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AN INCREMANTAL GENETIC ALGORITHM AND NEURAL NETWORK 

FOR CLASSIFICATION AND SENSITIVITY ANALYSIS OF THEIR 

PARAMETERS 

 
 

ABSTRACT 

 
This study proposes classification by using algorithms that are inspired by 

computation in biological systems and to compare of them. These are genetic algorithm 

and neural network. New incremental genetic algorithm and new incremental neural 

network algorithm are developed for classification for efficiently handling new 

transactions. To achieve incremental classification, a specific model that includes all 

information about a train operation, rules for each class for genetic algorithm and weight 

values for neural network is created after each training operation. Later, these models are 

used for testing, correctness test, comparing models and incremental classification. With 

that new incremental method, training time gets smaller for new dataset. Experimental 

results proof that assumption. This paper introduces that new method and importance of 

that method. This study also includes the sensitivity analysis of the incremental and 

traditional genetic algorithm parameters and neural network parameters. In this analysis, 

many specific models were created using the same training dataset but with different 

parameter values, and then the performances of the models were compared. To achieve 

these operations two tools are developed for both genetic algorithm and neural network 

and all of these investigations are done by using these tools. 

 

Keywords: Genetic Algorithm, Neural Network, Classification, Data Mining, 

Incremental Mining, Sensitivity Analysis 
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ARTIMLI  GENETIK  ALGORĐTMA VE YAPAY SĐNĐR AĞLARI ĐLE 

SINIFLAMA VE PARAMETRELERĐNĐN HASSASĐYET ANALĐZĐ 

 

ÖZ 

 

 

Bu çalışmanın amacı biyolojik sistemden etkilenilip geliştirilen genetik algoritma ve 

yapay sinir ağları ile sınıflama yapmak ve artımlı algoritmalarını geliştirip geleneksel 

yöntem ile karşılaştırmasını yapmaktır. Bu amaç doğrultusunda her eğitim aşamasından 

sonra o eğitime özgü bir model oluşturulmaktadır. Bu model, eğitim ile ilgili tüm 

bilgileri ve eğitim aşamasından sonra elde edilen çıktıları saklamakta ve bu bilgiler daha 

sonra test işlemi, modelin doğruluk testi, modellerin performans hesaplamaları, 

performanslarının karşılaştırılması ve artımlı sınıflama sağlamak için kullanılmaktadır. 

Artımlı sınıflama geleneksel yönteme göre daha kısa eğitim zamanı ile daha fazla 

performans sağlamıştır. Bu amaca yönelik yapılmış deneysel gözlemler bu performans 

kazancını ispatlamaktadır. Ayrıca genetic algoritma ve yapay sinir ağları 

parametrelerinin değerleri değiştirilip, eğitim işlemlerinin sonuçları karşılaştırılarak 

hassasiyet analizi yapılmıştır. Tüm bu işlemleri gerçekleştirmek amacıyla genetik 

algoritma ve yapay sinir ağları için ayrı iki sınıflama aracı geliştirilmiştir.  

 

Anahtar Sözcükler:  Genetik Algoritma, Yapay Sinir Ağları, Sınıflama, Veri 

Madenciliği, Artımlı Sınıflama, Hassasiyet Analizi  
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CHAPTER ONE  

INTRODUCTION 

 

1.1  Data Mining 

 

Data Mining is the process of extracting hidden patterns from large datasets. Data 

mining has been widely used in many areas, such as marketing, banking and finance, 

medicine and manufacturing. There are many data in these areas. Data mining is the 

most widely used method to process these data. There are commonly four tasks of data 

mining. These are; Classification, Clustering, Regression and Association rule learning. 

 

1.2  Classification 

 

Classification is a procedure in which individual items are placed into groups based 

on quantitative information on some characteristics inherent in the items. In the 

classification process, a collection of labelled classes is provided and a training set is 

used to learn the descriptions of classes. Classification rules are discovered and then 

these rules are used to determine the most likely label of a new pattern. The most widely 

used classification techniques are neural networks, decision trees, k-nearest neighbours, 

support vector machines, and naive Bayes.  

 

Neural Network is one of most widely used classifiers. Much successful classification 

can be done with Neural Network. There are so many examples for Neural Network 

classification. But many of them don’t support testing operations, incremental NN, 

performance calculation of models and models comparison.  

 

Genetic Algorithm is not accepted between most widely used classifiers as a classifier, 

but so successfully classification can be done with Genetic Algorithm. There have been 
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a few samples for genetic algorithm when it is used as a classifier. None of them 

supports testing operations, models comparing and incremental GA.  

 

The aim of that study is to show importance of saving information of each train 

operation. A model is created for each training. This model includes all inputs and 

outputs of train operation. These information are used for testing (classes finding of new 

patterns), comparisons of models, correctness testing and decrementing training time for 

dataset which is updated regularly. 

 

This study also presents the sensitivity analysis of the GA parameters such as 

crossover probability, mutation probability, with/without elitism and population size and 

NN parameters such as input and output neuron numbers, hidden layer numbers, 

activation function…. The aim of this analysis is to evaluate the performances of the 

classification models which are constructed using the same training dataset with 

different GA parameter values and different NN parameter values. Each classification 

model for GA (classifier) consists of input parameters (crossover and mutation 

probabilities, population size etc.), applied techniques (parent selection type, crossover 

type, different termination criteria etc.), and outputs (average fitness value, classification 

rules etc.) related to training process. And each model for NN consists of input 

parameters (NN type, Network Layer number, network dimensions etc.) and weight 

values.  The models are compared by applying n-fold cross validation method. In order 

to implement all these experiments, two tools are developed, named Generic Genetic 

Classifier Tool and Neural Network Modeller.   
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CHAPTER TWO 

GENETIC ALGORITHM 

 

2.1  Related Works 

 
Genetic Algorithms are a family of computational models motivated by the process of 

natural selection in biological system. Evolutionary computing concept is appeared in 

the 1960’s by I.Rechenberg. GA was first developed by Holland in 1975 and then 

improved by other many researchers (Booker, Goldberg & Holland, 1989). Currently, 

GA is one of the most important techniques of artificial intelligence. GAs are used for 

soft constraint satisfaction, scheduling problems, finding game strategies, and so forth.  

 

The basis of genetic algorithm is "natural selection". That means, individuals who 

have sufficient features to live, are transferred in next generation, and other individuals 

who are not good enough, disappear. The stronger candidates remain in the population, 

the weaker ones are discarded (Shapiro, 2001). So new generation gets closer to the best 

solution at each step and this operation goes on until termination criteria are met. For the 

basic concept of genetic algorithms, please refer to Goldberg (1989). 

 

In recent years, only in a few studies, GAs has been applied for classification problem 

to discover classification rules. Ishibuchi, Nakashima, and Murata (2001) constructed a 

fuzzy classifier system in which a population for fuzzy if-then rules is evolved from 

genetic algorithms. Avcı (2009) implemented classification method by combining 

genetic algorithm and support vector machine techniques. Fan, Chen, Ma and Zhu 

(2007) created an approach for proposal grouping, in which knowledge rules are 

designed to interact with proposal classification, and the genetic algorithm is developed 

to search for the expected groupings. Yuen et al. (2009) proposed a hybrid model which 

combines genetic algorithm and neural network for classifying garment defects. Kwong, 
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Chang and Tsim (2008) used genetic algorithm to discover knowledge about the fluid 

dispensing. Dehuri, Patnaik, Ghosh and Mal (2008) used an elitist multi-objective 

genetic algorithm for mining classification rules from large databases. Yılmaz, Yıldırım, 

and Yazıcı (2007) used genetic algorithm to make classification segments of video to 

objects. 

 

According to the review of GA-based classification methods, previous studies use 

either traditional genetic algorithm or combination of genetic algorithm with another AI 

technique such as fuzzy, neural network. They don’t propose the incremental usage of 

the genetic algorithm for classification when new data is added to the existing dataset.  

 

The problem of incrementally updating mined patterns on changes of the database, 

however, has been proposed for other data mining tasks such as clustering, association 

rule mining. Lin, Hong, Lu (2009) propose an efficient method for incrementally 

modifying a set of association rules when new transactions have been inserted to the 

database. Lühr and Lazarescu (2009) introduce an incremental graph-based clustering 

algorithm to both incrementally cluster new data and to selectively retain important 

cluster information within a knowledge repository. Fan, Tseng, Chern, and Huang 

(2009) propose an incremental technique to solve the issue of added-in data without re-

implementing the original rough set based rule induction algorithm for a dynamic 

database. 

 

Sensitivity analysis is the study to determine how a given model output depends upon 

the input parameters. (Saltelli, 2008) In other words, it is the process of varying input 

parameters over a reasonable range and observing the relative change in model response. 

It is an important process for checking the quality of a given model, as well as a 

powerful tool for checking the robustness and reliability of the model. A sensitivity 

analysis can be conducted by changing each parameter value by +/- 10% and +/-50% 

(Cacuci, 2003). This study compares the performance of the classification models 

constructed by different GA parameter settings.  
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2.2  Genetic Algorithm for Classification 

 

Each phase in GA (Figure 2.1) produces a new generation of potential solutions for a 

given problem. In the first stage, an initial population, which is a set of encoded bit-

strings (chromosomes), is created to initiate the search process. The performance of the 

strings is then evaluated with respect to the fitness function which represents the 

constraints of the problem. After the sorting operation, the individuals with better 

performance (fitness value) are selected for a subsequent genetic manipulation process. 

The selection policy is responsible for assuring survival of the best-fit individuals. In the 

next stages, a new population is generated using two genetic operations: crossover 

operation (recombination of the bits/genes of each two selected strings/chromosomes) 

and mutation operation (alteration of the bits/genes at one or more randomly selected 

positions of the strings/chromosomes). This process is repeated until certain criteria are 

met. 

 

 
     Figure 2.1 Basic genetic algorithm 

 

Search Space is a subset which includes all possible solutions of the problem. 

 

Population is a subset of n randomly chosen solutions from the search space. For data 

mining, population is created randomly class number times. For example; if there are 

five classes in dataset then population is created five times. Because train operation for 

each class runs for five times. For example there are two classes, ‘YES’ and ‘NO’, so 
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firstly, population is created for ‘YES’ class, and finds solutions, rules for that class, and 

then the same operation is made for ‘NO’ class. 

 

Population consists of chromosomes. Chromosomes are strings which are possible 

solutions of that problem. Length of chromosomes is determined while population is 

being created randomly at the beginning, I look the number of the difference values of 

each attribute, and then I create chromosomes by looking these numbers. To understand 

clearly look at nursery dataset, which is one of datasets I study. 

 

In nursery dataset there are nine attributes. The last one is class value. After number 

of attributes is determined, dataset is searched for nine times. In every search we find 

how many different values for relevant attribute, there are. For example for the first 

attribute which name is ‘parent’, there are three different values, which are 

‘usual’, ’pretentious’ and ‘great_preat’. So the length of the part of chromosome for that 

attribute is three. For the first value, ‘usual’, our string part is ‘100’, for the second 

value, ’pretentious’, our string part is ‘010’, and for the last value, ‘great_preat’, our 

string part is ‘001’. So the first part of the chromosomes can be in the following forms; 

 

100: if parent=usual 

010: if parent=pretentious 

001: if parent=great_preat 

110: if parent=usual or parent=pretentious 

011: if parent=pretentious or parent=great_pret 

101: if parent=usual or parent=great_pret 

111: if parent=usual or parent=pretentious or parent=great_pret (in that situation that 

attribute is noneffective for relevant class.) 

 

At the beginning population is created randomly, that means these string parts are 

created randomly. For example while a chromosome is being created, for ‘parent’ 
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attribute, the part of that chromosome will be one of above string parts. And this 

operation is done for every attributes.  

 

For each attribute we create these string parts, and then we piece together these parts. 

This operation is made for population size times.  

 

After population creation, all individuals’ fitness values are calculated.  

 

2.3  Fitness Function 

 

This function is used for determining how acceptable individual is. There is not a 

fixed function to calculate fitness value. Fitness function depends on problem. But for 

classification with rule discovery by using genetic algorithm there is only one fitness 

function Freitas, AA(1999).  

 

Rule for each class is of the form “”IF condition THEN class”. Fitness value of that 

rule is predictive accuracy of that. Predictive accuracy is found by computing confidence 

factor of that rule. 

 

Definition 1. Confidence factor of rule 

 

)(condition#

class)&(condition#
factor Confidence =  

 

# (condition)           : the number of examples in that condition 

 

# (condition & class): the number of examples in that condition and have that class. 

That is, class number predicted by that rule. 
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For example there is 10 rules which are same with ‘condition’ (# (condition) = 10) 

and 3 of them are from class (# (condition & class) = 3), then confidence factor of that 

rule is 3/10. 

 

But there is a problem. For example # (condition) = 1 and # (condition & class) = 1, 

that is there is only one pattern which is “IF condition THEN class”, but according 

confidence factor formula, result is “1/1 = 100%”.  But it should not be. Because maybe 

that rule doesn’t define of class “C”.  

 

To overcome with that problem we use another component. 

 

TP: True Positives: Number of examples satisfying condition and class 

FP: False Positives: Number of examples satisfying condition but not class 

FN: False Negatives: Number of examples not satisfying condition but satisfying 

class 

TN: True Negatives: Number of examples not satisfying condition nor class 

 

In that situation confidence factor is equals to; 

  

Definition 2. Formula of confidence factor of rule is as follows; 

 

FPTP

TP
factor Confidence

+
=  

 

We know that confidence factor is not enough for calculating fitness value of the rule. 

So another component is needed for fitness value. It is “completeness”. Completeness is 

used for determining how complete the rule is. 

 

Definition 3. Formula for completeness which shows how complete current rule is 
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Comp
FNTP

TP

+
=  

 

So now the fitness function such as: 

 

Definition 4. Fitness value for classification operation is calculated as follows; 

 

Fitness = confidence factor x Comp   

 

This is the fitness function that is used in that project for classification. 

 

Training operation is applied for each class, and then average fitness value of each 

operation is calculated. This is the result fitness value, and this value effects 

performance of the model. 

 

Definition 5. Population fitness is defined as: 

)rFitness(ch = _FitnessPopulation
||chr

1i
i∑

=

 

where |chr| is the number of chromosome in the population (population size), chri  is 

the one chromosome in the population. 

 

Definition 6. Result fitness value calculation is shown below: 

result_fitness |c|))/_Fitness(pPopulation( =
|c|

1i
i∑

=

 

where |c| is the total class number, pi is the population for ith class. 

 

Fitness value is calculated for every individual at the population. After this operation 

individuals are sorted according to their fitness values.  
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After sorting, parent selection is made according to selection techniques for cross-

over operation. 

 

2.4 Parent Selection Techniques 

 

2.4.1 Roulette-Wheel Selection 

 

This is the most widely used selection technique. Roulette wheel selection is 

implemented as follows 

 

1. Find total fitness of the population. 

2. Generate n randomly, between 0 and total fitness 

3. Return the first population member whose fitness added to the preceding 

population members is greater than or equal to n. 

 

2.4.2 Tournament Selection 

 

As its name, there is a tournament among individuals. A few individuals are selected 

from the population randomly. The individual which has the highest fitness value is 

selected between these individuals. 

 

2.4.3 Top Percent Selection 

 

In that selection technique, top n percent of population is used. For example there are 

100 individuals in the population and n is 20, then we select randomly one individual 

between first 20 individuals. 
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2.4.4 Best Selection 

 

Parents are first two individuals of the population which has highest fitness value. 

The purpose of that method is to accelerate training by avoiding individuals which have 

poor fitness value. This method can not work when best individuals are not good enough. 

Because other individuals which have not high fitness value, may have successful 

performance and may get close solution after crossover or mutation operations. 

 

2.4.5 Rank Selection 

 

Tournament selection will have problems when the fitnesses differ very much. For 

example, if the best chromosome fitness is 90% of all the roulette wheel then the other 

chromosomes will have very few chances to be selected.  

 

Rank selection first ranks the population and then every chromosome receives fitness 

from this ranking. The worst will have fitness 1, second worst 2 etc. and the best will 

have fitness N (number of chromosomes in population).  

 

2.4.6 Random Selection 

 

Parents are selected randomly with that method. A number ‘n’ is generated between 

“1” and population size. After that operation nth member of population is selected as 

parent. 

 

There are two alternatives for cross-over. These are not kind of cross-over techniques, 

these are choices to get better performance and to decrement time which we need to 

reach to solution. These are Steady-State Selection and Elitism. The mission of steady-

state selection is transferring individuals which have high fitness value, into next 

generation without any operation. The purpose of that, to save good individuals and not 
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losing them. The purpose of Elitism is similar, but only first two individuals which have 

highest fitness value are added into next generation directly with elitism.  

 

After parents are selected, cross-over operation is applied. 

 

2.5 Crossover 

 

In that operation genetic information of two individuals are merged. The purpose of 

that operation is to find best individual.  There are three main cross-over techniques for 

data mining. 

 

2.5.1 One Point Crossover 

 

Each parent divides into two parts according to a fix number which is between 1 and 

string length or a number which is generated randomly. And the first part of first parent 

and the second part of the second parent are merged and first child is created. The 

second part of first parent and the first part of second parent create second child. 

 

 

                 Figure 2.2 One point crossover 
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2.5.2 Two-Point Crossover 

 

Each parent divides into three parts according to fix two numbers which are between 

1 and string length or which are generated randomly. The first and third parts of the first 

parent and the second part of the second parent create first child. The second part of the 

first parent and the first and third parts of the second parent create second child. 

 

 
          Figure 2.3 Two point crossover 

 

2.5.3 Uniform Crossover 

 

A string is generated randomly. The mask determines which bits are copied from first 

parent and which from the other parent. The bits which are “1” in mask, show that these 

bits will be copied from the first parent, and “0” bits are for second parents. 
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     Figure 2.4 Uniform crossover 

 

Crossover operation is shown in Figure 2.5 as a pseudo code. 

 

        

Figure 2.5 Crossover 
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Cross-over operation is applied according to cross-over probability. This probability 

value is between 0 and 1.  Before operation a random number is generated between 0 

and 1. If this number smaller then probability, cross-over is applied, otherwise parents 

are transferred directly, without any operation. 

 

2.6 Mutation 

 

After cross-over operation, mutation is applied. Mutation is a random deformation of 

the strings with a certain probability. This probability is similar with cross-over 

probability. If random n number smaller then mutation probability, mutation operation is 

made. Certain bits of string are changed with that operation. The aim of mutation 

operation is avoiding local minimum. Figure 2.6 shows pseudo code of mutation 

operation. 

 

 

          Figure 2.6 Mutation 

 

2.7 Termination Criteria 

 

These cross-over and mutation operations attend until termination criteria are met.  

There are two most widely used termination criteria. These are generation number and 

fitness value. 
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2.7.1 Generation Number 

 

As its name, there is a given number which shows how many new generations will be 

created. For example if generation number is 50, then after 50 generation, loop of 

generation is terminated regardless of average fitness of the population. Disadvantage of 

that method, training can be terminated before reaching solution. 

  

2.7.2 Fitness Value 

 

In that situation fitness value of population needs to reach given fitness value to 

terminate. Disadvantage of that method, wrong fitness value can be determined as a 

threshold, so when loop is terminated, there can be no solution of the problem. For 

example 25 is determined as a threshold fitness value. But maybe there will be a 

population which has 30 fitness value, and of course closer to best solution. But because 

of false threshold, this best solution can not be reached. On the other hand wrong fitness 

value causes infinite loop. For example population’s best fitness value is 30, but at the 

beginning 35 is selected as a threshold that can never be reached. In that situation loop 

can not terminate.  

 

When termination criterion has been reached, there is a population that includes rules 

for one class. These rules or this rule characterize of current rule. After rules are found 

for one class, the same operation is done for another class and rules of that class are 

found.  

 

The purpose of that study is to achieve incremental GA firstly. To realize that, the 

incremental genetic algorithm for classification in Figure 2.7, is developed. 
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   Figure 2.7 Incremental GA 

 

In training process, the main difference between traditional GA and our incremental 

GA is the generation of the initial population. While, in traditional GA, initial population 

is generated fully random, in incremental GA, the classification rules are also added into 

the randomly generated population. Experimental results show that the results obtained 

from traditional and incremental GA are the same, but incremental GA reduces the 

generation number and decreases time which we need to reach to solution. The 

flowchart of the proposed training process is depicted in Figure 2.8. 
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        Figure 2.8 The flowchart of the proposed training process 

 

By using above algorithm training (classification) operation is implemented as 

described before. After that operation there is a specific model of that operation. This 

model is shown in Figure 2.9. 

 

 

Figure 2.9 An example classifier model 
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This model includes inputs that are entered ; Selection Type (roulette wheel, 

tournament, top percent, best, rank or random) if selection type is tournament then 

model includes “Group Size” value or selection type is top percent then there will be 

“Percent Value” in the model, Steady_State Selection (true or false), Elitism (true or 

false), Cross_over Probability (between 0 and 1), Mutation Probability (between 0 and 

1), Population Size, Cross_over Type  (one_point, two_point or uniform), Replace If 

Better (true or false), Replace Always (true or false), Termination Criteria (generation 

number or fitness value). These are inputs. This model also includes outputs of 

classification operation; Generation Number, Average Fitness, Attributes and Rules. 

 

This specific structure is used for calculation performances of models.  

 

Performances of models depend on generation number and result fitness of the 

population. Performance is directly proportional to the result_ fitness and inversely 

proportional to the generation number.  

  

Definition 7. Performance of the model is calculated as follows, Pm stands for 

performance of the model, result_fitness is declared in Definition 6. 

 

number generation

nessresult_fit
αPm  

 

Result fitness and generation number effect performance. But the forcefulness of their 

effect is not the same. Because the main purpose of training operation with genetic 

algorithm, is having maximum fitness and than minimum generation number. That is 

fitness value has priority. Look from this perspective, training operation can not be 

interrupted to have small generation number. We can say that fitness should have double 

effect on performance calculation. In that situation the following formula is used. 
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Definition 8. Performance calculation when fitness value has double effect on 

calculation. 

 

number generation

nessresult_fit * 2
Pm =  

 

But sometimes generation number can be more important than fitness value, or there 

can be a delicate balance between average fitness and generation number. So weights 

should be used for calculation. 

 

Definition 9. Performance calculation with user defined weights, w1 is a weight for 

result fitness and w2 is a weight for generation number. 

 

number generation*w2

nessresult_fit *w1
Pm =  

 

Comparisons of models’ performances are done by using the pm formula in 

Definition 9. With these comparisons, parameters which are ideal for a dataset, can be 

determined.  

 

This study provides effective way for classification for datasets which are updated 

regularly. To achieve that, models that are created after training operation, are used. 

(Figure 2.9) These specific models include rules that stand for every class in the dataset. 

When new patterns are added into dataset, a new classification, a new training operation 

is needed. Before that study all operations were applied one by one, and this causes 

waste of time. Because a part of that dataset is trained before and rules in that dataset are 

found. This study solves that problem and eliminates wasting of time. To succeed that, 

rules that are found before, are added into initial population. And then other operations 

are done. That means initial population is not created fully randomly, an intervention is 

applied to initial population. All classes in the new dataset are determined, and rules for 



 

 

21 

classes that were in the previous dataset, are found from the model, and added in initial 

populations. This provides to access expected fitness value with fewer generation 

number. Figure 2.10 shows that operation.  

 

 

            Figure 2.10 Incremental approach for handling new patterns 

 

Initial dataset is trained and model of that dataset is created. This model includes all 

information and rules for that training operation. Later, new patterns are added into 

dataset. For example there were 15000 patterns in the initial dataset, and 1000 new 

patterns are added into dataset. For 1000 patterns all dataset should be trained in any 

case. But generation number and so training time can be reduced by using model that is 

created for initial dataset.  

 

The following notations are used in the proposed model: 

 

St         Selection Type 

Mp       Mutation Probability 

Cp        Crossover Probability 
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Ps           Population Size  

Ct          Crossover Type 

 Tc        Termination Criteria 

 Gn        Generation Number 

Pv          Percent value for top percent selection 

Gs           Group size for tournament selection 

GN      Generation number as a termination criteria 

FV       Fitness value as a termination criteria 

 

2.8 Experimental Results 

 

2.8.1 Description of the Dataset 

 

For the purpose of testing the performance of the proposed incremental GA, 

classification experiments are conducted on the real-world data "Nursery" from the UCI 

Machine Learning Repository (Asuncion & Newman, 2007). Nursery data consists of 

12960 instances with 9 features derived from a hierarchical decision model originally 

developed to rank applications for nursery schools in Ljubljana, Slovenia. As shown in 

Table 2.1, all attributes have categorical values and the target (class) attribute has five 

different classes, namely, not_recom, recommend, very_recom, priority, and spec_prior.  
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Table 2.1 Attributes and attribute values of Nursery dataset 

Attribute 

Name 

Attribute Values 

parents usual, pretentious, great_pret 

has_nurs proper, less_proper, improper, critical, very_crit 

form complete, completed, incomplete, foster 

children  1, 2, 3, more 

housing  convenient, less_conv, critical 

finance  convenient, inconv 

social  non-prob, slightly_prob, problematic 

health recommended, priority, not_recom 

class not_recom, recommend, very_recom, priority, spec_prior 

 

When generating initial population, chromosomes are created using binary encoding. 

In binary encoding, the length of a chromosome is determined by the number of the 

different values of each attribute. For example; if an attribute has three different values: 

‘usual’, ‘pretentious’ and ‘great_preat’ then the length of the part of chromosome for 

that attribute becomes three as shown below.  

 

100: if parent = usual 

010: if parent = pretentious 

001: if parent = great_preat 

110: if parent = usual or parent = pretentious 

011: if parent = pretentious or parent = great_pret 

101: if parent = usual or parent = great_pret 

111: if parent = usual or parent = pretentious or parent = great_pret  

(In the last case, this attribute is ineffective for relevant class) 

 

Encoding operation is done for every attributes, each attribute constitutes a string part 

and chromosomes are randomly constructed by the concatenation of them. The 

following string is one of possible chromosomes for Nursery dataset.  
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101-00001-1100-0110-111-01-001-100-00001 

 

The meaning of that chromosome is; 

 

If (parent=usual or parent=great_preat) and  

   (has_nurs=very_crit) and  

   (form=complete or form=comleted) and  

   (children=2 or children=3) and  

   (housing=convenient or housing=less_conv or housing=critical) and   

   (finance=inconv) and  

   (social=problematic) and  

   (health=recommended)  

Then class=spec_prior  

 

Chromosomes for initial population for one class are randomly generated in this way 

until the desired population size has been reached. After termination criterion is met, 

other initial populations are created for other classes. 

 

2.8.2 Determining Crossover and Mutation Probability 

 

In this section importance of crossover and mutation probabilities for fitness value are 

depicted. Crossover and mutation probabilities effect training time and so generation 

number and fitness value directly. If crossover probability is too big, needless skipping 

occurs, and important individuals who have big fitness value, can be lost. If crossover 

probability is so small then training time increases. Figure 2.11 shows importance of 

crossover probability and replace type. Blue line is a fitness value-crossover probability 

involvement when replace type is if_better, that is children are added into new 

generation if their fitness values are greater than their parents, otherwise parents are 

transferred into new generation. Pink line is for replace type is replace_always. In that 

situation children are added into new generation without controlling their fitness value. 

Table 2.2 includes parameters that are fixed for that observation. Cps are taken between 
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0.3 and 0.9, 7 different values. For each Cp 10 trainings are done, and averages of these 

observations are taken. As it can be seen from graphic that is shown in Figure 2.11 

crossover probability(Cp) effects fitness value(FV) directly. The more Cp increases, the 

more FV increases for fixed generation number (GN). FV measurements are listed in 

Table 2.3.  

 

     Mutation probability (Mp) effects FV like Cp, substantially. Mp is taken between 0.3 

and 0.8. The more Mp increases, the more FV increases for fixed GN until one point. 

That limit is 0.7. After that point the more Mp increases, the more FV decreases. Because 

system starts running randomly and in some situations good individuals are lost because 

of oft mutation. This observation is depicted in Figure 2.12. For each Mp, 10 trainings 

are applied and averages of these results are taken. Fixed parameters and their values are 

listed in Table 2.4. 

 

Table 2.2 Parameters of training for Cp-FV Involvement examination 

 

10.633
13.128

17.794

24.197

33.235 34.081

39.081

9.624
11.875

15.783

20.232

27.317

32.377

38.801

0

5

10

15

20

25

30

35

40

45

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cp

F
V Replace_if_better

Replace Always

 Figure 2.11 Cp-FV Involvement 

     St           Pv    Steady_State    Elitism    Mp     Ps        Ct            Tc      Gn 

Toppercent     10             False                  False          0.5    100     two-point    GN     50 
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    Table 2.3 Results of Cp-FV Involvement examination 

Cp  0.3 0.4 0.5 0.6 0.7 0.8 0.9 

FV If_Better 10.633 13.128 17.794 24.197 33.235 34.081 39.081 

 Always 9.624 11.875 15.783 20.232 27.317 32.377 38.801 
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  Figure 2.12 Mp-FV Involvement 

 

Table 2.4 Parameters of training for Mp-FV Involvement examination 

 

2.8.3 Importance of Elitism 

 

First two individuals which have highest fitness value are added into next generation 

directly with elitism. The strongest individuals are not lost by this way. These 

individuals are under protection against every operations like mutation, crossover. To 

investigate importance of elitism 100 trainings are applied. 50 are with elitism and 50 

     St             Steady_State       Cp    Mp   Ps        Ct            Replace      Tc    FV 

Tournament           False                     0.5    0.8    100     two-point       If_better       FV     25 
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are without that. To examine that, tournament selection is used as parent selection 

technique. Effect of group size for tournament selection is investigated, too. 5 different 

group sizes are taken, these are 10,15,20,25 and 30. For each group size 10 trainings are 

applied and average of these is taken. Figure 2.13 shows result of investigation as a 

graph. While observation is done, parameters that are shown in Table 2.4 are used. 

Graphic that is shown in Figure 2.13 shows effects of Gs and Elitism on GN. FV is used 

as termination criterion. FV is 25 for that investigation.  Blue line at the graphic 

represents classification with elitism and pink line represents classification without 

elitism. This graphic proves that importance of elitism. Elitism provides to reach 

expected FV with smaller GN. Gs effects GN substantially. Too Small Gss and too big 

Gss increases GN as seen in Figure 2.13. 25 is the most suitable Gs for that classification. 
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  Figure 2.13 GN-GS Involvement 

2.8.4 Population Size 

 

Population size (Ps) is other argument that effects classification with genetic 

algorithm. To show effect of Ps 50 classification operations are done. 5 different Ps 

which are between 25 and 250, are taken and FVs of these are observed. 10 
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classifications are done for each Ps and average of these operations is taken. That 

investigation is shown in Figure 2.14 and Figure 2.15. The more Ps increases, the more 

FV increases for fixed GN (Figure 2.14) but also the more training time increases, too 

(Figure 2.15). Parameters that are fixed during the training are listed in Table 2.5.  

 

Table 2.5 Parameters of training for PS-FV Involvement examination 
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  Figure 2.14 Ps-FV Involvement 

 St       Steady_State    Elitism    Cp    Mp     Ct            Replace      Tc    GN 

Best           False                    False        0.7      0.6   two-point       If_better          GN     50 
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Time-Ps Involvement
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   Figure 2.15 Time-Ps Involvement 

 

Table 2.6 Results for Ps – FV Involvement 

Ps FV Time(sn) 

25 5.1 6.93 

50 9.56 7.39 

75 12.47 8.62 

100 16.48 9.85 

250 52.99 16.58 

 

2.8.5 Traditional vs. Incremental GA 

 

In this section, the performances of traditional GA and incremental GA are compared 

through the experiments based on the real-world data set Nursery. The implements of 

both algorithms were run with various parameter settings and every classification 

problem has been solved 10 times where average minimum costs were calculated. 

Consequently, 120 different experiments were handled for this purpose.  
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In the first case, 150 patterns are removed from the Nursery dataset and training 

operation was done for that dataset. Fixed parameters that were used for training 

operation are shown in Table 2.7. After training operation specific model is created. 

After that operation 150 patterns are added into dataset as new patterns. Model that is 

created before is used for training operation, and normal training operation is applied 

without model usage, differences of FVs are shown in Figure 2.16.  Each operation is 

done when GN is 25, 50 and 75, and 6 operations for each. When GN is 25, FV 

difference is the highest, the more GN increases, the more FV differences decrease.  

 

In the second case, termination criterion was changed from GN to FV. In this case, 

initial parameters were assigned with the values listed in Table 2.8 and training 

operations were repeated with different FV values 20, 25 and 30. According to the 

results shown in Figure 2.17, incremental GA reached to the expected FV at least 3 

times faster than traditional GA. So, incremental GA provides to access expected fitness 

value with lower generation number. 

 

Table 2.7 Parameters of training for incremental GA when termination criterion is GN. 

 

 

St       Steady_State    Elitism    Cp    Mp     Ct            Replace      Tc       Ps 

Best           False                    False        0.7      0.6   two-point       If_better        GN    226 
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Figure 2.16 Comparison of Traditional GA and Incremental GA according to the average FVs with     

various GN parameter settings 

 

Table 2.8 Parameters of training for incremental GA when termination criterion is FV. 

 

 

St       Steady_State    Elitism    Cp    Mp     Ct            Replace      Tc       Ps 

Best           False                    False        0.7      0.6   two-point       If_better       FV    226 



 

 

32 

4
6

8

15

18

29

0

5

10

15

20

25

30

35

20 25 30

FV

G
N

Incremental

Traditional

 

Figure 2.17 Comparison of Traditional GA and Incremental GA according to GN values with various FV 

parameter settings 

 

2.8.6 Classification Accuracy 

 

The classification accuracy is evaluated by the error rate that is the ratio of the total 

number of correctly classified samples by the trained models in all generated test. For 

example, the dataset could be randomly divided into two portions, with 70 percent of 

data in the training set and 30 percent in the validation (test) set. After training operation 

is performed on the training set, classification accuracy rate is computed on the test set.  

 

Commonly used validation techniques for classification are simple validation, cross 

validation, n-fold cross validation, and bootstrap method. (Kim, 2009) In my 

experiments, classification accuracy is estimated by using 5-fold cross validation 

technique.  In n-fold cross validation technique, the data set is divided into n subsets, 

and the method is repeated n times. Each time, one of the n subsets is used as the test set 

and the other n-1 subsets are put together to form a training set. Then the average error 
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across all n trials is computed. I used this technique because it matters less how the data 

gets divided.  

 

In my experiments, the highest classification accuracy (89%) is obtained when the 

input parameters are assigned with the values listed in Table 2.9.  

 

Table 2.9 Specific model that is used for classification 

 

Table 2.10 Rules that are used for classification 

Rules Class 

If (parents=usual) and (has_nurs=proper) and (form=complete) and 

(children=1) and (housing=convenient) and (finance=convenient) and 

(social=nonprob or social=slightly_prob) and (health=recommended) 

recommend 

If (parents=usual or parents=pretentious) and (has_nurs=proper or 

has_nurs=less_proper or has_nurs=improper)   and 

(health=recommended or health=priority) 

priority 

If (health=not_recom) not_recom 

If (parents=usual or parents=pretentious) and (has_nurs=proper or 

has_nurs=less_proper) and (form=complete or form=completed or 

form=incomplete) and (children=1 or children=2) and 

(housing=convenient or housing=less_conv) and (social=nonprob or 

social=slightly_prob) and (health=recommended)  

very_recom 

If (parents=pretentious or parents=great_pret) and 

(has_nurs=improper or has_nurs=critical or has_nurs=very_crit) and 

(health=recommended or health=priority) 

spec_prior 

 

 

 

St       Steady_State    Elitism    Cp    Mp     Ct            Replace      Tc       Ps     GN   FV 

Best           False                    False        0.7      0.6   two-point       If_better        GN    226      50   101,65 
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2.9  Interface 

 

All operations are applied by using a tool that is developed for classification by using 

genetic algorithm. This tool is developed in Visual Studio .Net 2008, using C# as 

programming language. 

 

All parameters for classification are entered as inputs. This provides user control and 

models that are created with different GA parameters, comparisons. 

 

 This tool provides model training, comparison, testing, correctness test and 

incremental GA. Figure 2.18 shows interface. 

 

 

Figure 2.18 Genetic Algorithm Modeller Interface 
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2.9.1 Training 

 

This function of the tool provides classification. All parameters for the genetic 

algorithm are entered manually to give all controls to the users. There are 7 main parts of 

the page. The first part is for dataset. Figure 2.19 shows that part.  

 

 

          Figure 2.19 Entering dataset   

 

File name of the dataset is entered manually or by using search button. After that, 

splitter between attributes in the dataset is selected. There are three choices; comma, 

space and full stop.  

 

After these operations result file name is entered. All information and results of that 

training operation are saved in that file. This is called ‘model’ of the classification. This 

model is used later for many operations. 

 

There are 6 parent selection techniques in the interface as it is shown in Figure 2.20. 
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   Figure 2.20 Selection techniques 

 

Alternatives for selection techniques are Roulette Wheel, Tournament, Top Percent, 

Best, Rank and Random. If the user select tournament, then she/he should determine 

group size for tournament. There are two alternatives for group size. User can enter 

group size manually, or she/he can select random size. If random size is selected, group 

size will be determined randomly. If top percent is selected as a parent selection 

technique, then percent value should be entered manually. For example there are 1000 

individuals in the population. User enters 30 for the percent value. In that situation 

parents are selected between first 300 individuals in the population. 

 

After selection techniques are determined, there two alternatives which can improve 

effectivity of the training operation. These are Steady-State Selection and Elitism. User 

can select one of them or not, it is optional. If Steady-State Selection is selected, then 

first %30 of population which have high fitness value, are transferred into next 

generation without any operation that can change them. If Elitism is selected, then first 

individual which have highest fitness value, is transferred into next generation directly. 

Steady-State Selection and Elitism can not be selected together. 
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GA parameters such as Crossover Probability, Mutation Probability and Population 

Size are determined by user shown in Figure 2.21. 

 

 

       Figure 2.21 GA parameters 

 

Crossover probability and mutation probability should be between 0 and 1. 

 

 

      Figure 2.22 Crossover techniques 

 

There are three crossover techniques alternatives for classification with GA. These 

are One Point, Two Point and Uniform. These are illustrated in Figure 2.22. After 

crossover techniques, there are two choices that can improve performance of training. 

These are Replace If Better and Replace Always. Selection these, is optional like Elitism 

and Steady_State_Selection in Figure 2.20. 

 

 

Figure 2.23 Termination criteria 
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Termination Criteria are in user control like other GA parameters. There are two 

termination criteria, Generation Number and Fitness Value, see Figure 2.23. If 

generation number is selected as termination criterion, then generation number should be 

determined. For example for the training that is shown in Figure 2.23, training will stop 

after 50 new generations. If the termination criterion is Fitness Threshold, then user 

should determine Fitness Value. Training terminates when fitness value of population 

reaches that user defined value. 

 

During training operation, information of generation number and fitness value of 

operation is shown by using graphic that is illustrated in Figure 2.24. 

 

 

Figure 2.24 Graphic 

 

This graphic is drawn by using Zed Graph. For each class this graphic is drawn. For 

example for nursery dataset, this graphic is shown to the users for 5 times, because there 

are five distinct classes in the dataset. This graphic provides to show when model 

reaches at maximum FV. For example for the training that is shown in Figure 2.24, 

maximum FV is reached nearly after 5 generation numbers, so that provides to give 

information to the user that 50 generation number is too big for that training. 
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 Figure 2.25 Rules 

 

For each class, rules are listed as output like in Figure 2.25 ‘,’ means and, ‘|’ means 

or, and ‘=’ stands for then. All of these rules are saved in model file to use later, too. 

 

2.9.2 Comparing Models 

 

This function of the tool provides to compare models according to their performances, 

and results are shown by using bar chart. Figure 2.26 shows interface of ‘Comparing 

Models’. 

 

There is a datagridview that illustrates all information of the models which are 

compared. Infinite number of models can be compared. In datagridview; model name, 

selection type, information about steady_stead selection and elitism, crossover and 

mutation probabilities, population size, crossover type, replece_if_better and replace 

always information, termination criteria, generation number and average fitness value 

are listed. 
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Figure 2.26 Comparing models 

 

First of all; models are selected by ‘Search’ button, and then added into list in the 

datagridview by using ‘Add->’ button. After these operations models are compared with 

‘Compare’ button. As it can be seen from the Figure 2.26, performances of all models 

are illustrated by using Bar Chart that is drawn with Zed Graph. For example for that 

comparison that is shown in Figure 2.26, first model which is called ‘25’ has the highest 

performance and model ‘75’ has greater performance than model ‘den’. Reason of that 

result is shown in the datagridview. Look at Figure 2.27, that shows other part of the 

datagridview which is not seen in the Figure 2.26.  
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Figure 2.27 Information of models 

 

Performance is directly proportional to the fitness and inversely proportional to the 

generation number. Performance is calculated as it is declared in Definition 9. Fitness 

value of the first model is ’83.53’ and fitness value of the second model is ’88.32’. If 

just fitness values were looked for the performance calculation, then second ‘75’ model 

should have higher performance than ‘25’ model. But when generation numbers of 

models are looked, then it can be seen that ‘75’ model has three times of generation 

number of ‘25’ model. So ‘25’ model has the highest performance. ‘den’ model has the 

smallest fitness value and also highest generation number. So that model has the 

smallest performance between these models. User can see the reason of that result by 

looking information of the models. For example population sizes of first two models are 

‘226’, and ‘den’ model has ‘100’ population size. So it can be said that the more 

population size increases, the more performance increases. The other difference between 

first two models and the third model is crossover and mutation probabilities. So all of 

reasons that effect performance, can be seen with comparing function of the tool. 

 

If any other models are wanted to compare then ‘Clear’ button is used to clear 

datagridview and graph. 

 

2.9.3  Testing 

 

This part of tool provides to classify patterns which don’t belong any classes. Testing 

page includes two parts. First part is for classifying, and the second part is to test how 

model is correct. Figure 2.28 shows testing page. 
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Figure 2.28 Testing 

 

Model file name which includes classification rules is entered in the first textbox. 

Test file name that includes patterns that are wanted to classify is written in the second 

text box. Splitter that splits attributes in the test file is selected, ‘comma’, ‘space’ or ‘full 

stop’. Model output file name should be written in the third text box. Class names of all 

patterns are written in that model output file. After pressing ‘Test’ button, class names 

that are found for patterns are written in the ‘output.txt’ file for that example that is 

shown in Figure 2.29. 
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                       Figure 2.29 Classification 

 

To test correctness of model, second part of the page is used. To use that function of 

the tool, user should have file that includes correct class name of the patterns. Correct 

outputs filename that includes correct class name of patterns is entered in the ‘Correct 

Outputs File’ text box, and model output file name is entered in the ‘Model Output File’ 

text box. After pressing ‘Correctness Test’ button, correctness ratio of the model is 

shown by using pie chart that is drawn with Zed Graph as it is shown in Figure 2.30. 
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                 Figure 2.30 Correctness test 

 

2.9.4 Incremental GA 

 

This function of the tool provides training that needs less classification time than 

traditional training. This function is used for datasets that are updated regularly.  
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Figure 2.31 Incremental GA 

 

To achieve Incremental GA, name of model which is created for previous dataset, is 

entered in the ‘Model File Name’ text box. This model includes classification rules that 

are found with traditional GA classification for previous dataset. Dataset file name that 

includes new added patterns is entered ‘New Dataset File Name’ text box that is shown 

in Figure 2.32. 

 

 



 

 

46 

 

Figure 2.32 Incremental GA I 

 

Symbol that splits attributes in the dataset is selected between there choices; 

‘comma’, ’space’ and ‘full stop’. And then result file name which all information about 

training will be written in, is entered in the ‘Result File Name’ text box. 

 

Another advantage of that operation is that there is no need to write GA parameters 

for training. Because all needed GA parameters are in the model file. 

 

Termination Criteria should be chosen to terminate training operation. There are two 

choices as in traditional training; Generation Number and Fitness Value as in Figure 

2.33. If Generation Number is selected as termination criterion, then generation number 

should be written in ‘Generation Number’ text box. If Fitness Value is selected, then 

fitness value should be entered in ‘Fitness Value’ text box. 

 

 

Figure 2.33 Incremental GA II 
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After pressing ‘START’ button training operation starts. Graph that is shown in 

Figure 2.34 is drawn during training. This graph shows situation of operation, and gives 

information to the user about FV and GN for each class as in traditional training 

operation.  

 

 

Figure 2.34 Graph for Incremental GA 

 

In that example that is illustrated in figures above, firstly nursery dataset that includes 

12810 patterns is trained and a model is created for that operation. After that, 150 new 

patterns are added in dataset. If there is not that Incremental GA function of the tool, 

then traditional training operation would be applied, and this would cause waste of time. 

If Figure 2.34 is looked, it can be seen that FV for spec_prior class starts from 32.60, not 

0. Because initial population is not created fully randomly, classification for that exists 

in model file, is added in initial population. 
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CHAPTER THREE 

NEURAL NETWORK 

 

3.1 Related Works 

In recent years, many studies which NNs have been applied for classification problem 

have been done. Mazurowski , Habas, Zurada, Lo, Baker and Tourassi (2007), 

investigate the effect of class imbalance in training data when developing neural 

network classifiers for computer-aided medical diagnosis. Molnár, Keserű, Papp, 

Lőrincz , Ambrus and Ferenc Darvas (2006) developed a NN based classification 

approach using cytotoxicity data measured for 30,000 compounds to predict 

cytotoxicity. Yu and Zhu (2009) combined neural networks and semantic feature space 

for email classification. Manevitz and Yousef (2006) developed one-class document 

classification by using Neural Networks. Banerjee, Kiran, Murty and Venkateswarlu 

(2008) presented an ANN for classification and identification of Anopheles mosquito 

species based on the internal transcribed spacer2 (ITS2) data of ribosomal DNA string. 

Übeyli (2008) used combined NN model to guide model selection for classification of 

electroencephalogram (EEG) signals. 

3.2 Neural Network 

 

NN is a system that includes units which have small amount of local memory. These 

units connect each other with more than one communication channel. These channels 

carry out numerical data. Each unit process its local data, and units run asynchronously.  

 

3.2.1 Simple Single Unit Network 

 

Simple single unit network includes input, weights, nucleus, activation and output as 

it is shown in Figure 3.1.  
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                       Figure 3.1 Simple single unit network  

 

In is input of network, wn is weight of  In.  Nucleus includes a summation function that 

calculate weighted sum of inputs. Most widely used summation function is illustrated 

below. 

 

Definition 10 Weighted sum of inputs calculated as; 

                   n 

Yin = ∑   Inwn    
      i=1 

 

  

where In is input value, and wn is the weight. 

 

Yin is the input of activation function, f. Activation function provides to process input 

that is calculated with summation function, and to calculate output of the network. There 

are many activation functions. In that study Sigmoid, Gaussian, Identity, Unit Step, 

Piecewise Linear and Hyperbolic Tangent functions are used as activation functions. 
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3.2.2 Activation Functions 

 

3.2.2.1 Sigmoid Function 

 

This is the most widely used activation function in NN. Sigmoid function gives 

continues results to the inputs. Results are not discreet. This function is suitable for the 

problems which sensitive evaluation should be applied. Result of the sigmoid function is 

between 0 and 1. 

 

Definition 11 Sigmoid function is; 

     

)(1

1
)(

bx
e

xf
+−+

=
β  

 

where ß is gradient, x is input and b is the bias. 

 

3.2.2.2 Gaussian Function 

 

Gaussian function provides easier to prediction of the behaviour of the net when the 

input patterns differ strongly from all teaching patterns. 

 

Definition 12 Gaussian function as activation function is 

2
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where ß is gradient, x is input and µ is the learning rate 

 



 

 

52 

3.2.2.3 Identity Function 

 

This function is noneffective function.  

 

Definition 13 Identity function is; 

 

xxf =)(  

 

3.2.2.4 Unit Step Function 

  

If input is greater than 0, output is 1, otherwise output is 0. This function can be used 

for simple problems. This function is not useful for complex problems. 

  

Definition 14 Unit step function is; 

 

0)( =xf if  x> 0 , 1)( =xf if  0≥x  

 

3.2.2.5 Piecewise Linear Function 

 

Piecewise linear function is combination of sigmoid and unit step functions. This 

function returns both continues and discrete values. This function returns continues 

values between 0 and 1, and calculates discrete values 0 or 1. 

Definition 15 Piecewise Linear function is; 
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3.2.2.6 Hyperbolic Tangent 

 

Difference of that function from others, that function returns results between -1 and 1. 

 

Definition 16 Hyperbolic Tangent function is; 

 

)1/()1()( 22 xx
eexf

−− +−=  

3.2.3 Termination Criteria 

 

Training operation in neural network attend until termination criteria are met. There 

are two termination criteria that are most widely used. These are minimum error and 

iteration number. In that study these are used as termination criteria. 

 

3.2.3.1 Minimum Error 

 

As its names, there is a given value that represents minimum error which network 

should reach that value. Training operation continues until error value of the network 

reaches given minimum error value. Disadvantage of that method is wrong minimum 

error value which system can never reach, can be given. In that situation, loop can not 

terminate.     

 

3.2.3.2 Iteration Number 

 

There is a given number which shows how many iterations will be done. Training 

attends until iteration number reaches given iteration number. When it reaches limit 

value, training terminates. Disadvantage of that method, small iteration number can be 

given as termination criterion. In that situation, training terminates before reaching 

optimum result. When bigger than network needs to reach optimum solution, 
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termination number is given, and then loop continues unnecessary after finding optimum 

solution.  

  

3.2.4 Neural Network Types 

 

Neural networks are categorized according to learning strategies and architectures. 

There are three learning strategies in neural networks. These are supervised, 

unsupervised and reinforcement learning. In supervised learning as its names, prediction 

is done by using given input/output pairs. Output of the network for current input is 

compared with the given output, and then error value is calculated, and weights are 

updated.  In unsupervised learning there is not any intervention to effect neural network 

from outside. Correct output values are not given to the network and network classify 

patterns with comparing to patterns. Reinforcement learning is not supervised or 

unsupervised learning. In that learning strategy correct output is not given, but output of 

the network is evaluated as true or false. 

 

According to architectures, there are two neural network types. These are 

feedforward and feedback neural networks. In feedforward neural network, data stream 

is one way. There is no way for feedbacking.  A cell accepts input from only previous 

cells. Feedback neural network provides feed backing, cells accept input from all layers 

in network. 

 

In that study four neural network types are used for classification operation. These 

are; Backpropagation, Single Layer Perceptron, Multilayer Percepton and Self 

Organizing Map Neural Networks. 
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3.2.4.1 Single Layer Perceptron 

 

This model underlies of the neural network of today. Activation function is used in 

that model for the first time. There are only input and output layers in that neural 

network model, there is not any hidden layer. This is a feedforward model. That model 

doesn’t support feedback in the network. Figure 3.2 illustrates architecture of the single 

layer perceptron. 

 

Single layer perceptron used supervised learning. 

 

 

                 Figure 3.2 Single Layer Perceptron 

 

This model is suitable for simple problems, not for complex problems. Algorithm 

of single layer network classification is illustrated in Figure 3.3. 
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    Figure 3.3 Single layer perceptron algorithm 

 

3.2.4.2 Multilayer Perceptron (MLP) 

 

As its names, difference of MLP from single layer perceptron is hidden layer. MLP 

runs like single layer perceptron. MLP is better than single layer perceptron because of 

hidden layers, worse than backpropagation because of omission of feedback. MLP uses 

supervised learning. 

 

Architecture of MLP is shown in Figure 3.4. There are three basic layers in the MLP 

architecture; input layer, hidden layer and output layer. Hidden layer can be more than 

one. 

 

                        Figure 3.4 Multilayer perceptron architecture 
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3.2.4.3 Backpropagation Neural Network 

 

Backpropagation is a kind of neural network, that can be applied all kinds of 

problems easily. Backpropagation is most widely used neural network type. Difference 

from other NN types that are declared before, is using feedback. There are input, hidden 

and output layers in Backpropagation NN. There can be more than one hidden layers. 

Standard three layer Backpropagation architecture is illustrated in Figure 3.5. 

 

 

                             Figure 3.5 Backpropagation architecture 

 

 Backpropagation algorithm is shown in Figure 3.6. 
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               Figure 3.6 Backpropagation algorithm 

 

3.2.4.4 Kohonen’s Self Organizing Map (SOM) 

 

Difference of that model from others that are explained before, is unsupervised. 

Kohonen uses associative memory in that model. That means, intense between two 

objects and neighbourhood relationship are taken notice to classify.  
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There are group midpoints that are called clusters in SOM. If suitable substitutes can 

be chosen, this population can be presented by those substitutes.  In other words, a 

population that includes ‘m’ components can be divided ‘n’ classes, and those n classes 

can be presented by origin of those groups. To achieve that, first ‘n’ patterns are chosen 

as representative of n groups and all components are learned according to these points. 

Input pattern is compared with all clusters and suitable cluster is chosen for that input.   

 

SOM algorithm is illustrated as pseudo code in Figure 3.7. 

 

 

                Figure 3.7 SOM algorithm 
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3.3 Approach 

 

3.3.1 Incremental Approach 

 

This study provides incremental neural network classification. Some datasets are 

updated regularly. In that situation classification operation should be applied to all 

dataset for each update operation. But it is expensive and this causes waste of time. To 

prevent this, an incremental NN method is developed. With that method instead of 

training whole dataset, only part of dataset that includes new patterns is trained. Training 

time decreases with that method and so performance of the model increases. To achieve 

incremental NN, model that is illustrated in Figure 3.10 is used. These specific models 

include weights that are obtained previous training operation. At the beginning of the 

training operation weights are not initialised randomly, initialised with values that exist 

in the model file. Figure 3.8 shows steps of Incremental NN operation. 

 

 

      Figure 3.8 Incremental approach for handling new patterns 
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At the beginning, initial dataset is trained by using classifier tool. After that operation 

a specific model that includes all inputs and outputs of training, is created. When new 

patterns add in dataset, just these patterns are trained by using weights that exist in the 

model. So we can train new dataset just by training new patterns. Backpropagation 

algorithm for incremental approach is shown in Figure 3.9. For each NN types, 

algorithm changes like backpropagation algorithm for incremental.  

 

 
                      Figure 3.9 Incremental backpropagation NN algorithm 
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3.3.2 Performance Calculation of the Models 

 

There are two parameters that effect performance of NN models. Performance of 

model is inversely proportional to the error_value and iteration number. The less error 

value and the iteration number decreases, the more performance of the models increases. 

 

Definition 17 Performance of the models is calculated as follows; 

 

eerror_valu*IN

1
Pm =  

 

where Pm is performance of the model, IN is iteration number and error_value is 

result error value of the model. 

 

3.4 Experimental Results 

 

3.4.1 Model Construction 

 

All experiments in this study are performed by using a tool, named Neural Network 

Modeller Tool, which was developed in Visual Studio 2008 using C# as programming 

language and run on a laptop with Intel Core2Duo 2.0 GHz CPU and 2GB of RAM 

under the Window Vista operating system. 

 

After each training operation a specific model that includes all information about 

training, is created. An example of that model is illustrated in Figure 3.10. This model 

includes NN  type (Backpropagation, SLP, MLP or SOM), total layers number, 

dimensions of network (neuron numbers of layers), iteration number and error value 

when iteration terminates, activation function type (1�Sigmoid, 2�Hyperbolic Tangent, 
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3�Gaussian, 4�Piecewise linear , 5�Identity , 6�Unit Step), gradient and learning 

rate values and weights and biases.  

 

 

                                          Figure 3.10 An example classifier model 

 

The following notations are used in the proposed model: 

 

In     Input Layer neuron number 

On   Output Layer neuron number 

HL   Hidden Layer number         

HLn   Hidden layers neuron numbers          

AF      Activation Function       

µ          Learning Rate    

ß           Gradient Value     

Restart  Iteration number that training will restart after that         
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Tc               Termination Criteria 

IN              Iteration number as termination criteria 

min_error    Error value as termination criteria 

 

3.4.2 Description of the Dataset 

 

The tool that is developed for classification by using neural network, can be applied 

all datasets which include integer values. But to make sensitivity analysis of NN 

parameters three datasets for supervised algorithms, are used. Classification experiments 

are conducted on the real-world datasets from the UCI Machine Learning Repository 

(Asuncion & Newman, 2007). One of them is wine dataset that includes 178 patterns, 3 

classes and 13 attributes. Other dataset is iris dataset. Iris dataset includes 150 patterns, 3 

classes and 4 attributes. Beside these datasets a small dataset that called ‘patterns 

dataset’ and includes 2 attributes, 2 classes, to compare effects of attribute and pattern 

numbers. For SOM which is unsupervised NN, food dataset which includes patterns 

with 4 attributes is used. 

 

3.4.3 Iteration Number 

 

To show effect of iteration number on error value, 120 training operations are done 

for two datasets, wine and patterns datasets. Backpropagation NN is applied for that 

investigation. 60 training are done for wine dataset and 60 training operations are done 

for patterns dataset. 6 different INs (10, 20, 30, 40, 80 and 160) are applied as Tc and for 

each IN, 10 training operations are applied and then average of error values of these 

operations is taken. NN parameters that are used for training operation for wine dataset 

is shown in Table 3.1, for patterns dataset is shown in Table 3.2. Blue line represents 

error value for wine dataset and pink line is for patterns dataset. As it can be seen from 

the Figure 3.11, error value difference between two datasets is so much. Because wine 

dataset includes patterns nearly 6 times of patterns dataset. And there are 13 attributes in 
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wine, only two attributes in patterns dataset. It can be understood from this investigation, 

attribute number and pattern number effect error value, and also error value depends on 

dataset.  

 

Other result of that observation is error value change amount between INs. It can be 

seen from the graphic that is shown in Figure 3.11, error value decrement is big for the 

first INs. And then decrement decreases.  For example for the wine dataset, for the 10 

INs, error value is 153.777, for the 20 INs error value is 119.037. Change amount is 

nearly 34. But change between 20 and 30 INs is only 9. This is the same for the second 

dataset, too. So we can say that the more IN increases, the less error value changes. 
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   Figure 3.11 IN-Error_Value graphic 

 

Table 3.1 Parameters of training for IN-Error Value Involvement examination for wine dataset 

 

 

In         On        HL        HLn          AF          µ           ß             Restart         Tc               

13             3             2              4,2           Sigmoid    0,01             6                      -                  IN             
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Table 3.2 Parameters of training for IN-Error Value Involvement examination for patterns dataset 

 

3.4.4 Hidden Layers 

 

To see effect of hidden layer numbers on error value, 100 training operations are 

applied using Backpropagation NN on patterns dataset. 50 training operations are 

applied with two layers, with NN parameters that are listed in Table 3.3 and 50 training 

are applied with three layers and with parameters that are listed in Table 3.4.  As it can 

be seen in the Figure 3.12, for the simple problems, the more hidden layer numbers 

increases, the more IN is needed for minimum error. But with two hidden layer number, 

training gets snagged local minimum more frequent then three hidden layer NN.   
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   Figure 3.12 Hidden layers effect graphic 

 

 

In         On        HL        HLn          AF          µ           ß             Restart         Tc               

2             1             2              4,2           Sigmoid      0,01             6                      -                  IN             
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Table 3.3 Parameters of training for 2 hidden layers effect examination 

 

Table 3.4 Parameters of training for 3 hidden layers effect examination 

 

3.4.5 Learning Rate (µ) 

 

Learning rate effects training time of network. Learning rate should be chosen 

carefully. 60 training operations are done by using Backpropagation NN to recognize 

importance of µ. Figure 3.13 shows results of these trainings. 30 trainings are done by 

using sigmoid function as activation function, and 30 trainings are done by using unit 

step activation function. Fixed NN parameters that are used during training operation are 

listed in Table 3.5. As it can be seen from graphic that is illustrated in Figure 3.13, the 

more learning rate increases, the more velocity of the network increases. For example 

when µ=0.01, IN is 1509 to reach min_error (0.01), but when µ=0.04 then IN=519 for 

the same min_error value. But learning rate prevents NN from local minimum, and also 

µ prevents from random search in search space. Another inference from that 

investigation is importance of activation functions. For the simple problems unit step is 

more suitable then another complex activation functions. For example for the µ=0.04, 

NN that uses sigmoid applies 519 iterations to reach solution, but when unit step is used 

then this value is only 9.  But for the complex problem unit step is not enough. 

 

In         On        HL        HLn          AF          µ           ß             Restart         Tc               

2             1             2              4,2           Sigmoid      0.01             5                      -                  IN             

In         On        HL        HLn          AF          µ           ß             Restart         Tc               

2             1              3             4,2,2           Sigmoid      0.01          5                      -                  IN             
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   Figure 3.13 Learning Rate 

 

Table 3.5 Parameters of training for learning rate examination 

 

3.4.6 Neural Network Types 

 

In that study four neural network types are applied for classification. 

Backpropagation, Single Layer Perceptron and Multilayer Perceptron are supervised and 

SOM is unsupervised NN. So SOM classifies different kind of datasets from others. In 

that investigation Backpropagation, SLP and MLP are compared according to IN-Error 

Value couples. To achieve that investigation, 90 training operations are applied by using 

NN parameters that are listed in Table 3.6 and Table 3.7.  IN is used as termination 

criterion. Three different INs (20, 40 and 80) are used. As it can be seen from the 

graphic that is illustrated in Figure 3.14, most successful NN type between three NN 

types is Backpropagation. For 20 INs  error value for Backpropagation is 118, for MLP 

120.3 and for SLP error value is 287.  

In         On        HL        HLn      ß             Restart                   Tc                   min_err 

2              1              2              4,2          6                      -                  Minimum Error                0,01 
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  Figure 3.14 NN Types Comparison 

 

Table 3.6 Parameters of training for NN Types Comparison examination for Backpropagation and MLP 

 

Table 3.7 Parameters of training for NN Types Comparison examination for SLP 

 

3.4.7 Incremental vs. Traditional Backpropagation NN 

 

In this section, the performances of traditional Backpropagation NN and incremental 

Backpropagation NN are compared through the experiments based on the real-world 

dataset wine. The implements of both algorithms were run with various parameter 

settings and every classification problem has been solved 10 times where average 

minimum costs were calculated. Consequently, 60 different experiments were handled 

for this purpose.  

In         On        HL        HLn      ß               AF                 Tc                    

13              2            2             4,2          5                Sigmoid                IN                      

In         On        HL        HLn      ß               AF                 Tc                    

13              2            -               -             5                Sigmoid                IN                      
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In the first case, a number of instances were removed from the wine dataset and 

training operation was done and specific model is created for that dataset. After that, 

incremental NN is applied for just new patterns, and traditional NN is applied for whole 

dataset. Comparison of two models is shown with graphic that is shown in Figure 3.15. 

Fixed parameters that are used in this training operation are shown in Table 3.8. Three 

different numbers (450, 300 and 150) of instances were removed from the dataset. The 

less number of missing patterns decreases, the more difference of IN between traditional 

and incremental increases. For example for the 450 missing patterns, incremental NN 

has only 2024 IN but traditional NN has 3527 INs. Incremental NN provides high speed 

training.  

 

Table 3.8 Parameters of training for Incremental-Traditional Backpropagation NN Comparison 
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        Figure 3.15 Incremental NN vs. Traditional NN 

 

In         On        HL        HLn         ß               AF                 Tc                   min_error 

13              2            3            6,4,2            5                Sigmoid           min_error                     0.1 
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3.5 Interface 

 

All operations are applied by using a tool that is developed for classification by using 

neural network algorithm and called “Neural Network Modeller”. This tool is developed 

in Visual Studio .Net 2008, using C# as programming language. Graphs are drawn by 

using Zed Graph. 

 

All neural network parameters are entered as inputs. This provides user control and 

models that are created with different neural network parameters, comparisons. 

 

This tool provides classification with Backpropagation NN, SLP, MLP and SOM, 

testing, model comparison and Incremental NN. 

3.5.1 Backpropagation 

 

This function of the tool provides classification with Backpropagation NN. This page 

that is illustrated in Figure 3.16 includes 6 main parts. The first part is for dataset. 

Dataset file name is entered manually or by using search button. After that, splitter that 

separates attributes in the dataset is selected (comma, space or full stop). 
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Figure 3.16 Classification with backpropagation 

 

Second part is for layers of neural network. Input layer neuron number and output 

layer neuron number are entered. For example for that training operation that is shown in 

Figure 3.16 input layer neuron number is 2 and output layer neuron number is 1. After 

that, hidden layer number that stands for how many hidden layers number will be in the 

NN, is entered. For example it is 2 for that example. After that, neuron numbers of 

hidden layers are entered in sequence. For example it is ‘4, 2’ in the Figure 3.16. That 

means, first hidden layer includes 4 neurons and second one includes 2 neurons. There 

should be comma between numbers. 
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Third part is for result model file name. Model of that training operation is created 

with that name. All information is saved in that file. 

 

Fourth part is for activation function selection. There 6 alternatives. These are; 

Sigmoid, Identify, Piecewise linear, Gaussian, Unit step and Hyperbolic tangent 

activation function.  

 

Other part of the page is for NN parameters. Learning rate and gradient are used in 

activation functions. Restart after is used to prevent local minimum. If error value is not 

smaller than min_error after a number of iteration, that means there is a local minimum 

situation. So network is initialised in that situation. This number is determined by user, 

and value of restart after depends on problem. For example it is 1000 for that training. 

After that, termination criterion is selected. There are two alternatives; Minimum Error 

and Iteration Number. If minimum error is selected as termination criterion then, the 

user should enter min_error value. If IN is selected then, iteration number should be 

entered. 

 

After ‘Start’ button is pressed, training starts and Error-Iteration Number graphic is 

drawn. And also progress bar shows error value detailed. 

 

3.5.2 SLP 

 

This property of the tool provides classification with single layer perceptron. All parts 

are the same with backpropagation page except layers of network part. Because there are 

only input and output layers as distinct from backpropagation in the SLP. So there is not 

any textbox to take information about hidden layers. Only neuron numbers of input and 

output layers are taken from users. Figure 3.17 shows SLP page in the tool. 
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Figure 3.17 SLP 

 

3.5.3 MLP 

 

Appearance of this function of the tool is nearly same with backpropagation page. 

There is not any difference between two pages. But background of the pages is different 

because of algorithms.  
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 Figure 3.18 MLP 

 

3.5.4 SOM 

 

This is for classification with SOM algorithm. SOM page includes 4 parts. First part 

is for dataset file. Dataset file name is entered, and then splitter between attributes in the 

dataset is selected.  

 

Second part is for SOM parameters. Input neuron numbers and length of output layer 

is entered manually. Minimum error value is entered by user. For example it is ‘0.00001’ 

here. Model file name is written in ‘result file name’ textbox. There is a selection for 
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label info of the patterns. If patterns have labels, for example in that training that is 

shown in Figure 3.19, patterns have food names, these are labels of patterns. 

 

After pressing ‘start’ button, classification operation starts. When training is finished 

then a graphic that shows position of the patters, is drawn. In the graphic that is shown in 

Figure 3.19, patterns are disbanded in 10x10 coordinate system. Because length of 

output layer is 10 for that example. And x and y values and class information of patterns 

are listed in the datagridview.   

 

 

Figure 3.19 SOM 
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If the user wants to see the position of any patterns in the list in the datagridview, 

selects that patterns and then presses ‘Find’ button. For example, here in the figure, 

‘Brazil Nuts‘ is selected and ‘Find’ button is pressed, so (8,1) point is shown with green 

colour.  

 

3.5.5 Testing 

 

This page is to classify patterns that we don’t know class value of them and 

validation test of the models. Figure 3.20 shows the interface. There are three main 

functions in the interface. First one is for classification of models that are created for 

backpropagation, SLP or MLP. Model file name is entered and then test file name that 

includes patterns that are wanted to classify, is entered. And then splitter that stands 

between attributes in the test file is selected. After that, output file name that class values 

of the patterns are written in sequence is entered manually.  By pressing ‘Test’ button, 

model find class values of the patterns and writes results in the output file. The same 

operation is applied for the SOM models. If model is created for SOM, then second part 

of the page is used to classify.  
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Figure 3.20 Testing 

 

Third part of the page is for correctness testing. If class values of the patterns are 

known, then file name that includes correct class values, is entered manually or by 

‘Search’ button. And then model output file name that is created by using test part of the 

page, is entered. By pressing ‘correctness test’ button, class values are compared, and 

result of the correctness test is shown by using pie chart that is drawn with Zed graph. 
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3.5.6 Comparing Models 

 

This function of the model is to compare performance of the models. To compare of 

the models formula in the Definition 17 is used.  

 

Firstly models are selected by using search button, and then by using add button these 

models are inserted in the datagridview list that is illustrated in Figure 3.21. For example 

there are two models in that model comparison operation. After that by pressing 

‘Compare’ button, information (IN, Error, NN Type, Layers Dimensions and Activation 

Function) of models are written in the list and comparison result is shown in bar chart 

graph that is drawn by using Zed graph, as illustrated in Figure 3.21. For example for 

that comparison, performance of the second model is greater than first model. Because 

IN of the second model is 1225, and this is 2748 for the first model. The reason of the 

performance difference is shown in list in datagridview. For example the reason is 

activation function for this comparison. The result of that operation is, unit step function 

is more suitable than sigmoid function for current dataset. 
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  Figure 3.21 Comparing models 

 

3.5.7 Incremental NN 

 

When new patterns are added into a dataset which has NN model, dataset needs to 

classify again.  In that situation all dataset with new patterns, should be trained. But with 

incremental NN, that neural network modeller tool provides, only new patterns are 

trained to classify all dataset. To achieve incremental NN, steps that are illustrated in 

Figure 3.10 are used. The interface that is shown in Figure 3.22 is 3rd  and 4th  steps of the 

incremental NN operation. 
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Figure 3.22 Incremental NN 

 

First of all NN types are decided. If NN type is one of Backpropagation, SLP or MLP 

“Backpropagation_SLP_MLP” radio button is checked, or if NN type is SOM, then 

“SOM” radio button is checked. After that operation, model file name that is created for 

previous dataset is selected by using “Search” button. And then file name that includes 

new patterns of dataset is entered. Splitter that stands between attributes in the new 

dataset file is selected. If minimum error is selected as termination criterion, and then 

minimum error value is entered, otherwise if IN is termination criterion then, IN is 

entered. If NN type is SOM then label situation is selected with label or labelless. By 
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pressing “Start”  button training starts and when training operation is finished then all 

information of new model is saved in old model file, that is old model is refreshed. 
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CHAPTER FOUR 

CONCLUSION 

4.1 Conclusion for GA 

 
 

Classification is a data mining task that assigns items in a dataset to target classes. 

Although genetic algorithms are less commonly used for classification in commercial 

data mining systems, this technique shows its strength in certain applications. In this 

study, an incremental GA-based classification is proposed for efficiently handling new 

transactions added into the dataset. The purpose of the algorithm is to decrease time 

needed for training to construct a new classifier with new dataset.  

 

Numerous trials of incremental GA were run for the classification problem to 

determine the effects of various parameters on the performance of the algorithm. 

Because of the stochastic nature of the algorithm, several runs were made at each 

parameter setting to obtain an average.  Parameters included crossover probability, 

mutation probability, with/without elitism, parent selection technique and population 

size. In addition, the performances of two different GA implementations (traditional and 

incremental) were compared according to the two different termination criteria 

(generation number and fitness value). All these experimental results show the reduction 

in average training time and improvement in score over the population and best 

individual score within the population at each generation. Incremental GA gives much 

better performance by adding rules into initial population before training operation when 

new transactions are added into the dataset.  

 

A new formula is developed to determine performances of models. By using this 

formula, performances of models can be compared and so effects of GA parameters on 

classification operation can be comprehend. 
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To apply all of operations and analysis, a generic modeller, called “Genetic 

Algorithm Modeller” (GAM) is developed. This tool provides classification by using 

genetic algorithm and after classification operations. All datasets which include 

categorical data can be classified with GAM. GAM has ability to provide after 

classification operations. Beside classification, performance calculation of models, 

comparison performances of models, incremental GA, testing and validation test can be 

done by using GAM. 

4.2 Conclusions for NN 

 

In study an incremental NN-based classification is proposed for efficiently handling 

new transactions added into the dataset. The purpose of the algorithm is to decrease time 

needed for training to construct a new classifier with new dataset. To test effect of the 

algorithm several classification operations are applied for different datasets with 

different NN parameters. All these experimental results shows that Incremental NN 

gives much better performance by using weight values in the models instead of random 

generation before training operation when new patterns are added into the dataset.  

 

A new formula is developed to determine performances of models. By using this 

formula, performances of models can be compared and so effects of NN parameters on 

classification operation can be comprehend. 

 

Sensitivity analyses are applied to comprehend effects of NN parameters on 

performances of models. So optimum values of NN parameters are determined 

experimentally.  

 

To apply all of operations and analysis, a generic modeller, called “Neural Network 

Modeller” (NNM) is developed like GAM. This tool provides classification by using 

neural network algorithm and after classification operations. All datasets which include 

numerical data can be classified with NNM, so this tool is generic. Classification can be 
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applied by using different neural network types; Backpropagation, SLP, MLP and SOM 

with NNM. NNM gives all controls to the user for training operation. To achieve this, 

values of all parameters that are used in activation functions, dimensions of layers and 

termination criteria are taken from user.  Calculation performances of models, 

comparison of models, testing and correctness test can be done with NNM.  

 

4.3 GA vs. NN for Incremental Classification 

 

Incremental classification provides classification with less training time for GA and 

NN for datasets which are updated regularly. Model structure is developed to success 

incremental classification. Model structures are different for NN and GA. For NN; after 

initial classification operation that are applied for initial dataset, weights between 

neurons in the network structure are saved in model to use later. And for GA rules that 

represent each class in dataset are saved. For incremental NN, initial weights are 

initialised with weight values that are in model, not randomly. To achieve incremental 

GA, initial population is not created fully randomly. Rules in the model are added into 

initial population. For incremental NN, only new patterns are trained for classification, 

because we have weight values for first part of the dataset. So weights are updated by 

training only new patterns. But for GA, all dataset which include new patterns is trained. 

Because fitness function of GA needs all patterns in the dataset, not only new patterns. 

But initial population is not created fully randomly, rules which are found previous 

classification operation, are added into initial population. So training time decreases. 
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