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ABSTRACT

In this thesis, a program for EEG spike detection has been developed. This program
is based on Template Matching Algorithm to detect EEG spikes. EEG signals with 19
channels 256 Hz sampling frequency and band-pass filtered between 1 and 70 Hz are
used to test the programming performance. These EEG samples have been obtained

from the Neurology Department of Dokuz Eyliil University Hospital, [zmir, Turkey.

In the first stage 4 different templates were constituted from the EEG spikes. These
templates are used by the EEG spike detection program to find spike/spikes in EEG
signals using the Template Matching Algorithm. Furthermore a threshold value is
assigned to make a decision. It is marked as spike if the algorithm produces a value less

than threshold.
In addition to the program, other related methods and works have been studied. These
are Statistical Classification, Syntactic and Structural Method, Neural Network,

Wavelet Analysis, Deconvolution Methods.

The developed program was compared with other related works according to the

sensitivity, specificity, selectivity and average detection rate properties.

Keywords: EEG, spike detection, Template Matching
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OZET

Bu ¢calismada EEG dikenlerinin bulunmasi i¢in bir program gelistirilmistir. EEG
dikenlerinin bulunmasi i¢in gelistirilecek programda Template Matching algoritmasi
baz alinmistir. Programin testi i¢in 256 Hz 6rnekleme tfrekanslhi, 1 -70 Hz band gegiren
filtreleri 19 kanalli EEG isaretleri kullanilmistir. Bu isaretler Dokuz Eyliil Universitesi

Uygulama ve Arastirma Hastahanesi [zmir, Turkiye ‘den alinmustir.

Ik asamada EEG isaretlerinden 4 farkhi diken olustrulmustur. Bu dikenler
Template Matching Method undaki esleme 6zelligini kullanarak EEG isaretlerindeki
dikenlert bulunmast igin kullanilir. Ayrica hangi isaretin diken olup olmadigina karar
vermek igin bir esik degeri atanir. Esik degerinin altinda kalan isaretler spike olarak

isaretlenir.
Bu programa ek olarak bu konuyla ilgili diger metodlar ve ¢aligmalarda teorik
olarak incelenmistir. Bunlar, Statistical Classification, Syntactic and Structural Method,

Neural Network, Wavelet Analysis, Deconvolution Method.

Geligtirilen program diger c¢aligmalarla sensitivity, selectivity, specivity, ve

average detection rates kriterlerine gore karsilastirilmistir.

Anahtar Sozciikler: EEG, Diken Bulma, Template Matching
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CHAPTER ONE
INTRODUCTION

1.1 Objective of the Study

Since the firsts recordings in humans performed in 1929, the EEG has become
one of the most important diognastic tools in clinical neurophysiology, but up to
now, EEG analysis still relies mostly on its visual inspection. Due to the fact that
visual inspection is very subjective and hardly allows any statistical analysis or
standardization, several methods were proposed in order to quantify the

information of the EEG.

The objective of this study is to develop a program that will help neurologists
to decide the spike waves by analysing the mental problems in the the EEG
records. The m'entali disorder taken into consideration in the study is epilepsi.
Spike waves of EEG signals have been analysed with Template Matching
Algorithm. Template Matching Method may be defined as the pattern to be
recognized is compared with a learned template allowing changes in scale. The

detailed information abouth the methods used is given in the following chapter.

It has been studied to develop a program for the EEG spike detection using the
Template Matching Method. Several methods have been developed previously, but
up to now any of them has not certain solution for the spike detection. Spike waves
have 20 -70 msec duration. Spikes can be located any place on the brain so each
location creates spikes with differents shapes. These spikes have also same
duration, shape is different. However muscle activities can be look like a spike.
These activities calles “artifacts”. Because of these diffuculties each solution

works with a performance.



The first contribution of this thesis research is a detailed clinical study,
including patients from two different kinds of signal. The analysis has been
repeated for several sweeps and channels of each signal and sensitivity selectivitiy

specificity and avarage detection rate performance criterions are taken to discuss

results.

In addition to Template Matching Algorithm, other basic pattern recognition
tools which are statistical classification, syntactic and structural matching, neural
network, wavelet analysis, deconvolution method, and related works have been

studied to be able to compare with other solutions performance.

1.2 Outline of the Study

The study includes 6 chapters. Chapter 1 introduces the subject and explains the
objective. Chapter 2 includes the EEG signals that should be given for a better
understanding of the spike waves and other waves of the EEG. History of EEG,
device, montage and convehtions, electrod.e'location, descriptors of EEG activity,

abnormal EEG pattern are the subheadings of this chapter.

Chapter 3 gives detailed information abouth the methods that are used for

analysis. There are two way for the method that are explained theorically.

Chapter 4 gives the information for the other pattern recognition tools. These
are explained to understand the other ways which can be used for the spike
detection. Statistical methods, syntactic and structural matching, neural network,

wavelet analysis and deconvolution method are subheading of this chapter.

Chapter 5 gives the related works that are literature searchs for spike detection.

They were developed a program to analysis the EEG Signals.

Chapter 6 gives the results of the application of the method to EEG records are

given. The analysis includes the records of two patients with epilepsy.



Performance criterions are given for the sake of reliable discussion of results. The

results are discussed in the discussions section.

There are two appendices added to the study. The source codes of the
developed program for the EEG spike detection are given in Appendix I, and some

outputs of the programs are added to Appendix II.



CHAPTER TWO
EEG SIGNALS

EEG is the abbreviation for electroencephalography. The aim of
electroencephalography is to record and measure samples of electromagnetic fields
during certain states and sequences of behaviour, in order to explain some of the
mechanisms by which behaviour is generated. The electroencephalographic (EEG)
signals represent electrical changes of the brain during its function. The digital
signal processing of EEG, especially the spectral analysis, yields more meaningful
information than the visual inspection of the EEG curve. However, there are still
problems encountered like the artefacts during the registration, the individual
differences ambng normal and among diseased brains, and the uncontrolled

conditions of brain functions.

Modern advances iﬁ EEG have included what is referred to as digital EEG or
dEEG. Here brain signals are similarly collected from the scalp énd amplified but
are fed into a computer (i.e., digitized) and then interpreted by viewing them not
on paper but on the computer screen. Important advantages include storage of
efficient digital media rather than on bulky paper. Another advantage is the ability
to view the same EEG signals from different perspectives - paper affords only one
view of a time period. A draw-back is that the computer screen may not afford the
same clarity of image that is available on paper. Another advance is the speedier
placement of electrodes by using an elastic cap with electrodes already imbedded.
Careless use of this technology may result in improperly positioned electrode or

poor electrode contact

Small, non-invasive electrodes (usually 16 to 32 in number) are placed upon a
patient's scalp, after careful measurement by a trained technologist, with paste or
glue like substance to hold them in place. Low voltage signals (5-500 micro volts)

are amplified by the EEG machine and results are typically written by ink-fed pens



on a moving paper strip chart. The resulting polygraphic strip chart, looking much
like a multiple channel seismograph, is typically read by unaided visual inspection.
The physician interpreting such a tracing is usually a neurologist with special
training in EEG. Such an individual is often referred to as a neurophysiologist or
electroencephalographer. Psychiatrists, neurosurgeons, and psychologists may also
interpret EEGs but to do so, like neurologists, they require special EEG training.

[http://www.ucdmc.ucdavis.edu/neurology/Patients/eeginfo.htm]

Typically the EEG is screened for features that stand out (transient responses)
like the spike or spike and wave associated with epilepsy. Next the frequency or
spectral content of the remaining EEG background is visually evaluated. There are
four broad spectral band of clinical interest: delta (0-4 Hz), theta (4-8 Hz), alpha
(8-12 Hz), and beta (above 12 Hz). Not everyone agrees on the exact boundaries of
these rhythms and many subdivide these bands, especially beta. Pathology
typically increases slow activity (delta, theta) and diminishes fast activity (alpha,
beta). Thus overlying a localized brain tumour one would expect increased
slowing and decreased fast activity. Similarly following a global brain insult
resulting in a global encephalopathy one fhight expect globally increased slowing
and decreased fact activity. However, there are many exceptions to this
oversimplified explanation. EEG interpretation requires considerable skill and
often years of clinical experience. The mere determination of whether an EEG

spectral band is normal, increased, or decreased may require years of experience

The electroencephalogram (EEG) is a complex, time-varying signal which
requires sophisticated analysis techniques if clinically useful information is to be

reliably extracted from it.
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2.1 History of EEG

The history of electroencephalography began in 1874 when Caton an
Englishman discovered evidences of electrical activity in the brains of living
animals. He observed (1875) electrical fluctuations from the cortex of rabbits and
monkeys, and he was convinced that these fluctuations were related to the

functional activity of the brain.

Beck, in 1890, showed that the visual cortex of the dog produced large potential
fluctuations when the eyes were illuminated, and that in the absence of stimulation
smaller electrical fluctuations occurred which were not related to pulse or
respiration. After the publication of Beck’s paper the Vienna Academy opened a
communication which had been deposited in 1883 by Fleischl von Marxow with
instructions that it be kept sealed until a report appeared dealing with the electrical
activity of the cortex. He probably was unwilling to risk his reputation on findings
about which he was uncertain, yet he wished to get credit for his own work by
adding corroborative data to evidence which some later worker might obtain. He
said (1890, 1893) that he héd recorded large potentials from the visual area when
the animal’s eyes were illuminated; that these potentials, which were abolished by

chloroform and by cooling, could be obtained through the dura and even through
the skull.

Gotch and Horsly (1892) reported on the electrical activity of the cortex as part
of their study of the localization of function in the central nervous system. They
believed that special cortical areas gave an electrical response to certain types of
peripheral stimulation. The visual area responded to illumination of the eyes, and
the cutaneous sensory area to stimulation of a sensory nerve. In 1892, Beck
published a report with CYbulski showing that local injury to the cortex modifies
its electrical activity and that stimulation of the leg of a dog produces a response in
the contralateral cruciate area. Danilewsky (1891), Larionow (1898), and Trivus
(1900) studied electrical response of the cortex to various types of peripheral
stimuli. In 1904, Tchiriev concluded that fluctaations in potential recorded from

the cortex are the result of pulsation of blood in the blood vessels, and have no



direct bearing on nervous activity. In 1912, however, Kaufmann reaffirmed the
conclusion of earliar workers that the electrical potentials from the cortex are

modified by sensory stimulation, and are related to nervous function.

The Einthoven string galvanometer, a tremendous improvement over previous
types of recording instruments, became generally available in 1906, and was first
used for studies on the brain by Neminski He reported in 1903 that cortical
potentials can be demonstrated when the sciatic nerve of a dog is stimulated.
Cybulski and Macieszyna (1919) repeated with a string galvanometer the work
done in collaboration with Beck (1892). Their results confirmed the earlier
findings. In 1925, Neminski published a report on the electrical activity on the
dog’s brain in which he described the electrical activity of the cortexin much the
same terms as those used today. He said that the electrocerebrogram (a word
which he coined) consisted chiefly of spontaneous fluactuations in potential with a
frequency of 10 of 15 per second, called waves of the first order and other faster
fluctations with a frequency of 20 to 32 per second, called waves of the second
order. He was able to' obtain the electrocrebrogram from the cortex, the dura, or

the outer surface of the skull.

Although these studies from 1874 onward were. with but few exceptions, in
general accord, they had little or no effect on the main streams of contemporary
research. The possibility of studying directly an electrical component of brain
activity was overlooked by the leaders of neurology and neurophysiology for forty
years (1893 to 1933). Hans Berger, however, did not overlook this possibility. In
1902 and in 1907 he recorded spontaneous fluctuations in potential from the brains
of animals, but on neither occasion was he able to show that these fluctations were
modified by sensory stimulation. In 1910, he tried once more, this time with a
string galvanometer, but again with negative results as far as response to
stimulation was concerned. In 1924, he attempted successfully to record the
electrical activity of the human brain. The firs reports of these results, published in
1929, were greeted with incredulity. He continued his work, however, and by 1934

he had demonstrated that the brain of the man has an electrical beat; that this beat



comes from neurons, not from blood vessels or connective tissue; and that it
changes with age, with sensory stimulation, and with various changes in the
physicochemical state of the body. He showed that normally this beat appears as a
mixture of more or less sinusoidal fluctuations in voltage with a frequency of from
one to sixty per second, and that the most easily discernible rhythm has a
frequency of approximately ten per second. Waves of this frequency he called
alpha waves, and demonstrated that they tend to disappear with attention. Faster
waves, those having a frequency of 15 to 60 per second, he called beta waves.
Because of the analogy between the electrical pulsations from the brain and the
electrocardiogram, and because he disapproved of the mixture of Greek and Latin
in Neminski’s word electrocerebrogram, Berger called his record the

elektreenkephalogramm, usually translated into English as electroencephalogram.

Almost all of Berger’s observations have been reaffirmed by later workers, but
such proof was not required, for his own work was well controlled and he
furnished valid proof of his thesis that the electroencephalogram comes from the
cortex and .is related to psychic activity. Because he was a phychiatrist, he
published most of his articles in psychiatric joumalg (1929 - 38), and tried to
correlate his data with various psychiatric concepts. His titles were not especially
informative; many articles were headed “Uebar das Elektreenkephalogramm des
Menschen” and each contained a variety of data and much discussion. In 1938 he

published a summary of hid observations and interpretations in monograph form.

If Berger had divided his work into discrete short studies, with satisfactory
descriptive titles, and had avoided the psychiatric implications of his data, he
might have been accepted more readily as a great neurophysiologist, but his actual
achievement would have been less, for he could not have surveyed so completely
the entire field of electroencephalography. His discovery of the correlation
between the electrical activity of the cortex and psychic functions was truly

revolutionary.
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The spread of electroencephalography over the world was at first hampered by
its unexpected place of origin and by the fact that electrophysiologist had been
making rapid advances in exactly the opposite direction, i.e., by recording brief
discharges in single fibers of peripheral nerves. To the confirmed “axonologist”
the idea of recording from neurone aggregates was repugnant. But when Adrian, a
Nobel Prize winner in electrophysiology, said that Berger was right and
apologized for his own prolong doubts, electroencephalography became

respectable.

Before this, However, Fischer (1933) had reported that the brains of animals
when convulsed with drugs develop high voltage “Krampfstrome.” This crucial
observations caught the attention of the Harvard Group and set them to recording
the electroencephalogram in epilepsy (Gibbs, Davis and Lennox, 1935), a project
for which Derbyshire had cleared the way (Davis, P. and Davis, H., 1940 ) by
demonstrating to local sceptics that Berger’s observations could be duplicated with
apparatus primarily developed by studies on hearing. Grey Walter (1936) scored a
great advance by shdwing that brain tumors can be localized by

electroencephalographs through the unopened skull.

2.2 EEG Device

Although all new EEG devices are digital, analog EEGs are still used for
clinical studies (Brenner and Scheuer, 1998). These devices did not differ radically
from the Berger’s EEG. An analog EEG consists of a differential pre-amplifier, an
adjustable post-amplifier, a filter array and a plotter. A digital EEG has a similar
pre and post-amplifier, but the amplified signal is converted to a digital sample.
These samples are recorded onto a digital media, from where they can either be
plotted or processed further. Digital EEGs sample the signal at a pre-set rate and
accuracy. Nyquist’s rule dictates that the signal must be sampled at twice the
frequency of the fastest component. Although component over 100 Hz are not
detectable from the scalp, commercial EEG devices over-sample the signal.

Common sampling rates are between 500 and 1000 Hz. The DC component of the
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signal 1s removed with a highpass filter. A prevalent cut-oft frequency for this
filter is 0.1 Hz. The sampling accuracy of commercial devices is usually 12 or 16
bits per sample. EEG data is recorded from multiple electrode locations (channels),
simultaneously. The number of channels is usually a power of 2. Clinical
recordings use up to 64 channel. Experimental studies have been conducted with
256 channels. Measurements commonly include non-EEG channels that record
information about muscle activity and eye movement. EEG equipment is
inexpensive compared to other research instruments, for example positron
emission tomography (PET), single photon emission computed tomography
(SPECT), magneto encephalography (MEG) and functional magnetic resonance
imaging (fMRI). EEG has a better temporal resolution than PET, SPECT or fMRI.
PET and SPECT imaging require the use of radioactive isotopes, which are
expensive and require special care in administering. MEG devices have the same
spatial and temporal capabilities as EEG. MEG devices require shielded rooms and
helium cooling. MEG devices are excruciatingly expensive. Skull and scalp
resistively effect the EEG waveform, while they are almost invisible to the MEG.
Research is being conducted on minimising these effects in the EEG (Babiloni et

al., 1997).
2.3 Montages and conventions

The terminology and conventions of modern electroencephalography is plagued
with remnants of old analog technology. A good example would be Peter Manu’s
article (1994) were he uses the term cycles per second instead of Hz. Before the
advent of the transistor, EEG amplifiers used vacuum tubes. It was customary to
connect the active electrodes to grid 1 and the ground or indifferent electrode to
grid 2. The vacuum tube functioned as a differential amplifier. The amplifier was
connected to a pen chart in a fashion that when the active electrode was more
electronegative than the indifferent electrode, the pen would make an upward
deflection. The illogical reverse convention has survived to this day. The term
indifferent electrode is also a misnomer since the indifferent electrode has an equal

effect on the amplifier. The electrode leads have an established colour scheme.
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Indifferent electrodes are white and active electrodes are black or coloured
(Kiloh, McComas and Osselton, 1972). Since the pre-amplifier of the EEG
requires two inputs, EEG measurements can not be made from a single point. The
configuration of electrodes and the manner in which they are connected to the
amplifier is defined in the montage. When potential is measured between sets of 2
electrodes the montage is called bipolar. The channel name reveals both
electrodes, for instance a measurement with the positive electrode at Fz and the
negative at Cz would be called Fz-Cz (Jasper, 1958). Often a common reference is
chosen for all of the channels. This sort of measurement is called unipolar. The
reference electrode is the indifferent input to all of the pre-amplifiers and it is often
designated with a white lead. The location of the reference electrode should be at a
place that is far away from all of the active electrodes. Frequently an electrode clip
is attached to both earlobes and the electrodes are connected to each other. This
forms a virtual electrode that is equally sensitive to both hemispheres. This
reference is appropriately named linked earlobes. Unfortunately the linked ear
lobes change the currént fldw and potential distribution of the head (Regan, 1989).
The chin, neck and mastoids are also cofnmon locations for the reference. The
reference electrode should not pickup excessive cerebral activity, muscle artefacts

or ECG waveform.

The channels in the unipolar montage are named using only the active
electrode. When the measurement scheme is explained the location of the
reference electrode is mentioned separately. An average reference can be formed
by combing all of the active electrodes to a single point. Large resistors are placed
between the active electrodes and the reference. All of the pre-amplifiers use this
average reference as their negative input. This configuration is often called the
Goldman-Offner montage after its inventors. This system assumes that the
potentials will cancel each other out and form a stable reference. Global activities,
especially rhythmic activities, affect a large amount of electrodes causing the
reference potential to pickup this signal. This causes some of the channels to

produce a misleadingly small signal when the reference and active potentials
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cancel each other out. Nevertheless, average references produce good results with
spatially localised events. (Kiloh, McComas and Osselton, 1972). Although all of
the EEG channels do not have to use the same configuration, mixed montages are
rare. Most studies are polygraphic, meaning non-cerebral measurements are taken
along with the EEG. Muscular and ocular measurements are often bipolar

regardless of the EEG montage.

2.4 Electrode Location

The location of the electrodes should be tailored to suit the study. Electrode
locations can either be equidistant or relative. In order to ensure reproducibility of
studies and to ease exchanging of results, electrode location sets have been

standardised.

An equidistant grid is convenient for the spatial study of a local event or
activity in the bra_in, but. it is not reproducible for subjects with different head sizes
The queen square system has equidistant electrodes covering the parietal and
occipital areas (Regan, 1989). This system has not found widespread acceptance.
The International Federation of Societies for Electroencephalography and Clinical
Neurophysiology recommended a system that relies on the relative distances
between fixed landmarks on the head (Jasper, 1958). In this system, the electrode
placement remains constant for different head sizes. The relative distances are 10
% and 20 % of the ear to ear distance and the inion to nasion distance. Therefore
this system is called the international 10-20 system and it pinpoints the location of
21 electrodes. The electrodes are arranged in row according to the lobe in which
they reside. The centre electrode is marked with a z, for instance the middle frontal
electrode is Fz. The other electrodes are numbered from the middle to sides, so
that all of the odd numbers are on the left side and all of the even numbers are on
the right side. The electrodes in the temporal lobe are placed in an anterior-
posterior direction and do not have a centre electrode. The original 10-20 system
skipped numbers so that electrode could be placed in between the existing
numbers. The American EEG Society devised a guideline for the correct

placement of these intermediate electrodes. This combinatorial nomenclature
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places electrodes between both the anterior posterior rows and the medial-lateral
rows. This system also has an electrode on the nasion and inion producing a total

of 75 electrode places (Niedermeyer and Lopes Da Silva, 1993)

Figure 2.1 , The combinatorial nomenclature. (1999. 64 Channel Electrocap Layout.

NeuroScan Labs. Virgina, Neurosoft Inc.
[http://neurocog. psy.tufts.edu/images/ERP_components. gif]
I



2.5 Descriptors of EEG activity

2.5.1 Wave Forms

Wave form or shape are simple term used to describe the configuration or
morphology of a wave. Any change in the difference of the electrical potential
between two recording electrodes is called a wave, regardless of its form. Any
wave or sequence of waves is called activity. Many waves are regular , i.e they
have a fairly uniform appearance due to symmetrical rising and falling phases
(Fig 2.2, Part 1). Some regular waves are similar to sine waves and a re called
sinusoidal (Fig 2.2, Part 2). While other regular waves may be arch-shaped or

saw-toothed. Jrregular waves have uneven shapes and durations (Fig 2.2, Part 4).

A monophasic wave is a single deflection either up or down from the
baseline. A diphasic wave has two components on oppisite sides of the baseline
while a triphasic wave has three components of different direction. These terms
do not indicate whether a wave has positive or negative electrical polarity nor

whether it was recorded with bipolar or referential electrode montages .

A transient 1s an event which clearly stands out against the background. It
consist of either a single wave or a complex, i.e. a sequence of two or more waves
which have characteristic form or recur with a fairly consistent shape (Fig 2.2,

Part 5).

A sharp transient is a wave form of any duration which has a pointed peak
at conventional EEG recording speed. Sharply contoured waveforms which are
not abnormal epileptic waveforms are often referred to sharp transient.
Epileptiform is a term used to describe EEG patterns that are identical to those
that have been specifically associated with seizures or epilepsy. Epileptiform
patterns usually consist of apiculate wave forms referred to as spikes or sharpe
waves. A spike is a sharply contoured wave form with a duration of 20- 70 msec

(Fig 2.2, Part 7). A sharp wave has a duration of 70 — 200 msec and may not be as



sharply contoured waveforms that: (1) appear as part of the background rhythm
(e.g., mu rhythm); (2) appear at different times either in isolation or as part of the
background rhythm (e.g., wicket spikes; (3) demonstrate a varying morphology;
or (4) only occur once in the entire record are often referred to as sharp transients
because they have less significance in the diagnosis of seizure disorders than do

stereotyped spikes or sharp waves.

A spike may be followed by a slow wave and form a spike and wave
complex (Fig 2.2, Part 8) which may repeat at regular intervals. Spike and wave
complexes recurring at rates below 3 Hz are called slow spike and wave
complexes. A sharp wave may be followed by a slow wave and form a sharp and
slow wave complex; complexes of this kind usually last longer than a third of a
second and therefore do not repeat at rates over 3 Hz. In some cases, two or more
spikes occur in sequence, forming multiple spike complexes also called polyspike
complexes (Fig 2.2, Part 9). These complexes may be followed by a slow wave
and thus form part of a multiple—spike-and- slow-wave complex or polyspike—and-
slow—wave complex (Fig 2.2, Part 10). Spikes recorded in the EEG should not be
confused with action potentials of single nevre cells which are recorded through
microelectrodes inserted into the brain and which last only abouth 1 msec (1.1.3);

thay too are often called spikes but are never observed in the surface EEG.

Single spikes and sharp waves, and complexes which contain spikes and
sharp waves and last for less than a few seconds are called inferictal epileptiform
activity; longer lasting activity of this type and of some other types is referred to
as a seizure pattern ot ictal pattern. Although seizure patterns are often associated
with clinical seizure manifestations, yhey may occur without such correlates and
are then called subclinical seizure patterns. Both interictal and ictal patterns are
here called epileptiform in contrast to the definition in the glossary of the
International Federation of Socieities for Electroencephalography and Clinical

Neurophysiology which uses the term “epileptiform™ only for interictal patterns.
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A paroxysm or a paroxysmal discharge consist of one or more waves
which begin abruptly, reach maximum amplitud rapidly, and disappear suddenly.
These waves clearly stand out against the background, are usually abnormal, anda
re often seen in epileptiform patterns. Paroxysms often consist of complexes (Fig
2.2 Part 5), but not all complexes begin and end abruptly, and not all paroxysms

recur with a similar shape.

It is important to note that although the terms spike(s), sharp wave(s),
paroxysms and paroxysmal discharges are often used to describe epileptiform
patterns, they are not synonmous with epileptiform activity. Thus, if epileptiform
activity seen is considered to be present, then the term epileptiform must be added
to any other descriptive terms used. For example, if the activity seen is considered
to be epileptiform then in the interpretation of the EEG it would be incorrect o
simply state: The EEG is abnormal due to the presence of spikes localized to the
left anterior temporal lobe. Instead it should be rephrased as: The EEG is
abnormal due to the presence of epileptiform spikes localized to the left temporal
lobe.

Fig 2.2 Characteristic wave forms



2.5.2 Repetetion

Repetition of waves may be rhythmical or arrhythmical. Rhythmical
repetitive waves have similar intervals between individual waves; they are usually
regular and often sinusoidal in shape (Fig 2.2, Parts 1-3). Spindles are groups of
rhythmical repetitive waves which gradually increase and then decrease in
amplitude (Fig. 2.2, Part 3). Rhythmical repetitive waves were formerly called
“monorhythmic” or “monomorphic”. Arrhythmical repetitive waves are
characterized by variable, irregular intervals between individual waves (Fig 1.2
Part 4). They can be considered to be a sequence of waves of different frequency.
They often have irregular shape. Arrhtthmical irregular waves were formerly

called “polyrhythmic” or “polymorphic”.

2.5.3. Frequency

Frequency refers to the number of times a repetitive wave recurs in one
second. A wave completing three cycles in one second is called a wave of 3 Hertz
(Hz) or of 3 per sec. The frequency of single or repetitive waves can be
determined by measuring the duration of an individual wave, the wavelenght (Fig
2.2 Part 1), and calculating the reciprocal. Single waves and complexes may be
repeat at intervals longer than the wavelength anda re then called “periodic”, the

period being the time interval between them (Fig 2.2 Part 5).

The frequency of EEG waves is often divided into four groups or frequency

bands, namely:

Delta frequency band: under 4 Hz

Theta frequency band: from 4 to under 8 Hz

Alpha frequency band: from 8 to 13 Hz

Beta frequency band: over 13 Hz (Fig. 9. 2).
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These divisions are somewhat arbitrary; many EEGs contain waves of
frequencies extending across the boundaries of the bands, for instance waves of 3
-5 Hz. Nonetheless, the frequency bands help to set apart the most important
criterion for asssesing abnormality in clinical EEG. Althoug waves under 8 Hz are
commaly called slow waves and waves over 13 Hz are commonly called fast
waves, it is more accurate and therefore preferable to either state the frequency of
the activity(e.g., 3-5 Hz) or describe it according to the frequency band(s) it
occupies (e.g., delta and theta activity). Activity that is less than 2 Hz or more
than 20 Hz is of limited clinical utility in routine scalp recordings because it is

often unclear if such activity is of cerebral origin.

2.5.4 Amplitude

Amplitude of EEG waves is measured in microvolts ( V). It is determined

by measuring and comparing the total vertical distance of a wave (Fig 2.2, Part 1)
to the height of a calibration signal recorded at the same gain and filter settings.
Thus, if the height of an EEG wave measures 14 mm and a calibration signal of

50 uV measures 7 mm, the amplitude of the wave is 100 uV . If the sensitivity of
the amplifier is known to be 7 uV /mm, a wave of 7 mm can be inferred to have
an amplitude of 50 xV without direct comparison with a caibration pulse.

Amplitude should not be expressed in terms of the height of the pen deflection

because this varies with the amplifier settings.

In clinical EEG, amplitude is often not reported in terms of microvolts but

described loosely as low (under 20 uV' ) medium or moderate (20-50 uV' ), or high
(over 50 uV'). However, these terms often are used to describe amplitude of

certain waves relative to that of other waves in the same record. For instance, a

wave of 60 uV cannot be said to be of high amplitude if it occurs on a

background of 40-50 uV" .



20

An important abnormality is asymmetry of amplitude of the activity that is

recorded simultaneously from corresponding parts of the two sides of the head.

Even slight differences of amplitude may be of clinical importance if they
persist; this is true especially of the adult EEG, with the exception of the alpha

&

rhythm.

Differences of amplitude are sometimes caused by factors outside the
brain, especially by unequal spacing and impedance of the recording electrodes;
the technician should therefore verify correct electrode placement and impedances

before accepting that abnormal amplitude is genuine.

2.5.5 Distribution

Distribution refers to the occurence of electrical activity recorded by
electrodes positioned over different parts of the head. EEG patterns may appear
over large areas on both sides of the head, over one side only, or in a restricted,

small area.

2.5.5.1 Widespread Diffuse or Generalized Distrubution

Widespread diffuse or generalized distrubution refers to activity which
occours at the same time over most or all of the head. Generalized activity may
have a clear maximum within its field of disribution, recognized by the highest
amplitude in referential recordings and by phase reversal in bipolar recordings

from that area.
2.5.5.2 Lateralized Distribution
Lateralized distribution refers to activity which appears only or mostly on

one side of the head. Lateralized activity is abnormal and suggest a cerebral

abnormality either on the side where abnormal activity is presen tor on the side



where normal activity is absent. Some normal patterns may appear on one side of
the head at one time and then occur on the other side a few seconds or minutes

later.
2.5.5.3 Focal Activity

Focal activity is that which is restricted to one or few electrodes over an
area of the head. Some of the neighboring electrodes may pick up the same
activity with lower amplitude. This restricted distribution must be distunguiéhed
from a wide or generalized distribution which may have a maximum in one area.
This distinctions is important especially with regard to abnormal slow waves and
to sharp waves. Criterion which sometimes help in this distinctions are that focal
slow waves often have a lower frequency at the area of maximum amplitude
wheres generalized slow waves do not. Focal sharp waves with a tendency to
spread can often be distunguished from generalized sharp waves with a local

maximum of amplitude by their greater persistence at the focus.

Activity arising from a single unilateral focus is always abnormal. Activity
from a midline focus or from two foci located symmetrically in the two

hemispheres may be part of a normal pattern.
2.5.6 Phase Relation

Phase refers to timing and polarity of components of waves in one or more
channels. Waves of different frequency may occur in different channels so that
the troughs and peaks occur at the same time; these waves are said to be in phase.
If they do not coincide in this manner, they are said to be out of phase. The phase
difference may be expressed in terms of phase angle. For instance, peaks pointing
in opposite directions are said to be 180 out of phase. Such a “phase reversal” is
the major indicatorof the origin of EEG potentials in bipolar recordings. In a

single channel, phase refers to the time relationship between different components
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of a rhythm; for instance, the peak of a sine wave is said to “lead” the preceding

crossing of the zero line by 90 and to “lag” behind the next following peak by 360

2.5.7 Timing

Timing of waves in different areas of the head may be similar or different.
The terms “simultaneous” and “synchronous” are used to indicate that two events
occured at the same time. These terms are usually with the same meaning, but
“synchronous” is sometimes used to denote precise coincidence while
“simultaneous” may be used more broadly to indicate the coincidence that is
recognizable only imprecisely within the limits of the relatively slow recording
speed of the EEG. The eye can hardly distunguish a horizantal difference of less
than Imm between corresponding points on two waves even in neighboring
channels. A horizantal distance of only 1 mm corresponds to a time difference of
33 msec at the conventional EEG recording speed. The resolution of time
relations deteriorates if more distance channels are compared and if the writing
units are not perfectly aligned; because of the curvilinear movement of the pens,
synchronous excursions of different amplitude seem to have occured at different

times.

Waves which occred at the same time on both sides of the head are called
“bilateraly synchrous”™ or “bisynchronous”. These terms consider mainly the
relationship between the two sides but not necessarily that on the same side; thus
bilaterally synchronous waves may be out of phase in the same hemisphere. In
some instances, waves are delayed against each other by the same amount in
succesive channels which record activity from electrodes placed from the front to
the back of the head,giving the impression that these waves spread from front to
back. For instance, this type of delay can be seen in triphasic waves of metabolic

encephalopathies.

Waves which occur in different channels without constant time relation to

each other called “asynchronous”. This i1s usually implies that the waves are
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present in different areas at the same time even though they do not fall in phase
with each or do not have the same frequency. If waves occur in one area at one
time and in other areas at another time, they are usually said to be “independent’ ;
for instance spikes in both temporal lobes may occur bisynchronously or
independently; each case has different implications regarding a possible triggering

mechanism.

2.5.8 Persistence

Persistence describes how often a wave or pattern occurs during a
recording. Some waves occur only occasionally or intermittently either in the
form of a single wave or trains of waves; other waves are present through most or
all of the recording. The persistence of waves can be estimated by measuring the
proportion of time during which these waves appear. This is called the index For
instance, a delta index of 20 % means that delta activity was present during one-
fifth of a recording. Because the clinical importance of EEG paterns often
depends not only on their persistence but also on their amplitude , the persistence
and amplitude are often described together in terms of their quantity, amount or
prominence. The term “abundance” previously used to describe this combination

of persistence and amplitude, is now obsolote.

Single waves and complexes may occur with a high, moderate or low
persistance or incidence; the persistence of these events is best expressed as their
average number in one second or one minute. They may occur periodically or at
irregular intervals. Irregular and infrequent occurence is sometimes called
“sporadic”. The terms “random” and “diffuse” should not be used to describe

persistence of EEG patterns.

2.5.9 Reactivity

Reactivity refers to changes which can be prodeced in some normal

abnormal patterns by various maneuvers. Some patterns are induced or increase,



diminished or blocked by opening or closing the eyes, hyperventilation, photic or
sensory stimuli, changes in levels of alertness, movements or other maneuvers.
Abnormal slow waves in toxic and metabolic encephalopathies are often
diminished by alerting and enhanced by hyperventilation and drowsiness whereas
abnormal slow waves seen in cases of structural lesions usually show a less

attenuation or blocking during alerting maneuvers.

Thus, a recording should not be considered complete unless at least simple
alerting maneuvers have been performed to demonstrate the effects of arousal on
the EEG. These maneuvers include eye opening and closing (this may be
passively performed for infants or other individuals who cannot respond to verbal
commands) and questions testing memory and simple calculations. If the patient
is unable to respond to verbal commands then vigorous auditory and tactile
stimulation should be applied. These maneuvers will also help clarify if
background slowing is actually presen tor if the patient was merely excessively

drowsy during the recording.

2.6 Abnormal EEG Patterns

2.6.1 Definition of the Abnormal EEG

An EEG is abnormal if it contains A. Epileptiform activity, B. Slow
waves, C. Amplitude abnormalities, or D. Certain patterns resembling normal
activity but deviating from it in frequency, reactivity, distribution or other
features. In most abnormal EEGs, the abnormal patterns do not entirely replace
normal activity: they appear only intermittently, only in some channels, or only

superimposed on a normal background

The most important EEG abnormalities can be divided into the following

basic abnormal EEG patterns which are discussed in the subsequent chapters.
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A. Epileptiform Activity
1. Localized epileptiform activity
2. Generalized epileptiform activity
3. Special epileptiform activity
B. Slow waves
1. Localized slow waves
2. Generalized asynchronous slow waves
3. Bilaterally synchronous slow waves
C. Amplitude abnormalities
1. Localized amplitud changes: Asymmetries
2. Generalized amplitude changes

D. Deviations from normal patterns.

2.6.2 Correlation Between Abnormal EEG Patterns, General Cerebral

Pathalogy and Specific Neurological Diseases

Each of the basic abnormal EEG pattéms listed above can be caused by
one or a few types of cerebral abnormalities. The abnormalities are characterized
by their irritative or destructive character and by their cortical, subcortical and
epicortical location. The four major categories of abnormal EEG patterns are the
subect of Table 1.2 — Basic Epileptiform patterns, 1.3 — Basic patterns of slow
wave abnormalities, 1.4 — Basic patterns of abnormal amplitude and 25.1 —
Deviations from normal patterns. The epileptiform patterns listed in Table 1.2; the

patterns of abnormal amplitude listed in Table 1.4
2.6.2.1 Epileptiform Activity

Epileptiform activity is outlined in Table 1.2. Local epileptiform activity 1s
usually due to a focal irritative lesion of the cerebral cortex; in infants, such
activity may be the result of widespread lesions or of toxic, metabolic or
electrolytic abnormalities whereas some children have local spikes without any

detectable cerebral lesions. Generilized epileptiform activity is either not
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associated with demonstrable lesions or associated with a variety of conditions
which increase the excitability of subcortical centers, of wide parts of the cerebral
cortex, or of both. Special epileptiform patterns have a great variety of

pathalogical correlates.
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Basic Patterns

General Pathological Correlates

Examples of Specific Diseases

L. Local epileptiform Activity

2. Generalized Epileptiform

activity

3. Special Epileptiform patterns,
3.1 Infantile and Juvenile
patterns of multifocal and

generalized spikes

3.2 Periodic complexes

3.3 Ictal patterns without

spikes and sharp waves

3.4 Epileptiform patterns with-
out known pathological
correlates and without

seizures

(1) Chronic focal cortical lesions

(2) Acute local cortical lesions

(3) In young infants

(a) Widespread structural damage

(b) Toxic, metabolic, electrolytic
abnormalities

(4) Children without detectable lesion
(1) No detectable abnormaliy
(2) Diffuse cortical and subcordical
disordes:
(a) Structural

(aa) Acute damage

(bb) Chronic diseases

(b) Toxic, metabolic, endocrine,

electrolytic disorders

Widespread structural or metabolic

cerebral disease; patterns are more

specific for age than for cause

Acute or subacute, fairly
widespread cerebral damage or

metabolic derangements

No common pathological correlate

No detectable abnormality

Cortical scars after strokes and injuries,
tumours; with or without recurring partial

seizures:symtomatic epilepsy

Acute strokes, head injuries; with or without

partial seizures

Perinatal injury, anoxia, ischemia; with or
without partial, uni — or bilateral seizures.
Hypoglycemia, pyridoxine deficiency, pheny
lketonuria; with or without seizures as above
Beningn epilepsy of childhood with partial
seizures

Idiopathic epilepsu with primary generalized

seizures

Acute anoxia, head injury, encaphalitis; with

or without primary generalized seizures
Postanoxic and postraumatic generalized
cerebral damage, myoclonus epilepsy; with
or without primary generalized seizures

l-iypoglycemia, renal encephalopathy, alcohol
with drawal; with or without primary

generalized seizures during the disorder

Pre-, peri- and postnatal injury,
cerebromaculer degeneration, tuberous
sclerosis, phenylketonuria, leukodystrophies;
with or without partial or generalized
seizures
Fresh cerebral infarcts, Jacob-Creutzfeldt
disease, subacute sclerosing panencephalitis,
barbiturate intoxication, herpes simplex
encephalitis, metabolic encephalopathies;
with or without myoclonus
Certain partial complex seizures, tonic
seizures, neonatanal seizures, absence
seizures, epilpsia partialis continua

No known diseases or seizures

Table 2.2 Basic Epileptiform patterns: Pathological and clinical correlates
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2.6.2.2 Slow Wave Abnormalities

Local slow waves are offen due to circumscribed damage of the white
matter of the hemispheres with or without involvement of the cortex. Generalized
asynchronous show waves suggest a widespread disturbance of cerebral function,
often due to greater involvement of subcortical white matter than of the cerebral
cortex. Bisynchronous slow waves are often due to widespread involvement of
deep midline structures; this may be due to structural damage or to metabolic,

toxic or endocrine disorders.

Basic Patterns General Pathological Correlates  Examples of Specific Diseases
I . Local Slow waves (1) Local structural damage of
(a) Subcortical white matter Strokes, tumors, abscesses
(b) Thalamus As above
(2) Local disorders of cerebral Transient ischemic attacks,
blood flow or metabolism migraine, postictal condition
2. Generalized asyllchron.ous " (1) No detectable abnormality in some No known disease,
slow waves cases of mild or moderate slow waves in 10 = 15 % of normal adults
(2) Widespread structural damage including Widespread degenerative and cere-
subcortical white matter brovascular disease
(3) Generalized disorders of cerebral function Acute anoxia, syncope, coma

postictal condition

3.Bilaterally synchronous Deep midline grey matter involvemnt by
slow waves (1) Diffuse diseases damaging subcortical and Presenile dementia, progressive
cortical grey matter more than white matter supranuclear palsy
(2) Local structural lesions which directly Tumours, strokes at or near the
involve or compress, distort or render bottom of the anterior, middle or
ischemic deep midline structures of the posterior fossa

mesencephalon, diencephalon, mesial and

orbital parts of frontal lobe

(3) Metabolic, toxic, and endocrine Hepatic, renal, hypoparathyroid
encephalopathies encephalopathies
Table 2.3 Basic Patterns of slow waves abnormalities: Pathological and

clinical correlates
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2.6.2.3 Amplitude Changes

Amplitude changes are described in Table 1.4. Local reductions of
amplitude are often due either to superficial lesions which reduce the electrical
potentials generated in the cortex or to material that is interposed between cortex
and recording electrodes and interferes with the electrical conduction of cortical
potentials to the recording electrodes; a local increase of amplitude often results
from skull defects. Generalized reductions of amplitude are due either to a
widespread decrease of the production of electrocortical potentials or to a

generalized increase of the conducting media between cortex and recording

electrodes.
Basic Patterns General Pathological Correlates  Examples of Specific Diseases
1. Local differences of (1) Locally decreased EEG production .
amplitude (asymmetries) (a)Structural cortical damage Cortical infarct, contusion
(b) Disorder of cortical function Cortical transient ischemia, migraine
"(2) Local change of media between cortex
and recording electrode g
(a) Increase Subdural hematoma, subgaleal hematoma
(b) Decrease Surgical skull defect
2. Generalized changes of (1) Generally decreased EEG production
amplitude (a) No detectable abnormality in No known disease, in 5 — 10 % of normal
some cases of mild or moderate adults
reduction
(b) Structural diseases of cerebral Huntington’s chorea, postanoxic
cortex encephalopathy
(c) Disorders of cortical function Hypothyroidism, acute anoxia,hypothermia,

intoxications, anxiety, postictal
(2) Bilateral increase of media between Subdural hematoma
cortex and recording electrodes

Table 2.4 Basic patterns of abnormal amplitude: Pathological and clinical
correlates
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CHAPTER THREE
TEMPLATE MATCHING METHOD

3.1 Introduction

Template matching is a technique used to isolate certain features in an
image. These features can be single pixels, lines, edges or complete objects. It 1s
in a sense the same as filtering, only differing in the goal. Perhaps it is easier to
look upon a image, convolved with a template window, as a correlation between
an image and that window. The result will be an image with high values where
there is a strong correlation (that is, where the template matches part of the image)

and low values elsewhere.

In pattern recognition, two major issues are feature extraction and distance
measure definition. Distance measure definitions have been used widely by the

the Template Matching Al gdrithm.

The template matching technique relies on the use of a basis template that
is compared to the signal. Using one of several transforms (like SSE,
convolution), the basis template is used to create a measure of error (or of

difference) agains the input signal.

Because template-matching functions use a basis template to transform the
signal, the resulting measure of error is clearly sensitive to changes in the shape
and nature of the template. However there is a reasonable amount of research to
show that not just the shape of the template is important. The length of the
template can have a significant effect on a template-matching algorithm’s
performance. There often exist an exponential relation ship between the length of

the template and the number of false positives.
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Template Matching is the term given to the process of detecting an event
buried in a signal by comparing it to a predifened “template”. The goal is to locate
possible events in the signal that “closely resemble” the template. In practice there
are two basic methods to determine “how close” any given section of a signal 1s to
the template. They are Summed of Square Error (SSE), Convolution (CONV) and

Correlation.

3.2 Summed Square Error Template Matching

We have some (small) image of a specific pattern or object we want to find. We
will use the term template. A measure of match between a template t, and a
window w, of another image is the squared errors summed over all pixels in the

window:
Err=32(t-w) =St? + Zw? - 22wt

The prbduct and exponentiations on the right hand side are inner products,
meaning direct pixel wise operations. In order to check every where, we have to
calculate this error for each position of the template in a sliding window. The first
term on the left, is a constant for all positions of the sliding window. The second
term is equivalent to a convolution of the pixel wise squared image with a uniform
template of window size. The last term in the above equation involving a sliding

window w, corresponds to a correlation.

Summed Square Error measures the squared difference between each point
in the template and each corresponding point in the signal section being compared.
This method is good at detecting similar trends (signal increasing or decreasing in
the same direction and at the same rate), however it is sensitive to baseline (DC or
very low frequency) shifts. Thus it is common to remove the mean from the
template and the section being compared before performing the error

measurement.
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3.3 Convolution and Correlation

The convolution and correlation product between to continues functions f(x)

and g(x) is defined:

oo

(T*O) = [/ ()-8t ~x)dx

-0

(Jeg)®) = [F(x)- gl +x)dx

By replacing the integral with a sum we get the discrete analogs, which we will
use. It is straightforward to generalize to higher dimensions. The relevance of
these products is there use in Template Matching. If we want to look for a specific
a template, in an image, we can do so by comparing each individual window in the
large image to the template. If the difference is small, we have a good match. This
procedure of comparing with a sliding window is captured by the correlation. The
only difference between convolution and correlation is a sign. In the following we
will mostly talk about convolution, but keep in mind that it is identical to

correlation up to a mirroring. The reason for this is the Convolution Theorem.

3.3.1 The convolution theorem

The theorem states that convolution in the spatial domain is equivalent to

multiplication in the Fourier domain:

f*g=7-8
Proof:
The bar over an expression means the Fourier Transform Since the Fourier
transform is its own .inverse up to a constant the reverse relation is also true.

Multiplication in the spatial domain is equivalent to convolution in the Fourier

domain.
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There is a similar theorem for correlation:

feg=f g
The only difference is the complex conjugate on the right hand side.

One reason that this theorem is useful is the fact that there exists a very fast
divide and conquer algorithm for convolution FFT. Another reason is its'
usefulness in various proofs calculations and arguments. For instance, since the
Fourier transform is linear, it is easily read off that convolution is commutative,
associative and distributes over sums. Since the group of Gaussian Functions is
closed under Fourier transformation and multiplication, it also follows that the
group is closed under convolution. This fact alone brings you halfway through the

proof of the central limit theorem.

Template convolution can be thought of as a filter rather than an error
measure. It convolves fhe template with a section of the signal. It seeks to amplify
the areas of the signal that are correlated to template. Because convolution is a
multiplication process in the frequency domain, convolving the template with the
signal can be viewed multiplying the frequency components of the template with
the corresponding frequency components of the signal. This has the effect of

amplifying only those portions of the signal that resemble the template.
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CHAPTER FOUR
OTHER PATTERN RECOGNITION TOOLS

4.1 Statistical Methods

In statistical approaches, pattern data is represented by a feature vector
which is used as input to some classifier or decision process. Features may
characterize global form (area, elongatedness, major axis orientation) or local
elements (corners, characteristic points). Shapes are viewed as points in shape
feature space. For effective recognition, the requirement is to choose features such
that patterns of the same class are tightly clustered in N dimensional space
corresponding to N features, and patterns of different classes are in other tightly

clustered regions well sepérated from each other (Duda and Hart 1973).

A key problem in statistical methods is the reduction of the dimensionality
of the feature vector. This may be accomplished by a feature selection process, in
which low significance features are deleted, or by a feature space transformation
method, or both. Classically, a particular class was represented by a template with
matching against templates; this matching was considered to be intractable for
large numbers of objects due to the need to compare with inputs which have been
rotated, scaled, partly occluded, non-rigidly transformed, or presented under
varying lighting conditions. Recent schemes employing normalization (the RBF
networks underlying Chorus) and interactions among multiple well chosen
prototypes, or the sophisticated weighting of a large feature set (Mel 1997) have
overcome this to some extent. Another approach to the use of features is to create
a transformed representation space on the basis of correlations among the
dimensions to enhance cluster tightness and inter-class separation. Feed-forward
supervised networks, or competitive networks such as self organizing maps can

use feature vectors as input, and via training transform the features into activation
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levels in a set of network elements corresponding to classes. Decision methods
may generally be classed as non-parametric or parametric (Leedham 1991). Non-
parametric methods include linear discriminant functions, minimum distance
classifiers, and nearest neighbour classifiers. The most widely used parametric
decision rule is the Bayes classifier. The main distinction from non-parametric
methods is that the decision rule involves class conditional densities and a priori
probabilities of occurrence of classes. Bayesian classifiers are particularly
important with large object databases, where setting classifier decision boundaries
properly and defining the optimal feature set are crucial for good recognition

performances.

The description of statistical pattern recognition methods presented here thus
far has been in general terms, applicable to any data set. Recognition of object
shapes in a statistical framework poses additional problems unique to this class of
data. Non-rigid objects are composed of parts which can assume different poses —

human and animal figures are good examples.

The changing projections of three dimensional objects seen from different
viewpoints constitute the stimulus identity problem. Different features and feature
conjunctions will be present in each view. This problem has been addressed by
geometric methods seeking invariants (treated in the next section), or by neural
Networks exploiting regularities in the changing distributions of raw features (the
Chorus RBF ensemble approach). Recently, however, progress on stimulus
equivalence within a “raw feature” paradigm has been demonstrated, by careful
design. Mel, describing the design goals for a recent high performance feature
based system (Mel 1997), notes the following expectations on feature sets to

overcome these problems:

1. Features should be large in number; sparsely occupied high dimensional
representations are most robust to noise.
2. Features should be useful; they may be sensitive to object quality (occlusion,

poor lighting) but should be robust in the face of pose or configuration changes.
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2. Features should be useful; they may be sensitive to object quality (occlusion,
poor lighting) but should be robust in the face of pose or configuration changes.

3. They should be dominated by spatially local features; this is particularly
important for non-rigid objects, which preserve local but not global structure in
any particular view.

4. They should be driven by multiple visual cues to maximize discrimination,
represent diverse objects, and buffer representation against degradation which

affects different cues (feature channels) more or less severely.

The use of these principles led to the creation of his SEEMORE system, which
achieves recognition rates above 90% in a 100 object world, even for scrambled
images. The high performance achieved with these first order 9 feature channels
is interpreted by Mel to support the idea that a simple feature space is all that is
needed and attempts to extract structural information or otherwise “bind”
collections of features may be unnecessary for biological systems. It is easy,
however, to construct images with identical first order statistics which will fool
such a system but are readily distinguished by humans. It seems likely that some
of SEEMORE’s recognition success depends on diversity in first order statistics
of the object world, along with limited use of second order statistics for some

feature channels. [http://www.well.com/user/demaris/ch2.pdf}

4.1.1 Statistical Classification

The blue crosses are data points samples from one class, and the red circles are
sampled from another class. The green asterisk is the new point or sample to

which we must assign class membership.

o o The figure shows several things. If the new object
g% @ o0 is not identical to any of the samples, we can not
Xxxx o oQ know for sure, simply because our samples only

. e carry partial information of the classes they are
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choices, and there no uniquely correct way of doing this. For instance, the green
point is much nearer the centre of the red circles than the blue crosses. The nearest
neighbour on the other hand is a blue cross. If we have no other information it is

our choice according to which rules are classify.

It is also noticed that classes can overlap. Even though our classes in reality
might be truly distinct, the measurements/data we have at our hand, might not be

sufficient.

4.1.2 Classify According to Smallest Distance

If the new point can have any location, it is needed to assign a class number to
any point in space. To do so, it is sufficient to define the borders between different
areas. This is often done via a distance measure. Given a distance to every class, it
is an obvious choice to classify according to the nearest. The boarders are then the
subspaces in which distances to two different classes are identical. This means that
the classification is done by defining a distance measure and solving a set of
equations. There is no loss of generality in this procedure, but off course there

might be cases where another approach is more attractive.

In the case of only two classes it will be denoted the boarder subspace as the
separator and the difference between the two distances D, it will be denoted the

discriminator. Thus the separator is the solution to the equation A=0.

4.1.2.1 Distance measures

In this section several distance measures will be discussed. Let dist denote our

distance, whatever the measure might be.

¢ A linear measure
» A quadratic measure

e Interpolation based measure.
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4.1.2.2 Mahalanobis distance (MHD).

It will be focused on the quadratic measure. When nothing else is mentioned it
is assumed that the covariance matrix is positive semidefine. In other words all
eigenvalues are real and bigger than zero. Under a Gaussian model the

straightforward choice is to chose the distance measure imposed by the metric :
dist=(X-p) ), "(X-4)

This is called Mahalanobis distance. Eigenproblems can be written as

composition of a rotation matrix and a diagonal matrix. Z ' = RLR. This means

that if it is shifted from X to the rotated coordinates Y = (X- )R, it has: dist =

Y'LY, and the point is now that since L is diagonal this can be written as the sum:

d 5
dist = 2,2
1=1 ,11. ;

A is the i'th eigenvalue. It is now clear why the eigenvalues is not allowed to

be zero.

4.1.2.2.1 The two class problem

The two-class discriminator in the Mahalanobi case is:

A=(X-p) > (X =)~ (X =)D ™ (X = py)
This can be rewritten
A=(X =) 2 (X - m)+k

Where
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DIREDIWRED I
,u=2(21"lﬂ1 "Z 2_1:“2)
k=02 >, m-HY

To understand the implications of this it is useful to have a look at two

dimensional examples. First note that the new metric of the separator
z . B ~z 5 B nao real eigenvalues. In the generic case they will be non zero,

but they can be negative. There are two distinct cases, they can have same sign
andopposite signs. Both cases are shown on the figures beneath. On the left figure
eigenvalues has same sign and the separator is an ellipse. On the right figure signs
are opposite and the separator is a hyperbola. The hyperbola of course continues
towards infinity and only part of it is visible in the figure window. Note that the
area contained by the left leg of the hyperbola is classified as belonging to the
"red" class. To the eye this might at first seem counter intuitive, but the
explanation is that the "red" class has bigger variance in the left right direction

than the "blue” class.

Fig 4.1 Eigenvalues and separators
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4.1.2.2.2 Fast Approximate Estimate of MHD. Dimensionally Reduction

The transformation to the Principal components can be attractive because it tells
us if variation is small in some directions. If the task is to represent information in
a sparse manner, this is useful because we can choose to specify only the
coordinates in the directions of large variation. Neglecting the coordinates in
directions of small variation only introduces small errors. This procedure is often

referred to as dimensionality reduction.

In the case of classification this procedure also can be relevant. Calculating
Mahalanobis distance has a time complexity of d squared. If it can be done
reasonably with an estimate based on only m eigencoordinates the time complexity

reduces to md. The key to finding the approximation is to note, that the total

variance V ofthe coordinates of X (aroundyu) in is equal to ny.

Furthermore the maximum likelihood estimate of this is Trace (Z ) = Z A, .

Using this:

4yl oy 4yl
P P
i=17% i=1 74 i=m+1 7%
o2
m V-2
z%+(d—m) t=1
P=1 7 V-3¥a

Py
I
—

where the sum in the second term has been split over nominator and
denominator. The sum over the eigenvalues in the nominator has been replaced by
their mean value. This approximation is good if their variation is small or the

nominator is small.
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4.1.2.2.3 Choice of Eigenvector Subset

The approximation is valid for any subset of the eigenvectors. For compression
it is choose the large eigenvalues, but in classification the small eigenvalues might .
be a better choice, because directions of small variations are the useful ones when
it is wanted to distinguish between classes. However as shown in the section:
Reliability of covariance estimate and eigenspectrum you should be careful when

using the small eigenvalues.

4.1.2.2.4 Prescaling of Data

The performance of the above approximation formula can be improved by a
Prescaling. The units of measurement for the individual coordinate in the data
vector X is a matter of free choice. The PCA analyses will 100% eliminate the
difference between any two choices, but the approximation formula is better off,
when all variables are scaled to have same variance (one), meaning that the
diagonal of the covariance matrix is a vector containing all ones.

The relative variation of the estimates is biggest for the smallest eigenvalues.

Fig 4.2 Effect of prescaling on artificial data
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The figures on the left show the effect of prescaling on artificial data. The left
figure shows the eigenvalue spectrums, and the right figure shows the
accumulated spectrums. The blue curve is with prescaling, and the red curve is
without. The conclusion is (in this example) that the spectrum is more flat in the
top end. The consequence of this is, that a distance estimate based on the small
eigenvalues, is less error prone after prescaling, because a mean value

approximates the remaining spectrum better.

4.1.2.3 Comment

The benefit of prescaling might not be overwhelming. It is easy to construct
examples where the effect is vanishing. It is very difficult to say anything in
general, because it all depends on the metric in the actual case. My suggestion
would be simply to check in each case. The cost is that all data vectors have to
multiply by a scaling vector. This is the same cost as calculating one principal
component. So if you are able to get the desired precision in you distance estimate

by fewer principal components, then it’s worth it.

4.1.2.4 A linear distance measure

In the previous section it was shown how we could classify by projecting data

on a set of eigenvectors or alternatively calculate the distance directly via the full

metric: dist =X’ Z "' X. It is of course possible to design faster but possible poorer

procedures. One method is to use the projection, on only one direction in space.
The critical point in this strategy is to calculate the direction best suited for this

purpose. A solution to this problem is presented here.

First the problem has to be stated. The straightforward suggestion is: which
linear separator would minimize the probability of misclassification. It turns out
that it's difficult to find an effective algorithm that produces the answer. Instead we

will use an alternative formulation that can attack analytically.
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Find the direction upon which the overlap between projections of the two

classes is minimal.

The overlap W between to probability densities f(x) and g(x) i define as :

Q= [F(x)- glx)ax

In the case of two one dimensional Gaussians N( u,0,), N( &, 0,) the overlap is

2
Q= exp[— %E—?— + ln(Zfzcr)]
ol

A

p=m-m  o'=of +oj

The projection of the vector x upon some direction vector n, is 4 'n. The
variance in a specific direction n given the metricz ,1sn Z n. Inserting these

projections into the above equation gives the problem of maximizing the

expression:

1" A
n'an
M=pmu' Z=Z+%,

+ In{n'Zn)

When Z 1s positive definite, it can be decomposed into B'B, and by
substituting x=B’n the expression writes: x'(B'l)'M(B'l)x, and maximizing this is
equivalent to the eigenvalue problem :

B'MB x=lxo
Mx = A2x
The lower expression is recognized as a generalized eigenvalue problem. The

solutions has to be retransformed to the original system by n=B"'x.



44

4.1.2.5 Comments

The procedure can be understood simply in geometrical terms. First it is
coordinated transform our system to get an isotropic metric. Then x' Z X equals

one, and we get an ordinary eigenproblem, which solutions has to be

retransformed.

The matrix M is an outer product gu (not the inner product wu') of the
vector u by itself. M only has rank one, and there is only one eigenvector with a

non zero eigenvalue. This is our Dbest separating direction.
4.1.2.6 Position of the separator

The two figures shows hyper planes (full blue lines in 2D) having the best
separating direction as normal vectors. The figures are analog to the two figures in
the case of quadratic discriminate. The quadratic separators have been shown in

dotted black as well for comparison.

Fig 4.3 Mahalanobi Separator

As shown beneath, it turns out that separating via the best single direction,

requires the use of two parallel hyper planes. At first that might seem surprising,
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but on the right figure it is clear, that it reflects the properties of the Mahalanobi
separator. On the right figure we only see one, the other one being far out to the
left. When one of the planes is located very far from the classes, it does not have

much practical significance. As a limiting case one plane can be located in infinity,

but this is non generic

Both figures make it clear, that we need to specify where to locate the
separators. So far we have found its normal, but there is still one translational
degree of freedom. If we classify according to MHD in the one-dimensional case

of to Gaussians N( i, o,), N(u, o, ), the criterion is :

(v’f—ﬂl)z >(x“ﬂ2)2 -

2
"-712 2]
Oyl — O k4 Cx < O iy + O 4
o, — o, o+ oy

For o, < o, otherwise the solution is outside the roots. As above the values of
m and s are the projections of the d-dimensional analogs u and Z . If the

direction vectorisn, u=pn and c=nY n
4.1.2.7 Conclusion

A method has been given to calculate hyper planes (subspaces of dimension d-
1) with high classification performance. Only d+1 parameters has to be estimated.

The MHD is potentially a stronger classifier but relies on d(d-1)/2 parameters and

is much more sensible to weak statistics.
4.1.3 Classification by Iterative Linear Separation

In stead of trying to use a "one shot" classifier, it is possible to use several

linear classifiers in an iterative setting. It can be relaxed our classification in the
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sense, that we at first iteration only accept classifications far one the safe side, and

leave the rest for next iteration.

This is showed on the figure at the left. In stead of positioning our separator
planes at the optimal locations, (shown dotted) we translate them to leave some
parts of space unclassified. In the training face the remaining unclassified data can
now be used to calculate a second linear classifier and so on. This also has the
strength that non-Gaussian Classes that are entangled as on the figure can be
handled better than by MHD. The drawback is that there is no obvious way of
automatically calculating the alternative "safe" positions of hyper planes. But since
we are working with one-dimensional directions of separation, we can monitor the

projections of the classes, and set the positions interactively in the training phase.

4.1.3.1 Interpolation

A third way of defining distance measures is via interpolation. If it is
viewed each class as a function in space and it has samples of a class, then it can
be uéed any kind of interpolation/extrapolation scheme to assign values to other
points in spéce. This éan be done for each class, and it can then claésify any point
according to the class that has the highest interpolated function value in that point.
[http://www.diku.dk/undervisning/19991/199.134/Classification.html#Mahalanobi
s%20distance%20(MHD)]

4.2 Structural or Syntactic Methods

The other major family of classic pattern recognition approaches, chiefly
developed for image or shape processing applications are structural or syntactic
methods (Pavlidis 1977). Here, the input image must first be segmented into
primitives; the primitives must be recognized, and spatial or topological
relationships between these primitives extracted. Finally, with this information, a
syntactic analysis and classification on that basis can proceed. None of these

problems are trivial. Within computer vision, structural methods based on raw
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image data have been largely superseded by related methods which capture
structural information implicitly by multi-scale representations or by
deformations. In the psychological examination of human vision, structural
approaches still command a good deal of support. In part, this is 9 First order
features implies that no information on the spatial proximity of other features is
present. Second order features would capture adjacencies of feature pairs at one or
more scales, with increasing high order features preserving this trend. Due to the
fact that task specific or language mediated descriptions of objects offer evidence
that compositional representations are used. Statistical approaches and
feedforward neural networks have been problematic in regard to this issue.
Compositionality is essentially the separability of the components of a composite
representation, i.e. the ability to use or talk about them independently after the
formation of that representation (Van Gelder 1990). Recurrent networks have
been demonstrated to exhibit a so called functional compositionality, in which tree

structures can be represented and their constituent parts derived (Pollack 1990).

4.3 Neural Network

4.3.1 Introduction

Many claims have been made concerning the importance of neural networks
(NNs) as a paradigm shift in modelling both nature and the central processes of
Information Technology including, most directly, Artificial Intelligence problem
domains. To this stage, NNs have been applied to many and varied areas of
inquiry from the control of chemical plants, through to pattern recognition, and
many biological domains. Further, most proponents do not claim that NNs
literally correspond to what actually occurs in the human brain, but there is a
general belief of a loose correspondence between the actual computational units
used and the response properties of individual neurons. Added to this, there is a
belief that the inherent parallelism of NNs is consistent with brain function and
that the use of fundamental numerical computations, in contrast to symbolic or
declarative representations, is representative of the “hardware" of intelligent

behaviour. This thesis is not aimed at challenging these claims.
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It is important to note that most past NN formulations have a few central
features in common. They are:
1. Problems are solved by the determination of weights or states in
an extremely high-dimensional state space.
2. Learning, parameter estimation, and information processing are
all inherently parallel.
3. No further constraints on the system are required, since the NN
learns weights which are necessary and sufficient to predict

behaviour.

This indicates that most applications of NNs are based upon the assumption
that solutions to problems can be obtained by using generic technologies which
essentially search high-dimensional state spaces, and so require no additional
knowledge about the system under analysis. Examples of this abound in the
literature, where the input and output level responses are defined by discrete
nodes and their transducer functions, and at least one hidden layer is introduced.
Further, NNs usually employ Supervised Learning which, in one sense, is a form
of constraining the system and weight estimation proce_éses. However, it is usually
“black-box" in so far as it, per se, makes no assumptions about the processing
characteristics and desired properties of the system not explicit in the training
samples. For example, most traditional NN approaches to pattern recognition lack
explicit shift, rotation and scale invariances, as the NNs are not modelled with
such characteristics in mind. If such invariances arise it is due to the presence of
appropriately shifted, rotated, or scaled example patterns in the training data set.
[e.g Tebelski and Waibel, 1990; Waibel, Jain, McNair, Saito, Hauptmann and
Tebelski, 1991] This can result in dramatically improved generalization of
classification performance to patterns not present in the training data, and
representation in considerably lower-dimensional state spaces. Perhaps most
importantly, model-based NNs can be constructed so that they are guaranteed to
have responses which are invariant under certain transformations of the input data.
Such networks can be trained with very much smaller training sets, since it is no

longer necessary to provide examples of transformed versions of the input
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prototypes. This, coupled with the reduction in the dimensionality of the
parameter space, means that training such model-based NNs is often much less
computationally-expensive than the traditional alternative. To attain these goals
we first define the classical formulation, compare it to past technologies, and then

develop the model-based formulation.

4.3.2 Classical Feed-forward Neural Network

For a classical feed-forward NN, the input x ; to a given “neuron”, J, 1s defined

by

X, =YW,
i

and the output is defined by the logistic function

1
y= —
l+e™

This process is implemented in NNs with at least three layers: an input layer,
and output layer and one or more hidden layers. In classification or recognition
problems, the input layer is defined by an array of nodes which constitute a
sampled version of the input signal. The output layer is defined by a set of nodes

each corresponding to a class, pattern type, or category. Connections w, between

nodes are usually restricted to layers above and below a given layer (see Figure
3.4). For a 3-layer NN with 100, 20, and 10 nodes for the three layers,
respectively, this results in 100 x 20 + 20 x 10 = 2200 connections. Each such
connection has a weight to be estimated in accordance with the desired input-

output (I-O) characteristics.
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Figure 4.4: A classical feed-forward network. The weighting function between
all pairs of levels is of type M. 1.

For recognition or classification problems using Supervised Learning, the NN
is trained to reproduce given outputs from known input examples as accurately as

possible. That is, the learning problem is defined by estimating the w, such that a

given output error, or “cost”, function E is minimized. The most commonly used

cost function is the sum of the squares of the errors of the output nodes:

I?vm{ =’;’Z Z (J’zc“tzc)z }

where w, refers to all connection weights over all levels of the network, ¢
indexes the input-output exemplar pairs, 1 indexes the output nodes, y, is the

actual output, and ¢, is the desired output.
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Though described in a variety of ways, learning techniques use either
deterministic gradient descent (in particular, back propagation [Rumelhart, Hinton
and Williams, 1986b; Rumelhart, Hinton and Williams, 1986a; Plaut and Hinton,
1987] or stochastic relaxation methods [e.g. Metropolis, Rosenbluth, Rosenbluth,
Teller and Teller, 1953; Kirkpatrick, Jr. and Vecchi, 1983; Aarts and Korst, 1989]
to nd a set of weights (a state of the network). Solution or convergence times can

be improved with various acceleration techniques [e.g. Fahlman, 1988].

We are not so much concerned with these search techniques but, rather, the
definition of the state space being searched. The state space dimensionality is very
high since it is defined by the total nﬁmber of independent connection weights,
which here includes every connection. Consequently, there are likely to be many
local minima available to the solution technique for the training examples, but do
not characterize the problem in general. The problems associated with search time
(number of iterations for convergence, etc.) are also significant. Further, under the
classical NN perspective, no further constraints are added to such estimation
problems as that would ,challenge the idea that relations and rules can be
“discovered" automatically through the minimization or search for global minima
of above equation'. Here, we propose to retain the notion that states can indeed be
discovered by the learmning procedure, but to constrain the search procedure by
modelling the network to explicitly include our knowledge of the important

features of the data, or desired invariant properties.

This modelling can take a variety of forms. The network is frequently divided
into a number of modules. These modules can be designed to perform component
sub-tasks of the overall classification problem. Within a module, the weights may
be constrained in some way: some weights may be set by hand; others may be
constrained by a functional relationship; the module may be trained to perform a
mapping independent of the classification training data. First, however, this view

must be put in perspective. To this end, we will first relate the parameter
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estimation problem in NNs to similar problems in Signal Processing and Principal

Components Analysis.

4.3.3 A Matrix View of Neural Networks

We first note that, for a given set of connections, Equations 1.1 and 1.2 can be

written in matrix form as:

X, =1y, |

Where f corresponds to the logistic nonlinear transducer (Equation 1.2), W to
the connection matrix of size n _ m (for m \source" and n \destination" nodes),
and X and Y to the source and destination vectors corresponding to the pair-wise
NN node layers. This form points to the essential idea that the own of information
- from one level to the next corresponds to a transformation, defined by the
connection matrix, which maps m-dimensional signals into n-dimensional ones,
where, usually, n < m. The nonlinear transducer is used to map input values
monotonically to the range (0; 1). The net effect is that the NN procedure
endeavours to discover a mapping which satisfies an overt constraint like least

squares (Equation 1.3) or others.

Consequently, the best form of W is that of an orthogonal mapping of rank
equal to the true dimensionality of the input - as measured, for example, by the
rank of the input signal correlation matrix. Hidden units (units in neither the input
nor output layers) correspond to components of the eigenstructure in the
mappings, albeit constrained by the optimization goal. Except for the nonlinear
transducer function, the use of hidden units in NNs is a way of determining the
eigenstructure, or principal components, of the data. There must be at least as
many hidden units (spread throughout the hidden layers) as there are non-zero
eigenvalues in the input data correlation matrix, since it is necessary to span a
vector space of the same dimensionality as the signal samples. The hidden units,

by definition, extract the important features in the signals which, in more



33

traditional signal processing, are extracted through the eigenvectors of the signal

autocorrelation or autocovariance matrices [Ade, 1983; Ahmed and Rao, 1975].

Since many applications of NN lie in the area of classification, it is interesting
to note that, when the final output layer of such a cascaded NN is a set of nodes
corresponding to classes or categories, we can interpret the system as a form of
Discriminant Function Analysis. The Discriminant Analysis model is based upon
the determination of decision hyper planes which lie between sample class means
and which maximize the between-class and minimize the within-class variance
from their projections onto such planes. Discriminant functions are linear

equations of the form:

m
=S ay, +a,
1

i

i

and class membership is determined by the value of the function. For example,
for a two-class classification problem, class membership is determined by the sign
of z. For the n-class pfoblem Equation 1.5 generalizes to the matrix form:

Z=DY

where the n-class vector Z determines the weights associated with the data, Y,
from each of the classes. D corresponds to the set of discriminant function
coefficients which define each class. The crucial difference between NNs and
classical Discriminant Function Analysis is that the decision boundaries of NNs

are non-linear, due to the transducer f.

Similar formulations for classification have occurred in the Pattern Recognition
literature where, for example, the Least Squares Minimum Distance Classifier
[Ahmed and Rao, 1975] attempts to find a mapping, in matrix form, which
transforms samples in feature space into points in “decision space" (whose

dimensionality corresponds to the number of classes) and satisfies the constraint
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that samples from the same class should be mapped as close as possible to each

other, and as far away as possible from other class samples, in decision space.

However, NNs differ from these well-known past techniques, even in their
traditional form, by binding the representation and processing characteristics
together. Although all these techniques have similar aims and structures, the NN
formulation integrates the processing characteristics with the decision processes in
one network, which is represented, in general, by a set of cascaded
transformations. The use of nonlinear transducers and layers of differing sizes has
the disadvantage that analytic solutions are difficult, particularly since the
dimensionality of the representation is of high order, but permits the network to

distinguish between classes which are not linearly separable.

Our aim is to preserve this binding of process with representation (feature
space), but to extend the NN philosophy to include more explicit constraints on
the network geometry and connection weights. The resulting systems behave
similarly to traditional NNs, but have two main advantages. First, it is possible to
construct networks that are constrained to respond to features of the input data |
that are known a priori to characterize the task or to have desired invariances,
rather than hoping that the training data will cause the optimization technique to
find a set of weights with these properties. Secondly, this allows the
dimensionality of the system to be reduced, which can reduce the chance of
finding a local minimum that characterizes the training data but not the general

task. We call this extension Model-Based Neural Networks (MBNN).

The use of MBNNs allows a network to be constructed in which the
supervisor's knowledge of the task to be performed is used to specify, partially or
completely, the roles of some hidden units, or of whole hidden layers or modules,
in advance. Thus the supervisor's knowledge of which features of the training data
are significant for the task is incorporated into the network geometry and
connection weighting functions, serving as a constraint on the state space

searched.
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4.4 Wavelet Analysis of Epileptic Spikes

Interictal spikes and sharp waves in human EEG are characteristic
signatures of epilepsy. These potentials originate as a result of synchronous,
pathological discharge of many neurons. The reliable detection of such potentials
has been the long-standing problem in EEG analysis, especially after long-term
monitoring became common in investigation of epileptic patients. The traditional
definition of a spike is based on its amplitude, duration, sharpness, and emergence
from its background. However, spike detection systems built solely around this
definition are not reliable due to the presence of numerous transients and artifacts.
It is used wavelet transform to analyse the properties of EEG manifestations of
epilepsy. It is demonstrated that the behaviour of wavelet transform of epileptic
spikes across scales can constitute the foundation of a relatively simple yet

effective detection algorithm.

The wavelet transform is an integral transform for which the set of basis
functions, known as wavelets, are well localized both in time and frequency.

Moreover, the wavelet basis can be constructed from a single function ¢(¢) by

means of translation and dilation:

t—t,
a

Py = P ).

¢(t) is commonly referred to as the mother function or analysing wavelet. The

wavelet transform of function A(¢)is defined as

i

W(a,t,) = 7 j h(t)p,, dt,
a -0

Where ¢’ (¢) is referred the complex conjugate of ¢(¢). The continuous wavelet
N-1

transform of a discrete time series {4, .,

of length N and equal spacing 0f is
defined as
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W () = Z ) {(n —n)at}

" =0

The above convolution can be evaluated for any of N values of the time index n.
However, by choosing all N successive time index values, the convolution

theorem allows us to calculate all N convolutions simultaneously in Fourier space
using a discrete Fourier transform (DFT). The DFT of {h,. }fi;' 1s
n 1 N-1

~Iikn!
hk h 2mkni N ,
Nn—O

Where k£ =0,..,N -1 is the frequency index. If one notes that the Fourier

transform of a function ¢(¢/a) is |a| @(af’) then by the convolution theorem
N-I . ~ )
W (a)= w/a.Sth,,go (af, )e* ™"
k=0

Frequencies f, are defined in the conventional way. Using and a Standard fast

Fourier transform (FFT) routine it is possible to efficiently calculate the
continuous wavelet transform (for a given scalea) at all » simultaneously. It
should be emphasized that formally above equation does not yield the discrete

linear convolution corresponding to equation W, (a) but rather a discrete circular

convolution in which the shift » —r is taken modulo N. However, in the context
of this work, this problem does not give rise to any numerical difficulties. This is
because, for purely practical reasons, the beginning and the end of the analysed

part of data stream are not taken into account during the EEG spike detection.

From a plethora of available mother wavelets, It is employed the Mexican hat
o(t) = _2_”—1/4(1 _12)6—13/2
J3

which is particularly suitable for studying epileptic events.
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In the top panel of Fig 3.5 it is presented two pieces of the EEG recording joined
at approximately s = 1s. The digital 19-channel recording sampled at 240 Hz was
obtained from a juvenile epileptic patient according to the international 10-20
standard with the reference average electrode. The epileptic spike in this figure
(marked by the arrow) is followed by two artifacts. The bottom panel of Fig.1
displays the contour map of the absolute value of Mexican hat wavelet
coefficients W (a,t,) . It is apparent that the red prominent ridges correspond to the
position of either spike or the motion artifacts. What is most important, for small
scales, a, the values of the wavelet coefficients for the spike’s ridge are much
larger than those for the artifacts. The peak value along the spike ridge
corresponds to a = 7. In sharp contrast, for the range of scales used in Fig. 3.5.

The absolute value of coefficients W (a,t,) for the artifacts grows monotonically

witha .

The quesﬁon arises to whether the behaviour of the wavelet transform as a
function of scale can be used to develop a reliable detection algorithm. The first

step in this direction is to use the normalized wavelet power
w(a,t,) =W?(a,t,)/ o’

instead of the wavelet coefficients to reduce the dependence on the amplitude of

the EEG recording. In the above formula ¢’ is the variance of the portion of the
signal being analyzed (typically it is used pieces of length 1024 for EEG tracings
sampled at 240 Hz). In actual numerical calculations it is preferred to use the

square of w(a,t,) to merely increase the range of values analysed the spike

detection process. In Fig. 3.5 w® for the signal used in Fig 3.5 is plotted for three
scales 4 =3, B=7and C = 20.

In the most straightforward approach, it is identified an EEG transient

potential as a simple or isolated epileptic spike if and only if:
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e the value of w’ at a = 7 is greater than a predetermined threshold value
T, ,
e the square of normalized wavelet power decreases from scale a = 7 to a =
20,
o the value of w’ at @ = 3 is greater than a predetermined threshold value
T,.
The threshold values 7, and 7, may be considered as the model’s parameters
which can be adjusted to achieve the desired sensitivity (the ratio of detected
epileptic events to the total number of epileptic events present in the analysed

EEG tracing) and selectivity (the ratio of epileptic events to the total number of

events marked by the algorithm as epileptic spikes).

While its simple algorithm is quite effective for simple spikes such as one
shown in Fig.3.5 it fails for the common case of an epileptic spike accompanied
by a slow wave with comparable amplitude. The example of such complex is
given in Fig’. 3.5- (a) . The overlap of the negative tail of the Mexican hat with the
slow wave yield the inherently low values of w* at scale A (panel (b)) and scale B
(panel (c)) as compared to those characteristic of the “isolated” spike.
Neﬂlertheless, the normalized wavelet power does decrease from scale B to C.
Consequently, in the same vein as the argument we presented above, it can be
developed an algorithm which detects the epileptic spike in the vicinity of a slow

wave by calculating the following linear combination of wavelet transforms:
W(a,to) =c,W(a,ty)+c,W(a,t,+1)

and checking whether the square of corresponding normalized power

Wa,t,) =W?(a,t,)/ o at scales a = 3 and a = 7 exceed the threshold value 7,

and T,, respectively. The second term of the above equation allows us to detect
the slow wave, which follows the spike. The parameters a_ and r are chosen to

maximize the overlap of the wavelet with the slow wave. For the Mexican hat is
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used a,= 28 and 7 = 0.125s . By varying the values of coefficients ¢, and c,, it is

possible to control the relative contribution of the spike and the slow wave to the

linear combination.

For testing purposes, it is built up the database of artifacts and spikes. It is
made available some of these EEG tracings along with the examples of the
numerical calculations. While the analysis of the pieces of EEG recordings such
as those shown Fig. 3.5 is essential in determining the generic properties of the
epileptic events, it can hardly reflect the difficulties one can encounter in
interpretation of clinical EEG. Therefore it had been selected four challenging
EEG tracings with 340 epileptic events. The algorithm described marked 356
events out of which 239 turned out to be the epileptic events. Thus the sensitivity
of the algorithm was 70 % and its selectivity was equal to 67%. Then it was
analysed the same tracings with the leading commercial spike detector developed
by the Persyst Development Corporation. This software marked 654 events out of
which 268 were’ epileptic events. Thus slightly better sensitivity of 79%was

achieved at the expense of the low 41% selectivity.

The goal of wavelet analysis of the two types of spikes, presented in this
chapter, was to elucidate the approach to epileptic events detection, which
explicitly hinges on the behaviour of wavelet power spectrum of EEG signal
across scales and not merely on its values. Thus, this approach is distinct not only
from the detection algorithms based upon discrete multiresolation representations
of EEG recordings but also from the method developed by Senhadji and Wendling

which employs continuous wavelet transform.
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Fig 4.5 (a) Epileptic spike — slow wave complex. The amplitude of the slow
wave is comparable to that of the spike. The square of normalized wavelet power

for this signal is shown in panels (b) — (d) for three different scales 4<B<C
4.5 EEG Spike Detection Using Deconvolution

The method of predictive deconvolution is employed for spike detection in
EEG signals (Robinbson. E.A. 1958 Mohandas 1981). Based on experiments on
real EEG segments, it has been shown that spikes in the frequency range 16-60
Hertz, which is common in EEG signal, can effectively detected by these
methods. Very sharp spikes can also be detected. The effectiveness of the
proposed algorithms for EEG spike detection is compared using quantitative

measures such as signal to noise ratio improvement factor.

4.5.1 Deconvolution and Spike Detection

The recorded EEG signal is usually corrupted by noise so that if (z(k)) is

the noise free EEG signal, the recorded EEG can be written as :
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y(k) = z(k) + v(k)

where (v(k)) is a noise sequence assumed to be uncorrelated. The signal (z(k))
available at the skull is influenced by physiological changes in the brain. These
changes in patients with epilepsy, or with injuries of the brain are in the form of
sudden electric discharges. These discharges appear as spikes in the recorded EEG
signal. It is of clinical interest to detect these spikes, which will help in the
diognosis of epilepsy, brain damage, etc. The detection of such random spikes is
not easily done since these spikes may be hidden in the background activity or
masked by the noise present in the observations. The purpose of deconvolution is,

then, to enhance the resolution of these spikes, given the EEG record (y(k)) with

suspected spikes present in it.

A quantitative measure to indicate the resolution of these spikes against the
EEG background can be defined and evaluated (Mohandas 1981). The signal to

noise improvement factor (SNRIF) can be _defmed as:

M2

Q@) / (let)

SNRIF = =M1

M2 N
LOOF /Y

=M1

where M1 and M2 mark the beginning and end of a small window in which the
spike appears and N is the total number of sample the recorded EEG segment and
e(k) is the prediction error which is the same as the convolved output. Greater the

SNRIF better will be the resolution of the spikes against the background.

4.5.2 Algorithms for Deconvolutions

Deconvolution or inverse filtering is the process of estimating the input

function, given the output of the system and the system weighting sequence. The
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method of deconvolution has been extensively used in seismic data processing
(Robinson. E.A 1957, Mohandas. K. P. 1981) in which, the input to the system is
assumed to be a random reflection coefficient sequence. In the absence of
information regarding the system weighting sequence (seismic wavelet), the input
sequence is estimated using the predictive deconvolution approach of Robinson.
The situation in EEG signal spike detection problem is quite similar in the sense
that only the EEG signal output is available, system function is not known and the
input signal to be estimated is a random spike time of occurrence are not known a
priori. A time series model fitted to the real EEG signal can remove the
predictable part of the signal leaving the prediction error as an estimate of the

input spike signal.

In some of the earlier studies in EEG modelling autoregressive models have
been extensively used. Some attempts have also been made to describe an EEG
~ signal as an output of an ARMA process.

4.5.3 Nonrecursive Autoregressive Models

The current value of y(k) is expressed is the weighted sum of pasat values of

y(k)’s plus a random shock.
yk)=a,.y(k—D)+...+a,y(k— p)+e(k)

The parameters of the model can be estimated nonrecursively using Yule-

Walker equations. The single step predicted value of y(k) will then be :

)A/(k) = ;1 Yk -1)+...+ap.y(;c -p)

A

where a,'s are the values of the estimated parameters. Then the prediction

error ¢ (k) is given by:
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e(k) = y(k)— y(k)
4.5.4 Recursive ARMA Predictors

In a manner similar to above equation it is possible to express the current value
of y(k) as weighted sum of the p previous values of y and q previous values of the
white noise sequence (e(k)). This model is more general and in known as the

mixed autoregressive moving average (ARMA) model. In this case:
p - q .
y(k)y = aylk—i)+ be(k - )
i=] =l

A Kalman-type algorithm can be used to estimate the ARMA model
parameters. Since the parameters are recursively updated with each incoming data
points, such an algorithm can track slow variations in the parameters and hence

weak nonstationarities in the data.
4.5.5 State Variable Models

Use of state variable models for deconvolution as an efficient alternative to
AR/ARMA models has been demonstrated (Mohandas 1981. Mahalanobis. Et.al
1981) from the known values of the output sequence, and the estimated values of
the auto-covariance function. An innovations’ model can be identified. The model

is described by:

x(k/k+1)=Fx(k/k+1)+ K.e(k)

Y0k) = H x(k e~ 1)+ e(le)

where x(k/k —1) is the predicted estimate of x(k) based on the measurements

y(0), y(1),...,y(k-1) ; e(k) is the zero mean innovations’ sequence with unknown

covariance Q and K represents the asymptotic value of the Kalman predictor gain.
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The details of the model parameter identification are given elsewhere (Tse &

Weinert 1975, Mahalanobis. Et. Al 1981).

This method, even though nonrecursive yields comparable performance at far
less computational effort. The determinant ratio test (Woodside 1971) can be used

I determining the system order.
4.5.6 Effectiveness of Different Algorithms

The comparison of the performance of these algorithms has been made
quantitavely and qualitatively using simulation experiments were conducted on
several segments of real EEG data collected from a normal patient. As there were
no apparent spikes or other abnormalities in the recorded EEG, spikes of known
amplitude and frequency were superimposed on this. In the result presented in the
paper, specifically, we have chosen a sharp spike and another of frequency 32 Hz

for illustrating the efficacy of the proposed methods for spike detection.

The quantitative comparison of the performance of the algorithms is based
on the SNRIF defined in above equation and the qualitative comparison based on
the plots of the deconvolved EEG segments. In table I is presented the SNRIF
obtained using the different methods of spike detection under study. As would be
expected, the recursive methods, and the methods based on ARMA models yield
marginally better SNRIF in comparison with the one based on an AR model as
hitherto used in such studies. Recursive models are apparently better for detection
of sharp spikes. However, the numbers parenthesis of these recursive methods
may become prohibitive as the model parameters are updated with every
incoming data point. The state variable models are computationally superior
alternative to AR modelling since this method yields comparable results at a lesser
computational cost. Only difficulty in implementing the innovations’ model
identification algorithﬁ is the need for determining the minimal order for the
model since an incorrect model order may result in the divergence of the

parameter.It is shown the plots of the EEG segments with the spikes introduced
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and after deconvolution by these methods. In each case the enhancement of the
resolution of the spikes is quite evident. The comparatively superior performance
of the recursive method in the processing of real EEG data is once again

confirmed.
4.5.8 Conclusions

It has been demonstrated that ARMA models are better suited for the
description of EEG real data. The method of predictive deconvolution can be
employed for the detection of spikes present in the EEG segments. Both recursive
and nonrecursive deconvolution techniques have been attempted on several
segments of EEG real data. Efficacy of the methods had been compared with the
help of quantitative and qualitative criterion for comparison. It is observed that
recursive models yield better resolution of the spikes against the background
activity and the noise at a higher computational effort. The nonrecursive
innovations model (state model) is a better alternative to the AR modelling
technique that has been used for modelling EEG segments. These desirable
feature of the technique presented in this study is that non of them require any a
priori assumptions except that of stationary of the data and elaborate steps are
involved in the determination of a threshold based on ad hoc assumptions for the

detection of spikes in a real EEG segment.

Further, recursive methods can be used for on-line detection of spikes in
an EEG segment. It is expected that the proposed methods can help significantly
in the reduction of subjectivity in the detection of spikes in EEG segments, which

are symptoms of brain injury thromboses tumour and epilepsy.
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Window Non Recursive Recursive
No Method Method
AR(4) State AR(4) ARMA (4,1)
1 2,11 1,42(2) 3,39 3,88
2 6,60 6,29(5) 3,96 5,65
3 1,79 2,84(5) 2,76 1,9
4 13,60 14,40(4) 18,70 16,28
5 7,66 9,13(4) 11,51 11,31

2 B SHARP SPIKE INTRODUCED

1 2,38 1,71(2) 4,29 435

2 8,68 9,17(4) 7,58 7,54

3 2,51 2,56(4) 3,99 2,62

4 17,40 19,96(4) 25,89 24,08

5 7,33 - 7.2403) 11,24 10,90
TABLE 4.1

Numbers within parenthesis in Col. 3 indicate the system order identified.
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CHAPTER FIVE
RELATED WORKS

5.1 Related Works

Several other groups are developing methods for eeg spike detection. Here
we present a general summary of the available literature, followed by a more

detailed review of three published papers in this field.

It is difficult to compare results from different papers reporting different
methods but there is a set of standard statistical measures in addition to accuracy.
In this review, and in presenting our own results, two of these measures shall be
used - sensitivity and specificity.

These are deﬁned as:

correctly detected positives

sensitivity = —
total actual positives

correctly detected negatives

specificity = :
P Y total actual negatives

In this context a ‘positive' is a detected seizure and a ‘negative' is a

detected non-seizure.

5.1.1 Literature Search

Automatic analysis of the human EEG for assisting in the diagnosis of
epilepsy started in the early 1970s. In 1973 Prior et al. described a system which
identified tonic-clonic seizures by detecting a large increase in EEG signal
amplitude followed by a clear decrease, accompanied by high levels of muscle

activity. Ives et al. applied amplitude discrimination to the sum of all 16 channels
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of EEG and was successful in detecting large seizures . Moving away from
software methods, Babb et al. presented an electronic circuit to perform seizure

detection.

From these beginnings the analysis of epileptic EEG has progressed in two
main directions:
1. Seizure detection
2. Inter-ictal event detection
Some recent work has also been done on automatic systems to locate the origin of

focalseizures.

Ambulatory EEG recording achieved widespread usage in the mid-1980s .
Prior to this, most work in epileptic EEG analysis concentrated on the second area
| the detection of inter-ictal events. This bias was probably due to the fact that
long-term monitoring would take place in a dedicated unit; in these conditions it is
relatively easy to identify seizures whenb they occur. Ambulatory recording,
however, introduces the need to scan large amounts of EEG data for seizures, a

time-consuming operation.

In 1982, Gotman presented a computerised system designed to detect a
variety of different types of seizure. This method has been updated several times
but remained basically unchanged over the 1980s. A more detailed description of
some recent work by
Gotman. Interest in the issue of seizure detection has resurfaced during the '90s

with a number of papers published by different research groups.

Neural network detection systems have been proposed by a number of
researchers including Weng and Pradhan. Pradhan uses the raw EEG as input to a
neural network while Weng uses the features proposed by Gotman with an
adaptive structure neural network, but his results show a poor false detection rate

(7 per hour).
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In a very recent paper Osorio et al. have applied a wavelet transform to ECoG
recordings . The wavelet scale used corresponds approximately to a 5{40 Hz
band-pass filter. The output is squared, median filtered and finally compared with

a background measure.

Perfect sensitivity and specificity is given for 125 seizure and 205 non-
seizure examples. In a new development the paper also claims the ability to
predict seizure onset | in 92% of the seizures investigated the detection took place
shortly before the point marked by a clinician. This method claims to be generic,
but on close inspection appears to be specific to a single group of patients.
Detector parameters have been optimised with respect to this group and no testing

has been performed on previously unseen individuals.
5.1.2 Qu and Gotman

Gotman was one of the first researchers to explore the possibilities of
using an automated system to detect epileptic' events in the human EEG - his first
paper on the subject was published iin 1976. He has published papers on similar
topics on a regular basis since then and is cited in almost every piece of work in
this and related areas. In a recent paper Qu and Gotman propose the use of a
nearest neighbour classifier on EEG features extracted in both the time and
frequency domains to detect the onset of epileptic seizures. Five features are used
to characterise each 2.56 second epoch of EEG
1. Average wave amplitude
2. Average wave duration
3. Coeficient of variation of wave duration
4. Dominant frequency

5. Average power in the main energy zone

The first three of these features are calculated from Gotman's wave
decomposition method which breaks the EEG down into half-waves and performs

some smoothing. Feature vectors from both ictal and non-ictal EEG epochs are
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used as templates in the classifier. New EEG patterns are classified according to
the closest template vector in feature space (although a threshold parameter is
included in the definition to allow the system to be biased towards either ictal or
non-ictal classification).

In addition to this variant on the nearest neighbour classifier, the system
uses a location parameter to impose some spatial restrictions on where seizures
should be detected. In efiect this requires seizures to be detected in several

spatially close EEG channels before the whole system will signal it.

Using patient specific classifiers the paper claims a 100% detection rate
with a false-alarm rate of 0.02 per hour. However, attempts to use this method as a
generic detection system (training on one set of patients for use on a difierent set)
gave very poor results. Although the patient-specific results in the paper are
excellent there is little information about the types of seizure which are being
detected. In addition the features extracted from the EEG are based on a method
which is over 20 years old, developed at a time when computing power was not

suficient to perform more complicated»frequen(ﬁy domain analysis.
5.1.3 Gabor et al.

In their paper Gabor, Leach and Dowla state their aim to detect 85% of
seizures with a false positive rate of 1 per hour or less using a generic system

(compare this with the results given by Gotman for a specific detector ).

Frequency domain features were extracted from the EEG data by passing
the signal through a matched wavelet transform filter followed by a 256 point
FFT. The resulting 256 coeficients were used as a feature vector for all further
analysis. Features extracted from 98 examples of ictal EEG were used to train a

self-organising map used for classification.

Testing was carried out using 62 seizures from 22 patients and the system

identified 90% of the seizures with an average false positive rate of 0.71 per hour.
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Although the results from this detection system are impressive there are a number
of questions as to the methods employed. Given the dimensionality of the feature
space the number of seizure examples used for training is more than likely to be
insuficient. More importantly, however, is that the numerous empirical detection
parameters employed were adjusted to optimize the performance of the detection
algorithm". It appears that the method has not been tested on a previously unseen

set of recordings without tuning.
5.1.4 Webber et al.

The Webber paper is the only one of the three reviewed here to use a
standard multi-layer perceptron (MLP) structure neural network to classify the
input EEG feature vector. Their network is a 31-30-8 structure with the 31 input
features being various statistical measures of each two second EEG epoch. The
input feature vectors were classified into eight groups including small seizure,
large seizure, and normal. The neural network was trained‘ using 8000 feature
vectors equally distributed among the output classes. A separate set of 4000
vectors Waé used as a validation set. Due to the amounts of data available for
training the feature vectors were extracted from EEG segments which overlapped
by a considerable margin. Whether this overlap will afiect the validity of the
results is debatable. Testing on recordings from 50 patients not used in the
original training gave a sensitivity of 76% with an average false positive rate of 1
per hour. However, many of the results tabulated in the paper are taken from the

training data set.

The use of 31 statistical features to characterise the EEG appears to be
unnecessarily complicated since many of the values are highly correlated. This
issue is raised in the paper, but no attempt is made to reduce the size of the feature
vector. Finally a suggestion is made that increasing the number of EEG classes at
the neural network output will improve the method. This runs against common
sense as an increase in the complexity of the classification task is instead likely to

make the problem much harder.
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5.1.5 Tarassenko et al.

Tarassenko considered both time-domain parameters and frequency-
domain parameters for the characterization of the EEG signal. In addition
Tarassenko et. al. Have proposed that the duration of the spike with the maximum
slope within an epoch be used as a feature. Gotman has suggested that the average
of the parameters from the preceding five epochs should be used to normalize the
paarmeters of the present epoch. Tarassenko et. al. Have employed these criterion

in their design.

The frequency-domain parameters are determined by the AR modeling of
the EEG. Tarassenko et.al. have pointed out that AR modeling overcomes the
problem of traditional Discreate Fourier Transform (DFT), in which DFT
produces a large number of coefficients from the signal, while ar modeling can
effectively madel the signal with just a few coefficients. It has been reported that a
model order six is suitable. It is also suggested that the “reflections coefficients™
(which are produced as part of the Levinson — Durbin recursive procedure) should
be used instead of the AR coefficients. Further, the prediction error of reflection

coefficients can be used as an additional feature.
5.1.6 Kalayci et. al.

Kalayci and Ozdamar suggested that the accuracy of the classifier could be
improved by enlarging the input window size of the classifier. However the
training of such neural network may become cumbersome and unrealistic for real-
life systems. As a result, WT was used to generate a finite number of features. The
WT overcomes the limitation of the short time Fourier transform by perfoming a
multi resolution analysis of the signal. With the proper choice of mother wavelet
the morphology of spikes can be effectively represented by the wavelet
coeeficients. Kalayci and Ozdamar has attempted to use Daubechies-4 and

Daubechies -20 mother wavelet (with the central eight coefficients from scale 3
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and 4 as a feature vector) is an effective method for representing spikes in the
EEG.

5.1.7 Ozdamar et. al.

While it is attractive to use parametric methods to extract features from the
EEG data to identify spikes, Ozdamar and Kalayci have examined the efficacy of
using raw EEG as the input to an ANN, to detect transient Epileptiform discharges
in the EEG recordings. It has been shown by Ozdamar and Kalayci the raw EEG
can be succesfully used to train ANNs and detect epileptogenic discharges with a
high rate of success. It is suggested by them that parameterizing the signal may
limit the efficiency of the system. Further it is argued that during training the
ANN selects its own features for optimal detection and thus, the method does not

use preselected features as in a traditional rule-based system.

5.1.8 Conclusions of Review

Although the research bias towards automatic detection of inter—ictél
events is now being redressed, some of the more recent work in the area seems to
have been carried out with unsatisfactory test protocols. Work on neural network
detectors appears to have sufiered particularly badly in this way. In addition, with
the exception of work using the wavelet transform, much of the feature extraction
from the EEG uses techniques which fail to utilisethe potential of modern
computing technology. The power of desktop computers is now such that
sophisticated signal analysis tasks may be carried out on large amounts of input

data at very high speed.
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CHAPTER SIX

IMPLEMENTING TEMPLATE MATCHING
ALGORITHM

6.1 Data Acquisition

The EEG data used in this study were acquired from 20 epileptic patients who
had been under evaluation and treatment in the Neurology Department of Dokuz
Eyliil University Hospital, [zmir, Turkey. Data were obtained from a clinical EEG
monitoring system, which stores continuous EEG data on its hard disk. EEG data
were acquired with Ag/AgCl disk electrodes placed using the 10-20 international
electrode placement system. The recordings were obtained from 19 channels with
256 Hz sampling. frequency and band-pass filtered between 1 and 70 Hz. Data

were then stored on both a hard disk and an optical disk.

6.2 Preparation of Templates

A convention adopted throughout this study is to use epileptiform discharge
(ED) respectively to refer to epileptiform activity on a single channel and to refer
to activity, which is simultaneously seen across two or more channels, actually on
all channels, as epileptiform events (EV). Spike also refers to ED. All calculated
performances throughout this study are determined in single channel.

20 EEG records were obtained. Two of them contain generalized epileptiform
activity. The remaining EEG records contain focal epileptiform activity. The total
EEG length is 11 h 6 min (average 22.1 min) and the age of the patients varies
from 2 to 69 years (average 28 years). First, all EEG records had been previously
seen independently by two EEGers and labelled as spike as a single channel

epileptiform activity throughout the 19 channels.
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It was used 20 EEG records. These EEG records have an average length of
22.7 min and total length of 7 h 18 min. The patients have an average age of 29
years. 216 EVs are determined by EEGers. The patients have an average age of 26

years.

Real EEG spikes were used to create the templates, which use to compare with
in EEG segments to match process in the program. These spikes have been chosen
from EEG segments by neurologist. Four different templates created. One of
template is created from two spikes. These spikes are similer to each other. It v;/as
taken the average of the two spikes to create the template. Other three templates
are real spikes. The four templates were created because these templates are
differing from each other according to the amplitude, time duration, polarization
properties. Each template was created from 41 points. Peak of the spike was
located at the center of the templates. And then, it was created by taking 20 points
from left, 20 points from right of the center of the spike.

Finally four templates were created with 41 points to use in the program. These
template units can be increased or decreased according to the spike types. A spike
has one form but these forms can be changed according to the patience. Such as
amplitude, if the spike takes from the temporal lobe the amplitude will be high

voltage but form still is same.
6.3 Matching Algorithm

Template Matching is the term given to the process of detecting an event
buried in a signal by comparing it to a predifened “template”. The goal is to locate
possible events in the signal that “closely resemble” the template. In practice the
methods which Summed of Square Error (SSE) to determine “how close” any

given section of a signal is to the template.

The method first estimates the template by detecting the most prominent

spikes. These template/templates are the shape that will be used by the rest of the
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algorithm to compare the signal against (using one of the two previous mentioned
measures.) A threshold is then appilied to the output of the measured template
function, much like a normal threshold detector, the result of which is used to
identify detection events. The key difference between a threshold detector and a
template based detector is over which function the threshold is applied. With
normal threshold detectors, if the amplitude of the incoming data exceeds a
threshold, an event detection is declared. With a template based detector if the
output of the template error measure crosses a threshold, an event detection is

declared.

In order to implement spike detection program, we need to select a suitable
segment of EEG Data. In our experiment, the implementing data were selected
through a short sampling window and all EEG signals were visually examined by
qualified EEG technologist. 8 Segments were created from 2 patience because if
two EEG segment use on the algorithm directly, it can not be readable format in
the matlab for the neurologists to obtain the results. These real EEG segments
were separeted to 8 segments because of that reason A neurologist’s decision
regarding a spike and wave complex (or normal EEG segment) was used as the
gold standard. It was chosen as a template window with 41 points of the spike
form. This width is that effective way to cover all spike forms. A spike has a
pointed peak and duration of 20 to 70 msec. Using this criterion, 41 points use as

template signal. Peak point of the spike placed center of the spike.

In order to assess the performance of the matching, it was selected EEG
segments containing spikes and/or slow waves spike and wave complex, artifacts
and background normal EEG. Two different pathological EEG Signals together
with 19 channels were used to measure the sensitivity, specificity, selectivity and

average detection rate of the algorithm.
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6.4 Results

The system is evaluated using 19 channel clinical EEG records of 20 epileptic
subjects. Two of them are used for testing purposes. The proposed system has
been developed using MATLAB 6.0. The tests are performed on a Pentium

Celeron 400 MHz PC computer. Detection procedure is performed off-line on

data stored on hard disk.
True False | Missed
Algorithm SEN { SPE | SEL | ADR
Detects | Detects | Events
TemplateMatching
_ 258 282 16 94.16 | 70.36 | 47.77 | 82.26
Template width = 41

Table 6.1 Test results

In the evaluatic_m process, the false detection rate per hour is also calculated,
which is a method to determine the performance of the system (Table 6.1). By
deﬁnition, false detection réte is the number of false detections per hour. The false
detection rate is an important measure of the performance of a detection system as
it gives an indication of usefulness of a detection system will be in routine clinical
applications. In addition, the measure false detection rate per hour of EEG can be
used to place the reported performance of the system into context when

considering the length of EEG records used in the test sets.

i True False | Missed
Single Channel %
Detects | Detects | Events
The Best 100 15 0 0
Sensitivity
The worst 30 3 0 7
The Best 100 15 0 0
Selectivity
The worst 0 0 12 0

Table 6.2 The best and worst results of the program
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Table 6.1 gives the performance of the system. At each stage, the measures
of the True detects, false detects, Missed events are indicated for 2 EEG records
with 19 channels overall. It can be seen that the template matching results in the
highest sensitivity for all EEG records with a sensitivity of 100%. On the other
hand, however, it results in the lowest selectivity of 0 %. This shows that, most of
spike activities are detected with very little selectivity and a too high false

detection.

At the below table was mentioned the results of the developed algorithm and

others algorithm

Algorithm SEN SPE SEL ADR
Taressenko 81.51 96.21 86.89 88.86
Webber 83.17 97.66 91.75 90.42
Kalayci 79.44 96.26 86.59 87.85
Ozdamar 80.40 96.36 87.04 88.38

Template Matching Algorithm

Min | % 90
_ 89.82 90.12 71.42 89.97
template | correlation
match % 95
. ] 78.53 92.68 82.75 85.60
condition | correlation
Min 2 % 90
_ 8271 94.37 83.15 88.54
templates | correlation :
i 95.7 86.39 87.91
condition | correlation 80.13 ' ) '

Table 6.3 Comparing the results

Above results were written as global training method for other methods.

1) True Positive (TP): The Template Matching identifies a spike pattern that

was labelled as a spike by the expert.
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2) True Negative (TN): The Template Matching algorithm and the expert both
agree that the pattern is normal.

3) False Positive (FP): The detection of a spike in an EEG segment that was
labelled as normal by the expert.

4) False Negative (FN): The Template Matching has missed a spike that the

expert has identified in that segment.

The performance of the classifier is also assessed in terms of sensitivity,

specificity, and selectivity, as follows.

1) Sensitivity (SEN): A measure of the ability of the classifier to detect spikes

Sensitivity= ——E—xIOO%
TP+ FN

2) Specificity (SPE): A measure of the ability of the classifier to specify

normal activities

Specificity= ——EV———MOO%
IN + FP

3) Selectivity (SEL): A measure of the ability of the classifier to reject false

detection of spikes

Selectivity = x100%

TP+ FP

4) Average Detection Rate (ADR): The average of sensitivity and specificity

Sensitivity + Specificity
2

Average Detection Rate = x100%
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6.5 Discussions

In this thesis, it introduces a program based on Template Matching
Method for the spikes detection in a single-channel electroencephalographic
signal. In the first stage, four different templates were created from the spikes in
EEG signals. This study shows that the template matching algorithm can proved
good results for spike detection if the template spikes can be constituted well. The
problem with that algorithm 1s that there are many different forms of spikes and
artifacts therefore different templates should be used. The program detected .a lot
of false positive because of the artifacts. So the programing’s selectivity
decreased. This solution is not acceptable in real, but according to the neurologists
important criterion is missing events. Missing spikes should be zero to use the
program in the clinical applications. Other signals such as false positive can be
eliminated manually in clinical applications. Developed program’s averaged
sensitivity is 94.16 %. This result can be improved if the artefacts can be
eliminated and the template spikes created perfectly. Spikes are identified with
41 points. In this study four templates were used and tested. Another problem
EMG artifact was detected as spike because detected artifacts have similar
properties with the templates signals. For the normal waves, template matching
algorithm produced good results. In addition to that the algorithm was be able to

detecte most of the spikes.

Comparison of developed program with other detection systems given in
the literature is difficult due to the wide range of measurements used for
evaluating the performance. For example, Webber et al. have tested their system
on the parameterized EEG records obtained from 10 patients, and reported
satisfactory sensitivity and selectivity values (both at 74%) by using mimetic and
ANN methods. When using raw EEG instead of parameters, they have obtained
low sensitivity and selectivity values (both at 46%). Ozdamar et al. have reported
similarly good results for sensitivity (90%), but selectivity is relatively low
(69%). Dingle et al. have given a very good result for false detection rate per

hour (0) and selectivity (100%), although the sensitivity is relatively low (53%).
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James et al. have also reported very good results for the selectivity (82%) and

false detection rate per hour (7), but a relatively low sensitivity (55%).

. When the program compares with the systems mentioned above, it can be

seen that it achieves very good sensitivity but because of the false positive value

selectivity is not good according to the other results.

In conclusion, this study introduces a program based on Template
Matching Algorithm for the spike detection that will contribute to the clinical
applications with its good sensitivity levels. The proposed approach accomplishes
template creating, matching algorithm of the single channel EEG. Comparison
with other successful methods shows that, Template Matching is very useful
procedure achieves a significant improvement in terms of sensitivity. But not on

the selectivity and false detection rate.
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APPENDIX 1

Spike Detection Programs

1 Minumum 2 templates match condition with % 90 correlation

w1l = load (‘patient.txt’); % load the eeg signal from the ¢ hard drive
w = w1 (:,channel_number);
tl = load ('spikel.txt');
t2 = load ('spike2.txt');
t3 = load ('spike3.txt');
t4 = load (‘spike5.txt');
w = double(w);
[m n] = size (wW);
d={t1,t2,t3,t4};
plot (w)
xlabel ('Time (msec)')
ylabel ('Amplitude (microvolts)")
title ('EEG Signal’)
[k 1] = size (t1);
forJ=1: n-l+1
forI=1:m-k+1
wt=w (l:[+k-1,J:J+-1);
a=0;
fors=1:4
d{1,s} =double(d{1,s});
[k 1] = size (d{1,s});

86

Err=sum ( sum ( d{1,s}.72 )+ sum ( wt."2 ) - 2 * sum (wt.*d{1,s}) );

if (Err < 800500)
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a=atl;

if (a>=2)

cor = (sum (d{l,s}.*wt) «(sum (d{I,s})*sum (wt)) / k ) / ( ((sum
(d{1,s}.72)- ( (sum(d{1,s})"2 )/ k) 0.5)*(( sum (Wt.”2)- ( (sum(wt))*2 )/
k)*0.5)) ;
if (cor >= 0.9)
Hold on
plot (I : I+k-1,7J : J+I-1,'r+")
Hold off

end
end
end
end
end

end



2  Minumum 2 templates match condition with % 95 correlation

w1l = load ('patient.txt'); % load the eeg signal from the ¢ hard drive
w = w] (:,channel number);
tl = load ('spikel.txt’);
t2 = load ('spike2.txt');
t3 = load ('spike3.txt');
t4 = load ('spike5.txt');
w = double(w);
[m n] = size (w);
d={t1,t2,t3,t4};
plot (w)
xlabel ('Time (msec)')
ylabel ('Amplitude (microvolts)')
title ('EEG Signal’)
[k 1] = size (t1);
forJ=1: n-l+1
forI=1:m-k+l
wt=w(1:I+k-1,J:J+-1);
a=0;
fors=1:4
d{1,s} = double(d{l,s});
[k 1] = size (d{1,s});

88

Err = sum ( sum ( d{1,s}.”2 )+ sum ( wt."2 ) - 2 * sum (wt.*d{1,s}) );

if (Err < 800500)

a=atl;

if (a >=2)
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cor = (sum (d{1,s}.*wt) -(sum (d{1,s})*sum (wt)) / k )/ ( ({(sum
(d{1,s}.72)- ((sum(d{1,s}))"2 )/ k)*0.5)*(( sum (Wt."2)- ( (sum(wt))"2 )/
k)*0.5)) ; ‘
if (cor >= (.95)
Hold on
plot (I : I+k-1,J : J+I-1,'r+")
Hold off

end
end
end
end
end

end
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3  Minumum 1 template match condition with % 90 correlation

w1l = load (‘patient.txt'); % load the eeg signal from the ¢ hard drive
w = wl (:,channel_number);

tl = load ('spikel.txt');

t2 = load ('spike2.txt");

t3 = load ('spike3.txt');

t4 = load ('spikeS5.txt');

w = double(w);

[m n] = size (w);

d={t1,12,13,t4};

plot (w)

xlabel (‘'Time (msec)")

ylabel ('Amplitude (microvolts)')
title ('EEG Signal')

fors=1:4

d{1,s} = double(d{1,s});
[k 1] = size (d{1,s});

forJ=1: n-l+1
forI=1:m-k+1

wt=w(l:I+k-1,J:J+I-1);

Err = sum ( sum ( d{1,s}."2 )+ sum ( wt."2 ) - 2 * sum (wt.*d{1,s}) );
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if (Err <100500)
cor = (sum (d{l,s}.*wt) - (sum (d{l,s})*sum (wt)) / k / ( ((sum
(d{l,s}.72) - ( (sum(d{1,s}))*2 ) / k) M0.5)*(( sum (wWt."2)- ( (sum(wt))*2 ) /
k)*0.5)) ;

if (cor >=0.9)

Hold on
plot (I : [+k-1,J : J+i-1,'r+")
Hold off
end
" end
end
end

end



4 Minumum 1 template match condition with % 95 correlation

wl = load ('patient.txt'); % load the eeg signal from the ¢ hard drive
w = wl (:,channel_number);

tl = load ('spikel.txt');

t2 = load ('spike2.txt");

t3 = load ('spike3.txt');

t4 = load ('spike5.txt');

w = double(w);

[m n] = size (w);

d={t1,12,13,t4};

plot (w)

xlabel ('Time (msec)")

ylabel ('Amplitude (microvolts)")
title ('EEG Signal')

fors=1:4

d{1,s} = double(d{1,s});
[k 1] = size (d{1,s});

forJ=1: n-1+1

forI=1:m-k+1

wt=w (I:1+k-1,]:J+l-1);

Err = sum ( sum ( d{1,s}.”2 )+ sum ( wt.*2 ) - 2 * sum (wt.*d{1,s}) );

if (Err < 100500)



cor = (sum (d{1,s}.#wt) - (sum (d{1I,s})*sum (wt)) / k / ( ((sum
(d{1,s}.72) - ( (sum(d{1,s}))"2 ) / k) 20.5)*(( sum (wt."2)- ( (sum(wt))"2 ) /
k)*0.5)) 3

if (cor >=0.95)
Hold on
plot (I : I+k-1,J : J+1-1,r+")
Hold off

end

end
end
end

end
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APPENDIX II
Detected Spikes
Some results were listed in below as JPEG format. Red points state the spikes in

the EEG segment and green points state the real spikes which is identified by the
expert.
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