
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DETECTING BAD SMELLS IN CODES

BY USING ALGORITHM ANALYSIS

by

Aylin GÜZEL

August, 2016

İZMİR

DETECTING BAD SMELLS IN CODES

BY USING ALGORITHM ANALYSIS

 A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Master of

Science in Computer Engineering

by

Aylin GÜZEL

August, 2016

İZMİR

iii

ACKNOWLEDGEMENTS

 I am deeply grateful to my supervisor Asst. Prof. Dr. Özlem AKTAŞ, for her

support, supervision, constructive critisim, encouragement and useful suggestions

throughout this study. It was a great honor to work with her for my thesis.

 I would like to express my gratitude to all the academic staff of computer

engineering department and the Graduate School of Natural and Applied Sciences.

 I am also highly thankful to Prof. Alp KUT, Asst. Prof. Dr. Kökten Ulaş

BİRANT, Asst. Prof. Dr. Özlem AKTAŞ, Asst. Prof. Dr. Canan Eren ATAY, Asst.

Prof. Dr. Semih UTKU, Asst. Prof. Dr. Gökhan DALKILIÇ, Dr. Malik Kemal ŞİŞ

and Dr. Melda DUMAN for their valuable suggestions and great lessons they provide

during my education.

 I would like to thank to the members of my jury Asst. Prof. Dr. Kökten Ulaş

BİRANT, Asst. Prof. Deniz KILINÇ and Asst. Prof. Dr. Özlem AKTAŞ for their

detailed and constructive comments.

 I would like to offer my special thanks to my family for their support, patience,

help and encouragement. I would not have been able to complete this thesis without

their support and love.

 Aylin GÜZEL

iv

DETECTING BAD SMELLS IN CODES BY USING ALGORITHM

ANALYSIS

 ABSTRACT

 Analysis, decision making, making design, detecting defects and correcting

mistakes are important in software development process. Bad smell in code occurs in

some cases, such as, wrong analysis, incorrect integration of new modules into the

system, ignoring the software development principles, writing codes in complex

way, designing system incorrectly etc. Bad smells reduce the quality of the software

and an indication of potential problems in the system. Bad smells in the code must be

destroyed for better quality, high-performance, low-cost, re-use, modification and

easy development of software. Refactoring is simple but has a huge impact on

software quality.

 This work focuses on the definition of bad smell in codes, types of bad smell,

occurence reasons, methods of eliminating code smells, when do we use Refactoring,

Refactoring methods, Refactoring process, detecting bad smells in code by

algorithm analysis approach and how the code could be done better.

 In this thesis, some sorting algorithms periods were compared and their

relationships with bad smells in code were explained. Additionally, the relationship

between algorithm analysis and bad smells in code was examined. Performances of

some sorting algorithms have been compared by using runtime calculations. Finally,

in this thesis, comparison of the certain recursive and iterative sorting algorithms was

made.

Keywords: Refactoring, software engineering, bad smells, algorithm analysis, code

review, good code, code optimization.

v

ALGORİTMA ANALİZİ KULLANARAK KODLARDAKİ KÖTÜ

KOKULARIN TESPİT EDİLMESİ

ÖZ

 Yazılım geliştirme sürecinde analiz, karar verme, tasarım yapma kusurları tespit

etme ve hataları düzeltme önemlidir. Kodlardaki kötü kokular yanlış analiz, yeni

modüllerin sisteme yanlış entegre edilmesi, yazılım geliştirme prensiplerinin göz ardı

edilmesi, karmaşık kodlar yazılması, sistemin yanlış tasarlanması gibi durumlarda

meydana gelir. Kötü kokular yazılım kalitesini azaltır ve sistemdeki potansiyel

problemlerin göstergesidir. Daha kaliteli, performansı yüksek, maliyeti düşük, başka

bir yerde kullanılması, değiştirilmesi ve geliştirilmesi kolay yazılımlar için

kodlardaki kötü kokuların yeniden düzenleme ile yok edilmesi gerekmektedir.

 Bu çalışmada, kodlardaki kötü kokunun ne olduğu, kötü koku çeşitleri, oluşma

nedenleri, kod kokularını yok etme yöntemleri, yeniden düzenlemeyi ne zaman

kullanırız, yeniden düzenleme yöntemleri, yeniden düzenleme süreci, algoritma

analizi yöntemi ile kodlardaki kötü kokunun tespit edilmesine ve nasıl daha iyi kod

yazılabilineceğine odaklanılmıştır.

 Tez çalışmasında, bazı sıralama algoritmalarının süresi karşılaştırılmış ve

kodlardaki kötü kokuyla olan ilişkileri incelenmiştir. Ayrıca, algoritma analizi ve

koddaki kötü kokuların arasındaki ilişki incelenmiş, bazı sıralama algoritmalarının

performansları çalışma zamanı hesaplamaları kullanılarak kıyaslanmış, nihayetinde,

bazı özyinelemeli ve tekrarlamalı sıralama algoritmalarının karşılaştırılması

yapılmıştır.

Anahtar kelimeler: Yeniden düzenleme, yazılım mühendisliği, kötü koku, algoritma

analizi, kod inceleme, iyi kod, kod iyileştirme.

vi

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORM ..ii

ACKNOWLEDGEMENTS ..iii

ABSTRACT..iv

ÖZ ..v

LIST OF FIGURES ..ix

LIST OF TABLES ..xi

CHAPTER ONE - INTRODUCTION ...1

 1.1 General Information and Purpose…………..1

 1.2 Organization of the Thesis ..1

CHAPTER TWO - RELATED WORKS ..3

 2.1 Literature Review ..3

CHAPTER THREE - BAD SMELLS IN CODE ..14

 3.1 Definition of Code Smell and Occurrence Reasons14

 3.2 What We Do When Code Smells Occur in the Code ?....................................14

CHAPTER FOUR - CODE SMELL SAMPLES...16

 4.1. Duplicated Code……………………………………………………………..16

 4.2 Long Method…………………………………………………………………16

 4.3 Large Class…………………………………………………………………...17

 4.4 Long Parameter List………………………………………………………….17

 4.5 Divergent Change ….……………………………………..............................17

 4.6 Shotgun Surgery ……………………………………………………………..18

 4.7 Data Class……………………………………………………………………18

vii

 4.8 Switch Statements…………………………………………………………….18

 4.9 Comments…………………………………………………………………….18

 4.10 Lazy Class…………………………………………………………………...19

CHAPTER FIVE – REFACTORING..20

 5.1 What is Refactoring ? ..20

 5.2 When Do We Use Refactoring?……………………………...........................20

 5.3 Benefits Obtained from Refactoring…………………………………………20

 5.4 Refactoring Process...21

CHAPTER SIX – SOME REFACTORING METHODS22

 6.1 Composing Methods…………………………………………………………22

 6.1.1 Extract Method………………………………………………………….22

 6.1.2 Inline Method…………………………………………………………...26

 6.1.3 Inline Temp……………………………………………………………..27

 6.1.4 Split Temporary Variable……………………..28

 6.2 Moving Features Between Objects Methods...29

 6.2.1 Move Method………...29

 6.2.2 Move Field……...30

 6.2.3 Extract Class…………..30

 6.2.4 Hide Delegate……...30

 6.2.5 Remove Middle Man...30

 6.3 Organizing Data Methods..31

 6.3.1 Encapsulate Collection...31

 6.3.2 Encapsulate Field...31

 6.3.3 Replace Array with Object……………………………………………...32

 6.3.4 Change Unidirectional Association to Bidirectional...............................33

 6.3.5 Change Bidirectional Association to Unidirectional…….......................33

 6.4 Simplifying Conditional Expressions Methods...33

 6.4.1 Replace Conditional with Polymorphism..34

viii

 6.4.2 Consolidate Conditional Expression..34

 6.4.3 Decompose Conditional...34

 6.5 Making Method Calls Simpler Methods..34

 6.5.1 Rename Method...35

 6.5.2 Add Parameter...35

 6.5.3 Remove Parameter...35

 6.5.4 Replace Parameter with Explicit Methods...35

 6.5.5 Preserve Whole Object..36

 6.5.6 Hide Method..36

 6.6 Dealing with Generalization Methods...36

 6.6.1 Pull Up Field..37

 6.6.2 Pull Up Method..38

 6.6.3 Push Down Method...39

 6.6.4 Push Down Field..40

 6.6.5 Extract Subclass...41

 6.6.6 Extract Superclass..42

CHAPTER SEVEN - CODE SMELLS & ALGORITHM ANALYSIS…….....43

 7.1 Algorithm and Algorithm Analysis...43

 7.2 Performance of an Algorithm..43

 7.3 Algorithm Analysis and Code Smells..44

 7.3.1 Example of Algorithm Analysis with God Class.....................................48

CHAPTER EIGHT - CONCLUSION & FUTURE WORK50

REFERENCES ...52

ix

LIST OF FIGURES

 Page

Figure 2.1 Document class hierarchy and helper classes……………………………..3

Figure 2.2 Refactored design model for the document class hierarchy………………4

Figure 2.3 Detection and resolution of bad smells ...…………………………….......4

Figure 2.4 General architecture of the approach……………………………………...6

Figure 2.5 Number and density of code smells per type in the systems……………...7

Figure 2.6 Difference between refactoring tactics……………………………………9

Figure 2.7 Classification of web refactorings……………………………………….11

Figure 5.1 Refactoring process...21

Figure 6.1 The bad code……………………………………………………………..22

Figure 6.2 The better code…………………………………………………………..23

Figure 6.3 The extract method refactoring path……………………………………..24

Figure 6.4 The extract method naming……………………………………………...24

Figure 6.5 The extract method refactoring……………………………………….....25

Figure 6.6 The for loop solution for better code…………………………………….25

Figure 6.7 The for loop solution with extract method………………………………26

Figure 6.8 Source code……………………………………………………………...27

Figure 6.9 Inline method refactoring………………………………………………..27

Figure 6.10 The bad function example……………………………………………...27

Figure 6.11 Inline temp refactored code…………………………………………….28

Figure 6.12 Refactored code...28

Figure 6.13 The bad code example...29

Figure 6.14 Refactored code...29

Figure 6.15 Bad practice for encapsulation..32

Figure 6.16 Refactored code block...32

Figure 6.17 Bad practice for encapsulation..32

Figure 6.18 Refactored code block...33

Figure 6.19 Bad design sample for hide method refactoring......................................36

Figure 6.20 Good design sample hide method refactoring...36

Figure 6.21 Bad design sample for pull up field...37

Figure 6.22 Good design sample for pull up field..37

x

Figure 6.23 Bad design sample for pull up method..38

Figure 6.24 Good design sample for pull up method..38

Figure 6.25 Bad design sample for push down method..39

Figure 6.26 Good design sample for push down method...39

Figure 6.27 Bad design sample for push down field..40

Figure 6.28 Good design sample for push down field..40

Figure 6.29 Bad design sample for extract subclass………………………………...41

Figure 6.30 Good design sample for extract subclass...41

Figure 6.31 Bad design sample for extract superclass..42

Figure 6.32 Good design sample for extract superclass...42

Figure 7.1 Bad design sample for god class...48

Figure 7.2 Good design sample for god class...48

Figure 7.3 Added class structure for good design...49

xi

LIST OF TABLES

 Page

Table 7.1 The array size is 10000 for each sorting algorithm....................................47

Table 7.2 The array size is 20000 for each sorting algorithm....................................47

Table 7.3 Sorting algorithm’s timing with different array sizes.................................47

1

CHAPTER ONE

INTRODUCTION

1.1 General Information and Purpose

 Code defects reduces the software quality. Code smells occurs in some cases:

wrong analysis, thinking about the system wrongly, making the wrong decisions

about system, ignoring the software development principles, writing codes in

complex way, designing system incorrectly etc. This thesis describes code smells and

solution of code smells in detail.

 Bad smells are determined with the help of software engineers’ point of view or

using software tool. Also, code smells are destroyed manually or using the software

code smell detection tool.

 We aim at better software quality, high system performance, low-cost, re-use,

modification and easy development of software. Thus, code smells must be destroyed

by using Refactoring methods. Refactoring is the best solution for code smells.

 This thesis focuses on identification and destruction of bad smells using software

engineers’ point of view. In this thesis, bad smells are destroyed manually. The

relationship between algorithm analysis and bad smells in code is examined.

Performances of some sorting algorithms are compared by using runtime

calculations. In addition, in this thesis, how to write better code is examined in detail.

1.2 Organization of the Thesis

 This thesis includes eight chapters and the rest of this thesis is organized as

follows:

 In Chapter 2, general information about related works and literature search about

code smells, Refactoring and code optimization.

2

 In Chapter 3, “definition of code smell”, “code smell occurrence reasons” and

“solution of code smells” have been explained in detail.

 In Chapter 4, some code smells are described generally.

 In Chapter 5 gives information about Refactoring, Refactoring Process, “benefits

obtained from Refactoring” in detail.

 In Chapter 6, some Refactoring methods are described in detail.

 In Chapter 7, bad smells in code and Algorithm Analysis approach is examined in

detail.

 Finally, in Chapter 8, the conclusion remarks and future works have been given.

3

 CHAPTER TWO

 RELATED WORKS

2.1 Literature Review

 Mens and Tourwe´ (2004) have implemented refactoring methods in a code that

are required for the current structure. They make the design more clear, easy to

intervention, suitable for object-oriented design principles. In this study, the design

has been optimized by using refactoring methods for wrong designed Document

Class and by explaining through the sample. The wrong design example used in this

study is shown in Figure 2.1.

Figure 2.1 Document class hierarchy and helper classes.

 This design is not optimal because different functionalities of the Document class

are distributed over all the subclasses. In order to add a new functionality to the

Document class, such as a text search or a spell checker, we need to change every

subclass of Document and we need to define the appropriate helper classes.

 To overcome these problems, the design needs to be refactored. By adding Visitor

Class in design is ensured to incorporate all subclasses. Required method and the

variable name changes, the carriage of necessary methods in appropriate places, the

design have been optimized using the basic refactoring methods such as adding a

new class. The optimized design by using refactoring method is shown in Figure 2.2

4

Figure 2.2 Refactored design model for the document class hierarchy.

 Liu and his friends emphasized that why and when software should be refactored.

The tools are expected to detect bad smells automatically or semiautomatically. Most

bad smells automatically detected should be rechecked manually because 100

percent precision cannot be guaranteed by detection tools. It is up to software

engineers to determine how to restructure bad smells in terms of refactoring rules

that should be applied. Not all refactorings are supported by refactoring tools. As a

result, detecting and resolving bad smells remain time-consuming, even with tool

support (Liu, Zhiyi, Shao & Niu, 2012). Detection and resolution of bad smells is

shown in Figure 2.3.

Figure 2.3 Detection and resolution of bad smells.

5

 Chatzigeorgiou and Manakos (2014) emphasized that the design of software

systems can exhibit several problems which can be either due to inefficient analysis

and design during the initial construction of the software. They have detected four

bad smell using JDeodarant Tool on a valid Java code. Methods suffering from the

Long Method code smell are usually pieces of code with large size, high complexity

and low cohesion which consequently require more time and effort for

comprehension, debugging, testing and maintenance. This problem is solved by

using automatic tool support or simplifies the code by breaking large methods into

smaller ones.To identify large and complex classes ("God" Class) JDeodarant Tool

"Clustering Algorithm" approach was used.

 Khomh and his hriends stated that researchers and practitioners had developed a

variety of approaches to detect bad smells in the code and design so far, however;

these approaches can not solve the stated uncertainty in the process of detecting the

bad smell. A "Bayesian Approach" (bbns) is used to detect bad smells in the code.

The approach shown on “Blob AntiPattern”. BBN has been evaluated on two test

programs and was observed to be successful (Khomh, Vaucher, Gueheneuc &

Sahraoui, 2009).

 Moha (2007) stated that design defects come from poor design choices and have

the effect of degrading the quality of object-oriented designs. Also, he stated his

research design defects have not been precisely specified and there are few

appropriate tools that allow their detection as well as their correction. His goal is to

provide a systematic method to specify systematically design defects precisely and to

generate automatically detection and correction algorithms from their specifications.

To overcome the problems stated previously, he propose a method, called DECOR

(Defect dEtection for CORrection), to specify systematically high-level design

defects and to generate detection and correction algorithms from their specifications

semi-automatically. DECOR, is based on description of the design defects, detect,

correction and verification respectively.

 Malhotra and Pritam (2012) in this study the authors attempt to empirically

validate whether it is possible to determine the degree of change proneness for a

6

class on the basis of certain code smells in an object- oriented system. The data used

for assesment are the source code of Quartz, an open source job schedular. A total of

79 classes are examined in this study. The result suggest a clear relationship between

code smells and change proneness of a class. Also, a tool has been developed using

thresholds to identify 13 different bad smell in the Java class.

 Schumacher et al. (2010) investigated that a wide range of classes that cause bad

smell in the code ("God" Class) how is recognized by professional software

developers and studied how they bring solutions to this class. For solution, these

classes split up into multiple classes, or else sub-classes should be extracted from the

god class. Metric-based approach is used for the recognition of the huge class by

using CodeVizard software tool. This component is used to parse C # program and to

calculate code metrics. In this research proved that both people and software tool can

identify the very large classes.

.
 Kessent and his friends which emerged inspired by Darwin's theory of evolution

in their study using genetic algorithm to improve the bad smell in the code. The

results reported of an evaluation of their approach using four open-source projects.

Their proposal achieved high correction scores by fixing the majority of expected

bad smells (Kessentini, Mahaouachi & Ghedira, 2013). General approach used for

detecting bad smells is shown in Figure 2.4.

Figure 2.4 General architecture of the approach.

 Rech and Schäfer (2007) have developed the CodeSonar tool to improve the

quality of software systems. CodeSonar was developed to support software engineers

during software development and maintenance activities through the visualization of

7

source code and quality defects using a visual interface in the eclipse IDE. In this

study, software testing, software product metrics, software visualization were used

Refactoring Tecniques for the discovery of defects in the code and visualization for

software control again.

 Sjøberg and his friends emphasized that code smells indicate bad design that leads

to less maintainable code. Also, their work investigates the relationship between code

smells and maintenance effort. This study was conducted on four different but

functionally equivalent (with the same requirements specifications) web-based

information systems originally implemented in Java by different six developers from

different companies. Each developer spent three to four weeks and totally, they

modified 298 Java files in the four systems.

 An Eclipse IDE plug-in measured the exact amount of time a developer spent

maintaining each file. Regression analysis was used to explain the effort using file

properties, including the number of smells. None of the 12 investigated smells was

significantly associated with increased effort after they adjusted for file size and the

number of changes. File size and the number of changes explained almost all of the

modeled variation in effort. The effects of the 12 smells on maintenance effort were

limited. To reduce maintenance effort, a focus on reducing code size and the work

practices that limit the number of changes may be more beneficial than refactoring

code smells (Sjøberg, Yamashita, Anda, Mockus & Dyba, 2013).

Figure 2.5 Number and density of code smells per type in the systems.

8

 Rahman et al. (2012) have investigated whether code cloning is really a “bad

smell” (Fowler, Beck, Brant, Opdyke & Roberts, 1999) by using several medium to

large projects. Generally known that Code Clones increases project size and

maintenance costs. In their work, they try to validate whether cloning makes code

more defect prone. This paper analyses the relationship between cloning and defect

proneness. Consequently, the great majority of bugs are not significantly associated

with clones. Also, they find that code clones may be less defect prone than non-

cloned code and other findings about coloning. Their work do not support the claim

that clones are really a “bad smell”.

 Murphy-Hill et al. (2012) investigated refactoring tool usage and evaluate some of

the assumptions made by other researchers. To measure tool usage, they randomly

sampled code changes from four Eclipse and eight Mylyn developers and

ascertained, for each refactoring, if it was performed manually or with tool support.

They found that refactoring tools are seldom used. They cast doubt on several

previously stated assumptions about how programmers refactor, while validating

others by using their special data. Also, the investigors of this research interviewed

the Eclipse and Mylyn developers to understand why they did not use refactoring

tools and to gather ideas for future research.

 Buschmann (2011) emphases that Refactoring improves the quality of some part

of a system while preserving its functional behavior. Also, Refactoring isn’t limited

to code detail but can range up to the larger scale of a system’s software architecture.

He told a real story in his paper for supporting these ideas by talking with a project

team about Refactoring. In addition, Refactoring, maintain a system’s high

developmental quality. If regularly practiced, refactoring has a positive effect on

developer habitability and system life cycle costs. Consequently, this paper’s author

defends that refactoring meets reengineering and rewriting, two other common

approaches for improving system quality.

 Liu et al. (2014) illustrated that Refactorings might be done using two different

tactics which are root canal refactoring and floss refactoring. Root canal refactoring

is to set aside an extended period specially for refactoring. Floss refactoring is to

9

interleave refactorings with other programming tasks. The authors carry out a case

study to analyse the usage data information collected by Eclipse usage data collector.

Results suggest that about 14% of refactorings are root canal refactorings. These

findings reconfirm the hypothesis that, in general, floss refactoring is more common

than root canal refactoring.

Figure 2.6 Difference between refactoring tactics.

 Mantyla and Lassenius (2006) propose use of the term software evolvability

(software maintainability) to describe the ease of further developing a piece of

software and outline the research area based on four different viewpoints.

Furthermore, they describe the differences between human evaluations and automatic

program analysis based on software evolvability metrics. They suggest that

organizations should make decisions regarding software evolvability improvement

based on a combination of subjective evaluations and code metrics.

 Li and Shatnawi (2007) aim at find empirical evidence of the association between

the bad smells and class error probability by using the error data from the three

releases of the Eclipse Project. They found that the Shotgun Surgery, God Class and

God Methods bad smells were positively associated with the class error probability.

These results provided the first empirical evidence that some bad smells can indeed

indicate class error probability in an object-oriented system as the system’s design

continues to evolve after its official release. The finding also suggests that

10

refactoring a class, besides improving the architectural quality, reduces the

probability of the class having errors in the future.

 Yamashita (2014) investigates the capability of twelve code smells to reflect

actual maintenance problems. For this purpose, four medium-sized systems with

equivalent functionality but dissimilar design were examined for code smells and

also six software developers worked for his research. During that period, researcher

recorded problems faced by developers and the associated Java files on a daily basis.

He developed a binary logistic regression model, with “problematic file. Twelve

code smells, file size, and churn constituted the independent variables. As a result,

code with ISP violation should be considered potentially problematic and be

prioritized for refactoring.

 Stroustrup (1998) wanted to show his view of what object-oriented means in

programming languages. For this purpose, the author presented examples in C++

because C++ is one of the few languages that supports data abstraction, traditional

programming techniques and object-oriented programming, The author supported

that object–oriented programming, thinking and using must be as a lifestyle. Also,

the author of this paper mentioned that advanteges of object-oriented programming,

effectively using, the best features of object-oriented programmig with an easy to

understand examples.

 Dyke and Kunz (1989) mentioned about Object-Oriented Programming and its

advantages, what is Smalltalk, how do we use Smalltalk, the logic of Smalltalk,

structural characteristics of Smalltalk. For instance, In Smalltalk, all data elements,

including integers are considered as objects that have associated methods. For

instance, In Smalltalk, the operation “2+3” is interpreted as sending the “+” message

with the argument “3” to the integer object “2”. The integer class has a method “+”

that is inherited by the instance object, “2”, which performs the addition and returns

the sum “5” to the sender. There is a class hierarchy (object class) in Smalltalk. For

11

instance, integer class is a subclass of Number. In short, everything in Smalltalk is

implemented as an object.

 Garrido and Rosst (2011) mentioned that history of Refactoring, Refactoring

process, what is Refactoring, when do we use Refactoring with an Web Applications,

classification of Web refactorings, results and impact of Refactoring, example of

Web Application Refactorings.

Figure 2.7 Classification of web refactorings.

 Wirfs-Brock (2008) mentioned that Jon Bentley’s thesis and Kent Beck in

Implementation Patterns (Addison-Wesley, 2007) study. Also, she emphasized that

importance of good design, good programming, writing beautiful code, importance

of consistent code, test- driven development, importance of writing easy to

understand, easy to read codes, importance of purify that unnecassary complexity of

codes and design, importance of documentation. For instance, “Do not believe any

programmer, manager, or salesperson who claims that code can be self-documenting

or automatically documented” (“Comments are More Important than Code,” ACM

Queue, Sept./Oct. 2007).

12

 Booch (2014) mentioned that computing, computer science history with

examples, Computational thinking, designing systems, implementation, solving

problems, understanding human behavior by drawing on the concepts fundamental to

computer science, learning to code, teaching coding spaces, importance of coding.

 Devarakonda (1998) mentioned that active research and innovation in Object-

Oriented Programming and Object- Oriented systems, Small-Talk, Corba, ActiveX,

C++, and Java Technologies, extensibility for Object-Oriented Systems, reusability

for Object-Oriented Systems, distrubuted programs, distrubuted objects and also

performance of all.

 Kim and Notkin (2005) studied that programmers often create similar code or

reuse existing code by copying and pasting. It cause problems during software

maintenance because programmers may need to locate code clones and change them

consistently. In this work, they investigate how code clones evolve, how many code

clones impose maintenance challenges, and what kind of tool or engineering process

would be useful for maintaining code clones. Based on a formal denition of clone

evolution, they built a clone genealogy tool that automatically extracts the history of

code clones from a source code repository (CVS). Their clone genealogy tool enables

several analyses that reveal evolutionary characteristics of code clones. Their initial

results suggest that excessive refactoring may not be the best solution for all code

clones; thus, they propose alternative tool solutions that assist in maintaining code

clones using clone genealogy information.

 Thompson and Li (2013) mentioned what is Refactoring for functional

programming languages first in theory, and then in the context of a larger example.

They identified Refactoring is the process of changing the design of a program

without changing what it does like that.

 This paper reflects on their experience of building tools to refactor functional

programs. They discuss various extensions to the core tools, including integrating the

tools with test frameworks; facilities for detecting and eliminating code clones; and

13

facilities to make the systems extensible by users. They have presented an overview

of refactoring functional programs, and shown how different the process and its

implementation can be for two representative functional for another perspective on

this from the C verification community. A number of refactorings that they have

implemented particularly the structural ones are similar to Object-Oriented

Refactorings; other Object-Oriented refactorings which move methods and attributes

around the inheritance hierarchy do not have direct equivalents in the functional

paradigm. Their work illustrated has underlined that it is important not only to

implement the basic refactorings but also to provide decision support tools, such as

clone detection and module analysis, that can guide the application of the tool.

14

CHAPTER THREE

BAD SMELLS IN CODE

3.1 Definition of Code Smell and Occurrence Reasons

 Design anomalies in the codes are also called bad smells. Code smells are signs of

potential problems in the system. Bad smells in the code reduce the quality of the

software. Wrong analysis, bad design, incorrect integration new modules into the

system, ignoring the software development principles, writing codes in complex way,

thinking about the system incorrectly, making wrong decision about the system,

writing codes with poor readability and understandability for only to recover the

moment etc. causes bad smells (Güzel & Aktaş, 2015).

3.2 What We Do When Code Smells Occur in the Code ?

 Software engineers should be written the codes adhering to the software

development process and principles. Design, analysis, testing, review, maintenance

and workflow problems may ocur in the case of ignoring any stage of the process or

principles. At this point, code smells must be destroyed manually or using tool

support. This thesis uses only manual resolving method for code smells problem.

 Detecting and resolving bad smells is time-consuming for software engineers

despite proposals on code smell detection and refactoring tools. Number of code

smells are increasing continuously, yet tool support for detecting bad smells is not

enough. Therefore, software engineer’s point of view is used for detecting and

correcting bad smells in codes commonly.

 Software engineers should be given the right decisions about the system also

codes and should be aimed to improve software performance, readability, flexibility,

understandability. For this purpose, the required procedure is called Refactoring.

15

 Bad smells in the code must be destroyed for better quality, high-performance,

low-cost, elsewhere use, modification and easy re-configuration. Refactoring

modifies software to improve its readability, maintainability, and extensibility

without changing what it actually does. Refactoring does not alter the external

behavior of the code, yet improves its internal structure. The goal of Refactoring is

simply not adding any new functionalities in the software. Refactoring is simple but

has an enormous impact on software quality.

 Bad smell in the code causes a loss of performance in the software. Loss of

performance would give rise to increased costs, the motivation disorders;

transportability, interchangeability and readability of code that are difficult.

Refactoring should be used to improve the performance of the software.

16

CHAPTER FOUR

CODE SMELL SAMPLES

 In this chapter, some important bad smells are examined (Güzel & Aktaş, 2016).

Code smells are detected with the help of a software engineer’s point of view or the

software tool. Also, code smells can be solved manually or using the software tool.

4.1 Duplicated Code

 Duplicated code is a really big problem in terms of having good design.

“Duplicated code can be defined as a same code structure in more than one place in

application or code.” (Fowler, Beck, Brant, Opdyke & Roberts, 2002). The program

will be better by unifying the code smells in an efficiently way.

 The duplicated code divided into some categories: same expression in two

methods of the same class, the same expression in two identical subclasses etc. The

first one can be corrected by using Extract Method and the code can be called from

both places. Second one can be eliminated using Extract Method in both classes then

Pull Up Field.

4.2 Long Method

 The best programs are written by using not long methods. Short methods are

important for good Refactoring. The longer procedure makes more difficult to

understand the code so, causes the bad smells. Therefore, the methods can be shorten

by using Extract Method approach (Fowler, Beck, Brant, Opdyke & Roberts, 2002).

17

4.3 Large Class

 Large Class means a class with a huge amount of variables. In other words, large

class means that a class is trying to do too much unexpected tasks without necessary.

Solution of large class problem is to eliminate redundancy in the class itself by using

Extract Class or Extract Subclass approach (Fowler, Beck, Brant, Opdyke & Roberts,

2002).

4.4 Long Parameter List

 Parameters should be used only if necessary. Also, using global data is not

optimal for programs. Global data was alternative to parameters. Instead of global

data or large parameter lists, use objects. Use small parameter lists with an object-

oriented programs. Short parameter lists are easy to understand and useage. “If the

parameter list is too long or changes too often, rethink dependency structure of code

and redesign your own code” (Fowler, Beck, Brant, Opdyke & Roberts, 2002).

4.5 Divergent Change

“Divergent change occurs when one class is commonly changed in different

ways for different reasons. Thus, each object is changed only as a result of one kind

of change” (Fowler, Beck, Brant, Opdyke & Roberts, 2002). For solution, use

Extract Class method.

18

4.6 Shotgun Surgery

 “Shotgun surgery is similar to divergent change, yet is the opposite”.Make a lot of

little changes to a lot of different classes use Move Method and Move Field to put all

the changes into a single class for optimal solution. Inline Class approach is used for

to bring a whole bunch of behavior together. “Divergent change is one class that

suffers many kinds of changes, and shotgun surgery is one change that alters many

classes” (Fowler, Beck, Brant, Opdyke & Roberts, 2002).

4.7 Data Class

 Data classes have fields and getting and setting methods for the fields. Data

classes are dumb data keepers. If getting and setting methods used by other classes,

try to use Move Method to move behavior into the data class. If you can't move a

whole method, use Extract Method to create a method that can be moved. Data

classes are approved as a starting point, but to participate as a grownup object, they

need to take some responsibility (Fowler, Beck, Brant, Opdyke & Roberts, 2002).

4.8 Switch Statements

 The most common problem of switch statements is duplication. In other words,

the same switch statement is found more than one places in the program. If you add a

new clause to the switch, you have to find all these switch, statements and change

them (Fowler, Beck, Brant, Opdyke & Roberts, 2002).

4.9 Comments

 Refactoring not to say that people shouldn't write comments. “In early stage,

comments aren't a bad smell; indeed they are a sweet smell” (Fowler, Beck, Brant,

19

Opdyke & Roberts, 2002). But now, supported that commented code used for hiding

the bad smells and so the comments are bad smell, because the code is bad. If our

code is good enough for reading, re-using, implementing to other systems, there is no

need to write any comment into code.

4.10 Lazy Class

 Understanding and maintaining classes always costs time and money. So if a class

doesn't do enough to earn your attention, it should be deleted. Perhaps a class was

designed to be fully functional but after some of the refactoring it has become

ridiculously small or perhaps it was designed to support future development work

that never got done. For subclasses with few functions, try Collapse Hierarchy.

Advantage of this solution is reduced code size and easier maintenance. Ignore this

approach when a Lazy Class is created in order to delineate intentions for future

development, try to maintain a balance between clarity and simplicity in your code

(Lazy Class, n.d.).

20

CHAPTER FIVE

 REFACTORING

5.1 What is Refactoring?

 Refactoring aims to improve software performance, readability, flexibility and

understandability. Refactoring does not change the external behavior of the code. In

addition, Refactoring improves internal structure of the code. The goal of refactoring

is not to add new functionality. In other words, Refactoring does not change the

observable behavior of the code. Refactoring is used for destruction of code smells.

5.2 When Do We Use Refactoring?

 Refactoring is used for better quality, high-performance, low-cost, elsewhere use,

modification and easy re-configuration. Refactoring is used some cases as follows:

 when a new function is added,

 if the existing design and code ‘bad’,

 to correct errors,

 code reviewing.

5.3 Benefits Obtained from Refactoring

 Refactoring builds up new hierarchies. Refactoring does not change the

observable behavior of the code, yet improves its internal structure. Refactoring

provides some advantages for system:

 simple and understandable,

 easy to change,

 readability is high,

21

 used in other projects.

Benefits obtained from Refactoring are as follows:

 code quantity is reduced.

 complex code is simplified.

 code maintenance is facilitated.

5.4 Refactoring Process

 Refactoring targets clean, good, simple, understandable and high readable code.

Refactoring process is as follows:

 yes no

Figure 5.1 Refactoring process.

START

Make a small

change

Test the system still

running or not

Move to a new Refactoring

method

Solve the problem or change it

back(the system is still working)

22

CHAPTER SIX

SOME REFACTORING METHODS

 Refactoring methods are basically divided into six subcatagories as follows:

Composing Methods, Moving Features Between Objects, Organizing Data,

Simplifying Conditional Expressions, Making Method Calls Simpler, Dealing with

Generalization (Güzel & Aktaş, 2016).

6.1 Composing Methods

 Some Composing Methods are: Extract Method, Inline Method, Inline Temp,

Split Temporary Variable, etc (Composing Methods, n.d.).

6.1.1 Extract Method

 Extract method is generally used in order to simplify the long methods. In this

example, the simple code fragment that collects four number will be restructured

respectively. The bad code is shown in Figure 6.1.

Figure 6.1 The bad code.

23

 In Figure 6.1, bad smells such as dublication, naming failure for variables (int a,

int b, int c, int d, int e), error for adding comment lines, square brackets design error,

more lines are observed. This code is not optimal in terms of Refactoring. This bad

code is not readable, clean and simple. So, begin the Refactoring process

immediately.

 First, square brackets design error corrected. Then, naming failure for variables

and others are corrected. Unneccessary comment lines are cleaned. Refactoring

defends using very little comment lines. Because Refactoring supports that the

desired task should be understood from the written code, not from the comment lines.

If your code is the best, you don’t need to add any comment lines. Instead of writing

comment lines, write the best code!

 In Figure 6.1 “write a”, “write b” or “e:{0}” etc. lines are not optimal. Because

the variables (a,b,c,d or e) are numerical value or string value is not obvious. So, the

program will crash when entering the values. Also, we don’t know “What is e ?”.

Only, code writer knows its mean. Thus, bad smell is available.

 In addition, the variable declaration is corrected. More lines observed because of

variable declaration failure. The integer variable declaration is done one by one.

Thus, code lines are reduced. In additon, bad smell is destructed and algorithmic time

is reduced. Now, the more readable code is shown in Figure 6.2.

Figure 6.2 The better code.

24

 Other code smell is available currently. All code is in main structure and code’s

readability is very poor. So, Extract method is used for correcting this smell. Extract

method Refactoring path is shown in Figure 6.3 and Figure 6.4.

Figure 6.3 The extract method refactoring path.

Figure 6.4 The extract method naming.

The new Refactoring is shown in Figure 6.5.

25

Figure 6.5 The extract method refactoring.

After that, for loop is used for more optimal solution instead of other refactoring

methods. Better solution is shown in Figure 6.6.

Figure 6.6 The for loop solution for better code.

 Finally, extract method is applied to the loop solution. The best result of

Refactoring process is shown in Figure 6.7.

26

 Figure 6.7 The for loop solution with extract method.

 As a result, the sample code is more readable and more useful than the start of the

event. Refactoring process is simple, yet it has a immense impact on software.

6.1.2 Inline Method

 Inline method aims at clean and simple code by reducing the number of unneeded

methods. Inline method Refactoring process is (Inline Method, n.d.) :

 First, make sure that the method is not redefined in subclasses. If the method

is redefined, refrain from this technique.

 Find all calls to the method. Replace these calls with the content of the

method.

 Delete the method.

 The code that needs to improve by Refactoring technique called Inline Method is

shown in Figure 6.8 (Inline Method, n.d.) :

27

Figure 6.8 Source code.

 The code which applied Inline Method Refactoring is shown in Figure 6:

Figure 6.9 Inline method refactoring.

6.1.3 Inline Temp

 Inline temp improve the readability of the code by do away with the unnecessary

variable. Temporary variable is only used once. Refactoring process of inline temp is

(Inline Temp, n.d.):

 find all places that use the variable. Instead of the variable, use the expression

that had been assigned to it.

 delete the declaration of the variable and its assignment line.

The code block which needs to Refactor is shown in Figure 6.10.

Figure 6.10 The bad function example.

28

The Inline Temp refactored code is shown in Figure 6.11.

Figure 6.11 Inline temp refactored code.

Lastly, naming failure is corrected shown in Figure 6.12.

Figure 6.12 Refactored code.

6.1.4 Split Temporary Variable

 When you have the same temporary variable assigned to more than once, split it

up into two, unless it is a loop variable (Composing Methods (Split Temporary

Variable), n.d). Refactoring process of Split Temporary Variable is (Split Temporary

Variable, n.d) :

 find the variables in the code assigned to more than once.

 use the new name instead of the old one.

 repeat this until the variable is assigned a different value.

The bad code design in Figure 6.13.

29

Figure 6.13 The bad code example.

The Split Temporary Variable refactored code is shown in Figure 6.14.

Figure 6.14 Refactored code.

6.2 Moving Features Between Objects Methods

 Some “Moving Features Between Objects” methods are: Move Method, Move

Field, Extract Class, Hide Delegate, Remove Middle Man, etc (Moving Features

Between Objects, n.d).

6.2.1 Move Method

 A method is used more in another class than defined class is called Move Method

Refactoring problem. Solution for move method problem is (Move Method, n.d.) :

 create a new method in the class that uses the method the most.

 move code from the old method to there.

 turn the code of the original method into a reference to the new method in the

other class or else remove it entirely.

30

 6.2.2 Move Field

 Move method problem is described as a field is used more in another class than

defined class. Solution of move field problem is (Move Field, n.d.):

 create a new field in a new class

 change all its users (redirect all users of the old field to new one.)

6.2.3 Extract Class

 One class does the work of two known as a Extract Class problem. This method

replaces a single class that is responsible for multiple tasks with several classes each

having a single responsibility.

6.2.4 Hide Delegate

 Hide delegate defined as a client is calling a delegate class of an object. Solution

of Hide Delagete problem is (Fowler, Beck, Brant, Opdyke & Roberts, 2002):

 create methods on the server to hide the delegate.

6.2.5 Remove Middle Man

 A class has too many methods that simply delegate to other objects problem is

called Remove Middle Man problem. This problem can be solved by deleting these

methods and calling the end methods directly.

31

6.3 Organizing Data Methods

 Some “Organizing Data” methods are: Encapsulate Collection, Encapsulate Field,

Replace Array with Object, Change Unidirectional Association to Bidirectional,

Change Bidirectional Association to Unidirectional, etc.

6.3.1 Encapsulate Collection

 Collection means arrays, lists or vectors in object – oriented programming. A

class contains a field. Also, a field contains a collection of objects. Working with the

collection provided by using getter and setter methods. The problem is method’s

returning value. A method returns a collection. For the best solution of this problem:

 Make method return a read-only view or,

 Create a add/remove methods.

Benefits of this Refactoring method is:

 The collection field is encapsulated inside a class. This method prevents

accidental changing or overwriting of the collection elements by returning a

copy of collection when the getter and seter method is called.

6.3.2 Encapsulate Field

 Encapsulation is important for object-oriented programming and design. Using

public field has some disadvantages such as data can change without any control.

Thus, Encapsulate Field problem can be solved:

 First, use private field access.

 Then, create access methods (getting and setting methods).

32

Encapsulate field problem is shown in Figure 6.15.

Figure 6.15 Bad practice for encapsulation.

Figure 6.16 Refactored code block.

6.3.3 Replace Array with Object

 Arrays contains various types of data. When we use arrays, some problems may

ocur such as accessing problem to the array elements. Data stored place (array cells)

maybe selected wrong. So, it causes bad smelss and accessing problem. The code

smell example shown in Figure 6.17.

Figure 6.17 Bad practice for encapsulation.

Refactored code with Replace Array with Object method shown in Figure 6.18.

33

Figure 6.18 Refactored code block.

6.3.4 Change Unidirectional Association to Bidirectional

 This problem is described: the association between two classes is only

unidirectional, yet two classes uses eachothers’ features. Solution of this problem is

(Change Unidirectional Association to Bidirectional, n.d.):

 Add the missing association to the class that needs it.

6.3.5 Change Bidirectional Association to Unidirectional

 This problem is described: There is a bidirectional association between classes,

yet one of the classes does not use the other's features. Solution of this problem is :

(Change Bidirectional Association to Unidirectional, n.d.)

 Remove the unnecessary association.

6.4 Simplifying Conditional Expressions Methods

 Some “Simplifying Conditional Expressions” methods are: Replace Conditional

with Polymorphism, Consolidate Conditional Expression, Decompose Conditional,

etc.

34

6.4.1 Replace Conditional with Polymorphism

 This problem is described: conditionals that chooses different behavior depending

on the object type or properties. Solution of this problem is (Replace Conditional

with Polymorphism, n.d):

 create subclasses matching the branches of the conditional.

 create a shared method and move code from the corresponding branch of

the conditional to it.

 replace the conditional with the relevant method call.

6.4.2 Consolidate Conditional Expression

 Consolidate Conditional Expression problem is described: multiple conditionals

which the returned values are the same is seen in the bad code block. Group the

conditionals using the ‘&&’ or the ‘||’ operators for the best solution and cleaner

code. After that, extract the code into a separate function. In other words, consolidate

all these conditionals in a single expression (Consolidate Conditional Expression,

n.d).

6.4.3 Decompose Conditional

 Decompose Conditional problem is having a complex conditionals such as switch,

if-then-else statements. Best solution for Decompose Conditional problem is

(Decompose Conditional, n.d.) :

 Decompose the complex parts of the conditional into separate methods.

6.5 Making Method Calls Simpler Methods

 Some “Making Method Calls Simpler” methods are: Rename Method, Add

Parameter, Remove Parameter, Replace Parameter with Explicit Methods, Preserve

Whole Object, Hide Method, etc.

35

6.5.1 Rename Method

 Method naming is important for better coding. The name of a method must

explain what the method does. Solution of this problem:

 rename the method.

 Rename Method Refactoring approach improves the code readability. For

example; change the findNumber() method name as a getEmployeeID().

6.5.2 Add Parameter

 A method needs more information from its caller to perform certain actions.

Create a new parameter to pass the information (Add Parameter, n.d.). For example;

change the method getExpirationDate() method as a getExpirationDate(Date).

6.5.3 Remove Parameter

 If a parameter is not used in the body of a method, remove the unnecassary

parameter (Remove Parameter, n.d.). For example; change the method

getExpirationDate(Date) method as a getExpirationDate().

6.5.4 Replace Parameter with Explicit Methods

 This problem is described: a method is split into parts, each of which is run

depending on the value of a parameter. Solution of this problem (Replace Parameter

with Explicit Methods, n.d.) :

 Extract the individual parts of the method into their own methods and call

them instead of the original method.

36

6.5.5 Preserve Whole Object

 Preserve Whole Object problem can solved by passing the whole object instead of

passing parameters to a method.

6.5.6 Hide Method

 This problem is described: a method is not used by other classes or is used only

inside its own class hierarchy. Solution of this problem (Hide Method, n.d.)

 make the method private or protected.

Hide method problem is shown in Figure 6.19.

Figure 6.19 Bad design sample for hide method refactoring.

Solution of hide method problem is shown in Figure 6.20.

Figure 6.20 Good design sample hide method refactoring.

6.6 Dealing with Generalization Methods

 Some “Dealing with Generalization” methods are: Pull Up Field, Pull Up Method,

Push Down Method, Push Down Field, Extract Subclass, Extract Superclass etc.

37

6.6.1 Pull Up Field

 If two classes have the same field, Pull Up Field problem occurs. This problem

can be solved by removing the field from subclasses and moving it to the superclass.

This method destroys duplication of fields in subclasses. Bad design sample is shown

in Figure 6.21.

Figure 6.21 Bad design sample for pull up field.

Good design sample is shown in Figure 6.22.

Figure 6.22 Good design sample for pull up field.

38

6.6.2 Pull Up Method

 If subclasses which have methods that perform similar work, pull up method

problem occurs. This problem can be solved by making the methods unique and then

moving them to the relevant superclass. Bad design sample is shown in Figure 6.23.

Figure 6.23 Bad design sample for pull up method.

Good design sample is shown in Figure 6.24.

Figure 6.24 Good design sample for pull up method.

39

6.6.3 Push Down Method

 The behavior implemented in a superclass used by only one or a few subclasses.

This can be solved by moving the behavior to the subclasses. This method improves

class coherence (Push Down Method, n.d.). Bad design sample is shown in Figure

6.25.

 Figure 6.25 Bad design sample for push down method.

Good design sample is shown in Figure 6.26.

Figure 6.26 Good design sample for push down method.

40

6.6.4 Push Down Field

 A field used only in a few subclasses so push down field problem occurs. Solution

of this problem:

 Move the field to these subclasses.

Bad design sample is shown in Figure 6.27.

Figure 6.27 Bad design sample for push down field.

Good design sample is shown in Figure 6.28.

 Figure 6.28 Good design sample for push down field.

41

6.6.5 Extract Subclass

 A class has features that are used only in certain cases so extract subclass problem

occurs. Solution of this problem (Extract Subclass, n.d.):

 Create a subclass and use it in these case.

Bad design sample is shown in Figure 6.29.

Figure 6.29 Bad design sample for extract subclass.

Good design sample is shown in Figure 6.30.

Figure 6.30 Good design sample for extract subclass.

42

6.6.6 Extract Superclass

 Extract superclass problem means two classes with similar features. Solution of

this problem is (Extract superclass, n.d.) :

 create a superclass.

 move the common features to the superclass.

Bad design sample is shown in Figure 6.31.

Figure 6.31 Bad design sample for extract superclass.

Good design sample is shown in Figure 6.32.

 Figure 6.32 Good design sample for extract superclass.

43

CHAPTER SEVEN

CODE SMELLS & ALGORITHM ANALYSIS

7.1 Algorithm and Algorithm Analysis

 An algorithm is a list of rules to follow in order to solve a problem and bases of

computer science (Code needs algorithms, n.d.). A good algorithm aims to perform

optimum performance. The good algorithm should be:

 fast,

 cover less space in memory.

Algorithm analysis is used:

 to measure algorithm’s performance and timing,

 to compare different algorithms,

 to find the best available solution.

7.2 Performance of an Algorithm

 Performance of an algorithm is rely on two categories which are internal and

external factors. Internal factors of algorithm performance is:

 space,

 time.

External factors of algorithm performance is:

 the size of the input data,

 the computer speed,

 the quality of compiler.

 Code smells reduces performance of software. Loss of performance causes

somethings:

 increased costs,

 motivation disorders,

 hard transportability,

44

 difficult interchangeability

 poor readability of code.

In order to improve the performance of the software, Refactoring should be used.

 An algorithm's performance can explain with Big-O notation mathematical

approach. This mathematical approach is define the performance of an algorithm by

using the internal details of an algorithm. Big-O notation shows the growth rate of an

algorithm. Also, growth rate is the best indicator to reveal the performance of an

algorithm.

7.3 Algorithm Analysis and Code Smells

 Defects in the code can be determined by deciding through the experience of

using a software tool or software engineer. Whether the code defects identify

correctly or not is verified by “Algorithm Analysis” approach. Therefore, "Algorithm

Analysis" approach can be used to idetify very long cycles, extreme nested loop

structures, method with extreme parameter and God Class by using space, time and

size of the input data factors.

 This study compares some algorithm’s performance using runtime calculate

approach. Also, this study investigates which method is better for certain sorting

algorithms recursive or iteratives?

 The first algorithm is “Bubble Sort Algorithm”. Bubble Sort is a simple sorting

algorithm that repeatedly steps through the list to be sorted, compares each pair of

adjacent items and swaps them if they are in the wrong order. The pass through the

list is repeated until no swaps are needed, which indicates that the list is sorted (Lazy

Class, n.d.). Two different solutions such as Recursive Solution and Non-Recursive

Solution were examined for Bubble Sort Algorithm. Running with an application

written in C # programming language to analyze Bubble Sort Algorithm solutions.

45

All applications within this thesis has been implemented using Windows 7 Ultimate

(64 bit) operating system, Intel Core Duo 2.53 GHz CPU and 3 GB Ram.

 Recursive and Non-Recursive solutions were analyzed by analysis of algorithms.

Generally, Bubble Sort complexity is O(n²) and Bubble Sort works well with either

linked lists or arrays O(n³). Also, Bubble sort does not work optimum with either

Recursive or Non-Recursive functions. Due to dynamically changeable linked list,

the performances of the software with recursive and non-recursive solution were not

optimal in the current state. In this study, performance of the method calculated for

the Recursive and Non-Recursive function. As a result, the Recursive solution has

been determined as more optimum than Non-Recursive one, after measuring the

performance of these methods. The performance of these methods were calculated

as:

 Normal method: 0.0203417 seconds.

 Recursive method: 0.011363 seconds.

 The second algorithm is “Quick Sort Algorithm” which is a divide and conquer

algorithm. Quicksort first divides a large array into two smaller sub-arrays: the low

elements and the high elements. Then, quick sort can recursively sort the sub-arrays.

Two different solutions such as Recursive Solution and Iterative Solution were

examined for Quick Sort Algorithm. Running with an application written in C #

programming language to analyze all sorting algorithm solutions.

 Quicksort is a comparison sort, so it can sort items of any type for which a "less-

than" relation. In efficient implementations it is not a stable sort, meaning that the

relative order of equal sort items is not preserved. Quicksort can operate in-place on

an array, requiring small additional amounts of memory to perform the sorting.

Mathematical analysis of quicksort shows that, on average, the algorithm takes O(n

log n) comparisons to sort n items. In the worst case, it makes O(n2) comparisons,

though this behavior is not frequent (Quicksort, n.d.). Respectively, the result of

recursive and iterative quick sort algorithm is shown as follows:

46

 Recursive method: 1.6E-06 seconds.

 Iterative method: 2.4E-06 seconds.

 The third algorithm is “Merge Sort Algorithm”, which uses divide and conquer

methods. This algorithm is an efficient, general-purpose, comparison-based sorting

algorithm. The merge sort works as follows Merge Sort, n.d.):

i. Divide the unsorted list into n sublists, each containing 1 element (a list of 1

element is considered sorted).

ii. Repeatedly merge sublists to produce new sorted sublists until there is only 1

sublist remaining. This will be the sorted list.

 In sorting n objects, merge sort has an average and worst-case performance of

O(n log n). If the running time of merge sort for a list of length n is T(n), then, the

recurrence T(n) = 2T(n/2) + n follows from the definition of the algorithm. In the

worst case, the number of comparisons merge sort makes is equal to or slightly

smaller than (n ⌈log n⌉ - 2⌈log n⌉ + 1), which is between (n log n - n + 1) and (n log

n + n + O (log n)).

Respectively, the result of recursive and iterative merge sort algorithm is shown as

follows:

 Recursive method: 1.2E-06 seconds.

 Iterative method: 1.6E-06 seconds.

 Another application program was developed for calculating timing for Insertion

Sort, Selection Sort, Bubble Sort, and Quick Sort. This application allows us to test

various sizes of arrays (C# Sorting Algorithms Performance Comparison, n.d.). This

program uses randomly scrambled numbers. The program aims to demonstrate

timing of Sorting Algorithms with an array size change option. In Table 7.1, the

program tests each sorting algorithm with an 10000 array size. The program will

calculate timing for each Sorting Algorithm by changing array size in each iteration

(Each iteration begins with Selection Sort and ends after Insertion Sort).

47

Table 7.1 The array size is 10000 for each sorting algorithm.

 Array Size Sort Time

Selection Sort 10000 1.154 seconds

Bubble Sort 10000 1.092 seconds

Quick Sort 10000 0.297 seconds

After that, the array size set 20000. The result for 20000 items is shown in Table 2.

Table 7.2 The array size is 20000 for each sorting algorithm.

 Array Size Sort Time

Selection Sort 20000 6.584 seconds

Bubble Sort 20000 8.143 seconds

Quick Sort 20000 0.655 seconds

As a result, each Sorting Algorithm’s total timing tested with different array size.

The results shown in Table 7.3:

Table 7.3 Sorting algorithm’s timing with different array sizes.

Array Size Selection Sort Bubble Sort Quick Sort

10000 1.154 1.092 0.292

20000 6.584 8.143 0.655

23000 6.864 11.513 0.608

25000 6.801 7.114 0.546

5000 0.327 0.265 0.171

2600 0.109 0.093 0.047

30000 9.188 9.828 0.749

50000 25.569 43.914 1.201

67000 138.17 89.747 1.513

100000 210.477 356.384 5.304

48

7.3.1 Example of Algorithm Analysis with God Class

 Refactoring aims to improve software performance. In this example, rectangular

area calculation performed in two ways. Time complexity of bad design sample is

12. (Each line has a one complexity.) Bad design sample is shown in Figure 7.1:

Figure 7.1 Bad design sample for god class.

Refactoring was performed for better code readability and high performance. Class

hierarchy is implemented to reach the good design. Also, good design sample is

shown in Figure 7.2:

Figure 7.2 Good design sample for god class.

49

Added class structure is shown in Figure 7.3:

Figure 7.3 Added class structure for good design.

 Time complexity of good design sample is 11. (Each line has a one complexity.)

Thus, we analyzed the code and calculate the time complexity of bad and good code

design sample. Thus, we have found code smells by using “Algorithm Analysis”

approach with time complexity. Time complexity of bad code design sample and

good or refactored code design sample is different. Refactored code design sample

performance is better than bad code design sample. Thus, we have proved the

necessity of Refactoring. In addition, we have proved the code can be determined by

algorithm analysis time complexity calculation.

50

CHAPTER EIGHT

CONCLUSION & FUTURE WORK

 This study is prepared based on the software devolopment process and software

engineering discipline. Also, in this thesis it is emphasized that code smells occurs

due to omissions and negligence in system analysis, decision-making and

implementation phases.

 According to the Refactoring method code smells are detected with the help of a

software engineer ’s point of view or the software tool and bad smells can be solved

manually or using the software tool. However, at this point, some problems may

ocur, first, making wrong decisions by software engineers, and second, code smell

detection and destruction process is too long with software engineers’ experiences.

One by one and step by step detection and correction of defects by using software

engineers’ point of view takes a lot of time. Thus, all of these causes loss of cost

and labor.

 In previous studies, detecting bad smells in the code by using software tools that

not contain all of the available Refactoring method, which can detect only a certain

part and are seen to be a solution. The most important reason of this condition is that

the development rate of software tools and the rate of emergence of new code defects

are not at the same or close speed.

 In this study, features of previous works have examined in details; detection of

bad smells in the code has been tested on some algorithms by evaulating algorithm

runtimes. It was seen that code smell detection and correction defends some rules for

some algorithms have better performance and thus, some of them have better and

more clear code. This study compared basic sorting algorithms’ performance using

runtime calculation approach. Also, it has been investigated that which method is

better for certain sorting algorithms recursive or iteratives in terms of their own

performance with the criteria of calculated runtime by using special feature. In

addition, timing of Sorting Algorithms tested with different array size and compared.

51

 It is shown that, "Algorithm Analysis" approach can be used to idetify very long

cycles, extreme nested loop structures, method with extreme parameter and God

Class by using internal and external factors of algorithm performances.

 In future, implementation of a system for detecting bad smells in codes has been

thought by using “Algorithm Analysis” approach.

52

REFERENCES

Add parameter. (n.d.). Retrieved June 17, 2016 from

http://refactoring.com/catalog/addParameter.html

Booch, G., (2014). To code or not to code, that is the question. IEEE Software, 9-

11. Retrieved October 19, 2015.

Buschmann, F., (2011). Gardening your architecture, Part 1:Refactoring. IEEE

Transactions on Software Engineering, 92-94.

Change Bidirectional Association to Unidirectional. (n.d.). Retrieved June 16, 2016

from https://sourcemaking.com/refactoring/change-bidirectional-association-to-

unidirectional

Change Unidirectional Association to Bidirectional. (n.d.). Retrieved June 16, 2016

from https://sourcemaking.com/refactoring/change-unidirectional-association-to-

bidirectional

Chatzigeorgiou, A., & Manakos, A., (2014). Investigating the evolution of code

smells in object-oriented systems. Innovations System Software Engineering, 10,

3-18.

Code needs algorithms. (n.d.). Retrieved July 18, 2016 from

http://www.bbc.co.uk/guides/z3whpv4#zx3dwmn

Composing methods. (n.d.). Retrieved June 15, 2016 from

https://sourcemaking.com/refactoring/composing-methods

Consolidate conditional expression. (n.d.). Retrieved June 16, 2016 from

https://sourcemaking.com/refactoring/consolidate-conditional-expression

53

C# sorting algorithms performance comparison. (n.d.). Retrieved January 8, 2016

from https://www.exchangecore.com/blog/c-sharp-sorting-algorithms-

performance-comparison-selection-sort-vs-insertion-sort-vs-bubble-sort-vs-quick-

sort/

Decompose conditional. (n.d.). Retrieved June 16, 2016 from

https://sourcemaking.com/refactoring/decompose-conditional

Devarakonda, M., (1998). The practical aspects of object-oriented programming.

IEEE Concurrency, 6, 30-33.

Dyke, T., & Kunz, J., (1989). Object-oriented programming. IBM Systems Journal,

28, 465-478.

Extract subclass. (n.d.). Retrieved June 17, 2016 from

https://sourcemaking.com/refactoring/extract-subclass

Extract superclass. (n.d.). Retrieved June 17, 2016 from

http://refactoring.com/catalog/extractSuperclass.html

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., (1999). Refactoring:

improving the design of existing code. Addison-Wesley Professional.

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., (2002). Refactoring:

improving the design of existing code. Addison-Wesley Professional.

Garrido, A. & Rosst, G., (2011). Refactoring for usability in web applications. IEEE

Software, 60-67.

Güzel, A. & Aktaş, Ö. (2016). A survey on bad smells in codes and usage of

algorithm analysis. International Journal of Computer Science and Software

Engineering, 5, 114-118.

http://globalimpactfactor.com/international-journal-of-computer-science-and-software-engineering-ijcsse-2/
http://globalimpactfactor.com/international-journal-of-computer-science-and-software-engineering-ijcsse-2/

54

Güzel, A. & Aktaş, Ö. (2015). Kodlardaki kötü kokuları tespit etme yöntemleri ve

algoritma analizi. Akademik Bilişim 2015 (In Press).

Hide method. (n.d.). Retrieved June 17, 2016 from

https://sourcemaking.com/refactoring/hide-method

Inline method. (n.d.). Retrieved June 15, 2016 from

http://www.skorkin.com/2011/02/refactorings-inline-method/#.V3KO4PmLTIU

Inline temp. (n.d.). Retrieved June 15, 2016 from

https://sourcemaking.com/refactoring/inline-temp

Kessentini, M., Mahaouachi, R., & Ghedira, K., (2013). What you like in design use

to correct bad-smells. Software Qual Journal, 21, 551-571.

Khomh, F., Vaucher, S., Gueheneuc, Y., & Sahraoui, H., (2009). A bayesian

approach for the detection of code and design smells. Ninth International

Conference on Quality Software, 305-314.

Kim, M., & Notkin, D., (2005). Using a clone genealogy Extractor for understanding

and supporting evolution of code clones. ACM SIGSOFT, 30, 1-5.

Liu, H., Zhiyi, M., Shao, W., & Niu, Z., (2012). Schedule of bad smell detection and

resolution: A new way to save effort. IEEE Transactions on Software

Engineering, 38, 220-235.

Lazy class. (n.d.). Retrieved January 3, 2016 from

https://sourcemaking.com/refactoring/smells/lazy-class

Liu, H., Liu, Y., Xue, G., & Gao, Y., (2014). Case study on software refactoring

tactics. IET Software, 8, 1-11.

55

Li, W., & Shatnawi, R., (2007). An empirical study of the bad smells and class error

probability in the post-release object-oriented system evolution. The Journal of

Systems and Software, 80, 1120–1128.

Malhotra, R., & Pritam, N., (2012). Assessment of code smells for predicting c

change proneness. Software Quality Professional, 15, 33-40.

Mantyla, M., & Lassenius, C., (2006). Subjective evaluation of software evolvability

using code smells: An empirical study. Empir Software Engineering, 11, 395-431.

Mens, T., & Tourwe´, T., (2004). A survey of software refactoring. IEEE

Transactions on Software Engineering, 30, 126-139.

Merge sort. (n.d.). Retrieved January 5, 2016 from

https://en.wikipedia.org/wiki/Merge_sort

Moha, M. (2007). Detection and correction of design defects in object-oriented

designs. OOPSLA’07, Canada, 949-950.

Move method. (n.d.). Retrieved June 15, 2016 from

https://sourcemaking.com/refactoring/move-method

Move field. (n.d.). Retrieved June 15, 2016 from

https://sourcemaking.com/refactoring/move-field

Moving features between objects. (n.d.). Retrieved June 15, 2016 from

https://sourcemaking.com/refactoring/moving-features-between-objects

Murphy-Hill, E., Parnin, C. & Black, A., (2012). How we refactor, and how we

know it. IEEE Transactions on Software Engineering, 38, 5-18.

56

Push down method. (n.d.). Retrieved June 17, 2016 from

https://sourcemaking.com/refactoring/push-down-method

Quicksort. (n.d.). Retrieved January 4, 2016 from

https://en.wikipedia.org/wiki/Quicksort

Rahman, F., Bird, C. & Devanbu, P., (2012). Clones: what is that smell?. Empir

Software Eng, 17, 503–530.

Rech, J. & Schäfer, W., (2007). Visual support of software engineers during

development and maintenance. ACM SIGSOFT Software Engineering Notes, 32.

1-3.

Refactoring 1: consolidating conditional expressions. (n.d.). Retrieved June 16, 2016

from http://www.codediesel.com/software/refactoring-1-consolidate-conditional-

expression/

Remove parameter. (n.d.). Retrieved June 17, 2016 from

https://sourcemaking.com/refactoring/remove-parameter

Replace conditional with polymorphism. (n.d.). Retrieved June 16, 2016 from

https://sourcemaking.com/refactoring/replace-conditional-with-polymorphism

Replace parameter with explicit methods. (n.d.). Retrieved June 17, 2016 from

https://sourcemaking.com/refactoring/replace-parameter-with-explicit-methods

Schumacher, J., Zazworka, N., Shull, F., Seaman, C., & Shaw, M., (2010). Building

empirical support for automated code smell detection. Empirical Software

Engineering and Measurement 2010, Italy.

Sjøberg, D., Yamashita, A., Anda, B., Mockus, A. & Dyba, T., (2013). Quantifying

the effect of code smells on maintenance effort. IEEE Transactions on Software

Engineering, 39, 1144-1156.

57

Split temporary variable. (n.d.). Retrieved June 15, 2016 from

http://debuggable.com/posts/composing-methods-split-temporary-

variable:480f4dfe-1e28-4e32-b4b3-458ccbdd56cb

Split temporary variable. (n.d.). Retrieved June 15, 2016 from

https://sourcemaking.com/refactoring/split-temporary-variable

Stroustrup, B., (1998). What is object-oriented programming?. IEEE Software, 10-

20.

Thompson, S., & Li, H., (2013). Refactoring tools for functional languages.

Cambridge University Press, 23, 293-350.

Wirfs-Brock, R. J., (2008). Connecting design with code. IEEE Software, 20-21.

Yamashita, A., (2014). Assessing the capability of code smells to explain

maintenance problems: an empirical study combining quantitative and qualitative

data. Empir Software Engineering, 19, 1111–1143.

