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DETECTION OF DATA INJECTION ATTACKS FOR SMART GRID 
SECURITY 

 
ABSTRACT 

 

In this thesis, static state estimation in smart grid is investigated for non-Gaussian 

environments. The noise model in state estimation is widely assumed to be Gaussian 

distributions. But in real world applications, the process noise is impulsive in nature. 

Alpha-stable distributions are proposed and implemented for constructing impulsive 

noise. Parameters of alpha-stable distributions are introduced and their impact on 

noise is discussed. Furthermore, robust m-filters like median, meridian and myriad 

are presented and compared to weighted least squares (WLS) which is traditionally 

used for state estimation. MATLAB simulations are performed for comparing 

performance of filters in impulsive noisy environment.  

The importance of attack detection is emphasized for security of smart grid and 

data injection attack model is defined as a DC offset on measurements. The desired 

idea is detecting attack as quickly as possible which is named quickest detection 

problem. In quickest detection, there is a tradeoff between detection speed and 

detection reliability. CUSUM algorithm which is a sequential analysis for detecting 

change is proposed and implemented for two-sided tabular form of CUSUM 

combined with statistical hypothesis tests. Threshold value for CUSUM determines 

the performance of attack detection. Impact of threshold value selection on detection 

ratio, false alarm ratio and average run length is investigated for different alpha 

values. Simulations are performed in MATLAB environment and results are 

discussed in detail. 
 
Keywords: Smart grid security, state estimation for non-Gaussian environments, 

robust filters, data injection attack detection, quickest detection. 
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AKILLI ŞEBEKE GÜVENLİĞİ İÇİN VERİ ENJEKSİYON 
SALDIRILARININ KESTİRİMİ 

 
ÖZ 

 

Bu tezde, Gauss olmayan ortamlarda akıllı şebekeler için statik durum kestirimi 

araştırılmıştır. Durum kestiriminde gürültünün Gauss olduğu yaygın olarak kabul 

edilir. Fakat gerçek dünya uygulamalarında gürültü aslında dürtüseldir. Alfa-kararlı 

dağılımlar önerilmiş ve gürültünün oluşturulmasında kullanılmıştır. Alfa-kararlı 

dağılımın parametrelerine değinilmiş ve bu parametrelerin gürültü üzerindeki etkisi 

tartışılmıştır. Ayrıca meridian, median ve myriad gibi gürbüz m-filtrelere değinilmiş 

ve bu filtreler durum kestiriminde geleneksel olarak kullanılan ağırlıklı en küçük 

kareler (WLS) yöntemi ile kıyaslanmıştır. Filtrelerin gürültü ortamlardaki 

performanslarını kıyaslamak için MATLAB simülasyonu gerçekleştirilmiştir.  

 
Akıllı şebekenin güvenliği için saldırı kestiriminin önemi vurgulanmış ve veri 

injeksiyon saldırısı, ölçümler üzerindeki DC kayma olarak tanımlanmıştır. 

Uygulanmak istenilen düşünce, saldırının olabildiğince hızlı tespit edilmesidir. Bu 

durum hızlı tespit problemi olarak adlandırılır. Hızlı tespit kullanımında, tespit hızı 

ile tespit güvenilirliği arasında bir tercih söz konusudur.  Değişimin tespiti için sıralı 

bir analiz olan CUSUM algoritması önerilmiş ve iki yönlü çizelge formundaki 

CUSUM ile istatistiksel hipotez testi birleştirilerek uygulanmıştır. CUSUM için eşik 

değeri saldırı tespitinin performansını belirlemektedir. Eşik değeri seçiminin tespit 

oranı, yanlış alarm oranı ve ortalama çalışma süresi üzerindeki etkisi farklı alfa 

değerleri için araştırılmıştır. Simülasyonlar MATLAB ortamında gerçekleştirilmiş ve 

sonuçlar detaylı olarak tartışılmıştır. 
 
Anahtar Kelimeler: Akıllı şebeke güvenliği, akıllı şebekelerde Gauss olmayan 

ortamlarda durum kestirimi, gürbüz filtreler, veri injeksiyon saldırılarının tespiti, 

hızlı tespit. 
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CHAPTER ONE 

INTRODUCTION 

 

Smart power grids have recently become a crucial research subject which is 

expected to integrate advanced power, communications, signal processing, control, 

and computing technologies in order to improve robustness and efficiency of the 

power networks. Whereas current electricity systems are based on one-way flow of 

energy and information from the source to the end user, a smart grid system provides 

two-way flow of energy and information throughout the system.  

 
Structure of a power grid involving large interconnected power systems is 

composed of grids consisting of multiple subnets and this complicated network is 

managed by an operator. The system operator needs more reliable and robust 

information about whole power grid to take appropriate precautions in failure or 

restricted conditions. Transmission system is under stress. Because generation and 

loading are increasing and capacity of transmission lines isn’t increased sufficiently. 

Hence, transmission system must be operated at its maximum capacity in some 

cases. Hence, state estimation plays a crucial role to serve the state of the grid and 

enables energy management systems to perform various important control and 

planning tasks such as establishing near real-time network models for the grid, 

optimizing power flow, and bad data-injection detection (Huang, Werner, Huang, 

Kashyap, & Gupta, 2012). 

 

Supervisory Control and Data Acquisition (SCADA) systems are used for real-

time monitoring and controlling large-scaled power grid by system operator. SCADA 

provides a lot of information to operator like power flows, circuit-breaker positions, 

transformer taps, bus voltages, etc. Some faulty sensors and lost data could exist 

when transmitting data between Remote Terminal Units (RTUs). State estimator 

filters these errors for providing best estimated state to energy management system 

(EMS).  
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Figure 1.1 Distributed topology for the future smart grid (Cui et al., 2012). 

 
Distributed future topology for future smart grid is illustrated in Figure 1.1. The 

future smart grids are expected to provide real-time system-wide state awareness. 

State estimation is a key function in building a real-time network model in the energy 

management system. State estimation refers to the procedure of obtaining the voltage 

magnitudes and phase angles at a bus which is located in the power grid. In literature, 

most of studies use weighted least squares (WLS) method for state estimation 

process and assume that the noise has Gaussian distribution. In this thesis, the robust 

M-filters are proposed for state estimation for non-Gaussian environments. 

 
Gaussian distributions have been widely accepted as a tractable model in signal 

processing. But in real world applications, the processes are impulsive in nature, and 

are not well represented by Gaussian distributions (Arce, 2005). Hence, we discussed 

alpha-stable distributions and implemented our experiments for alpha-stable noise 

environments.  

 
Measurements which are used for state estimation may contain errors that affect 

the accuracy of state estimation, named bad data, because of device failure, device 

misconfiguration, telecommunication medium, or other reasons. Identification and 

suppression of bad data is based on the state estimation method. Phasor measurement 

units (PMUs) can be used for defending against bad data in order to improve state 

estimation performance. Measurements collected by PMUs are synchronized by 

Global Positioning System (GPS). Thus, using PMUs in power grid improves the 

robustness of state estimation and bad data detection (Korres et al., 2011). 
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Conventional bad data detection techniques depend on looking gross errors which 

appear in measurement residuals. But these techniques are weak for catching highly 

structured bad data which is called false data injection attacks (Cui et al., 2012). 

Attacker can mislead the control center by injecting malicious data on state 

estimation process without being detected. In other words, attacker can obtain 

unauthorized information and use this information. Hence, operator could make 

wrong decision which causes electric power blackout in large area, economical 

issues, danger for electrical device equipment, etc. Because of these reasons, false 

data injection attacks to smart grid must be detected as quickly as possible for smart 

grid security. Speed of the detection of any malicious attack has a vital importance to 

enable defence strategies in a moderate time in the grid. The delay between attacking 

time and detection time should be as small as possible. This type of problem is called 

quickest detection problem. 

 
Quickest detection algorithm tries to detect change as quickly as possible based on 

real time measurements when pre-defined conditions are met. Pre-defined conditions 

refer to the decision rules that optimize the trade-off between the detection speed and 

detection reliability (Huang, Werner, Huang, Kashyap, & Gupta, 2012). The 

CUSUM technique is presented in this thesis for quickest detection. 

 
The thesis consists of seven chapters and the remainder of the thesis is organized 

as follows. Chapter Two outlines the state estimation in power grids and traditional 

state estimation method which is named weighted least squares (WLS). Chapter 

Three presents median, meridian and myriad filters which are called the robust M-

filters and behavior of these filters in impulsive environments. Chapter Four includes 

general information about alpha-stable distributions. The performance tests of filters 

are simulated in MATLAB for comparing state estimation performances of WLS and 

robust m-filters under alpha-stable noise. The results are presented in Chapter Five. 

In Chapter Six, false data injection attack is defined, and CUSUM algorithm and 

performance of attack detection is presented. Performance tests are implemented in 

MATLAB environment, and results are shown in this chapter. Finally, conclusions 

are given in Chapter Seven. 
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CHAPTER TWO 

STATE ESTIMATION IN POWER GRID 

 
State estimation has an important role in supervisory control and planning of 

electric power grid (Huang, Werner, Huang, Kashyap, & Gupta, 2012). Because of 

the complexities of operating large and interconnected networks, Energy 

Management System (EMS) needs reliable information about power grid. EMS uses 

state estimation to process real time data which is collected by Supervisory Control 

and Data Acquisition (SCADA) system. In Figure 2.1, the mechanism of real time 

network model at transmission level is demonstrated. The goal of EMS is to monitor, 

control, analyze, plan, and optimize electric transmission lines and electric 

equipment like transformers, circuit breakers and generators. 

 

 
Figure 2.1 Real time network model at transmission level (Huang et al., 2012). 

 

State estimation aims to get the best estimate of the current system state by 

processing sets of measurements and parameters for providing correct information 

about power grid to system operator. The success of the state estimation depends on 

the accuracy of measured data and network parameters. The measured data may be 

erroneous because of noise and error existing in communication or metering system. 
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Hence, state estimator works for filtering all these errors to achieve correct state of 

electric power grid in near real-time. WLS approach is widely used for state 

estimation. Static state estimation is only discussed in our approach. Dynamic state 

estimation is not included because of computational complexity. 

 

2.1 Static State Estimation 

 
Static state estimation refers to the procedure of obtaining the voltage magnitudes 

and phase angles at all buses which are located in the power grid at a given point in 

time (Abur & Exposito, 2004). Voltage magnitudes and phase angles are named state 

variables. It is assumed that the network topology and parameters are perfectly 

known, power system operates under balanced conditions, and measurement errors 

are independent. Another assumption is that noise has Gaussian distributions. 

 

In an N-bus system, the (2푁– 	1) 	× 	1 state vector has the form 푥 = [	휃₂	, 휃₃,

… , 휃 , |V1|, … , |Vi| ]	T where 휃  represents phase angels and |푉푖|  represents the 

magnitudes of the voltages at the 푖th bus. A bus is arbitrarily selected as a reference 

bus. Phase angle (휃₁) at reference bus is set to zero radians. A set of measurements 

푧 ∈ ℝ × , 퐿 > 	2푁 − 1, is collected for estimating the state. Equation 2.1 shows the 

measurement vector: 

 

푧 =

푧
푧
⋮
푧

= 

⎣
⎢
⎢
⎡
ℎ (푥 ,푥 ,… , 푥 )
ℎ (푥 ,푥 ,… , 푥 )

⋮
ℎ (푥 ,푥 ,… , 푥 )⎦

⎥
⎥
⎤
 + 

푛
푛
⋮
푛

= ℎ(푥) + 	푛   (2.1) 

 

Specifically, ℎ (푥) is the nonlinear function relating measurement 푖 to state vector 

푥,  푥 = 푥 ,푥 ,… , 푥  is the system state vector, 푛 = 푛 ,푛 ,… ,푛  is a zero-mean 

Gaussian measurement noise vector with covariance matrix 퐶 ∈ ℝ × . 

 
The measurements may include active and reactive power flows, and bus power 

injections, line current flow magnitudes and voltage magnitudes at the buses. These 

measurements can be expressed in terms of voltage magnitudes and phase angles 
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based on two-port 휋-model for network branches as shown in Figure 2.2 (Abur & 

Exposito, 2004).   

 

 
Figure 2.2 Two port 휋-model. 

 

Specifically, 퐺 + 푗퐵  is 푖푗 th element of complex admittance matrix. 휃  is  

휃 − 휃 . 푉  and 푉  are voltage magnitude corresponding to 푖 th and 푗 th bus, 

respectively. 푔 + 푗푏  is admittance of the branch between bus 푖  and bus 푗 .       

푔 + 푗푏  and 푔 + 푗푏  are admittance of the shunt branch. 

 
 Real and reactive power injection at a bus 푖 is expressed as follows: 

 

	 ∑ 	( )∈ℵ
	 ∑ 	( )∈ℵ

   (2.2) 

 
 Real and reactive power flow from bus 푖 to bus 푗 is expressed as follows:  

 
	 ( )	 	( 	 )
	 ( )	 	( )

  (2.3) 

 

 Line current flow magnitude from bus 푖 to bus 푗 is expressed as follows: 

 

퐼 	= (푔 + 푗푏 )	(푉 + 푉 − 2	푉 푉 cos 휃 )  (2.4) 
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2.2 Weighted Least Squares (WLS) 
 
 

WLS method is traditionally used to estimate the state vector in Gaussian 

environments from the measurement equation in 2.1. State estimation problem is 

solved by finding 푥 as in the following equation: 

 
푥 = arg푚푖푛 [푧 − ℎ(푥)] 푊 	[푧 − ℎ(푥)]   (2.5) 

 
W is the weighting matrix which has diagonal elements related to noise 

covariance. W is diagonal because of the independence of measurement errors. 푥 is 

solved in an iterative way by linearizing Equation 2.1 around the available estimate 

and Gauss-Newton algorithm is applied for improving performance of the estimation 

(Huang, Werner, Huang, Kashyap, & Gupta, 2012). 

 

2.3 Non-Gaussian and Impulsive Noise Approach 
 

Traditional state estimation assumes that noise has Gaussian distribution as 

mentioned before. However, in practical applications, measurement and process 

noise have non-Gaussian distribution. If noise distribution is non-Gaussian, 

performance of WLS method will be dramatically decreased. M-filters provide better 

performance than linear filters in non-Gaussian noise environments (Pander & 

Przybyła, 2012). 

 
Noise processes in practice are generally impulsive in nature and are not well 

described with Gaussian distribution (Arce, 2005). The impulsive noise may cause 

false operations if it is not handled appropriately. Hence, impulsive noise is needed 

to be suppressed for accurate analysis. The impulsive noise in our approach is 

modeled by alpha-stable distributions which is well-suited for describing impulsive 

events. The robust M-filters can be applied in different types of digital signal 

processing applications like impulsive environments (Pander & Przybyła, 2012). As 

seen in Figure 2.3, WLS cannot suppress impulsive components. M-filters like 

median, meridian and myriad give better results than WLS approach under impulsive 

noise. These filters are discussed in detail in the next chapter. 
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Figure 2.3 Illustration of WLS in impulsive noise environment. 
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CHAPTER THREE 

ROBUST M-FILTERS FOR STATE ESTIMATON 

 

In recent years, filtering process based on M-estimators which are also named 

robust filters is widely used in signal processing. The median, meridian and myriad 

filters are type of robust M-estimators which are very useful for suppressing 

impulsive noise (Pander & Przybyła, 2012). 

 

3.1 Robust M-Filters 

 
Formulation of M-estimators is shown in following way. A set of 푖 data samples 

푥 ,푥 ,… , 푥  is given, where 푥 = 	훽 + 푣  and 	1 ≤ 푖 ≤ 푁. 	훽  is location parameter 

which is needed to be estimated under noise 푣 .	Distribution of noise is not exactly 

known. The only assumption is that noise has symmetric, independent, identical 

distribution (symmetric i.i.d.) (Pander & Przybyła, 2012). 

 
The M-estimate of  훽   is shown as a minimum global energy function in the 

following expression: 

 
훽 = arg푚푖푛

∈ℜ
∑ 휌(푥 − 훽)    (3.1) 

 
Specifically, 휌(. ) is called the cost function, and 훽 is location parameter of M-

estimator which minimizes the expression in Equation 3.1. M-estimator’s behavior is 

totally characterized by the shape of the cost function (Pander & Przybyła, 2012). 

 
3.2 Sample Median Filter 
 

To define the median filter, let 푋[. ] be the discrete time signal. Median filter 

passes a window over the signal 푋[. ] that selects, at each instant 푛, an odd number of 

sequential samples to comprise the observation vector 푋[푛] . 푋[푛] = [	푋[푛 −

푁 ],… , 푋[푛],… , 푋[푛 + 푁 ]]  is the observation window which is centered at 푛, and 

푁 = 푁 +푁 + 1  is the window length which is selected based on input data. 

Generally, observation window is symmetric (푁 = 푁 ) (Arce, 2005). 
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The median filter sorts samples which is located in the observation window, 

selects the median or middle value from the sorted window and produces the output 

signal, defined at time index 푛. Median filter can be expressed as below. 

 
푌[푛] = 	푀퐸퐷퐼퐴푁	[	푋 [푛],… , 푋 [푛]	]   (3.2) 

 

 
Figure 3.1 Process of median filtering (N=5) (Arce, 2005). 

 

 
Figure 3.2 Illustration of median filter in impulsive noise environment. 
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Figure 3.1 shows how median filter works on data. In Figure 3.2, it can be seen 

that median filter can suppress impulsive noise components and give more reliable 

results. 

 
3.3 Sample Meridian Filter 
 

Meridian distribution is defined as a random variable formed as the ratio of two 

independent zero-mean Laplacian distributed random variables. A set of N 

independent and identically distributed samples 푥 ,푥 ,… , 푥  each obeying the 

meridian distribution with common scale parameter 훿  which is called medianity 

parameter, the sample meridian 훽  is given by the following equation (Aysal & 

Barner, 2007): 

 
훽 = arg푚푖푛

∈ℜ
∑ log	[훿 + |푥 − 훽|] = 푚푒푟푖푑푖푎푛	{푥 | 	; 	훿	}  (3.3) 

 
where 훽  is the location parameter. Sample meridian includes the free-tunable 

parameter 훿  which plays an important role in the behavior of meridian estimator, 

unlike sample mean and median. If medianity parameter tends to lower values, the 

estimator becomes more robust against the impulsive noise (Aysal & Barner, 2007). 

 
Figure 3.3 Illustration of meridian filter in impulsive noise environment. 
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In Figure 3.3, performance of the meridian filter is good enough for suppressing 

the impulsive noise. The robustness of meridian filter can be improved by tuning the 

parameter 휹. 

 
3.4 Sample Myriad Filter 
 

Myriad filtering is based on maximum likelihood estimate of location under 

Cauchy distribution. For a set of 푁  i.i.d. samples 푥 ,푥 ,… , 푥  each obeying the 

Cauchy distribution with common scale parameter 퐾  which is called linearity 

parameter, the sample myriad 훽  can be computed using the following equation 

(Pander & Przybyła, 2012): 

 
훽 = arg푚푖푛

∈ℜ
∑ log	[퐾 + |푥 − 훽| ] = 푚푦푟푖푎푑	{푥 | 	; 	퐾	}  (3.4) 

 
where 훽  is location parameter. The influence of gross errors or outliers is de-

emphasized by the logarithm function.  

 

 

Figure 3.4 Illustration of sample myriad filter mechanism. 
 
 

Myriad filter working principle is shown in Figure 3.4. 훽 minimizes the product 

of distances from point A to all samples. Linearity parameter 퐾 controls robustness 

of the myriad filter (Pander & Przybyła, 2012). When 퐾 is large, the robustness of 

myriad filter is low, and most of the sample data is taken into consideration for 

estimating location. Conversely, if 퐾 decreases, resistance to outliers increases. The 

parameter of 퐾 is determined by the impulsiveness of the noise process. Hence, the 
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degree of impulsiveness of noise is firstly determined through estimating the stability 

parameter, 훼. This subject is out of scope for this thesis. 퐾 can be calculated by the 

following formula (Gonzales, Griffith, & Arce, 1996). 

 
퐾(훼, 훾) = 	 훾 / tan	(휋 )    (3.5) 

Specifically, 훼 is characteristic exponent parameter, and 훾 is dispersion parameter 

of distribution. These parameters will be discussed in detail in the next chapter. 

 

Figure 3.5 Illustration of myriad filter in impulsive noise environment. 

 

Figure 3.5 shows that sample myriad filter can successfully suppress the 

impulsive noise. The 퐾 parameter can be tuned for more robustness. 
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CHAPTER FOUR 

ALPHA STABLE DISTRIBUTIONS 

 

Gaussian distributions have been widely accepted as a useful and mathematically 

tractable model in signal processing. But in real world applications, the processes are 

impulsive in nature, and are not well represented by Gaussian distributions (Arce, 

2005). Hence, in this section, we introduced a statistical model relying on symmetric 

alpha-stable (푆훼푆) distributions which are capable of describing impulsive signals in 

nature. 

 
4.1 Alpha-Stable Distributions in Real Form 

 
The characteristic function of alpha-stable distributions is written as follows: 

 

휑(푡; 훿, 훾, 훼, 훽) =
exp 	푖푡훿 − |훾푡| 	 1 − 푖

π
훽푠푔푛(푡) log|t| 		푓표푟			훼 = 1	

		exp 	푖푡훿 − |훾푡| 	 1 − 푖훽푠푔푛(푡) tan π α 	 	푓표푟			훼 ≠ 1	
�		(4.1) 

 
The alpha-stable distribution is controlled by four parameters and is usually 

denoted by 푆(훼, 훽, 훾, 훿). Alpha, 훼 ∈ (0,2], is a crucial parameter which is named 

characteristic exponent. Alpha describes the shape of the distribution. Beta, 훽 ∈

[−1,1], is skewness parameter which determines if the distribution is right or left 

skewed. Gamma, 훾 > 0 , is named dispersion which determines the spread of 

distribution which is similar to variance of Gaussian distributions. Delta, −∞ < 훿 <

+∞, is location parameter. 

 
There are three special cases for 훼-stable distributions. For 훼 = 2, the distribution 

is named Gaussian distribution with variance 휎 = 2훾 , and the skewness parameter 

has no importance. For 훼 = 1  and 훽 = 0 , the distribution is named Cauchy 

distribution with scale parameter 훾 and location parameter 훿. For 훼 = 0.5 and 훽 = 1, 

it is named Lévy distribution with scale parameter 훾 and location parameter 훿. 

 
For symmetric approach, 훽 = 0, the characteristic function turns into following 

expression: 

휑(푡; 훿, 훾, 훼) = exp[	푖푡훿 − |훾푡| 	]    (4.2) 
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Figure 4.1 Density functions of symmetric distributions for different 훼 values. 

 
The symmetric density functions for different 훼 values are plotted in Figure 4.1. 

The smaller alpha values cause the heavier tails of the 푆훼푆. This means that alpha-

stable distributions with small alpha values better represent highly impulsive signals 

or noises. On the other hand, if 훼 decreases, the existence rate and the strength of the 

outliers increase (Samoradnitsky & Taqqu, 1994). Tails of distributions can be 

clearly seen in Figure 4.2. 

 
Figure 4.2 View of tails for 훼 = 0.5, 훼 = 1, 훼 = 1.5, 훼 = 2.0 . 
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4.2 Alpha-Stable Distributions in Complex Form 

 
During the state estimation process, we need to find complex bus voltage at each 

bus. Hence, it is needed to add complex noise on raw complex bus voltage for a more 

realistic approach. Because of this reason, we introduced complex 푆훼푆  random 

variables. 

 
Let 푋  and 푋  be real random variables which are defined on the same probability 

space. The complex random variable 푋 = 푋 + 푖푋  is shaped by the joint distribution 

of 푋  and 푋 . If random vector (푋 , 푋 ) is symmetric alpha-stable in ℝ  then the 

complex random variable 푋 = 푋 + 푖푋  is named symmetric alpha-stable (푆훼푆) 

(Samoradnitsky & Taqqu, 1994). 

 
If 푒 ∅푋 푋 for any ∅ ∈ [0,2휋), a complex random variable 푋 = 푋 + 푖푋  is said 

to be isotropic. For 훼 = 2, if 푋  and 푋  are i.i.d. then isotropy condition is satisfied. 

For 훼 < 2 condition, a complex random variable is isotropic if and only if (푋 , 푋 ) 

has a uniform spectral measure. Real and imaginary parts of an isotropic 푆훼푆 random 

variable are dependent (Samoradnitsky & Taqqu, 1994). 

 
There are some steps for generating complex isotropic 푆훼푆 random variable as 

푋 = 푋 + 푖푋 . For 훼 < 2, we need to generate two i.i.d. zero mean normal random 

variables 퐺  and 퐺  and a random variable 퐴	~	푆(훼/2,1, (푐표푠휋훼/4) / , 0) which is 

independent of (퐺 , 퐺 ). The vector (푋 , 푋 ) is sub-Gaussian with underlying vector 

(퐺 , 퐺 ). This implies that (푋 , 푋 ) (퐴 / 퐺 ,퐴 / 퐺 ). Every complex isotropic 푆훼푆 

random variable can be written as follows (Samoradnitsky & Taqqu, 1994). 

 
푋 = 퐴 / 	(퐺 +	 푖퐺 )     (4.3) 
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Figure 4.3 Non-isotropic complex 푆훼푆 random variables (훼 = 1.8	). 

 

In Figure 4.3, the data can be seen non-centralized for non-isotropic complex 푆훼푆 

random variables for 훼 = 1.8 . If we generate isotropic complex 푆훼푆  random 

variables, the data will be more centralized and have a circular behavior as shown in 

Figure 4.4. 

 
Figure 4.4 Isotropic complex 푆훼푆 random variables (훼 = 1.8	). 
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CHAPTER FIVE 

SIMULATIONS OF STATE ESTIMATION 

 

State estimation is defined as a process of obtaining the voltage magnitudes and 

phase angles at all buses which are located in smart grid. Hence, we have generated 

raw bus voltage data through using MATPOWER (version 1.4) which is an open-

source simulation package of MATLAB for solving power flow and optimal power 

flow problems (Zimmerman, Murillo-Sánchez, & Gan, 2011). MATPOWER also 

gives complex bus voltage values at each bus that we need, and includes IEEE 14, 

IEEE 30, IEEE 57, IEEE 118, and IEEE 300 bus system topologies and parameters. 

 
In this section, simulations and results for impulsive and non-Gaussian (1.5 ≤

훼 ≤ 1.9) environment have been presented for state estimation. Isotropic complex 

푆훼푆  noise is added on complex bus voltage data which is generated by 

MATPOWER. Data length is 푁 = 1000 sample for each test. Alpha-stable noise 

sample is generated by an open-source toolbox which is referred in (Veillette, 2012). 

The number of individual runs is 200 for all filters at each dB point. Performances of 

filters are compared with each other and individually for 1.5 ≤ 훼 ≤ 1.9  case. 

Observation window length is selected as 21 and symmetric for all robust filters 

mentioned before. Fractional lower order error (FLOE) versus signal to dispersion 

ratio (SDR) is used for performance tests. FLOE is expressed as follows.  

 
퐹퐿푂퐸 = 	∑ |	푥 − 푥̅	|  for 푝 < 훼.   (5.1) 

 
Specifically, 	푥  represents estimated state, 푥̅  represents actual state and 푁 

represents data length. Signal to dispersion ratio (SDR) is defined as follows 

(Gonzales, Griffith, & Arce, 1996). 

 
푆퐷푅 = 20 log / √

.    (5.2) 

 

In the next subsection, results of the mentioned filters are presented with self-

comparison and cross-comparison to interpret their performances in impulsive noise 

environments. 
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5.1 Self-Comparison of Filters for Different Alpha Values 
 

5.1.1 Performance of Sample Median Filter 

 
Performance of median filter with respect to characteristic exponent is shown in 

Figure 5.1. When noise becomes more impulsive, performance of the sample median 

filter decreases.  

 

 
Figure 5.1 Performance of sample median filter for different 훼 values. 

 
 

Moreover, performance difference of median filter for different characteristic 

exponents grows with respect to increasing signal to dispersion ratio. 

 
5.1.2 Performance of Sample Meridian Filter 

 

The noise filtering effect for the same system using sample meridian filter is 

illustrated in Figure 5.2. Identically, the fractional lower order error slightly 

decreases proportionally with characteristic exponent. Differing from median filter, it 

can be observed that the performance saturates while signal to dispersion ratio 

increases.  On the other hand, there is no such a growing performance difference 

with respect to characteristic exponent.   

 



20 
 

 
Figure 5.2 Performance of sample meridian filter for different 훼 values. 

 

5.1.3 Performance of Sample Myriad Filter 

 

The simulations using sample myriad filter shown in Figure 5.3 represents that the 

impulsive behavior of the contaminated noise directly affects the de-noising capacity 

of the filter. Performance is quite close to the sample meridian filter. 

 

 
Figure 5.3 Performance of sample myriad filter for different 훼 values. 
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5.1.4 Performance of WLS Filter 

 
Although weighted least squares filter is suited for estimation under Gaussian 

disturbance, its performance was also measured under non-Gaussian noise model in 

order to compare with other filters. Results are shown in Figure 5.4. As signal to 

dispersion ratio increases performance of WLS filter also gets better. Interestingly, 

the noise filtering performance is strongly increased while the noise gets closer to 

Gaussian distribution rather than impulsive distribution.  

 

 
Figure 5.4 Performance of WLS filter for different 훼 values. 

 

One can say that all of the filter performances degrade when the characteristic 

exponent decreases, i.e., data becomes more impulsive. Namely, the filtering 

performance dramatically gets poorer when the corrupted noise becomes more 

impulsive. 

 
In the next subsection, performances of mentioned filters will be compared while 

the characteristic exponent remains fixed. 
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5.2 Cross-Comparison of Filters for Different Alpha Values 
 

In the previous section, the same filter was applied for noise contamination with 

different characteristic exponents. In this section, the cross comparison among the 

filters is represented by the FLOE versus signal to dispersion ratio.  

 
5.2.1 Cross-Comparison for 휶 = ퟏ. ퟗ 

 

When the characteristic exponent has the value α = 1.9 as shown in Figure 5.5, 

the noise is relatively close to Gaussian behavior. Sample myriad and sample 

meridian filters can be said to have almost the same performances. Although the 

sample median and weighted least square filters have poorer performances, starting 

from a certain SDR value, these two methods, especially WLS has a significant 

superiority in FLOE compared with the other filters. 

 
Figure 5.5 FLOE versus SDR for 훼 = 1.9 . 
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5.2.2 Cross-Comparison for 휶 = ퟏ. ퟖ 
 

In this section the stable noise characteristic exponent is applied as α = 1.8 as 

shown in Figure 5.6. The identical filter performances can be observed again. The 

only the difference is performances of all the filters become poorer as mentioned in 

the previous section. 

 

 
Figure 5.6 FLOE versus SDR for 훼 = 1.8 . 
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5.2.3 Cross-Comparison for 휶 = ퟏ. ퟕ 
 

Decreasing the characteristic exponent yields a dramatic performance degradation 

in WLS filter, as illustrated in Figure 5.7. Other filters have superior performance 

than the WLS filter. Note that the sample median filter has the best error 

performance for the high SDRs while the sample myriad filter has better 

performance for low SDRs.  

 

 
Figure 5.7 FLOE versus SDR for 훼 = 1.7 . 
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5.2.4 Cross-Comparison for 휶 = ퟏ. ퟔ 
 

Differing from the previous characteristic exponent values, the WLS filter 

performances given in Figure 5.8 cannot exhibit a better performance in entire SDR 

interval. At the same time, one can observe that FLOE of sample median filter 

continuously decreases while sample myriad and sample meridian filters sature for 

large SDRs.  

 

 
Figure 5.8 FLOE versus SDR for 훼 = 1.6 . 
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5.2.5 Cross-Comparison for 휶 = ퟏ. ퟓ 
 

The heaviest impulsive noise involved in this thesis is α = 1.5 for which sample 

myriad and sample meridian filters are superior for most of the SDRs. Only for a 

restricted interval of SDR, the sample median filter can have a better performance 

than the rest of the filters as shown in Figure 5.9. 

 

 
Figure 5.9 FLOE versus SDR for 훼 = 1.5 . 
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CHAPTER SIX 

DETECTING FALSE DATA INJECTION ATTACKS 

 

The researchers increasingly emphasize the importance of smart grid, because 

smart grid supports clean, economic, and sustainable energy utilization. The 

robustness and efficiency of power grid is enhanced through using modern 

communication, signal processing, and control technologies with two-way 

communication. While smart grid makes power grid more intelligent, the risk of 

cyber attacks also increases.  

 
The power grid is an interconnected system and spread out over a large 

geographical area. Supervisory control and data acquisition (SCADA) systems are 

used for monitoring and controlling large-scaled power grid by a system operator. 

SCADA provides a lot of information to operator like power flows, circuit-breaker 

positions, transformer taps, bus voltages, etc. Some faulty sensors and lost data could 

exist when transmitting data between RTUs. State estimator filters these errors for 

providing best estimated state to energy management system (EMS). 

 
As mentioned earlier, state estimation process has a crucial role in supervisory 

control and planning of power grid. Measurements which are used for state 

estimation may contain errors that affect the accuracy of state estimation, named bad 

data, because of device failure, device misconfiguration, telecommunication 

medium, or other reasons. Identification and suppression of bad data is based on the 

state estimation method. Conventional bad data detection techniques depend on 

looking at gross errors which appear in measurement residuals. But these techniques 

are weak for catching highly structured bad data which is called false data injection 

attack. Attacker can mislead the control center by injecting malicious data on state 

estimation process without being detected. In other words, attacker can obtain 

unauthorized information and use this information to mislead EMS. Therefore, 

operator could make wrong decision which causes electric power blackout in a large 

area, economical losses, danger for electrical device equipment, etc. Because of these 

reasons, false data injection attacks to smart grid must be detected as quickly as 

possible. 
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For the attack detection problem, speed of the detection of any malicious attack 

has a vital importance to enable defence strategies in a moderate time in the grid. 

Increasing the detection speed will affect detection performance inevitably since the 

detection task will be performed using less data. Therefore, in quickest detection 

algorithms there exists a trade-off between detection speed and detection reliability. 

 

6.1 Bad Data Detection 

 
6.1.1 Bad Data Definition 

 
State estimation process aims to detect measurement errors, and suppress these 

errors if it is possible. Measurements may contain abnormally large errors that affect 

the accuracy of state estimation, called bad data, because of device failure, device 

misconfiguration, telecommunication medium, transient in power system, transient 

meter failure or malfunction, etc. On the other hand, bad data can be defined as a 

large abrupt change of short duration in observation window. Bus voltage data is 

illustrated as an example for bad data in Figure 6.1. Bad data can be clearly seen as a 

spike. 

 

 
Figure 6.1 Bad data illustration. 
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Some kind of bad data are obvious and can be detected and eliminated by simple 

possibility checks. Negative voltage magnitudes, large differences between incoming 

and outgoing currents at a bus can be given as examples (Abur & Exposito, 2004).   

 

6.1.2 Bad Data Detection Techniques 

 
6.1.2.1 Chi-Square Distribution 

 
Let 푋  be a set of N independent random variables which have standard normal 

distribution, 푋 	~	푁(0,1). A new random variable defined as: 

 
푌 = ∑ 푋     (6.1) 

 
will have a Chi-square, 푋 , distribution with 푁  degrees of freedom, 푌 	~	푋 . 푁 

represents the number of independent variables in the sum. Let 푓 be a function which 

is written in terms of measurement error (Abur & Exposito, 2004): 

 

푓 = ∑ 푅 푒  = ∑ = ∑ (푒 )               (6.2) 

 
where 푅  is diagonal element of measurement covariance matrix, 푒  is 푖 th 

measurement error, 푚 is the total number of measurements, and 푒  is normalized 

error. From statistical theory, 푓 has chi-square distribution. Let 푛 be the minimum 

number of measurements which satisfies the power balance equations in a power 

system. Hence, the maximum number of linearly independent measurement errors is 

(푚 − 푛). This number also shows the degrees of freedom (Abur & Exposito, 2004).   

 
An illustration of 푋  probability density function is shown in Figure 6.2. 푥  is 

threshold value that represents the largest acceptable value for 푋 which means no bad 

data is existed. The area which is located to the right of 푥  represents probability of 

error. If the measured value of 푋 exceeds 푥 , the measured 푋  will not have a 푋  

distribution, i.e. bad data will be detected (Abur & Exposito, 2004).    
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 Figure 6.2 푋  probability density function (Abur & Exposito, 2004).   

 

6.1.2.2 Normalized Residuals 

 
Due to the approximation of errors by residuals in Equation 6.2, Chi-square test 

may fail in certain cases. Normalized residuals test gives more accurate results than 

Chi-square test for detecting bad data (Abur & Exposito, 2004).   Residual vector can 

be shown as follows: 

 
푟 = 	 푧 −	ℎ (푥)    (6.3) 

 
where 푧  represents measurement vector and ℎ (푥)  represents non-linear 

measurement function. Normalized residual can be calculated by simply dividing 푖th 

residual value by the corresponding diagonal entry in the residual covariance matrix. 

 

푟 = 	 | |
Ω

                                      (6.4) 

 
Presence of bad data can be detected by using statistical threshold test over 푟 . If 

maximum 푟  is equal to threshold or smaller than threshold, max 푟 ≤ 훾, normal 

hypothesis 퐻  is accepted which means no bad data. Otherwise, alternative 
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hypothesis 퐻  is accepted which means bad data is detected. Threshold value can be 

selected based on the desired sensitivity level. 

 

6.2 False Data Injection Attack Detection 
 

6.2.1 False Data Injection Model 
 

The attacker may want to inject bad data to measurements for reaching its goal. 

For instance, attacker may try to directly compromise meters in power grid or attack 

RTUs for manipulating measurements which are collected by SCADA in the control 

center (Liu, Ning, & Reiter, 2011). Because the SCADA/EMS systems are connected 

to office LANs in control center, it is possible to attack these systems through 

internet connection (Sandberg, Teixeira, & Johansson, 2010). 

 
Most of bad data detection and identification techniques in DC power flow model 

depend on the same assumption. If bad data occurs, the squares of differences 

between measurement and its corresponding estimate often become significant. This 

assumption is no longer valid, if the attacker knows the power system configuration. 

As a result of this situation, attacker may generate bad data without triggering the 

bad data detection alarm. This type of data is called false data injection attack (Liu, 

Ning, & Reiter, 2011). 

 
The cyber data injection attack which is based on DC power flow model can be 

defined as (Liu, Ning, & Reiter, 2011), 

 
푧 = 퐻푥 + 푎 + 푒                (6.5) 

 
where 푎 is malicious data injected by attacker. The attack may be executed by one 

single attacker or by a group of coordinated attackers (Cui et al., 2012). It is assumed 

that 퐻 matrix is fully known by the control center. Attacker’s knowledge about 퐻 is 

not known. If any injection attack occurs, it should be detected in a reliable way. 

 
Hypothesis test can be used for defining situations in detection process. 퐻  

represents normal situation and 퐻  represents attacked situation. If true hypothesis 

and decision are both 퐻 , it is named detection. If true hypothesis is 퐻  and the 
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decision is 퐻 , it is called missed detection. If true hypothesis is 퐻  and decision is 

퐻 , it is called false alarm.  

 
Table 6.1 Detection, misdetection, and false alarm terms 

 True Hypothesis Decision 

Detection 퐻  퐻  

Missed Detection 퐻  퐻  

False Alarm 퐻  퐻  

 
 

If attacker has knowledge about power system, attacker can mislead the control 

center by adding 푎 = 퐻푐 on the measurement vector. Therefore, the measurement 

vector is changed as follows (Liu, Ning, & Reiter, 2011). 

 
푧 = 퐻(푥 + 푐) + 푒     (6.6) 

 
Therefore, the operator believes that true state is (푥 + 푐), and c can be arbitrarily 

selected by attacker. Traditional statistical tests cannot detect these stealth attacks, 

because the attack vector stays in the range of 퐻 matrix (Cui et al., 2012). 

 
When the attack is injected into the smart grid, it is obvious that mean of the 

measurement vector is shifted. Assume that normal state has Gaussian distribution 

푁(휇 , 휎), or alpha-stable distribution 푆(훼, 훽, 훾, 휇 ). In both cases, initial mean value 

휇  turns to 휇  when the attack comes out. The binary hypothesis can be expressed as 

below, 

 

		 	퐻 ∶ 		푧	~	푁(0, 휎 )	
		퐻 ∶ 		푧	~	푁(푎 , 휎 )

�    (6.7) 

 
where 푎  is unknown attacker vector which is injected at random time 휏 . 푇  

represents the change detection time or stopping time. If 푇 < 	휏 , the detector is 

alarmed before the change which is named false alarm. If 푇 > 	휏, detection delay is 

푇 − 	휏. For quickest detection, the problem is minimizing the delay time. Page’s 

CUSUM algorithm is an efficient tool for solving minimum delay problem. The 
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problem can be expressed as follows (Huang, Werner, Huang, Kashyap & Gupta, 

2012). 

 
푇 = 푠푢푝 	퐸 [푇 − 휏	|	푇 > 	휏]    (6.8) 

 
It was discussed that smart grid must be protected from attacks for preventing 

problems. If attacker has knowledge about power system, it can mislead the control 

center through injecting false data and paralyze the power facility. The false data 

injection attack should be detected as quickly as possible for security of smart grid. 

The near real-time analysis to detect change of statistical behavior of state estimation 

is executed by control center for preventing possible future damage on whole 

network. Speed of the detection of any malicious attack has a vital importance to 

enable defence strategies in a moderate time in the grid. The delay between attacking 

time and detection time is desired to be as little as possible. This type of problem is 

called quickest detection problem. 

 
Quickest detection algorithm tries to detect change as quickly as possible based on 

real time measurements when pre-defined conditions are met. Pre-defined conditions 

define the decision rules that optimize the trade-off between the detection speed and 

detection reliability (Huang, Werner, Huang, Kashyap & Gupta, 2012). 

 
6.2.2 Two-Sided CUSUM Algorithm for Detecting False Data Injection Attack 

 
Classification of quickest detection includes Bayesian and Non-Bayesian 

framework. Non-Bayesian framework is suitable for our approach, because of the 

prior probability of the attack and attacker vector are not known. In other words, a 

change of unknown distribution to unknown distribution is wanted to be detected at 

random time. Page’s CUSUM algorithm is an efficient tool combining statistical 

hypothesis test for quickest detection problem (Huang, Werner, Huang, Kashyap & 

Gupta, 2012). 

 
 CUSUM is a sequential analysis technique for change detection which is 

developed by E. S. Page. Our detection approach depends on the two-sided CUSUM 

algorithm in tabular form for detecting increase or decrease in the mean of 
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measurements. Two-sided algorithm is easy to implement. We assumed that no 

attack is injected initially. After the attack is injected, the mean value of 

measurement is changed to 휇 = 휇 + 훿휎 or 	휇 = 휇 − 훿휎. The resulting alarm 

time can be shown as follows (Basseville & Nikiforov, 1993). 

 
																						 	{	 	∶	 	∪	( )	}

	
	

   (6.9) 

     

푧  is the 푖 th measurement value. If 푔  or 푔  exceeds the threshold ℎ, it means 

that the injected false data is detected. 퐾 is one-half the magnitude of the shift. 퐾 is 

usually called the reference value or the allowance. But the problem is that how we 

should design the 퐾 and ℎ parameters. In most practical cases, little knowledge about 

퐾  parameter is existed. It is often chosen about halfway between 휇  and 휇 . 퐾 

parameter can be expressed in standard deviation units as below (Montgomery, 

2000). 

퐾 = = | |
     (6.10) 

 

훿 is the amount of shift in the measurement mean that we wish to detect. The 

reasonable value for ℎ is five times the process standard deviation 휏 (Montgomery, 

2000). Beginning of the detection process, we assumed 푁 initial measurement is not 

attacked. Hence, 휎 can be estimated from initial measurements and it is updated for 

every predefined interval value before the processing point. Consequently, threshold 

value is updated online. 

 
The tabular form of two-sided CUSUM works by accumulating derivations from 

휇  that are above target with first statistics 푆  and accumulating derivations from 휇  

that are below target with second statistics 푆  (Montgomery, 2000). The initial 

values set 푆 = 푆 = 0. The tabular form of CUSUM can be expressed as follows. 

 
	 	( 	,	 )
	 	( 	,	 )    (6.11) 
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Figure 6.3 (푎)An example signal. (b) 푆  is upper CUSUM. (c) 푆  is lower CUSUM. 

 
An example is illustrated in Figure 6.3 for showing how tabular form of CUSUM 

works on attacks. We assumed that there is no attack, initially. The attack is 

randomly generated at unknown time. After the attack starting point, the data is 

increased with 0.01 step size until it reaches half a unit DC offset. In Figure 6.3 (a), it 

is seen that data trend is changed. On the other hand, attacker started to inject false 

data attack. In Figure 6.3 (b), red horizontal line represents the threshold which is 

updated in every 100 sample for this example. Threshold update process depends on 

variance of the last 100 sample. Data attack is detected when 푆  exceeds the 

threshold. The CUSUM algorithm is terminated after threshold is exceeded. In 

Figure 6.3 (c), 푆  statistic is shown. If data trend tends to lower side,  푆   may 

exceed the threshold and stop the detecting process.  
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Figure 6.4 Illustration of attacking point, missed attack samples, and detection point. 

 
Figure 6.4 shows the attacking point, missed samples and detection point that 

CUSUM approach determined. 휏  is the unknown attacking time and 푇  is the 

stopping time. The delay or average run length (ARL) is 푇 − 휏 . ARL is 6 and 

number of misdetection is 5 for this example. ARL shows the performance of 

detection speed. Quickest detection aims to make decision with minimum ARL. But, 

in quickest detection algorithms there exists a trade-off between detection speed and 

detection reliability. Because of this reason, the threshold value should be selected as 

optimum for operation sensitivity. The higher threshold selection increases the 

decision time and detection reliability. The smaller threshold selection decreases 

decision time but it may increase the number of false alarms (Huang, Werner, 

Huang, Kashyap, & Gupta, 2012). 

 
6.3 A False Data Injection Attack Scenario and Its Detection 

 

In previous section, we investigated CUSUM algorithm for the detection of 

attacks. Now, we made up a scenario to show the possible idea that underlies false 

data injection attack. Node quickest detection is implemented and we used IEEE-14 
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bus topology as shown in Figure 6.5 for our scenario. Data is generated by using 

MATPOWER in MATLAB. It is assumed that power grid is stable before the attack 

and no failure is existed in power grid during experiment. 

 

 

Figure 6.5 IEEE-14 Bus System. 

 
Attacker wants to manipulate the data that is sent by sensors, which are shown 

above, for misleading system operator. Attacker obtained some unauthorized 

information and also knew the power line is under stress. We assumed that the power 

line between Bus-1 and Bus-2 is nearly full of capacity. Power flow direction is from 

Bus-1 to Bus-2. If the load of this branch is increased, the over-current relay may 

send “open” signal to the circuit-breakers which are located at the beginning of the 

line and at the end of the line. This situation may trigger other failures in power grid 

and may cause power blackout. Hence, attacker wants to show this information is 

wrong and injects wrong data to communication channel. X-FIRM has a power plant 

which is connected to Bus-2. If attacker injects the false data to overestimate this line 

load, system operator may send “produce more power” signal to X-FIRM for 

decreasing the load of this branch. Consequently, X-FIRM earns much money with 
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injecting bad data. Power flow data which is related to our experiment is shown 

below for IEEE-14 bus system. This data represents mean values of power flow 

measurements for certain interval of time. 

 
Table 6.2 Power flow data. 

  From Bus Injection To Bus Injection 
Branch 

No 
From 
Bus To Bus P(MW) Q(MVAr) P(MW) Q(MVAr) 

1 1 2 156,88 -20,40 -152,59 27,68 
2 1 5 75,51 3,85 -72,75 2,23 
3 2 3 73,24 3,56 -70,91 1,60 
4 2 4 56,13 -1,55 -54,45 3,02 
5 2 5 41,52 1,17 -40,61 -2,10 
6 3 4 -23,29 4,47 23,66 -4,84 
7 4 5 -61,16 15,82 61,67 -14,20 
8 4 7 28,07 -9,68 -28,07 11,38 
9 4 9 16,08 -0,43 -16,08 1,73 

10 5 6 44,09 12,47 -44,09 -8,05 
11 6 11 7,35 3,56 -7,30 -3,44 
12 6 12 7,79 2,50 -7,71 -2,35 
13 6 13 17,75 7,22 -17,54 -6,80 
14 7 8 0,00 -17,16 0,00 17,62 
15 7 9 28,07 5,78 -28,07 -4,98 
16 9 10 5,23 4,22 -5,21 -4,18 
17 9 14 9,43 3,61 -9,31 -3,36 
18 10 11 -3,79 -1,62 3,80 1,64 
19 12 13 1,61 0,75 -1,61 -0,75 
20 13 14 5,64 1,75 -5,59 -1,64 

 

Attacker wants to change the power flow data which is measured from power line 

between Bus-1 and Bus-2, and make the system operator believe this line is nearly 

full of capacity. The data which is attacked by attacker is marked on the table. Attack 

increasing step for every sample is 0.01 until it reaches 5 units DC shift. Attacks are 

individually performed at unknown time for 10000 times. The noise has alpha-stable 

distributions, 푆	(1.8, 0, 0.01,0) . The CUSUM threshold value is increased for 

illustrating the impact of threshold on detection time, detection ratio, and false alarm 

ratio.  
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Figure 6.6 Detection ratio (%) versus threshold. 

 

 
Figure 6.7 False alarm ratio (%) versus threshold. 
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Figure 6.8 ARL versus threshold. 

 
In Figure 6.6, it’s clearly seen that if the threshold value is increased, the detection 

ratio increased. Detection ratio is calculated by dividing the number of detected 

attacks to realization number. In Figure 6.7, if we increase threshold value, number 

of false alarms will statistically decrease which corresponds to improved reliability. 

Figure 6.8 shows that threshold and ARL is both increasing. On the other hand, 

CUSUM needs more time for making a decision when threshold rises. 

 
6.4 Performance Tests of CUSUM for Alpha-Stable Distributions 

 
Performance tests are implemented for illustrating behavior of CUSUM algorithm 

in impulsive noise environment for different alpha values. Most of studies assume 

that noise has Gaussian distributions. However, processes in practice are generally 

impulsive in nature and are not well described with Gaussian distribution. Hence, the 

noise is modeled with alpha-stable distributions which is well-suited for describing 

impulsive components. As mentioned in Chapter Five, if 훼 decreases, the existence 

rate and the strength of the outliers increase. It is expected that if the impulsiveness 

increases, the performance of CUSUM for detecting attacks will decrease. Alpha 
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value is selected from 1.5 to 1.9. 10000 individual runs are performed for each alpha 

value. Data length is 1000 sample during the test. 

 

 
Figure 6.9 Detection ratio (%) versus threshold. 

 

As expected, if alpha decreases, impulsive components and their occurrences will 

increase. Therefore, detection ratio dramatically decreases as seen in Figure 6.9. 

Because of the strong impulses which occurred before the attack exceed the 

predefined threshold, CUSUM algorithm is terminated before the attack in impulsive 

environments. The threshold can be selected greater for improving performance of 

detection in impulsive environments.  
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Figure 6.10 False alarm ratio (%) versus threshold. 

 

In Figure 6.10, it is seen that false alarm ratio increases when alpha value 

decreases. In other words, the false data detector cannot catch the attacks because of 

the impulses which existed before attack. Reliability of detection can be improved by 

increasing the CUSUM threshold. Higher threshold contributes decreasing number of 

false alarms but increases the decision time. 
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Figure 6.11 ARL versus threshold. 

 

In Figure 6.11, higher alpha values provide less average run length. CUSUM 

needs more time for making a decision in very impulsive environments. It is known 

that the detection ratio and ARL are related. Threshold value can be selected higher 

in very impulsive environments for increasing detection ratio, but this makes 

decision time longer. 
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CHAPTER SEVEN 

CONCLUSIONS 

 
One of the main contributions in this thesis is that when the noise becomes more 

impulsive in state estimation problem of the smart grid, the myriad filter has the best 

performance for the low signal to dispersion ratios. Similarly, the sample meridian 

filter follows the performance of the myriad filter and can also be preferable for low 

signal to dispersion ratios. 

 
Interestingly, weighted least squares filter is preferable compared with myriad, 

meridian, and median filters for high signal to dispersion ratios and characteristic 

exponents near 2. The monotonocially decreasing error performance is observed 

from the sample median filter and can be preferable for high SDRs and relatively 

smaller characteristic exponents.   

 
Two-sided CUSUM in tabular form is easy to implement for detection of attacks. 

However, threshold value selection is crucial for performance of detection. Higher 

threshold value selection makes the detection reliable, also decreases number of false 

alarms, but increases average run length. There is a trade-off between detection ratio 

and average run length. The optimal threshold value should be selected according to 

operation sensitivity.  

 
 According to simulation results, if characteristic exponent value decreases, 

performance of detection will dramatically decrease and number of false alarms will 

extremely increase. In very impulsive environments, the threshold value should be 

selected as high as possible for improving detection reliability and preventing false 

alarms.  
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APPENDICES 

 
 
function 
[v,va,myra,myrph,mera,merph,meda,wlsa,wlsph,SDR]=genfilt(alpha) 
 
%genfilt.m 
%This program generates isotropic complex alpha-stable test data 
%and filters generated noisy data for myriad,meridian,median and wls 
filters. 
  
%Bus System Properties 
voltage=1.045; 
phang=-12.72; 
re=voltage*cos(phang); 
im=voltage*sin(phang); 
vol=re+1i*im; 
  
gamma=cos(pi*(alpha/4))^(2/alpha);  
beta=1;  
delta=0; 
  
sample=1000; 
realization=200; 
  
%Generate dispersion for desired dB 
dbstart=0; dbstep=3; dbfinish=30; say=(dbfinish-(dbstart))/dbstep; 
dispersion=zeros(1,say); k=1; SDR=zeros(1,say); 
  
for db=dbstart:dbstep:dbfinish 
    SDR(1,k)=db; 
    tempv=db/20; 
    tempv=10.^(tempv); 
    tempv=1/( sqrt(2)*(tempv/voltage) ); 
    dispersion(1,k)=tempv^alpha; 
    k=k+1; 
end 
  
SDR=sort(SDR,'descend'); 
dispersion=sort(dispersion); 
  
        noise=zeros((say*realization),sample); 
        v=zeros((say*realization),sample);  
        vr=zeros((say*realization),sample); 
        vi=zeros((say*realization),sample);  
        va=zeros((say*realization),sample);   
         
     
b=1; 
    for i=1:1:(say+1) 
       

for j=1:realization            
       
      %isotropic complex alpha-stable noise 
      G1=stblrnd(2,0,gamma2,0,1,sample); 
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      G2=stblrnd(2,0,gamma2,0,1,sample); 
      if alpha==2 
      G=G1+1i*G2; 
      noise(b,:)=G; 
      else  
      A = stblrnd(alpha/2,beta,gamma,delta,1,sample); 
      X=(A.^(1/2)).*(G1+1i*G2); 
      noise(b,:)=X; 
      end 
       
      v(b,:)=noise(b,:)+vol; %noisy complex voltage 
       
      vr(b,:)=real(v(b,:));  
      vi(b,:)=imag(v(b,:)); 
      va(b,:)=abs(v(b,:)); 
       
      %Myriad 
      myrr(b,:)=smyriad2(vr(b,:),21,alpha,gamma2); 
      myri(b,:)=smyriad2(vi(b,:),21,alpha,gamma2); 
      [myrph(b,:),myra(b,:)]=cart2pol(myrr(b,:),myri(b,:)); 
       
      %Meridian 
      merr(b,:)=smeridian2(vr(b,:),21,alpha,gamma2); 
      meri(b,:)=smeridian2(vi(b,:),21,alpha,gamma2); 
      [merph(b,:),mera(b,:)]=cart2pol(merr(b,:),meri(b,:)); 
       
      %WLS 
      wlsr(b,:)=wlsfilt(vr(b,:)); 
      wlsi(b,:)=wlsfilt(vi(b,:)); 
      [wlsph(b,:),wlsa(b,:)]=cart2pol(wlsr(b,:),wlsi(b,:)); 
       
      %Median 
      meda(b,:)=medfilt1(va(b,:),20); 
       
      b=b+1; 
      end 
       
    end 
 

 
function 
[mede,mere,myre,wlse]=errcalc(Vact,SDR,meddata,merdata,myrdata,wlsda
ta,start,endd,alpha) 
 
%errcalc.m 
%This program calculates FLOE and plots FLOE vs. SDR for filtered 
%data. 
  
n=endd-start; 
k=start-1; 
t=length(SDR); 
realization=200; 
  
mede=zeros(1,t); 
mere=zeros(1,t); 
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myre=zeros(1,t); 
wlse=zeros(1,t); 
  
alpha=alpha-0.001; 
s=1; %line number 
  
%FLOE 
for x=1:t 
    for j=1:realization  
         
        for p=1:n 
            mede(1,x)=mede(1,x)+(abs(Vact(1,p+k)-
meddata(s,p+k)).^alpha); 
            mere(1,x)=mere(1,x)+(abs(Vact(1,p+k)-
merdata(s,p+k)).^alpha); 
            myre(1,x)=myre(1,x)+(abs(Vact(1,p+k)-
myrdata(s,p+k)).^alpha); 
            wlse(1,x)=wlse(1,x)+(abs(Vact(1,p+k)-
wlsdata(s,p+k)).^alpha); 
        end 
        s=s+1; 
    end    
            mede(1,x)=(1/n)*mede(1,x)*(1/realization); 
            mere(1,x)=(1/n)*mere(1,x)*(1/realization); 
            myre(1,x)=(1/n)*myre(1,x)*(1/realization); 
            wlse(1,x)=(1/n)*wlse(1,x)*(1/realization); 
end 
  
figure; 
semilogy(SDR,smooth(myre),'r-s'); grid; hold on;  
semilogy(SDR,smooth(mere),'k-^'); 
semilogy(SDR,smooth(mede),'m-*'); 
semilogy(SDR,smooth(wlse),'b-o'); 
  
tit=sprintf(' = %1.1f',alpha); 
s=strcat('\alpha',tit); 
title(s); 
legend('Sample Myriad',... 
    'Sample Meridian',... 
    'Sample Median',... 
    'WLS'); 
xlabel('SDR (Signal to Dispersion Ratio)'); 
ylabel('FLOE (Fractional Lower Order Error)'); 
 

 
function [output]=smyriad(data,N,alpha,gamma) 
 
%smyriad.m 
%This program calls myriad filter (myriad.m) file in recursive way. 
 
 
%initialization 
size=length(data); 
halfwin=(N-1)/2; 
range=size-halfwin; 
output=zeros(1,range); 
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%Linearity Parameter Formula 
best_k=(gamma.^(1/alpha))*tan(pi*alpha*0.25); 
  
%Myriad Filtering Loop 
    for p=(halfwin+1):range 
        output(1,p)=myriad(data(1,(p-halfwin):(p+halfwin)),best_k); 
    end; 
  
output(~output)=nan; %skip zeros 
 
 
function minbeta = myriad(samplewin,k) 
  
%myriad.m 
%This program filters data using myriad method. 
%k is linearity parameter. 
  
xmin = min(samplewin); 
xmax = max(samplewin); 
betamin = xmin; 
  
N=length(samplewin); 
trans = zeros(1,N); 
  
trans = samplewin - xmin; 
trans = trans.^2; 
trans = trans + k.^2; 
trans=abs(trans); 
trans=log(trans); 
minimum = prod(trans); 
  
for range = xmin:0.01:xmax 
    trans = samplewin - range; 
    trans = trans.^2; 
    trans = trans + k.^2; 
    trans=abs(trans); 
    trans=log(trans); 
    cumulative = prod(trans); 
     
        if (cumulative < minimum) 
            betamin = range; 
            minimum = cumulative; 
        end; 
end; 
  
minbeta = betamin; 
 
 
function [output]=smeridian(data,N,alpha,gamma) 
 
%smeridian.m 
%This program calls meridian filter (meridian.m) file in recursive 
way. 
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%initialization 
size=length(data); 
halfwin=(N-1)/2; 
range=size-halfwin; 
output=zeros(1,range); 
  
%Medianity Parameter Formula from 
best_k=(gamma.^(1/alpha))*tan(pi*alpha*0.25); 
  
%Myriad Filtering Loop 
    for p=(halfwin+1):range 
        output(1,p)=meridian(data(1,(p-
halfwin):(p+halfwin)),best_k); 
    end; 
  
output(~output)=nan; %skip zeros 
 
 
function minbeta = meridian(samplewin,k) 
  
%meridian.m 
%This program filters data using meridian method. 
%k is medianity parameter. 
  
xmin = min(samplewin); 
xmax = max(samplewin); 
betamin = xmin; 
  
N=length(samplewin); 
trans = zeros(1,N); 
  
trans = samplewin - xmin; 
trans = trans + k; 
trans=abs(trans); 
trans=log(trans); 
minimum = prod(trans); 
  
for range = xmin:0.01:xmax 
    trans = samplewin - range; 
    trans = trans + k; 
    trans=abs(trans); 
    trans=log(trans); 
    cumulative = prod(trans); 
     
        if (cumulative < minimum) 
            betamin = range; 
            minimum = cumulative; 
        end; 
end; 
  
minbeta = betamin; 
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function [r,output]=randattack(x) 
  
%randattack.m 
%Random DC Attack Generator (with Non-Gaussian Noise) 
  
step=0.01;   %Increasing step 
size=200;   %Attack sample size 
shift=0.5;    %DC shift magnitude 
start=100;   %Attack after starting point 
  
%noise properties 
alpha=1.5; 
dispersion=0.01; 
beta=0; 
delta=0; 
  
datalength=length(x); 
r =randi([start datalength],1,1);  %Define attacking time randomly. 
attack=zeros(1,datalength); 
  
%Construct Attack Vector 
isize=shift/step; 
horsize=size-2*isize; 
  
%increasing 
for i=1:1:isize 
    attack(1,r+i)=i*step; 
end 
  
%horizontal attack data 
attack(1,(r+isize):(r+isize+1+horsize))=shift; 
  
%decreasing 
for i=0:1:isize 
    attack(1,r+isize+2+horsize+i)=shift-i*step; 
end 
%End of construction 
  
attack(1,1:(r-1))=0;        %Make zero the data before attack. 
attack(1,(r+size+1):datalength)=0;   %Make zero the data after 
attack. 
  
e=stblrnd(alpha,beta,dispersion,delta,1,datalength); 
%e=randn(1,datasize); 
  
output= x + attack(1,1:datalength); 
output=output+e; 
r=r+1; 
 
 
function [shi,slo,mu,h,sd,detpoint]=fdd(x,far) 
  
%Two-sided CUSUM chart in tabular form 
  
 



54 
 

%parameters 
far=0.01; %False Alarm Rate 
mdr=0.01; %Miss Detection Rate 
  
delta=1; %the amount of shift in the process mean that we wish to 
detect 
N=100; %length of initally non-attacked data 
mu=mean(x(1,1:N)); %mean of first samples 
sd=std(x(1,1:N)); %variance of initial samples 
k= delta * sd * 0.5; %the rise in the arm corresponding to one 
sampling unit 
d=(2/delta.^2)*log((1-mdr)/far);  
hconst=3; a=1; 
h(1,a)= d*k*hconst; %initial threshold 
  
dl=length(x); 
shi=zeros(1,dl); 
slo=zeros(1,dl); 
  
plot(x,'b'); hold on; 
for i= N:1:dl 
  
if(mod(i+1,N)==0)  
    sd=std(x(1,i-N:i));    
    k= delta * sd * 0.5;  
    a=a+1; 
    h(1,a)= d*k*hconst; %new threshold  
end 
  
shi(1,i)=max(0,shi(1,i-1)+x(1,i)-mu-k); 
slo(1,i)=max(0,slo(1,i-1)-x(1,i)+mu-k); 
 
if (shi(1,i)>h(1,a) || slo(1,i)>h(1,a)) 
    break; %something detected 
end 
end 
    detpoint=i; 
    plot(detpoint,x(1,detpoint),'r-^'); 
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