meV to a few tens

of meV, they tend to dissociate at higher temperatures.

Eventual, in an unconfined (bulk) semiconductor, an electron-hole pair is

typically bound within a characteristic length called the Bohr exciton radius. If

the electron and hole are constrained further, then the semiconductor’s

properties change. This effect is a form of quantum confinement, and it is a key

feature in many emerging electronic structures (Greenemeier, 2008; NY Times

Science Watch, 1991).

2.3 Modern Nanofabrication Techniques

Conventionally fabrication of QDs proceeds through a series of masking and

etching steps. First, an electron beam scans the surface of a semiconductor

containing a buried layer of quantum well material. Resist is removed where the

beam has drawn a pattern. A metal layer is deposited on the resulting surface,

and then a solvent removes the remaining resist, leaving metal only where the

electron beam exposed the resist. Reactive ions etch away the chip expect where

it is protected by metal, leaving a QD.6

An alternative fabrication method lays down a pattern of electrodes above a

6see in Figure 2.2
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Figure 2.2 Building a QD conventionally in zero dimensions in rows in shapes.

buried QW7 layer. When a voltage is applied to the electrodes, the resulting field

expels electrons the from the layer except in certain small regions. The degree

of quantum confinement in those regions can be manipulated by changing the

electrode voltages.8

Figure 2.3 Schematically an alternative fabrication
method of QD.

As a description, QDs possess unique properties that could potentially

revolutionize existing optical and electronic technologies as well as open up new

technologies. Conventional QD fabrication techniques, however, have several

7Quantum well
8see in Figure 2.3
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drawbacks, such as large recombination velocities and surface depletion, that

arise from having the surface exposed while patterning the substrate before or

after growth.

As an applications, the reliable production of QDs offers outstanding

opportunities for optical and electronic technologies as well as the development of

new technologies. Devices that use the unique properties and advantages of QDs,

such as improved vertical cavity surface emitting lasers and individual electron

counters, thus become feasible.

There are several ways to confine excitons in semiconductors, resulting in

different methods to produce QDs. In general, quantum wires, QWs and QDs are

grown by advanced epitaxial techniques in nanocrystals produced by

chemical methods or by ion implantation, or in nanodevices made by state-of-

the-art lithographic techniques (Delerue, & Lannoo, 2004).

2.3.1 Lithographic Techniques

Method frequently used to create quantum confinement in a semiconductor

heterostructure is the lithographic patterning of gates, i.e. nanoscale electrodes

are created on the surface of a heterostructures (Mlinar, 2007). The widely used

lithographic techniques are, optical lithography and holography,

X-ray lithography, electron and focused ion beam lithography, and scanning

tunneling microscopy (Şakiroğlu, 2009).

Self-assembled QDs are typically between 10 and 50 nm in size. QDs defined

by lithographically patterned gate electrodes, or by etching on two-dimensional

electron gases in semiconductor heterostructures can have lateral dimensions

exceeding 100 nm. Some QDs are small regions of one material buried in
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another with a larger band gap. These can be so-called core-shell structures,

e.g., with CdSe in the core and ZnS in the shell or from special forms of silica

called ormosil.

2.3.2 Epitaxial Growth

Epitaxy is used in nanotechnology and in semiconductor fabrication. Indeed,

epitaxy is the only affordable method of high crystalline quality growth for many

semiconductor materials, including technologically important materials as silicon-

germanium, gallium nitride, gallium arsenide and indium phosphide.

Epitaxial growth techniques are currently the best choice to grow high-quality

crystalline-films (Bianucci, 2007). An epitaxial layer can be doped during

deposition by adding impurities to the source gas, such as arsine, phosphine

or diborane. The concentration of impurity in the gas phase determines its

concentration in the deposited film. As in CVD, impurities change the

deposition rate.



CHAPTER THREE

THEORETICAL BASIS AND METHOD

3.1 Understanding The Problem

To choose the right model for a particular problem is not always

straightforward, and often different models yield complimentary information.

However, more often the computational resources are the limiting factor in

determining which model can be used (Şakiroğlu, 2009). The aim of all the

quantum mechanical many particle system methods is to solve the relevant

Schrödinger9 equation. To get good enough powerful approach to solve the

Coulombic quantum three-body problem10 (or three-particle system), usually

impersonal passive to begin some approximations and most common structural

nature which are the problem is obtained within and based on it.

3.1.1 Further Confinement

The reduction in dimensionality produced by confining electrons (or holes)

to a thin semiconductor layer leads to dramatic change in their behaviour. This

principle can be developed by further reducing the dimensionality of the

electron’s environment from a two-dimensional QW to a one-dimensional QWR11

and eventually to a zero-dimensional QD (Harrison, 2005). In this monograph,

of course, the dimensionality refers to the number of degrees of freedom in the

electron momentum; in fact, within a QWR, the electron is confined across two

directions, rather than just the one in a QW, and, so, therefore, reducing the

degrees of freedom to one. In a QD, the electron is confined in all three-dimensions,

9Erwin Rudolf Josef Alexander Schrödinger (1887-1961)
10As well-known as non-chaotic flows, the classical one- and two-body problems have

deterministic analytical solutions. These problems are most easily visualized, but extending
to higher dimensions prompts to exhibit chaos.

11Quantum wire

8
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Table 3.1 The number of degrees of freedom zf in the electron motion, together with
the extent of the confinement zc, for the four basic dimensionality systems.

System zc zf

Bulk 0 3
Quantum Well 1 2
Quantum Wire 2 1
Quantum Dot 3 0

thus reducing the degrees of freedom to zero. If the number of degrees of freedom

are labeled as zf and number of directions of confinement are labeled as zc, then

clearly:

zf +zc = 3 (3.1.1)

for all the solid state systems. These values are highlighted for the four

possibilities shown in Table 3.1. Tradition has determined that the reduced-

dimensionality systems are labeled by the remaining degrees of freedom in the

electron motion, i.e. zf , rather than the number of directions with confinement

zc.

3.1.2 The Born-Oppenheimer Approximation

To describe the various motions of the quantum mechanical many-particle

system which contain electrons and two nucleilike holes, have to begin with the

Schrödinger equation. The Hamiltonian is given by

H = Te + Th + Vee + Veh + Vhh, (3.1.2)

where

Te =
N∑

i=1

p2
i

2m
, (3.1.3)
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represents the kinetic energy of the electrons and

Th =
2∑

ν=1

p2
ν

2M
, (3.1.4)

is the kinetic energy of the holes. Veh represents the attractive electron-hole

potential. Vee describes the repelling electron-electron interaction. Vhh indicates

the repelling Coulomb interaction between the holes. Since the masses of the

hole are relatively large, Th can be neglected. This step is called the Born12-

Oppenheimer 13 approximation.

If be neglected the kinetic energy Th of the hole14, the relative distance R

between hole only occurs as a parameter. The Schrödinger equation becomes,

[Te + Vee(r) + Veh(r,R)]ϕn(r,R) = [εn(R)− Vhh(R)]ϕn(r,R). (3.1.5)

Here r indicates the position of the electron. The solutions ϕn(r,R) depend

parametricaly on the distance between the holes. The energy of this state is

given by the electronic energy εn(R) lowered by Vhh(R). The solutions ϕn(r,R)

represent a complete set of functions. The true wave function ψ(r,R) can be

expanded within this set:

ψ(r,R) =
∑
m

φm(R)ϕm(r,R). (3.1.6)

The coefficients φm(R) are to be found and, in general, depend on R. ψ(r,R) is

the solution of the full Schrödinger equation, which takes into consideration the

kinetic energy Th of the hole, i.e.

(Te + Th + Vee + Veh + Vhh)ψ(r,R) = Eψ(r,R). (3.1.7)

12Max Born (1882-1970)
13Julius Robert Oppenheimer (1904-1967)
14Static approximation: Fixed distance R of the hole
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Inserting (3.1.6) into (3.1.7) and using (3.1.5), be obtain,

∑
m

(εm(R) + Th)φm(R)ϕm(r,R) = E
∑
m

φm(R)ϕm(r,R). (3.1.8)

Multiply from the left-hand side with ψ†n(r,R), integrate over the full space, and

get

∑
m

∫
d3rψ†n(r,R)Thφm(R)ϕm(r,R) + εn(R)φn(R) = Eφn(R). (3.1.9)

Here be have used the orthogonality of the functions ϕn(r,R) and Th is

proportional to the Laplace operator ∆R, which acts on φmϕm. It holds that,

∆R(φϕ) = (∆Rφ)ϕ + 2∇RΦ · ∇Rϕ + φ∆Rϕ. (3.1.10)

The index R indicates the action of the operators in R space. The first term in

(3.1.10) is proportional to Thφn. The rest is brought to the right-hand side of

(3.1.9). The result reads,

[Th + εn(R)]φn(R) = Eφn(R)−
∑
m

Cn,mφm(R) (3.1.11)

with

Cn,mφm(R) = −~2
∑

α

1
2Mα

∫
d3rϕ†n(r, R)

× [2∇Rαφm(R) · ∇Rαϕm(r,R) + φm(R)∆Rαϕm(r,R)].

(3.1.12)

The sum over α comes from Th and ∇Rα acts only on the coordinate Rα of the

hole α, which appears in R =
√

(R2 −R1)2. Now, the order of magnitude of

Cn,m is (m/M)1/2 times smaller than the electronic kinetic energy. The order

of magnitude of the term ∼ ~2∆Rαϕm/2Mα (the kinetic energy of the holes) is

proportional to −(m/Mα)~2(∆rϕm/2m); be have simply replaced ∆Rα by ∆r
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and introduced the electronic kinetic energy −~2∆rϕm/2m. The factor m/Mα

indicates that the contribution of ∆Rα to Cn,m is smaller by this factor than the

kinetic energy of the electron.

The first term in (3.1.12) remains to be estimated. For this approximate φm by

a harmonic oscillator wave function: φm ≈ exp([−(R −R0)
2Mω/2~]), R0 being

the equilibrium position of the holes α. Be had,

∇
Rα

φm ≈ |R−R0|Mω

~
φm ≈ (δR)Mω

~
φm. (3.1.13)

δR indicates the shift from the equilibrium position. The factor M is canceled

by 1/M in (3.1.12) and the contribution is proportional to the vibrational energy

~ω. As noted earlier, this goes like ∼ (m/M)1/2. As a summary, the Cn,m term

can be neglected with the help of perturbation theory. Without the Cn,m term,

(3.1.11) reduced to

[Th + εn(R)]φn(R) = Eφn(R). (3.1.14)

This equation has an interesting interpretation: the energy of the electron states

εn(R) acts like an effective potential in R. Imagine that the electrons build a

medium in which the hole move. This medium acts as an elastic band. If the

hole try to leave the equilibrium position, they will be drawn back. There is an

equilibrium position where ε(R) has a minimum deep enough to generate binding.

The elastic ban behavior is then nothing other than the expansion up to the order

(R−R0)
2.

The Cn,m produce a mixing between different states ϕn and ϕm. This mixing

between the ϕn(R) states can be neglected in lowest order, because the Cn,m

are small (of order (m/M)1/2, as explained previously). Accordingly the wave

function is approximately given by

ψn,ν(r,R) = φnν(R)ϕn(r,R). (3.1.15)
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Here ν stands for all quantum numbers of level n. En,ν indicates the energy of

the system, which is calculated from (3.1.14).

In order to describe vibrations and rotations of the system εn(R) is expanded

in coordinates describing vibration and rotation, respectively. The expansion in

δR = |R−R0| up to the squared order leads to a harmonic vibrational potential.

εh(R) does not depend on the angles15. Hence the rotations of the system are

free. An excitation of the system is a combination of excitations of the harmonic

vibrational oscillator and of the rotations.

Figure 3.1 Semiquantum mechanical Kepler orbit
with the center of gravity CM located in one of the
foci of the ellipse.

Summary: In the Born-Oppenheimer approximation, first the energy levels

of the electrons are determinated for fixed distance R of the holic centers. The

electron energy εn(R) plays the role of a potential, in which the holes are moving.

If this potential has one or several deep enough minima, one or several bound

states of the system can exist. If the minima are only weak or do not exist at all,

then the system is not bound (Greiner, 1998).

15Euler angles
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3.1.3 The Effective Mass Approximation

Therefore the crystal potential is complex; however using the principle

simplicity16 imagine that it can be approximated by a constant. Then the

Schrödinger equation derived for an electron in a vacuum would be

applicable. Clearly though, a crystal isn’t a vacuum so allow the introduction

of an empirical fitting parameter called the effective mass, m∗. Thus the time-

independent Schrödinger equation becomes:

− ~2

2m∗∇2ψ = Eψ,

and energy solutions follow as:

E =
~2k2

2m∗

This is known as the effective mass approximation and has been found to be

very suitable for relatively low electron momenta as occur with low electric fields.

Indeed, it is the most widely used parameterisation in semiconductor physics.

Experimental measurements of the effective mass have revealed it to be anisotropic

as might be expected since the crystal potential along say the [001] axis is

different than along the [111] axis. Adachi (Adachi, 1994) collates reported

values for GaAs and it alloys; the effective mass in other materials can be found

in Landolt and Börnstein (Landolt, & Börnstein, 1987).

In GaAs, the reported effective mass is around 0.067m0, where m0 is the rest

mass of an electron (Harrison, 2005).

16Choose the simplest thing first; if it works use it, and if it doesn’t, then try the next
simplest.
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3.1.4 Central Coulombic Potential

If the potential energy is rotationally invariant, and thus dependent only on

the distance r from a center of force, chosen as the coordinate origin, orbital

angular momentum is conserved. This constant of the motion enables to reduced

the three dimensional Schrödinger equation to an ordinary differential equation,

the radial equation, analogous to the reduction of a central force problem in

classical mechanics to a dynamical problem for the radial coordinate r alone,

provided that angular momentum conservation is used and the inertial centrifugal

force introduced. Probably the best known example of central potential is the

attractive Coulomb potential (the one-electron atom, AKA the hydrogen atom).

The hydrogen atom, the simplest atomic system in nature, provided

historically the first important test for the quantum theory, initially in the form

of the old quantum theory of Bohr17 and Sommerfeld18, and subsequently for

Schrödinger’s, with later refinements by Dirac19 and by Feynman20, Schwinger21

and

Tomonaga22, the first owing to relativity and the second to quantum

electrodynamics.

As a first step in the treatment of this two-particle problem that separate

out the center of mass motion, after which the wave function of the relative

coordinates of the electron with respect to the nucleus has to satisfy a one-particle

Schrödinger equation with the reduced mass µ = Mm/ (m + M), if denote the

masses of the electron and the nucleus, respectively, by m and M , and the electric

charged of the nucleus by Ze (allowing for the possibility of Z 6= 1, say, in the

17Niels Henrik David Bohr (1885-1962)
18Arnold Johannes Wilhelm Sommerfeld (1868-1951)
19Paul Adrien Maurice Dirac (1902-1984)
20Richard Phillips Feynman (1918-1988)
21Julian Seymour Schwinger (1918-1994)
22Shin’ichiro Tomonaga (1906-1979)
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case of a helium ion):

− ~
2

2µ
∇2ψ − Ze2

r
ψ = Eψ, (3.1.16)

where the reduced mass µ of the electron differs from its actual mass by only

0.05%. The potential being rotationally invariant, next be separated out the

angular dependence, writing ψ = r−1Rl (r) Y m
l (θ, φ), so that Rl must satisfy the

radial equation,

−R
′′
l +

[
l (l + 1)

r2
− 2µZe2

~2r

]
Rl =

2µE

~2
Rl. (3.1.17)

The coulomb potential has two special characteristics to be recognized

immediately: It is singular as r−1, at infinity. The first does not cause any serious

difficulties, but the slow decrease at large distance has important

consequences. This physically important potential does not belong to the class (of

potentials decreasing faster than r−2 at infinity) to which all of the mathematical

statements are applicable (Newton, 2002).

3.2 Meta-Informations About Calculations

In the following, be would like to present some of the mathematical based

necessary details to obtain the results of the main problem. The relevant

coordinate system, therefore trial wave function and finally, the variational method

that relies heavily on it in the analytical calculation.
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3.2.1 On The Hylleraas Coordinates

Hylleraas23 in 1929 carried out a variational computation on the Schrödinger

equation for the helium atom which gave, for the first time, a ground-state

energy in essential agreement with experimental results. Coolidge and James in

1933 (James, & Coolidge, 1933), likewise did the first accurate

computation for the hydrogen molecule. These are considered epoch-making

contributions in the development of ab initio quantum mechanics, since they

provided definitive evidence for the validity of the multiple-particle Schrödinger

equation for atoms and molecules. Before then, exact solutions had been obtained

only for one-electron hydrogenlike atoms. The helium and hydrogen work was

done long before the advent of electronic computers and required many months

of drudgery, using hand-cranked calculating machines.

The explicitely correlated Hylleraas basis set is one of the most efficient

representation of a few-electron wave function. Thus while Hylleraas coordinates

facilitate accurate calculations for the helium and lithium atoms or atomlike many

partical systems, the idea of using an electron-electron distance as a coordinate is

not extendable to atoms with more than two electrons. Other, special coordinates

(similar to Hylleraas coordinates) used for two-electron atoms include perimetric

coordinates (Hylleraas, 1964) and hypersherical coordinates (Morse, & Feshbach,

1953).

3.2.2 Hylleraas-Type Trial Wave Function

The methodology of calculating of the energy states, in the many-electron

case using a Hylleraas-type trial wave function is a variational method that

introduces the correlation effects, including explicitly the interelectronic distances

23Egil Andersen Hylleraas (1898-1965)
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in the wave function. The Hylleraas-type wave functions are linear expansions of

basis functions that are constructed with Slater orbitals and whose

coefficients are determined variationally. The difficulties with these calculations

remain essentially of the mathematical kind but are, in principle, solvable. To

demonstrate this, Hylleraas began with the next problem, the helium atom. In the

work (Slater, 1928), one can find Slater’s early ideas concerning the

introduction of the interelectronic coordinate in the coordinate wave function,

but he did not develop them analytically.

To construct the wave function, Hylleraas (Hylleraas, 1928) chose the three

independent variables that determine the form and the size of a triangle, r1, r2,

and r12, instead of r1 and r2. The first Hylleraas wave function was chosen to

be linear in r12, instead of r1, r2, and θ, with θ being the angle between r1 and

r2. The first Hylleraas wave function was chosen to be linear in r12 and was built

up with Slater orbitals. Hylleraas obtained an expression of the Hamiltonian in

the coordinates r1, r2, and r12 by performing the derivatives of the wave function

with respect to the cartesian coordinates.24 In this thesis, also the chain rule of

derivation will be used to transform the Hamiltonian into polar and interpartical

coordinates.

A Hylleraas-type wave function expansion is (Hylleraas, 1964):

ψ(s, u, t) = Ne−(1/2)s
∑

l,m,n

Cl,m,ns
lumtn, (3.2.1)

where n, m, l, are positive integers and N is a normalization constant. The

results for the helium atom differed from the experiment only in the relativistic

corrections and corrections due to the motion of the nucleus or nucleilike partical.

However, this expansion is not a formal solution of the Schrödinger equation

24To solve the eigenvalue equation, Hylleraas used the elliptic coordinates s = r1 + r2, t =
r2 − r1 and u = r12. The coordinates s, u, t satisfy the relation s ≥ u ≥ |t|.
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because it does not contain negative powers of the variables s and u (Fock, 1954;

Hylleraas, 1960; Bartlett et al., 1935). In the method of Kinoshita (Kinoshita,

1957, 1959) the values of the exponents of s and u are allowed to be negative.

The expansion is a formal solution and can be written as:

ψ(s, u, t) = Ne−(1/2)s
∑

l,m,n

Cl,m,nsl−mum−ntn. (3.2.2)

(3.2.2) is then a subseries with l ≥ m ≥ n. The energy differences were not

significant (Hylleraas, & Midthal, 1958). Fractional values of the exponents l and

m were included, improving the convergence of the Hylleraas expansion (Schwartz,

1960, 1962). As the Hylleraas wave function expansion is not a formal solution

of the Schrödinger equation, one needs a larger number of terms in the wave

function.

Breit (Breit, 1930) had to introduce Euler angles and polar coordinates into

the wave function, to separate the eigenvalue equation in the study of P states

of two-electron systems. This shows the necessity to introduce angles in the

Hamiltonian in case the wave function depends on them explicitly, e.g., employing

Slater orbitals.

James and Coolidge (James, & Coolidge, 1933, 1935) used a wave function

depending on the elliptical coordinates of the two electrons and on r12 and

performed the first ab initio calculation of molecules. They investigated the

ground state of the lithium atom (James, & Coolidge, 1936) constructing the wave

function as a antisymmetrized product of Slater orbitals and all

interpartical distances rij.
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3.2.3 Rayleigh-Ritz’s Variational Method

The one state that did not fare too well with the conventional WKB

approximation (Wentzel25, Kramers26, Brillouin27) is, not surprisingly, the

lowest energy state, which has a wave function without oscillations. Here is a

method directed specifically at the state. Consider any Hamiltonian for which the

spectrum is bounded below:

H ′ = E ≥ E0. (3.2.3)

In the present circumstance, H = p2/(2M) + F |x|, it is clear that H ′ > 0; there

is a lowest energy state. Generally be had,

(H − E0)
′ = E − E0 ≥ 0, (3.2.4)

so that, for any state | 〉, the expectation value of H − E0 is positive,

〈(H − E0)〉 =
∑

E

(E − E0)p(E) ≥ 0, (3.2.5)

where the equal sign holds only if | 〉 = |H ′ = E0〉. Equivalently,

〈H〉 ≥ E0, (3.2.6)

so that, for any state | 〉, 〈H〉 provides an upper limit to E0. One then tries to

minimize 〈H〉 to get a good value. In the quantum literature, this is known as

the Rayleigh28-Ritz’s29 variational method.

It’s often convenient to write a normalized (real) wave function as

25Gregor Wentzel (1898-1978)
26Hendrik Anthony Kramers (1894-1952)
27Léon Brillouin (1889-1969)
28John William Strutt, AKA Lord Rayleigh (1842-1919)
29Walther Ritz (1878-1909)
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ψ(x)/
√∫

dx′ [ψ(x′)]2. Here then

〈
1

2M
p2 + F |x|

〉
=

∫
dx

[
1

2M

(−~
i

∂
∂x

ψ
) (~

i
∂
∂x

ψ
)

+ ψF |x|ψ]

∫
dxψ2

≥ E0. (3.2.7)

Writing

x =

(
~2

2MF

) 1
3

q

and

E0 =

(
~2F 2

2M

) 1
3

ε0

converts this into ∫
dq

[(
dψ
dq

)2

+ |q|ψ2

]

∫
dqψ2

≥ ε0 (3.2.8)

where the range of q is, say, 0 −→∞ and (dψ/dq)(0) = 0.

Now be had to pick a suitable trial wave function ψ(q). It should be a maximum

at q = 0, and it must decrease rapidly for large q. Suppose try (having some

knowledge of its shape)

ψ(q) = e−
2
3
λq

3
2 , (3.2.9)

where λ is an adjustable parameter. Then get

∞∫

0

dq (λ2q + q) e−
4
3
λq

3
2

∞∫

0

dqe−
4
3
q

3
2

≥ ε0 (3.2.10)
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or, with

q =

(
3

4λ

) 2
3

s
2
3 , (3.2.11)

(
λ2 + 1

) (
3

4λ

) 2
3

∞∫

0

dss
1
3 e−s

∞∫

0

dss−
1
3 e−s

=

(
3

4

) 2
3

(
1
3

)
!(−1

3

)
!

(
λ

4
3 + λ−

2
3

)
≥ ε0, (3.2.12)

where
(

1
3

)
! = 0.892980,

(−1
3

)
! = 1.354118, and

(
1
3

)
!
(−1

3

)
! = 1

3
π/ sin

(
1
3
π
)

=

2π/3
3
2 illustrates a property of the factorial function. Now pick λ to minimize

this:
d

dλ

(
λ

4
3 + λ−

2
3

)
=

4

3
λ

1
3 − 2

3
λ−

5
3 = 0 (3.2.13)

or

λ2 =
1

2
, λ

4
3 + λ−

2
3 =

3

2
2
3

. (3.2.14)

Therefore

ε0 ≥ 3
5
3

4

(
1
3

)
!(−1

3

)
!
= 1.0288 [= 1.0188× 1.0098] . (3.2.15)

The approximation is correctly in excess and remarkably close considering the

simplicity of the trial wave function. Any more general choice will yield a lower

and better answer (Schwinger, 2001).



CHAPTER FOUR

ANALYTICAL SOLUTIONS

4.1 Building The System In Three Dimensions

Consider a case in which a particle (or i particles) is confined by walls to a

region of space of radius R. The walls are represented by a potential energy that

is zero inside the region and which rises abruptly to infinity at the edges. This

system is called a three-dimensional infinite spherical QD. The sphericity in the

former name refers to the steepness with which the potential energy goes infinity

at the inner surfaces of the sphere.30 Because the particle is confined, its energy is

quantized, and the boundary conditions determine which energies are permitted.

So, essentially it is perhaps easier to deal with a finite barrier QD with spherical

rather than any other symmetry.

Figure 4.1 Relevant direction of the unit vectors depends on solid an-
gles in three-dimensional right-handed or left-handed infinite spherical
QD as mentioned above.

30seen in Figure 4.1

23



24

4.1.1 An Electron In An Infinite Spherical Quantum Dot

The system which be contemplated is a particle (as an electron) in an three-

dimensional infinite31 spherical QD.32 Given the spherical symmetry of the

potential, then the wave function would also be expected to have spherical

symmetry and the Hamiltonian for a particle could be written with a constant

effective mass,

H =
∑

i

[
− ~2

2m∗
i

∇2
i + V (ri)

]
, i = 1 ∨ e. (4.1.1)

Here m∗
i and ri are isotropic effective mass of ith particle and position

Figure 4.2 Relevant unit and position vectors in the system which contains an
electron in the form of three-dimensional infinite spherical QD.

vectors. V (ri) is the confinement potential with radius R for the particle has been

considered as spherical. The Hamiltonian in (4.1.1) includes three independent

spherical coordinates. Hence the main Schrödinger equation, as be generalized

31in an three-dimensional dielectric medium
32see in Figure 4.2



25

could be written, [
− ~

2m∗∇2 + V (r, ϕ)

]
ψe = Er,ϕψe, (4.1.2)

and the confinement potential,

V (r, ϕ) =




∞ if |r| ≥ |R|
0 if |r| < |R|

·

Essentially ψ(r, ϕ) is spherical symmetric wave function depends on relevant

three independent coordinates are made up of two parts as radial R(r), and as

spherical Y (ϕ). So that the form of the wave function is,

ψe(r, ϕ) = R(r)Y (ϕ). (4.1.3)

The square of the operator del in spherical polar coordinates in the form of

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (4.1.4)

Inserting (4.1.3) and (4.1.4) into the main Schrödinger equation in (4.1.2) yields

with Spherical Harmonics Y (ϕ) cause rotational symmetry of the Hamiltonian,

Y (ϕ)
[

1
r2

∂
∂r

(
r2 ∂

∂r

)]
R(r) + R(r)

[
1

r2 sin θ
∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

r2 sin2 θ
∂2

∂φ2

]

×Y (ϕ) + R(r)Y (ϕ)
[

2m∗Er,ϕ

~2

]
= 0,

then rewriting

1
R(r)

[
∂
∂r

(
r2 ∂

∂r

)]
R(r) + 2m∗Er

~2 r2 = − 1
Y (ϕ)

×
[

1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂φ2

]
Y (ϕ).

(4.1.5)

Where the index on Er has been added just indicate that this energy is associated

with the confinement along the radius. Presetting both sides of the (4.1.5) a
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constant like Λ gives two differential equations,

1

R(r)

[
d

dr

(
r2 d

dr

)]
R(r) +

2m∗Er

~2
r2 = Λ (4.1.6a)

− 1

Y (ϕ)

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Y (ϕ) = Λ (4.1.6b)

[
d

dr

(
r2 d

dr

)]
R(r) +

[
2m∗Er

~2
r2 − Λ

]
R(r) = 0 (4.1.7a)

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Y (ϕ) + [Λ] Y (ϕ) = 0 (4.1.7b)

In actual fact, the spherical part of the wave function Y (ϕ) is made up of two

independent coordinates too. As, Θ(θ) and Φ(φ). The notation is chosen in the

form of

Y (ϕ) = Θ(θ)Φ(φ).

By using this form, (4.1.7b) becomes,

1

Φ(φ)

[
∂2

∂φ2

]
Φ(φ) =

1

Θ(θ)

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
Θ(θ) + Λ sin2 θ (4.1.8)

then assigning with some pre-cognition both sides again a constant like m2
l gives

two new independent subODEs33,

1

Φ(φ)

[
d2

dφ2

]
Φ(φ) = m2

l (4.1.9a)

1

Θ(θ)

[
sin θ

d

dθ

(
sin θ

d

dθ

)]
Θ(θ) + Λ sin2 θ = m2

l (4.1.9b)

[
d2

dφ2

]
Φ(φ) +

[
m2

l

]
Φ(φ) = 0 (4.1.10a)

[
sin θ

d

dθ

(
sin θ

d

dθ

)]
Θ(θ) +

[
Λ− m2

l

sin2 θ

]
Θ(θ) = 0. (4.1.10b)

33sub Ordinary differential equations
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Table 4.1 The cases for the equation which comes the spherical part, depends on θ of
the main Schödinger equation.

Case Equation Solution
ml = 0 Legendre ODE Legendre Polynomials
ml 6= 0 General Legendre ODE Associated Legendre Polynomials

Phenomenologically (4.1.10a) is similar with the harmonic oscillator 34 and the

solution of this equation35,

Φml
(φ) = Al exp (imlφ), ml = 0,±1,±2,±3, . . . . (4.1.11)

Defining a new parameter µ = cos θ and then with relevant mapping (4.1.10b)

becomes,

[
(1− µ2) d2

dµ2

]
Θ(arccos µ) −

[
2µ d

dµ

]
Θ(arccos µ)

+
[
Λ− m2

l

(1−µ2)

]
Θ(arccos µ) = 0.

(4.1.12)

There exist two case as is seen from (4.1). In mathematics, the Associated

Legendre36 Polynomials are the canonical solutions of the General Legendre ODE.

Since the Legendre ODE is a second-order ordinary differential equation, it has

two linearly independent solutions. Thus, for the stationary state ml = 0

rewriting (4.1.12) in the form,

[(
1− µ2

) d2

dµ2

]
Pl(µ)−

[
2µ

d

dµ

]
Pl(µ) + [Λ] Pl(µ) = 0. (4.1.13)

As mentioned above, this equation is The Legendre ODE where, Pl(µ) is Legendre

34The harmonic oscillator differential equation generally in the form of x
′′

+ a0x = 0.
35see in Appendix for values of magnetic quantum number ml
36Adrien-Marie Legendre (1752-1833)
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Polynomials. So, the solution of the (4.1.10b) is37,

Θl(θ) = BlP
ml
l (cos θ), l = 0, 1, 2, 3, . . . . (4.1.14)

Then the total solution of the spherical part which is called Spherical Harmonics

as mentioned above,

Y ml
l (ϕ) = Nl,ml

Pml
l (cos θ) exp(imlφ),





l = 0, 1, 2, 3, . . .

ml = −l, . . . , l
(4.1.15)

where Nl,ml
is the normalization coefficient. For normalization this spherical part

in all space,
π∫

0

2π∫

0

dτϕ |Y ml
l (ϕ)|2 = 1, (dτϕ = sin θdθdφ) (4.1.16)

=⇒ Nl,ml
= (−1)ml

[
2l + 1

4π

(l − |ml|)!
(l + |ml|)!

]1/2

. (4.1.17)

The solution to the above radial part of the main Schrödinger equation, by

reorganizing (4.1.7a), defining new parameters Λ = n(n + 1), k2 = 2m∗E/~2,

ρ = kr and substituting38,

[
2r

d

dr
+ r2 d2

dr2

]
R(r) +

[
k2r2 − n(n + 1)

]
R(r) = 0. (4.1.18)

These new definitions lead to dimensionless radial equation of the system to be

[
ρ2 d2

dρ2

]
Rn +

[
2ρ2

]
Rn +

[
ρ2 − n(n + 1)

]
Rn = 0. (4.1.19)

37see in Appendix for series solution of Legendre ODE
38seen in Appendix for scaling
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To convert (4.1.19) to the Standard Bessel’s39 ODE40 with (4.1.20),

Rn = U(ρ)/(ρ1/2) (4.1.20)

ρ(ρU
′
(ρ))

′
+

[
ρ2 − υ2

]
U(ρ) = 0. (4.1.21)

(4.1.21) is the Standard Bessel’s ODE and arises when finding separable

solutions to Laplace’s41 equation and the Helmholtz42 equation in cylindrical or

spherical coordinates. Since this is a second-order ODE, there must be two

linearly independent solutions.43 Solution includes Bessel functions but it is not

the solution of the original radial equation. By inverse mapping,

U(ρ) = Jυ(ρ),

Rn =

(
1

ρ

)1/2

Jυ(ρ),

Rn =

(
1

ρ

)1/2

Jn+1/2(ρ), Jn+1/2(ρ) =

(
2

π

)1/2

Jn(ρ),

=⇒ Rn =

(
2

πρ

)1/2

Jn(ρ).

Depending upon the circumstances, however, various formulations of these

solutions are convenient, and the different variations are described below. Bessel

functions of the first kind, denoted as Jυ(ρ), are solutions of Bessel’s ODE that

are finite at the origin44 for non-negative integer υ, and diverge as ρ approaches

zero for negative non-integer υ. With a normalization coefficient,

Rn = Cn

(
2

πρ

)1/2

Jn(ρ), n = s, p, d, . . . . (4.1.22)

39Friedrich Wilhelm Bessel (1784-1846)
40see in Appendix for the relevant transformation
41Pierre-Simon, marquis de Laplace (1749-1827)
42Hermann Ludwig Ferdinand von Helmholtz (1821-1894)
43see in Appendix for series solution of Standard Bessel’s ODE
44ρ = 0
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As a result the solution of the radial part obviously,

Rn = Cn

(
2

πρ

)1/2
[(ρ

2

)n
∞∑

p=0

(−1)p

p!Γ(n + p + 1)

(ρ

2

)2p
]

(4.1.23)

As a natural consequence, the corresponding result for the total wave function

which is solution of the main Schrödinger equation of relevant system in (4.1.2)

can be obtained by permuting the (4.1.22) and (4.1.15), in the form of

ψ(r, θφ)n,l,ml
= Rn(r)Y ml

l (θ, φ) = Rn(r)Θl(θ)Φml
(φ), (4.1.24)

ψ(r, θφ)n,l,ml
= CnNl,ml

(
2

πρ

)1/2

Jn(ρ)Pml
l (cos θ) exp(imlφ). (4.1.25)

Accordingly the boundary condition,

ψ(r = |R|, θ, φ) = Rn(r = |R|)︸ ︷︷ ︸ Y ml
l (θ, φ) = 0

0

so,

R(r = |R|) = Cn

(
2

πρ

)1/2

Jn(ρ) = 0, iff Jn(k|R|) = 0.

Hence, be obtained infinite solutions from these which will be independent, apart,

possibly, from the case when all roots differ by an integer, i.e., when n is an integer.

As the stationary state for a particle (i = 1, be mentioned above) the ground

state energy (for an electron i = e and in the index e, in another statement)

be generated from the Bessel’s function’s first root.45 For each Bessel’s function

which has relevant index,

ken,l
|R| = ρen,l

Een,l
=
~2ke

2
n,l

2me

=
~2

2me|R|2ρ2
en,l

(4.1.26)

45see in Figure 4.3
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Figure 4.3 Plot of Bessel’s function of the first kind for n = 1/2.

As control, radial ODE in (4.1.18) transform to the one-dimensional Schrödinger

equation for S-ground states and then wave number for the solutions of well as

n is the positive set of zahlen,

ken,l
|R| = nπ, n ∈ Z+. (4.1.27)

In this case, the orbitals be formed on integer order of π.

4.1.2 An Exciton In An Infinite Spherical Quantum Dot

In nonrelativistic classical mechanics the motion of two-body system with a

central interaction separates into the free motion of the center of mass and the

motion of a single fictitious particle in a central field. The same

simplification holds in quantum mechanics. The problem is then reduced to

finding the eigenvalues and eigenfunctions for the radial motion of one
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particle in a central field, because the angular eigenfunctions are already known

from the theory of orbital angular momentum. In short, what is called

separation of variables in the theory of differential equations is done by exploiting

the symmetry of the problem (Gottfried, & Tung-Mow, 2008).

Within the framework the effective mass Hamiltonian for an interacting pair of

two particles (as an electron and a hole) confined in a QD by an infinite potential46

is given as

H =
∑

i

[
− ~2

2m∗
i

∇2
i + V (ri)

]
+

ZQ2

r12

, i = 1, 2 ∨ e, h. (4.1.28)

Here m∗
i and ri are isotropic effective mass of ith particle and position vec-

Figure 4.4 Relevant unit and position vectors in the system which contains an
electron and a hole in the form of three-dimensional infinite spherical QD.

tors. V (ri) is the confinement potential with radius R for the particle has been

considered as spherical. In a condition of ε is the dielectric constant of the medium

where the particles move, Z = 1/4πε. Q is the charge of each particles and it’s

46see in Figure 4.4
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value is −e for an electron e for a hole. The location of each particle, with

effective mass m∗
i , relative to the center of QD is labeled by ri for the first

and second particle, respectively (Şakiroğlu, 2009). In order to express the

Hamiltonian dimensionless form, by defining new parameters, µ = 1/(m∗
e
−1 +

m∗
h
−1) as the reduced effective mass, σi = m∗

i /µ as the dimensionless effective

mass of electron (i = e) and hole (i = h), be chosen effective Bohr radius

a∗ = 4πε~2/µe2 as the length scale and effective Hartree47 energy E∗
H = ~2/µa∗2

as the energy scale be obtained the dimensionless form of the Hamiltonian in

(4.1.28),

H̃ =
∑

i

[
− 1

2σi

∇2
r̃i

+ Ṽ (r̃i)

]
− 1

r̃eh

, i = e, h, (4.1.29)

where Ṽ (r̃i) and r̃i (i = e, h) is dimensionless confinement potential and

dimensionless coordinates respectively. r̃eh represents the dimensionless

interparticle distance. The Hamiltonian in (4.1.29) includes six independent

spherical coordinates. Hence the main Schrödinger equation, as be generalized

could be written,

[
− 1

2σe

∇2
r̃e
− 1

2σh

∇2
r̃h

+ Ṽ (r̃e) + Ṽ (r̃h)− 1

r̃eh

]
ψX = ẼXψX , (4.1.30)

and the confinement potential,

V (r̃i) =




∞ if r̃i ≥ |R|
0 if r̃i < |R|

, i = e, h.

Using Hylleraas coordinate system which explicitly includes r̃eh interparticle

distance is very convinient for this problem (Kayanuma, 1988). One of the most

important point in the variational works on two electron systems is the choice of

appropriate wave function (Aquino et al., 2006). In the light of this information,

ansatz for wave function describing the ground state of the electron-hole QD

47Douglas Rayner Hartree (1897-1958)
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confined by spherical potential is chosen in the form of,

ψX(r̃e, r̃h, r̃eh, Ωe, Ωh; λ) = ψS
e (r̃e, Ωe)ψ

S
h (r̃h, Ωh)F (r̃eh; λ), (4.1.31)

where ψS
e (r̃e, Ωe), ψS

h (r̃h, Ωh) are independent S-type wave functions belonging

to an electron and a hole respectively. F (r̃eh; λ) term is hydrogenic binding

function which contains variation parameter λ and obviously with a normalization

coefficient,

F (r̃eh; λ) = Nb exp(−λr̃eh). (4.1.32)

For potentials that fall of faster than a Coulomb field, bound-state radial wave

functions for any angular momentum have the universal asymptotic form of an

exponential decrease determined solely by the binding energy. As mentioned

S-type wave functions separately,

ψS
e (r̃e, Ωe) = Rne,le=0(r̃e)Yle=0,mle=0(Ωe) (4.1.33a)

ψS
h (r̃h, Ωh) = Rnh,lh=0(r̃h)Ylh=0,mlh

=0(Ωh). (4.1.33b)

The wave function expanded in terms of generalized Hylleraas basis set has

been used in variational treatment of three-body Coulomb systems with

optimization techniques chosen according to the desired accuracy (Aquino et

al., 2006). Using the definition of operator nabla expressed in Hylleraas-type

coordinates as

∇i = ˆ̃ri
∂

∂r̃i

+
∑

j 6=i

ˆ̃rij
∂

∂r̃ij

(4.1.34)

general procedure for the coulombic interaction potential −1/r̃eh,

r̃eh = r̃e − r̃h, (4.1.35)

r̃2
eh = (r̃e − r̃h)

2 = r̃2
e + r̃2

h − 2r̃er̃h, (4.1.36)
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r̃2
eh − r̃2

e − r̃2
h = −2r̃er̃h, (4.1.37)

r̃er̃h =
1

2

(
r̃2

e + r̃2
h − r̃2

eh

)
, (4.1.38)

ˆ̃re
ˆ̃reh =

r̃e

r̃e

r̃e − r̃h

r̃eh

=
r̃2

e − r̃er̃h

r̃er̃eh

, (4.1.39a)

ˆ̃rh
ˆ̃reh =

r̃h

r̃h

r̃e − r̃h

r̃eh

=
r̃er̃h − r̃2

e

r̃hr̃eh

. (4.1.39b)

By inserting (4.1.38) into (4.1.39a) and (4.1.39b) in relevant site respectively,

ˆ̃re
ˆ̃reh =

r̃2
e − 1/2 (r̃2

e + r̃2
h)

r̃er̃eh

=
r̃2

e − r̃2
h + r̃2

eh

2r̃er̃eh

, (4.1.40a)

ˆ̃rh
ˆ̃reh =

1/2 (r̃2
e + r̃2

h)− r̃2
h

r̃hr̃eh

=
r̃2

h − r̃2
e + r̃2

eh

2r̃hr̃eh

. (4.1.40b)

Then the terms in left hand side of the Schrödinger equation48 in (4.1.30),

H̃ =

− ψS
h

1
2σe

[
F∇2

eψ
S
e + 2

(
r̃2
e−r̃2

h+r̃2
eh

2r̃er̃eh

)(
∂2

∂r̃e∂r̃eh

)
ψS

e F + F
(

2
r̃e

∂
∂r̃e

+ ∂2

∂r̃2
e

)
ψS

e

]

+ ψS
h

[
Ṽ e

c (r̃e)
]
ψS

e F

− ψS
e

1
2σh

[
F∇2

hψ
S
h + 2

(
r̃2
h−r̃2

e+r̃2
eh

2r̃hr̃eh

)(
∂2

∂r̃h∂r̃eh

)
ψS

hF + F
(

2
r̃h

∂
∂r̃h

+ ∂2

∂r̃2
h

)
ψS

h

]

+ ψS
e

[
Ṽ h

c (r̃h)
]
ψS

hF

−
[

1
r̃eh

]
ψS

e ψS
hF

= ẼXψS
e ψS

hF

(4.1.41)

The square of the radial part of the the operators del in spherical polar coordinates

which appertain to electron and hole respectively in the form of,

∇2
er̃e

=
1

r̃e

∂

∂r̃e

(
r̃2
e

∂

∂r̃e

)
(4.1.42a)

∇2
hr̃h

=
1

r̃h

∂

∂r̃h

(
r̃2
h

∂

∂r̃h

)
. (4.1.42b)

48see in Appendix for internal operations
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Thus the terms of the Hamiltonian in (4.1.41) clearly without wave functions,

¥− 1
2σe

[
1
r̃e

(
2r̃e

∂
∂r̃e

+ r̃2
e

∂2

∂r̃2
e

)
+

(
r̃2
e−r̃2

h+r̃2
eh

2r̃er̃eh

)(
∂2

∂r̃e∂r̃eh

)
+

(
2
r̃e

∂
∂r̃e

+ ∂2

∂r̃2
e

)]
,

¥ Ṽ e
c (r̃e),

¥− 1
2σh

[
1
r̃h

(
2r̃h

∂
∂r̃h

+ r̃2
h

∂2

∂r̃2
h

)
+

(
r̃2
h−r̃2

e+r̃2
eh

2r̃hr̃eh

)(
∂2

∂r̃h∂r̃eh

)
+

(
2
r̃h

∂
∂r̃h

+ ∂2

∂r̃2
h

)]
,

¥ Ṽ h
c (r̃h),

¥− 1
r̃eh

.

(4.1.43)

Again, by taking a look to the total wave function’s ψX(r̃e, r̃h, r̃eh, Ωe, Ωh; λ) parts

with appropriate normalization coefficients obviously,

¥ ψS
e (r̃e, Ωe) = NeRne,le=0(r̃e)Yle=0,mle=0(Ωe),

¥ ψS
h (r̃h, Ωh) = NhRnh,lh=0(r̃h)Ylh=0,mlh

=0(Ωh),

¥ F (r̃eh; λ) = Nb exp(−λr̃eh).

(4.1.44)

ψX(r̃e, r̃h, r̃eh, Ωe, Ωh; λ) = NeNhNb︸ ︷︷ ︸ Re(r̃e)Ye(Ωe)Rh(r̃h)Yh(Ωh) exp(−λr̃eh)

NT

Hence the total wave function with a total normalization coefficient,

ψX(r̃e, r̃h, r̃eh, Ωe, Ωh; λ) = NT Re(r̃e)Ye(Ωe)Rh(r̃h)Yh(Ωh) exp(−λr̃eh). (4.1.45)

The procedure for evaluation of integrals in order to determine ground state

energy by using the Rayleigh-Ritz’s variational method. In this method, as

mentioned above in a system’s which is in any state, for Hamiltonian’s expected

value, always could be written accurately this inequality,

ẼX =
〈
H̃X

〉
=

〈
ψX

∣∣∣H̃X

∣∣∣ ψX

〉

〈ψX ||ψX〉 ≥ ẼX0 . (4.1.46)

The nonlinear variation parameter λ in the wave function are defined to minimize
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the expected value of the energy:

ẼX(λ) =

〈
ψX

∣∣∣H̃X

∣∣∣ψX

〉

〈ψX ||ψX〉 . (4.1.47)

Optimization with respect to variation parameter,

∂ẼX(λ)

∂λ
= 0 (4.1.48)

and by getting the optimum λ0 value from (4.1.48) yields the exact numerical

ground state energy of the system in the form of

ẼX0 = ẼX(λ0). (4.1.49)

The asymptotic form of the continuum states also depends on whether the

condition in (4.1.32) is met. In the work (Şakiroğlu et al., 2009), Fourier

transforms have been used for the terms including interparticle distance r̃eh. The

Fourier transform for three-dimensional spherical QD are defined as (Deb, 1994;

Bhattacharyya et al., 1994),

exp(−r̃ehλ)

r̃eh

=
2

(2π)2

∫
dq

exp(iq · r̃eh)

(q2 + λ2)2 . (4.1.50)

By taking the derivative both sides for λ,

∂

∂λ

exp(−r̃ehλ)

r̃eh

=
2

(2π)2

∂

∂λ

∫
dq

exp(iq · r̃eh)

(q2 + λ2)2 ,

− exp(−r̃ehλ) =
2

(2π)2

∫
∂

∂λ
dq

exp(iq · r̃eh)

(q2 + λ2)2 ,

− exp(−r̃ehλ) =
2

(2π)2

∫
dq

2λ exp(iq · r̃eh)

(q2 + λ2)2 . (4.1.51)
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For λ −→ 2λ (4.1.51) becomes,

− exp(−2r̃ehλ) =
2

(2π)2

∫
dq

4λ exp(iq · r̃eh)

(q2 + 4λ2)2 , (4.1.52)

and

− exp(−2r̃ehλ) =
2

(2π)2

∫
dq

4λ

(q2 + 4λ2)2 (exp(iq · r̃e) exp(iq · r̃h)). (4.1.53)

In the references (Bransden, & Joachain, 2000; Arfken, & Weber, 2005), according

to Jacobi-Anger expansion for r̃e ve r̃h plane wave’s exponential statements’s may

be expanded in a series of cylindrical waves and with Spherical Harmonics in the

form of,

exp(iq · r̃e) = 4π
∞∑

l′e=0

(i)l
′
e Jl

′
e
(q · r̃e)

l
′
e∑

m
l
′
e
=−l′e

Y ∗
l′e,m

l
′
e

(Ωq) Yl
′
e,m

l
′
e

(Ωe), (4.1.54a)

exp(iq · r̃h) = 4π
∞∑

l
′
h=0

(−i)l
′
h Jl

′
h
(q · r̃h)

l
′
h∑

m
l
′
h

=−l
′
h

Yl
′
h,m

l
′
h

(Ωq) Y ∗
l
′
h,m

l
′
h

(Ωh). (4.1.54b)

Insert (4.1.54a) and (4.1.54b) into the (4.1.53),

− exp(−2r̃ehλ) = 2
(2π)2

∫
dq 4λ

(q2+4λ2)2

× 4π
∞∑

l
′
e=0

(i)l
′
e Jl

′
e
(q · r̃e)

l
′
e∑

m
l
′
e
=−l

′
e

Y ∗
l
′
e,m

l
′
e

(Ωq) Yl
′
e,m

l
′
e

(Ωe)

× 4π
∞∑

l
′
h=0

(−i)l
′
h Jl

′
h
(q · r̃h)

l
′
h∑

m
l
′
h

=−l
′
h

Yl
′
h,m

l
′
h

(Ωq) Y ∗
l
′
h,m

l
′
h

(Ωh)

(4.1.55)

where Ωi, (i = e, h) are solid angles describing spatial orientation of electron and

hole.
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The Rayleigh equation states that a plane wave may be expanded in a series

of spherical waves (Arfken, & Weber, 2005; Abramowitz, & Stegun, 1972),

exp(iq · r cos ϕ) =
∞∑

n=0

in(2n + 1)Jn(qr)Pn(cos ϕ) (4.1.56)

where Jn(qr) is Bessel function and Pn(cos ϕ) is Legendre polynomial.

The spherical integrals in the form of,

∫
dΩeY

2
le,mle

(Ωe)Yl
′
e,m

′
le

(Ωe) (4.1.57a)

∫
dΩhY

∗
lh,mlh

(Ωh)Y
2
l
′
h,m

′
lh

(Ωh) (4.1.57b)

For ground state, have to be the equalities which refers electron and hole quantum

number sets ne = nh = 1, le = lh = 0 and mle = mlh = 0. For the integrals in

(4.1.56) and (4.1.57a) could be differ from 0, iff l
′
e = l

′
h = 0 and m

′
le

= m
′
lh

= 0.

The orthogonality relations between spherical harmonics would lead to,

∫
dΩeY

2
0,0(Ωe)Y0,0(Ωe) =

1

2
√

π
(4.1.58a)

∫
dΩhY

∗
0,0(Ωh)Y

2
0,0(Ωh) =

1

2
√

π
(4.1.58b)

∫
dΩqY

2
0,0(Ωq)Y0,0(Ωq) = 1. (4.1.58c)

Then the radial parts for the ground state,

R(r̃e) = Rne=1,le=0(r̃e) (4.1.59a)

R(r̃h) = Rnh=1,lh=0(r̃h) (4.1.59b)

Utilization of this transform leads to the general integral representations for the
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terms in the form of exp(−λr̃eh) which avoid the use of general integration

technique for Hylleraas coordinates. This approach provides the calculation

of the integrals in (4.1.60). By these expansion, the integral representations

separate coordinates of electron and hole from each other, the integrations over

r̃e and r̃h as be given below lead to the integrals in similar form from each carrier.

The integrals have been generated from Hamiltonian matrix and as be labeled,

¥ IA1 =
〈
ψX

∣∣∣ d2

dr̃2
eh

∣∣∣ ψX

〉

¥ IA2 =
〈
ψX

∣∣∣ 2
r̃eh

d
dr̃eh

∣∣∣ψX

〉

¥ IA3 =
〈
ψX

∣∣∣ 1
r̃eh

∣∣∣ψX

〉

¥ IB1 =
〈
ψX

∣∣∣Ṽ e
c (r̃e)

∣∣∣ ψX

〉

¥ IB2 =
〈
ψX

∣∣∣Ṽ h
c (r̃h)

∣∣∣ ψX

〉

¥ IC1 =
〈
ψX

∣∣∣ r̃e

r̃eh

∂2

∂r̃e∂r̃eh

∣∣∣ψX

〉

¥ IC2 =
〈
ψX

∣∣∣− r̃2
h

r̃er̃eh

∂2

∂r̃e∂r̃eh

∣∣∣ ψX

〉

¥ IC3 =
〈
ψX

∣∣∣ r̃eh

r̃e

∂2

∂r̃e∂r̃eh

∣∣∣ψX

〉

¥ ID1 =
〈
ψX

∣∣∣ r̃h

r̃eh

∂2

∂r̃h∂r̃eh

∣∣∣ψX

〉

¥ ID2 =
〈
ψX

∣∣∣− r̃2
e

r̃hr̃eh

∂2

∂r̃h∂r̃eh

∣∣∣ψX

〉

¥ ID3 =
〈
ψX

∣∣∣ r̃eh

r̃h

∂2

∂r̃h∂r̃eh

∣∣∣ψX

〉

¥ IE1 =
〈
ψX

∣∣∣ d2

dr̃2
e

∣∣∣ ψX

〉

¥ IE2 =
〈
ψX

∣∣∣ 2
r̃e

d
dr̃e

∣∣∣ ψX

〉

¥ IF1 =
〈
ψX

∣∣∣ d2

dr̃2
h

∣∣∣ ψX

〉

¥ IF2 =
〈
ψX

∣∣∣ 2
r̃h

d
dr̃h

∣∣∣ψX

〉

(4.1.60)

Since (4.1.47),

ẼX(λ) = − 1

2σe

∑
i

Ii

IN

− 1

2σh

∑
j

Ij

IN

+
∑

k

Ik

IN

(4.1.61)

where i = C1, C2, C3, E1, E2, j = D1, D2, D3, F1, F2, k = A1, A2, A3, B1, B2 and

IN = 〈ψX ||ψX〉.
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4.1.3 Additional Donor Impurity Placed At The Center

In this subsection, will be concentrate the study on the D+, X complex.

They result, from the binding of an exciton to an ionized hydrogenic donor

impurity. Consider an exciton X bound to an ionized hydrogenic donor impurity

D+ placed at the center of an infinite spherical microcrystal embedded in a glassy

matrix by assuming that the electron and the hole are completely confined in the

microcrystal by an infinite potential barrier.49 In the case of the effective mass

approximation the dimensionless Hamiltonian in the form of,

H̃ =
∑

i

[
− 1

2σi

∇2
r̃i

+ Ṽ (r̃i)

]
+

1

r̃h

− 1

r̃e

− 1

r̃eh

, i = e, h, (4.1.62)

where r̃e and r̃h is the position length and also represents the dimensionless inter

Figure 4.5 Relevant unit and position vectors in the system which contains a donor
impurity placed at the center and an exciton in the form of three-dimensional
infinite spherical microcrystal.

electron-impurity and hole-impurity distance at the same time. The energy and

49see in Figure 4.4
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the envelope wave function are solutions of the effective Schrödinger equation,

[
− 1

2σe

∇2
r̃e
− 1

2σh

∇2
r̃h

+ Ṽ (r̃e) + Ṽ (r̃h) +
1

r̃h

− 1

r̃e

− 1

r̃eh

]
ψD+,X = ẼD+,XψD+,X ,

(4.1.63)

and the confinement potential,

V (r̃i) =




∞ if r̃i ≥ |R|
0 if r̃i < |R|

, i = e, h.

The simplest trial wave function as given so far describes each particle by a

hydrogenic binding term with an effective nuclear charge which allows for

screening by the other particle and the impurity at the same time. The

procedure similar to the system contains an electron and a hole so all the

transforms and operations can be applied to the relevant system. Thus,

additionally there may come two new integrals into the set as labeled above

in (4.1.60),

¥ IG1 =
〈
ψX

∣∣∣ 1
r̃h

∣∣∣ψX

〉

¥ IG2 =
〈
ψX

∣∣∣− 1
r̃e

∣∣∣ψX

〉 (4.1.64)

then the energy spectra depends on λ by this means,

ẼD+,X(λ) = − 1

2σe

∑
i

Ii

IN

− 1

2σh

∑
j

Ij

IN

+
∑

k

Ik

IN

(4.1.65)

where additionally k = A1, A2, A3, B1, B2, G1, G2 . Thus, could be evaluated the

minima in the λ spectrum for ground state energy in (4.1.61):

∂

∂λ

[
− 1

2σe

∑
i

Ii

IN

− 1

2σh

∑
j

Ij

IN

+
∑

k

Ik

IN

]
= 0. (4.1.66)
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4.2 The Main Problem

Nowadays, students of physics can carry out these computations in a matter

of hours, or even minutes, using relatively straightforward MatLab & Simulinkr

or any other high level routines in comparison with a low level routine like

previously FORTRAN r, Fortranr or C/C + +r. Moreover, the results can

be easily improved far beyond the capabilities of the original workers. In light

of these information, could be told that the main problem is computing the

optimum λ value corresponding to the ground state energy with by using one

or more routines, maybe by combining them becomingly. Thus, the routines

well-known have to be supposed to flexible approach to the system. The

requisite formulas and equations are fairly lengthy and been calculated the

details but could not appended Wolfram Mathematicar printout. It is

impossible to determine the eigenfunctions of (4.1.60) exactly and analytically.

Hence, test wave functions are constructed and the energy is minimized by

variation.



CHAPTER FIVE

COMPUTATION AND RESULTS

5.1 Numerical Estimates

The goal of a good theoretical understanding should be the ability to predict

or to explain, at least semi-quantitatively, the observed rates of convergence for

systematic variational calculations with different basis sets. Be concluded that

theoretical understanding of variational calculations on the two- or three-particle

system is far outstripped by the raw computing power of available machinery.

Have been investigated three system which be made up of one- two- or three-

particle and resemble each other in QD with following aspects: Electron, exciton

(as an electron-hole pair) and the bound exciton to an donor impurity. Following

theoretical studies on infinite spherical QDs, be used the material parameters of

GaAs for the inner core, because it’s basic physical properties such as effective

masses and dielectric constants are better known (Adachi, 1985). The parameters

of more realistic structures can easily be used with the present numerical estimates

(Tomak, & Şahin, 2005).

Have been used atomic units throughout the calculations. Effective Bohr

radius a∗ =100Å and effective Hartree energy E∗
H =11meV. And be take

electron effective mass me = 0.067m0, and hole effective mlh = 0.090m0 for

light hole (LH) and mhh = 0.377m0 for heavy hole (HH) where m0 indicates free

electron mass. At this place, notice that the effective masses of electron and hole

inside GaAs as m∗
i , (i = e, h) is similarly (Jaziri, & Bennaceur, 1995; Halonen et

al., 1992).

This thesis is organized as follows. The exact analytical solution describing

44
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Table 5.1 First eight actual values comparison with the numerical values and
additionally ground state energies with regard to roots of the Bessel function for the
first kind for n = 1, 1/2 respectively with any quantum states |ne, le〉.

ρ Actual J1(ρ) nele J1/2(ρne,le) Ee

1.00 0.4400506 0.4400506 1s 3.141592653589793 181.2513657418906
2.00 0.5767248 0.5767248 2p 6.283185307179586 725.0054629675623
3.00 0.3390590 0.3390590 1d 9.424777960769379 1631.262291677016
4.00 -0.0660433 -0.0660433 2s 12.566370614359172 2900.021851870249
5.00 -0.3275791 -0.3275791 1f 15.707963267948966 4531.28.4143547266
6.00 -0.2766839 -0.2766839 2p 18.849555921538759 6525.049166708062
7.00 -0.0046828 -0.0046828 1g 21.991148575128552 8881.316921352639
8.00 0.2346364 0.2346363 2d 25.132741228718345 11600.08740748100

the electronic ground state in an infinite QD. Numerical results for excitonic

ground state energy QD nanoparticles is outlined and have been checked for

noninteracting case with manual analytical solutions. A detailed comparison of

the two- and three-particle system is given below. Finally have been summarized

the main calculations obtained in this thesis.

For one-particle system, exact analytical solutions and the ground state energy

of the system in (4.1.26) is given previously. The energy equation comprises Bessel

function’s for the first kind consequently, the essential requirement for the ground

state is Bessel function’s first root as shown in Table 5.1. By using the relevant

value of the Bessel function and numerical estimates the ground state energy for

one-particle system (as an electron) for the radii of QD, R = 1nm,

Ee1S
= 181.2513657418906meV. (5.1.1)

The integrals have been generated from Hamiltonian matrix and as be labeled
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previously in two-particle system (X) in the form of,

∀Ii ∨ ∀Ij ∨ ∀Ik ≡ κi,j,k

∫
dqq2fi,j,k (q, λ). (5.1.2)

In due course to designate the majorants, have to be supposed to investigate of

the behavior of the integrand q2fi,j,k(q, λ) for each integrals as a function of q.50

In correct mathematical typography, the dq is separated from the integrands by

the spaces as shown. All the relevant plots display the corresponding behavior

depends on q of the integrands, and it can been seen that they all have a majorant

at q = 10. Thus (5.1.2) with the upper and bottom limit,

∀Ii ∨ ∀Ij ∨ ∀Ik ≡ κi,j,k

10∫

0

dqq2fi,j,k (q, λ). (5.1.3)

Particularly, in a one-dimensional QW, an electron and a hole’s total ground

state energy for the uncorrelated case as applicable respectively with
√

2σiEi =

π/R, (i = e, h),

Ee =
π2

2σeR2
, (5.1.4a)

Eh =
π2

2σhR2
, (5.1.4b)

thus,

EXuncor = Ee + Eh = ~2
2R2

(
1

σe

+
1

σh

)

︸ ︷︷ ︸
1

(5.1.5)

So that,

EXuncor =
π2

2R2
' 24.67 ⇐⇒ R = 1, λ = 0. (5.1.6)

Figure 5.1 shows the result of calculation of the ground state energy of one-

50see in Appendix for the plots of the significant integrands as a function of q
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particle (an electron) system in a GaAs QD surrounded by infinite barrier in

interior dielectric medium (such as H2O) as a function of infinite QD radius. The

ground state energy of the electron complex decreases rapidly with increasing QD

radius.
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Figure 5.1 The ground state energy of an electron in
GaAs as a function of infinite QD radius.

5.2 Ground State Energy Of The Relevant System

In the light of this information, to checking for noninteracting electron-hole

pair in the system51 the results of calculations of the ground state exciton binding

energies for some values of variational parameter λ by getting R = 1 and σ−1
e +

σ−1
h = 1 for simplicity are shown in Table 5.2.

In going beyond one-particle system to many-particle systems, an additional

calculating principle becomes important. To construct an expression for 〈ψT |H̃|ψT 〉
by using Hylleraas-type wave function, one would, ideally, like to calculate the

51by neglecting the integral term IA3 which is concerned interparticle interaction for K=0
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Table 5.2 The ground state exciton binding energies some manual analytical calculation
values comparison in high precision with the numerical values of variational parameter
λ in different precision for R = 1.

λ Numerical EX/meV
0.1 23.499104719859382
0.01 23.499524327709057
0.001 23.503721312804480
0.0001 23.545782059804750
0.00001 23.975670396316136

integral representations for the terms as exp(−λreh) involved by the use of well-

known Hylleraas coordinates and calculated variationally the ground state

energies of X and D+, X complexes via the relevant wave function. The

adjustable parameter of the trial wave function is given previously as λ. This

choice was originally made by Hylleraas (Hylleraas, 1929) and rejected

subsequently by Hartree and Ingman (Hartree, & Ingman, 1933) as unphysical.

Minimizing the energy with respect to variation in the parameter of λ = 0.2

cause of vary in the range λ = [0.055, 0.300]. In Figure 5.2, in order to compare the

effect of confinement on the D+, X complexes, have been presented the behavior

of the ground state energy of the bound heavy- and light-hole exciton to an ionized

donor impurity which is placed at the center in infinite three-dimensional spherical

QD as a function of radii of GaAs nanocrystal. This have been performed by the

codes is given in Appendix and elapsed time is nearly 19788,38922 seconds both

for heavy- and light-hole.52 The energy decreases rapidly with increasing QD

radius both for heavy- and light-hole excitons with a quantitative difference. For

smaller values of radius, the ground state energy is obviously more sensitive to the

size of the QD. As noticed in the work performed by Şakiroğlu et al. (Şakiroğlu

et al., 2009), increasing exciton energies are obtained in the case of narrower QD

52on a PC, AMD Athlon(tm) 64 ×2 Dual Core Processor 5200+, MMX, 3DNow (2 CPUs),
with 1024MB RAM
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Figure 5.2 The ground state energy of three-particle
(D+, X) system in GaAs as a function of infinite QD
radius. The blue dot-dashed curve shows the results for
heavy-hole and the red dashed shows light-hole (D+, X)
system. It’s completely same for the two-particle (X)
system.

where the effect of quantum confinement is more pronounced. In this case spatial

overlap between electron and hole increases, which leads to the enhancement of

Coulombic binding energy.

The energy of heavy-hole exciton is lower than the value of light-hole for the

same radius. The reason of this situation is the enhanced the effective kinetic

energy of electron and hole in three-dimensional QD.

The values in the Table 5.2 is completely the same for aforesaid D+, X complex.

The values of the two additional interparticle interaction integral terms IG1 and

IG2 are completely the same by a difference opposite notation may be approved

as the reason of this situation. That is to say, injecting a donor impurity to the

X complex, would not change the polar symmetry, the disposition of nanocrystal

matrix lattice and once for all the ground state energy of the system.
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Thus means, have been concluded constitutively that theoretical understanding

of the convergence of variational calculations on the two- or three-particle system

is far outstripped by the raw computing power of available machinery.

5.3 Discussion

The expansion of the interparticle coordinates is combined with the use of

properties of Legendre polynomials. With the exception of the radial totally

linked integral, for the other integrals only the terms q = 0 or q = 1 of the

expansion survive.

The resulting radial and angular integrals are evaluated and written out in

operator form general expressions for the integrals with higher powers of the

interparticle coordinates are derived. most of angular integrals vanish. Only in

cases where all the indices are linked are they different from zero.

In this thesis, to ensure the validity of the method, dependencies of the ground

state energy as a function of QD radius for the bound exciton to an ionized

donor impurity placed at the center have been investigated. Comparison with the

previous theoretical works especially with results given Şakiroğlu et al. (Şakiroğlu

et al., 2009) and Stébé et al. (Stébé et al., 1996) revealed a good agreement for

ground state energy and it’s behavior according to radius, confirming that given

trial wave function and the method presented describes accurately the system

D+, X states confined in infinite QD.



CHAPTER SIX

CONCLUDING REMARKS

Schrödinger equation of a three-particle system is a linear PDE defined on

the nine-dimensional configuration space, R9. The study of above Schrödinger

equation of three-particle systems has a long history, dating back to Hylleraas’

work on this subject in the 1930s, and there are extensive literature and various

approaches in the study of its solutions. It is essentially to specify that exciton

complexes have been the subject of intense studies in the last ten or fifteen years,

both experimentally and theoretically.

The procedure for solving the three-particle quantum confinement problem

with ordinary central force is to perform an optimization for the ground state

energy and advance it in time until, taking appropriate measures with regard

to divergent state, all the error components in the original perform have been

eliminated. The Rayleigh-Ritz’s variational method by using Hylleraas-type trial

wave function constructed from the conventional orbital product, times a

correlation function depending on the interparticle distance rij is very efficient to

study the ground state of three-particle quantum mechanical problems. Be have

made an investigation of behavior of the ground state energy’s dependency on

radii of the QD in order to determine if there is an optimal choice for a three-

particle treatment by the Rayleigh-Ritz’s variational method.

Most of the formulas and results in this thesis have been checked for accuracy

in a number of special case. The results presented previously only concern S-

state calculations of quantum mechanical three-particle problem. As the method

provides good results for three-particle bound states, it would be interesting to

extend it to the search for quantum chaos in QD.53

53Maybe this mantra could be done, for example, by using KAM Theory.
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APPENDIX

A.1 The Value Of The Magnetic Quantum Number

Remember the problem is defined as the case of a particle situated in a

three dimensional infinite spherical QD. φ = [0, 2π] and note, that as mentioned

previously, only quantized energy levels are possible so for could be single value

of the wave function,

Φ(φ + 2π)
.
= Φ(φ),

A exp(iml(φ + 2π))
.
= A exp(imlφ).

exp(imlφ + 2π) ≡ exp(imlφ),

⇐⇒ cos(ml(φ + 2π)) + i sin(ml(φ + 2π)) ≡ cos(mlφ) + i sin(mlφ).

cos(mlφ) cos(ml2π)− sin(mlφ) sin(ml2π) + i sin(mlφ) cos(ml2π)

+i cos(mlφ) sin(ml2π) ≡ cos(mlφ) + i sin(mlφ),

sin(ml2π) = 0, ml = 0,±1,±2,±3, . . .

cos(ml2π) = 0, ml = 0,±1,±2,±3, . . . .

cos(mlφ) + i sin(mlφ) = cos(mlφ) + i sin(mlφ),

then yields (4.1.11),

Φml
(φ) = Al exp(imlφ), ml = 0,±1,±2,±3, . . . .
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A.2 Mapping For The Relevant SubODE

The relevant transform for (4.1.10b) as defined previously the parameter µ =

cos θ,

µ = cos θ, dµ = − sin θdθ.

dµ

dθ
= − sin θ.

With chain rule,
d

dθ
=

d

dµ

dµ

dθ
= − sin θ

d

dµ
.

sin2 θ = 1− cos2 θ, cos2 θ = µ2,

sin2 θ = 1− µ2.

d2

dθ2
=

d

dθ

(
d

dθ

)
=

(
− sin θ

d

dµ

)(
− sin θ

d

dµ

)
= sin2 θ

d2

dµ2
=

(
1− µ2

) d2

dµ2
,

d2

dθ2
=

(
1− µ2

) d2

dµ2
.

Within these new definitions the (4.1.10b) converts into the (4.1.11),

[
(1− µ2) d2

dµ2

]
Θ(arccos µ) −

[
2µ d

dµ

]
Θ(arccos µ)

+
[
Λ− m2

l

(1−µ2)

]
Θ(arccos µ) = 0.

A.3 Series Solution Of The Legendre ODE

At this place, notice that there is no singularity in Legendre ODE (4.1.13) so

the basis of Frobenius’54 method is to try for a solution of relevant equation of

54Ferdinand Georg Frobenius (1849-1917)
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the form of power series

Pl(µ) = C0 + C1µ + C2µ
2 + . . . =

∞∑
η=0

[Cη] µ
η,

convergent for all range of µ including the point µ = 0. The binomial theorem

may be used to expand the coefficients in (4.1.13) as power series and it is clearly

with first and second order derivative respectively,

P
′
l (µ) = C1 + 2C2µ + 3C3µ

2 + . . .

2µP
′
l (µ) = 2

(
C1µ + 2C2µ

2 + 3C3µ
3 + . . .

)
=

∞∑
η=0

[2ηCη] µ
η

P
′′
l (µ) = 1× 2C2 + 2× 3C3µe + 3× 4C4µ

2 + . . .

(1− µ2) P
′′
l (µ) = (1× 2C2 + 2× 3C3µ + . . .)− (1× 2C2µ

2 + 2× 3C3µ
3 + . . .)

=
∞∑

η=0

[(η + 1)(η + 2)Cη+2] µ
η −

∞∑
η=0

[(η − 1)nCη] µ
η.

By substituting these derivatives for (4.1.13) and reorganizing,

∞∑
η=0

[(η + 1)(η + 2)Cη+2 − (η − 1)ηCη − 2ηCη + λCη] µ
η = 0,

∞∑
η=0

[[(η + 1)(η + 2)] Cη+2 + [−(η − 1)η − 2η + λ] Cη]︸ ︷︷ ︸ µη = 0,

0

[(η + 1)(η + 2)] Cη+2 + [−(η − 1)η − 2η + λ] Cη = 0, η ≥ 0.

This equation gives the indicial equation and the récurrence formula in the form

of

Cη+2 =
η(η + 1)− λ

(η + 1)(η + 2)
Cη.
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By expanding these formula for first deux term,

n = 0 ⇒ C2 = (−λ/2)C0

n = 1 ⇒ C3 = (2− λ/6)C1

n = 2 ⇒ C4 = (6− λ/12)C2

n = 3 ⇒ C5 = (12− λ/20)C3

. . .

. . .

. . .

thus the relevant coefficients,

C2 = −[λ] /2!C0

← C3 = −[2− λ] /3!C1

C4 = −[λ(6− λ)] /4!C0

← C5 = −[(12− λ)(2− λ)] /5!C1

C6 = . . . C0

· ← C7 = . . . C1

· ·
· ·

·

Therefore

Pl1 = 1− λ

2!
µ2 +

λ(λ− 6)

4!
µ4 − . . . ,

Pl2 = µ− λ− 2

3!
µ3 +

(12− λ)(2− λ)

5!
µ3 − . . . ,

so that for µ even, Pl1 and for µ odd Pl2 are linearly independent solutions. Thus

the linear combinations of these yields the total solution in the following equation,

Pl(µ) = C0Pl1µ + C1Pl2µ.
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To determine the convergence of the series contains infinite terms as mentioned

in récurrence formula by ratio test as following,

lim
η→∞

Cη+2

Cη

= lim
η→∞

η(η + 1)− λ

(η + 1)(η + 2)
= lim

η→∞

[
η2 + η − λ

η2 + 3η + 2

]
,

lim
η→∞

Cη+2

Cη

= lim
η→∞

[
η2

η2 + 3η + 2

]
+ lim

η→∞

[
η − λ

η2 + 3η + 2

]
,

lim
η→∞

Cη+2

Cη

= lim
η→∞

[
η2

η2

(
1

1 + 3/η + 2/η2

)]
+ lim

η→∞

[
η

η

(
1− (λ/η)

η + 3 + 2/η

)]
,

lim
η→∞

Cη+2

Cη
=

[
1

1 + 0 + 0

]

︸ ︷︷ ︸
+

[
1− 0

∞+ 3 + 0

]

︸ ︷︷ ︸
1 0

lim
η→∞

Cη+2

Cη

= 1.

Permissively, by evanishing to dividend to guarantee convergence of relevant

series

η(η + 1)− λ =⇒ l(l + 1)− λ = 0, −→ λ = l(l + 1),

yields the total solution of the (4.1.13) as given previously which is called Legendre

polynomials order of azimuthal quantum number l:

Θ(θ)l = BlP
ml
l (cos θ), l = 0, 1, 2, 3, . . . .

A.4 Scaling To The Radial Part Of The Main Schrödinger Equation

With the new dimensionless parameter ρ as defined previously and following

ρ = kr, dρ = kdr =⇒ dρ

dr
= k,
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hence the derivatives by using chain rule in the form of,

d

dr
=

d

dρ

dρ

dr
= k

d

dρ
,

d2

dr2
=

d

dr

d

dr
= k2 d2

dρ2
,

so that, to inserting these into the (4.1.18) gives (4.1.19) as given previously:

[
ρ2 d2

dρ2

]
Rn +

[
2ρ2

]
Rn +

[
ρ2 − n(n + 1)

]
Rn = 0.

A.5 Transformation To The Standard Bessel’s ODE

The procedure to convert (4.1.19) to the Standard Bessel’s ODE with R =

U(ρ)/(ρ1/2) as foolowing,

[
d

dρ

]
R =

[
d

dρ

]
U(ρ)/(ρ1/2) =

1

ρ1/2

[
d

dρ

]
U(ρ)−

[
ρ−3/2

2

]
U(ρ),

[
d2

dρ2

]
R =

[
d

dρ

] [
1

ρ1/2

[
d

dρ

]
U(ρ)−

[
ρ−3/2

2

]
U(ρ)

]
,

[
d2

dρ2

]
R = −1

2
ρ−3/2

[
d

dρ

]
U(ρ)+

1

ρ1/2

[
d2

dρ2

]
U(ρ)−ρ−3/2

2

[
d

dρ

]
U(ρ)+

3

4
ρ−5/2U(ρ),

ρ2

[
d2

dρ2

]
= −1

2
ρ1/2

[
d

dρ

]
U(ρ)+

1

ρ3/2

[
d2

dρ2

]
U(ρ)− ρ1/2

2

[
d

dρ

]
U(ρ)+

3

4
ρ−1/2U(ρ),

2ρ

[
d

dρ

]
R = 2ρ1/2

[
d

dρ

]
U(ρ)− ρ−1/2U(ρ),

By putting into the place, these derivatives and R,

ρ3/2d2U(ρ)

dρ2
+ ρ1/2dU(ρ)

dρ
− 1

4
ρ−1/2U(ρ) + ρ3/2U(ρ)− ρ−1/2l(l + 1)U(ρ) = 0,

ρ3/2d2U(ρ)

dρ2
+ ρ1/2dU(ρ)

dρ
+ ρ3/2U(ρ)− ρ−1/2

[
l(l + 1) +

1

4

]
U(ρ) = 0,
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ρ3/2d2U(ρ)

dρ2
+ ρ1/2dU(ρ)

dρ
+ ρ3/2U(ρ)− ρ−1/2

[
l2 + l +

1

4

]
U(ρ) = 0,

ρ3/2d2U(ρ)

dρ2
+ ρ1/2dU(ρ)

dρ
+ ρ3/2U(ρ)− ρ−1/2

[
l +

1

2

]2

U(ρ) = 0,

ρ3/2d2U(ρ)

dρ2
+ ρ1/2dU(ρ)

dρ
+

[
ρ3/2 − ρ−1/2

[
l +

1

2

]2
]

U(ρ) = 0,

ρ2d2U(ρ)

dρ2
+ ρ

dU(ρ)

dρ
+

[
ρ2 −

[
l +

1

2

]2
]

U(ρ) = 0,

ρ2d2U(ρ)

dρ2
+ ρ

dU(ρ)

dρ
+

[
ρ2 − µ2

]
U(ρ) = 0,

ρ(ρU
′
(ρ))

′
= ρ2U

′′
(ρ) + ρU

′
(ρ).

As a result, after these substitutes and transformations be obtained the (4.1.21):

ρ(ρU
′
(ρ))

′
+

[
ρ2 − υ2

]
U(ρ) = 0.

A.6 Series Solution Of The Standard Bessel’s ODE

Bessel’s ODE of order υ is given above in (4.1.21). Be may apply the

Frobenius’ method and be assured that any series solution obtained will be

convergent for all values of ρ. the relevant solution function is recommended

and relevant derivatives in the form of

U(ρ) =
∞∑

η=0

aηρ
η+s,

U
′
(ρ) =

∞∑
η=0

aη(η + s)ρη+s−1,
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ρU
′
(ρ) =

∞∑
η=0

aη(η + s)ρη+s,

(ρU
′
(ρ))

′
=

∞∑
η=0

aη(η + s)2ρη+s−1,

ρ(ρU
′
(ρ))

′
=

∞∑
η=0

aη(η + s)2ρη+s.

At this place, convert into the (4.1.21) all the equations as reproduced above,

∞∑
η=0

aη(η + s)2ρη+s +
[
ρ2 − υ2

] ∞∑
η=0

aηρ
η+s = 0,

then by rewriting,

∞∑
η=0

[
(η + s)2aη +

[
ρ2 − υ2

]
aη

]
ρη+s = 0.

Yields root equation,
[
ρ2 − υ2

]
= 0 =⇒ ρ = ±υ.

So,
[
(η + s)2 − υ2

]
aη + aη−2 = 0.

Thus the récurrence formula in the form of,

aη = − aη−2

[(η+s)2−υ2]

aη = − aη−2

[(η+υ)2−υ2]
= − aη−2

[η2+2ηυ]
= − aη−2

[η(η+2υ)]

a2η = − a2η−2

[2η(2η+2υ)]
= − a2η−2

[22η(η+υ)]
.
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To simplify the appearance of this formula somewhat by using Gamma functions

as an extension of the factorial function to real and complex numbers,

Γ(υ + 1) = υΓ(υ)

Γ(υ + 2) = (υ + 1)Γ(υ + 1)

Γ(υ + 3) = (υ + 2)Γ(υ + 2) = (υ + 2)(υ + 1)Γ(υ + 1)

. . .

. . .

. . .

Hence, the coefficients,

a2 = −a0/2
2(1 + υ) = −a0Γ(1 + υ)/2!24Γ(3 + υ)

a4 = −a2/2
3(2 + υ) = a0Γ(1 + υ)/2!24Γ(3 + υ)

a6 = −a4/3!2(3 + υ) = −a0Γ(1 + υ)/3!26Γ(4 + υ)

. . .

. . .

. . .

At this stage, series solution for the special condition in the form of,

U(ρ) = a0ρ
υΓ(1 + υ)

×
[

1
Γ(1+υ)

− 1
Γ(2+υ)

(
ρ
2

)2
+ 1

2!Γ(3+υ)

(
ρ
2

)4 − 1
3!Γ(4+υ)

(
ρ
2

)6
+ . . .

]
.

Here, Γ(1) = Γ(2) = 1 and for first two terms, ρυ = 2υ(ρ/2)υ. So that,

U(ρ) = a02
υ
(

ρ
2

)υ
Γ(1 + υ)

×
[

1
Γ(1)Γ(1+υ)

− 1
Γ(2)Γ(2+υ)

(
ρ
2

)2
+ 1

Γ(3)Γ(3+υ)

(
ρ
2

)4 − . . .
]
.
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If a0 = 1/2υΓ(1 + υ) = 1/2υυ!, then yields the Bessel polynomials,

Jυ(ρ) =
1

Γ(1)Γ(1 + υ)

(ρ

2

)υ

− 1

Γ(2)Γ(2 + υ)

(ρ

2

)2+υ

+
1

Γ(3)Γ(3 + υ)

(ρ

2

)4+υ

− . . . ,

so that the series solution of the standard Bessel’s ODE as Bessel polynomials in

the closed form of:

Jυ(ρ) =
∞∑

η=0

(−2)η

Γ(η + 1)Γ(η + υ + 1)

(ρ

2

)2η+υ

.

A.7 Internal Operations For The Immature Hamiltonian

For electronic part contains the operator del in the main Schrödinger equation

as following,

∇eψ
s
eF = F∇eψ

s
e + ψs

e∇eF,

∇2
eψ

s
eF = ∇e [∇eψ

s
eF ] = ∇e [F∇eψ

s
e + ψs

e∇eF ] ,

∇2
eψ

s
eF = [∇eψ

s
e] [∇eF ] + F∇2

eψ
s
e + [∇eψ

s
e] [∇eF ] + ψs

e∇2
eF,

∇2
eψ

s
eF = F∇2

eψ
s
e + 2 [∇eψ

s
e] [∇eF ] + ψs

e∇2
eF,

thus,

−ψs
h

[
1

2σe

∇2
e

]
ψs

eF = −ψs
h

1

2σe

[
F∇2

eψ
s
e + 2 [∇eψ

s
e] [∇eF ] + ψs

e∇2
eF

]
.

For holic part contains the operator del in the main Schrödinger equation as
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following,

∇hψ
s
hF = F∇hψ

s
h + ψs

h∇hF,

∇2
hψ

s
hF = ∇h [∇hψ

s
hF ] = ∇h [F∇hψ

s
h + ψs

h∇hF ] ,

∇2
hψ

s
hF = [∇hψ

s
h] [∇hF ] + F∇2

hψ
s
h + [∇hψ

s
h] [∇hF ] + ψs

h∇2
hF,

∇2
hψ

s
hF = F∇2

hψ
s
h + 2 [∇hψ

s
h] [∇hF ] + ψs

h∇2
hF,

thus,

−ψs
e

[
1

2σh

∇2
h

]
ψs

hF = −ψs
e

1

2σh

[
F∇2

hψ
s
h + 2 [∇hψ

s
h] [∇hF ] + ψs

h∇2
hF

]
.

Respectively,

¥ − ψs
h

1
2σe

[
F∇2

eψ
s
e + 2 [∇eψ

s
e] [∇eF ]︸ ︷︷ ︸ +ψs

e ∇2
eF︸︷︷︸

]

Í Ó

¥ − ψs
e

1
2σh

[
F∇2

hψ
s
h + 2 [∇hψ

s
h] [∇hF ]︸ ︷︷ ︸ +ψs

h∇2
hF︸︷︷︸

]

Ì Ò

¥ For electron,

Í . ∇eF

[
ˆ̃x

∂

∂x̃e

+ ˆ̃y
∂

∂ỹe

+ ˆ̃z
∂

∂z̃e

+

]
F.

∇eF =

[
ˆ̃x

∂

∂x̃e

r̃eh + ˆ̃y
∂

∂ỹe

r̃eh + ˆ̃z
∂

∂z̃e

r̃eh

]
∂F

∂r̃eh

= [∇er̃eh]
∂F

∂r̃eh

,

∇eF = [∇er̃eh]︸ ︷︷ ︸
∂F

∂r̃eh

ı́

r̃eh = [∆x̃2
eh + ∆ỹ2

eh + ∆z̃2
eh]

1/2

= [(x̃e − x̃h)
2 + (ỹe − ỹh)

2 + (z̃e − z̃h)
2]

1/2
.
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By using this expand in ı́,

ı́. ∇er̃eh =
[
ˆ̃x ∂

∂x̃e
r̃eh + ˆ̃y ∂

∂ỹe
r̃eh + ˆ̃z ∂

∂z̃e
r̃eh

]

= ˆ̃x (x̃e−x̃h)
r̃eh

+ ˆ̃y (ỹe−ỹh)
r̃eh

+ ˆ̃z (z̃e−z̃h)
r̃eh

,

so that,

ı́. ∇er̃eh = r̃e−r̃h

r̃eh
= r̃eh

r̃eh
= ˆ̃reh

= ˆ̃reh.

By substituting this into Í,

Í . ∇eF = [∇er̃eh]
∂F

∂r̃eh

= ˆ̃reh
∂F

∂r̃eh

.

On the other hand, in the light of this information Ó,

Ó. ∇2
eF = ∇e [∇eF ] = ∇e

[
ˆ̃reh

∂F

∂r̃eh

]
,

∇2
eF =

∂F

∂r̃eh

[
∇e

ˆ̃reh

]
+ ˆ̃reh

[
∇e

∂F

∂r̃eh

]
,

∇e
ˆ̃reh = ∇e

[
r̃eh

r̃eh

]
= r̃eh∇er̃eh−r̃eh∇er̃eh

r̃2
eh

= ∇er̃eh

r̃eh
− r̃eh

︷ ︸︸ ︷
∇er̃eh
r̃2
eh

= ∇er̃eh

r̃eh
− r̃eh

ˆ̃reh

r̃2
eh

= ∇er̃eh

r̃eh
− r̃eh

ˆ̃reh
ˆ̃reh

r̃2
eh

=

︷ ︸︸ ︷
∇er̃eh

r̃eh
− 1

r̃eh

∇er̃eh =
[
ˆ̃x ∂

∂x̃e
+ ˆ̃y ∂

∂ỹe
+ ˆ̃z ∂

∂z̃e

] [
ˆ̃xx̃eh + ˆ̃yỹeh + ˆ̃zz̃eh

]

=
[

∂x̃eh

∂x̃e
+ ∂ỹeh

∂ỹe
+ ∂z̃eh

∂z̃e

]
= 3

∇er̃eh = 3.

∇er̃eh

r̃eh

− 1

r̃2
eh

=
3

r̃eh

− 1

r̃eh

=
2

r̃eh

.
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Thus,

Ó. ∇2
eF =

2

r̃eh

[
∂F

∂r̃eh

]
+ ˆ̃reh∇e

[
∂F

∂r̃eh

]
=

2

r̃eh

[
∂F

∂r̃eh

]
+

∂2F

∂r̃2
eh

,

Ó. ∇2
eF =

2

r̃eh

[
∂F

∂r̃eh

]
+

∂2F

∂r̃2
eh

.

¥ For hole,

Ì . ∇hF

[
ˆ̃x

∂

∂x̃h

+ ˆ̃y
∂

∂ỹh

+ ˆ̃z
∂

∂z̃h

+

]
F.

∇hF =

[
ˆ̃x

∂

∂x̃h

r̃eh + ˆ̃y
∂

∂ỹh

r̃eh + ˆ̃z
∂

∂z̃h

r̃eh

]
∂F

∂r̃eh

= [∇hr̃eh]
∂F

∂r̃eh

,

∇hF = [∇hr̃eh]︸ ︷︷ ︸
∂F

∂r̃eh

ı̀

r̃eh = [∆x̃2
eh + ∆ỹ2

eh + ∆z̃2
eh]

1/2

= [(x̃e − x̃h)
2 + (ỹe − ỹh)

2 + (z̃e − z̃h)
2]

1/2
.

By using this expand in ı̀,

ı̀. ∇hr̃eh =
[
ˆ̃x ∂

∂x̃h
r̃eh + ˆ̃y ∂

∂ỹh
r̃eh + ˆ̃z ∂

∂z̃h
r̃eh

]

= −ˆ̃x (x̃e−x̃h)
r̃eh

− ˆ̃y (ỹe−ỹh)
r̃eh

− ˆ̃z (z̃e−z̃h)
r̃eh

,

so that,

ı̀. ∇hr̃eh = r̃h−r̃e

r̃eh
= − r̃eh

r̃eh
= −ˆ̃reh

= −ˆ̃reh.

By substituting this into Ì,

Ì . ∇hF = [∇hr̃eh]
∂F

∂r̃eh

= −ˆ̃reh
∂F

∂r̃eh

.
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On the other hand, in the light of this information Ò,

Ò. ∇2
hF = ∇h [∇hF ] = ∇h

[
−ˆ̃reh

∂F

∂r̃eh

]
,

∇2
hF = − ∂F

∂r̃eh

[
∇h

ˆ̃reh

]
− ˆ̃reh

[
∇h

∂F

∂r̃eh

]
,

∇h
ˆ̃reh = ∇h

[
r̃eh

r̃eh

]
= r̃eh∇hr̃eh−r̃eh∇hr̃eh

r̃2
eh

= ∇hr̃eh

r̃eh
− r̃eh

︷ ︸︸ ︷
∇hr̃eh
r̃2
eh

= ∇hr̃eh

r̃eh
− r̃eh

ˆ̃reh

r̃2
eh

= ∇hr̃eh

r̃eh
− r̃eh

ˆ̃reh
ˆ̃reh

r̃2
eh

=

︷ ︸︸ ︷
∇hr̃eh

r̃eh
− 1

r̃eh

∇hr̃eh =
[
ˆ̃x ∂

∂x̃h
+ ˆ̃y ∂

∂ỹh
+ ˆ̃z ∂

∂z̃h

] [
ˆ̃xx̃eh + ˆ̃yỹeh + ˆ̃zz̃eh

]

=
[

∂x̃eh

∂x̃h
+ ∂ỹeh

∂ỹh
+ ∂z̃eh

∂z̃h

]
= −3

∇hr̃eh = −3.

∇hr̃eh

r̃eh

+
1

r̃2
eh

= − 3

r̃eh

+
1

r̃eh

= − 2

r̃eh

.

Thus,

Ò. ∇2
hF = − 2

r̃eh

[
− ∂F

∂r̃eh

]
− ˆ̃reh∇h

[
∂F

∂r̃eh

]
=

2

r̃eh

[
∂F

∂r̃eh

]
+

∂2F

∂r̃2
eh

,

Ò. ∇2
hF =

2

r̃eh

[
∂F

∂r̃eh

]
+

∂2F

∂r̃2
eh

.

¥ − ψs
h

1
2σe

[
F∇2

eψ
s
e + 2 [∇eψ

s
e] [∇eF ]︸ ︷︷ ︸ +ψs

e∇2
eF

]

Á

¥ − ψs
e

1
2σh

[
F∇2

hψ
s
h + 2 [∇hψ

s
h] [∇hF ]︸ ︷︷ ︸ +ψs

h∇2
hF

]

À
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¥ Again for electron,

Á. [∇eψ
s
e] [∇eF ] =

[
(∇er̃e)︸ ︷︷ ︸

∂ψs
e

∂r̃e

] [
(∇er̃eh)︸ ︷︷ ︸

∂F
∂r̃eh

]

á áá

where,

á. ∇er̃e =
[
ˆ̃xe

∂
∂x̃e

+ ˆ̃ye
∂

∂ỹe
+ ˆ̃ze

∂
∂z̃e

]
[x̃e + ỹe + z̃e]

= [ˆ̃xe + ˆ̃ye + ˆ̃ze] = ˆ̃re

áá. ∇er̃eh =
[
ˆ̃xe

∂
∂x̃e

+ ˆ̃ye
∂

∂ỹe
+ ˆ̃ze

∂
∂z̃e

]
[x̃eh + ỹeh + z̃eh]

= [ˆ̃xeh + ˆ̃yeh + ˆ̃zeh] = ˆ̃reh

and by inserting these into Á,

Á. [∇eψ
s
e] [∇eF ] =

[
ˆ̃re

∂ψs
e

∂r̃e

] [
ˆ̃reh

∂F

∂r̃eh

]
= (ˆ̃re

ˆ̃reh)

[
∂2

∂r̃e∂r̃eh

]
ψs

eF.

¥ Again for hole,

À. [∇hψ
s
h] [∇hF ] =

[
(∇hr̃h)︸ ︷︷ ︸

∂ψs
h

∂r̃h

] [
(∇hr̃eh)︸ ︷︷ ︸

∂F
∂r̃eh

]

à àà

where,

à. ∇hr̃h =
[
ˆ̃xh

∂
∂x̃h

+ ˆ̃yh
∂

∂ỹh
+ ˆ̃zh

∂
∂z̃h

]
[x̃h + ỹh + z̃h]

= [ˆ̃xh + ˆ̃yh + ˆ̃zh] = ˆ̃rh

àà. ∇hr̃eh =
[
ˆ̃xh

∂
∂x̃h

+ ˆ̃yh
∂

∂ỹh
+ ˆ̃zh

∂
∂z̃h

]
[x̃eh + ỹeh + z̃eh]

= −[ˆ̃xeh + ˆ̃yeh + ˆ̃zeh] = −ˆ̃reh

and by inserting these into Á,

À. [∇hψ
s
h] [∇hF ] =

[
−ˆ̃rh

∂ψs
h

∂r̃h

] [
ˆ̃reh

∂F

∂r̃eh

]
= −(ˆ̃rh

ˆ̃reh)

[
∂2

∂r̃h∂r̃eh

]
ψs

hF.
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Besides all these tricks, by inserting Á, Ó, À and Ò with Hylleraas coordinate

transformation for r̂ir̂eh, (i = e, h) into the relevant equation’s part as given

previously, be obtained (4.1.41):

¥ − ψs
h

1
2σe

[
F∇2

eψ
s
e + 2

(
r̃2
e−r̃2

h+r̃2
eh

2r̃er̃eh

)(
∂2

∂r̃2
e∂r̃2

eh

)
+ ψs

e

(
2

r̃eh

∂F
∂r̃eh

+ ∂2F
∂r̃2

eh

)]

¥ − ψs
e

1
2σh

[
F∇2

hψ
s
h + 2

(
r̃2
h−r̃2

e+r̃2
eh

2r̃hr̃eh

)(
∂2

∂r̃2
h∂r̃2

eh

)
+ ψs

h

(
2

r̃eh

∂F
∂r̃eh

+ ∂2F
∂r̃2

eh

)]

A.8 The Codes On Fortranr Of The Bessel Function Values

!——————————————————————————————————–

!——————————————————————————————————–

PROGRAM xbessj1

! driver for routine bessj1

. INTEGER i,nval

. REAL bessj1,value,x

. CHARACTER text*18

. open(7,file=’FNCVAL.DAT’,status=’OLD’)

10 read(7,’(a)’) text

. if (text.ne.’Bessel Function J1’) goto 10

. read(7,*) nval

. write(*,*) text

. write(*,’(1x,t5,a1,t12,a6,t22,a9)’)’X’,’Actual’,’BESSJ1(X)’

. do 11 i=1,nval

. read(7,*) x,value

. write(*,’(f6.2,2f12.7)’) x,value,bessj1(x)

11 continue

. close(7)

. END
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. FUNCTION bessj1(x)

. REAL bessj1,x

. REAL ax,xx,z

. DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,

. *s1,s2,s3,s4,s5,s6,y

. SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,s1,s2,s3,s4,

. *s5,s6

. DATA r1,r2,r3,r4,r5,r6/72362614232.d0,-7895059235.d0,

. *242396853.1d0,-2972611.439d0,15704.48260d0,-30.16036606d0/,s1,s2,

. *s3,s4,s5,s6/144725228442.d0,2300535178.d0,18583304.74d0,

. *99447.43394d0,376.9991397d0,1.d0/

. DATA p1,p2,p3,p4,p5/1.d0,.183105d-2,-.3516396496d-4,

. *.2457520174d-5,-.240337019d-6/, q1,q2,q3,q4,q5/.04687499995d0,

. *-.2002690873d-3,.8449199096d-5,-.88228987d-6,.105787412d-6/

. if(abs(x).lt.8.)then

. y=x**2

. bessj1=x*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/(s1+y*(s2+y*(s3+

. *y*(s4+y*(s5+y*s6)))))

. else

. ax=abs(x)

. z=8./ax

. y=z**2

. xx=ax-2.356194491

. bessj1=sqrt(.636619772/ax)*(cos(xx)*(p1+y*(p2+y*(p3+y*(p4+y*

. *p5))))-z*sin(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))*sign(1.,x)

. endif

. return

. END

!——————————————————————————————————–

!——————————————————————————————————–
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A.9 The Codes On MatLab & Simulinkr Of The Main Program

%——————————————————————————————————

%——————————————————————————————————

tic;

clear all

format long

seed=10;

%——————————————————————————————————

a1=zeros(1,seed);

a2=zeros(1,seed);

a3=zeros(1,seed);

%——————————————————————————————————

c1=zeros(1,seed);

c2=zeros(1,seed);

c3=zeros(1,seed);

%——————————————————————————————————

d1=zeros(1,seed);

d2=zeros(1,seed);

d3=zeros(1,seed);

%——————————————————————————————————

e11=zeros(1,seed);

e12=zeros(1,seed);

e13=zeros(1,seed);

e2=zeros(1,seed);

%——————————————————————————————————
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f11=zeros(1,seed);

f12=zeros(1,seed);

f13=zeros(1,seed);

f2=zeros(1,seed);

%——————————————————————————————————

g1=zeros(1,seed);

g2=zeros(1,seed);

%——————————————————————————————————

nn=zeros(1,seed);

sum=zeros(1,seed);

impact=zeros(1,seed);

fid=fopen(’result.txt’,’a’);

%——————————————————————————————————

K=1;%For The Term Which is Concerned Interparticle Interaction (ON)

K=0;%For The Term Which is Concerned Interparticle Interaction (OFF)

top=10;

lam=0.2;%Optimum Value of The Variation Parameter

epsr=13.1;%Dielectric Constant for GaAs QD

mer=.067;%Electron Effective Mass

meh=.090;%Hole Effective Mass (LH)

meh=.337;%Hole Effective Mass (HH)

%——————————————————————————————————

fprintf(fid,’\n’);

for i=1:1:seed

R(i)=0.01+(1*i)%Radius of QD in Interval [1.01,10.01]

ke=pi/R(i)

kh=pi/R(i)

%——————————————————————————————————

clear functions

nn(i)=ExcitonDonorNN(ke,kh,R(i),lam,top);
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%——————————————————————————————————

clear functions

a1(i)=ExcitonDonorA1(ke,kh,R(i),lam,top);

clear functions

a2(i)=ExcitonDonorA2(ke,kh,R(i),lam,top);

clear functions

a3(i)=ExcitonDonorA3(ke,kh,R(i),lam,top);

%——————————————————————————————————

clear functions

c1(i)=ExcitonDonorC1(ke,kh,R(i),lam,top);

clear functions

c2(i)=ExcitonDonorC2(ke,kh,R(i),lam,top);

clear functions

c3(i)=ExcitonDonorC3(ke,kh,R(i),lam,top);

%——————————————————————————————————

clear functions

d1(i)=ExcitonDonorD1(ke,kh,R(i),lam,top);

clear functions

d2(i)=ExcitonDonorD2(ke,kh,R(i),lam,top);

clear functions

d3(i)=ExcitonDonorD3(ke,kh,R(i),lam,top);

%——————————————————————————————————

clear functions

e11(i)=ExcitonDonorE11(ke,kh,R(i),lam,top);

clear functions

e12(i)=ExcitonDonorE12(ke,kh,R(i),lam,top);

clear functions

e13(i)=ExcitonDonorE13(ke,kh,R(i),lam,top);

clear functions

e2(i)=ExcitonDonorE2(ke,kh,R(i),lam,top);
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%——————————————————————————————————

clear functions

f11(i)=ExcitonDonorF11(ke,kh,R(i),lam,top);

clear functions

f12(i)=ExcitonDonorF12(ke,kh,R(i),lam,top);

clear functions

f13(i)=ExcitonDonorF13(ke,kh,R(i),lam,top);

clear functions

f2(i)=ExcitonDonorF2(ke,kh,R(i),lam,top);

%——————————————————————————————————

clear functions

g1(i)=ExcitonDonorG1(ke,kh,R(i),lam,top);

clear functions

g2(i)=ExcitonDonorG2(ke,kh,R(i),lam,top);

%——————————————————————————————————

impacta1(i)=-0.5*((1/mer)+(1/meh))*((4*lamˆ3)/(keˆ2*khˆ2*piˆ4))*a1(i);

impacta2(i)=-0.5*((1/mer)+(1/meh))*((-2*lam)/(keˆ2*khˆ2*piˆ4))*a2(i);

impacta3(i)=-(K/epsr)*(1/(keˆ2*khˆ2*piˆ4))*a3(i);

%——————————————————————————————————

impactc1(i)=-0.5*(1/mer)*((-lam)/(keˆ2*khˆ2*piˆ4))*c1(i);

impactc2(i)=-0.5*(1/mer)*((lam)/(2*keˆ2*khˆ2*piˆ4*R(i)ˆ2))*c2(i);

impactc3(i)=-0.5*(1/mer)*((lam)/(2*keˆ2*khˆ2*piˆ4*R(i)ˆ2))*c3(i);

%——————————————————————————————————

impactd1(i)=-0.5*(1/meh)*((-lam)/(keˆ2*khˆ2*piˆ4))*d1(i);

impactd2(i)=-0.5*(1/meh)*((lam)/(2*keˆ2*khˆ2*piˆ4*R(i)ˆ2))*d2(i);

impactd3(i)=-0.5*(1/meh)*((lam)/(2*keˆ2*khˆ2*piˆ4*R(i)ˆ2))*d3(i);

%——————————————————————————————————

impacte11(i)=-0.5*(1/mer)*((-8*lam)/(ke*khˆ2*piˆ4*R(i)))*e11(i);

impacte12(i)=-0.5*(1/mer)*((4*lam)/(keˆ2*khˆ2*piˆ4*R(i)ˆ2))*e12(i);

impacte13(i)=-0.5*(1/mer)*((-4*lam)/(khˆ2*piˆ4))*e13(i);
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impacte2(i)=-0.5*(1/mer)*((-4*lam)/(keˆ2*khˆ2*piˆ4*R(i)ˆ2))*e2(i);

%——————————————————————————————————

impactf11(i)=-0.5*(1/meh)*((-8*lam)/(kh*keˆ2*piˆ4*R(i)))*f11(i);

impactf12(i)=-0.5*(1/meh)*((4*lam)/(keˆ2*khˆ2*piˆ4*R(i)ˆ2))*f12(i);

impactf13(i)=-0.5*(1/meh)*((-4*lam)/(keˆ2*piˆ4))*f13(i);

impactf2(i)=-0.5*(1/meh)*((-4*lam)/(keˆ2*khˆ2*piˆ4*R(i)ˆ2))*f2(i);

%——————————————————————————————————

impactg1(i)=(1/epsr)*((4*lam)/(piˆ5*R(i)*keˆ2*khˆ2))*g1(i);

impactg2(i)=(1/epsr)*((4*lam)/(piˆ5*R(i)*keˆ2*khˆ2))*g2(i);

%——————————————————————————————————

impactnn(i)=((4*lam)/(keˆ2*khˆ2*piˆ4))*nn(i);

%——————————————————————————————————

nava1(i)=impacta1(i)/impactnn(i);

nava2(i)=impacta2(i)/impactnn(i);

nava3(i)=impacta3(i)/impactnn(i);

%——————————————————————————————————

navc1(i)=impactc1(i)/impactnn(i);

navc2(i)=impactc2(i)/impactnn(i);

navc3(i)=impactc3(i)/impactnn(i);

%——————————————————————————————————

navd1(i)=impactd1(i)/impactnn(i);

navd2(i)=impactd2(i)/impactnn(i);

navd3(i)=impactd3(i)/impactnn(i);

%——————————————————————————————————

nave11(i)=impacte11(i)/impactnn(i);

nave12(i)=impacte12(i)/impactnn(i);

nave13(i)=impacte13(i)/impactnn(i);

nave2(i)=impacte2(i)/impactnn(i);

%——————————————————————————————————

navf11(i)=impactf11(i)/impactnn(i);
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navf12(i)=impactf12(i)/impactnn(i);

navf13(i)=impactf13(i)/impactnn(i);

navf2(i)=impactf2(i)/impactnn(i);

%——————————————————————————————————

navg1(i)=impactg1(i)/impactnn(i);

navg2(i)=impactg2(i)/impactnn(i);

%——————————————————————————————————

ground state energy(i)=(nava1(i)+nava2(i)+nava3(i)+navc1(i)+navc2(i)+...

navc3(i)+navd1(i)+navd2(i)+navd3(i)+nave11(i)+nave12(i)+nave13(i)+...

nave2(i)+navf11(i)+navf12(i)+navf13(i)+navf2(i)+navg1(i)+navg2(i))

%——————————————————————————————————

hold on

plot(R(i),ground state energy(i)),grid,xlabel(’R/nm’),ylabel(’E {Dˆ{+},X}(R)/meV’)

%——————————————————————————————————

fprintf(fid, ’%10.7f %6.2f %6.1f %12.8e %12.8e %12.8e %12.8e %12.8e %12.8e

%12.8e %12.8e %12.8e %12.8e %12.8e %12.8e %12.8e %12.8e %12.8e %12.8e

%12.8e \n’,lam,R,top,nava1(i),nava2(i),navc1(i),navc2(i),navc3(i),navd1(i),...

navd2(i),navd3(i),nave11(i),nave12(i),nave13(i),nave2(i),navf11(i),navf12(i),...

navf13(i),navf2(i),navg1(i),navg2(i),ground state energy(i))

%——————————————————————————————————

end

fclose(fid);

toc;

%——————————————————————————————————

%——————————————————————————————————



83

A.10 The Codes On MatLab & Simulinkr Of The Integral Programs

%——————————————————————————————————

%——————————————————————————————————

function [NA1]=ExcitonDonorA1(ke,kh,R,lam,top)

A1=@(q)((1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*((sinint((2*ke-q)*R)+2*sinint(q*R)-...

. sinint((2*ke+q)*R)).*(sinint((2*kh-q)*R)+2*sinint(q*R)-...

. sinint((2*kh+q)*R)));

NA1=quadl(A1,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NA2]=ExcitonDonorA2(ke,kh,R,lam,top)

A2=@(q)((1.0./(q.ˆ2+4*lamˆ2))).*((sinint((2*ke-q)*R)+2*sinint(q*R)-...

. sinint((2*ke+q)*R)).*(sinint((2*kh-q)*R)+2*sinint(q*R)-...

. sinint((2*kh+q)*R)));

NA2=quadl(A2,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NA3]=ExcitonDonorA3(ke,kh,R,lam,top)

A3=@(q)((1.0./(q.ˆ2+4*lamˆ2))).*((sinint((2*ke-q)*R)+2*sinint(q*R)-...

. sinint((2*ke+q)*R)).*(sinint((2*kh-q)*R)+2*sinint(q*R)-...

. sinint((2*kh+q)*R)));

NA3=quadl(A3,0,top)

%——————————————————————————————————

%——————————————————————————————————
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%——————————————————————————————————

%——————————————————————————————————

function [NC1]=ExcitonDonorC1(ke,kh,R,lam,top)

C1=@(q)((1.0./(q.ˆ2+4*lamˆ2))).*(((ke*sin((2*ke-q)*R)./(2*ke-q))-...

. (ke*sin((2*ke+q)*R)./(2*ke+q))-sinint((2*ke-q)*R)-2*sinint(q*R)+...

. sinint((2*ke+q)*R)).*(sinint((2*kh-q)*R)+2*sinint(q*R)-...

. sinint((2*kh+q)*R)));

NC1=quadl(C1,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NC2]=ExcitonDonorC2(ke,kh,R,lam,top)

C2=@(q)((1.0./(q.ˆ2+4*lamˆ2))).*(((R.*cos((2*kh+q).*R)./(2*kh+q))+...

. ((-2*kh+q).*R.*cos((2*kh-q).*R)+sin((2*kh-q).*R))./((-2*kh+q).ˆ2)+...

. ((-2*q.*R.*cos(q*R)+2*sin(q*R))./q.ˆ2)-sin((2*kh+q).*R)./...

. (2*kh+q).ˆ2).*(-q.*R.*(cos((2*ke-q).*R)-2*cos(q*R)+...

. cos((2*ke+q).*R))+sin((2*ke-q).*R)+2*sin(q.*R)-sin((2*ke+q).*R)+...

. q.*R.ˆ2.*((2*ke+q).*sinint((2*ke-q)*R)+2*q.*sinint(q*R)+...

. 4*ke*sinint((-2*ke+q)*R)-(2*ke+q).*sinint((2*ke+q).*R))));

NC2=quadl(C2,eps,2*kh-10*eps)+quadl(C2,2*kh+10*eps,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NC3]=ExcitonDonorC3(ke,kh,R,lam,top)

C3=@(q)((32*lamˆ2./(q.ˆ2+4*lamˆ2).ˆ3)-(2./(q.ˆ2+4*lamˆ2).ˆ2)).*...

. ((sinint((2*kh-q)*R)+2*sinint(q*R)-sinint((2*kh+q)*R)).*...

. (q.*R.*cos((2*ke-q)*R)-2*q.*R.*cos(q*R)+q.*R.*cos((2*ke+q)*R)-...

. sin((2*ke-q)*R)-2*sin(q*R)+sin((2*ke+q)*R)-2.*q.ˆ2.*Rˆ2.*...



85

. sinint(q*R)+q.*(2*ke+q).*Rˆ2.*sinint((2*ke+q)*R)+2*ke*q.*Rˆ2.*...

. sinint(2*ke*R-q*R)-q.ˆ2.*Rˆ2.*sinint(2*ke*R-q*R)));

NC3=quadl(C3,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [ND1]=ExcitonDonorD1(ke,kh,R,lam,top)

D1=@(q)((1.0./(q.ˆ2+4*lamˆ2))).*((sinint((2*ke-q)*R)+2*sinint(q*R)-...

. sinint((2*ke+q)*R)).*((kh*sin((2*kh-q)*R)./(2*kh-q))-...

. (kh*sin((2*kh+q)*R)./(2*kh+q))-sinint((2*kh-q)*R)-2*sinint(q*R)+...

. sinint((2*kh+q)*R)));

ND1=quadl(D1,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [ND2]=ExcitonDonorD2(ke,kh,R,lam,top)

D2=@(q)((1.0./(q.ˆ2+4*lamˆ2))).*(((R*cos((2*ke+q)*R)./(2*ke+q))+...

. ((-2*ke+q).*R.*cos((2*ke-q)*R)+sin((2*ke-q)*R))./(-2*ke+q).ˆ2)+...

. ((-2*q.*R.*cos(q*R)+2*sin(q*R))./q.ˆ2)-(sin((2*ke+q)*R)./...

. (2*ke+q).ˆ2)).*(-q.*R.*(cos((2*kh-q)*R)-2*cos(q*R)+cos((2*kh+q)*R))+...

. sin((2*kh-q)*R)+2*sin(q*R)-sin((2*kh+q)*R)+q.*Rˆ2.*...

. (2.*q.*sinint(q*R)-(2*kh+q).*sinint((2*kh+q)*R)+(-2*kh+q).*...

. sinint((2*kh*R-q*R))));

ND2=quadl(D2,eps,2*ke-10*top)+quadl(D2,2*ke+10*eps,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————
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function [ND3]=ExcitonDonorD3(ke,kh,R,lam,top)

D3=@(q)((32*lamˆ2./(q.ˆ2+4*lamˆ2).ˆ3)-(2./(q.ˆ2+4*lamˆ2).ˆ2)).*...

. ((sinint((2*ke-q)*R)+2*sinint(q*R)-sinint((2*ke+q)*R)).*...

. (-q.*R.*(cos((2*kh-q)*R)-2*cos(q*R)+cos((2*ke+q)*R))+...

. sin((2*kh-q)*R)+2*sin(q*R)-sin((2*kh+q)*R)+q.*Rˆ2.*...

. (2*q.*sinint(q*R)-(2*kh+q).*sinint((2*kh+q)*R)+(-2*kh+q).*...

. sinint(2*kh*R-q*R))));

ND3=quadl(D3,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NE11]=ExcitonDonorE11(ke,kh,R,lam,top)

E11=@(q)((1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*(sinint((2*kh-q)*R)+2*sinint(q*R)-...

. sinint((2*kh+q)*R)).*(-2*sin(2*ke*R).*sin(q*R)+2*ke.*R.*...

. sinint((-2*ke+q)*R)+(2*ke+q).*R.*sinint((2*ke+q)*R)+...

. q.*R.*sinint(2*ke*R-q*R));

NE11=quadl(E11,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NE12]=ExcitonDonorE12(ke,kh,R,lam,top)

E12=@(q)((1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*(-2.*q.*R.*cos(q*R)+2.*q.*R.*...

. cos(ke*R).ˆ2.*cos(q*R)-2.*q.*R.*cos(q*R).*sin(ke*R).ˆ2-2*sin(q*R)+...

. 2.*cos(ke*R).ˆ2.*sin(q*R)-2.*sin(ke*R).ˆ2.*sin(q*R)-4*ke.*R.*...

. sin(2*ke*R).*sin(q*R)-2*q.ˆ2.*Rˆ2.*sinint(q*R)+(-2*ke+q).ˆ2.*R.ˆ2.*...

. sinint((-2*ke+q)*R)+4*keˆ2*R.ˆ2.*sinint((2*ke+q)*R)+4*ke*q.*R.ˆ2.*...

. sinint((2*ke+q)*R)+q.ˆ2.*R.ˆ2.*sinint((2*ke+q)*R)).*...

. (sinint((2*kh-q)*R)+2*sinint(q*R)-sinint((2*kh+q)*R));
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NE12=quadl(E12,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NE13]=ExcitonDonorE13(ke,kh,R,lam,top)

E13=@(q)((1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*(sinint((2*ke-q).*R)+2.*sinint(q*R)-...

. sinint((2*ke+q).*R)).*(sinint((2*kh-q)*R)+ 2.*sinint(q*R)-...

. sinint((2*kh+q)*R));

NE13=quadl(E13,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NE2]=ExcitonDonorE2(ke,kh,R,lam,top)

E2=@(q)((1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*(sinint((2*kh-q)*R)+2*sinint(q*R)-...

. sinint((2*kh+q)*R)).*(q.*R.*cos((2*ke-q)*R)-2*q.*R.*cos(q*R)+...

. q.*R.*cos((2*ke+q)*R)-sin((2*ke-q)*R)-2*sin(q*R)+sin((2*ke+q)*R)-...

. 2*q.ˆ2.*R.ˆ2.*sinint(q*R)+q.*(2*ke+q).*R.ˆ2.*sinint((2*ke+q)*R)+...

. 2*ke*q.*R.ˆ2.*sinint(2*ke*R-q*R)-q.ˆ2.*R.ˆ2.*sinint(2*ke*R-q*R));

NE2=quadl(E2,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NF11]=ExcitonDonorF11(ke,kh,R,lam,top)

F11=@(q)((1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*(sinint((2*ke-q)*R)+2*sinint(q*R)-...

. sinint((2*ke+q)*R)).*(-2*sin(2*kh*R).*sin(q*R)+2*kh.*R.*...

. sinint((-2*kh+q)*R)+(2*kh+q).*R.*sinint((2*kh+q)*R)+q.*R.*...

. sinint(2*kh*R-q*R));
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NF11=quadl(F11,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NF12]=ExcitonDonorF12(ke,kh,R,lam,top)

F12=@(q)((1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*(-2.*q.*R.*cos(q*R)+ 2.*q.*R.*...

. cos(kh*R).ˆ2.*cos(q*R)-2.*q.*R.*cos(q*R).*sin(kh*R).ˆ2-2*sin(q*R)+...

. 2.*cos(kh*R).ˆ2.*sin(q*R)-2.*sin(kh*R).ˆ2.*sin(q*R)-4*kh.*R.*...

. sin(2*kh*R).*sin(q*R)-2*q.ˆ2.*Rˆ2.*sinint(q*R)+(-2*kh+q).ˆ2.*R.ˆ2.*...

. sinint((-2*kh+q)*R)+4*khˆ2*R.ˆ2.*sinint((2*kh+q)*R)+4*kh*q.*R.ˆ2.*...

. sinint((2*kh+q)*R)+q.ˆ2.*R.ˆ2.*sinint((2*kh+q)*R)).*...

. (sinint((2*ke-q)*R)+2*sinint(q*R)-sinint((2*ke+q)*R));

NF12=quadl(F12,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NF13]=ExcitonDonorF13(ke,kh,R,lam,top)

F13=@(q)((1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*(sinint((2*kh-q).*R)+2.*sinint(q*R)-...

. sinint((2*kh+q).*R)).*(sinint((2*ke-q)*R)+2.*sinint(q*R)-...

. sinint((2*ke+q)*R));

NF13=quadl(F13,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NF2]=ExcitonDonorF2(ke,kh,R,lam,top)

F2=@(q)((1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*(sinint((2*ke-q)*R)+2*sinint(q*R)-...

. sinint((2*ke+q)*R)).*(q.*R.*cos((2*kh-q)*R)-2*q.*R.*cos(q*R)+q.*R.*...
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. cos((2*kh+q)*R)-sin((2*kh-q)*R)-2*sin(q*R)+sin((2*kh+q)*R)-2*q.ˆ2.*...

. R.ˆ2.*sinint(q*R)+q.*(2*kh+q).*R.ˆ2.*sinint((2*kh+q)*R)+2*kh*q.*...

. R.ˆ2.*sinint(2*kh*R-q*R)-q.ˆ2.*R.ˆ2.*sinint(2*kh*R-q*R));

NF2=quadl(F2,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NG1]=ExcitonDonorG1(ke,kh,R,lam,top)

G1=@(q)((-1).*(1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*((2.*sinint(q*R)-...

. sinint(R.*(q-2*kh))-sinint(R.*(q+2*kh))).*(2.*q.*R.*cosint(q*R)-q.*...

. R.*cosint(R.*(q+2*ke))-2.*q.*R.*log(q)+q.*R.*log(q-2*ke)+q.*R.*...

. log(q+2*ke)-2.*sin(q*R)+sin(R.*(q-2*ke))+sin(R.*(q+2*ke))-R.*...

. cosint(R.*(q-2*ke)).*(q-2.*ke)-2.*R.*cosint(R.*(q+2*ke)).*ke-2.*R.*...

. log(q-2*ke).*ke+2.*R.*log(q+2*ke).*ke));

NG1=quadl(G1,0,top)

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

%——————————————————————————————————

function [NG2]=ExcitonDonorG2(ke,kh,R,lam,top)

G2=@(q)((1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*((2.*sinint(q*R)-...

. sinint(R.*(q-2*ke))-sinint(R.*(q+2*ke))).*(2.*q.*R.*cosint(q*R)-q.*...

. R.*cosint(R.*(q+2*kh))-2.*q.*R.*log(q)+q.*R.*log(q-2*kh)+q.*R.*...

. log(q+2*kh)-2.*sin(q*R)+sin(R.*(q-2*kh))+sin(R.*(q+2*kh))-R.*...

. cosint(R.*(q-2*kh)).*(q-2.*kh)-2.*R.*cosint(R.*(q+2*kh)).*kh-2.*R.*...

. log(q-2*kh).*kh+2.*R.*log(q+2*kh).*kh));

NG2=quadl(G2,0,top)

%——————————————————————————————————

%——————————————————————————————————
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%——————————————————————————————————

%——————————————————————————————————

function [NNN]=ExcitonDonorNN(ke,kh,R,lam,top)

NN=@(q)((1.0./(q.ˆ2+4*lamˆ2).ˆ2)).*((sinint((2*ke-q)*R)+2*sinint(q*R)-...

. sinint((2*ke+q)*R)).*(sinint((2*kh-q)*R)+2*sinint(q*R)-...

. sinint((2*kh+q)*R)));

NNN=quadl(NN,0,top)

%——————————————————————————————————

%——————————————————————————————————

A.11 The Integrands As A Function Of q for R = 1 and λ = 0.2
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Figure 6.1 The integrands q2fA1 , q2fA2 and q2fA3 within three
significant graphics. Plots vignette clearly asymptotic form of the
exponential convergence.
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Figure 6.2 The integrands q2fC1 , q2fC2 and q2fC3 within three
significant graphics. Plots vignette clearly asymptotic form of the
exponential convergence.
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Figure 6.3 The integrands q2fD1 , q2fD2 and q2fD3 within three
significant graphics. Plots vignette clearly asymptotic form of the
exponential convergence.
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Figure 6.4 The integrands q2fE11 , q2fE12 , q2fE13 and q2fE2 within three
significant graphics. Plots vignette clearly asymptotic form of the
exponential convergence.
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Figure 6.5 The integrands q2fF11 , q2fF12 , q2fF13 and q2fF2 within three
significant graphics. Plots vignette clearly asymptotic form of the
exponential convergence.
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Figure 6.6 The integrands q2fG1 , q2fG2 and q2fN within three
significant graphics. Plots vignette clearly asymptotic form of the
exponential convergence.


