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BIOMARKER IDENTIFICATION FOR DISCRIMINATION OF CANCER 

TYPES 

 

ABSTRACT 

RNA-sequencing data provides measurements of mRNA (messenger RNA) levels 

of genes based on tissue or blood samples. The critical changes in transcriptome can 

be observed more accurately by using RNA-sequencing data that eventually helps to 

understand different behavior of the disease. In this study, different feature selection 

methods and machine learning algorithms were examined for accurate discrimination 

of cancer types by using RNA-sequencing data which was obtained from blood 

samples. 

In the analysis, six cancer types were compared with each other and healthy 

samples. Correlation coefficient and information gain analyses are applied as main 

feature selection methods. The selected genes are provided as the input of Support 

Vector Machine (SVM), Naïve Bayes (NB), and Random Forest (RF) machine 

learning algorithms, that were evaluated by applying 10-fold cross-validation.  

In the experimental results, machine learning algorithms achieved higher than 

0.85 accuracies in the discrimination of hepatobiliary, lung, and pancreatic cancer 

types. When machine learning models are evaluated in terms of accuracy, RF and 

SVM were more successful than NB for many cases. A literature-based validation 

revealed that some of the genes used in classifiers might be promising biomarkers for 

discrimination of hepatobiliary and pancreatic cancers. 

Keywords: Cancer detection, RNA-sequencing data, support vector machine, naïve 

Bayes, random forest  
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KANSER TÜRLERİNİ AYIRT EDEBİLMEK İÇİN BİYOİŞARETÇİ 

TANIMLAMASI  

 

ÖZ 

RNA sıralama verileri, doku veya kan örneklerine dayanarak mRNA gen 

seviyelerinin ölçümlerini sağlar. Transkriptomdaki kritik değişiklikler, RNA 

dizileme verisi ile daha iyi incelenerek hastalığın davranışını daha doğru şekilde 

gözlemlemeye yardımcı olur. Bu çalışmada, kan örneklerinden elde edilen RNA 

dizileme verileri kullanılarak kanser türlerinin doğru şekilde ayırt edilebilmesi için 

farklı özellik seçim yöntemleri ve makine öğrenme algoritmaları incelenmiştir. 

Analizde altı kanser türü birbiriyle ve sağlıklı örneklerle karşılaştırılmıştır. Özellik 

seçim yöntemleri olarak korelasyon katsayısı ve bilgi kazanımı analizleri 

uygulanmıştır. Seçilen genler, 10 katlı çapraz doğrulama uygulanarak değerlendirilen 

Destek Vektör Makinesi (SVM), Naif Bayes (NB) ve Rastgele Orman (RF) makine 

öğrenme algoritmalarına girdi olarak verilmiştir. 

Deney sonuçlarında, makine öğrenme algoritmaları, hepatobiliyer, akciğer ve 

pankreas kanseri tiplerinin ayırt edilmesinde 0,85 doğruluk elde etmiştir. Makine 

öğrenim modelleri doğruluk açısından değerlendirildiğinde, RF ve SVM’nin birçok 

durumda NB’den daha başarılı olduğu görülmüştür. Literatüre dayalı bir doğrulama, 

sınıflandırıcılarda kullanılan bazı genlerin, hepatobiliyer ve pankreas kanserlerinin 

ayırt edilmesinde ümit verici biyobelirteçler olabileceğini ortaya koymuştur. 

Anahtar Kelimeler: Kanser tespiti, RNA sekanslama verisi, destek vektör makinesi, 

naif Bayes, rastgele orman 
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CHAPTER ONE 

INTRODUCTION 

1.1 Motivation 

Cancer research is widely valued around the world due to constantly increasing 

disease rates. The most important outcome of cancer research is proven to be an early 

diagnosis. Treatment results are expected to be increased upon early detection of 

cancerous cells. The common procedure for early detection is heavily based on 

medical imaging systems, biopsy, and physical symptoms. Although these diagnosis 

techniques are very reliable and proven-over-time methods, there can be certain 

downfalls such as unnecessary amounts of exposure to radiation, high costs of 

different medical imaging modalities and time-consuming for medical staff, 

invasiveness of biopsy. In that sense, less invasive and more cost-effective modalities 

are needed to further investigate the genetic or epigenetic alterations in malignant 

cells. 

The search for less invasive methods leads to a liquid biopsy which relies on 

biomarkers. A liquid biopsy requires bodily fluids such as blood, CSF (cerebrospinal 

fluid), the lymphatic fluid that are accessed far less invasively (Perakis & Speicher, 

2017). Biomarkers are limited in numbers and need to be perfected for more accurate 

outcomes. Researching and perfecting these biomarkers require the correct 

computational methods. Recent studies focus on different computational modalities 

and their interactions on biological data obtained from gene microarrays (Abdel 

Samee, Solouma, & Kadah, 2012).  

RNA-sequencing is a relatively new experiment that can take the place of 

microarray technology in the future among many other gene expression technologies. 

There are many resources that can be used to produce gene samples for RNA-

sequencing such as tissue and blood. RNA-sequencing can help to differentiate 

between gene expressions of normal and treated cells. The main principle of RNA-

sequencing is high-throughput sequencing while microarrays use hybridization. 

RNA-sequencing has more technical advantages compared to microarrays resulting 

in a higher capacity for gene expressions, less background noise in the image, a need 

for less RNA (ribonucleic acid) sample and lower cost (“RNA-seq,” n.d.). Such 
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experiments enable scientists to compare normal and disease genes based on 

transcriptome; mRNA, tRNA (transfer RNA), rRNA (ribosomal RNA). 

Understanding the changes in transcriptome provides information regarding the 

function of genes, therefore it helps to recognize different behavior of cells.  

1.2 Problem Definition 

The understanding of the cancer-causing genes is still a challenging problem. The 

discrimination of cancer types without applying biopsy is still not practical in clinic 

applications. If some marker proteins can be identified in blood samples instead of 

using tissue samples, the diagnostic time and cost would be decreased dramatically.  

1.3 Contribution 

This thesis aims to evaluate different feature selection and machine learning 

methods to discriminate different cancer types by using RNA-sequencing data 

obtained from blood samples of patients. The found genes, which can effectively 

discriminate two types of cancer, would be suggested as diagnostic biomarkers for 

further clinical studies. The original data set was taken from the study of Zhang et al. 

which applied an mRMR (minimum redundancy maximum relevance) for feature 

selection and SVM for modeling (Zhang et al., 2017). In this study two feature 

selection methods, which are less complex than mRMR, were used. After that, the 

genes selected as features are fed to three different machine learning algorithms and 

results were compared.  

1.4 Organization of Thesis 

This thesis consists of five chapters organized as follows: 

In Chapter 2, I provide detailed background information and a literature review to 

describe some essential concepts such as biomarkers, RNA-sequencing data analysis. 

In Chapter 3, I introduce our general road map in six main sections including the 

RNA-sequencing data, data pre-processing, normalization, feature selection methods, 

machine learning algorithms, and evaluation metrics used to extract information from 

this data. 
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In Chapter 4, I present the results and the biological interpretation of these results 

to compare different machine learning algorithms and different feature selection 

methods. 

In Chapter 5, I conclude the study and offer future work. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Biomarkers 

A biomarker is described as any biological molecule which is found in body fluids 

or tissues, can be used to distinguish a disease by giving a normal or abnormal sign 

according to National Cancer Institute (Henry & Hayes, 2012). When diagnosing 

cancer by pathological techniques, a sample has to be taken from the suspected tissue 

and has to be examined. However, when the case comes to the stage of sample-

taking, most of the time cancer has already grown enough to cause the tissue to 

malfunction (Srinivas, Kramer, & Srivastava, 2001). Biomarkers can help to earlier 

diagnose the disease before it causes any defects (Srinivas et al., 2001). Proteins, 

protein-metabolite conjugates, small-molecule metabolites, nucleotides, and lipids 

can be examples for those molecules (Srivastava & Creek, 2019). In cancer 

researches, those biomarkers can be produced by the cancer cell or produced by the 

body against the cancer cells (Srivastava & Creek, 2019). In this study, the mRNA 

measurements are used as a biomarker.  

2.2 RNA-Sequencing Data 

The genetic code of an organism is collected in DNA (deoxyribonucleic acid) as a 

huge collection of genes and this coding data is transcribed into RNA to synthase 

proteins. RNA is a molecule that has a vital duty in diverse biological processes. The 

set of all RNA molecules in a cell is called the transcriptome. A deep view of the 

transcriptome can be obtained by RNA-sequencing (Byron, Van Keuren-Jensen, 

Engelthaler, Carpten, & Craig, 2016). Also, any next-generation sequencing 

technique which is used to study RNA technique is named as RNA-sequencing (Chu 

& Corey, 2012). Diverse areas related to human health include the application of 

RNA-based measurements which consist of diagnosis of diseases, prognosis and 

therapeutic selection (Byron et al., 2016). Tools to determine the presence and 

amount of RNA molecules in biological samples can be grouped under RNA-

sequencing.  
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Mutated cells act differently than normal cells. To understand the different 

mechanism of them the gene expression causing those differences have to be found 

and examined. To do that first the structure of the genes has to be understood. Each 

cell contains chromosomes, and all chromosomes are formed by genes in them. 

Some of those genes more active than others. Which genes are active and how much 

they are transcribed can be answered by the high throughput sequencing data. RNA-

seq can be used to measure the gene activity of normal and mutated cells. Then those 

two can be compared to figure out what is the difference between them. To do that 

first, the sequencing library has to be prepared. Then, sequencing has to be done. 

And finally, data analysis will be made. 

2.2.1 Preparing RNA-seq Library 

In the first step, RNA is isolated from the cell. Then, since the reading capacity of 

the sequencing device is limited the RNA has to be broken down to small fragments. 

The RNA will be converted to double-stranded DNA since it is more stable than 

RNA and easily modified and amplified. After this, the sequencing adaptor will be 

added to the fragments. With the adaptors, the sequencing device recognizes the 

fragments. The fragments with the adapter will be PCR (Polymerase chain reaction) 

amplified. With the quality control step which includes library concentration and 

fragments lengths verification the library preparation finishes (“Whole 

Transcriptome and mRNA Sequencing Guide,” n.d.) 

2.2.2 Sequencing The Library 

The DNA fragments wanted to be sequenced are put on the chosen sequencer. The 

recently used one is Illumina which labels the nucleotide with fluorescent (Kukurba 

& Montgomery, 2015). The fluorescent probes of the device attached to each 

nucleotide then take a picture to map. This process continues until all bases are read. 

End of this process the raw data has been created. The data has to be filtered by 

removing the garbage reads and aligning the high-quality reads to the 

genome(Kumar et al., 2012, p.). The choice of reference genome affects the 

complexity of  the alignment process (“RNA-seq,” n.d.) Genome is split into small 

fragments then the index and the location of each fragment are created. Also, the 
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read is split into small fragments. Then, read fragments are matched to the genome 

fragments. The matched fragments determine the location on the genome. Even if the 

reference genome is not matching fully with the fragments, by breaking them into 

small pieces a partial match can be made. After the matches for genes will be 

counted and this gives a matrix with genes and number of matches for each sample 

cell.  

2.2.3 Analyzing The Data 

This part is the last step of RNA sequencing. The separation between mutated and 

normal cells can be done here through analyses of the data obtained. This profiling 

gives high-resolution of the entire transcription (Kukurba & Montgomery, 2015).  

2.2.4 Applications of RNA-Seq 

There are several studies focusing on cancer detection with the usage of RNA-

sequencing. In one study, RNA-sequencing was used to identify biomarkers from 

different tissues for the cancer types which lead metastases commonly. In that study, 

CUP (colorectum, kidney, liver, lung, ovary, pancreas, prostate, and stomach) 

metastasis has been studied with 17471 transcripts from 3244 samples and 26 

different tissue types taken from International Cancer Genome Consortium and The 

Cancer Genome Atlas. The researchers used 10-fold cross-validation on the log-

transformed and quantile normalized data. The overall accuracy of the algorithm was 

90.5% and generated signatures for the top eight cancer types causing CUP (Wei, 

Shi, Jiang, Kumar-Sinha, & Chinnaiyan, 2014).  

Another study integrated RNA-sequencing, PPI (protein-protein interaction) data, 

and RPPA (reverse phase protein array) data to detect the survival times of cancer 

patients and obtain prognostic biomarkers. To identify the biomarkers random walk-

based algorithm was used. After that, with selected biomarkers gene expression 

measurement a classifier was trained to predict the survival times of patients. On 

average the accuracy rate of this method was from 66% to 78% for three datasets 

(Isik & Ercan, 2017). 
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 One study focuses on evaluating the performance of four clustering algorithms 

and twelve distance measures commonly used for gene expression analysis with 15 

different RNA-sequencing datasets. The study results show clustering cancer 

samples on gene quantification can be useful. However, the usage of non-specific 

filtering causes superior results. Also, these researchers suggest using log-

transformation on the data before clustering (Jaskowiak, Costa, & Campello, 2018).  

In another research, the RNA-sequencing data, which was obtained from kidney 

biopsies, was used to understand kidney rejections caused by T-cells. The SVM and 

RF algorithms were trained with kidneys with stable function and T-cell-mediated 

rejection data (Liu, Tseng, Wang, Huang, & Randhawa, 2019). 

Moreover, a classifier was developed with the help of RNA sequencing data to 

identify the UIP (usual interstitial pneumonia) pattern to predict idiopathic 

pulmonary fibrosis. The authors of this study mention even though the limited 

sample size, disease heterogeneity and technical batch effects they developed a 

model with 70% sensitivity and 88% specificity (Choi et al., 2018).  

Also, a machine learning model was built with RNA-Seq to identify differentially 

expressed transcripts linked with prostate cancer. In this study, the authors mention 

that prostate cancer has a high number of unexplained variables and says it is one of 

the most common cancer types in the world.  For that reason, finding biomarkers for 

this disease can be promising to improve the survival rates of the high-risk patient 

population. They used 106 prostate cancer samples with various states of disease. 44 

transcripts related to the different stages of the disease were detected (Singireddy et 

al., 2015).  

Furthermore, another study used RNA-sequencing data was used to predict the 

cancer types. Here, the RNA-Seq data obtained from TCGA (The Cancer Genome 

Atlas) used in the with five machine learning algorithms which are DT (decision 

tree), kNN (k nearest neighbor), linear SVM, poly SVM and ANN (artificial neural 

network). They are compared according to training time, precision, recall, F1-score. 

Among them, with 95.8% accuracy linear SVM was the best (Y.-H. Hsu & Si, 2018). 
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In addition, a study focused to distinguish cancer patients and healthy persons 

with the help of deep learning. They used deep learning by ensemble approach which 

is a method aggregates the results of different algorithms and decides by the 

collective result of them. First, five different classification algorithms were used and 

their outputs fed to a deep learning algorithm (Xiao, Wu, Lin, & Zhao, 2018).  

Lastly, another study applied the minimum redundancy and maximum relevance 

feature selection method and SVM model to distinguish seven sample types from 

each other; they obtained the highest 75% accuracy for the discrimination of cancer 

types with different specificity and sensitivity scores (Zhang et al., 2017). This 

project took as an example of this thesis and higher accuracy, sensitivity, and 

specificity were aimed.   
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CHAPTER THREE 

METHOD AND MATERIALS 

 

In this study, we used two different feature selection methods with three different 

machine learning algorithms to discriminate seven groups which are six subtypes of 

cancer and a healthy group. The processed performed in this project are shown in 

Figure 3.1. After the cleaning phase of genes, the feature selection methods created 

specific subsets of genes based on the various thresholds. Then, the selected genes 

were given to the machine learning algorithms. By considering significant results the 

disease-causing genes were detected. The details of these steps are explained in this 

chapter.   

 

Figure 3.1 Flowchart of the process 
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3.1 Dataset and Preprocessing 

The data was downloaded from GEO (Gene Expression Omnibus) with the access 

number of GSE68086 and including the gene expression of blood samples from 285 

individuals. 39 samples belong to breast cancer, 42 samples belong to colorectal 

cancer, 40 samples belong to glioblastoma, 14 samples belong to hepatobiliary 

cancer, 60 samples belong to lung cancer, 35 samples belong to pancreatic cancer, 

and 55 samples belong to healthy controls (Zhang et al., 2017). 

 

Figure 3.2 Example of initial data 

In the preprocessing phase, some genes were eliminated which are the ones not 

available in 90% of the individuals. In the beginning, the total number of genes was 

57736, after this elimination, the number is reduced to 13445. The Ensembl gene 

identifiers were translated to Entrez gene identifiers. Ensembl gene identification is 

an annotation system annotating different vertebrates in various genome projects 

(Aken et al., 2016). Also, the National Center for Biotechnology Information has 

another system that is called Entrez gene identifiers for a reliable annotation of gene 

names (Maglott, Ostell, Pruitt, & Tatusova, 2005). If the mRNA expression of a gene 

is measured as zero in the 60% of patient samples, this gene is also removed. At the 

end of those processes, 3427 genes remained for further analysis. In Figure 3.2, a 

small example of the cleaned data is shown. The column names show the gene 

identifiers, the result column represents the assigned cancer type of the sample, the 

index value in the first column is the given name for each patient sample. After gene 

cleaning, the size of the original data is 285 rows and 3428 columns. 

 

100037417 10004 100128071 ... 9940 9941 9942 995 RESULT

X3.Breast.Her2.a

mpl
0 1.405729 0 ... 0 0 0 0 1

X292.Liver.KRAS 0.003509 0.003509 0.003509 ... 0.003509 0.003509 0.355667 0.003509 4

MGH.BrCa.H92.TR

472
0.003509 0.003509 0.820328 ... 0.003509 0.003509 0.003509 0.003509 1

MGH.CRC.412.TR

466
0.021649 0.021649 0.021649 ... 0.021649 0.021649 0.021649 0.021649 2

MGH.CRC.BRAF4.

TR547
0 0 0 ... 0 0 0 0 4

MGH.CRC.BRAF5.

TR548
0.007018 1.129619 0.007018 ... 0.007018 0.95353 0.007018 0.007018 2

MGH.NSCLC.L12.

TR478
0 0 0 ... 0 0.506572 0.22381 0.381369 5
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3.2 Normalization 

The large-scale experiments always come with a downfall of variations due to 

various reasons that ultimately affects the gene expression analysis. Minimizing 

many variations to obtain a more accurate comparison of different data samples is 

called normalization. Quantile normalization became standard for data analysis of 

high-throughput data to remove unwanted technical variations (Hicks & Irizarry, 

2014). Although quantile normalization was developed for gene expression 

microarrays, currently it is used for RNA-sequencing and other data types (Hicks & 

Irizarry, 2014). Hence the quantile normalization is found to be appropriate for this 

study. 

Quantile normalization aims for the statistical properties of two or more 

distributions to be exactly the same. To do that, each distribution is set to the mean 

value. This ensures that the new lowest value becomes the mean value of all the 

lowest values. In the same way, the highest and middle values are also set to their 

mean values. With this technique, the maximums align among themselves and 

minimums align among themselves. This method stretches all distributions together 

and the order of features in their own distributions never change but the distributions 

become in the same length. Therefore, quantile normalization ensures that gene 

expression levels for each sample are the same while gene orders are maintained. 

After normalization, a logarithm base 2 transformation was applied.  

3.3 Feature Selection 

I used the correlation coefficient and information-gain feature selection methods 

in the study. Even though the PCA (Principal Component Analysis) might give better 

results than the correlation coefficient or information gain, it was not used. Because 

PCA takes currently available features and creates more effective features 

combinations from them, however, this process cannot be reversible. The final 

features are linear weighted combinations of single features; hence the individual 

contribution of each gene cannot be obtained, eventually, the singleton biomarkers 

could not be driven. Due to all these reasons, the PCA was not used as the feature 

reduction method.  
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3.3.1 Correlation Coefficient 

The correlation coefficient measures the relationship between the dependent 

variable (in this case cancer type) and the independent variable (each individual 

gene). If two variables are linearly dependent, their correlation is close -1 or 1 and 

they become strongly correlated (Hsu & Hsieh, 2010; Yu & Liu, n.d.). However, if 

the value is 0, then they are not related at all (H.-H. Hsu & Hsieh, 2010). Using the 

correlation coefficient as the feature selection method helps to remove non-related or 

uncorrelated features (Yu & Liu, n.d.). The correlation coefficient r is calculated in 

Equation 3.1.  

 𝑟 =  
𝑛(∑ 𝑥𝑦 )−∑ 𝑥 ∑ 𝑦

√[𝑛(∑ 𝑥2)−(∑ 𝑥)2][𝑛(∑ 𝑦2)−(∑ 𝑦)2]
     (3.1) 

where n is the number of variables, x is the independent variable, y is the dependent 

variable. If the small change on the independent variable causes a serious change in 

the dependent variable, there would be a strong correlation between those variables. 

Here, I computed correlation by using two cancer types among the seven of them. 

The features (genes) having a correlation value higher than 0.4, 0.5, 0.6, or 0.7 were 

selected as significant ones. The selected features were given as the input of machine 

learning algorithms.  

3.3.2 Information Gain 

Although the correlation coefficient is a good way to choose features, in the real 

world there is no linear relation between variables all the time (Yu & Liu, n.d.). 

Hence, here information gain helps. Information gain reveals how much information 

a feature gives about the class variable. The important features supposed to have 

higher information gain value than the less important ones. Also, unrelated features 

should get zero value. This technique based on entropy, which splits the data into 

subsets that have representatives with similar values, so it measures the impurity of 

samples in a specific subset.  

As similar to the correlation coefficient, the information gain was computed for 

two classes. A grid search was applied in which the features with an information gain 
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score in the interval of [0.05, 1] were analyzed by applying a step size of 0.05. The 

selected features were given as the input of machine learning algorithms.  

3.4 Machine Learning Algorithms 

The machine learning algorithms applied in the study will be explained in this 

section. The data samples are labeled with one of six cancer types or healthy. Hence, 

totally there are seven types of labels and different supervised learning algorithms 

will classify them. The data were evaluated according to cancer type labels. When 

the multiclass classification setup is applied, the total number of samples for each 

cancer type should be higher, which is not the case in our dataset. So, a binary 

classification setup was applied to increase the success rate. 

3.4.1 Support Vector Machine 

Support Vector Machine aims to maximize the margin around the separation 

hyperplane and thereby creates the largest possible distance between different class 

instances. When the optimum separation hyperplane is found, the data points staying 

around the margin of that hyperplane are considered as support vectors of the 

classifier. For this reason, the complexity of an SVM model is not affected by the 

number of features, but the number of support vectors (i.e., samples). This makes the 

SVM a suitable candidate to be used in datasets with a large number of features and a 

low number of samples (Kotsiantis, Zaharakis, & Pintelas, 2006). The kernel 

functions provide an opportunity to solve non-linearly separable problems by using a 

linear classifier. For that purpose, kernel functions map the input vectors in a higher 

dimension in which original samples can be separated by a simple hyperplane. 

The SVM library used in this project belongs to the scikit-learning library in 

Python. The C penalty parameter is set to 1; the Gaussian kernel was used. The 

shrinking optimization parameter is set to true. The probability scoring parameter is 

set to false. The stopping criteria are set to 0.001.  
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3.4.2 Naïve Bayes 

The Bayesian theorem describes the conditional probabilities of events and the 

Naïve Bayes classifier is built upon this theory (VanderPlas, n.d.). The Naïve Bayes 

classifier assumes that all features are independent events. Even though this 

assumption is unrealistic for real-world problems, the resulting model is surprisingly 

successful when it is compared to alternative techniques (Rish, 2001). The 

probability of a Bayesian classifier is calculated by Equation 3.2. 

𝑃(𝑿|𝐶) =  ∏ 𝑃(𝑋𝑖|𝐶)𝑛
𝑖=0      (3.2) 

where C is the class of a sample, X is the vector of features and the Xi is the element 

in the vector (Rish, 2001). 

The Naïve Bayes library used in this project belongs to the scikit-learning library 

in Python. The prior probabilities of classes are set to the default value of none; the 

var smoothing is set to 10-9.  

3.4.3 Random Forest 

Random forest is a machine learning algorithm that works with numerous 

decision trees and the statistical bagging method. A decision tree uses a threshold to 

decide if the input goes left or right side of the tree branch until reaching the end of 

the tree. In the deepest level of the tree, at leaves, the model gives an answer 

according to the flow in the entire path of the tree. Bagging is the process of creating 

new datasets from the original dataset by selecting elements randomly. It does 

random sampling while building trees and chooses random features to split nodes. 

Each decision tree in the random forest learns from random samples in the training 

set. By training the trees with different samples, trees might have a high variance for 

the samples they learn the whole forest will have lower variance. Each tree will have 

its own solution because of the dataset and features given to it in the training phase 

and this diverse forest will have the power to make more robust predictions 

(Breiman, 2001) (“Random Forest Regression model explained in depth,” 2019). For 

the generalization phase, each tree votes for the classification label of a sample and 
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the majority class label of these votes generates the final decision of the random 

forest algorithm.  

The RF library used in this project belongs to the scikit-learning library in Python. 

The number of trees is set to 100 by default. The quality measurement of the split is 

the root mean square. The maximum depth of the tree is 2. The minimum number of 

samples for a split is 2. The maximum number of features for a split is a number of 

features and pruning is canceled.  

3.5 Evaluation Metrics 

The accuracy metric is sensitive when patient samples are imbalanced in different 

cancer types. Therefore, other evaluation metrics have to be used to guarantee the 

success of the project. The metrics should be insensitive to the sample numbers 

between cancer types. Sensitivity and specificity are the metrics belong to this type. 

The metrics are used to calculate those ratios are true positive (TP), false positive 

(FP), false negative (FN) and false positive (FP). TP means correctly prediction of 

the positive class, TN means correctly prediction of the negative class, FP means the 

positive class is predicted as false and FN means the negative class is predicted 

positive. The accuracy formula is given in Equation 3.3. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
     (3.3) 

Moreover, to be sure the accuracies of the models are not a coincidence, I applied 

the k-fold cross-validation method. This method divides the dataset to k subsets; k-1 

subsets are used to train the model and the remaining subset is used to measure the 

performance of the model. This operation is repeated k times and the mean accuracy 

of these k-folds gives the overall prediction performance of the model. In this study, 

10-fold cross-validation was used to measure the accuracy of each model. 

Sensitivity is the measure of how correctly measured the true classified results. It 

means that true-positive results divided by the total real positive results. Specificity is 

the measure of how correctly measured the false classified results. It means that the 

true negative results divided by total real negative results. Those metrics are 
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independent of the number of class members. That is why they are a better way to 

use in cases where the classes are imbalanced (Tharwat, 2018). 

After the obtain of sufficient sensitivity and specificity the genes provide those are 

researched in the literature. For this research, DAVID (the database for annotation, 

visualization, and integrated discovery)(Huang et al., 2007) and DisGeNet(Piñero et 

al., 2015) were used. The genes mentioned are given to those databases and the 

resulting pathways were examined to find relations between the genes and diseases.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

This study applied machine learning algorithms, SVM, RF, and NB, to predict the 

cancer types by applying the given features that are selected with the correlation 

coefficient and information gain methods. A grid search was designed to find 

optimum values of thresholds. After setting different thresholds, these selection 

methods led the different number of features for optimum classification of cancer 

types. The evaluation of each model was performed by applying 10-fold cross-

validation. 

4.1 Performance of Correlation Coefficient Feature Selection 

In the correlation coefficient analysis, I chose the features which have a low (0.4, 

0.5) and mild correlation (0.6, 0.7) values. Since the higher correlation values did not 

leave any significant gene in the data set. Based on this analysis, the number of 

selected features varied from 4 to 111. The accuracy of each model is varying 

between 0.03 to 0.95 as given in Table 4.1.  

Table 4.1 The performance of machine learning models for classifying different cancer types by using 

the correlation-based feature selection 

Cancer Types Accuracy Method Threshold # of Features 

Hepatobiliary vs Lung 0.78 SVM 0.40 33 

Hepatobiliary vs Lung 0.86 SVM 0.50 7 

Hepatobiliary vs Lung 0.77 NB 0.50 7 

Hepatobiliary vs Lung 0.93 RF 0.40 33 

Hepatobiliary vs Pancreatic 0.80 SVM 0.50 10 

Hepatobiliary vs Pancreatic 0.72 NB 0.50 10 

Hepatobiliary vs Pancreatic 0.85 RF 0.50 10 

Hepatobiliary vs Pancreatic 0.95 RF 0.40 68 

Breast vs Colorectal 0.66 SVM 0.40 4 

Breast vs Colorectal 0.59 RF 0.40 4 

Breast vs Lung 0.72 NB 0.40 3 

Colorectal vs Healthy 0.71 NB 0.40 111 
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4.2 Performance of Information Gain Feature Selection 

I performed feature selection with the information gain values between 0.05 and 

1. However, there were no significant features for information gain value of higher 

than 0.55. Hence, only the features, which have information gain values between 

0.05 and 0.55, were selected iteratively. After that analysis, the number of selected 

features varied from 2 to 875. The accuracy of each model is varying between 0.03 to 

1.00, as similar to the correlation-based method (Table 4.2). 

Table 4.2 The performance of machine learning models for classifying different cancer types by using 

the information gain-based feature selection 

Cancer Types Accuracy Method Threshold # of Features 

Hepatobiliary vs Lung 1.00 SVM 0.30 8 

Hepatobiliary vs Lung 0.31 NB 0.30 8 

Hepatobiliary vs Lung 0.87 RF 0.30 8 

Hepatobiliary vs Pancreatic 0.71 SVM 0.25 8 

Hepatobiliary vs Pancreatic 0.71 NB 0.25 8 

Hepatobiliary vs Pancreatic 0.88 RF 0.25 8 

Hepatobiliary vs Pancreatic 0.83 RF 0.20 21 

Breast vs Colorectal 0.67 SVM 0.15 20 

Breast vs Colorectal 0.75 RF 0.15 20 

Breast vs Lung 0.78 NB 0.50 2 

Colorectal vs Healthy 0.66 NB 0.05 875 

 

4.3 Performance Comparison of Correlation Coefficient and Information Gain 

When I evaluate all experimental results, I observed that the number of features 

does not usually have a strong effect on the classification success of machine 

learning models. One of the poorest results was obtained in the discrimination of 

breast and colorectal cancers. Neither information gain nor correlation coefficient 

cannot achieve higher than 0.66 accuracy. The NB had the lowest performance 

compared to RF and SVM. In terms of accuracy, RF and SVM were more successful 

than NB for many cases. The same models show that one case of information gain is 

better than the correlation coefficient as the feature selection method or vice versa. A 

previous study (Zhang et al., 2017) has applied the same RNA-sequencing data and 

achieved around 0.75 accuracy for classifying different cancer types. Our study 



19 

 

provided better results with an average accuracy of 0.89, especially while 

differentiating hepatobiliary, lung, and pancreatic cancer types. 

There are various evaluation techniques to measure the performance of a machine 

learning model. The most commonly used one is accuracy which measures the 

correctness of predictions. Figure 4.1 shows the accuracy level of hepatobiliary and 

lung cancers, Figure 4.2 shows the accuracy level of hepatobiliary and pancreatic 

cancers. The feature selection methods and machine learning algorithms are 

compared in these plots. Even though the threshold value for feature selection 

methods is between 0 and 1, the efficient results were standing in the interval of 0.05 

to 0.5. Hence, the plots show only these efficient results.  

 

Figure 4.1 Accuracy level of hepatobiliary and lung cancers against feature selection methods with 

various threshold values 
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Figure 4.2 Accuracy level of hepatobiliary and pancreatic cancers against feature selection methods 

with various threshold values 

After the application of feature selection methods and the machine learning 

algorithms, 85 of various binary comparisons (one cancer vs. another) led an 

accuracy value of higher than 75%. Since the sensitivity and specificity are among 

the evaluation metrics, better filtering has to be done. When this filtering was 

applied, the best-performing ones remained and those are the ones separating 

hepatobiliary and lung and, hepatobiliary and pancreatic cancers. 

Figure 4.3 shows hepatobiliary and lung cancers sensitivity and specificity curves; 

Figure 4.4 shows hepatobiliary and pancreatic cancers sensitivity and specificity 

curves. The successful ones were selected by taking high sensitivity and specificity 

values after the filtration of accuracy rates higher than 75%. After this filtration 

process, the feasible ones were examined. The best-performing ones are the one 

which separates hepatobiliary and lung cancer with 0.5 correlation coefficient 

threshold by using an NB; the one separates hepatobiliary and lung cancer with 0.4 

correlation coefficient threshold by using an SVM; the one separates hepatobiliary 

and pancreatic cancer with 0.4 correlation coefficient threshold by using an SVM; 

the one separates hepatobiliary and pancreatic cancer with 0.25 information gain 
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threshold by using an SVM. The genes involving in those models were further 

analyzed in the following sections. 

 

 

Figure 4.3 Hepatobiliary vs lung cancers sensitivity and specificity against feature selection methods 

with various threshold values 
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Figure 4.4 Hepatobiliary vs pancreatic cancers sensitivity and specificity against feature selection 

methods with various threshold values 

 

4.4 Biological Evaluation 

I will explain the biological evaluation of significant cancer discriminations (i.e., 

hepatobiliary vs. lung, hepatobiliary vs. pancreatic cancers) in this section.  

4.4.1 Differentiation of Hepatobiliary and Lung 

4.4.1.1 Correlation Coefficient with 0.5 Threshold Value 

I observed that the models can discriminate hepatobiliary and lung cancers also 

with high sensitivity. In the case of correlation coefficient with threshold 0.5, the 

model created with seven genes ACPP (activatable cell-penetrating peptides), BMX 

(non-receptor tyrosine kinase), EGR1 (Early growth response factor 1), PLD1 

(Phospholipase D1), MGAM (Maltase-glucoamylase), SEC31B (SEC31 homolog 

B), ARAP3 (ArfGAP with RhoGAP domain). These genes provided 0.77 accuracy, 

0.9 sensitivity, and 0.75 specificity with the Naïve Bayes model.  
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Table 4.3 The GO terms related with hepatobiliary and lung with 0.5 threshold valued correlation 

coefficient 

Category Term P.value Genes 

GOTERM_BP_ALL GO:0030217~T cell 

differentiation 

0.0707 BMX, EGR1 

GOTERM_BP_DIRECT GO:0016192~vesicle-

mediated transport 

0.0531 ARAP3, SEC31B 

GOTERM_MF_DIRECT GO:0003824~catalytic 

activity 

0.0545 MGAM, EPLD1 

 

Table 4.3 shows the genome ontologies (GO) annotations of these seven genes. 

Among those GO terms, GO:0030217~T cell differentiation was considered as 

important. A previous study explains that lung tumor growth was associated with 

activation of impaired T cells (Heim et al., 2018). However, this study did not give a 

solid relationship between the pathway and the disease relations.  

Even though the pathway and disease relation did not give a good result, ACPP 

gene was related with malignant neoplasm of prostate, EGR1 was related with 

malignant neoplasm of prostate, malignant neoplasm of lung, lung neoplasms, and 

ARAP3 was related with malignant neoplasm of breast, colorectal cancer in 

DisGeNet (Piñero et al., 2015) which is a public discovery platform to research about 

human diseases.  

In another study, effects of ACPP on human intrahepatic bile duct epithelial cell 

was examined and as a result, it has been seen the intensity of the intracellular signal 

is increasing with the ACPP incubation time in a certain range (Tu et al., 2016).  

EGR1 was associated with HCC (hepatocellular carcinoma) and it was observed 

the level of EGR1 is significantly increased in HCC tissue (Bi et al., 2019). Another 

study shows that the level of EGR1 is significantly important for the survival of the 

NSCLC (non-small-cell lung cancer) patients (Zhu, Webster, Flower, & Woll, 2004).  
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4.4.1.2 Correlation Coefficient with 0.4 Threshold Value 

Although the results with those seven features are better than the reference study 

(Zhang et al., 2017), I reduced the correlation coefficient threshold to 0.4 and change 

algorithm to SVM. Then I have thirty-one genes which are ACPP, BMX, CCR1 (C-

C motif chemokine receptor 1), EGR1, CXCR1 (C-X-C motif chemokine receptor 

1), PLAGL1 (PLAG1 like zinc finger 1), PLD1, PTGS2 (Prostaglandin-

endoperoxide synthase 2), NRP1 (Neuropilin-1), MGAM, RRP9 (Ribosomal RNA 

processing 9), ZNF235 (Zinc finger protein 235), DUSP10 (Dual specificity 

phosphatase 10), ATG2A (Autophagy related 2A), SEPT8 (Septin 8), SEC31B, 

FAM198B (Family with sequence similarity 198 member B), ARAP3, SLC37A3 

(Solute carrier family 37 member 3), MSANTD4 (Myb/SANT DNA binding domain 

containing 4 with coiled-coils), AGPAT9 (Glycerol-3-phosphate acyltransferase 3), 

REL (REL proto-oncogene), CSNK1A1L (Casein kinase 1 alpha 1 like), AFMID 

(Arylformamidase), CLEC4C (C-type lectin domain family 4 member C), 

SLC39A11 (Solute carrier family 39 member 11), CLEC4G (C-type lectin domain 

family 4 member G), LIPN (Lipase family member N), METTL12 (Citrate synthase 

lysine methyltransferase), C3ORF62 (Chromosome 3 open reading frame 62), 

LILRB3 (Leukocyte immunoglobulin like receptor B3). These genes provided 0.78 

accuracy, 0.93 sensitivity, and 0.8 specificity with the Support Vector Machine 

model. 

Table 4.4 The GO terms related with hepatobiliary and lung with 0.4 threshold valued correlation 

coefficient 

Category Term PValue Genes 

GOTERM_BP_ALL GO:0006952~defense response 0.0016 CCR1,  BMX, 

DUSP10, PTGS2, 

CLEC4C, RELT, 

CXCR1, LILRB3, 

EGR1 

GOTERM_BP_ALL GO:0098759~cellular response 

to interleukin-8 

0.0046  CXCR1, EGR1 
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Table 4.4 continues 

GOTERM_BP_ALL GO:0098758~response to 

interleukin-8 

0.0046 CXCR1, EGR1 

GOTERM_BP_ALL GO:0006955~immune response 0.0077 CCR1,  BMX, 

DUSP10, CLEC4C, 

CLEC4G, RELT, 

LILRB3, EGR1 

GOTERM_BP_ALL GO:0044710~single-organism 

metabolic process 

0.0118 CCR1, DUSP10, 

AFMID, NRP1, 

MGAM, PLD1, 

ACPP, PTGS2, 

LIPN, RELT, 

CXCR1, AGPAT9, 

EGR1 
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Table 4.4 continues 

GOTERM_BP_ALL GO:0007165~signal 

transduction 

0.0125 ARAP3, BMX, 

CCR1, DUSP10, 

NRP1, PLD1, 

ACPP, PTGS2, 

CLEC4C, RELT, 

PLAGL1, CXCR1, 

CSNK1A1L, 

LILRB3, AGPAT9, 

EGR1 

GOTERM_BP_ALL GO:0035556~intracellular 

signal transduction 

0.0148 CCR1, ARAP3, 

BMX, DUSP10, 

NRP1, PLD1, 

PTGS2, RELT, 

PLAGL1, AGPAT9 

GOTERM_BP_ALL GO:0007166~cell surface 

receptor signaling pathway 

0.0152 CCR1, BMX, 

NRP1, ACPP, 

CLEC4C, RELT, 

CXCR1, 

CSNK1A1L, 

LILRB3, EGR1 

GOTERM_BP_ALL GO:0006954~inflammatory 

response 

0.0158 CCR1, DUSP10, 

PTGS2, RELT, 

CXCR1, 

GOTERM_BP_ALL GO:0090335~regulation of 

brown fat cell differentiation 

0.0184 DUSP10, PTGS2, 
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Table 4.4 continues 

GOTERM_BP_ALL GO:0007154~cell 

communication 

0.0279 CCR1, ARAP3, 

BMX, DUSP10, 

NRP1, PLD1, 

ACPP, PTGS2, 

CLEC4C, RELT, 

PLAGL1, CXCR1, 

CSNK1A1L, 

LILRB3, AGPAT9, 

EGR1 

GOTERM_BP_ALL GO:0002376~immune system 

process 

0.0284 CCR1, BMX, 

DUSP10, CLEC4C, 

RELT, CXCR1, 

CLEC4G, LILRB3, 

EGR1 

GOTERM_BP_ALL GO:0034097~response to 

cytokine 

0.0334 CCR1, PTGS2, 

RELT, CXCR1, 

EGR1 

GOTERM_BP_ALL GO:0002521~leukocyte 

differentiation 

0.0359 CCR1, BMX, 

LILRB3, EGR1 

GOTERM_BP_ALL GO:0061437~renal system 

vasculature development 

0.0380 NRP1, EGR1 

GOTERM_BP_ALL GO:0061440~kidney 

vasculature development 

0.0380 NRP1, EGR1 

GOTERM_BP_ALL GO:0050793~regulation of 

developmental process 

0.0388 CCR1, ARAP3, 

DUSP10, NRP1, 

PTGS2, 

CSNK1A1L, 

LILRB3, EGR1 
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Table 4.4 continues 

GOTERM_BP_ALL GO:0006950~response to stress 0.0414 CCR1, BMX, 

DUSP10, NRP1, 

PTGS2, CLEC4C, 

RELT, PLAGL1, 

CXCR1, LILRB3, 

EGR1 

GOTERM_BP_ALL GO:1902531~regulation of 

intracellular signal transduction 

0.0433 CCR1, ARAP3, 

DUSP10, NRP1, 

PTGS2, RELT, 

AGPAT9 

GOTERM_BP_ALL GO:0002042~cell migration 

involved in sprouting 

angiogenesis 

0.0484 NRP1, PTGS2 

GOTERM_BP_ALL GO:0042180~cellular ketone 

metabolic process 

0.0486 AFMID, PTGS2, 

EGR1 

GOTERM_BP_ALL GO:0009966~regulation of 

signal transduction 

0.0486 CCR1, ARAP3, 

DUSP10, NRP1, 

PTGS2, ACPP, 

RELT, AGPAT9, 

EGR1 

GOTERM_MF_ALL GO:0019955~cytokine binding 0.0108 CCR1, NRP1, 

CXCR1 

GOTERM_MF_ALL GO:0016298~lipase activity 0.0190 CCR1, PLD1, LIPN 

GOTERM_MF_ALL GO:0042578~phosphoric ester 

hydrolase activity 

0.0238 CCR1, DUSP10, 

PLD1, ACPP 
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Table 4.4 continues 

GOTERM_MF_ALL GO:0019956~chemokine 

binding 

0.0343 CCR1, CXCR1 

GOTERM_MF_ALL GO:0016788~hydrolase activity, 

acting on ester bonds 

0.0382 CCR1, DUSP10, 

PLD1, ACPP, LIPN 

GOTERM_MF_ALL GO:0001637~G-protein coupled 

chemoattractant receptor activity 

0.0423 CCR1, CXCR1 

GOTERM_MF_ALL GO:0030246~carbohydrate 

binding 

0.0706 257335 (MGAM, 

198178 (CLEC4C, 

182566 CLEC4G 

REACTOME_PATHWAY R-HSA-1483166:R-HSA-

1483166 

0.0483 PLD1, AGPAT9 

 

Table 4.4 lists GO-term annotations for the thirty-one genes. Among those GO 

terms, when the GO:0098759~cellular response to interleukin-8 is searched and 

according to studies it was observed that non-small cell lung cancer was causing the 

production of IL-8 (Interleukin-8) with middle or high levels (Zhu et al., 2004) 

(Wang et al., 1996). Hence this GO term has a relationship with lung cancer. 

Moreover, in another study, the HCC cells were found the main producer of the IL-8 

expression (Akiba, Yano, Ogasawara, Higaki, & Kojiro, 2001). 

Another GO term is GO:0006955~immune response. The immune system has a 

vital role in the integrity and the maintenance of the organism. While it keeps 

protecting the organism against pathogens, it also has a role in cancer prevention. 

Generally, the abnormal proteins known as tumor antigens are the result of damaged 

DNA in cancer cells. Those tumor antigens make the cell different from others. On a 

daily bases, the immune system destroys cancer cells. The existence of contrivances 

that allow cancer cells to escape from immune responses preventing the development 

of malignant tumors is obvious and it (Australia, 2014). Cancer is induced by genetic 

and epigenetic changes (Welsh, 2013, p. 4). Many of these changes control signaling 
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pathways that control cell death, cell division, cell growth, cell fate, and cell 

mobility, and may allow for the establishment of wider signal networks that promote 

cancer progression (Sever & Brugge, 2015). 

With the correlation coefficient threshold 0.4 twenty-four more genes came out in 

addition to the ones found in the threshold 0.5. These genes are BMX, which is 

related to large cell carcinoma of lung, CCR1 which is related to liver carcinoma, 

PLAGL1 which is related to malignant neoplasm of stomach, NRP1 which is related 

to malignant neoplasm of prostate and pancreas, RRP9 which is related to malignant 

neoplasm of breast and stomach, CSNK1A1L which is related to colorectal cancer 

and finally PTGS2 which is related to many diseases according to research in 

DAVID (Huang et al., 2007). 

I could not find any previous study about the relation between PLAGL1, RRP9, 

CSNK1A1L and hepatobiliary or lung cancer. 

Although there is no study shows the relation between BTX and hepatobiliary, 

some studies show the relation between BTX and lung cancer. BMX is playing a 

crucial role in tumorigenesis and cancer progression within the PI3K/BMX/STAT3 

signaling pathway (Peng et al., 2016).  

Overexpression of NRP1 can be seen in many cancers including pancreatic and 

lung. However, depending on the cancer type, the inhibition of NRP1 expression has 

different effects (Vivekanandhan et al., 2017).  

PTGS2 is an enzyme induced by proinflammatory stimuli. It is also known as 

COX2. It is often overexpressed in malignant tissues. In many malignancies 

including lung, its overexpression has been observed (Khorshidi et al., 2014).  

CCR1 is a member of the seven-transmembrane G-protein-coupled receptor 

family. It is involved in the activation and trafficking of immune cells and it is 

extensively expressed in many cell types (Shin et al., 2017).  
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4.4.2 Differentiation of Hepatobiliary and Pancreatic 

4.4.2.1 Correlation Coefficient with 0.5 Threshold Value 

I observed that the discrimination of hepatobiliary and pancreatic cancers is quite 

successful with ten features coming from the data with the correlation coefficient 

threshold 0.5. These genes are ALPL (Alkaline phosphatase), ERG (ETS 

transcription factor), MMP8 (Matrix metallopeptidase 8), DGAT2 (8 Diacylglycerol 

O-acyltransferase 2), SLC26A8 (Solute carrier family 26 member 8), TRABD2A 

(TraB domain containing 2A), VSIG10L (V-set and immunoglobulin domain 

containing 10 like), CCDC141 (Coiled-coil domain containing 141), RN7SL2 

(cytoplasmic 2), TMEM233 (Transmembrane protein 233). They led 0.80 accuracy, 

0.96 sensitivity, and 0.85 specificity by using an SVM model.  

Table 4.5 The GO terms related with hepatobiliary and pancreatic with 0.5 threshold valued 

correlation coefficient 

Category Term PValue Genes 

GOTERM_BP_ALL GO:0007275~multicellular organism 

development 

0.0094 DGAT2, ALPL, 

CCDC14, ERG, 

MMP8, SLC26A8 

GOTERM_BP_ALL GO:0048856~anatomical structure 

development 

0.0161 DGAT2, ALPL, 

CCDC14, ERG, 

MMP8, SLC26A8 

GOTERM_BP_ALL GO:0044767~single-organism 

developmental process 

0.0161 DGAT2, ALPL, 

CCDC14, ERG, 

MMP8, SLC26A8 
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Table 4.5 continues 

GOTERM_BP_ALL GO:0009888~tissue development 0.0179 DGAT2, ALPL, 

CCDC141, ERG, 

MMP8, 

GOTERM_BP_ALL GO:0044707~single-multicellular organism 

process 

0.0235 DGAT2, ALPL, 

CCDC14, ERG, 

MMP8, SLC26A8 

 

Table 4.5 shows GO-term annotations for ten genes. Among those GO terms, 

none of them is found to be significantly important. Hence, I focused on the genes. 

Some of the genes are ALPL, ERG, MMP8, DGAT2. ALPL is related to liver 

diseases, liver dysfunction, and tumoral calcinosis. ERG is related to leukemia, 

myelocytic, acute, malignant neoplasm of prostate, and Ewings sarcoma. MMP8 is 

related to melanoma, liver cirrhosis, lung diseases. DGAT2 is related to cholestasis, 

hepatitis, toxic, drug-induced liver disease, drug-induced acute liver injury.  

The relationship between those genes and lung or hepatobiliary cancer was also 

analyzed. A study shows that ZEB2 represses transcription of a group of genes 

including ALPR. And ALPR is expressed in various types of tumors including 

pancreatic cancer (Katoh & Katoh, 2009).  

Even though no important result was found about the MMP8, the results about 

MMP (matrix metalloproteinases) show its critical role in biliary cell migration 

(Terada, Okada, & Nakanuma, 1995).  
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4.4.2.2 Information Gain with 0.25 Threshold Value 

I had successful results with the seven features coming from information gain 

with threshold 0.25 and SVM algorithm. The success rates were 0.78 accuracy, 0.88 

sensitivity, and 0.65 specificity. The important thing here is the genes are TGFBR3 

(Transforming growth factor beta receptor 3), TNR (Tenascin R), LIN28A (Lin-28 

Homolog A), TRABD2A, FAM117B (Family with sequence similarity 117 member 

B), GAREML (GRB2 associated regulator of MAPK1 subtype 2), CCDC141, and 

only two of them are common with the ones in the correlation coefficient threshold 

0.5 and SVM used case. 

Table 4.6 The GO terms related with hepatobiliary and pancreatic with 0.25 threshold valued 

information gain 

Category Term PValue Genes 

GOTERM_BP_

ALL 

GO:0048513~animal organ development 0.0065 TGFBR3, 

TNR, 

CCDC141, 

LIN28A 

GOTERM_BP_

ALL 

GO:0022029~telencephalon cell migration 0.0105 TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0021885~forebrain cell migration 0.0110 TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0016477~cell migration 0.0142 TGFBR3, 

TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0022029~telencephalon cell migration 0.0105 TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0021885~forebrain cell migration 0.0110 TNR, 

CCDC141 
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Table 4.6 continues 

GOTERM_BP_

ALL 

GO:0016477~cell migration 0.0142 TGFBR3, 

TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0022029~telencephalon cell migration 0.0105 TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0021885~forebrain cell migration 0.0110 TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0016477~cell migration 0.0142 TGFBR3, 

TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0048731~system development 0.0167 TGFBR3, 

TNR, 

CCDC141, 

LIN28A 

GOTERM_BP_

ALL 

GO:0048870~cell motility 0.0178 TGFBR3, 

TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0051674~localization of cell 0.0178 TGFBR3, 

TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0040011~locomotion 0.0234 TGFBR3, 

TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0007275~multicellular organism development 0.0245 TGFBR3, 

TNR, 

CCDC141, 

LIN28A 

GOTERM_BP_

ALL 

GO:0051240~positive regulation of multicellular 

organismal process 

0.0205 TGFBR3, 

TNR, LIN28A 
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Table 4.6 continues 

GOTERM_BP_

ALL 

GO:2000026~regulation of multicellular 

organismal development 

0.0293 TGFBR3, 

TNR, LIN28A 

GOTERM_BP_

ALL 

GO:0031099~regeneration 0.0297 TGFBR3, 

TNR 

GOTERM_BP_

ALL 

GO:0006928~movement of cell or subcellular 

component 

0.0318 TGFBR3, 

TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0044767~single-organism developmental 

process 

0.0346 TGFBR3, 

TNR, 

CCDC141, 

LIN28A 

GOTERM_BP_

ALL 

GO:0032502~developmental process 0.0377 TGFBR3, 

TNR, 

CCDC141, 

LIN28A 

GOTERM_BP_

ALL 

GO:0021537~telencephalon development 0.0407 TNR, 

CCDC141 

GOTERM_BP_

ALL 

GO:0050768~negative regulation of neurogenesis 0.0431 TNR, LIN28A 

GOTERM_BP_

ALL 

GO:0050793~regulation of developmental process 0.0441 TGFBR3, 

TNR, LIN28A 

GOTERM_BP_

ALL 

GO:0048468~cell development 0.0380 TGFBR3, 

TNR, LIN28A 

GOTERM_BP_

ALL 

GO:0044707~single-multicellular organism 

process 

0.0443 TGFBR3, 

TNR, 

CCDC141, 

LIN28A 
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Table 4.6 continues 

GOTERM_BP_

ALL 

GO:0007399~nervous system development 0.0458 TNR, 

CCDC141, 

LIN28A 

 

Table 4.6 lists the GO-terms related to given seven genes. Among those GO 

terms, GO:0016477~cell migration and GO:0048468~cell development was 

considered important since they have serious functions in tumor development and 

metastasis. The first step of tumor metastasis is a transgression of cancer cells into 

the surrounding tissue. To spread other organs in the body, cancer cells need blood 

vessel walls (Razidlo et al., 2015).  

Two of the most important post-transcriptional regulatory proteins are RBPs 

(RNA binding proteins) and miRNAs (microRNAs) that effects gene expression. The 

abnormal expression of them causes the growth of human malignancies. LIN28A 

was found to be related to malignant neoplasms, neoplasm invasiveness in DisGeNet 

(Piñero et al., 2015). When it is investigated, the level of LIN28A and MSI2 have a 

positive correlation with HCC. Those findings show that LIN28A might have the 

potential to be used as a therapeutic target for CSCs (liver cancer stem cells) (Fang et 

al., 2017). In another study, a direct association between LIN28A and pancreatic 

cancer was detected. Also, the LIN28A decrease causes malignant behaviors in 

PANC1 cells. Hence, LIN28A might have a critical aspect of pancreatic cancer 

progression (Xu et al., 2016, p. 2). 

  



37 

 

CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

 

According to WHO (World Health Organization), cancer is the most lethal disease 

in the world. Hence it has been highly studied in the last decades. To find a better 

cure for it, the fundamental causes of the disease have to be researched in more 

detail. The fundamental causes can be understood by examining diseased tissues in 

the cellular or on a genetic basis. There are many technologies to do that researches 

to discover better biomarkers to recognize cancer earlier.  

In this study, the RNA sequencing technique was used to discover biomarker 

genes for discrimination of different cancer types. RNA sequencing technology is 

one of the popular high throughput sequencing methods. The data set had seven 

sample groups; one of them is healthy and other groups have different cancer types. 

To find the disease-causing genes the input samples of patients were cleaned and 

normalized. After that preprocessing, the total number of genes was 3427, it is 6% of 

the initial mRNA reads. However, when multi and binary classifications were run 

with this number of genes, the initial results were not satisfying. Since the number of 

genes was 3427, however, the number of patient samples was 285. Hence, to 

improve results, the number of genes has to be reduced more. To apply this, genes 

were going through feature selection methods according to how good they can 

separate the two different cancer types. The study that has the same patient samples 

was applying mRMR feature selection, we experimented with other methods. 

Information gain and correlation coefficient feature selection methods were used in 

our experiments. For both feature selection methods, the threshold values were 

iteratively increased, and a grid search technique was applied. For the correlation 

coefficient, efficient classification results were found in 0.4 and 0.5 threshold values; 

for information gain, it is ranging from 0.05 to 0.55. The composed cancer groups 

were given to the SVM, NB, RF machine learning algorithms. The results, which are 

not overfitting and have satisfying sensitivity and specificity values, are the ones 

separating hepatobiliary-lung and hepatobiliary-pancreatic cancers.  
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When we analyzed the results of the current study, they are more successful than 

the study of the initial patient samples in terms of accuracy, sensitivity, and 

specificity. The successful results traced back to identify the biomarker genes, their 

biological functions and related diseases were searched in biological databases. The 

success of models was proved in biological manners. Since the hepatobiliary and 

pancreatic cancers are located close in the body, so successful discrimination 

between them can be considered vital in the diagnostic phase without getting surgery. 

The results of this study might help to diagnose a new person who has pancreatic 

cancer or hepatobiliary cancer.  
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