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DESIGN AND IMPLEMENTATION OF EMOTION AND NEUROLOGICAL 

DISORDER DETECTION SYSTEM USING EEG SIGNALS 

 

ABSTRACT 

 

In this study, various studies were conducted on the detection of emotions and 

diseases with electroencephalography (EEG) signals. Relationships between 

emotions and changes in brain activity were analyzed using EEG datasets found in 

the literature and recorded with a designed system. From the results, an algorithm 

was developed that provides personalized informative electrode selection. The 

designed system has been used to record EEG, acceleration of body movements, and 

user-controlled marking data. After hardware and software parts were realized and 

combined, data recording implementations were carried out for different tasks. In 

some of these implementations, EEG and marking data were recorded while the 

participants viewed images or answered the questions. Using the results obtained 

from the studies done with the dataset in the literature and the developed algorithm, 

emotion and mental state studies were carried out on this recorded data. Additionally, 

concentration mental state and anxiety emotion levels were used for analyses, and 

classifications were done with basic machine learning and thresholding methods. 

Another dataset recording implementation is for disease detection. Here, in addition 

to EEG and marking data, acceleration data were also recorded. During these 

recordings, the patients performed specific tasks they were told (such as walking and 

turning around). Then, studies were carried out using an interface developed for 

disease detection. In these studies, using concentration and anxiety levels and Hjorth 

parameters, detections were done before, during, and after the disease occurred. 

 

Keywords: Electroencephalography, emotion and mental state detection, disease 

detection, concentration, anxiety, Hjorth parameters, machine learning, thresholding 

method, signal processing, data acquisition system 
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EEG SİNYALLERİ KULLANILARAK DUYGU VE NÖROLOJİK 

RAHATSIZLIK TESPİT SİSTEMİ TASARIMI VE UYGULAMASI 

 

ÖZ 

 

Bu çalışmada, elektroensefalografi (EEG) sinyalleri ile duyguların ve 

hastalıkların tespiti üzerine çeşitli çalışmalar yapılmıştır. Literatürde bulunan ve 

tasarlanan bir sistemle kaydedilen EEG veri setleri kullanılarak duygular ile beyin 

aktivitesindeki değişimler arasındaki ilişkiler analiz edilmiştir. Elde edilen 

sonuçlardan ise kişiye özel bilgilendirici elektrot seçimi sağlayan bir algoritma 

geliştirilmiştir. Tasarlanan sistem EEG, vücut hareketlerindeki hızlanma ve kullanıcı 

kontrollü işaretleme verilerinin kaydedilmesi için kullanılmıştır. Donanım ve yazılım 

kısımları gerçekleştirilip birleştirilen bu sistem ile farklı görevler için veri kayıt 

uygulamaları gerçekleştirilmiştir. Bu uygulamaların bazılarında, katılımcıya görsel 

gösterilirken ya da katılımcı sorulan soruları cevaplarken EEG ve işaretleme verileri 

kaydedilmiştir. Literatürdeki veri seti ve geliştirilen algoritma ile yapılan 

çalışmalardan elde edilen sonuçlar kullanılarak, kaydedilen bu veriler üzerinde 

duygu ve mental durum çalışmaları yapılmıştır. Ayrıca, konsantrasyon mental 

durumu ve anksiyete duygu seviyeleri analizler için kullanılmış ve temel makine 

öğrenmesi ve eşikleme yöntemleri ile sınıflandırmalar yapılmıştır. Veri seti kayıt 

uygulamalarından bir diğeri ise hastalık tespiti içindir. Burada EEG ve işaret 

verilerine ek olarak hızlanma verisi de kaydedilmiştir. Bu kayıtlar esnasında hastalar 

kendilerine söylenen özel görevleri (yürüme ve kendi etrafında dönme gibi) yerine 

getirdiler. Ardından hastalık tespiti için geliştirilen bir arayüz kullanılarak çalışmalar 

yapılmıştır. Bu çalışmalarda konsantrasyon, anksiyete ve Hjorth parametreleri 

kullanılarak hastalık oluşmadan önce, gerçekleşirken ve sonrasında tespit edilmeye 

çalışılmıştır.  

 

Anahtar Kelimeler: Elektroensefalografi, duygu ve zihinsel durum tespiti, 

hastalık tespiti, konsantrasyon, anksiyete, Hjorth parametreleri, makine öğrenimi, 

eşikleme yöntemi, sinyal işleme, veri toplama sistemi  
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1. CHAPTER ONE 

INTRODUCTION 

 

The development of technology that will facilitate the use of devices in daily life 

or improve human health is becoming more popular day by day with brain data. The 

data about the activity of the brain is obtained from electric and magnetic signals 

produced during electrochemical communication between the neurons in the brain 

works to operate vital and other functions. Varied methods to measure these signals 

are used which can be basically classified by their invasive or not (Ghadiri, 

Nourafza, & Rasoolian, 2019). Among these methods, electroencephalography 

(EEG), which is non-invasive, is the one that provides the fastest and most practical 

data acquisition (Cimtay & Ekmekcioglu, 2020; Kim et al., 2015). Hence, the usage 

of this technology is also getting more popular among the studies about Brain-

Machine Interface (BMI) likewise in the field of medicine (Chaudhary, Birbaumer, 

& Curado, 2015; Coyle, Garcia, Satti, & McGinnity, 2011; Kerous, Skola, & 

Liarokapis, 2018; Musk, 2019; Torres, Torres, Hernández-Álvarez, & Yoo, 2020; 

Vaid, Singh, & Kaur, 2015; Vasiljevic and de Miranda, 2020).  

 

In this thesis, a system is designed to obtain data that helps to examine the 

relationship between mental states, emotions, and neurological diseases by observing 

the changes in brain activity. Various studies have been carried out with the help of 

the determined relationships. These studies are given below. 

 

• Emotion analysis with an EEG dataset from the literature, 

• Emotion detection with the results from the previous study. For this analysis, a 

dataset was recorded by the designed measurement system for this thesis, 

• Person-based informative electrode selection for emotion detection, 

• Mental state prediction, 

• Disease detection with the changes in mental states and emotions. 

 

Human emotions and mental states, or in other words, brain states are complex to 

understand and interpret cause the effects may differ from person to person for the 
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same conditions (Deak, 2011). It was observed from the literature research that to 

investigate the psychological status of human beings, different methods have been 

tried to record a relevant dataset in the studies. In order to stimulate the emotions of 

the participants, they were shown music videos and clips from movies (Duan, Zhu, & 

Lu, 2013; Koelstra et al., 2011; Zheng & Lu, 2015), music was played for them to 

listen to (Sarno, Munawar, & Nugraha, 2016), or some images from the literature 

were shown (Lang, Bradley, & Cuthbert, 2005) during the recordings. Additionally, 

for the mental state, participants were asked to solve mathematical problems and 

English questions, or recite numbers backwards (Liu, Chiang, & Chu, 2013; 

Maskeliunas, Damasevicius, Martisius, & Vasiljevas, 2016; You, 2021). During 

these recordings, different types of data were recorded by using methods such as 

EEG and functional magnetic resonance imaging for changes in the brain activities 

of the participants, by videotaping their faces for changes in gesture and facial 

expressions, or by measuring features such as temperature and heart rate for 

physiological changes (Adolphs, 2002; Deak, 2011; Herrington et al., 2005; Koelstra 

et al., 2011). 

 

In the literature, there are many studies about mental states or emotions using 

EEG that cannot be underestimated. Since EEG signals are non-stationary, the 

features extracted have been usually used in studies instead of using raw EEG signals 

(Bazgir, Mohammadi & Habibi, 2018; Choi, Kim, Jin, & Yoon, 2014; Kıymık, 

Güler, Dizibüyük, & Akın, 2005; Kimmatkar & Babu, 2021; Rahman et al., 2021; 

Ray and Cole, 1985). Time domain features such as mean, variance, standard 

deviation, and Hjorth parameters; features in the frequency domain such as band 

power and power spectral density; and features obtained from Fourier and wavelet 

transforms are mostly used (Byun, Lee, & Han, 2017; Koelstra et al., 2011; Sarno et 

al., 2016; Shahnaz, Masud, & Hasan, 2016; Wu, Xu, Shu, & Hu, 2017). Methods 

such as K-nearest neighbors (KNN), regression trees, support vector machines 

(SVM), correlation analysis, and neural networks are used for mental state and 

emotion classifications (Li, Xu, & Zhu, 2015; Shahnaz et al., 2016; Suhaimi, 

Mountstephens, & Teo, 2020; Wu et al., 2017; You, 2021). 
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On the other hand, within the scope of this thesis, epilepsy and Parkinson's disease 

(PD) among neurological disorders were scanned from the literature. While the 

sudden electrical changes in neurons cause epileptic seizures in epilepsy, the 

degeneration of neurons causes a negative effect on the functioning of the muscles of 

the patients as a symptom of the damage to the brain in PD (Bloem, Hausdorff, 

Visser, & Giladi, 2004; World Health Organization [WHO], 2006). Since both 

diseases are caused by a problem in the brain, most of the detection studies in the 

literature were done with the help of EEG signals. EEG features used in emotion 

studies mentioned earlier are also used in such neurological disease studies. Some 

studies in the literature on the detection of epileptic seizures with EEG are given as 

follows: a comparison of different transforms in the frequency domain (Kıymık et 

al., 2005), using an algorithm for feature extraction and classification (Şen & Peker, 

2013), proposing a method to channel selection (Coşgun, Çelebi, & Güllü, 2021), 

classification with features from cubic spline interpolation (Kuran, Er, & Kuran, 

2021). 

 

In PD, although its symptoms are temporary, their occurrence can cause life-

threatening risks such as freezing and falling while walking. The freezing of gait 

(FOG) is one of the common symptoms among patients, and its trigger is more 

unclear than the others (Bloem, et al., 2004; Moore, MacDougall, & Ondo, 2008; 

Schaafsma, Balash, Gurevich, Bartels, Hausdorff, & Giladi, 2003). There are FOG 

detection studies were done while a neurologist is examining the movements of the 

patients by giving them various tasks (Bachlin et al., 2009; Moore, et al., 2008; 

Schaafsma, et al., 2003). It was observed that different types of physiological signals 

are also used in PD detection studies. Using acceleration signals obtained from 

motion sensors connected to the left leg of the PD patients, a freezing index was 

determined in a study (Moore, et al., 2008). The freezing index is calculated by 

dividing the 3-8 Hz band (freeze band) power to the 0.5-3 Hz band (locomotor band) 

power, then values above a chosen threshold indicate the FOG events (Moore, et al., 

2008). Additionally, freezing index thresholding was also used for FOG detection 

using leg motion data (Bachlin et al., 2009). In addition to these, studies using only 

EEG signals such as FOG estimation in the time domain and frequency domain, 
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examining the changes in brain activity during FOG, and the relationships between 

lobes have been conducted (Gérard et al., 2022; Handojoseno et al., 2012; 

Handojoseno et al., 2018; Shine et al., 2014). 

 

 

Figure 1.1 Flowchart of the studies in the thesis 

 

Experimental studies within the scope of the thesis consist of the steps given in 

the flowchart in Figure 1.1. First, a system was designed with its hardware and 

software parts. This system includes different types of devices such as EEG 

measurement device, acceleration measurement sensor, computers, a button unit for 

data marking, and communication units. The simultaneous operation of all these 

devices throughout the system is provided by programs written in Python, Matlab, 

and Arduino languages. With this system, EEG, acceleration, and user-controlled 

marking data are measured and recorded. Detailed information about the system 

design is given in chapter three.  
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This system is designed to be used for studies on different subjects, and three 

different usage applications are included in this thesis. As given in the flowchart, 

these applications were carried out in the next step of system design. Meanwhile, 

studies on mental states and emotions were carried out using information and an 

EEG dataset in the literature. Within the scope of the thesis, these studies were 

basically done to determine the feasibility of detections with EEG and which features 

are more proper to use. After that, these inferences were used in the analysis of the 

data obtained by the designed system, and an algorithm was also composed to choose 

the most informative electrode by conducting emotion studies on a person-based 

basis. 

 

The three mentioned datasets were recorded while the participants were viewing a 

displayed image, answering questions, and performing a task with special moves. 

The inferences for emotion by using the dataset in the literature were used in the test 

and analysis of the dataset recorded during triggering with questions. Then, the 

dataset recorded during triggering with images was used in the mental state analyses. 

And lastly, since there is a relationship between emotional changes and PD 

symptoms, disease detection studies in this thesis were done with the help of this 

relationship (Rahman, Griffin, Quinn, & Jahanshahi, 2008). Thus, the dataset 

recorded from patients while performing a special task was analyzed by the results 

obtained from both mental state and emotions. 

 

The content of this thesis can be summarized with the main topics and the 

chapters are as follows: 

 

In chapter two, medical information about the human brain and how it works, 

descriptions of some neurological disorders, the definition of mental states and 

emotions, and methods to investigate brain activity are given. 

 

More theoretical information about the EEG measurement method, the signal 

processing steps, features, and extraction of them are explained in chapter three. 

Also, studies about emotion and disease detection with EEG are given. 
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The design of the data acquisition system is explained in two parts in chapter four. 

The first part is the hardware part in which the system equipment is described. Then 

in the second part, the software to connect all the system parts is explained step by 

step. 

 

The implementation of this system for different cases is given in chapter five. 

These cases are mental state and emotion analysis triggered by images and questions, 

and detection of symptoms of neurological disorders. 

 

In chapter six, all the applications performed within the scope of the thesis and 

their results are briefly explained. The studies are the emotion analyzes by using two 

separate datasets in the literature and recorded with the designed system, the 

generated algorithm for the informative electrode selection in emotion detection, and 

the detection of the FOG symptom with mental states and emotions from the data of 

PD patients. The details of the designed graphical user interface (GUI) for the 

analyzes are also given in this section. 

 

Finally, the summary of the studies and their results, the conclusion, and 

recommendations for future work for this thesis are given in chapter seven. 
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2. CHAPTER TWO 

MEDICAL BACKGROUND 

 

Explanations about the medical information used in the content of the thesis are 

given in this chapter. These are the functioning of the human brain, its functions, 

mental states and emotions with their psychological and physiological effects, 

diseases that occur due to neurological problems in the brain, and the methods used 

to examine brain activities. 

 

2.1 Human Brain 

 

The human brain analyzes the environment, stores information, produces 

thoughts, and determines the physiological and psychological responses of the body 

to the events taking place in the person's environment (Guyton & Hall, 2006). There 

are special cells such as nerve and glial cells in the structure of the brain, so it is an 

electrochemical organ (Demiralp, 2021). Nerve cells or neurons can receive, process, 

and transmit impulses which are electrical signals that help communication in the 

central nervous system. There are four main parts in the structure of a neuron: 

dendrites, cell body, axons and synapses (Demiralp, 2021). There are almost 86 

billion neurons, and they are connected to each other by synapses (Demiralp, 2021). 

Each neuron has about a thousand synaptic endings and ten thousand synaptic inputs 

(Malmivuo & Plonsey, 1995). A typical neuron structure and the flow direction of 

electrical signals in a neuron are shown in 2.1. 

 

 

Figure 2.1 Neuron structure (Guyton & Hall, 2006) 
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The dendrites get the input signals, then the signals are processed in the cell body, 

and the axons transmit the output signals (Guyton & Hall, 2006). The synapses in the 

neurons are generally chemical synapses, and their structure allows the signals to be 

conducted in one direction (Guyton & Hall, 2006). Distribution differences of 

potassium, sodium, and chlorine ions throughout the neuron structure cause potential 

differences (Demiralp, 2021). To transmit the electrical signals, potential differences 

generated in the cell from dendrites to synapses provide the transmission of electrical 

current, and after the current passes from a region, the potential difference returns to 

its previous level (Bal, 2021). 

 

 

Figure 2.2 Human brain anatomy and lobes of the cerebrum (Bear, Connors, & Paradiso, 2016) 

 

Among the main parts of the human brain, such as the cerebrum, cerebellum, 

brain stem, thalamus, and amygdala, the largest part is the cerebrum, or in other 

words cerebral cortex. It has two strongly folded hemispheres, and the frontal lobe, 

parietal lobe, occipital lobe, and temporal lobe are its main lobes (Malmivuo & 

Plonsey, 1995). The anatomy of the human brain and lobes on the cerebrum are 

given in Figure 2.2.  

 

2.1.1 Motor and Sensory Controls 

 

Each area of the brain has its own functions to control reactions such as motor and 

sensory. The cerebrum provides different functions such as a conscious sense, motor 

control, personal characteristic, learning, memory, communication, thinking, 
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planning according to the goal and the future (Demiralp, 2021). The general 

functions of the lobes are as follows: 

 

• In the frontal lobe, planning of any movement, realization, thinking, 

information processing, emotion control, and evaluation, 

• In the parietal lobe, touch, temperature, pain sensation, coordination of finger 

movements, coordination of space and movement, 

• In the temporal lobe, sound and smell analysis, verbal memory, responsibility 

for remembrance, object recognition, and speech control, 

• In the occipital lobe, color, movement, shape and depth analysis, visual 

associations, evaluation of sensations, interpretation, and classification of 

impressions are effectuated (Wróbel, 2018). 

 

 

Figure 2.3 Brodmann’s map (Bear et al., 2016) 

 

Areas in the brain were first described by Brodmann (Bear et al., 2016). The 

function map of Brodmann is shown in Figure 2.3. In this map, each numbered area 

is for another function, and their functions are grouped as motor, sensory, and 

association. From sensory areas, 17, 18, 19 are visual areas, 1, 2, 3 are somatic 

sensory areas, and 41, 42 are auditory areas. Areas 4 and 6 are the motor control 

areas. The remaining areas are defined as association areas, as they can be identified 

as precisely responsible for neither sensory nor motor control (Bear et al., 2016). 
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Figure 2.4 Important brain parts responsible for emotions (Deak, 2011) 

 

As well as the cerebrum which forms the outside of the brain, there are important 

main parts like the amygdala, thalamus, hypothalamus, and hippocampus inside the 

brain. The amygdala is for fear emotion, and emotional memory. The thalamus is for 

transferring a big part of the sensory signals to the cerebrum. And the main functions 

of the hippocampus are learning, spatial memory, and consolidation of 

autobiographical memories in long-term memory (Demiralp, 2021). Implicated 

regions of the brain for emotion and memory are the amygdala, hippocampus, and 

hypothalamus (Suhaimi et al., 2020). These parts are shown in Figure 2.4. 

 

2.2 Mental States and Emotion 

 

Mental states and emotions occur as a response of the human brain to daily events 

besides physical responses, and hard to define and predict due to being subjective 

(Deak, 2011). The mental states are classified as concentration and relaxation, or 

attention and meditation states in the literature (Li et al., 2015; You, 2021). Its 

classification depends on the effort of the work with which people's minds are 

engaged (You, 2021). 

 

Since the mental reaction of each person may vary, there are only empirical 

theories for emotion, which are discrete and dimensional emotions (Hamann, 2012; 

Zucco, Calabrese, & Cannataro, 2019). Discrete emotions can be defined by basic 

and non-basic emotions, and the basic emotions are recognizable from facial 

expressions, quickly detectable, and unique feelings. Thus, acceptance, anger, 
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anticipation, disgust, joy, fear, sadness, and surprise are some of the identified basic 

discrete emotions (Zucco et al., 2019). 

 

Mostly known dimensional emotions were modeled by Russell and Plutchik 

(Koelstra et al., 2011). Plutchik's hybrid model was determined for different emotion 

pairs: anticipation-surprise, fear-anger, disgust-trust, and joy-sadness (Plutchik, 

2001). Russell's simple but useful circumplex model consists of valence and arousal 

dimensions (Russell, 1980; Thammasan, Moriyama, Fukui, & Numao, 2017). In this 

model, the change in valence from a high value to a low value means that the 

emotion changes from pleasure to displeasure, while the change in arousal 

corresponds to a change in emotion intensity (Hamann, 2012). 

 

In this study, Russell's model was used for emotion analysis and detection. The 

emotions classified according to arousal and valence values in the circumplex 

emotion model is given in Figure 2.5. With this model, two-dimensional (2D) 

emotions can be classified as low arousal low valence (LALV), low arousal high 

valence (LAHV), high arousal low valence (HALV), and high arousal high valence 

(HAHV) (Koelstra et al., 2011; Sarno et al., 2016). 

 

 

Figure 2.5 Russell's circumplex emotion model (Russell, 1980) 
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In Figure 2.6, 2D emotions’ distribution on the same emotion model in Figure 2.5 

is shown. For example, if a person's mood is classified as HAHV, the person's 

emotion can be classified as excited from this distribution. Besides 2D emotions, 

each dimension can be classified as one-dimensional (1D), like low arousal (LA) and 

high arousal (HA), low valence (LV) and high valence (HV). 

 

 

Figure 2.6 Distribution of 2D emotions on circumplex emotion model 

 

In addition, emotional and mental states have physiological effects as well as 

psychological effects on people. Physiological factors such as respiration rate, blood 

pressure, vocal or facial expression, bioimpedance, movements in the muscular 

system, and temperature also undergo changes (Basu, Bag, Aftabuddin, 

Mahadevappa, Mukherjee, & Guha, 2016; Madden & Savard, 1995). 

 

2.3 Neurological Disorders 

 

Neurological diseases occur due to brain injuries, electrical over-discharge, or 

degeneration of neurons (Bek & Genç, 2021; Demiralp, 2021; WHO, 2006). Some of 

the common neurological disorders are dementia, epilepsy, multiple sclerosis, and 
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PD (WHO, 2006). From these disorders, epilepsy is seizures that occur due to the 

electrical over-discharge of neurons in the brain and cause normal brain functions to 

interrupt temporarily (Demiralp, 2021). Epilepsy seizures are classified into two 

main types based on their distribution in the brain, and they are focal and generalized 

seizures (Demiralp, 2021). Focal seizures begin in one area of the brain and affect 

that part, but in generalized seizures, discharges start from subcortical structures and 

spread to both hemispheres (Bek & Genç, 2021; Demiralp, 2021). In this thesis, 

epilepsy was examined only in the literature review of disorder detections done with 

EEG. In the application part of the thesis, studies on PD were carried out as disorder 

detection. 

 

2.3.1 Parkinson’s Disease 

 

In PD, neurons in substantia nigra have degenerated. These neurons in the 

substantia nigra, which is bilaterally located in the deep structures under the 

cerebrum, produce and store dopamine. They transmit the dopamine to the striatum 

in the deep brain. The striatum gets the signals about movement from the cerebrum, 

and then the processed signals are transmitted to the muscles through the cerebrum, 

brainstem, and spinal cord. In this transmission, dopamine is used as a chemical 

carrier (Apaydın, Özekmekci, Oğuz, & Zileli, 2013). 

 

The number of these cells gradually decreases over the years, and this causes 

slowness, tremors in the limbs, stiffness in the muscles, depression, sleep disorder, 

posture disorder, gait disturbance, freezing of gait (FOG), and falling in PD patients 

(Apaydın et al., 2013). The locations of the substantia nigra and striatum in a human 

brain and the comparison of the amount of transmitted dopamine for a healthy person 

and PD patient are given in Figure 2.7 and Figure 2.8, respectively. 
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Figure 2.7 Dopamine system (Bear et al., 2016) 

 

 

Figure 2.8 Comparison of dopamine transmission for a healthy person and a PD patient (Bridi & 

Hirth, 2018) 

 

It has been observed that PD has an effect on emotions since PD causes damage in 

the amygdala region of the human brain, which has a very important role in the 

formation of emotions (Deak, 2011; Trnka, Hasto, Cabelkova, Kuska, Tavel, & 

Nikolai, 2018). When the amygdala structure was examined in PD patients, it was 

determined that there were losses on the left side of the amygdala with the increase in 

anxiety, and on both sides with the increase in depression (Trnka et al., 2018; van 

Mierlo, Chung, Foncke, Berendse, & van den Heuvel, 2015; Vriend, Boedhoe, 

Rutten, Berendse, van der Werf, & van den Heuvel, 2016) 
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PD affects the patients' daily life. Its symptoms cause difficulties in daily 

activities, and after all these inabilities, the patient feels less confident at doing 

something and even moving. Hence, understanding the symptoms and treating them 

is quite important. Among other symptoms of PD, FOG is one of the least figured out 

(Handojoseno et al., 2012). In the advanced stages of PD, this important clinical 

problem is manifested by taking extremely short steps, dragging the feet, or feeling 

as if the patient's feet are glued to the ground and unable to walk (Nutt et al., 2011). 

Within the scope of this thesis, only studies on the detection of FOG from PD were 

carried out and the results were examined. 

 

2.4 Investigation of Brain Activity 

 

As a result of brain starting to function, electrical signals are generated, and 

magnetic fields are induced by electrical currents that occur because of chemical 

transmission between the neurons. The human functions can be determined by the 

relationship of these activities with the variety of brain activity. The data obtained 

from these electrical brain activities is obtained to analyze the mental and physical 

activities of a person. Brain-machine interfaces (BMI) is a technology that aims to 

convert the signals obtained from the neuronal activity in the brain and use these 

obtained signals to control the external machines by the person only thinking 

(Chaudhary, Birbaumer, & Ramos-Murguialday, 2016; Waldert, 2016). In BMI, 

brain activity data is obtained by using different methods depending on where the 

electrodes are placed, such as invasive, semi-invasive, and non-invasive (Ghadiri, 

Nourafza, & Rasoolian, 2019).  

 

In invasive methods, the electrodes are implanted into the cortex, and the most 

known types are local field potentials (LFP), single-unit activity, and multi-unit 

activity (MUA) (Chaudhary et al., 2016; Ghadiri et al., 2019). In another technique, 

semi-invasive methods such as electrocorticography (ECoG), the signals are 

measured with the electrodes on the surface of the cortex (Ghadiri et al., 2019). 

Although these two methods help to obtain the average signal of thousands of nerve 

cells and have a high spatial resolution, they require surgical operations to place the 
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electrodes (Kim et al., 2015; Musk et al., 2019). However, with the non-invasive 

method, the average signal of millions of nerve cells is measured from the external 

surface of the skull without surgery (Chaudhary et al., 2016; Musk et al., 2019).  

 

For non-invasive methods, functional magnetic resonance imaging (fMRI), 

magnetoencephalography (MEG), and EEG can be said as the commonly used 

measurement methods (Kim et al., 2015; Rubin, Greenspan, & Brinkley, 2014). 

During the neural activity, fMRI detects the changes in blood flow in the brain, MEG 

catches the magnetic fields in the brain, and EEG measures the potential difference 

between regions on the surface of the brain (Kim et al., 2015; Malmivuo & Plonsey, 

1995; Rubin et al., 2014). Although fMRI provides the highest spatial resolution, this 

method has two negative features compared to other methods: noisy operation and 

expensive devices (Deak, 2011). The MEG provides highest temporal resolution with 

higher spatial resolution than EEG, the EEG method is more practical, results faster 

than the other methods, and provides high precision in time (Cimtay & Ekmekcioglu, 

2020; Kim et al., 2015).  

 

 

Figure 2.9 Illustration of non-invasive and invasive brain activity measurement methods (Hagen, 

Næss, Ness, & Einevoll, 2018) 

 

The illustration of the measurement methods is given in Figure 2.9. The electrode 

placements for each mentioned measurement method can be seen in this figure. For 
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example, the electrodes of the ECoG, local field potentials, and multi-unit activity 

methods are under the scalp which means there is no other way to place these 

electrodes there without a surgical operation. However, the electrodes belong to non-

invasive methods, which are EEG and MEG, placed on the scalp.  

 

 

Figure 2.10 Comparison of non-invasive and invasive brain activity measurement methods in time and 

space (Kim et al., 2015) 

 

In Figure 2.10, the temporal and spatial resolution comparisons of the mentioned 

methods are shown. From this figure, it can be said that MEG is faster than EEG, and 

fMRI. Therefore, MEG has the highest time resolution as the sampling frequency is 

the highest. From space feature comparisons, it appears that fMRI can improve data 

from smaller fields with high accuracy than MEG and EEG. MEG has a higher 

resolution for time. But it is also costly and impractical. It blocks the person's 

movements. Among the optical imaging and ECoG, which are semi-invasive 

methods, the ECoG has the highest time resolution and lowest spatial resolution. 

Lastly, from the measurement methods which are invasive, local field potentials has 

the lowest time and spatial resolutions. 
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3. CHAPTER THREE 

EEG 

 

Richard Caton published the results of the first known neurophysiologic 

experiment on rabbits and monkeys in 1875, and brain waves were discovered from 

fluctuating electrical brain activity by Adolf Beck with his study in which he placed 

electrodes on the surface of animals in 1890 (Emotiv, 2021). However, after almost 

half a century, in 1924, the EEG signals of human beings were recorded by Hans 

Berger, and he invented the device called the electroencephalogram, which allows 

the measurement of EEG signals (Britton et al., 2016). 

 

Detailed information about the EEG measurement method, its circuit, brain 

waves, signal processing, feature extraction and summary literature search for studies 

with EEG are explained in this chapter. 

 

3.1 Measurement Circuit 

 

The electrical signals that fluctuate on the surface of the scalp result from 

chemical activity between nerve cells in the active brain. The average activity of 

neurons close to the placed electrodes can be observed by EEG. The general block 

diagram of an EEG measurement circuit is in Figure 3.1. With EEG channels, the 

potential difference between the reference probes and sensor probes are measured 

with differential amplifiers, and signals as much as the number of sensor probes is 

obtained (Bhagawati and Chutiai, 2016; Toresano et al., 2017). A notch filter as a 

band stop filter (BSF), and a low pass filter (LPF) with a high pass filter (HPF) as a 

bandpass filter (BPF) are applied to the signals to eliminate the distortion (Britton et 

al., 2016). The amplitude of EEG is on V levels, so the gain of it is increased with 

post-amplifier (Webster, 2009). 
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Figure 3.1 Block diagram of a typical EEG measurement circuit (Bitar & Tepe, 2021; Bhagawati & 

Chutiai, 2016; K and H products, n.d.; Lin, Lin, Chen, Lu, Chen, & Ko, 2010; Rabbani & Islam, 2019; 

Toresano et al., 2017) 

 

3.2 Electrode Placement 

 

The position of the electrodes is related to which areas of the brain to be 

examined. The average activity of the neurons for each EEG channel signal is 

measured by the voltage difference between two electrodes that are above these 

neurons. If these reference and sensor electrodes are placed closer or further to each 

other for different measurements, they measure different neurons' average activity 

(Britton et al., 2016). This may cause an error in the EEG measurement. Different 

standards are available to determine electrode positions to avoid errors in 

measurement. The common international electrode placement systems are the 10-10 

system and the 10-20 system, and the electrodes are placed between 10% - 20% or 

10% - 10% separation in these two systems from the center of the skull to the 

periphery (Acharya, Hani, Cheek, Thirumala, & Tsuchida, 2016). With these 

placement systems, the distances of between electrodes are defined so the error might 

be minimized. 

 

Electrode locations of the international systems are given in Figure 3.2. As it can 

be seen from this figure, each electrode placement has a unique name which includes 

a letter and a number. The letter indicates which lobe of the brain the electrode is 

closest to. If the number is odd, the electrode is on the left hemisphere; if it is even, 

the electrode is on the right hemisphere (Britton et al., 2016). For example, O1 is on 
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the left of the occipital region and O2 is on the right. Also, some electrodes in the 

centerline of the scalp, such as Cz, Fz, and Pz, have the "z" letter instead of a number 

in their name (Britton et al., 2016). 

 

 

Figure 3.2 Electrode positions; black circles for the 10-20 system, and gray circles for the 10-10 

system (Oostenveld & Praamstra, 2001) 

 

The important point in EEG monitoring is the montage type means the method to 

display the EEG channels according to the difference signal between electrodes, and 

commonly used montage types are referential and bipolar (Acharya & Acharya, 

2019). Of these, the bipolar montage which helps to obtain the signal between two 

nearby sensor electrodes, and the referential montage in which the difference signal 

between one reference electrode and other sensor electrodes are measured are the 

most used (Webster, 2009). The electrode connections of the differential amplifiers 

in the measurement circuit of these montages are given in Figure 3.3. 
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Figure 3.3 Montage types, (a) referential montage, (b) bipolar montage (K and H products, n.d.) 

 

In Figure 3.4, EEG signals obtained from a device with the referential montage of 

32 electrodes placed according to the international 10-20 system are given. These 

signals were obtained from the Database for Emotion Analysis using Physiological 

Signals (DEAP) dataset (Koelstra et al., 2011), and plotted by using Matlab as raw 

signals. The axes of the graphs displaying EEG usually have the same labels. The 

change in time is observed from the x-axis and the change in voltage from the y-axis. 

The overall patterns of the channel signals might seem similar, but a closer viewing 

would show that the signal amplitudes, polarities, or frequency components are 

different for each channel. 
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Figure 3.4 Sample signals of EEG from part of the DEAP dataset in literature with 32 electrodes 

placed according to international 10-20 system 

 

3.3 Brain Waves 

 

EEG signals are not periodic and their statistical parameters such as mean value, 

variance, and standard deviation change over time (Clark, Biscay, Echeverría, & 

Virués, 1995; Wong, Galka, Yamashita, & Ozaki, 2006). Therefore, these non-

stationary signals are difficult to study. Brain waves derived from the frequency 

bands of EEG signals are analyzed in the observation of brain activities. There are 

five main brain waves: delta, theta, alpha, beta, and gamma (Bear et al., 2016). Also, 

it was observed in the literature that there are studies carried out with waves with 
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different frequency ranges (Choi et al., 2014). Information about the frequency 

ranges of the waves and their corresponding brain activities are given in Table 3.1.  

 

Table 3.1 Features of brain waves (Choi et al., 2014; Posada-Quintero, Reljin, Bolkhovsky, Orjuela-

Cañón, & Chon, 2019; Seo, Lee, & Crisan, 2010) 

Brain wave Frequency range [Hz] Brain activities 

Delta < 4 Deep sleep, coma 

Theta 4 – 8 Drowsiness, emotional 

Alpha 8 – 12 Awake, relaxed 

Low Beta 12 – 20 Active thinking, focus 

High Beta 20 – 30 Anxious, stress 

Gamma > 30 Over-focused, energetic 

 

Based on the information in this table, for instance, if the alpha waves are more 

dominant, it can be said that the person is awake, or if the gamma waves are more 

dominant, the person is over-focused on a task. In Figure 3.5, an original EEG signal 

and brain waves filtered from the same EEG are shown in the time domain. Delta 

and theta are low-frequency waves and have higher amplitudes than high-frequency 

alpha, beta, and gamma waves (Posada-Quintero et al., 2019). 

 

 

Figure 3.5 Original EEG signal of T7 channel and filtered brain waves from this study 
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3.4 Artifacts 

 

In order to make more accurate EEG analyzes, the most accurate features must be 

extracted. For this, preprocessing needs to be applied to the raw EEG signals. The 

main reason for this is that other electrical signals generated in the human body or 

coming from the environment can also corrupt the EEG signals recorded during 

measurements (Britton et al., 2016). Commonly encountered internal artifacts are 

electrocardiogram (ECG), electromyogram (EMG), electrooculogram (EOG), eye 

movements, tongue movements, skin movements, and external artifacts are 

displacement of electrodes, EEG device movements, the poor ground connection, 

body and limb movements, and electromagnetic, optical, and vocalic interferences 

(Islam, Rastegarnia, & Yang, 2016). A recorded raw EEG signal containing samples 

of internal artifacts is given in Figure 3.6. The preprocessed EEG signal, which is 

excluded from EOG, ECG and EMG artifacts, is also given as pure EEG in this 

figure. 

 

 

Figure 3.6 Internal artifacts observable from a raw EEG signal (Jiang, Bian, & Tian, 2019) 

 

False information that artifacts caused are removed before analysis done with 

EEG. Although, these removals can cause information loss in data, their effect is 

reduced with this solution. Otherwise, a higher quality EEG device can be used as a 

precaution, but this method only helps to reduce some external artifacts, and there 

will still be artifacts in the recorded signal. At the artifact reduction steps, it is easier 
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to eliminate external artifacts from an EEG signal than internal artifacts (Anderer et 

al., 1999; Jiang et al., 2019; Urigüen & Garcia-Zapirain, 2015). Mostly used artifact 

reduction methods are LPF, HPF, BPF, BSF, adaptive filter, wavelet transform 

(WT), and empirical mode decomposition (EMD) (Urigüen & Garcia-Zapirain, 

2015). Some artifacts and some methods from the literature to reduce them are given 

in Table 3.2. 

 

Table 3.2 Artifacts and reducing methods in literature 

Artifact Method to reduce Literature 

Muscle artifact LPF 
Anderer et al., 1999 

Sweat artifact HPF 

Environmental line noise BSF 

Urigüen & Garcia-Zapirain, 

2015 

EOG artifact 

Linear regression method 

Adaptive filter 

Principal component analysis 

EMG artifact Adaptive filter 

ECG artifact Recursive least-squares 

External artifacts LPF, HPF, BPF or BSF Jiang et al., 2019 

 

3.5 Preprocessing 

 

Definitions and explanations about preprocessing methods used in the literature 

are given in this section. 

 

• Filtering: This method is used in processes such as removing brain waves 

from EEG signals and reducing artifacts. As mentioned earlier, there are 

different types of filters called LPF, HPF, BPF and BSF. Frequency 

components below a cut-off frequency with LPF and above a cut-off 

frequency with HPF are filtered out. BPF is used if a frequency range is to be 

filtered, and BSF is used if that range is to be rejected. BPF and BSF filters are 

formed by connecting LPF and HPF filters in series or in parallel (Alexander 

& Sadiku, 2009). 

 

• Wavelet Transform (WT): With this method, the denoised EEG signal is 

tried to be obtained with main signal 𝑦(𝑡) which is called the mother wavelet 
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function. For this, scaling and shifting operations are applied to 𝑦(𝑡), and 

these values are the coefficients of WT (Kim, 2018). For the discrete-time 

sampled signals which are the EEG signals in this thesis case, the discrete WT 

(DWT) is applied (Islam et al., 2016). In Equation (3.1), the DWT formula is 

given where 𝑥(𝑡) is the original EEG signal. 

 

𝐷𝑊𝑇(𝑗, 𝑘) =
1

√|2𝑗|
∫ 𝑥(𝑡)𝑦 (

𝑡 − 2𝑗𝑘

2𝑗
) 𝑑𝑡

¥

−¥

 (3.1) 

 

3.6 Feature Extraction 

 

After preprocessing, various features are extracted from reliable EEG signals in 

the time or frequency domain. The extraction and formulas of these properties are 

given in this section. 

 

3.6.1 Time Domain 

 

• Statistical Features: The features calculated from the statistical parameters of 

the preprocessed EEG signal, 𝑥(𝑛), in the time domain are used. The formulas 

for calculating the smallest value in Equation (3.2), the largest value in 

Equation (3.3), the signal mean value in Equation (3.4), the standard deviation 

in Equation (3.5), the variance value in Equation (3.6), energy of the signal in 

Equation (3.7), and average power of a discrete signal in Equation (3.8) are 

given as follows (Proakis & Manolakis, 1996; Şen & Peker, 2013). 

 

𝑥𝑚𝑖𝑛 = 𝑚𝑖𝑛[𝑥(𝑛)] (3.2) 

𝑥𝑚𝑎𝑥 = 𝑚𝑎𝑥[𝑥(𝑛)] (3.3) 

𝑥𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝑥(𝑛)

𝑁

𝑛=1

 (3.4) 
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𝑠 = √
∑ (𝑥(𝑛) − 𝑥𝑚𝑒𝑎𝑛)2𝑁

𝑛=1

𝑁 − 1
 (3.5) 

𝑣𝑎𝑟(𝑥(𝑛)) = 𝑠2 =
∑ (𝑥(𝑛) − 𝑥𝑚𝑒𝑎𝑛)2𝑁

𝑛=1

𝑁 − 1
 (3.6) 

𝐸𝑥 = ∑ |𝑥(𝑛)|2

𝑁

𝑛=−𝑁

 (3.7) 

𝑃𝑥 = lim
𝑁→∞

1

2𝑁 + 1
𝐸𝑥 (3.8) 

 

• Hjorth Parameters: Other features in the time domain are Hjorth parameters 

derived from statistical features (Oh, Lee, & Kim, 2014). The Hjorth 

parameters, activity, mobility, and complexity, are given in Equation (3.9), 

Equation (3.10), and Equation (3.11), respectively (Hjorth, 1970). In these 

equations, 𝑠0 symbol is the variance, 𝑠1 is the variance of the first derivative, 

and 𝑠2 is the variance of the second derivative of the EEG signal. 

 

𝐻𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟(𝑥) (3.9) 

𝐻𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √
𝑣𝑎𝑟(𝑥′)

𝑣𝑎𝑟(𝑥)
 (3.10) 

𝐻𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝐻𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥′)

𝐻𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥)
 (3.11) 

 

3.6.2 Frequency Domain 

 

• Fourier Transform (FT): With FT, signals are transformed using sinusoidal 

functions with various frequencies as the basis function, and this 

transformation is defined in Equation (3.12) (Heckbert, 1995). The variable 

𝑥(𝑡) in this equation represents the transformed continuous signal. 
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𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞

 (3.12) 

 

• Fast Fourier Transform (FFT): As a result of EEG data recordings done in 

today's conditions, discrete signals are obtained no matter how high the signal 

frequency is. In addition to the transformation of continuous signals in 

Equation 3.10, a discrete FT (DFT) is performed for the discrete signals. For 

the calculation of DFT, there is an effectual algorithm called as FFT, and the 

definition of this is given in Equation (3.13) (Oppenheim, Buck, Daniel, 

Willsky, Nawab, & Singer, 1997): 

 

𝑋̃[𝑘] =
1

𝑁
∑ 𝑥[𝑛]𝑒−𝑗𝑘(

2𝜋
𝑁

)𝑛

𝑁−1

𝑛=0

,   𝑘 = 0, 1, … , 𝑁 − 1 (3.13) 

 

where x[n] is the discrete signal and N is the length of this signal. For studies 

with EEG, the variable x[n] is the EEG signal obtained from a single 

electrode. As a result of this transformation, the frequency components of a 

signal can be examined. Also, the maximum frequency value on the FFT plot 

is determined as Nyquist frequency, which is the sampling frequency divided 

by two (Srinivasan, Tucker, & Murias, 1998). 

 

In Figure 3.7, an example for FFT of an EEG signal is shown. In the first 

subplot, the preprocessed EEG signal of only the FC5 channel of a participant 

was plotted from the DEAP dataset. The change in the voltage of this signal, 

which is given for about 20 seconds, can be observed. In the second subplot, 

the obtained FFT result of this preprocessed signal is given. The amplitude 

values of the frequencies in the range of 0-64 Hz in the content of this signal, 

which has a sampling frequency of 128 Hz, can be observed separately. As 

mentioned in the description of this dataset in the literature, the signal was 

filtered with a BPF with cut-off frequencies of 4 and 45 Hz (Koelstra et al., 

2011). This filtering process can be observed from the second subplot because 

the amplitude of the frequency components outside the 4-45 Hz range is 0. 
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Figure 3.7 FFT example from the DEAP dataset in literature 

 

• Short Time Fourier Transform (STFT): With FFT, amplitude information 

of all frequencies in the relevant signal can be observed. However, the 

changes in amplitude over time cannot be understood. STFT helps to analyze 

the amplitude change of all frequency components depending on time. Thus, it 

is often used for non-stationary signals. After the signal is divided by the 

windowing method, FT is applied to each segment and the process is 

performed. In Equation (3.14), the formula of the discrete STFT is given 

(Krishnan, 2021). In this equation, 𝜔(𝑛) is the window function. 

 

𝑆𝑇𝐹𝑇{𝑥[𝑛]} = 𝑋[𝑛, 𝜔] = ∑ 𝑥(𝑚)𝜔(𝑛 − 𝑚)𝑒−𝑗𝜔𝑚

∞

𝑚=−∞

 (3.14) 

 

An example for STFT is shown in Figure 3.8. The same data in FFT example 

used, but this time the change of the magnitude at different frequencies can be 

observed. The same data in the FFT example was used, but this time the 

change of the amplitude magnitude at different frequencies can be observed. 
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In Figure 3.7, the magnitude change only can be observed for the whole 

signal, and the time was unclear for changings. However, for different time 

ranges the magnitude change can be observed in Figure 3.8. For example, it 

can be understood from the values given in the magnitude color scale that the 

amplitude value between the 16th and 18th seconds is higher than the other 

times. 

 

 

Figure 3.8 STFT result of the same data in FFT example 

 

• Power Spectral Density (PSD): This method helps to examine the power 

distribution of a signal at each frequency component (Bansal & Mahajan, 

2019). The PSD estimation is calculated with FFT of the autocorrelation of the 

EEG, and after the signal is divided into segments, FFT is applied to each 

segment, and the PSD signal is obtained from the average square of the FFT 

value calculated by making a correction between segments (Bansal & 

Mahajan, 2019). Its formula is given in Equation (3.15), where 𝑋̃(𝑓) 

represents FFT of 𝑥(𝑛) (Proakis & Manolakis, 1996). 

 

𝑆𝑥̃𝑥̃(𝑓) = |𝑋̃(𝑓)|
2

= |∑ 𝑥̃(𝑛)𝑒−𝑗2𝜋𝑓𝑛

𝑁−1

𝑛=0

|

2

 (3.15) 
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In Figure 3.9, the first subplot shows the PSD of EEG obtained from the T7 

channel. Colored areas below the signal represent each sub-band, namely 

brain waves. The brain wave information is given in this plot. The second 

subplot also shows PSD signals of the same data. However, this time the brain 

waves are filtered from the original EEG signal, and then the PSD calculation 

was done for each brain wave. The sum of their distributions gives the signal 

in the first subplot. 

 

 

Figure 3.9 PSD of EEG signal of T7 channel and filtered brain waves 

 

• Wavelet Coefficients: As it was mentioned in “Preprocessing” section, the 

brain wave signals are also obtained with DWT. The coefficients obtained by 

DWT using Daubechies wavelet of order 4 (db4), are used as the features, and 

it results better in classifications (Şen & Peker, 2013). 

 

3.7 Literature Research for EEG 

 

In the literature, EEG studies include various topics. Studies on emotions and 

diseases, which are also within the scope of this thesis, are some of them. The most 
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crucial obstacle of these studies is data. In this section, information is given about the 

datasets shared in the literature for emotion and the studies conducted on emotions 

and diseases in the literature. 

 

3.7.1 Datasets 

 

One of the most important issues observed in the literature for emotion detection 

is the dataset. It has been observed that the EEG dataset is generally used in studies 

in the literature for emotion detection. The datasets used in the studies are either 

recorded by the researchers by performing the procedures suitable for the study aim, 

or the data recorded for the closest purpose to the analysis in the literature are used. 

The participants' emotions were tried to be triggered by listening to music, 

examining images, or watching videos while EEG datasets were measured and 

recorded. Shanghai Jiao Tong University Emotion EEG Dataset (SEED), DEAP, 

MAHNOB-HCI, DREAMER, and LUMED are datasets built for emotion detection 

that are accessible as open-source in the literature (Cimtay, & Ekmekcioglu, 2020; 

Duan et al., 2013; Katsigiannis, & Ramzan, 2017; Koelstra et al., 2011; Soleymani, 

Lichtenauer, Pun, & Pantic, 2011; Zheng & Lu, 2015). 

 

3.7.1.1. SEED Dataset 

 

For the analysis of the emotions, 15 participants watched a total of 15 different 

movie clips, 5 for positive, 5 for neutral, and 5 for negative emotions. The recorded 

data includes EEG signals from 62 channels and eye movements. During the 

recording, the participants were given a 10-second start, then watched a 4-minute 

clip, and then rested for 20 seconds for each movie (Duan et al., 2013; Zheng & Lu, 

2015). This process is given in Figure 3.10. 
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Figure 3.10 Process of viewing movie clips while recording the SEED dataset (Duan et al., 2013) 

 

3.7.1.2. DEAP Dataset 

 

In the DEAP dataset, 32 participants watched 40 different one-minute music 

videos, and the measured physiological signals were EEG of 32 channels (Fp1, AF3, 

F3, F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz, F4, 

F8, FC6, FC2, Cz, C4, T8, CP6, CP2, P4, P8, PO4, O2), EOG, EMG, skin 

temperature, respiration pattern, blood volume pressure, and galvanic skin response 

(Koelstra et al., 2011). The sampling frequency of the EEG signals is 128 Hz. After 

watching the videos, participants were asked to rate the emotions triggered by the 

videos. 

 

 

Figure 3.11 Used SAM images for valence, arousal, dominance, and liking categories, respectively 

(Koelstra et al., 2011) 

 

A self-assessment manikin (SAM) for 5 different categories: arousal, valence, 

dominance, liking, and familiarity was used for the rating (Bradley & Lang, 1994; 

Koelstra et al., 2011). Images used for emotion categories in the SAM are given in 
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Figure 3.11. In this figure, the images at each row represent only one category. From 

top to bottom, the categories are as follows: valence, arousal, dominance, and liking. 

As a rating scale, discrete values on the scale of 1-5 were used for familiarity, and 

continuous values on the scale of 1-9 were used for other categories. 

 

3.7.2 Studies 

 

As far as it is observed in the literature and as it is tried to be done in this thesis, 

there are prediction and detection studies done with EEG signals for various subjects 

such as mental state, emotion, and neurological disorders. 

 

3.7.2.1. Mental State 

 

To classify the concentration and relaxation levels of the participants, a study was 

conducted using the common space pattern algorithm for feature extraction. As a 

result of the study done with the support vector machine (SVM), it was observed that 

using the gamma wave of F7-F8 electrodes proved the highest accuracy in 

discrimination of concentration and relaxation (Li et al., 2015). These two mental 

states are also tried to be determined in another study. EEG signals from the 

participants' Fp1 and Fp2 channels were measured while repeating the number told to 

them backward (You, 2021). 

 

Additionally, brain waves are used for the detection of the mental state in an 

experimental study. It was reported that alpha wave activity has a significant 

relationship with attentional processes, and it was also stated that beta wave activity 

could be useful for investigating cognitive and emotional processes (Ray and Cole, 

1985). 

 

Beta increase while theta decreases during concentration, so it was observed with 

that concentration index in Equation (3.16). From the measured EEG signals, the 

index had been calculated for each of Fp1, Fp2, T3, T4, C3, C4, O1, and O2, and an 
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incrementation, especially in the indexes of the Fp1 and Fp2, was occurred during 

the concentration (Choi et al., 2014). 

 

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =  𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 [
𝐿𝑜𝑤 𝑏𝑒𝑡𝑎

𝑇ℎ𝑒𝑡𝑎
] (3.16) 

 

For anxiety, a reliable and high correlation has been found between the high beta 

of FC5 and FC6 probes in the anterior temporal lobe (Seo et al., 2010). Another 

important correlation has been found between theta wave bands and drowsiness, this 

wave increases when a person is sleepy and there is a slowdown in responses this 

person (Gorgoni et al., 2014). 

 

In the light of these obtained information, an index in Equation (3.17) was derived 

for the detection of anxiety emotion (Yürdem, Akpinar, & Özkurt, 2019; Yurdem et 

al., 2020). 

 

𝑎𝑛𝑥𝑖𝑒𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =  𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 [
𝐻𝑖𝑔ℎ 𝑏𝑒𝑡𝑎

𝑇ℎ𝑒𝑡𝑎
] (3.17) 

 

3.7.2.2. Emotion 

 

Getting started analysis of the emotion studies, firstly, the team that saved the 

DEAP dataset for the emotion study analyzed the dataset. As a result of the analysis, 

it was observed that while the theta, alpha, and gamma brain waves were negatively 

correlated with the sense of arousal, the sense of valence was positively correlated 

with all brain waves (Koelstra et al., 2011). When the asymmetry of the lobes was 

investigated, it was determined that there was a higher increase in right temporal lobe 

beta and gamma brain waves (Koelstra et al. 2011). 

 

The effects of stimuli familiarity were investigated in a study on the DEAP 

dataset in addition to their own recorded dataset were used. The average PSD values 

of twelve EEG channels for delta, theta, alpha, beta, and gamma waves, and also 
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fractal dimension values calculated from the Higuchi algorithm were used as the 

feature to perform classification for LA-HA and LV-HV emotions (Higuchi, 1988; 

Thammasan et al., 2017). In the results, it was observed that a higher accuracy was 

obtained on unfamiliar music videos by using SVM (Thammasan et al., 2017). For 

only detecting the valence emotion by decreasing the channel numbers to two, the 

time and frequency features on the DEAP dataset were helpful in to result that Fp1 

and Fp2 channels are the chosen ones (Wu et al., 2017). 

 

Again, by using the DEAP dataset, the features in the time domain were 

investigated by another research group. Afterward, they found that the power feature 

in Equation (3.8) is more helpful than other features with the Relief algorithm (Byun 

et al., 2017). In a study in which emotion detection was performed with the DEAP 

dataset, EMD was applied by filtering the beta wave from the EEG signals measured 

from the F3 and F4 electrodes of all participants, and an average of 94.98% success 

was achieved in the classification made with SVM using the entropy feature in 

Equation (3.18) (Zhang, Ji, & Zhang, 2016). In another study, after the application of 

DWT with "db4" to the EEG signals of some selected participants, the entropy 

values of the 5th order signal were used as features and the highest accuracy of 

68.06% was obtained as a result of the classification made by the SVM (Al-Qammaz, 

Yusof, & Ahamd, 2017). 

 

ℎ(𝑋) =
1

2
log (2𝜋𝑒𝑠2) (3.18) 

 

Another emotion study was conducted to predict arousal and valence with the 

dataset recorded while participants were looking at pictures, listening to music, and 

watching videos (Sarno et al., 2016). The feature vector was constructed with the 

mean in Equation (3.4), standard deviation in Equation (3.5), and power in Equation 

(3.8) values calculated from the FFT of 14 EEG channels. In the results of the 

Pearson-correlation coefficient, it was obtained that the correlation between the 

powers of T7 and T8 with valence, and the correlation between the powers of AF3, 
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AF4, F7, FC5, T7, and T8 with arousal are higher than the other electrodes for high-

frequency bands (Sarno et al., 2016). 

 

To detect happiness and unhappiness, in a study done with the EEG measurement 

method, the conclusion has been reached that the high-frequency bands beta and 

gamma of T7 and T8 probes (Figure 3.2) on the temporal lobe are more reliable than 

the low-frequency bands. With the detection done on the participant-dependent 

model by the Gaussian SVM classifier using PSD as the feature, the highest accuracy 

obtained by the T7-T8 electrode pair was 72.90% (Jatupaiboon, Panngum, & 

Israsena, 2013a). Again, using the Gaussian SVM learning algorithm, the 

classification of the valence emotion was done in another study. According to the 

accuracy of different electrode pairs and brain waves, reductions in the used number 

of electrode pairs and waves were done to obtain the informative ones. 

Consequently, it was observed that F7-F8, AF3-AF4, F3-F4, FC5-FC6, T7-T8 

electrode pairs (Figure 3.2) and gamma, beta, alpha, and delta waves help to provide 

the highest accuracy, respectively (Jatupaiboon, Panngum, & Israsena, 2013b). 

 

To investigate the activity in the prefrontal cortex during pleasant and unpleasant 

stimuli processes with recorded fMRI data, it was observed that the activity in the 

left dorsolateral prefrontal cortex (DLPFC) was increased for the pleasant stimuli 

(Herrington et al., 2005). The location of the left and right DLPFC in an fMRI image 

is given in Figure 3.12 (a). In another study with EEG data to investigate the activity 

of the DLPFC region, the F3 and F4 electrodes in Figure 3.12 (b) were used as the 

corresponding ones (Yang, Gao, Shi, Ye, & Chen, 2017). 
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Figure 3.12 (a) Marked regions are left and right DLPFC (Herrington et al., 2005), (b) Electrode 

placements in DLPFC (Yang et al., 2017) 

 

Dimensional emotion classification for joy, sadness, anger, and pleasure was 

performed with a normalized hemispheric asymmetric alpha power index obtained 

from 12 different electrode pairs using the multilayer perceptron classifier (Lin, 

Wang, Wu, Jeng, & Chen, 2007). The normalized power index of 12 electrode pairs 

(𝑐ℎ𝑖) was calculated by Equation (3.19). 

 

𝑝𝑜𝑤𝑒𝑟 𝑖𝑛𝑑𝑒𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑐ℎ𝑖) =
𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦(𝑐ℎ𝑖) − 𝑚𝑖𝑛(𝑐ℎ𝑖)

𝑚𝑎𝑥(𝑐ℎ𝑖) − 𝑚𝑖𝑛(𝑐ℎ𝑖)
 (3.19) 

 

Disgust, happiness, surprise, fear, and neutral emotions were classified by using 

Linear Discriminant Analysis (LDA) and K-nearest neighbors (KNN) classifiers with 

proposed energy features such as Recoursing Energy Efficiency (REE) in Equation 

(3.20), Logarithmic REE (LREE) in Equation (3.21), and Absolute Logarithmic REE 

(ALREE) in Equation (3.22), and conventional features such as power, standard 

deviation, and variance (Murugappan, Ramachandran, & Sazali, 2010). Alpha, beta, 

and gamma were decomposed using DWT with the “db4” wavelet function on D4, 

D5, and D6 decomposition levels. The total energy of three brain wave bands used in 

the proposed energy features was calculated by Equation (3.23). Using ALREE 

feature, the highest correct classification was obtained by KNN for disgust, 

happiness, and fear emotions, and by LDA for surprise and neutral emotions 

(Murugappan et al., 2010). 
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𝑅𝐸𝐸𝑏𝑎𝑛𝑑𝑗
=

𝐸𝑏𝑎𝑛𝑑𝑗

𝐸𝑡𝑜𝑡𝑎𝑙−3𝑏
 (3.20) 

𝐿𝑅𝐸𝐸𝑏𝑎𝑛𝑑𝑗
= log10 [

𝐸𝑏𝑎𝑛𝑑𝑗

𝐸𝑡𝑜𝑡𝑎𝑙−3𝑏
] (3.21) 

𝐴𝐿𝑅𝐸𝐸𝑏𝑎𝑛𝑑𝑗
= 𝑎𝑏𝑠 (log10 [

𝐸𝑏𝑎𝑛𝑑𝑗

𝐸𝑡𝑜𝑡𝑎𝑙−3𝑏
]) (3.22) 

𝑏𝑎𝑛𝑑𝑗 ∈ {𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎, 𝑔𝑎𝑚𝑚𝑎}  

𝐸𝑡𝑜𝑡𝑎𝑙−3𝑏 = 𝐸𝑎𝑙𝑝ℎ𝑎 + 𝐸𝑏𝑒𝑡𝑎 + 𝐸𝑔𝑎𝑚𝑚𝑎 (3.23) 

 

3.7.2.3. Epilepsy 

 

Besides detections like emotion, neurological disorders are also being tried to 

detect by using EEG signals. A study of epileptic seizures was performed with the 

Manhattan distance between the upper and lower envelopes of preprocessed EEG 

signals as the feature of SVM, KNN, and Decision Trees classifiers (Kuran et al., 

2021). The envelopes were obtained by cubic spline interpolation using Equation 

(3.24) and (3.25), where 𝑗 = 1, 2, … , 𝑁 and N is the length of the signal. After 

solving the variables 𝑎𝑗 and 𝑏𝑗 with the help of Equation (3.24) and its derivatives, 

these values are written in their places in Equation (3.25) and the main feature 𝑦𝑗 is 

calculated (Kuran et al., 2021). After calculating these features, it was observed that 

the SVM method provided the highest accuracy for healthy participants who were 

awake and eyes open, and for epilepsy patients during seizures. 

 

𝑡(𝑥) = 𝑎𝑗(𝑥 − 𝑥𝑗)
3

+ 𝑏𝑗(𝑥 − 𝑥𝑗)
2

+ 𝑐𝑗(𝑥 − 𝑥𝑗) + 𝑑𝑗  (3.24) 

𝑦𝑗 = ln (
|𝑎𝑗 − 𝑏𝑗|

2
) (3.25) 
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The detection of epilepsy was also done by using the fast correlation-based feature 

selection and classification algorithm that the features are extracted from EEG 

signals (Şen & Peker, 2013). 36 features were calculated from 5 different categories: 

statistical, nonlinear, energy, time-frequency, and entropy. The fast correlation-based 

feature selection algorithm was used to find more informative features through 

relevance and redundancy analyzes, and the following features were obtained as the 

more relevant values: standard deviation of EEG signals, Petrosian fractal dimension, 

spectral entropy, the standard deviation of the beta wave, the mean of the alpha 

wave, mean curve length, and Hjorth parameters (Şen & Peker, 2013). 

 

In order to predict before and between epileptic seizures, EEG channel selection 

was performed with the variance difference of these periods and weighted average 

sensitivity (WAS) parameters in the Rusboosted Tree ensemble classifier (Coşgun et 

al., 2021). After calculating the variance of each channel segment with Equation 

(3.6) and variance difference of segments for each channel with Equation (3.26), the 

channel selection was done by considering the highest value of WAS in Equation 

(3.27) (Coşgun et al., 2021). In these equations, channel number by ch, true-positive 

by TP, true-negative by TN, false-positive by FP, and false-negative by FN variables 

are indicated. Finally, for 26 symptoms, the false prediction rate per hour was 0.031 

1/h, and the mean sensitivity was 71.80% (Coşgun et al., 2021). 

 

𝑣𝑎𝑟𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑐ℎ) = 𝑣𝑎𝑟𝑏𝑒𝑓𝑜𝑟𝑒(𝑐ℎ) − 𝑣𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑐ℎ) (3.26) 

𝑊𝐴𝑆% =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 +

𝑇𝑁
𝑇𝑁 + 𝐹𝑃

2
× 100 

(3.27) 

 

When the comparison of STFT and WT methods was carried out as the subject of 

another study for the evaluation of the features, it was determined that STFT method 

was more useful because of the rapid occurrence of epileptic seizures and the rapid 

processing of the STFT method (Kıymık et al., 2005). By examining the changes in 

delta, theta, alpha and beta brain waves, it was stated that although the resolution of 
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the WT method is high, it will not be useful because the resulting time of the 

procedure is longer (Kıymık et al., 2005). 

 

3.7.2.4. Parkison’s Disease 

 

The general goal of PD studies is to try to detect its symptoms before they occur. 

If this determination can be made, the patient can be warned in advance, and, for 

example, if freezing is in a situation that endangers the patient's life, safety can be 

ensured either by the patient or by other people around him/her. As a further level, a 

treatment to prevent freezing can be applied by detecting before it occurs. These 

studies were generally done by using data obtained from limb motion or brain 

activity. 

 

Using wavelet energy (WE) and total wavelet entropy (TWE) of the EEG brain 

waves as features, a FOG detection was done with a three-layer Back Propagation 

Neural Network (BP-NN) using the Levenberg Marquardt algorithm for training. 

From this study, it was observed that the WE of the delta, theta, and alpha waves of 

the O1 channel, and WE of the delta, theta, alpha, beta, and gamma waves of the P4 

channel, and TWE of O1 and P4 channels were important features for detection 

during FOG. However, of these important features, only P4 features performed better 

to detect 5 seconds before FOG occurred (Handojoseno et al., 2012). 

 

In another study, their group also tried to detect FOG with directed transfer 

function (DTF) that helps to predict the causal effect of one channel on another at a 

given frequency, and partial directed coherence (PDC) that helps to improve and 

enhance the information of DTF by distinguishing direct and indirect flow between 

channels. Directed DTF (dDTF) and squared generalized PDC (sGPDC) were 

calculated and used to see the relations between O1, P4, Cz, and Fz electrodes at 

theta band (Handojoseno et al., 2014). Figure 3.13 shows which region on the brain 

affects which region during normal walking, onset, and FOG, and the thickness of 

each arrow between the two channels represents the strength of channel interactions 

(Handojoseno et al., 2014). For example, in the case of FOG in this figure, it was 
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observed that the region where the Fz electrode was placed was affected strongly by 

the region where the P4 electrode was placed for the dDTF parameter. With the 

sGPDC parameter, it was observed that regions where the O1 and Cz electrodes were 

placed also affected the Fz, but the effect of the P4 was higher than the O1 and Cz. 

 

 

Figure 3.13 Interaction between EEG channels during normal walking, transition, and FOG conditions 

by using dDTF and sGPDC for theta wave (Handojoseno et al., 2014) 

 

During the transition from walking to FOG, delta and theta brain waves, which 

represent low-frequency waves, have higher activity in the central and frontal lobes, 

and also, during the transition from FOG to walking, it was observed that the activity 

of theta and alpha waves in the central lobes with alpha and beta waves in the frontal 

lobes increased. For this, EEG signals of the O1, P4, Cz and Fz electrodes were 

measured, and then the PSD of each electrode was estimated with the FFT (Shine et 

al., 2014). 

 

The relationship between theta wave and FOG was also observed in another study 

in which the participants performed tests based on visual attention on a computer. 

During tests, EEG signals with 512 Hz sampling frequency from 128 electrodes were 

recorded. After that, the signals were preprocessed and analyzed with toolboxes in 
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Matlab. As a result, it was observed that there is a high correlation of theta wave 

obtained from the signals in the orbitofrontal and occipitotemporal lobes of PDs with 

FOG (Gérard et al., 2022). 

 

Comparison of a multimodal model and single-modal model to classify FOG was 

done by using the freezing index and the mean power of the theta wave of EEG 

signals of sixty channels measured from central and frontal lobes (Wang et al., 

2020). As a classifier, RUSBoost classification was used because this classifier is 

useful for training datasets with an unbalanced number of samples (Seiffert, 

Khoshgoftaar, Van Hulse, & Napolitano, 2008; Wang et al., 2020). They measured 

the performance of the models by using Matthew Correlation Coefficient, and they 

observed the multimodal model was better than the single-modal model but not good 

enough to detect FOG (Wang et al., 2020). 
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4. CHAPTER FOUR 

DESIGN OF DATA ACQUISITION SYSTEM 

 

As part of this thesis work, a system was designed to measure and record EEG 

and acceleration data. This chapter describes the hardware and software design of the 

system. The system includes different types of electronic devices such as computers, 

sensors, and communication units. Communication between devices is done by 

different methods such as wireless communication and TTL serial communication 

over USB. The simultaneous operation of all these devices throughout the system is 

provided by programs written in Python, Matlab, and Arduino languages. In the 

system constructed in the study, it was desired to measure the data, transmit it to the 

computer with communication units and then save it with time information in real-

time. 

 

4.1 Hardware Design 

 

In this section, the devices and communication methods of the system are 

explained. The block diagram of the data measurement and recording system is 

shown in Figure 4.1. In this figure, devices that measure and obtain the data are 

indicated in green blocks, units that provide the transmission of the data in blue 

blocks, and the computers that enable the system operation and record the data in 

gray blocks. 

 

 

Figure 4.1 Block diagram of the data measurement and recording system 
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4.1.1 EEG Measurement System 

 

In this subsystem, since the changes in brain activity are measured with the non-

invasive EEG method, an EEG device can be placed without the need for a surgical 

operation. For EEG measurement, a device named Emotiv EPOC+ was used in the 

study. In Figure 4.2, the image of the EEG headset is shown. 

 

 

Figure 4.2 Emotiv EPOC+ wireless EEG headset (Emotiv, 2022) 

 

There are fourteen are sensor electrodes on the device (Emotiv, 2022). In Figure 

4.3, the electrode locations are given. As a result of the measurements done with this 

device, the EEG signals of 14 different regions are obtained. The reference probes 

are given in yellow, and the sensor probes are given in green. The electrodes are 

located according to the international 10-20 system, and these channels are AF3, 

AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8, O1, and O2 (Emotiv, 2022). 

 

 

Figure 4.3 Probe locations (Emotiv, 2022) 
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With this device, there is no harm to patients since the signals are measured by the 

electrodes on the surface of the scalp. The data is sent from the headset to a USB 

dongle in real-time, the data transfer is done by using a proprietary 2.4GHz wireless 

protocol (Emotiv, 2022). Thus, there is no cable that might cause problems during 

measurements. Its universal USB dongle is shown in Figure 4.4. 

 

 

Figure 4.4 USB dongle (Emotiv, 2022) 

 

It is important that the electrodes of the EEG device should have been hydrated 

enough for robust EEG data acquisition. Thus, the data measurement quality 

increases. With the BPF in the EEG measurement circuit in the device structure, the 

data is filtered in the frequency range of 0.2-45 Hz and the components at the 50 Hz 

and 60 Hz frequency bands are stopped with the notch filter (Emotiv, 2022). The 

sampling frequency of the obtained EEG signals is 128 Hz. The technical 

specifications of this device are given in Table 4.1. 

 

Table 4.1 Technical specifications of the Emotiv EPOC+ (Emotiv, 2022) 

Number of channels 14 

Sampling Method Sequential 

Sampling rate 128 SPS (2048 Hz internal) 

EEG resolution 14 bits 1 LSB = 0.51μV 

Bandwidth 0.2 - 45Hz, digital notch filters at 50Hz and 60Hz 

Filtering Built-in digital 5th order Sinc filter 

Dynamic range 8400 uV(pp) 

Coupling mode AC coupled 

Connectivity Proprietary 2.4GHz wireless 

Battery capacity LiPo battery 680mAh 

Battery life 12 hours 

Sensor material Ag/AgCl + Felt + Saline 
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4.1.2 Wireless Data Marker Button Unit 

 

The key moments, like emotional changes or FOG events, occurring during 

recordings can be marked in the data with different methods in the designed system. 

These methods that enable this process to be carried out are a software property 

defined in the recording program and a wireless button unit that provides hardware 

marking in the designed system. In hardware marking, when the user observes the 

key moments according to the recording purpose of the data, the button is pressed 

and this information, which is sent to the receiver unit by wireless protocol, is 

transmitted to the computer via the USB port and these moments are marked in the 

recorded data. The data transmitted between button and the receiver consists of logic 

“0” and logic “1”. The button and its receiver unit as communication system were 

designed and implemented. In Figure 4.5, the button and its receiver unit are given. 

 

 

Figure 4.5 (a) Wireless button, (b) Receiver unit (Personal archive, 2021) 

 

The components that consist of the wireless button are a push button, a battery, a 

wireless communication module, and a microprocessor. There are a wireless 

communication module and a microprocessor in the receiver unit. Microprocessors in 

the button and receiver unit are controlled by codes written in Arduino language. The 

block diagram of the unit that provides hardware data marking is given in Figure 4.6.  
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Figure 4.6 Block diagram of button system 

 

4.1.3 Acceleration Measurement System 

 

The data of the movement of the participant's limbs during walking are measured 

by this subsystem and then transmitted to the computer by the wireless method. The 

sensors used to measure movement data are Xsens MTw Awinda motion tracker 

sensors. This sensor provides angular velocity, acceleration, and magnetic field data, 

but only acceleration was recorded with the designed system. Communications of all 

sensors to each other, and to the computer are provided with the Awinda USB dongle 

(Xsens Technologies B.V., 2018). In Figure 4.7, the MTw motion tracker and the 

USB dongle are shown. 

 

Figure 4.7 (a) MTw motion tracker, (b) Awinda USB dongle (Xsens Technologies B.V., 2018) 

 

The usage of these sensors during measurement is easy because of their wireless 

communication. Each sensor is placed on the human body with a velcro strap. Hence, 

these devices are not harmful to the patients. There are 6 sensors for getting the 

acceleration data from the patient's arms, feet, and waist. The sensors were placed as 

it is shown in Figure 4.8. 
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Figure 4.8 Placements of motion tracker sensors on a person during measurements 

 

The sensors must be synchronized with the USB dongle to each other while 

measuring. The data transmission is done by a wireless protocol which is Xsens 

patented Awinda protocol (Xsens Technologies B.V., 2018). Acceleration data 

whose sampling frequency is 100 Hz for 6 sensors of X, Y, and Z axes are obtained 

and saved in real-time. The technical specifications of MTw Awinda are given in 

Table 4.2. 

 

Table 4.2 Technical specifications of the MTw Awinda (Xsens Technologies B.V., 2018) 

Performance for Acceleration 

Dimensions 3 axes 

Full scale ± 160 m/s2 

Alignment error 0.1 deg 

Orientation Performance 

Dynamic Range All angles in 3D 

Static / dynamic Accuracy of Roll/Pitch 0.5 deg RMS / 0.75 deg RMS 

Static / dynamic Accuracy of Heading 1 deg RMS / 1.5 deg RMS 

Physical, Electrical and RF Properties 

Communication interface Wireless 2.4GHz/USB 

Wireless transmit range of MTw indoor / outdoor ~20m / 70m 

Synchronization accuracy < 10s 

Battery runtime ~6 hours 

Housing dimensions of MTw 47 x 30 x 13 mm 

Operating temperature range 0°C – 50°C 

Weight of MTw 16 g 

Update rate for 6 MTw’s 100 Hz 
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4.1.4 Computers and Their Communication System 

 

The whole system equipment is controlled with two computers which are 

Computer-1 and Computer-2. Computer-1 is the main computer used to control the 

system, it receives data from the EEG headset and the button unit. Computer-2 saves 

data from motion tracker sensors. To carry out working two computers 

synchronously, Computer-1 sends signals to Computer-2. This one-way 

communication takes place over the communication unit in Figure 4.9. 

 

 

Figure 4.9 Unit for communication between computers (Personal archive, 2021) 

 

Two computers are connected to this unit using the UART communication 

protocol. Since the data transmissions of sensors in the system are done with wireless 

communication methods, to prevent data loss, this communication system was done 

with TTL serial communication over USB. Its block diagram is shown in Figure 

4.10. 

 

 

Figure 4.10 Block diagram of the communication system for computers 
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There are two micro-USB to UART TTL serial converter modules in this unit, and 

three used pins are RX, TX, and GND on these modules. For the one-way 

communication, the TX pin of the module connected to Computer-1 is attached to 

the RX pin of the module connected to Computer-2. These modules include a single 

chip CP2102 USB to UART Bridge. Technical specifications of this chip are given 

in Table 4.3.  

 

Table 4.3 Technical specifications of the CP2102 (Silicon Laboratories, 2017) 

Full speed 12 Mbps 

Baud rates 300 bps to 1 Mbps 

Receive buffer 576 byte 

Transmit buffer 640 byte 

Temperature range -40°C to +85°C 

 

4.2 Software Design 

 

With the used equipment and the written codes, it has been tried to realize the 

proper and synchronous operation of the system. The block diagram of the data 

acquisition in system is shown in Figure 4.11. The main computer, Computer-1 has 

control over the other devices. It gets data from the EEG headset by its USB dongle, 

gets button data by the receiver unit, and sends signals to Computer-2 through their 

communication unit. This management is provided by a code written in the Python 

programming language. Computer-2 receives data from motion tracker sensors and 

signals for synchronization from Computer-1, these data transfers are done with a 

code written in Matlab programming. 
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Figure 4.11 Block diagram of the data acquisition in the designed system 

 

Before starting the measurement process, the sponges on the EEG electrodes are 

moistened with solution. Then the device is attached to the participant's head, and the 

quality of the EEG data is controlled on Computer-1 with EmotivPRO software 

released by the producer of the EEG device. In Figure 4.12, an example of the 

quality control on EmotivPRO is given. The green and orange color on the electrodes 

states that the quality is good and almost good. However, the red and black colors 

represent that quality is poor and very poor. An average quality percentage is 

calculated by this software. If it is lower than 95%, the user replaces the electrodes 

for the correct positions, or remoisten the sponges. 
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Figure 4.12 EEG quality control with EmotivPRO 

 

On the other side, the six motion tracker sensors are synchronized with the code in 

Matlab on Computer-2. When it is ensured that the entire system and the participant 

are ready after the wireless button unit connections are done, the measurement 

process is started by the user via Computer-1. The flowchart of the Python-based 

software and graphical user interface (GUI) running on Computer-1 after the process 

starts is given in the Figure 4.13. With this program, real-time data measurement and 

saving processes are started and ended. 

 

 

Figure 4.13 Flowchart of the first GUI opened by starting the system main program on Computer-1 
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The first GUI given in Figure 4.14 is shown the screen of Computer-1. To be 

recorded EEG channels and the COM port of the receiver unit are selected. Also, 

measurement of the acceleration data is optional, and if it is going to be recorded, the 

"Record Movement data" checkbox and the COM port of the communication unit 

must be selected. After that, the “NEXT” button on the GUI is pressed to pass to the 

next step of the process. If there is an incomplete selection, an error message will pop 

up. 

 

 

Figure 4.14 Screenshot of the first interface of the main GUI on Computer-1 

 

In the next step, likewise the hardware, the software is also ready for measuring 

and recording. The GUI given in Figure 4.15 is shown on Computer 1. Before the 

user press the “Record” button, Computer-1 connects with other devices through 

COM ports selected on the first GUI. When the recording is started, the “Start 

Recording” string is sent from Computer-1 to Computer-2 through their 

communication unit. Then, the participant starts to do previously defined 

standardized tasks during measurement. 
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Figure 4.15 Screenshot of the main GUI on Computer-1 when recording has not been started, and the 

button has not been pressed yet 

 

Until the user stops the recording, whole sensors measure and send the data to the 

connected computer. EEG signals are measured by the potential voltage difference 

between the reference and sensor electrodes on the EEG headset. The data is 

transmitted wirelessly to the USB dongle of the Emotiv EPOC+ connected to 

Computer-1. The data with a sampling frequency of 128 Hz is recorded 

synchronously with the time data at the time of recording in a comma-separated 

values (CSV) file. The flowchart of the second step of the process is given in Figure 

4.16. 
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Figure 4.16 Flowchart of the operation of the data acquisition step 

 

The data of the wireless data marker button unit transmitted consists of logic “0” 

or logic “1”. If there is no moment to be marked during recording, since the button is 

not pressed, logic “0” input is sent from the button to the receiver connected to 

Computer-1. If there is a moment to be marked, the user presses the button and the 

logic “1” input is sent. This button data is also saved synchronously with other data 

in the CSV file containing EEG and time data.  

 

The 'Button not pressed' notice in Figure 4.17 (a), means that the button is not 

pressed, and the logic "0" data is transmitted. When the user presses the button to 



57 

mark the data at a key moment during the recording, the logic "1" data is transmitted 

and the 'Button pressed' notice is given on the GUI as in Figure 4.17 (b). 

 

  

Figure 4.17 Screenshot of the main GUI on Computer-1 when recording is started, (a) but the button 

has not been pressed yet, and (b) the button is pressed 

 

With another method added to the system program, data can be marked with a 

software property during recording. This property is enabled for measurements done 

for a specific purpose. In these measurements, the participants are shown images to 

trigger their emotions. The process and generated data of marking in these 

measurements are given in Figure 4.18. With this software property, the logical state 

of the marking data is "0" while the participant looks at the black screen. However, 

when an image is shown, the marking data is logic "1". 

 

 

Figure 4.18 Process of measurements showing images and logical state of marking data 

 

While the recordings in Computer-1 are performed in this way, if the recording of 

IMU data is selected in the first GUI, recordings are also done in Computer-2. The 
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six synchronized motion tracker sensors send their acceleration data with a sampling 

frequency of 100 Hz for the X, Y, and Z axes. These data are recorded in a matrix in 

the Matlab program on Computer-2 with time data in real-time. The flowchart of the 

program in Matlab program running on Computer-2 is given in Figure 4.19. 

 

 

Figure 4.19 Flowchart of the process on Computer-2 

 

After the measurement tasks are completed by the participant, the user presses the 

"Recording" button on the GUI (Figure 4.17) to end the data acquisition. After that, 

Computer-1 stops to get EEG and button data and saves the final CSV file. Then, it 

sends the “End Recording” string to Computer-2 via the UART communication unit, 

just as it was at the beginning before terminating the GUI on Computer-1. 
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Meanwhile, Computer-2 always checks if Computer-1 sends a message. When it 

receives the ending message, stops getting the acceleration data and saves the final 

matrix as a CSV file. Finally, connections between measuring devices, 

communication units, and computers are also terminated. 

 

The collected data is saved in a CSV file separately for each record. The CSV file 

on Computer-1 contains time in the first column, button marking data in the second 

column, and signals of the selected EEG channels starting from the third column to 

the last one. The CSV file on Computer-2 contains the time and acceleration data of 

the X, Y, and Z axes for the six sensors. 

 

The sampling frequency of the data in the CSV file in Computer-1 (𝐹𝑠1) is 128 

Hz. The size of the data in the CSV files in Computer-1 (𝑉𝐵1) can be calculated with 

Equation (4.1). Here, 𝑁𝑟1 and 𝑁𝑐1 represent the number of rows and columns, 

respectively. 𝑇𝑟𝑒𝑐1
 denotes the recording time in seconds. 𝐶𝑡 gives the number of 

columns including time data. 𝐶𝑏 is the number of columns including button data, and 

𝑁𝑐ℎ is the number of recorded EEG channels. The 𝐶𝑏 and 𝐶𝑡 variables are always 

equal to 1. 

 

𝑉𝐵1 = 𝑁𝑟1 × 𝑁𝑐1  = (𝑇𝑟𝑒𝑐1
× 𝐹𝑠1) × (𝐶𝑡 + 𝐶𝑏 + 𝑁𝑐ℎ) (4.1) 

 

Additionally, the size of the data in the CSV files in Computer-2 (𝑉𝐵2) can be 

calculated with Equation (4.2). Its sampling frequency (𝐹𝑠2) is 100 Hz. This time, 

𝑁𝑟2 and 𝑁𝑐2 represent the number of rows and columns on the data in Computer-2, 

respectively. 𝑇𝑟𝑒𝑐2
 denotes the recording time in seconds. 𝐶𝑡 gives the number of 

columns including time data. 𝑆𝑎 is the number of acceleration axes, and 𝑁𝑠 is the 

number of IMU sensors. The 𝐶𝑡 is always equal to 1, and 𝑆𝑎 is equal to 3. 

 

𝑉𝐵2 = 𝑁𝑟2 × 𝑁𝑐2  = (𝑇𝑟𝑒𝑐 × 𝐹𝑠2) × (𝑁𝑠 × (𝑆𝑎 + 𝐶𝑡)) (4.2) 
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5. CHAPTER FIVE 

IMPLEMENTATION OF THE SYSTEM 

 

In this chapter, the recording implementations done by designing the data 

measurement and recording system are mentioned. With this system, which includes 

more than one sensor, EEG recordings can be done for different study subjects, and 

in this thesis, three different recording implementations were done with the help of 

this property of the system, the topics of which are FOG detection in PD and emotion 

analysis. 

 

5.1 Experiment Performed While Displaying Images 

 

In this recording implementation, images from the literature were shown to the 

participants to trigger them emotionally. These images were selected from 

International Affective Picture System (IAPS) which develops stimuli for 

experimental research on emotion and attention (Lang et al., 2005). Examples from 

shown images are given in Figure 5.1. From the first row to the second row, images 

trigger feelings of happiness, awe, sadness, and confusion, respectively. 

 

 

  

Figure 5.1 Some of images from literature shown during the implementation to trigger emotions (Lang 

et al., 2005) 
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The process given in Figure 4.18 was applied during each measurement. While 

the signals from 14 channels were measured with the EEG device, the marking data 

generated by the button were also recorded. The marking was done by enabling the 

software property. During the recording, logic "0" was added to the marking data 

when the black screen was displayed, and logic "1" was added to the data when 

emotion-triggering images were shown. Participants initially stared at a black screen 

for 8 seconds. Then, the triggering images for 8 seconds, and a black screen between 

each image for 3 seconds was shown on the screen. 

 

   

Figure 5.2 Data acquisition done with the data recording system while showing triggering images 

(Yürdem et al., 2019) 

 

Photographs taken during a recording for this implementation are given in Figure 

5.2. During the display of the images, the lights of the room were turned off. With 

this, it is aimed that the participants can focus on the images more quickly and 

effectively. 

 

5.1.1 Properties and Samples of Data Acquired Dataset 

 

As a result of the measurements done for this implementation, the EEG dataset of 

5 people was recorded. In Table 5.1, an example data part is given. As it was 

mentioned, the data contains time, mark, and EEG of 14 channels. Time data 

includes hours to microseconds. The column called "MARK" is the button label data, 

that is, for this application, the moments when the images are shown are marked as 



62 

logic "1", and the moments when the black screen is shown are marked as logic "0". 

The other columns give the EEG data of the 14 channels currently recorded, but only 

7 of them are given in the table provided. 

 

Table 5.1 Example data from recording done while showing triggering images (Yürdem et al., 2019) 

TIME MARK AF3 F7 F3 FC5 T7 P7 O1 … 

14:21:34.118914 0 4092.24 4073.88 4112.13 4076.94 4092.24 4096.32 4094.28 … 

14:21:34.126909 0 4104.48 4078.98 4124.88 4083.06 4103.46 4101.93 4098.87 … 

14:21:34.135019 0 4107.03 4081.53 4130.49 4101.42 4109.07 4107.03 4097.34 … 

14:21:34.143017 0 4099.38 4081.02 4128.96 4080.0 4093.26 4098.87 4094.28 … 

14:21:34.149835 0 4092.75 4077.96 4124.37 4077.45 4087.14 4093.77 4093.77 … 

… … … … … … … … … … 

14:22:28.697284 1 4060.62 4084.59 4082.04 4070.82 4073.37 4090.71 4092.75 … 

14:22:28.705251 1 4068.27 4083.06 4082.04 4056.03 4085.1 4094.79 4095.81 … 

14:22:28.713273 1 4072.86 4082.04 4086.63 4048.38 4087.65 4100.91 4098.36 … 

14:22:28.721353 1 4067.76 4083.06 4087.14 4046.34 4073.88 4097.34 4094.28 … 

14:22:28.729322 1 4067.76 4087.14 4089.18 4052.97 4068.27 4096.32 4094.28 … 

… … … … … … … … … … 

 

5.2 Experiment Performed While Asking Questions 

 

Another emotion analysis was recorded using a different method with the 

designed system. This time, the participants were triggered by the questions asked. 

While participants were in a calm environment to trigger their emotions, other data 

were collected for emotion detection with given commands to them to imagine. 

Some of these commands are as follows: 

 

• Imagine where you feel most comfortable with your eyes closed. 

• Remember when you were very happy. 

• Think of something that makes you angry. 

• Think of a situation in which you are afraid. 

• Examine the details of a bird painting. 

 

An example photo from an implementation where the participant is asked to 

examine a bird painting is given in Figure 5.3. 
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Figure 5.3 Implementation from examining a bird painting, and the painting (Personal archive, 2019) 

 

During the commands were given and the participants performed the commands, 

these moments were marked in the data with the wireless button unit. This 

application was done with 4 people and data was recorded. 

 

5.2.1 Properties and Samples of Data Acquired Dataset 

 

The recorded data consists of time, mark, and EEG data of 14 channels, as in the 

previous implementation in Table 5.1 where emotions were triggered by images. 

 

5.3 Experiment Performed for Neurological Disorder Detection 

 

In this study, which aims to determine the disease from the statistical properties of 

EEG data as well as emotion analysis, measurements were done with PD patients 

with FOG symptoms. The implementation, which was carried out in the company of 

a neurologist, was done by recording the EEG and acceleration data with the 

designed system while the patients were performing specifically determined tasks. 

The photographs of the whole data acquisition system equipment before different 

measurements are given in Figure 5.4. 
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Figure 5.4 Data collection system before measurements done at different times (Personal archive, 

2019) 

 

The first thing to do at the beginning of the implementation is to hydrate the 

electrodes of the EEG device, as mentioned in chapter four. Then the EEG device 

and motion tracker sensors are connected to the computers. The devices are then 

worn by the patient with the help of the person who controls the system. After the 

electrodes of the EEG device are attached as indicated in the use of the device, the 

motion tracker sensors are placed on the body parts shown in Figure 4.8 with velcro 

strap. The first (left) of the photographs given in Figure 5.5 clearly shows the use of 

the EEG device and the second (right) clearly shows the use of motion sensors. 
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Figure 5.5 Sensors on the patients (Personal archive, 2019) 

 

The button which is used to mark the FOG events is controlled by an experienced 

neurologist. In Figure 5.6, an example photo of the use of the wireless button 

providing data marking by the experienced neurologist is given. 

 

 

Figure 5.6 Using the button for data marking with an experienced neurologist (Personal archive, 2019) 

 



66 

As in the implementation procedure, after the quality of the signals of the sensors, 

motion trackers and EEG device is checked, the sitting patient stands up with the 

start command of the doctor and starts walking on parkour to perform the tasks. At 

that time, the user at the computers of the system starts the recording. The tasks that 

the PD patients were asked to do are given as follows, respectively: 

 

• The patient stands up at the starting point. 

• Starts to walk on a straight road for at least 5-10 meters. 

• Passes through a narrow entrance such as a doorway. 

• A few meters later, rotates 360 degrees around herself/himself slowly. 

• Turns back and passes through the same narrow entrance. 

• Walks up to 2 meters. 

• Rotates 360 degrees around herself/himself several times. 

• Walks back to the starting point. 

 

It is aimed to trigger the patients and switch to the FOG state with the tasks such 

as passing through the door and turning. Thus, more data will be available for FOG 

analysis when the patient shows symptoms of FOG. The same procedure is applied 3 

or 5 times depending on the patient's condition. Sample photographs from the 

implementations performed with PD patients is given in Figure 5.7. 

 

The experienced neurologist determines if it is the FOG state or not. If the patient 

is frozen while walking, it means that the patient might be in the FOG state. If the 

neurologist decides that the patient is not in a FOG state, the button is not pressed, 

and the “0” string is sent from the button to the receiver unit which is connected to 

Computer-1. However, if the patient is in the FOG state, then the neurologist presses 

the button until the patient is no longer in the FOG state. During the button is 

pressed, the "1" string is sent.  
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Figure 5.7 Sample images from measurement processes (Personal archive, 2019) 

 



68 

This study, which was carried out within the scope of the BAP Project approved 

by the ethics committee, was carried out by a team mostly doctors. Within the scope 

of this Dokuz Eylül University BAP project, numbered 2018.KB.SAG.005, the data 

of healthy individuals as well as PD patients were measured. Measurements were 

taken from 18 PD patients and 10 healthy individuals. Although detailed 

investigations were done in the BAP project by other data analysis team. This thesis 

study only includes basic statistics and spatial studies on the EEG data received in 

the BAP project and independent fundamental studies about emotions. 

 

5.3.1 Samples of Data Acquired for Disorder Detection 

 

There are two data files for each measurement, the first CSV file includes EEG, 

button, and time data, the second file includes acceleration with time data. A sample 

CSV file part was shown in Table 5.1. The first column is the time data, the second 

column shows the button data which says if the patient is in FOG. The patient is in 

FOG if the button value is 1, but the patient is not in FOG state if the value is 0. The 

rest of the columns gives the EEG data. 

 

In Figure 5.8, samples from EEG signals changing over time in seconds are 

shown on plots. There are fourteen channel EEG signals. Also, the FOG events 

which are determined by an experienced neurologist are indicated in this figure. 

From this plot, it can be said that the patient was in FOG state for three times. The 

first lasts from about the fifth to the twelfth second, the second lasts from about the 

fifteenth to the twentieth second, and the final one lasts from about twenty-fourth to 

the thirty-third second. 
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Figure 5.8 Sample EEG signals with FOG events 

 

An example of the data obtained from six motion tracker sensors is given in Table 

5.2, from the data of only three sensors. In this data, which is a part of the CSV file, 

there are time information for all six sensors, and acceleration data of three axes 

consisting of X, Y, and Z, respectively. These three sensors are the ones which were 

on the right wrist, left ankle, and left wrist. 

 

Table 5.2 A part of a sample CSV file of acceleration data for 6 sensors 

Right Wrist Left Ankle Left Waist … 

Time 
X 

axis 

Y 

axis 

Z 

axis 
Time 

X 

axis 

Y 

axis 

Z 

axis 
Time 

X 

axis 

Y 

axis 

Z 

axis 
… 

09:49:31.460 7.37 -1.43 6.26 09:49:31.429 9.62 1.72 -0.66 09:49:31.460 -0.09 2.89 9.71 … 

09:49:31.492 7.38 -1.58 6.18 09:49:31.476 9.62 1.73 -0.70 09:49:31.492 -0.08 2.83 9.70 … 

09:49:31.507 7.46 -1.65 6.22 09:49:31.507 9.62 1.73 -0.70 09:49:31.507 -0.08 3.02 9.75 … 

09:49:31.523 7.40 -1.45 6.31 09:49:31.523 9.60 1.70 -0.67 09:49:31.523 -0.09 3.08 9.76 … 

09:49:31.539 7.29 -1.43 6.37 09:49:31.523 9.62 1.72 -0.66 09:49:31.539 -0.16 3.00 9.75 … 

09:49:31.554 7.27 -1.47 6.38 09:49:31.539 9.62 1.72 -0.66 09:49:31.554 -0.13 2.82 9.64 … 

09:49:31.554 7.24 -1.50 6.32 09:49:31.554 9.63 1.70 -0.65 09:49:31.570 -0.13 2.81 9.73 … 

09:49:31.570 7.28 -1.54 6.33 09:49:31.570 9.60 1.70 -0.67 09:49:31.570 -0.16 2.83 9.72 … 

… … … … … … … … … … … … … 
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Figure 5.9 Sample acceleration data with FOG events 

 

In Figure 5.9, the acceleration data recorded by motion tracking sensors which are 

in the same time interval EEG data in Figure 5.8 are given. The acceleration data in 

the X, Y, and Z axes were obtained from the six sensors connected to the wrists, 

ankles, and waist. The FOG events occurring simultaneously can be synchronized 

using the time data in both the EEG and acceleration data. Although there is no 

button data in the acceleration data, it can be observed that the FOG events and the 

acceleration data are synchronized in this plot. 
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6. CHAPTER SIX 

APPLICATION AND RESULTS 

 

Within the scope of this thesis, different analysis studies were carried out with the 

found and recorded datasets. The general purpose of these studies is to detect 

emotions or disorders with the changes in the activities of the brain regions. 

Regarding emotion, the following studies were accomplished using the DEAP 

dataset in the literature: 

 

• General analysis of the dataset. 

• Evaluation of music video ratings of participants. 

• Classifying the music videos. 

• Comparison of time and frequency domains of signals. 

• Examining the distribution of the statistical changes in EEG signals for 

different emotions and participants. 

• Study of regional changes in the brain during emotions. 

• Study of changes in the brain over time during emotions. 

• Examining the effect of features on the emotion detection. 

• Examining the effect of brain waves on the emotion detection. 

• Developing an algorithm for informative electrode selection. 

 

The studies carried out with the recorded datasets by using the designed data 

acquisition system, consist of the following topics: 

 

• Preprocessing the signals recorded by the designed system. 

• Examining the changes in concentration and anxiety levels for different cases. 

• Emotion classifications with basic machine learning methods. 

• Testing results from the previous analysis and the informative electrode 

selection algorithm. 

• Developing a GUI for EEG analysis and neurological disorder detection. 

• Detecting emotion and neurological disorder by thresholding method. 
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The studies described towards the end were conducted to determine whether 

neurological disease symptoms are detected using mental state and emotion. FOG 

states were investigated under the knowledge of mental state levels and emotional  

changes. 

 

The applications were accomplished with Python and Matlab programming. The 

application and results of all these studies are explained in the following chapter. 

 

6.1 Emotion Analysis with the Dataset in the Literature 

 

The previously described DEAP dataset was used in this analysis. The dataset 

consists of various types of biomedical signals, but preprocessed EEG signals from 

32 channels were used in this thesis. Data were recorded from 32 participants while 

they were watching 40 different one-minute music videos. The sampling frequency is 

128 Hz, and it was stated that artifacts were removed with a BPF with cut-off 

frequencies of 4 and 45 Hz in the preprocessing (Koelstra et al., 2011). In Figure 6.1, 

electrode positions of 32 channels of the dataset are given. 

 

 

Figure 6.1 The electrodes positions in the DEAP dataset 

 

This dataset also includes the ratings for emotions given by the participants under 

the influence of the music videos, and the average and standard deviation of all 

ratings. In the following sections, the studies done with this dataset and the obtained 
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results are given. First, the videos are classified into 2D emotions, and the reliable 

participants are determined by their rating results. Then, the effects of emotions on 

EEG signals in the time and frequency domains are investigated. As a result of the 

analyzes, studies were carried out for emotion detection. 

 

6.1.1 Analyzing Emotion Rating Results 

 

The forty music videos in this dataset were classified into LA, HA, LV, HV, 

LALV, LAHV, HALV, and HAHV emotions. For this classification, the arousal and 

valence emotion rating results were used. Both arousal and valence ratings ranged 

from 1 to 9. As an example, Figure 6.2 shows only two participants' ratings for 40 

music videos. The numbers in these distributions indicate the video number, and its 

position consists of valence and arousal values. 

 

 

Figure 6.2 Ratings of 2 participants for 40 videos 

 

As observed from this rating distribution, different ratings are given by the 

participants for the same video. In order not to cause erroneous results in studies, 

reliable participants were tried to be determined to be included in the analysis. For 

this purpose, the average arousal and valence emotion ratings in the dataset were 

determined as the reference, and then it was checked whether the users rated close to 

these ratings. Arousal and valence emotions were examined separately, and the 

threshold value was set to 5. For each video with close ratings, the participant was 

counted as having rated correctly, and the total number of correct ratings was 
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checked in the last step. For example, if the average valence rating of the checked 

video is less than 5, the participant must also have rated less than 5. As there are 40 

videos in total, participants with more than 20 correct ratings for both emotions were 

determined as reliable participants. Only these participants were included in the 

analyses. 

 

Table 6.1 Number of correct ratings of all participants for each emotion 

Participant 

Correct 

number of 

ratings for 

arousal 

Correct 

number of 

ratings for 

valence 

Participant 

Correct 

number of 

ratings for 

arousal 

Correct 

number of 

ratings for 

valence 

1 23 22 17 32 33 

2 30 18 18 31 27 

3 32 26 19 35 33 

4 30 14 20 37 23 

5 28 25 21 31 20 

6 28 27 22 33 24 

7 30 29 23 29 22 

8 32 28 24 33 19 

9 29 24 25 31 22 

10 34 34 26 30 21 

11 34 31 27 24 19 

12 33 27 28 33 32 

13 31 26 29 33 29 

14 34 33 30 29 20 

15 36 27 31 28 31 

16 23 24 32 32 18 

 

In Table 6.1, the correct number of ratings for each emotion of all participants is 

given. Participants who did not have more than 20 correct ratings for either emotion 

and were not included in the analysis are 2, 4, 24, 27, and 32. 

 

6.1.2 Emotion Classification of the Music Videos 

 

The music videos are classified for 1D and 2D emotions for ease of analysis. The 

average ratings were used for this classification. Since ratings ranged from 1 to 9, 

between 1 and 5 were classified as low, and between 5 and 9 were classified as high 

arousal or valence. Figure 6.3 shows the average rating distribution of the videos and 

their 1D and 2D emotion classes.  



75 

 

Figure 6.3 Emotion classes of videos according to ratings 

 

When emotion classification was done from this distribution as 1D, the videos 

were examined separately for both emotions. All videos with arousal ratings less than 

5 were classified as LA, while all the remaining videos with a rating greater than 5 

were classified as HA. For valence emotion, all videos with a rating less than 5 are 

classified as LV, while others are classified as HV. 

 

Accordingly, in the 2D emotion classification, the videos were classified 

according to both emotions. Arousal and valence values less than 5 were classified as 

LALV, both greater than 5 as HAHV, only arousal greater than 5 were classified as 

HALV, and only those with valence greater than 5 were classified as LAHV. The 

emotion classes of all videos are given in Table 6.2. 

 

Table 6.2 Emotion classes of each music videos 

1D Emotion Videos in this class 2D Emotion Videos in this class 

LA 11-30 LALV 21-30 

HA 1-10 & 31-40 LAHV 11-20 

LV 21-40 HALV 31-40 

HV 1-20 HAHV 1-10 
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However, it was observed that there was still a need for representative videos to 

be used as a reference for emotion analysis. For this reason, a video selection study 

was conducted for all emotions. The video closest to the center of each emotion 

region was chosen as the representation video of that emotion. In Figure 6.4, the 

flowchart of the representative music video selection is given. 

 

 

Figure 6.4 Flowchart of representative video selection 

 

As given in this flowchart, first, the center points of these emotions were 

determined. The determined points are given in Table 6.3.  

 

Table 6.3 Center point of each emotion region 

Emotion Valence Arousal 

LA 5 3 

HA 5 7 

LV 3 5 

HV 7 5 

LALV 3 3 

LAHV 3 7 

HALV 7 3 

HAHV 7 7 

 

After that, the distances between each video and the center points were calculated 

with the Euclidean distance in Equation (6.1). For this case, point 𝑎 in the equation 

was determined as the center, and the valence value (𝑎1) and arousal value (𝑎2) are 

as in Table 6.3 for the relevant emotion. Point 𝑏 is the average rating of the music 

video, and the average valence value is 𝑏1 while the average arousal value is 𝑏2. 

 

𝑑(𝑎, 𝑏) = √(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2 (6.1) 
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Finally, for each emotion, the video with the least distance from the relevant 

region was chosen as the representative of that emotion. The following equations 

provide mathematical representations of these video selection steps. In Equation 

(6.2), the main formula of the selection is given. 𝑛 is the emotion (𝑛 = LA, HA, LV, 

HV, LALV, LAHV, HALV, HAHV), 𝑣 is the video number (𝑣 = 1, 2, …, 40). The 

variables 𝐴𝑣 and 𝑉𝑣 are the average arousal and valence rates of videos, and their 

formulas are given in Equations (6.3), and (6.4), respectively, where 𝑝 is the 

participant number. 𝐴𝑐𝑛
 and 𝑉𝑐𝑛

 are the center values of relevant arousal and valence 

emotion, (𝐴𝑐𝑛
, 𝑉𝑐𝑛

) = [(5, 3), (5, 7), (3, 5), (7, 5), (3, 3), (3, 7), (7, 3), (7, 7)]. 

 

𝑣𝑖𝑑𝑒𝑜𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑣

√(𝐴𝑐𝑛
− 𝐴𝑣)

2
+ (𝑉𝑐𝑛

− 𝑉𝑣)
2
 (6.2) 

𝐴𝑣 =
∑ (𝑎𝑟𝑜𝑢𝑠𝑎𝑙 𝑟𝑎𝑡𝑒)𝑣𝑝

32
𝑝=1

32
 (6.3) 

𝑉𝑣 =
∑ (𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒)𝑣𝑝

32
𝑝=1

32
 (6.4) 

 

Table 6.4 Selected representative videos for each 1D and 2D emotions 

Emotion Selected representative video Emotion Selected representative video 

LA 16 LALV 24 

HA 36 LAHV 18 

LV 38 HALV 35 

HV 11 HAHV 5 

 

After performing these procedures, the numbers of the videos assigned for the 

relevant emotions are given in Table 6.4. These videos are only used to represent an 

emotion when it is desired to be analyzed. 

 

6.1.3 Comparison of EEG in Time and Frequency Domain for Participants 

 

Examples of EEG signals from the DEAP dataset are reviewed here. When the 

signal of a participant's CP6 channel was filtered with a band-pass filter for the music 

video number 12 representing the LAHV emotion, the signals in the time domain of 
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theta, alpha, beta, and gamma brain waves were obtained. By applying the FT to 

these signals with Equation (3.12), the amplitude values of the frequency 

components in the frequency domain were obtained. 

 

 

Figure 6.5 Comparison of brain waves in time and frequency domains 

 

The signals of waves in time and frequency domains are given in Figure 6.5. From 

this comparison, it was observed that as the frequency value in the brain waves 

increased, the signal amplitude and power decreased. 

 

 

Figure 6.6 Comparison of participants' time and frequency domains of CP6 channel for 12th video 
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In Figure 6.6, three different participants are compared in time and frequency 

domains for the same video and channel in Figure 6.5. Participant b has a much 

higher amplitude in the time domain overall than the other participants. In the 

differences in the frequency domain, it is observed that participant-a generally has 

the lowest amplitudes in all bands and participant-b has the highest amplitudes in all 

bands. 

 

6.1.4 Plotting the distribution of inter-channel EEG signals in Matlab 

 

The amplitude distributions of the electrodes were formed with a code written in 

Matlab. For this, firstly, an 11x11 matrix was defined, and its element values were 

determined as given in the Figure 6.7. The value of the elements corresponding to the 

white cells is zero, the value of the light blue ones is equal to the proportional 

average value of the surrounding electrodes, and the dark blue ones are equal to the 

own value of the electrode at that point. 

 

R
o

w
s 

11                          

10                          Equal to zero 

9                         

8                          

7                          Equal to the value of 

the corresponding 

electrode 6                       
  

5                          

4                          Equal to the average 

value of the 

surrounding electrodes 
3                         

2                         

1                          
  1 2 3 4 5 6 7 8 9 10 11    
  Columns    

Figure 6.7 The electrodes positions and values for the EEG distribution plotting 

 

Then, the effect of multiplying the average electrode value in the light blue points 

by a ratio to adjust the color transition between the dark blue and light blue points 

was examined. The change of this multiplying ratio, from 0 to 1, gives various 

distributions as in Figure 6.8. Since the observation of the distributions is better when 

the multiplication ratio is 1, the distributions in this thesis are drawn with this value. 
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Figure 6.8 Changes in the distribution for different multiplying ratios 

 

6.1.5 Emotion Analysis with Distribution of EEG in Time 

 

After the emotions of the videos were determined, emotion analyzes were 

performed with EEG signals. First, it was desired to determine which region of the 

brain is more active or not for different emotions. In the first analysis, EEG 

amplitude changes were examined for only four representative videos representing 

2D emotions. At this stage, the data has not been processed again because it has 

already been preprocessed as was told in the description of the data (Koelstra et al., 

2011). 

 

𝑋𝑘,𝑙 =
∑ ∑ 𝑥𝑝𝑣𝑘

(𝑡)𝑙×𝐹𝑠×𝑇𝑝
𝑡=(𝑙−1)×𝐹𝑠×𝑇𝑝)+1

32
𝑝=1

𝐹𝑠 × 𝑇𝑝
 (6.5) 

 

The amplitude averages of the EEG signals of 32 participants at ten-second 

intervals for each channel for representative videos were calculated by Equation 

(6.5). In this equation, the 𝑘 value is the channel number (𝑘 = 1, 2, …, 32), the 𝑁 

value is the length of the signal obtained from each channel, the 𝐹𝑠 is the sampling 

frequency, the 𝑇𝑝 variable is the duration of the time interval, the 𝑣 variable is the 

selected video number(𝑣 ∈ {𝑣𝑖𝑑𝑒𝑜𝐿𝐴𝐿𝑉, 𝑣𝑖𝑑𝑒𝑜LAHV, 𝑣𝑖𝑑𝑒𝑜HALV, 𝑣𝑖𝑑𝑒𝑜HAHV}), the 𝑙 

is the number of time intervals (𝑙 = 1, 2, … , ⌊
𝑁

𝐹𝑠×𝑇𝑝
⌋), 𝑥𝑝𝑣𝑘

(𝑡) signal is the signal of 

the 𝑝th participant in the time interval selected from the EEG signal recorded from 

the 𝑘th channel in the 𝑣th video, and 𝑋𝑘,𝑙 is the average EEG amplitude of channel 𝑘 

for the 𝑙th time slot. 
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Figure 6.9 Flowchart of the first emotion analysis 

 

In order to observe the changes in time, the colored distribution image scaled 

according to the amplitude was drawn. Then, the changes were observed for time 

intervals of ten seconds (𝑇𝑝 = 10). Flowchart of this analysis is given in Figure 6.9. 

With this analysis, the change in the mean EEG amplitude distributions of 4 videos 

over time was calculated and the scaled-colored distribution image given in Figure 

6.10 was drawn and examined. The distributions in the first row belong to the music 

video number 5 representing the HAHV emotion, 18 representing the LAHV 

emotion in the second row, 24 representing the LALV emotion in the third row, and 

35 representing the HALV emotion in the last row. 

 

 

Figure 6.10 Time variation of mean amplitude distributions for selected videos 

 

When these distributions were examined within themselves, according to the 

change in time, it has been observed that the amplitude sizes of some regions have 

increased or decreased partially, but there has not been a great change among the 
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active regions for some videos. For example, in the 35th video, there are no visible 

change between electrode amplitudes over time. In the 5th video, the average EEG 

amplitude in the frontal lobe also does not change much in 1-30 s interval, but in the 

31-40 s interval, there is an increment, especially in the AF4 and F8 electrodes 

(Figure 6.1). Then again at the same points a decrease occurs. As can be seen from 

the color scale, the average value drops from about 0.4 to 0.2. 

 

In the 18th video, a change is observed especially in the junction region of the 

frontal and parietal lobes, that is, in the middle region of the distribution pattern. 

From the color scale, while the average value of this region was red, that is, more 

than 0.2 in the 1-10 s interval at the beginning, it decreased below 0.2 in the 11-20 s 

interval and approached the green color. In other words, the average EEG signal 

amplitude value decreased. In the following periods, it can be understood that it 

passes very little by approaching the 0.2 value again. However, there was no increase 

as much as the 1-10 s interval. 

 

6.1.6 Emotion Analysis with Distribution of EEG on the Brain 

 

In this analysis, the flowchart of which is given in Figure 6.11, the amplitudes of 

the average EEG signals of each of the 40 videos were compared regardless of time. 

When 𝑇𝑝 = 60 seconds, that is, a single time frame (𝑙 = 1) from the first to the last 

moment, the average value of the EEG channels of all participants was calculated by 

Equation (3.4). Then, the average amplitude distributions of the channels were 

plotted and interpreted. Afterward, the EEG averages obtained separately for 4 

emotions from all participants in the related emotion group of the video were 

calculated and the distribution was drawn. From this drawing, it was tried to 

determine the active regions and informative electrodes according to the 

distributions. 
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Figure 6.11 Flowchart of the second emotion analysis 

 

The color scale in Figure 6.12, where the average distributions are given for all 

videos, is valid for all distributions. When the average variance of EEG between the 

videos were compared, it was observed that different activities took place for each 

video. For example, while the amplitude value in all channels is very low and almost 

0.2 for the 3rd video, the 12th video has electrodes with the highest amplitude value 

of approximately 1.2. 

 

 

Figure 6.12 Average EEG amplitude distributions for all videos 
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Then the videos representing the emotions were compared. Just for the arousal, it 

can be said that while the average value of all electrodes is close to 0.5 in the 16th 

video representing the LA emotion, it is close to 0.25 in the 36th video representing 

the HA. For the valence, an increase in EEG amplitudes for HV was observed when 

28 videos representing LV were compared with 11 videos representing HV. 

 

To compare the emotions in the 2D emotion model, the EEG signal amplitudes 

obtained in 35th video, which is representative of HALV emotion, are higher than 

5th video representing HAHV. It was observed that for video 24 representing LALV 

emotion and 18th video representing LAHV, almost all signals have lower amplitude 

than the 5th and 35th videos. 

 

 

Figure 6.13 Average EEG amplitude distributions for each emotion 

 

Afterward, the videos were grouped according to their emotional classes in Table 

6.2. The average of the measured EEG signals during the videos in each emotion 

group was calculated. Then the amplitude distributions were plotted as in Figure 

6.13. 

 

Table 6.5 Comparison of channels and amplitudes for emotions 

 HAHV LAHV LALV HALV 

The highest 

amplitude on EEG 

Electrode AF4 Oz F4 Fp2 

Amplitude 0.1382 0.1717 0.2094 0.2354 

Second highest 

amplitude on EEG 

Electrode F7 PO4 FC2 T8 

Amplitude 0.1377 0.1715 0.2022 0.1917 

 

Then, the amplitude comparison of the emotions was done as a result of these 

distributions. First, it was observed that the highest amplitude signal was measured 

from the Fp2 electrode in the HALV sense. Electrodes with the highest amplitude for 
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other emotions were electrode F4 for LALV emotion, Oz for LAHV, and AF4 for 

HAHV. When the average signals obtained are compared, the electrode information 

with the highest first and second average values for emotions is given in Table 6.5. 

 

6.1.7 Personalized Informative Electrode Selection for Emotion Detection 

 

In the final analysis, done with the DEAP dataset, it was tried to detect emotion in 

a person based by selecting informative features and electrodes. This time, in 

addition to LALV, LAHV, HALV, and HAHV emotions, music videos were grouped 

for each arousal (LA or HA) and valence (LV or HV) emotion. Regions of these 

emotions in the 2D emotion model were shown in Figure 2.6, and the number of 

videos in each emotion class is given in Table 6.2. After that, an algorithm was then 

developed by comparing the features, brain waves, and electrodes with various 

analyzes. Detailed information about these stages and the results are given in this 

section. 

 

6.1.7.1. Comparison of Features 

 

As a result of the literature research, the mostly used features that are mean, 

standard deviation, variance (activity), mobility, and complexity were calculated for 

all channels with Equations (3.4), (3.5), (3.6), (3.9), (3.10), and (3.11). Then, the 

average value of the features obtained from the videos that were determined to 

trigger the same emotions were calculated and the results were observed for each 

channel. 

 

First of all, the mean value feature was examined. For this, the average value of 

the EEG signals of all channels of the previously determined participants was 

calculated for the representative videos given in Table 6.4. The calculated mean 

values are given in Table 6.6. In this table, the values of the EEG channels with the 

highest value for each emotion are written in bold, and the emotions with the highest 

value for each EEG channel are highlighted in gray. 
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Table 6.6 Comparison of mean value feature with emotions for all electrodes 

Electrodes LA HA LV HV LALV LAHV HALV HAHV 

Fp1 0.1278 0.0397 -0.0496 0.0813 0.0486 0.3083 0.1358 -0.0122 

AF3 -0.0259 -0.2341 0.0061 0.0452 -0.0801 -0.6373 -0.3063 -0.1875 

F3 0.1631 -0.2118 0.1109 0.1645 -0.3291 -0.6135 -0.1699 -0.2859 

F7 -0.4037 0.151 -0.1326 -0.0968 0.053 0.2001 0.1297 0.6781 

FC5 0.0956 -0.2399 -0.062 0.0882 -0.1497 -0.241 -0.2447 -0.3216 

FC1 -0.0077 -0.1162 0.0363 0.0677 -0.0488 -0.2434 -0.0421 -0.1356 

C3 -0.0774 -0.1017 0.018 -0.0212 -0.0687 -0.2392 -0.1749 0.016 

T7 -0.1081 0.1619 -0.0417 -0.0204 0.1554 -0.1107 -0.0333 0.224 

CP5 0.0247 0.1451 0.0175 -0.2526 0.3362 0.4075 0.3375 0.1016 

CP1 -0.0768 0.1132 0.0019 -0.0415 -0.0754 0.1196 0.1467 -0.0741 

P3 0.061 -0.016 0.0568 -0.0061 -0.0225 -0.1388 -0.1567 -0.1555 

P7 0.1343 -0.1607 -0.056 0.1072 -0.0736 -0.0158 -0.1445 -0.2428 

PO3 0.0979 -0.1028 -0.0768 0.1604 -0.1667 -0.3155 -0.1723 -0.1506 

O1 -0.0314 0.2525 -0.0727 -0.2412 0.2238 0.5891 0.3846 -0.1305 

Oz 0.0549 -0.145 0.0029 0.0809 -0.1307 -0.2857 -0.229 -0.2896 

Pz -0.0725 0.1034 0.1008 -0.0477 0.0453 0.0007 0.0026 0.0466 

Fp2 0.1117 0.0651 0.0741 -0.1009 0.2839 0.2779 0.1762 0.0398 

AF4 0.065 0.279 0.0393 0.0123 0.1893 0.2696 0.2281 0.3329 

Fz 0.0503 -0.2944 -0.09 0.218 -0.0825 -0.3608 -0.2657 0.0478 

F4 0.2923 0.0447 -0.0439 0.2789 -0.1185 0.2946 0.1499 -0.2161 

F8 -0.2048 0.0467 0.0871 -0.1312 0.0959 0.0254 0.1005 0.2769 

FC6 -0.2553 -0.0437 -0.0976 -0.1325 0.0796 -0.0352 -0.1991 0.1742 

FC2 -0.001 -0.0132 -0.0191 0.1532 -0.1074 -0.5414 -0.2858 0.0481 

Cz -0.2225 0.1384 0.0727 -0.1363 0.0292 0.057 0.0905 0.3134 

C4 -0.1517 -0.1669 -0.0266 -0.0721 0.0424 -0.1352 -0.1547 0.312 

T8 0.0979 0.1632 0.069 -0.0634 0.1829 0.303 0.1496 -0.1495 

CP6 -0.0383 -0.0874 -0.0951 0.0368 -0.0075 0.2163 0.0112 0.2848 

CP2 -0.0869 0.1326 0.0075 -0.0915 -0.084 0.3232 0.2056 0.1665 

P4 0.0774 -0.205 0.0139 0.0742 -0.1932 -0.267 -0.1933 -0.1144 

P8 0.0376 0.0696 0.0472 -0.0835 0.0702 0.0061 -0.0044 -0.1635 

PO4 0.2118 0.1286 0.0796 0.0442 -0.1312 0.5125 0.3287 -0.1805 

O2 0.0607 0.1045 0.0223 -0.0744 0.0338 0.2696 0.1996 -0.2525 

 

The results from the table are examined within 1D and 2D emotions and between 

electrodes. First of all, from the values in bold, for arousal emotion, the F4 electrode 

has the highest value for LA emotion, while the AF4 electrode has the highest value 

for HA. In other words, it was determined that there was a change in the mean values 

of the EEG signals for the arousal emotion at approximately very close points in the 

right frontal lobe. for valence emotion, the F3 electrode for the LV and the F4 

electrode for the HV emotions had high values. Here, it was observed that there was 
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a change between the right and left sides of the frontal lobe. When the 2D emotions 

were examined, the O1 electrode had the highest value for both LAHV and HALV 

emotions. The highest mean value was CP5 for LALV emotion and F7 for HAHV. 

As a result, it was observed that there was no distinguishing between LAHV and 

HALV for the mean value. However, it was determined that there were changes 

between the frontal and parietal lobes for LALV and HAHV emotions. 

 

The inference obtained from the values highlighted in gray is that the HV emotion 

between LV and HV has the highest mean value in 7 different electrodes, and among 

2D emotions, LAHV and HAHV have the highest mean value in 8 different 

electrodes. This can mean that the mean value feature among all electrodes has a 

higher value for the HV emotion in general. 

 

The average values of the standard deviation, variance, activity, mobility and 

complexity values obtained from the EEG signals were calculated for all emotions, 

and the drawings were done in order to compare the features. 

 

  

Figure 6.14 Comparison of standard deviation feature 



88 

In Figure 6.14, the calculated standard deviation values of each channel for each 

emotion are shown. It was determined that the P3, Pz, and PO3 electrodes would not 

be useful in detecting arousal emotion, P3, Pz, PO3, O2, P8, and CP1 electrodes in 

valence emotion, and P3, Pz, and PO3 electrodes in 2D emotion as the low value of 

the standard deviation would indicate very low changes in those signals. 

 

There is also one more signal plotted in each subplot. This signal is the mean 

value of the standard deviations for the corresponding emotion. It has been observed 

that this signal can aid in the classification of 1D emotions, and plots have been done 

for 1D signals only from here on out. 

 

 

Figure 6.15 Comparison of Hjorth parameters for arousal emotion 

 

After that, the signals of each feature for arousal emotion only were plotted as in 

Figure 6.15. Based on these results, it was desired to classify, and the electrodes in 

which the highest differences between the LA and HA feature values in the same 

electrode were observed for each property were tried to be determined. The 

electrodes for which this difference is greatest are Cz for standard deviation (Figure 

6.14), F7 for activity, T7 for mobility, and Cz for complexity.  
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In Figure 6.16, the drawings for the same features are given for the valence 

emotion this time. First of all, it has been observed that the mean value signals take 

almost the same value as the arousal signals. Thus, it was thought that classification 

can be done using a single mean value signal. Before that, the electrodes observed to 

have the highest difference between LV and HV values are PO4 for standard 

deviation (Figure 6.14), F7 for activity, and Fp1 for mobility and complexity.  

 

 

Figure 6.16 Comparison of Hjorth parameters for valence emotion 

 

However, the majority information obtained from the participants was used 

instead of average values for emotion classification. For this, the standard deviation 

and Hjorth parameters of all channels in the selected videos for LA, HA, LV and HV 

were calculated. The differences between LA-HA and LV-HV was calculated and 

the electrode with the highest difference was chosen. After performing this operation 

for all participants, the most selected channel for each feature was selected. To 

determine which value is higher during classification, the mean value was calculated 

from the relevant electrode for LA-HA and LV-HV. The electrodes determined for 

both emotions, the mean values and the higher emotions are given are in Table 6.7. 
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Table 6.7 Features determined to have the highest value difference relative to the majority 

Emotion Highest difference obtained Standard deviation Activity Mobility Complexity 

Arousal 

Electrode FC5 Fp2 FC5 FC5 

Mean value 10.28 2530 0.858 1.787 

Higher emotion HA HA HA HA 

Valence 

Electrode Fp2 Fp2 Fp1 Fp1 

Mean value 34.24 1077 0.73 1.916 

Higher emotion LV LV LV LV 

 

In the classification, the steps given in the flowchart in Figure 6.17 were applied. 

These results, which were obtained from the data of all participants, were tried and 

the percentage of accuracy was obtained. The features determined for the electrodes 

given in Table 6.7 were calculated for all participants and it was checked whether the 

feature value was lower or higher than the mean value given in the table. If it fits the 

given high emotion in the table, that classification was accepted as correct. These 

studies were tried on videos other than the videos in Table 6.2 and the classes of the 

videos were determined using Table 6.4. 

 

 

Figure 6.17 Flowchart of the 1D emotion classification 

 

After the classification were done as it was mentioned, the accuracies of the 

classifications were calculated with the Equation (6.6) where 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the number 

of correct classifications and 𝑁𝑓𝑎𝑙𝑠𝑒 is the number of false classifications.  
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑁𝑓𝑎𝑙𝑠𝑒
 (6.6) 

 

Accuracies for each emotion class and features are given in Table 6.8. Although 

the accuracy percentages are very low, if the features are compared with each other, 

the mobility feature provided the highest accuracy for arousal and valence emotions. 

 

Table 6.8 Majority based 1D emotion classification accuracies 

 
Standard 

deviation 
Activity Mobility Complexity 

Accuracy of arousal 

emotion classification (%) 
50.12 49.42 51.16 48.96 

Accuracy of valence 

emotion classification (%) 
49.88 49.31 51.74 48.03 

 

The classification study done above was also carried out on a person basis. For 

this, the electrodes with the highest difference value for each feature and emotion, 

the mean values and which emotion had the highest feature value were recorded for 

the selected participants, as in Table 6.7. Then, classification was done as in Figure 

6.17.  

 

Table 6.9 1D emotion classification results with person-based values 

  Accuracy for each feature (%) 

Emotion 
Type of 

accuracy 

Standard 

deviation 
Activity Mobility Complexity 

Arousal 
Highest 62.5 62.5 71.88 65.63 

Average 48.84 46.18 54.63 46.3 

Valence 
Highest 65.63 65.63 71.88 59.38 

Average 43.4 43.06 53.59 45.95 

 

The accuracy percentages in the person-based classification result are given in 

Table 6.9. In this table, the highest percentage of accuracy obtained from the 

classification results and the average percentage of accuracy of the participants are 

given for both 1D emotions. When the accuracy percentages of the participants were 

compared, it was seen that the highest percentage was obtained with the mobility 

feature for both emotions. 
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Finally, the inferences obtained in detecting emotions from comparing the 

features with different aspects are as follows: 

 

• For arousal emotion, among the results obtained with the average values 

given in Table 6.9, it was observed that 54.63% of accuracy was obtained 

with the mobility feature. 

• For the valence, as a result of the person-based values given in Table 6.9, the 

average highest accuracy of 53.59% was obtained with the mobility feature. 

• The person-based classification (Table 6.9) resulted better than the majority-

based classification (Table 6.8). 

 

6.1.7.2. Comparison of Brain Waves 

 

In the next study, comparisons of brain waves were done for emotion detection. 

The information obtained as a result of the previous study was also used in this 

study. Thus, the mobility feature was used to determine both arousal and valence 

emotions. For this study, first of all, the filters were designed using the frequency 

ranges of theta, alpha, low beta, high beta and gamma waves given in Table 3.1. BPF 

was calculated in Matlab with the Butterworth filter design function in order to filter 

these brain waves from the EEG signals. The transfer function of this filter is given 

in Equation (6.7). The coefficients in the transfer function of the BPF were obtained 

separately for each brain waves.  

 

𝐻(𝑧) =
𝐵(𝑧)

𝐴(𝑧)
=

𝑏(1) + 𝑏(2) 𝑧−1 + ⋯ + 𝑏(2𝑛 + 1) 𝑧−𝑛

𝑎(1) + 𝑎(2) 𝑧−1 + ⋯ + 𝑎(2𝑛 + 1) 𝑧−𝑛
 (6.7) 

 

Then, the features selected in the previous study were calculated for each brain 

wave of each channel. Figure 6.18 shows the values of the mobility feature 

calculated for each brain wave obtained from the representative video of the arousal. 

The highest mobility value difference between LA and HA emotions occurred at the 

high beta brain wave of F8, and the lowest occurred at alpha wave of O2 channel. 
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Figure 6.18 Mobility results of different brain waves to compare arousal emotions 

 

According to these results, in Table 6.10, the electrodes with the highest mobility 

difference for each brain wave, the average value between LA and HA for this 

electrode and the emotion higher than this value are given. When the videos other 

than the representative videos were tested for the selected participants using these 

features, the accuracy percentages given in the same table were obtained. Although 

the percentage of accuracy is still not high enough to be relied upon, it is slightly 

higher than the average accuracies obtained from the original EEG signals in Table 

6.8 and Table 6.9. Hence, by using the mobility features of the theta wave of the CP1 

electrode, 52.78% accuracy were obtained. 

 

Table 6.10 Electrodes determined to have the highest value difference for the arousal emotion 

Arousal Theta Alpha Low Beta High Beta Gamma 

Electrode with highest difference FC5 CP1 FC5 T8 FC5 

Mean value 0.2758 0.4539 0.7564 1.1316 1.5829 

Higher emotion HA HA HA HA HA 

Accuracy of classification (%) 51.04 52.78 50 51.62 49.31 
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In addition, for the valence emotion, the calculation results of the mobility feature 

from brain waves are given in Figure 6.19. As a result of these drawings, it was 

determined that the mobility difference value obtained from the high beta wave of 

the Pz channel is higher than the other waves. However, the high beta wave of the 

Fp1 channel provided the lowest difference between LV and HV. 

 

 

Figure 6.19 Activity results of different brain waves to compare valence emotions 

 

As in Table 6.10, this time the electrodes determined as a result of the average 

mobility values for the valence emotion in Figure 6.19, the variable values required 

for classification, and the accuracies of classification for each wave are given in 

Table 6.11. The highest accuracy percentage was 54.98% and obtained by the 

mobility feature of the low beta wave of the Fp2 channel. Although it is slightly 

higher than the accuracy of the study done with the average features given in Table 

6.8 and, it is still much lower than the person-based classifications given in Table 6.9 
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Table 6.11 Electrodes determined to have the highest value difference for the valence emotion 

Valence Theta Alpha Low Beta High Beta Gamma 

Electrode with highest difference C3 C4 Fp2 FC5 26 

Mean value 0.2874 0.4817 0.7339 1.1626 1.5638 

Higher emotion LV HV LV LV HV 

Accuracy of classification (%) 50.93 47.92 54.98 51,51 54,4 

 

In the next stage, the difference between brain waves was examined by obtaining 

person-based features this time. The mobility value of all brain waves of all channels 

were calculated for arousal and valence emotions. Then, the electrodes where the 

calculated feature value has the highest difference for low and high emotions were 

determined as features. After the relevant features were saved, the testing was done 

by checking whether the calculated value was above or below the mean value. 

 

Table 6.12 Results from person-based emotion detection for different brain waves 

 Emotion Theta Alpha Low beta High beta Gamma 

The most chosen 

electrodes 

Arousal Fp2 Fp2 F7 F7 T7 

Valence Fp2, AF4 Fp2 F7 F3, Fp2 T7 

Highest accuracy 

(%) 

Arousal 72.5 72.5 62.5 67.5 70 

Valence 72.5 72.5 82.5 77.5 72.5 

Average 

accuracy (%) 

Arousal 53.91 53.52 52.81 53.13 55.39 

Valence 53.91 56.25 57.66 60.23 58.83 

 

The person-based emotion detection results are given in Table 6.12. From these 

results, the highest personal accuracy obtained from the theta and alpha waves of the 

Fp2 electrode was 72.5%, and the highest accuracy percentage on average with the 

gamma wave of the T7 electrode was 55.39% for the arousal. For valence, the 

highest accuracy was obtained from the low beta wave of the F7 electrode, and the 

highest accuracy on average was obtained from the high beta wave of the F7 channel. 

These accuracy percentages are 82.5% and 60.23%, respectively. 

 

6.1.7.3. Informative Feature and Electrode Selection Algorithm 

 

As a result of previous studies within the scope of this thesis, it has been observed 

that selecting informative features on a person-based basis in EEG studies provides 

higher accuracy. In addition, if this detection process is desired to be done in real-
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time, the long-term use of EEG devices containing more than one electrode will not 

be useful as it will restrict the movements of the person being measured and disturb 

them. Besides, if the desired functions can be performed with fewer electrodes, 

having more electrodes will cause a delay in signal processing and cost loss.  

 

For this reason, an algorithm has been developed that enables the selection of 

these features on a person-based basis. The flowchart of this algorithm is given in 

Figure 6.20. 

 

 

Figure 6.20 Flowchart of the algorithm of informative electrode selection (Yürdem & Özkurt, 2022) 
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At the beginning of the algorithm, in order to examine which brain wave is more 

useful in terms of providing information, the procedures described below are 

repeated, respectively, from theta wave to the gamma wave. Since the DEAP dataset 

is preprocessed, the brain wave is obtained directly from the original EEG signal by 

filtering it with BPF. 

 

The feature is calculated after the brain wave is obtained from the EEG signals 

recorded during the representatively selected music videos. Since the use of Hjorth 

parameters as features generally provides high accuracy in previous studies, these 

parameters were determined as features. The activity, mobility and complexity 

properties are calculated by Equations (3.9), (3.10), and (3.11) were used, 

respectively. 

 

After the calculation, the names of the first 10 electrodes with the highest feature 

values were recorded. However, this list was not used directly while generating the 

electrode selection algorithm. The first electrodes are omitted from this 10-electrode 

list, as some electrodes also have the highest value for different emotions. Then, 

firstly, 2-electrode groups are formed for all four emotions (LALV, LAHV, HALV, 

and HAHV) starting from the second highest value electrode. Then the electrode 

groups of all emotions are merged, and a single list is obtained. In Figure 6.21, a 

visual explanation of an example for using activity features of theta waves and 

forming a 2-electrode group is given for the part of the algorithm that has been 

described so far. 
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Figure 6.21 The first part of the algorithm's operation as an example for only features from theta wave 

and 2-electrode groups 

 

In the next step, the number of repetitions of the electrodes in the merged list is 

determined. From the first electrode with a large number of repetitions, each 

electrode is checked for emotions in previously formed lists for each emotion. If an 

electrode in the merged list is in the list of the controlled emotion and no other 

electrode has been identified as such, then this electrode is selected as the 

informative electrode of that emotion. For each emotion, at most one electrode is 

designated as the informative electrode. As it was shown in Figure 6.20, this process 

was repeated by increasing the number of electrodes one by one from two to nine in 

the group consisting of 9 electrodes selected for each emotion. 
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An example of this algorithm is given below. For this example, for the mobility 

feature of a participant's gamma brain wave, groups containing three electrodes were 

formed and informative electrode selection was done. The mobility feature of all 

channels is calculated for representative videos. Then, the top 10 electrodes with the 

highest value are determined. The first 10 electrodes determined are given in Table 

6.13. Of these electrodes, the ones with the highest value (i.e., those written in red) 

were excluded from the list as indicated in the algorithm. A group of the remaining 9 

electrodes is then formed for each emotion. For this example, it was stated that there 

would be three electrodes in the groups. The groups formed from the electrodes 

written in bold in the table are also given here. 

 

Table 6.13 Determined electrodes and the groups for informative electrode selection 

 LALV LAHV HALV HAHV 

Top 10 electrodes 

with the highest 

value for the 

calculated feature 

(respectively) 

Fp1 Fp1 AF4 T7 

F3 AF4 CP1 P7 

Fz P3 Cz CP5 

AF4 FC2 Fp2 Cz 

P3 Cz FC1 CP1 

F4 Fp2 P3 FC1 

FC5 FC1 Fp1 Fp1 

FC2 CP1 P7 P8 

FC1 CP2 FC2 C4 

Cz F8 Oz Fp2 

Groups containing 

three electrodes 
[F3, Fz, AF4] [AF4, P3, FC2] [CP1, Cz, Fp2] [P7, CP5, Cz] 

 

For this example, when groups are merged, the new list is [F3, Fz, AF4, AF4, P3, 

FC2, CP1, Cz, Fp2, P7, CP5, Cz]. The Cz and AF4 electrodes are repeated twice in 

the list, while the others are not. If more than two repeating electrodes were found, 

these electrodes would also be removed from the relevant lists. 

 

Then, starting from the first electrode of each emotion list, the other list was 

checked. This other list is the one in which the combined and more than two 

repeating electrodes are removed. The electrode with the highest feature value in 

both lists was accepted as the informative electrode for that emotion. Thus, for this 
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example, the informative electrodes for the four emotions were identified as F3 for 

LALV, AF4 for LAHV, CP1 for HALV, and P7 for HAHV. 

 

Figure 6.22 shows the percentages of accuracy obtained by varying the brain 

waves and the number of members in the group for each 2D emotion. In these results 

of the informative electrodes selected from the groups with 2, 3, 4, 5, 6, 7, 8 and 9 

electrode numbers. All calculations were done for the mobility feature. 

 

 

Figure 6.22 Comparison of brain waves for different number of electrode groups for 2D emotions 

using the mobility feature (Yürdem & Özkurt, 2022) 

 

Based on these graphs, the highest average accuracies for LALV, HALV and 

HAHV, from which brain wave it was obtained and how many electrode groups were 

obtained are given in the Table 6.14. The highest accuracy was obtained for the 

HAHV emotion, while this percentage of accuracy was 64.62%, the number of 

electrodes in the group was 6, and the used wave was theta brain wave. In the table, 

the accuracy of LAHV emotion is the lowest among other emotions. 
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Table 6.14 The highest accuracies obtained as a result of the person-based emotion detection study 

 LALV LAHV HALV HAHV 

Number of electrodes in the group 2 2 5 6 

Brain wave Theta Gamma Low Beta Theta 

The highest accuracy (%) 45 35.42 58.33 64.62 

 

According to the results obtained from the person-based electrode selections, the 

number of informative group electrodes selected as the majority, the brain wave and 

the first two most selected electrodes are given in Table 6.15. In this table, the results 

obtained for the mobility parameter are given. 

 

Table 6.15 Mostly selected informative electrodes as a result of the study 

 LALV LAHV HALV HAHV 

Number of electrodes in the group 2 2 5 6 

Brain wave Theta Gamma Low Beta Theta 

1st most selected electrode Oz FC6 T8 Pz 

2nd most selected electrode FC6 T7 P8 PO3 

 

From this table, it was determined that the theta wave of the Oz channel for 

LALV, the gamma wave of the FC6 channel for LAHV, the low beta wave of the T9 

channel for HALV emotion, and the theta wave of the Pz channel for HAHV 

emotion were the most determined features among the participants. 

 

6.2 Data Analyses with Recorded Dataset 

 

After the studies with the dataset in the literature, studies were carried out with the 

datasets recorded with the data acquisition system constructed within the scope of 

this thesis. Since the datasets found in the literature were usually preprocessed, it was 

possible to proceed directly to the analysis or feature extraction stages in the studies 

(Koelstra et al., 2011). However, in these studies, the raw EEG dataset recorded with 

the system had to be preprocessed. In the following sections, the preprocessing 

process and the studies done with dataset recorded while asking questions and 

viewing images are given. In emotion detection studies, the results obtained from the 

previous studies done with literature dataset were used. 
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6.2.1 Preprocessing of the Recorded Dataset 

 

For the clean signals used in the analysis, the following preprocessing steps 

learned from the literature were applied (Gorgoni et al., 2014; Handojoseno et al., 

2013; Koelstra et al., 2011; Murugappan et al., 2010; Seo et al., 2010). These steps 

are given in Figure 6.23 as a flowchart.  

 

 

Figure 6.23 Flowchart of the preprocessing process done in this study 

 

Firstly, the mean value which means DC offset is extracted from the raw EEG 

data. The signal is then filtered with an HPF with a cut-off frequency of 4 Hz to 

eliminate low-frequency noises and artifacts. After that, an LPF with a cutoff 

frequency of 60 Hz and a notch filter with a stopband frequency of 50 Hz are 

applied. With these two filters, high-frequency noises, environmental line noises, and 

artifacts are tried to be prevented. It was stated that filtering was applied for 50 and 

60 Hz in the device, as indicated in the bandwidth property in the technical 

specifications of the used EEG device in Table 4.1. However, when the frequency 

domains of the obtained data were examined, it has been observed that high 

amplitude values are obtained in the 50 Hz frequency band. Hence, a Notch filter 

was applied in the preprocessing steps. 

 

6.2.2 Studies with Dataset Triggered with Images 

 

The analyzes done with the data recorded with the application, which is aimed to 

trigger the participants by showing the images, are given in this section. First of all, 

the changes in the concentration and anxiety signals during the recording were 
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examined, then the classification of the happiness emotion was carried out with basic 

machine learning methods such as KNN and SVM. 

 

6.2.2.1. Examination of Changes in Concentration and Anxiety Levels 

 

In this study, the EEG signals measured during the display of the images and the 

marking data obtained thanks to the software property activated in the recording 

system were used. Among these signals, the changes in the mental state of 

concentration and anxiety emotion were examined. Signals were calculated for these 

two states using Equation (3.16) for concentration and Equation (3.17) for anxiety. 

An example of this study is given in Figure 6.24. 

 

 

Figure 6.24 An example for concentration and anxiety changes (Yürdem et al., 2019) 

 

In this example, the time intervals in which each image is shown are split. The 

second (P2), fifth (P5), eighth (P8), tenth (P10), thirteenth (P13), and sixteenth (P16) 

images are also given. Images P2, P10 and P13 were added to the study in order to 

trigger the feeling of happiness. A proportional change in concentration and anxiety 

levels was observed during these images. However, during the P5, which is intended 

to trigger the feeling of uneasiness, an average increase in the anxiety was observed, 

while a higher number of local peak values were observed in the concentration 
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compared to the other images. In other data samples, different level changes were 

observed for different emotions. 

 

6.2.2.1. Classification with k-Nearest Neighborhood 

 

With the KNN classification method, the feeling of happiness, which can be 

described as HA, was tried to be classified among all other emotions. The first 

classification was done by using features related to signal powers of all channels. 

After applying STFT to preprocessed signals, the features were extracted for brain 

waves. The first feature is calculated as mean power (MP) of all channels for each 

brain wave. The second one is the absolute value of MP difference of channel pairs 

(𝑑𝑀𝑃𝜔𝜀
) and calculated with Equation (6.8). This value is calculated for all brain 

waves (𝜔 = [Gamma, Beta, Alpha, Theta, Delta]) and all electrode pairs, (𝜀1, 𝜀2) = 

[(AF3, AF4), (F7, F8), (F3, F4), (FC5, FC6), (T7, T8), (O1, O2), (P7, P8)]. The 

𝑀𝑃𝜔𝜀
 means the MP value of 𝜔 wave of 𝜀 electrode. 

 

𝑑𝑀𝑃𝜔𝜀
= 𝑎𝑏𝑠(𝑀𝑃𝜔𝜀1

− 𝑀𝑃𝜔𝜀2
) (6.8) 

 

The accuracy percentages for different k value for the KNN are given in Table 

6.16. When k is equal to 1, 73.8% accuracy was obtained. In Figure 7, the numerical 

and percentage confusion matrices are given, and the accuracy values are 

accentuated. However, when this value was increased, the accuracy was decreased. 

For example, when k was 3, the accuracy was 61.8%, and when k was 5, the 

accuracy was 59.6%. 

 

Table 6.16 Accuracy of classifications using all features for different k values 

k value Accuracy (%) 

1 73.8 

3 61.8 

5 59.6 
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After that, the features were used in classifications separately. As can be observed 

in the previous study, higher accuracy was obtained when the k value was 1. Hence, 

this value was also used in these classifications. When only MP of all channels for 

each brain wave were used as feature, the accuracy was 72.3%. However, difference 

of MP between the pair electrodes provided higher accuracy of 74.2%. 

 

To see, the difference between the effects of brain waves, this time, high and low 

frequency waves were separated. For high frequency waves, only the MP difference 

of gamma, beta, and alpha waves were used as the features, and when the k 

parameter was 1, the obtained accuracy was 77.2% which was better than the 

previous one. After that, only the MP difference of theta and delta waves were 

selected as the features, and the obtained accuracy was 72%. So, it can be said that 

the high frequency brain waves that are gamma, beta, and alpha waves are more 

informative. 

 

In the next step, the effects of the electrodes were examined. Hence, they were 

separated into two groups which are frontal–temporal (F and T) electrodes and other 

electrodes. The ones in the F and T lobes are AF3, AF4, F7, F8, F3, F4, FC5, FC6, 

T7, and T8 and the other ones are P7, P8, O1, and O2. These electrodes and their 

groups are given in Figure 6.25. 

 

 

Figure 6.25 Grouped electrodes for this study 
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For the classification, again, the k parameter was chosen as 1. Then, the gamma, 

beta and alpha powers of F and T electrodes were used as the features. The obtained 

accuracy was 77.2%. When the other ones were chosen, the accuracy was 69.4% 

which was smaller. 

 

 

Figure 6.26 Electrodes grouped according to bilateral lobes 

 

After that, at the final step of the classifications with KNN, the difference between 

left and right lobes was observed. The F and T electrodes were grouped as in Figure 

6.26. Then, the powers of the right side probes (AF3, F7, F3, FC5, and T7) and the 

powers of the left side probes (AF4, F8, F4, FC6, and T8) were used as the features. 

As a result, the accuracy of the right side was 71% while the accuracy of the left side 

was 75.6%. So, it was observed that left side is more informative. 

 

Table 6.17 Accuracies of all classifications with KNN 

Features Accuracy (%) 

All features 73.8 

MP of all waves and electrodes 72.3 

MP differences of all waves and electrodes 74.2 

MP differences of high frequency waves of all electrodes 77.2 

MP differences of low frequency waves of all electrodes 72 

MP differences of high frequency waves of electrodes in F and T 

lobes 
77.2 

MP differences of high frequency waves of electrodes in other 

lobes 
69.4 

MP differences of high frequency waves of electrodes in right F 

and T lobes 
75.6 

MP differences of high frequency waves of electrodes in left F and 

T lobes 
71 
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In Table 6.17, all the accuracy percentages of the classifications done with KNN 

are given. To classify happiness from all other emotions with higher accuracy and 

fewer features was accomplished when the MP differences of gamma, beta, and 

alpha waves of electrodes in F and T lobes were used as the features. For this 

classification, an accuracy of 77.2% was obtained when the k value was 1. 

 

6.2.2.2. Classification with Support Vector Machine 

 

In the SVM classification method, firstly, the linear and Gaussian SVM were 

compared to classify the happiness emotion. The used features were MP difference 

of all waves of all electrodes, and the obtained accuracies for linear and Gaussian 

SVM were 68.7% and 80.1%, respectively. Since the Gaussian SVM provided higher 

accuracy, this method was also used in subsequent classifications. 

 

After that, MP difference of F and T electrodes were selected as the features, and 

accuracy of 80.2% were observed. However, when the features were selected as the 

MP difference of other electrodes, the accuracy was decreased to 71.2%. Hence, in 

the next study, the right and left lobes compared for MP difference of F and T 

electrodes. However, this time, a higher accuracy than before could not be obtained, 

with 78.9% accuracy from the left side features and 79.2% accuracy from the right 

side features. 

 

Table 6.18 Accuracies of all classifications with SVM 

Features SVM type Accuracy (%) 

All MP differences Linear 68.7 

All MP differences Gaussian 80.1 

MP differences of electrodes in F and T lobes Gaussian 80.2 

MP differences of electrodes in other lobes Gaussian 71.2 

MP differences of electrodes in left F and T lobes Gaussian 78.9 

MP differences of electrodes in right F and T lobes Gaussian 79.2 

 

In Table 6.18, all accuracy results from the classifications with SVM are given. It 

was observed that the highest accuracy among all KNN and SVM classifications for 
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happiness was obtained when the features were selected as MP differences of 

electrodes in F and T lobes and classified with Gaussian SVM. 

 

6.2.3 Studies with Dataset Triggered with Questions 

 

The emotion dataset obtained by asking questions to the participants was analyzed 

using the information obtained from the studies accomplished with the DEAP 

dataset. Firstly, the recorded dataset was preprocessed with the mentioned steps in 

Figure 6.23. The brain waves are then filtered from BPFs with cutoff frequencies of 

the respective wave. Then, for each second, the Hjorth parameters are calculated. 

Since the sampling frequency of the signals is 128 Hz, the feature signal is calculated 

with a window with a size of 128 elements and a shift of 64 elements. Afterward, a 

person-based emotion detection application was done in accordance with the flow 

diagram given in Figure 6.17. Thus, the EEG dataset analysis is accomplished by 

using the results obtained from the studies done with the DEAP dataset and the 

change in the calculated mobility feature signal with respect to time. 

 

An example of the applications is as follows. With the EEG dataset recorded 

while asking questions, the changes in the mobility parameter of brain waves are 

obtained, as in Figure 6.27. Firstly, emotions intended to trigger are classified as 2D. 

Among the questions asked to this participant, thinking about a happy memory 

(moments highlighted in blue) triggers HAHV and examining a painting (moments 

highlighted in green) triggers LAHV emotions. 
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Figure 6.27 Changes in mobility of brain waves in time 

 

Then the results in Figure 6.27 and Table 6.15 were compared. An increase in the 

mobility of the T7 gamma wave was observed in the moments highlighted in green. 

However, the Pz and PO3 channels determined for HAHV are not available in this 

EEG study data system. However, the O1 electrode, which is closest to those 

electrodes (Figure 6.1), was used in the analysis. In the moments highlighted in blue, 

a decrease in theta wave in O1 was observed. Thus, it has been observed that the 

results obtained from the DEAP dataset also agree with other studies at certain 

points. 

 

Table 6.19 An example results of a person-based emotion detection using the dataset recorded with 

the designed system 

  Theta Alpha Low Beta High Beta Gamma 

Electrode with 

highest difference 

Arousal AF4 O2 T8 AF3 AF3 

Valence AF4 O2 AF3 AF3 AF3 

Accuracy (%) 
Arousal 72.73 59.09 50 81.82 90.91 

Valence 58.82 35.29 76.47 88.24 94.12 

 

Secondly, analyzes were done for 1D emotions. For this, the moments highlighted 

in blue labelled as HA for arousal and HV for valence, and the moments highlighted 

in green labelled as LA for arousal and HV for valence. After the features were 
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calculated for five separate brain waves, the electrodes with the maximum value 

difference for low and high emotions were determined as in Table 6.19. The results 

for the mobility feature of this participant gives better results than other Hjorth 

parameters. From the classifications done with gamma wave, the highest accuracy 

was obtained with 94.12% for the valence and 90.91% for the arousal. It was 

observed that the AF3 electrode had high informativeness for this participant.  

 

6.2.4 Studies with Dataset of Neurological Disorder 

 

The last of the studies carried out within the scope of the thesis is FOG detection. 

In this section, firstly, the interface created to analyze with EEG signals is explained. 

Then, Hjorth parameters, indices calculated for concentration and anxiety, and FOG 

determination studies were carried out. 

 

6.2.4.1. GUI Designed for EEG Analysis and FOG Detection 

 

A GUI is designed to facilitate EEG analysis studies on FOG. This GUI works 

offline with the recorded EEG and button data. The programming language of it is 

Python, and the operating system of the computer is Linux Ubuntu. The used 

libraries for the GUI and usage functions of these libraries are as follows: Tkinter 

GUI toolkit for its design, Matplotlib library for graphical plotting, and SciPy library 

for signal operations, and NumPy for mathematical operations. 

 

In Figure 6.28, the initial screenshot of the interface that opens when the program 

is run is given. The EEG channels to be observed (1. Select EEG channels), the date 

of the measured data (2. Select date), and the patient (3. Select patient) can be 

selected from the submenus on the left side of the GUI. After clicking the "GET 

DATA" button, information about the data is given at the bottom on the left. This 

information is data size (number of samples of each channel), data duration 

(recording time), and number of FOGs observed during recording. This information 

is used in the graphic plotting for the analysis to be done. They will be explained in 

more detail later. 
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Figure 6.28 EEG Analysis and FOG Detection GUI 

 

The second column has another menu to select the plot type used in the analysis. 

After choosing the desired plotting option, the " NEXT" button is clicked. Then, the 

specific plotting settings for the relevant selected plot type are displayed in the empty 

area on the right side of the GUI in Figure 6.28. A "PLOT" button is also added at 

the bottom of the newly displayed submenu. When this button is clicked, the plot is 

displayed on the right side of the GUI.  

 

The options in this menu and their properties are given as follows: 

 

• EEG signals: The chosen EEG channel signals are plotted. The signal can be 

raw or preprocessed signal, and normalization can be applied to the selected 

data. Optionally, FOG events marked during measurements by an experienced 
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neurologist can also be included in the plot using button data. In Figure 6.29, 

the submenu that opens with the selection of EEG signals is given. 

 

 

Figure 6.29 Submenu for EEG signals plotting option 

 

• Power Spectral Density: With this option, power variation of the EEG 

signals in the frequency domain, in other words, PSD can be plotted for a 

determined frequency range. In Figure 6.30, the submenu that opens with the 

selection of PSD is given. 

 

 

Figure 6.30 Submenu for PSD plotting option 

 

• Short-Time Fourier Transform: The spectrogram of the STFT can be 

drawn, which allows to observe the power changes of the frequency 

components of the raw or preprocessed EEG signals depending on time. In the 

submenu that opens with this selection, there are options to choose whether 

the signal is plotted as raw or preprocessed. 

 

• Brain waves: After this option is selected, the low and high cut-off 

frequencies of the band-pass filter are entered by the user to plot the desired 
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brain waves. The brain waves which are filtered EEG signals in the selected 

frequency range are plotted, and if the patient was in the FOG state during 

measurement, these events are highlighted. In the opened submenu, the 

frequency ranges of the main brain waves are additionally given. 

 

A sample GUI screenshot for the “Brain waves” option is given in Figure 

6.31. As can be seen from this screenshot, the date of data was 2019.01.30 and 

the participant was selected as the 3rd patient. The chosen channels are F4, 

FC5, T7, and T8. Then, from the submenu of the brain waves option, the 

frequency range of these waves was entered as 15-20 Hz. 

 

 

Figure 6.31 Example for EEG channel and data selection to analysis brain waves 

 

• Brain wave power in time: This option helps to plot the power signals of the 

selected electrodes for brain waves whose frequency ranges are entered by the 

user. Thus, the interaction between FOG events and signals powers can be 

compared in the analysis. The submenu that opens with the “Brain waves” 

option is also opened in this selection. 
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• Hjorth parameters: The activity, mobility, or complexity feature from the 

Hjorth parameters is calculated according to the user's choice and the signals 

are plotted for each selected channel. In addition, there are two different 

drawing settings: time state and threshold state. In Figure 6.32, its menu is 

given. 

 

 

Figure 6.32 Submenu for Hjorth parameters plotting option 

 

In the time state setting, the average signal is calculated using the window size 

and shift values entered by the user with the average time option, but the 

normal time option helps to plot the original signal. As an example, in Figure 

6.33, the original signal according to the normal time and the average 

calculated signal according to the entered values are given. 

 

 

(a) 

 

(b) 

Figure 6.33 Example for time state setting, (a) Normal time option selected signal, (b) Average time 

option selected signal for window length is 200 and shift is 100 
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Additionally, the "Plot with values above the threshold" option in the 

threshold setting allows marking the points above the calculated value by 

using the threshold ratio determined by the user in the time state adjusted 

signal. The threshold value is calculated with the Equation (6.9). The 𝑥𝑚𝑒𝑎𝑛 

value in this equation is calculated with (3.4). Also, “THR” is the threshold 

ratio value determined from the interface. 

 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑥𝑚𝑒𝑎𝑛  ×  𝑇𝐻𝑅 (6.9) 

 

• Concentration: Concentration mental state indexes are calculated for each 

second and appended to an array to plot concentration change signals of each 

channel. For the calculation the Equation (3.16) is used. As with the Hjorth 

parameters option, there are time and threshold settings in its submenu. 

However, this time, for the average time option, the window length of the 

segment whose average value is going to be calculated and the window 

shifting number are entered considering the data duration information given 

on the first column of the GUI by the user. Since the sampling frequency of 

the concentration signal is 1 Hz, its length is smaller than the original EEG 

signal and equal to the data duration. 

 

• Anxiety: Similar to the “Concentration” option, the anxiety signals are drawn, 

and the plot properties can be determined. The anxiety signal is calculated 

with the Equation (3.17) . The same submenu in Figure 6.32 is opened with 

this option. The adaptive thresholding method is performed for Hjorth 

parameters but also for concentration and anxiety options on the GUI. 

 

For now, these properties only work with offline data. However, the GUI can be 

improved for use in real-time measurement analysis in future studies. 
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6.2.4.2. FOG Detection with Concentration Mental State Index 

 

Within the scope of the thesis, the dataset recorded from Parkinson's patients with 

the data acquisition system was used in all FOG detection studies. In the first FOG 

detection study, the concentration index, which is found in the literature, is used. 

This index is calculated by Equation (3.16) for each channel. The concentration 

signals are generated with the "Concentration" option on the designed GUI, and the 

thresholding method is applied to these signals. The points above the determined 

threshold value are marked on the drawn signal by using the thresholding setting. 

 

The comparison between FOG events and the ratio of the average power of the 

low beta brain wave to the theta wave band power is analyzed by this method. At 

first, concentration signals with different threshold ratio values for the “Normal 

time” selection were calculated from the recorded signals for all channels. From the 

obtained drawings, the points that exceeded the threshold value in the signal were 

examined 5 seconds before the FOG, during the FOG, and 5 seconds after the FOG. 

For these three cases, 127 FOG events were investigated. The changes in the 

concentration signal for each electrode were examined, and the maximum number of 

FOG detections done among all electrodes is given as a percentage in Table 6.20. 

Based on these results, it is understood that more FOG detections can be done within 

5 seconds after FOG occurs. 

 

Table 6.20 Highest detection percentages from all FOGs for different time categories in concentration 

analysis 

Time category Percentage of highest number of detection (%) 

Pre-FOG 75.59 

During 77.17 

Post-FOG 82.68 

 

In Table 6.21, FOG detection percentages are given based on the highest number 

of detections for all THR values in the relevant time category (i.e., pre-FOG, during 

and post-FOG). The highest detection percentages in the relevant time category are 
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highlighted in gray. In addition, the value of the electrode with the highest 

percentage for each THR value is also written in red. 

 

Table 6.21 Percentage of observed increases in the concentration signal 

Time 

category 
THR AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4 

Pre-FOG 

1.5 56 52 53 49 64 55 51 53 48 55 64 60 58 66 

1.6 49 42 44 41 51 50 45 47 30 44 55 57 54 57 

1.7 36 32 40 35 45 43 34 41 23 40 47 44 48 46 

1.8 26 25 30 32 36 39 26 30 19 30 35 34 35 36 

During 

1.5 63 66 54 65 68 68 65 68 69 70 68 63 70 73 

1.6 55 59 46 52 61 57 61 56 61 61 61 53 59 62 

1.7 49 55 40 47 51 47 55 51 55 48 56 48 51 55 

1.8 42 49 35 41 45 42 42 44 44 40 47 39 47 46 

Post-FOG 

1.5 60 56 47 55 59 64 48 54 60 60 70 62 55 69 

1.6 53 41 37 41 48 54 39 41 46 48 60 50 42 56 

1.7 41 38 30 35 33 47 28 37 38 35 48 41 36 44 

1.8 30 34 27 29 30 36 24 30 28 28 37 32 28 30 

 

When all time categories in this table are examined in general, it is observed that 

more detection is done with the electrodes in the right lobe. AF4, F4 and F8 

electrodes in the right lobe and P7 electrode in the left lobe gave positive results for 

the detections, in the results of 5 seconds before the FOG occurs. During FOG, AF4 

and FC6 electrodes in the right lobe and F7 electrodes in the left lobe provide a high 

detection percentage. Finally, for the detections after the occurrence of FOG, the 

highest detection percentage was obtained with FC6 for all THR values. 

 

Detections were done by changing the THR, that is, the threshold ratio value. An 

increase in this value means an increase in the threshold value. Therefore, as 

expected, the number of detections decreased as the value increased. However, even 

if there is no FOG with low value THR, an increase in the concentration signal 

occurs and these points are marked. For example, in Figure 6.34 the concentration 

signals of a person's P8 and F8 channels are given for different THR values. When 

the THR value is 1.5, there are marked moments higher than the calculated threshold 

value much before and after the FOG moments. 
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Figure 6.34 Examples for FOG detection for different THR values (a) THR = 1.5 (b) THR = 1.8 

 

For this reason, and when the results of the detections were examined, it was 

observed that more logical detections were done for the value of 1.7. However, since 

there is still a difference between the participants, the more appropriate THR value 

should be adjusted on an individual basis. 

 

 

Figure 6.35 An example for detection with normal time 
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Figure 6.36 The same example but this time for average time 

 

Studies were carried out using the “Average time” selection on the GUI. An 

example of this is given in Figure 6.35 and Figure 6.36. In Figure 6.35, an example 

detection done with normal time is given while the average time is applied to this in 

Figure 6.36. The electrodes (i.e., F7, P7, FC6, F4, F8 and AF4 electrodes) observed 

to give a high detection percentage in Table 6.21 are examined here. For the normal 

one, the THR value is set to 1.5 from the equal state settings. For the average one, the 

window size value is set to 5 and the shift value is set to 1 from the time state 

settings, and the THR value is set to 1.5. Moments highlighted on the graphs show 

when FOG events occur, and the dots on the signals indicate the moments that 

exceed the calculated threshold value. In this example, it can be observed that the 

threshold value is generally exceeded during and after the FOG. 

 

This "Average time" selection has been included in the studies in order to prevent 

spikes in signals over time. Thus, it is aimed to avoid signal increases that occur 

except for the FOG. 
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6.2.4.3. FOG Detection with Anxiety Emotion Index 

 

In the next study, analysis was done according to changes in anxiety levels. As 

mentioned before, the ratio in Equation (3.17) was created within the scope of this 

thesis by using the information obtained in the literature. This equation was formed 

as the ratio of the average power of the high beta brain wave to the average power of 

the theta waveband, based on the situations determined to occur in the brain waves in 

the case of anxiety. 

 

As in the analysis with concentration, only the increases that occurred about 5 

seconds before, during and after 5 seconds of occurrence of FOG were considered. 

As a consequence, the percentage of the highest detection number for 127 FOGs 

obtained in each time category is given in Table 6.22. As obtained from the results of 

the studies with the concentration signals, the highest detection percentage was 

obtained for after the FOG formation. 

 

Table 6.22 Highest detection percentages from all FOGs for different time categories in anxiety 

analysis 

Time category Percentage of highest number of detection (%) 

Pre-FOG 75.59 

During 76.38 

Post-FOG 81.1 

 

Within the framework of these situations, the percentages of the increasing 

detections for all time categories are given in Table 6.23. As in the concentration, the 

percentages are calculated according to the highest detection number of the relevant 

category. 
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Table 6.23 Percentage of observed increases in the anxiety signal 

Time 

category 
THR AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4 

Pre-FOG 

1.5 63 60 55 61 60 53 51 55 60 57 57 74 64 65 

1.6 50 49 49 50 54 38 41 48 47 46 52 61 49 54 

1.7 36 31 42 43 48 35 30 40 33 36 42 51 40 43 

1.8 28 24 33 36 43 29 26 30 26 32 35 47 33 34 

During 

1.5 68 77 65 69 71 70 70 70 77 66 70 74 73 72 

1.6 61 68 57 56 65 58 64 66 65 60 66 65 64 65 

1.7 58 61 49 48 58 52 54 54 53 52 57 59 54 57 

1.8 49 55 47 42 53 47 47 47 41 43 55 53 45 51 

Post-FOG 

1.5 61 59 50 60 55 59 50 62 62 59 63 70 61 68 

1.6 50 46 45 53 48 45 46 52 55 52 55 57 51 60 

1.7 39 36 35 48 41 40 39 42 44 39 41 47 43 53 

1.8 31 34 27 35 37 31 34 33 38 30 39 41 34 43 

 

Unlike the results obtained from the concentration signals, the increase in the 

anxiety signals, especially during the FOG, mostly occurred in the left lobe, and the 

highest percentage for all THR values belonged to the F7 electrode. The F4 electrode 

in the right lobe before FOG occurs and the AF4 electrode after FOG occurs had the 

highest detection number for almost all THR values. In both these cases, it can be 

seen that the right lobes have the highest percentage, as in the concentration. 

 

 

Figure 6.37 The same example for average time with anxiety signals 
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In the detections done with anxiety signals, the average time application was also 

carried out. In Figure 6.37, anxiety signals were calculated for the data of the sample 

in Figure 6.36. To compare the concentration and anxiety results, the examined 

electrodes were not changed to F7, P8, FC6, F4, and AF4 in Table 6.23, which was 

observed to give a high detection percentage for anxiety. Here, too, the window size 

is 5, the shift is 1, and the THR value is 1.5. 

 

6.2.4.4. FOG Detection with Hjorth Parameters 

 

Hjorth parameters were used in the last study with the dataset recorded from the 

patients. From the preprocessed signals, the gamma waves were extracted. The 

similar steps as in previous detection studies with concentration and anxiety signals 

were then applied. First, the signal of the activity feature is calculated with a window 

with a size of 128 elements and a shift of 64 elements. Then, thresholding method 

was applied for THR values between 0.7 and 1.1. The controlled time categories 

were determined as 5 seconds before the FOG, during the FOG, and 5 seconds after 

the FOG, as in previous studies. In Table 6.24, the accuracy percentages are given. 

Among all detections done with activity, the highest percentage of accuracy was 

74%, obtained from T8 during FOG and with the THR value of 0.7. High accuracy 

was obtained with the data from the T8 electrode for the increases in the activity 

value before and during the FOG. However, the AF4 electrode gave better results for 

the increments after FOG occurs. In addition to these, it has been observed that 

choosing the THR value as 0.7 provides both high and reasonable results. 
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Table 6.24 Percentage of observed increases in the activity signal 

Time 

category 
THR AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4 

Pre-FOG 

0.7 51 54 38 44 46 34 39 47 62 69 62 46 61 61 

0.8 45 43 29 33 39 27 35 38 48 56 47 41 52 51 

0.9 35 34 24 28 34 18 31 31 39 48 42 37 42 43 

1 30 31 20 25 31 14 26 26 29 39 31 31 33 38 

1.1 25 29 20 25 27 13 19 22 20 32 27 29 30 35 

During 

0.7 53 59 47 57 51 34 44 50 59 74 67 47 69 73 

0.8 50 53 40 48 45 25 36 45 50 65 55 45 61 65 

0.9 45 45 33 44 42 24 34 40 45 57 51 37 46 60 

1 40 45 32 41 35 22 29 34 38 53 44 34 38 51 

1.1 36 39 26 37 32 20 25 25 34 48 35 32 33 46 

Post-FOG 

0.7 54 56 37 54 54 32 38 48 63 62 58 40 57 68 

0.8 47 47 30 42 41 26 36 42 51 51 44 36 47 62 

0.9 40 40 28 34 34 20 29 31 42 41 37 30 39 55 

1 36 37 25 32 27 18 25 28 32 38 30 27 35 46 

1.1 30 31 22 27 22 15 16 26 24 36 28 25 31 41 

 

After that, detections were done with the mobility parameter. Accuracies are 

given in Table 6.25. Here, only results are given for the THR value equal to 1, 

because for other values the results are not better than this. In both detections, 95% 

accuracy was obtained with the O1 and F4 electrodes for the detections done before 

the FOG and with the FC5, FC6, and AF4 electrodes for the detections done during 

the FOG. The highest accuracy for this feature was obtained from FC5 and T7 

electrodes for the detections done after FOG occurs, and it was 96%. 

 

Table 6.25 Percentage of observed increases in the mobility signal 

Time 

category 
THR AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4 

Pre-FOG 1 88 94 92 91 91 92 95 94 92 92 87 95 91 94 

During 1 93 92 93 95 90 93 94 94 90 91 95 90 91 95 

Post-FOG 1 93 92 90 96 94 96 92 92 92 89 91 92 87 95 

 

For the complexity parameter, the detections were done when the THR is equal to 

1. As given in Table 6.26, the highest percentage of accuracy obtained for all time 

categories is equal and 92%. Electrodes O2 for pre-FOG, F7 and O1 during FOG, 

and F3 and FC5 for post-FOG provided the highest accuracy for the respective time 

category. 
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Table 6.26 Percentage of observed increases in the complexity signal 

Time 

category 
THR AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4 

Pre-FOG 1 86 86 91 91 89 87 88 92 87 89 86 90 85 84 

During 1 91 92 88 88 90 86 92 89 86 85 88 88 89 87 

Post-FOG 1 90 86 92 92 86 87 83 90 91 90 88 88 89 85 

 

As a result of all the work done with the Hjorth parameters, the best results for 

different time categories have always been obtained with the mobility feature. 

However, the informative electrodes differ for pre-FOG, during and post-FOG 

detections. 
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7. CHAPTER SEVEN 

CONCLUSION AND DISCUSSION 

 

This thesis focuses on EEG signals produced because of electrical activities in the 

brain and can be measured practically without any surgery. In the literature, it has 

been observed that there are studies with features extracted from EEG signals, and 

they are related to emotion based on arousal and valence, and detection of disorders. 

The features that are widely used in the literature and also used in this thesis are: 

mean value, standard deviation, power, and Hjorth parameters. EEG signals are also 

used in studies for the. In these studies, the previously mentioned features are used. 

 

In this thesis, several different studies about emotions and disorders were carried 

out in parallel. These studies and the resulting inferences are given below. 

 

• Emotion studies with the dataset in the literature: To understand the 

effects of emotions on the brain, analyzes were done with the DEAP dataset 

from the literature. EEG signals were recorded while the participants were 

watching music videos, and then a SAM was conducted to understand the 

triggered emotion. In the scope of the thesis, after the reliable participants 

were chosen and the classification of the video emotion was accomplished, 

firstly, the changes in time of the amplitudes of the EEG signals were 

examined. It has been observed that different changes can occur over time for 

different emotions. Then, in order not to depend on time, the average of the 

EEG signals was calculated, and the amplitudes were examined. From here, 

the electrodes with the highest amplitude for 2D emotions were determined as 

in Table 6.5. 

 

• Developing an algorithm for the selection of personalized informative 

electrodes on emotion detection: Firstly, to understand the effect of different 

features and brain waves, the comparison studies were done with the DEAP 

dataset. From the comparison results of the mean value feature given in Table 

6.6, the electrodes with the highest value for each emotion were determined. 
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With the standard deviation value, the electrodes not very reliable were 

identified from Figure 6.14. Average Hjorth parameter values were examined 

for each arousal and valence emotion as in Figure 6.15 and Figure 6.16. Then, 

1D emotion classification was done by using the threshold value method with 

the features calculated as the majority and personally. The results of these are 

given in Table 6.8 and Table 6.9, respectively. From these results, it is 

observed that the mobility feature provides a higher percentage of accuracy. 

Based on this, the comparisons of theta, alpha, low beta, high beta, and 

gamma waves were also done with mobility. Better results given in Table 6.12 

were obtained with person-based features. Consequently, the gamma wave for 

arousal and the high beta wave for valence emotion were determined as more 

informative. From all these results, it was observed that the highest accuracies 

were obtained with person-based features, so an algorithm in Figure 6.20 was 

developed. 

 

• Designing and implementing a data acquisition system: A data recording 

system has been established for studies on emotion and disease detection. The 

block diagram of this system is given in Figure 4.1. With this system, which 

includes different sensors, acceleration of motion and marking data can be 

recorded as well as EEG signals. Afterwards, datasets were recorded for three 

different methods with this system. In addition to the recordings done for 

mental state and emotions during the examination of the images and 

answering the questions, recordings were taken from the patients while 

performing a specific task for PD, a neurological disease. Detailed 

explanations about the system and its operation are given in chapter four, and 

explanations about recording implementations are given in chapter five. 

 

• Mental state and emotion studies with the recorded datasets: For the 

analysis of emotions triggered by images and questions, the recorded datasets 

were analyzed with different methods. For emotions triggered by images, the 

indexes of concentration mental state and anxiety emotion, which are also 

given in the literature, were calculated, and then, interpreted according to the 
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change in the signals over time (Figure 6.24). Then, the feeling of happiness 

was classified among all other emotions by using different features from 

signal powers in two basic machine learning methods such as KNN and SVM. 

The minimum number of features and the high percentage of accuracy were 

obtained using the KNN method (Table 6.17). The higher percentage of 

accuracy as a result of both methods was obtained when the features are MP 

differences of electrodes in frontal and temporal lobes and classified with 

Gaussian SVM (Table 6.18). For emotions triggered by questions, the 

developed algorithm for the selection of personalized informative electrodes 

and some results of the studies with the DEAP dataset were tested. 

 

• Disorder detection by the help of emotion and mental states: First of all, a 

multi-functional interface has been developed to facilitate analysis. With this, 

besides examining the EEG signals with different methods, analyzes can be 

done by calculating different features. For the diseases, first, pre-FOG, during, 

and post-FOG detection studies were carried out with the adaptive 

thresholding method with the increase in concentration and anxiety levels of 

the data obtained from PD patients. The highest detection rate from the 

concentration was obtained by the thresholding method with a THR value of 

1.5 for the signals of the AF4 channel during FOG (Table 6.21). By using 

anxiety signals, most of during FOG was also detected, but this time the data 

obtained from channels F7 and P8 gave good results (Table 6.23). Finally, in 

studies with Hjorth parameters, even higher percentages for pre-FOG, during, 

and post-FOG were obtained with the mobility feature (Table 6.25). 

 

As can be seen from these results, it is not necessary to carry out studies using the 

data provided by all the electrodes in an EEG device. These electrodes can be 

selected on an individual basis for the studies to be carried out and can be reduced to 

the use of very few electrodes. Personalized informative electrode selection 

algorithm, which is one of the studies in this thesis, has also been developed for this 

purpose. Although the algorithm was used only for emotion detection in this study, it 

can be used for other studies in the future. Thus, more comfortable use of EEG 
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devices for long-term measurements will be possible by reducing the number of 

electrodes. In addition to all these, with devices to be designed with fewer electrodes, 

the cost of the device will be lower and the number of channels of the data to be 

examined will be reduced only as channels determined to be more informative, data 

pollution will be eliminated, and signal processing processes will be accelerated. 

 

With the help of the information and experience about EEG signals and some 

diseases in this study, personal diagnostic and stimulation devices can be developed. 

Elder persons, who suffer those diseases related to brain disorders or malfunctioning, 

may live in more comfort by detecting and preventing some effects of diseases 

before the attack occurs. At the same time, lots of applications can be developed 

related to brain activity and emotion extraction for any area of medical and consumer 

product marketing. 

 

An issue that should be mentioned based on the results is the levels of obtained 

accuracy percentages. Further studies can be organized to investigate more about the 

reasons for low accuracy results. There are several possibilities for this. First, 

differences were observed in the ratings and EEG signal responses in individuals 

from the studies conducted with the DEAP dataset. However, studies to prevent this 

situation were carried out as mentioned before, and improvements were observed in 

the results. The reason for the low percentage of studies with the recorded dataset 

may be the small size of the data. Finally, there may have been errors in marking the 

FOG events in disease detection studies, either due to the experienced user's 

incorrect use of the button or due to delays in the system. 
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