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TWO CHANNEL EMG CLASSIFICATION FOR TRANSRADIAL ARM 

MOVEMENTS  

ABSTRACT 

In this thesis, the classification algorithm for electromyography (EMG) based 

prosthesis which can be developed for individuals who have undergone transradial 

arm amputation has been studied using artificial neural networks (ANN). Surface 

electromyography (sEMG) has been preferred for ease of application in order to 

receive EMG signals. The data were processed and various features were extracted. 

Mean absolute value (MAV), root mean square (RMS), simple square integral (SSI), 

variance of EMG (VAR), log detector (LOG), maximum fractal length (MFL), 

wavelength (WL), average amplitude change (AAC), difference absolute standard 

deviation value (DASDV), Willison amplitude (WAMP) and slope sign change 

(SSC)  features are given as an input matrix to the ANN to be trained for 

classification purposes. In this study, four different movements as relaxed hand, hand 

close, wrist flexion, and forearm supination are classified. 

The accuracy, sensitivity, specificity, and precision performance metrics were 

calculated as a result of ANN training and examined and interpreted. As a result of 

the study carried out within the scope of this thesis, the effects of the number of 

hidden layer neurons, feature extraction, feature selection and individualization of 

ANN to classification performance were evaluated. A classifier that provides high 

classification performance metrics were established by training with feature sets 

formed by grouping and combining features with individual low accuracy rates. The 

two feature sets created achieved 88 percent accuracy with generalization and 95 

percent accuracy with individualization.  

Keywords: Transradial arm prosthesis, signal processing, electromyography 

features, artificial neural networks, pattern recognition  
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TRANSRADİYAL KOL HAREKETLERİ İÇİN İKİ KANAL EMG 

SINIFLANDIRMASI 

ÖZ 

Bu tez kapsamında, transradiyal kol ampütasyonu geçirmiş bireylere yönelik 

geliştirilebilecek Elektromiyografi tabanlı bir protez için yapay sinir ağları (YSA) 

kullanılarak sınıflandırma algoritması üzerine çalışılmıştır. Elektromyografi (EMG) 

sinyallerinin alınması için, uygulama kolaylığı göz önünde bulundurularak yüzey 

electromyografisi tercih edilmiştir. Tek kanal üzerinden alınan verilerin sınıflandırma 

için yetersiz olması nedeniyle, kaydediler veriler işlenerek çeşitli özellikler 

çıkartılmıştır. Ortalama mutlak değer, karekök ortalama, basit kare integrali, EMG 

varyansı, log detektörü, maksimum fraktal uzunluğu, dalgaboyu, ortalama genlik 

değişimi, diferansiyel mutlak standart sapma değeri, willison genliği ve  eğim işaret 

değişikliğ özellikleri sınıflandırma amacıyla eğitilecek YSA girdi matrisi olarak 

verilmiştir. Bu çalışmada, açık el, kapalı el, bilek fleksiyonu ve ön kol supinasyonu 

olmak üzere dört farklı hareket sınıflandırılmıştır. 

YSA eğitimleri sonucunda doğruluk, duyarlılık, özgüllük ve kesinlik performans 

metrikleri hesaplanmış, incelenmiş ve değerlendirilmiştir. Bu tez kasamında yapılan 

çalışma sonucunda gizli katman düğümü sayısının, özellik çıkarma, özellik seçimi ve 

YSA'nın kişiselleştirilmesinin sınıflandırma performansına etkileri 

değerlendirilmiştir. Bireysel olarak düşük doğruluk oranlarına sahip özelliklerin 

gruplandırılması ve kombine edilmesi ile oluşturulan özellik kümeleri ile YSA 

eğitilerek yüksek performans metrikleri sağlayan bir sınıflandırıcı oluşturulmuştur. 

Oluşturulan iki özellik seti genelleme ile yüzde 88, kişiselleştirme ile yüzde 95 

doğruluk elde edilmiştir.  

Anahtar kelimeler: Transradyal kol protezi, sinyal işleme, elektromyografi 

özellikleri, yapay sinir ağları, örüntü tanıma 
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1CHAPTER ONE 

INTRODUCTION 

Human hand functions are essential for many daily activities such as dressing up, 

eating, drinking water or opening a door. (Micera, Carpaneto, & Raspopovic, 2010). 

Individuals who suffer upper limb extremity due to amputation, experience serious 

psychological and functional problems (Farina & Aszmann, 2014). The occurrence 

rate of upper extremity amputations is relatively higher in young individuals (Kung 

et al., 2013).  

A prosthetic limb might help the amputee to be capable to do daily activities. In 

the past decades, researches on upper limb prostheses have grown significantly 

(Iqbal, Subramaniam, & Shaniba Asmi, 2018). Although primitive prostheses such as 

the wooden leg or hook hand used in the past have been replaced by prostheses that 

provide high performance and freedom of movement, the purpose of prostheses has 

not changed (Oweis, Rihani, & Alkhawaja, 2014). Prostheses require more complex 

actuators to increase freedom of movement and performance. But these advanced 

prostheses are extremely expensive (Currie et al., 2017). In recent years, the 

developments in 3D printing and easy prototyping techniques have provided cheap 

alternatives, enabling the production of 3D printed transradial prostheses with low 

costs. Prostheses give amputated individuals a chance to live their daily lives without 

needing any help by restoring the activities of daily living. 

In daily life, people use different hand movements and an accurate prediction of 

the movement that a person wants to do is essential for the initiation of the correct 

movement. Since limb movements are caused by muscle contractions, EMG has 

emerged as a viable option for classification (Meier, 2004). EMG is a measurement 

method for a response or electrical activity of muscles in response to an action 

potential from nerves.  The use of EMG signals for actuation of prosthetics is started 

in 1948. Different approaches such as on/off, proportional, direct, finite state, pattern 

recognition-based myoelectric control schemes are used in the use of EMG signals in 

prosthetic actuation (Geethanjali, 2016).  
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In a pattern recognition-based approach, it is important that EMG signals are 

successfully processed and classified for the prosthesis to perform the correct 

movement. An accurate classification requires signal acquisition, filtering, pre-

processing, feature extraction and classification as shown in Figure 1.1. 

 

Figure 1.1 Block diagram of the process of the EMG classification system 

When a small number of signal acquisition points are set, pattern recognition 

algorithms are beneficial for classifying a person’s intention to actuate prosthetic, as 

they extract a set of characteristic features from the EMG signals. Studies in the 

1990s have demonstrated over 90 % classification accuracy with various EMG time-

domain features and classifiers (Englehart, Hudgins, Parker, & Stevenson, 1999; 

Zardoshti-Kermani, Wheeler, Badie, & Hashemi, 1995). 

Studies also demonstrated that the utilization of different classifier types does not 

have a significant effect on classification by means of accuracy yet feature selection 

affects the accuracy rates significantly (Hargrove, Englehart, & Hudgins, 2007). 

In this study, it is aimed to perform classification with high accuracy by 

examining the effect of hidden layer node number and different time-domain features 

of 2 channel EMG signals on the accuracy of classification via an artificial neural 

network (ANN). 

Signal Acquisition

Filtering

Pre Processing

Feature Extraction

Classification
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In this context, individual accuracy rates of different time-domain properties were 

found. Based on individual accuracy rates, 2 feature sets were created. The feature 

sets, hidden layer node counts and classification algorithms were tested individually. 

The structure of the thesis is described as follows In Chapter 2, the human 

anatomy is shortly explained with a thorough review of the anatomical plane 

descriptions, muscle physiology, skeletal muscle structure, and transradial 

amputation procedure. The design of this study is explained in detail in Chapter 3. 

The results of this study are given in Chapter 3.5 .  
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2CHAPTER TWO 

HUMAN ANATOMY 

Anatomical planes, fundamental information about muscle physiology and 

skeletal muscle structure are given in this chapter. Finally, the appropriate surgical 

procedure for transradial amputation is explained. 

2.1 Anatomical Planes 

It is assumed that the body is divided into real and hypothetical slices called 

sections or planes (Figure 2.1). The term "section" refers to an actual cut or slice 

defined for studying the internal anatomy (Moore, Dalley, & Agur, 2013). On the 

other hand, the term "plane" refers to a flat surface that passes through the body 

which divides the body into two parts. There are three major anatomical planes as 

sagittal, frontal, and transverse (Dopico, 2016). 

A sagittal plane divides the body and organs into two portions as right and left 

bypassing them vertically. If a sagittal plane divides the body or organs into equal 

portions, this plane is also called a median (midsagittal) plane (Currie et al., 2017). 

The most common use of this anatomical plane is studying portions of the head and 

pelvic organs (Saladin, 2010). 

Another vertically extended plane is called the frontal (coronal) plane. However, 

this plane described as perpendicular to the sagittal planes thus it divides the body or 

organs into the front (anterior) and back (posterior) portions (Jenkins, 2009). The 

thoracic and abdominal cavities are most commonly illustrated in the frontal plane 

(Saladin, 2010). 

For the purpose of examining the upper (superior) and lower (inferior) portions of 

the body or an organ, the transverse (horizontal) plane is preferred.  This plane 

divides the body or an organ into two portions by passing by perpendicular to its long 

axis (Moore et al., 2013; Saladin, 2010). 
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Figure 2.1 Anatomical planes (Saladin, 2010) 

When the motions are examined in anatomy, planar terms are used (Figure 2.2). 

Table 2.1 shows directional terms. When talking about the movement direction of the 

limbs in the body, the terms in this table are used. 

Frontal plane 

Midsagittal 

plane 

Transverse 

plane 
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Figure 2.2 Illustration of directional terms in human anatomy (Luksch, 2010)  

Table 2.1 Directional terms in human anatomy (Saladin, 2010) 

Term Meaning 

Ventral Toward the front* or belly 

Dorsal Toward the back or spine 

Anterior Toward the ventral side* 

Posterior Toward the dorsal side* 

Superior Above 

Inferior Below 

Medial Toward the median plane 

Lateral Away from the median plane 

Proximal  Closer to the point of attachment or origin 

Distal Farther from the point of attachment or origin 

Superficial Closer to body surface 

Deep Farther from the body surface 

*Definitions given for human it may differentiate for other animals 
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2.2 Muscle Physiology 

Muscle cells consist of protein filaments called actin and myosin. Muscle 

contraction is produced by sliding past of these two filaments each one other. These 

contractions change the length and shape of the cell. Muscles produce force and 

motion as the main function of these contractions. Muscles have a wide variety of 

functions such as posture stability, changing of posture, locomotion, as well as 

movements of internal organs, such as the peristaltic movement of intestines in the 

digestive system, or contraction of the heart muscles in the circulatory system for 

pumping blood from the heart to the whole body. 

Muscle Types 

The human body consists of three different muscle types as skeletal (voluntary), 

cardiac (myocardium) and smooth (involuntary) which differ in their forms and 

functions. 

The skeletal muscle is affixed to the bone via tendons and mainly functions for 

locomotion and posture conservation. Although control of posture conserved as an 

automatic reflex, the skeletal muscle functions for conscious movements like non-

postural muscles  

The smooth muscle is responsible for the unconscious and automatic reflexive 

movements of organs such as the bladder, stomach, intestines, and blood vessels. The 

smooth muscles do not have a conscious control mechanism. 

 The cardiac muscle can be seen only in the heart. The cardiac muscle has a 

similar structure with skeletal muscle, yet it from skeletal muscles differs by its 

uncontrollable unconscious contractions. 

2.3 Skeletal Muscle Structure 

Epimysium and perimysium are connective tissues that surround the skeletal 

muscles (Figure 2.3). The epimysium surrounds the skeletal muscle from the outside 

and the perimysium encapsulates the fiber bundles (Frontera & Ochala, 2015). Each 

muscle fiber has a diameter of approximately 100 lm and a length of 1 cm. Cell 
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membrane or myolemma surrounds these fibers (Frontera & Ochala, 2015). There 

are several protein complexes physically attached to the internal myofilament 

structure in relation to the sarcolemma; particularly in the thin filament for the actin 

protein. (Frontera & Ochala, 2015). 

 

Figure 2.3 Structure of skeletal muscle (Frontera & Ochala, 2015) 

Forearm Muscles 

Tendons in the forearm are connected to the wrist, hand, and fingers. The tendons 

extend across the arm from the distal part of the forearm to the wrist, hand, and 

fingers (Moore et al., 2013). The forearm flexors and pronators are located in the 

anterior part and are mainly stimulated by the median nerve (Moore et al., 2013). On 

the other hand, radial nerve stimulates the extensors and supinators of the forearm 

(Hadley, 2007). 



9 

 

 

Figure 2.4 Muscles of the anterior portion of the forearm. A) First layer B) Second layer C) Third 

layer D) The fourth layer (Hadley, 2007) 

The muscular system consists of several layers. Each layer has different muscle 

groups with different functions (Figure 2.4). The origin, insertions, the nerves to 

which they are triggered by and the functions of the muscles in the lower arm vary 

(Table 2.2). 
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Table 2.2 Transradial arm muscles and their properties (K. Chung & H. Chung, 2008) 

Muscle Origin Insertion Nerve Action 

Pronator 

Teres 

Medial epicondyle 

and coronoid 

process of ulna 

Middle of the 

lateral side of the 

radius 

Median 
Pronates and flexes 

the forearm 

Flexor Carpi 

Radialis 

Medial epicondyle 

of humerus 

Bases of second 

and third 

metacarpals 

Median 

Flexes forearm, 

flexes and abducts 

hand 

Palmaris 

Longus 

Medial epicondyle 

of the humerus 

Flexor 

retinaculum, 

palmar 

aponeuroses 

Median 
Flexes forearm and 

hand 

Flexor Carpi 

Ulnaris 

Medial epicondyle 

(humeral head); 

medial olecranon, 

and posterior border 

of ulna (ulnar head) 

Pisiform, the 

hook of hamate, 

and base of the 

fifth metacarpal 

Ulnar 

 

Flexes forearm; 

flexes and adducts 

hand 

 

 

Flexor 

Digitorum 

Superficialis 

Medial epicondyle, 

coronoid process, 

oblique line of 

radius 

Middle 

phalanges of the 

finger 

Median 

Flexes proximal 

interphalangeal 

joints, flexes hand 

and forearm 

Flexor 

Digitorum 

Profundus 

Anteromedial 

surface of 

ulna, interosseous 

membrane 

Bases of distal 

phalanges of 

fingers 

Ulnar 

and 

median 

Flexes distal 

interphalangeal 

joints and hand 

Flexor 

Pollicis 

Longus 

The anterior surface 

of the radius, 

interosseous 

membrane, and 

coronoid process 

The base of 

distal phalanx of 

thumb 

 

Median Flexes thumb 

Pronator 

Quadratus 

Anterior surface of 

distal ulna 

Anterior surface 

of distal radius 
Median Pronates forearm 
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2.4 Transradial Amputation 

Transradial forearm amputation is a very common upper limb amputation (Smith, 

Kuiken, & Hargrove, 2015). The remaining soft tissue and muscle tissue should 

provide sufficient tissue coverage for the radius and ulna. 

Figure 2.5 shows photographs of the operation site of the healed patient after 

successful transradial amputation. 

 

Figure 2.5 A healed post transradial amputation patient (Marchessault, McKay, & Hammert, 2011) 

Myodesis and myoplasty techniques are widely used in procedures in amputation 

surgeries. Myodesis and myoplasty techniques simply distinct by the suture anchor 

of the muscle. In myodesis technique, muscle or tendon needs to be sutured to the 

bone for stabilization yet in myoplasty technique; the muscle needs to be sutured to 

another muscle. During an amputation, bone-on-muscle movement avoidance and 

steady bone coverage are essential to reduce bursitis risk and these are secured by the 

application of myodesis technique for the transradial arm muscles to the radius and 

ulna bones (Marchessault et al., 2011; Stanos & Rivers, 2014). On the other hand, 

application myoplasty technique between the superficial flexor muscles and extensor 

muscles may be preferred, if the patient has poor vascular health  (Marchessault et 

al., 2011; Stanos & Rivers, 2014). Myoplasty technique provides sufficient tension to 

allow the contraction of the muscles after closure (Currie et al., 2017; Marchessault 

et al., 2011). However, for transradial amputation, both myodesis and myoplasty 

techniques are combined for the accomplishment of soft tissue coverage. 

Transradial amputation consists of five main steps (Figure 2.6). In the first step of 

the operation, a fishmouth incision is applied to the forearm (A). Deep and 

superficial flexor muscles are separated as well as extensor muscles (B) 

(Marchessault et al., 2011). Muscle stabilization to bone by suture according to 
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myodesis technique (C). Muscle stabilization of superficial flexors and extensors to 

each other by suture according to myoplasty technique (D) (Marchessault et al., 

2011). Muscles contoured with myofascial sutures to secure closure without 

excessive tension (E) (Currie et al., 2017; Marchessault et al., 2011). 

 

Figure 2.6 Illustration of transradial amputation. A: Fishmouth incision B: Muscle separation C: 

Myodesis technique D: Myoplasty technique E: Myofascial closing  (Marchessault et al., 2011) 
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3CHAPTER THREE 

DESIGN OF STUDY 

This chapter includes the equipment used for signal acquisition, electrode 

placement, signal acquisition, signal processing, feature extraction, and feature 

selection (Figure 3.1).  

 

Figure 3.1 Block diagram of study 

Signal Acquisition

•EMG Sensors

•Amplification and filtering

•Analog/Digital conversion

•Serial communication

Signal Processing

•Data vectorization

•Amplitude normalization

Feature Extraction

•Feature grouping

Feature selection

•Feature testing

•Feature reduction

Classification

•Neural network training

•Neural network structure testing
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3.1 EMG Sampling Equipment 

The Myoware Muscle Sensor (AT-04-001), HC-06 Bluetooth Communication 

Module and Arduino Mini Pro Leonardo microcontroller were used as hardware to 

obtain EMG signals and transfer them to a computer.  

Arduino is a physical programming platform consisting of an input/output board 

and a development environment that includes an implementation of the 

processing/wiring language (Arduino, n.d.).  

The difference of Arduino Leonardo from other cards is built-in communication 

capability with a universal serial bus (USB) of the ATmega32u4 microcontroller 

(Arduino, 2018). Therefore, it does not require a second processor.  

Arduino Leonardo has 20 digital input/output pins. 7 of them can be used as pulse 

width modulation (PWM) outputs and 12 of them can be used as analog inputs 

(Arduino, 2018). There is also a 16 MHz crystal oscillator, USB connection, power 

jack (2.1mm), in-circuit serial programming (ICSP) header and reset button 

(Arduino, 2018). Arduino Leonardo contains all of the components necessary to 

support a microcontroller (Arduino, 2018). 

EMG has conventionally been used for diagnosis and medical research by the 

measurement of muscle activation by electrical potential (Sparkfun, 2019). The rapid 

development of technology has made microcontrollers more powerful and the 

capacity of integrated circuits greater. Due to development in this field, the use of 

EMG circuits and sensors in prosthetic and robotic control systems has started to 

become widespread. 

In this study, Advancer Technologies’ Myoware™ Muscle Sensor (AT-04-001) 

(Figure 3.2) is used as an EMG sensor for EMG signal acquisition. 
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Figure 3.2 Myoware EMG Sensor (Sparkfun, 2015) 

The MyoWare Muscle Sensor has a wearable design that allows the user to attach 

biomedical sensor pads directly to the board itself. This board also includes features 

including, a single-supply voltage of +3.1V to +5V, raw EMG output, polarity 

protected power pins, indicator LEDs, and an on/off switch. Figure 3.3 shows the 

sensor layout of the EMG sensor (Sparkfun, 2019). 

 

Figure 3.3 Sensor layout (Sparkfun, 2015) 

The correct placement of the EMG electrodes is essential for acquiring sufficient 

and relatively clean signals. When the electrodes are placed in the direction of the 
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muscle fibers and in the middle of the muscle body, they give the most accurate 

results. Misplacement of the sensor reduces the strength and quality of the signal 

obtained due to reduced measured values and increased interference due to cross-

interference. The correct sensor placement is shown in Figure 3.4. 

 

Figure 3.4 Sensor placement blue - innervation zone, green – correct placement, purple – midline 

offset, orange – myotendon junction (Sparkfun, 2015) 

Arduino software was used to transfer the data received from the EMG sensor to 

the computer via Bluetooth. The serial communication method was preferred for 

receiving the values from the EMG sensor.  The HC-06 Bluetooth module was used 

to communicate between the Arduino and the computer. 

3.2 Signal Acquisition 

Brain tissue and muscle tissue might be called sensitive tissues. In response to 

proper stimuli, both tissues may generate electrical signals or may transmit signals 

(Joochim & Siriwatcharakul, 2019). Monitoring and recording of the signals 

produced by these tissues are of great importance both for clinical and engineering 

purposes. EMG has a broad application such as diagnosis of health issues, 
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developing brain-computer interfaces, rehabilitation, and control of prosthetics (Al-

Ani, Koprinska, Naik, & Khushaba, 2016). 

EMG is a commonly used noninvasive method for monitoring and recording the 

electrical activity of the skeletal muscles (Al-Ani et al., 2016). EMG signals may be 

acquired by non-invasive surface electrodes or invasive intramuscular fine wire  

(Chowdhury et al., 2013). Placing a thin wire into the muscle allows the recording of 

the EMG signal from the deeper parts of the muscle. However, inserting the needle 

into the casing is a painful operation for the person and requires a clinical assistant 

(Tengku Zawawi et al., 2018). Since noninvasive methods provide signal acquisition 

without causing any pain or harm to the person due to clinical operation, it is 

preferably used to control powered prosthetics (Al-Ani et al., 2016). This control 

method of prosthetics defined as myoelectric control (Jiang, Vest-Nielsen, Muceli, & 

Farina, 2012). The EMG is based on the principle of the measurement of the 

electrical potential between the two ends of the muscle during the contraction of 

muscles (Reaz, Hussain, & Mohd-Yasin, 2006).  

In order to record EMG signals of related movements, the first EMG sensor was 

placed on flexor carpi ulnaris and the second one was placed on extensor carpi 

radialis longus muscles (Khushaba, Al-Timemy, Al-Ani, & Al-Jumaily, 2017). 

Sensors were located as shown in Figure 3.5. Data received with the Myoware EMG 

sensor was recorded by Arduino and then transferred MATLAB via Bluetooth. The 

study was conducted with the participation of 10 subjects. The same movement was 

repeated 50 times in each recording session. At the end of the recording session, a 

50x100 data matrix with 50 repetitions of the same motion was recorded. During 

recording sessions, the user is alerted by a beep sound and then makes his/her hand 

relax after performing the movement and repeats the movement when he/she hears 

the sound again. 
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Figure 3.5 Positioning of EMG electrodes (Personal archive, 2019) 

3.3 Signal Processing 

Minimum – maximum normalization is applied to EMG signals (Figure 3.6).  

 

Figure 3.6 EMG signals with minimum-maximum normalization 
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3.4 Feature Extraction 

In order to achieve high classification accuracy, features must be extracted from 

the data. MAV, RMS, LOG, SSI, VAR, MFL, WL,  AAC, DASDV, WAMP and 

SSC features are used for this study. 

Time-domain features provide different information such as energy information, 

complexity information and frequency information (Phinyomark, Phukpattaranont, & 

Limsakul, 2012). In this thesis, features are investigated in these three groups. Group 

1, energy information, consists of MAV, RMS, LOG, SSI, VAR, and MFL features. 

Group 2, complexity information, consists of WL, AAC and DASDV features. 

Group 3, frequency information, consists of WAMP and SSC features. Estimation of 

the feature value of the signal, xi, in segment i which is N discrete samples in length 

is expressed as in Table 3.1. 

The raw EMG amplitude of the different movements and the Feature amplitudes 

corresponding to these movements are given in Figure 3.7 and Figure 3.8. Sample 

numbers between 0-100, 200-300, 400-500 and 600-700 represent a relaxed hand. 

The hand closing movement is represented between sample numbers between 100 

and 200. In the same manner, the wrist flexion movement is represented with sample 

numbers between 300 and 400. Finally, forearm supination movement is represented 

500-600 sample number interval 

   



20 

 

Table 3.1 Feature groups and mathematical representations 

Feature Group Feature Equation 

E
n
er

g
y
 I

n
fo

rm
at

io
n
 

(E
I)

 
MAV MAV =

1

N
∑|xi|

N

i=1

 

RMS RMS =  √
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WAMP 

WAMP =  ∑[f(|xi − xi+1|)]

N−1

i=1

 

f(x) = {
1, if x ≥ threshold

0, otherwise
 

SSC 

SSC =  ∑[f(|xi − xi−1|) ×  f(|xi − xi+1|)]

N−1

i=2

 

f(x) = {
1, if x ≥ threshold

0, otherwise
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Figure 3.7 Amplitudes of raw EMG signal and energy information features for different movements 
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Figure 3.8 Amplitudes of complexity and frequency information features for different movements 
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Energy Information 

3.4.1.1 Mean Absolute Value (MAV) 

MAV is one of the simplest features that can be used for data. It is defined as the 

sum of each instance in the data set divided by the number of instances (Phinyomark 

et al., 2012). 

3.4.1.2 Root Mean Square (RMS) 

The RMS feature is another feature that provides energy information of the signal. 

It is modeled as a Gaussian random process modulated in amplitude, which relates to 

constant force and non-fatiguing contraction (Caesarendra, 2018).  

3.4.1.3 Log Detector (LOG) 

The LOG feature gives an estimate of muscle contraction force using the 

logarithm and log detector (Tkach, Huang, & Kuiken, 2010). 

3.4.1.4 Simple Square Integral (SSI) 

The SSI represents the energy of the signal. It is the summation of the squared 

values of EMG signal amplitude (Phukan, Kakoty, Shivam, & Gan, 2019). 

3.4.1.5 Variance of EMG (VAR) 

The VAR feature is another energy index. Generally, the variance is defined as an 

average of square values of the deviation of that variable (Phinyomark, Hirunviriya, 

Limsakul, & Phukpattaranont, 2010). 

Complexity Information 

3.4.2.1 Maximum Fractal Length (MFL) 

The MFL feature is defined as a measure off the strength of muscle contraction in 

a logarithmic scale (Arjunan & Kumar, 2010). 
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3.4.2.2 Waveform Length (WL) 

The WL feature provides information about the complexity of the EMG signal.  

This feature is described as the total length of the waveform over a time period 

(Phinyomark et al., 2010). 

3.4.2.3 Average Amplitude Change (AAC) 

The AAC feature is another method that provides information about the 

complexity of the EMG signal and almost identical to the WL, except that 

wavelength is averaged (Phinyomark et al., 2012). 

3.4.2.4 Difference Absolute Standard Deviation Value (DASDV) 

The DASDV is similar to the RMS feature (Yu, Jeong, Hong, & Lee, 2012). 

However, DASDV is defined as the standard deviation value of wavelength 

(Phinyomark et al., 2012; Yu et al., 2012). 

Frequency Information 

3.4.3.1 Willison Amplitude (WAMP) 

The WAMP feature is related to muscle contraction as the LOG feature. However, 

it is described as a number of times resulting from the difference between the signal 

amplitude among a pair of adjacent segments that exceed a defined threshold. A 

threshold value of 75 mV has been chosen (Zardoshti-Kermani et al., 1995).  

3.4.3.2 Slope Sign Change (SSC) 

The SSC feature is another method that provides information about the frequency 

of the EMG signal. It is defined as a number of times that the slope of the EMG 

signal changes sign (Hudgins, Parker, & Scott, 1993). A threshold value of 15 mV 

has been chosen (Hudgins et al., 1993). 

MATLAB Functions 

MATLAB was used to process and classify the data recorded on the computer via 

Bluetooth. The codes for feature extraction are given in Table 3.2. 
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Table 3.2 MATLAB codes for feature extraction 

Feature MATLAB Code 

MAV MAV=mean(abs(A)); 

RMS MS=sqrt(mean(A.^2)); 

LOG 

N=length(A); B=0; 

for k=1:N 

  B=B+log(abs(A(k)));  

end 

LOG=exp(B/N); 

SSI SSI=sum(A.^2); 

VAR N=length(A); VAR=(1/(N-1))*sum(A.^2); 

MFL 

N=length(A); B=0; 

for n=1:N-1 

  B=B+(A(n+1)-A(n))^2; 

end 

MFL=log(sqrt(B)); 

WL 

N=length(A); WL=0; 

for i=2:N 

  WL=WL+abs(A(i)-A(i-1));   

end 

AAC 

N=length(A); B=0; 

for i=1:N-1 

  B=B+abs(A(i+1)-A(i)); 

end 

AAC=B/N; 

DASDV 

N=length(A); B=0; 

for i=1:N-1 

  B=B+(A(i+1)-A(i))^2; 

end 

DASDV=sqrt(B/(N-1)); 

WAMP 

N=length(A); WA=0;  

for k=1:N-1  

  if abs(A(k)-A(k+1)) >= thres 

    WA=WA+1;  

  end 

end 

SSC 

N=length(A); SSC=0; 

for i=2:N-1 

  if ((A(i) > A(i-1) && A(i) > A(i+1)) || (A(i) < A(i-1) && A(i) < A(i+1))) ... 

      && ((abs(A(i)-A(i+1)) >= thres) || (abs(A(i)-A(i-1)) >= thres)) 

    SSC=SSC+1;  

  end 

end 

 

3.5 Feature Selection 

Extracted features were used as input vector in ANN training separately to 

determine the individual accuracies of these features. In these trials, a different 

number of hidden layer neurons were tested. In the process of feature selection, 
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accuracy is used as a performance metric. However, accuracy, sensitivity, specificity, 

and precision performance metrics are used for the performance evaluation of feature 

sets (Table 3.3). 

Table 3.3 Performance metrics 

Accuracy % =
True Positive + True Negative

Sample Size
× 100 

Sensitivity =
True Positive

True Positive + False Negative
 

Specificity =  
True Negative

True Negative + False Positive
 

Precision =  
True Positive

True Positive + False Positive
 

 

The first trial was conducted with Scaled Conjugate Gradient (SCG) as a training 

function and cross-entropy as a performance function. All features were tested with 

even numbers of hidden layer neurons between 2 and 50 (Figure 3.9). MAV feature 

from group 1 has given the best accuracy rate and followed by the RMS feature. 

MFL feature from group 2 has given the best accuracy rate and followed by the 

DASDV feature. SSC feature from group 3 has given the best accuracy (Table 3.4 & 

Table 3.5 & Figure 3.13).  

The effect of the hidden layer neuron number on accuracy was investigated 

separately for 3 feature groups. For EI group features, after the number of hidden 

layer neurons (HLN) exceeded 40, no significant increase in accuracy was observed 

(Figure 3.10). Compared to the EI group, the increase in the number of hidden layer 

neurons had less effect on the CI group. After the number of neurons exceeded 10, 

there was no significant increase in accuracy (Figure 3.11). When the FI group was 

considered, an accuracy graph is obtained which is almost independent of the number 

of hidden layers (Figure 3.12). 
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Training Function: Scaled Conjugate Gradient 

Input: 1 feature x 2 channel 

Figure 3.9 Structure of ANN training with SCG function 

Table 3.4 Mean accuracy of 10 SCG train trials for EI Group 

HLN 
Accuracy ± Std % - EI Group 

MAV RMS LOG SSI VAR 

2 37.4  ± 2.3 38.7  ± 1.1 36.1  ± 1.3 37.8  ± 1.4 37.4  ± 1.8 

4 42.2  ± 2.5 41.9  ± 1.9 43  ± 3.7 42.2  ± 3.1 37.8  ± 3.9 

6 45.8  ± 3.7 45.6  ± 3.2 47.5  ± 0.9 41.7  ± 3.4 39.1  ± 3.3 

8 50  ± 1.7 46.9  ± 2.7 48.2  ± 3.6 46.6  ± 1.2 43.1  ± 1.9 

10 48.3  ± 1.7 45.8  ± 4.4 49  ± 1.8 42.3  ± 4.6 43.6  ± 3.3 

12 49.1  ± 1.7 52.2  ± 2 50.8  ± 2.6 44.7  ± 2.4 45.8  ± 0.9 

14 49.5  ± 2.5 48.3  ± 2.5 51.9  ± 1.5 45.7  ± 1.1 43.9  ± 2.2 

16 53.4  ± 4.4 51.8  ± 4.1 55.1  ± 1.3 42.5  ± 2.9 45  ± 1.3 

18 53.4  ± 2.5 54.7  ± 2.1 54.6  ± 2.7 44  ± 6.4 45.8  ± 0.6 

20 53.1  ± 2.5 56.1  ± 3.6 56  ± 2.9 43.3  ± 4.4 45.3  ± 0.8 

22 51.4  ± 4.5 53.6  ± 6.8 56.3  ± 2.8 46.2  ± 1.8 45.1  ± 1.6 

24 58.2  ± 2.2 56.4  ± 4.7 54.8  ± 3.3 44.1  ± 2.8 44.8  ± 0.8 

26 55.4  ± 3.4 56.1  ± 3.4 54.6  ± 4.1 45  ± 0.7 45.9  ± 0.8 

28 56.4  ± 3.7 57.4  ± 5.4 58.3  ± 2.5 46.6  ± 1.7 45.5  ± 0.8 

30 56.9  ± 2.3 59.2  ± 3.3 58.3  ± 0.8 45.9  ± 1.1 46.2  ± 1 

32 57.5  ± 5.2 55.3  ± 3.9 57.2  ± 2.6 45.7  ± 1.6 45.2  ± 1.7 

34 55.7  ± 5.1 58.9  ± 2.4 59.1  ± 0.6 45.8  ± 1.7 45.4  ± 0.5 

36 57.5  ± 2.5 57.2  ± 2.5 58.3  ± 1 46.9  ± 1.2 47.1  ± 1.8 

38 56.6  ± 5.6 58.5  ± 4 57.7  ± 2 47.2  ± 1.7 45.3  ± 1.3 

40 61.3  ± 1.1 59  ± 2.8 58.6  ± 0.8 46.6  ± 1.3 46.2  ± 1.2 

42 59.5  ± 1.8 56.9  ± 1.6 59  ± 1.1 45.3  ± 1.3 45.8  ± 3.4 

44 57.9  ± 5.3 59  ± 0.8 57.8  ± 2.3 47  ± 1.3 46  ± 2 

46 61.1  ± 2.1 60.4  ± 1.1 59.5  ± 1.2 46.8  ± 2 46.1  ± 1.3 

48 59.6  ± 4 60.6  ± 3.2 58.9  ± 1 45.9  ± 1.2 46.1  ± 2.3 

50 61.1  ± 1.4 60.1  ± 3.7 59.1  ± 1.3 46.8  ± 1 46.3  ± 1.6 

 

 

Input 2xN

•MAV

•RMS

•LOG

•SSI

•VAR

•MFL

•WL

•AAC

•DASDV

•WAMP

•SSC

Hidden Layer 

•Hidden layer 
neuron number 
between 2 and 
50

Output Layer 

•Relaxed hand

•Hand close

•Wrist flexion

•Forearm 
supination

Output 4xN

•Relaxed hand

•Hand close

•Wrist flexion

•Forearm 
supination
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Table 3.5 Mean accuracy of 10 SCG train trials for the CI group and FI Group 

HLN 
Accuracy ± Std % - CI Group Accuracy ± Std % - FI Group 

MFL WL AAC DASDV WAMP SSC 

2 52.2  ± 1.1 48.3  ± 3.8 47.9  ± 3 50.7  ± 0.8 38.6  ± 1.4 37.9  ± 2.3 

4 61.8  ± 4.1 54.8  ± 2.8 52.7  ± 5.7 56.2  ± 3.6 39.7  ± 0.5 41.6  ± 0.8 

6 66.7  ± 1.4 58.6  ± 4 58  ± 3.4 58.1  ± 5.6 40.2  ± 0.6 42  ± 0.4 

8 67.7  ± 3.7 60.2  ± 1.8 59  ± 3.1 57.9  ± 4.5 40.4  ± 0.6 42.1  ± 0.4 

10 68.5  ± 1.4 60.9  ± 2.5 59.5  ± 3.8 63.4  ± 1.8 40.4  ± 1.4 42.1  ± 0.5 

12 69.2  ± 0.5 62.7  ± 2.8 63.6  ± 1.1 61.6  ± 3.9 41.2  ± 0.5 42.7  ± 0.6 

14 70.1  ± 0.2 61.8  ± 3.5 62.5  ± 5.1 63.1  ± 2.8 41.5  ± 0.6 43.3  ± 0.2 

16 69.6  ± 0.3 62.8  ± 1.2 64.6  ± 1.3 65.3  ± 1.4 40.6  ± 0.8 42.7  ± 0.5 

18 69.7  ± 0.4 64.3  ± 1.5 64  ± 1 64.1  ± 2.8 41.9  ± 0.6 42.7  ± 0.6 

20 69.8  ± 0.5 64.6  ± 1.2 63.1  ± 1.3 65.1  ± 1.8 41.9  ± 0.7 43.2  ± 0.4 

22 70.6  ± 0.3 64.6  ± 1.6 64.1  ± 2.1 65.5  ± 3.3 41.8  ± 0.6 42.8  ± 1.3 

24 70.3  ± 0.6 64.9  ± 1.7 64.5  ± 0.9 65.3  ± 2.1 41.8  ± 0.8 43  ± 0.4 

26 70.2  ± 0.6 64  ± 1.2 65.3  ± 0.8 67.5  ± 1.8 41.8  ± 0.4 43.5  ± 0.5 

28 70.2  ± 0.6 65.8  ± 0.7 64.8  ± 1.1 66  ± 1.1 40.9  ± 0.9 43.3  ± 0.3 

30 70.5  ± 0.5 65.6  ± 0.8 65.4  ± 0.9 64.8  ± 1.3 41.7  ± 0.4 42.8  ± 1 

32 70.4  ± 0.6 65.3  ± 1.4 65.5  ± 1 65.9  ± 0.3 42.4  ± 0.5 43.5  ± 0.5 

34 70.1  ± 0.3 66.2  ± 1.2 65.1  ± 1.3 64.7  ± 1.9 41.8  ± 0.5 43.1  ± 0.4 

36 70.2  ± 0.4 65.3  ± 0.9 63.9  ± 2.9 66.6  ± 1.1 41.8  ± 0.5 43.8  ± 0.5 

38 70.6  ± 0.6 65.5  ± 0.8 66.3  ± 0.9 66.3  ± 1.1 42  ± 0.8 43.8  ± 0.1 

40 70.1  ± 0.8 66.1  ± 1.1 65.3  ± 0.8 67.3  ± 1.5 42  ± 0.8 43.7  ± 0.5 

42 70.8  ± 0.5 65.3  ± 1.7 65.6  ± 1.3 67.5  ± 1.2 42.1  ± 0.3 43.1  ± 0.9 

44 70.3  ± 0.8 66.7  ± 0.5 65  ± 1.5 67.8  ± 0.7 42.1  ± 0.9 43.9  ± 0.4 

46 70.8  ± 0.5 64.6  ± 2.5 66.4  ± 0.9 67  ± 1.6 42.1  ± 0.4 43.7  ± 0.4 

48 70.8  ± 0.2 66.3  ± 1.1 64.8  ± 1 67.9  ± 1 41.9  ± 0.6 43.5  ± 0.4 

50 70.7  ± 0.6 66.1  ± 0.8 66.6  ± 0.8 66  ± 2.9 42.5  ± 0.3 43.6  ± 0.3 

 

 

Figure 3.10 Accuracy rates of ANN training with SCG training function for EI group with variant 

hidden layer neurons 
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Figure 3.11 Accuracy rates of ANN training with SCG training function for the CI group with variant 

hidden layer neurons 

 

Figure 3.12 Accuracy rates of ANN training with SCG training function for FI group with variant 

hidden layer neurons 
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Figure 3.13 Accuracy rates of ANN training with SCG training function for 40 hidden layer neurons 

The second trial conducted with Levenberg-Marquardt (LM) as training function 

and MSE as performance function. All features were tested with even numbers of 

hidden layer neurons between 30 and 50 (Figure 3.14). MAV feature from the EI 

group has given the best accuracy rate and followed by the RMS feature. MFL 

feature from the CI group has given the best accuracy rate and followed by the 

DASDV feature. SSC feature from the FI group has given the best accuracy (Table 

3.6 &  Table 3.7 & Figure 3.18). 

 
Training Function: Levenberg-Marquardt 

Input: 1 feature x 2 channel 

Figure 3.14 Structure of ANN training with LM function 
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Table 3.6 Mean accuracy of 10 LM train trials for EI group 

HLN 
Accuracy ± Std % - EI Group 

MAV RMS LOG SSI VAR 

2 36.8 ± 2.9 39.7 ± 2.3 37.1 ± 2.9 37.5 ± 2.1 36.8 ± 2.7 

4 36.8 ± 2.3 39.7 ± 2.7 37.1 ± 2.4 37.5 ± 2.2 36.8 ± 3 

6 46 ± 2.3 45.7 ± 2.1 48.1 ± 2.4 41.1 ± 2 39.2 ± 2.7 

8 46 ± 2.6 45.7 ± 2.9 48.1 ± 2.4 41.1 ± 3 39.2 ± 2 

10 48.7 ± 2.1 45.4 ± 2.7 49.6 ± 2.8 43.3 ± 2.7 44.4 ± 2.5 

12 48.7 ± 2.6 45.4 ± 3 49.6 ± 2.7 43.3 ± 2.3 44.4 ± 2.8 

14 50 ± 2.7 47.3 ± 2.8 52.3 ± 2.3 45.2 ± 2.3 43.1 ± 2.1 

16 50 ± 2.2 47.3 ± 2.5 52.3 ± 3 45.2 ± 2.6 43.1 ± 2.8 

18 53.7 ± 2.3 55.2 ± 2.5 55.1 ± 2.7 44.9 ± 2.1 45.2 ± 2.7 

20 53.7 ± 2.9 55.2 ± 2.1 55.1 ± 2.2 44.9 ± 2.3 45.2 ± 2.3 

22 51.5 ± 2 54.5 ± 2.3 56.8 ± 2.7 45.5 ± 2.3 44.8 ± 2 

24 51.5 ± 2 54.5 ± 2 56.8 ± 2.7 45.5 ± 2.2 44.8 ± 3 

26 54.9 ± 2.6 57.1 ± 2.9 53.6 ± 2.1 45.7 ± 2.4 46.8 ± 2.8 

28 54.9 ± 2.5 57.1 ± 2.6 53.6 ± 2.8 45.7 ± 2.2 46.8 ± 3 

30 57.4 ± 2.2 60.1 ± 2.8 57.9 ± 3 46.7 ± 2.7 46.4 ± 3 

32 57.5  ± 5.2 55.3  ± 3.9 57.2  ± 2.6 45.7  ± 1.6 45.2  ± 1.7 

34 55.7  ± 5.1 58.9  ± 2.4 59.1  ± 0.6 45.8  ± 1.7 45.4  ± 0.5 

36 57.5  ± 2.5 57.2  ± 2.5 58.3  ± 1 46.9  ± 1.2 47.1  ± 1.8 

38 56.6  ± 5.6 58.5  ± 4 57.7  ± 2 47.2  ± 1.7 45.3  ± 1.3 

40 61.3  ± 1.1 59  ± 2.8 58.6  ± 0.8 46.6  ± 1.3 46.2  ± 1.2 

42 59.5  ± 1.8 56.9  ± 1.6 59  ± 1.1 45.3  ± 1.3 45.8  ± 3.4 

44 57.9  ± 5.3 59  ± 0.8 57.8  ± 2.3 47  ± 1.3 46  ± 2 

46 61.1  ± 2.1 60.4  ± 1.1 59.5  ± 1.2 46.8  ± 2 46.1  ± 1.3 

48 59.6  ± 4 60.6  ± 3.2 58.9  ± 1 45.9  ± 1.2 46.1  ± 2.3 

50 61.1  ± 1.4 60.1  ± 3.7 59.1  ± 1.3 46.8  ± 1 46.3  ± 1.6 
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Table 3.7 Mean accuracy of 10 LM train trials for CI Group and FI Group 

HLN 
Accuracy ± Std % - CI Group Accuracy ± Std % - FI Group 

MFL WL AAC DASDV WAMP SSC 

2 51.7 ± 2.6 47.8 ± 2.3 47.9 ± 2 50.4 ± 2.6 37.6 ± 2.3 36.9 ± 2.1 

4 51.7 ± 2.4 47.8 ± 2.1 47.9 ± 2 50.4 ± 2.5 37.6 ± 3 36.9 ± 2.8 

6 66.8 ± 2.1 57.9 ± 2.7 57.7 ± 2.9 57.9 ± 2.7 39.3 ± 2.1 41 ± 2.7 

8 66.8 ± 2.3 57.9 ± 2.3 57.7 ± 2.2 57.9 ± 2 39.3 ± 2.3 41 ± 2.9 

10 69.1 ± 2.7 60.9 ± 3 59.9 ± 2.5 63.5 ± 2.9 41.2 ± 2.3 41.5 ± 2.7 

12 69.1 ± 2.6 60.9 ± 2.4 59.9 ± 2.6 63.5 ± 2.9 41.2 ± 2.6 41.5 ± 2.7 

14 70.5 ± 3 60.8 ± 2.6 62.2 ± 2.3 62.4 ± 2.2 40.6 ± 2 42.8 ± 2.1 

16 70.5 ± 2.8 60.8 ± 2.2 62.2 ± 2.2 62.4 ± 2.7 40.6 ± 2.3 42.8 ± 2.8 

18 69.1 ± 2.7 64.2 ± 2.4 64 ± 2.2 64.6 ± 2.3 41.4 ± 2.5 42.7 ± 2.5 

20 69.1 ± 2.9 64.2 ± 2 64 ± 2.6 64.6 ± 2 41.4 ± 2.2 42.7 ± 2 

22 71.2 ± 2.3 65 ± 2.1 63.4 ± 2.6 64.9 ± 3 42.8 ± 2.9 43.3 ± 2.1 

24 71.2 ± 2.5 65 ± 2.9 63.4 ± 2.5 64.9 ± 3 42.8 ± 2.3 43.3 ± 2.8 

26 70 ± 2.6 63.4 ± 2.5 65.5 ± 2.2 67.7 ± 2.5 40.8 ± 2.8 43.3 ± 2.6 

28 70 ± 2.6 63.4 ± 2.3 65.5 ± 2.1 67.7 ± 2.7 40.8 ± 2.7 43.3 ± 2 

30 69.6 ± 2.9 65.6 ± 2.8 65.4 ± 2.7 63.8 ± 3 42.6 ± 2.3 42.8 ± 2.6 

32 70.4  ± 0.6 68  ± 0.8 68.3  ± 0.8 70.3  ± 0.3 42.6  ± 0.3 45.2  ± 0.9 

34 70.1  ± 0.3 68.1  ± 1 68.6  ± 0.6 70.1  ± 0.8 42.9  ± 0.5 45.6  ± 0.9 

36 70.2  ± 0.4 68.3  ± 0.7 67.6  ± 1.1 62.9  ± 16.4 42.6  ± 0.3 45.7  ± 1.5 

38 70.6  ± 0.6 68.6  ± 1.4 68.3  ± 0.9 70.7  ± 1.2 42.8  ± 0.3 46  ± 0.9 

40 70.1  ± 0.8 68.9  ± 1.3 68.4  ± 0.7 70.1  ± 0.8 43  ± 0.8 45.3  ± 1.4 

42 70.8  ± 0.5 68.5  ± 1.4 67.8  ± 1 70.9  ± 0.9 42  ± 1.1 46.6  ± 0.6 

44 70.3  ± 0.8 68  ± 0.4 67.9  ± 1.2 71.4  ± 0.9 43.1  ± 0.6 46.6  ± 0.9 

46 70.8  ± 0.5 68  ± 1.1 68.6  ± 0.3 70.9  ± 1.1 42.7  ± 0.2 45.2  ± 1 

48 70.8  ± 0.2 68.9  ± 0.4 65.8  ± 6 70.8  ± 0.7 43.2  ± 0.6 46.8  ± 1.1 

50 70.7  ± 0.6 68.2  ± 0.5 68.2  ± 0.3 70.2  ± 1.2 42.4  ± 0.5 46.1  ± 1.3 

 

The effect of the hidden layer neuron number on accuracy was investigated 

separately for 3 feature groups. For EI group features, after the number of hidden 

layer neurons exceeded 40, no significant increase in accuracy was observed (Figure 

3.15). Compared to the EI group, the increase in the number of hidden layer neurons 

had less effect on the CI group. After the number of neurons exceeded 10, there was 

no significant increase in accuracy (Figure 3.16). When the FI group was considered, 

an accuracy graph is obtained which is almost independent of the number of hidden 

layers. (Figure 3.17). 
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Figure 3.15 Accuracy rates of ANN training with LM training function for EI group with variant 

hidden layer neurons 

 

Figure 3.16 Accuracy rates of ANN training with LM training function for the CI group with variant 

hidden layer neurons 
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Figure 3.17 Accuracy rates of ANN training with LM training function for FI group with variant 

hidden layer neurons 

 

Figure 3.18 Accuracy rates of ANN training with LM training function for 40 hidden layer neurons 

The third trial conducted with Bayesian Regression (BR) as training function and 
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CI group has given the best accuracy rate and followed by DASDV. SSC feature 

from the FI group has given the best accuracy (Table 3.8 & Table 3.9 & Figure 3.23). 

 
Training Function: Bayesian Regression 

Input: 1 feature x 2 channel 

Figure 3.19 Structure of ANN training with BR function 

Table 3.8 Mean accuracy of 10 BR train trials for EI group 

HLN 
Accuracy ± Std % - EI Group  

MAV RMS LOG SSI VAR 

2 38 ± 2.3 38 ± 2.6 37.1 ± 2.5 36.8 ± 2.9 36.7 ± 2.6 

4 38 ± 2.4 38 ± 2.7 37.1 ± 2.2 36.8 ± 3 36.7 ± 2.1 

6 45.7 ± 2.9 46.2 ± 2.3 48.5 ± 2 42.2 ± 2.1 38.5 ± 2.4 

8 45.7 ± 2.8 46.2 ± 2.9 48.5 ± 2.5 42.2 ± 2.1 38.5 ± 2 

10 47.5 ± 2 45.9 ± 2.3 49.5 ± 2 41.3 ± 2.8 44.3 ± 2.6 

12 47.5 ± 2.1 45.9 ± 3 49.5 ± 2.9 41.3 ± 2.5 44.3 ± 3 

14 50 ± 2.4 48 ± 2.2 52.1 ± 2.8 46.7 ± 2 43.6 ± 2.2 

16 50 ± 2.9 48 ± 2 52.1 ± 2.5 46.7 ± 2.7 43.6 ± 2.3 

18 53.1 ± 2 54.4 ± 2.6 55.6 ± 2 44.3 ± 2.4 45 ± 2.5 

20 53.1 ± 2.7 54.4 ± 2.6 55.6 ± 2 44.3 ± 2.5 45 ± 2.3 

22 52.2 ± 2.8 54.3 ± 2 56.2 ± 2.6 46.7 ± 2.5 44.7 ± 2.1 

24 52.2 ± 3 54.3 ± 2.4 56.2 ± 2.7 46.7 ± 2.3 44.7 ± 2.4 

26 56.4 ± 2.9 56.6 ± 2.4 54.7 ± 2.1 45.9 ± 2.1 46.5 ± 2.4 

28 56.4 ± 2 56.6 ± 2.3 54.7 ± 2.3 45.9 ± 2.9 46.5 ± 2.2 

30 65.3  ± 0.7 66.8  ± 1.1 58.1  ± 11 62.6  ± 7.2 59.5  ± 9.9 

32 65.3  ± 0.7 66.8  ± 1.1 58.1  ± 11 62.6  ± 7.2 59.5  ± 9.9 

34 64.9  ± 1.1 66  ± 0.8 64.2  ± 1.1 66.5  ± 0.8 58.6  ± 15.8 

36 65.8  ± 0.6 66.4  ± 1.4 63.7  ± 5.3 65.6  ± 1.8 58.4  ± 14.2 

38 66.2  ± 0.8 67  ± 1 63.8  ± 1.4 65.9  ± 1.7 62.9  ± 3.5 

40 65.1  ± 1.2 66.6  ± 0.8 61.2  ± 6.7 57.9  ± 12.7 66.5  ± 1.1 

42 62.2  ± 6.9 65.6  ± 1.7 62.9  ± 2 61.1  ± 9.8 66.2  ± 1.5 

44 66  ± 0.5 67  ± 1.6 62.8  ± 1.5 56.2  ± 17.7 57.7  ± 1.7 

46 66.2  ± 1.1 67.4  ± 0.7 64.9  ± 1.4 64.5  ± 2.6 62.4  ± 1.2 

48 65.9  ± 0.4 67.6  ± 0.6 64.6  ± 1.5 61.9  ± 6.3 67.1  ± 0.9 

50 66.3  ± 0.3 65.5  ± 3.4 63.6  ± 1.7 60.6  ± 7.8 62  ± 6.2 
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The effect of the hidden layer neuron number on accuracy was investigated 

separately for 3 feature groups. For group 1 features, after the number of hidden 

layer neurons exceeded 40, no significant increase in accuracy was observed (Figure 

3.20). Compared to feature group 1, the increase in the number of hidden layer 

neurons had less effect on feature group 2. After the number of neurons exceeded 10, 

there was no significant increase in accuracy (Figure 3.21). When feature group 3 

was considered, an accuracy graph is obtained which is almost independent of the 

number of hidden layers. (Figure 3.22). 

Table 3.9 Mean accuracy of 10 BR train trials for the CI  group and FI group 

HLN 
Accuracy ± Std % - CI Group Accuracy ± Std % - FI Group 

MFL WL AAC DASDV WAMP SSC 

2 53.2 ± 2.5 48.7 ± 2.5 47 ± 2.2 51.7 ± 2.5 37.7 ± 2.7 38.8 ± 3 

4 53.2 ± 2 48.7 ± 2.2 47 ± 2.6 51.7 ± 2.8 37.7 ± 2.6 38.8 ± 2.3 

6 67.6 ± 2.6 58.8 ± 2 57.4 ± 2.3 58.5 ± 2.9 40.9 ± 2.4 42.1 ± 3 

8 67.6 ± 3 58.8 ± 2.3 57.4 ± 2.4 58.5 ± 2.7 40.9 ± 2.7 42.1 ± 2.8 

10 69.1 ± 2.6 61.8 ± 2.3 60 ± 2.2 64.1 ± 3 40.2 ± 3 42.1 ± 2.6 

12 69.1 ± 2.1 61.8 ± 3 60 ± 2 64.1 ± 2.5 40.2 ± 2 42.1 ± 2.9 

14 69.8 ± 2.5 61.7 ± 2.7 63.5 ± 2 63.6 ± 2.5 42.5 ± 2.8 42.5 ± 2.9 

16 69.8 ± 2.1 61.7 ± 2.6 63.5 ± 2.1 63.6 ± 3 42.5 ± 2.1 42.5 ± 2.9 

18 68.7 ± 2.8 64.5 ± 2.5 64.1 ± 2.8 65.1 ± 2.5 42.5 ± 2.4 41.7 ± 3 

20 68.7 ± 2.9 64.5 ± 2.7 64.1 ± 2.4 65.1 ± 3 42.5 ± 2.8 41.7 ± 2.7 

22 70.7 ± 2.9 65.4 ± 2.3 63.6 ± 2.4 66.4 ± 2.3 41.1 ± 2.8 42.3 ± 2.6 

24 70.7 ± 2.9 65.4 ± 2 63.6 ± 2.6 66.4 ± 3 41.1 ± 2.1 42.3 ± 2.5 

26 70.5 ± 3 64 ± 2.4 65.9 ± 2.7 68.5 ± 2.4 42.6 ± 2.9 43.6 ± 2.9 

28 70.5 ± 2.3 64 ± 2.8 65.9 ± 2.7 68.5 ± 2.2 42.6 ± 2.4 43.6 ± 3 

30 68.8  ± 4.8 66.8  ± 1.4 67.2  ± 0.7 70.8  ± 0.6 41.1  ± 1.2 44.3  ± 2 

32 69.2  ± 4.8 68.7  ± 1.3 68.3  ± 0.8 71.2  ± 0.6 42.9  ± 0.2 45.9  ± 1 

34 69.5  ± 4.9 65  ± 7.8 67.8  ± 0.8 68.6  ± 6.2 42.5  ± 1.2 45.6  ± 1.6 

36 71.5  ± 0.4 68  ± 0.7 65.3  ± 8 71.1  ± 1.2 42.3  ± 1.1 43.8  ± 1.7 

38 71.2  ± 0.4 68.8  ± 0.7 65.3  ± 5.9 70.7  ± 0.9 43.1  ± 0.3 44.9  ± 1.5 

40 71.5  ± 0.5 67.8  ± 1.5 68.1  ± 0.7 71.1  ± 0.6 43.2  ± 0.3 46  ± 1.8 

42 68.5  ± 6.9 68.5  ± 1.3 67.9  ± 0.9 70  ± 0.3 42.2  ± 1.2 46.3  ± 1.1 

44 71.4  ± 0.6 67.9  ± 0.6 68.5  ± 0.9 71.3  ± 0.6 43.3  ± 0.5 45.1  ± 2.8 

46 72  ± 0.6 67.9  ± 1.4 63.2  ± 12.7 65.8  ± 11.9 43.1  ± 0.2 45.5  ± 1.6 

48 66.5  ± 7.1 68.8  ± 0.7 68.2  ± 0.6 66.6  ± 8.4 42.1  ± 1.8 44.8  ± 2 

50 68.5  ± 6.9 67.8  ± 1.1 67.8  ± 1 71  ± 0.5 42.2  ± 1.9 45.8  ± 3 
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Figure 3.20 Accuracy rates of ANN training with BR training function for EI group with variant 

hidden layer neurons 

 

Figure 3.21 Accuracy rates of ANN training with BR training function for CI group with variant 

hidden layer neurons 
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Figure 3.22 Accuracy rates of ANN training with BR training function for FI group with variant 

hidden layer neurons 

 

Figure 3.23 Accuracy rates of ANN training with BR training function for 40 hidden layer neurons 

For further tests to build optimal ANN structure two different feature sets are 
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Subsequently, these feature sets were used in the training of user-specific ANN 

structures. In this way, the accuracy rates of ANNs trained in generalized and user-

specific training were evaluated. 

Effect of feature groups evaluated by excluding feature groups one by one. When 

the number of hidden layer neurons was selected between 30 and 50, close values 

were obtained for accuracy. Therefore, for evaluating the effects of feature groups on 

ANN accuracy is tested with 40 hidden layer neurons, which is an average of 30 and 

50.  
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4CHAPTER FOUR 

RESULTS 

In this chapter, the classification performance of previously determined feature 

sets, and generalized and individualized classification approaches are evaluated.  

Finally, the effects of the exclusion of features are evaluated. 

4.1 Classification 

Feature Set 1 

ANN was trained with the SCG, LM and BR training function using the feature 

set 1 as an input vector. The number of hidden layer nodes is selected between 2 and 

50 (Figure 4.1). ANN training gave the best results when the number of hidden layer 

neurons was between 30 and 50 (Figure 4.2). When SCG was used as a training 

function, the accuracy rate decreased significantly. 

 
Training Function: Scaled Conjugate Gradient, Levenberg-Marquardt and Bayesian Regression 

Input: 5 feature x 2 channel 

Figure 4.1 Structure of ANN training with SCG, LM and BR functions for the feature set 1 
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Figure 4.2 Mean accuracy of ANN with Set 1 and the variant number of hidden layer neurons 

Sensitivity value was calculated from highest to lowest as the relaxed hand (C1), 

wrist flexion (C3), forearm supination (C4) and hand close (C2) for a number of 

hidden layer neurons between 30 and 50 in Table 4.1.  

Specificity and precision values were calculated from highest to lowest as C1, 

wrist flexion C3, hand close C2 and forearm supination C4 for a number of hidden 

layer neurons between 30 and 50 (Table 4.2 & Table 4.3).  

Table 4.1 Sensitivity of ANN training with Set 1 

HLN 
Set 1 - SCG Set 1 - LM Set 1 - BR 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

30 0.82 0.64 0.73 0.70 0.86 0.74 0.79 0.78 0.86 0.74 0.79 0.78 

32 0.81 0.62 0.74 0.70 0.87 0.75 0.81 0.79 0.87 0.75 0.81 0.79 

34 0.82 0.65 0.74 0.72 0.87 0.75 0.79 0.79 0.87 0.75 0.79 0.79 

36 0.82 0.63 0.73 0.71 0.88 0.74 0.80 0.79 0.88 0.74 0.80 0.79 

38 0.82 0.64 0.73 0.71 0.87 0.75 0.80 0.79 0.87 0.75 0.80 0.79 

40 0.82 0.65 0.74 0.71 0.87 0.76 0.81 0.79 0.87 0.76 0.81 0.79 

42 0.82 0.63 0.74 0.71 0.88 0.77 0.82 0.81 0.88 0.77 0.82 0.81 

44 0.82 0.65 0.74 0.70 0.87 0.77 0.81 0.79 0.87 0.77 0.81 0.79 

46 0.81 0.64 0.74 0.70 0.88 0.77 0.81 0.80 0.88 0.77 0.81 0.80 

48 0.82 0.65 0.75 0.72 0.87 0.76 0.81 0.79 0.87 0.76 0.81 0.79 

50 0.82 0.67 0.75 0.72 0.87 0.77 0.82 0.80 0.87 0.77 0.82 0.80 
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Table 4.2 Specificity of ANN training with Set 1 

HLN 
Set 1 - SCG Set 1 - LM Set 1 - BR 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

30 0.87 0.84 0.86 0.82 0.89 0.87 0.87 0.85 0.89 0.87 0.88 0.85 

32 0.87 0.84 0.85 0.81 0.89 0.87 0.88 0.85 0.89 0.88 0.88 0.85 

34 0.87 0.85 0.86 0.82 0.88 0.87 0.87 0.85 0.89 0.87 0.88 0.85 

36 0.87 0.85 0.86 0.82 0.89 0.87 0.88 0.86 0.89 0.88 0.88 0.85 

38 0.87 0.84 0.86 0.82 0.89 0.87 0.88 0.85 0.89 0.87 0.88 0.85 

40 0.87 0.85 0.86 0.82 0.89 0.87 0.88 0.86 0.89 0.88 0.88 0.86 

42 0.87 0.85 0.86 0.82 0.89 0.88 0.88 0.86 0.89 0.88 0.88 0.86 

44 0.87 0.85 0.86 0.82 0.89 0.87 0.88 0.86 0.89 0.88 0.88 0.86 

46 0.87 0.85 0.85 0.82 0.89 0.87 0.88 0.86 0.89 0.88 0.88 0.86 

48 0.87 0.85 0.86 0.82 0.89 0.88 0.88 0.85 0.89 0.88 0.88 0.85 

50 0.87 0.85 0.86 0.83 0.89 0.87 0.88 0.86 0.89 0.88 0.88 0.86 

 

Table 4.3 Precision of ANN training with Set 1 

HLN 
Set 1 - SCG Set 1 - LM Set 1 - BR 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

30 0.79 0.70 0.75 0.66 0.84 0.78 0.80 0.74 0.84 0.78 0.81 0.74 

32 0.80 0.68 0.74 0.64 0.84 0.78 0.81 0.74 0.85 0.81 0.82 0.75 

34 0.80 0.71 0.75 0.67 0.84 0.79 0.80 0.73 0.85 0.79 0.81 0.74 

36 0.79 0.70 0.75 0.66 0.85 0.79 0.81 0.75 0.85 0.80 0.82 0.75 

38 0.79 0.70 0.75 0.66 0.85 0.80 0.83 0.75 0.85 0.79 0.82 0.75 

40 0.79 0.70 0.76 0.67 0.85 0.79 0.81 0.75 0.85 0.80 0.82 0.75 

42 0.79 0.71 0.75 0.66 0.85 0.81 0.82 0.77 0.86 0.81 0.83 0.77 

44 0.79 0.70 0.75 0.66 0.85 0.79 0.82 0.76 0.85 0.80 0.82 0.76 

46 0.80 0.70 0.74 0.66 0.85 0.80 0.82 0.76 0.86 0.81 0.83 0.76 

48 0.80 0.72 0.76 0.67 0.84 0.80 0.82 0.75 0.85 0.80 0.82 0.75 

50 0.80 0.72 0.76 0.68 0.85 0.80 0.82 0.76 0.86 0.81 0.83 0.77 

 

Feature Set 2 

ANN was trained with the SCG, LM and BR training function using the feature 

set 2 as an input vector (Figure 4.3). The number of hidden layer neurons is selected 

between 2 and 50 (Figure 4.4). ANN training gave the best results when the number 

of hidden layer neurons was between 30 and 50 (Figure 4.4). When SCG was used as 

a training function, the accuracy rate decreased significantly. 
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Training Function: Scaled Conjugate Gradient, Levenberg-Marquardt and Bayesian Regression 

Input: 5 feature x 2 channel 

Figure 4.3 Structure of ANN training with SCG, LM and BR functions for the feature set 2 

 

Figure 4.4 Mean accuracy of ANN with Set 2 and variant number of hidden layer neurons 

Sensitivity value was calculated from highest to lowest as C1, C3, C4 and C2 for 

a number of hidden layer neurons between 30 and 50 (Table 4.4). 

Specificity and precision values were calculated from highest to lowest as C1, C3, 

C2 and forearm supination C4 for a number of hidden layer neurons between 30 and 

50  (Table 4.5 & Table 4.6).  
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Table 4.4 Sensitivity of ANN training with Set 2 

HLN 

Set 2 - SCG Set 2 - LM Set 2 - BR 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

SCG LM BR 

30 0.80 0.63 0.72 0.70 0.87 0.74 0.79 0.78 0.86 0.73 0.80 0.78 

32 0.81 0.63 0.72 0.70 0.87 0.74 0.80 0.79 0.87 0.74 0.80 0.79 

34 0.82 0.66 0.74 0.71 0.86 0.74 0.81 0.79 0.86 0.74 0.80 0.79 

36 0.81 0.65 0.75 0.72 0.87 0.75 0.80 0.79 0.87 0.75 0.80 0.79 

38 0.82 0.65 0.74 0.72 0.87 0.75 0.81 0.79 0.87 0.75 0.82 0.79 

40 0.81 0.64 0.73 0.72 0.87 0.74 0.80 0.79 0.87 0.75 0.81 0.79 

42 0.82 0.64 0.74 0.72 0.87 0.74 0.80 0.79 0.87 0.76 0.82 0.80 

44 0.82 0.64 0.74 0.71 0.86 0.75 0.81 0.80 0.87 0.75 0.81 0.78 

46 0.82 0.63 0.73 0.72 0.87 0.76 0.81 0.80 0.87 0.76 0.81 0.80 

48 0.82 0.64 0.73 0.71 0.87 0.75 0.81 0.79 0.87 0.76 0.81 0.80 

50 0.82 0.66 0.75 0.72 0.87 0.76 0.81 0.80 0.87 0.75 0.81 0.79 

 

Table 4.5 Specificity of ANN training with Set 2 

HLN 
Set 2 - SCG Set 2 - LM Set 2 - BR 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

30 0.87 0.84 0.85 0.81 0.88 0.87 0.88 0.85 0.88 0.87 0.88 0.85 

32 0.87 0.84 0.86 0.82 0.89 0.87 0.88 0.85 0.89 0.87 0.88 0.85 

34 0.87 0.85 0.86 0.82 0.89 0.87 0.88 0.85 0.89 0.87 0.88 0.85 

36 0.87 0.85 0.86 0.82 0.89 0.87 0.88 0.85 0.89 0.87 0.88 0.85 

38 0.87 0.85 0.86 0.82 0.89 0.88 0.88 0.86 0.89 0.88 0.88 0.86 

40 0.87 0.85 0.86 0.82 0.89 0.87 0.88 0.85 0.89 0.87 0.88 0.85 

42 0.87 0.85 0.86 0.82 0.89 0.87 0.88 0.85 0.89 0.88 0.88 0.86 

44 0.87 0.85 0.86 0.82 0.89 0.87 0.88 0.85 0.89 0.87 0.88 0.85 

46 0.87 0.85 0.86 0.82 0.89 0.88 0.88 0.86 0.89 0.88 0.88 0.85 

48 0.87 0.85 0.86 0.82 0.89 0.88 0.88 0.86 0.89 0.88 0.88 0.86 

50 0.87 0.85 0.86 0.83 0.89 0.88 0.88 0.86 0.89 0.88 0.88 0.85 

 

Table 4.6 Precision of ANN training with Set 2 

HLN 
Set 2 - SCG Set 2 - LM Set 2 - BR 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

30 0.79 0.68 0.74 0.65 0.84 0.78 0.82 0.74 0.84 0.79 0.81 0.74 

32 0.79 0.69 0.75 0.65 0.85 0.80 0.82 0.75 0.84 0.79 0.82 0.75 

34 0.80 0.71 0.75 0.66 0.85 0.79 0.82 0.75 0.84 0.80 0.81 0.74 

36 0.80 0.72 0.76 0.67 0.85 0.79 0.81 0.75 0.85 0.80 0.82 0.75 

38 0.80 0.71 0.76 0.67 0.85 0.80 0.82 0.76 0.86 0.81 0.81 0.76 

40 0.79 0.70 0.75 0.66 0.85 0.79 0.81 0.75 0.86 0.80 0.82 0.75 

42 0.79 0.71 0.76 0.67 0.85 0.79 0.82 0.74 0.86 0.80 0.82 0.76 

44 0.79 0.71 0.75 0.66 0.85 0.80 0.82 0.75 0.85 0.80 0.81 0.75 

46 0.79 0.71 0.75 0.66 0.86 0.80 0.83 0.76 0.85 0.80 0.83 0.76 

48 0.79 0.71 0.75 0.66 0.85 0.81 0.82 0.76 0.85 0.81 0.83 0.76 

50 0.80 0.72 0.76 0.68 0.86 0.81 0.82 0.76 0.85 0.80 0.82 0.75 
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Generalized and Individualized Classification 

ANN was trained 10 times with data from all subjects, and the mean accuracy and 

standard deviation were calculated (Figure 4.5). A maximum success rate for accuracy 

calculated as 90% (Table 4.7) using the feature set 1 as input, BR as training function 

and 42 hidden layer neurons. In the performance plot of generalized ANN, the best 

validation performance is obtained at epoch 44 (Figure 4.6). However, after 24th 

epoch, validation and test errors were stabile.  

 
Training Function: Scaled Conjugate Gradient, Levenberg-Marquardt and Bayesian Regression 

Input: 5 feature x 2 channel 

Figure 4.5 Structure of generalized ANN training with SCG, LM and BR functions for the feature set 1 

 

Figure 4.6 Performance plot of generalized ANN training 
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Table 4.7 Accuracy rates of generalized ANN 

HLN 
Set 1 - SCG Set 1 - LM Set 1 - BR Set 2 - SCG Set 2 - LM Set 2 - BR 

Mean ±Std Mean ±Std Mean ±Std Mean ±Std Mean ±Std Mean ±Std 

2 57.7 2.5 65.7 2.0 65.4 2.9 55.4 3.6 66.0 1.2 65.0 1.9 

4 65.8 2.6 73.1 1.0 72.8 0.6 65.3 3.6 73.0 0.8 73.4 0.7 

6 71.1 2.2 76.9 1.4 76.6 1.2 71.4 1.9 76.8 1.3 76.6 1.2 

8 73.5 1.3 79.8 1.9 80.2 1.8 74.8 1.6 79.1 1.8 79.5 1.8 

10 75.2 1.3 81.4 1.7 80.8 2.4 75.4 1.6 81.6 1.6 81.1 1.6 

12 75.6 1.8 82.7 1.5 82.7 2.0 75.7 1.5 82.2 1.9 83.1 1.4 

14 76.2 1.5 84.2 1.3 83.8 2.1 76.1 1.4 83.8 1.2 83.2 1.7 

16 77.2 1.3 84.2 1.9 85.2 1.6 77.4 1.3 83.7 2.1 85.4 1.3 

18 77.8 1.2 85.5 2.1 85.8 1.7 78.2 1.2 85.9 1.4 85.3 1.5 

20 77.8 1.6 85.9 1.8 86.4 1.0 78.9 1.9 86.4 1.3 85.9 1.1 

22 78.5 2.2 85.8 1.9 87.1 1.8 77.7 1.0 85.5 1.9 87.1 2.0 

24 78.4 2.4 86.9 1.7 87.2 1.6 78.6 2.1 87.3 2.0 86.9 2.6 

26 79.7 2.1 87.0 1.2 86.9 2.0 79.2 1.4 85.9 1.4 87.4 2.1 

28 80.4 1.9 85.3 1.1 87.4 2.4 78.8 1.6 87.6 2.5 87.5 1.7 

30 79.7 1.6 86.9 1.1 87.0 1.4 78.6 1.8 87.5 1.5 87.3 2.3 

32 78.7 1.6 87.3 1.8 88.8 1.4 79.1 2.1 88.2 1.5 87.8 1.8 

34 80.3 1.8 86.7 2.3 87.7 1.6 80.5 2.0 88.2 2.1 87.8 1.5 

36 79.6 2.1 88.0 2.5 88.2 1.1 80.8 1.6 88.1 2.6 88.6 1.5 

38 79.8 2.1 88.8 1.4 88.4 1.7 80.7 1.9 88.9 1.2 88.9 1.4 

40 80.1 1.5 88.2 1.4 88.7 1.6 79.8 1.7 88.1 2.2 88.5 2.0 

42 79.9 2.2 89.1 2.1 90.0 1.7 80.1 1.2 87.9 2.5 89.1 2.1 

44 80.1 2.0 88.3 2.1 89.1 1.3 80.1 1.5 88.5 1.5 88.0 2.0 

46 79.5 1.5 88.4 2.2 89.6 1.1 79.8 1.5 89.2 1.7 88.9 1.8 

48 80.8 2.0 88.4 1.4 88.7 2.0 80.0 2.6 88.9 1.8 89.3 1.3 

50 81.5 1.9 88.6 1.6 90.0 1.5 81.3 1.7 89.2 1.4 88.7 1.5 
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Approximately 10% of increment has obtained by training ANN's individually 

(Figure 4.7). For each subject, ANN trained 10 times and then mean accuracy and the 

standard deviation is calculated and the maximum accuracy rate of 96% was 

obtained when ANN was trained individually (Table 4.8). In the performance plot of 

individualized ANNs for subject 1 and subject 2, the best validation performance is 

0.0255 at 11 epoch and 0.217 at epoch 15 respectively (Figure 4.8 & Figure 4.9). 

 
Training Function: Scaled Conjugate Gradient, Levenberg-Marquardt and Bayesian Regression 

Input: 5 feature x 2 channel 

Figure 4.7 Structure of individualized ANN training with SCG, LM and BR functions for the feature set 1 

 

 

Figure 4.8 Performance plot of individualized ANN training for subject 1 
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Figure 4.9 Performance plot of individualized ANN training for subject 2 

Table 4.8 Accuracy rate of individually trained ANNs. 

HLN 
Set 1 - SCG Set 1 - SCG Set 1 - LM Set 1 - LM Set 2 - BR Set 2 - BR 

Mean ±Std Mean ±Std Mean ±Std 

2 85.9 6.0 91.3 1.3 91.3 0.8 

4 92.3 1.1 95.0 0.7 94.6 0.6 

6 92.2 1.0 94.8 0.6 94.4 1.1 

8 92.9 1.0 95.3 0.7 95.2 0.5 

10 93.0 1.1 95.5 0.6 95.0 1.2 

12 93.3 1.2 95.1 0.9 95.7 0.8 

14 92.5 1.0 95.5 0.8 95.3 0.8 

16 93.1 1.2 95.5 0.6 95.6 0.8 

18 93.7 0.9 95.3 0.7 95.7 0.7 

20 93.3 1.1 95.4 0.5 95.6 1.0 

22 93.3 0.6 95.3 0.6 95.5 0.8 

24 93.4 0.8 94.5 1.3 95.8 0.8 

26 93.1 1.2 95.3 0.2 95.3 0.5 

28 92.9 1.0 95.6 0.8 95.6 0.7 

30 92.7 1.3 95.8 0.6 95.5 0.9 

32 93.7 1.1 95.7 0.6 95.4 1.0 

34 93.6 1.7 95.9 0.7 95.5 0.8 

36 93.8 1.3 95.7 0.7 95.2 0.8 

38 92.8 1.1 95.5 0.4 95.2 1.1 

40 93.2 1.5 95.7 0.6 95.2 0.8 

42 93.4 1.3 95.7 0.7 95.7 0.7 

44 93.3 1.2 95.6 0.9 95.4 0.6 

46 93.5 1.3 95.7 0.8 95.5 0.5 

48 92.9 1.2 95.8 0.4 95.4 0.6 

50 92.9 1.4 96.0 1.0 95.5 0.7 
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An external data set is acquired from Musab Salih Sakar. Two ANN’s trained 

with LM function and 40 HLNs (Figure 4.10). As a result of the training process, 

89.08% accuracy and 87.98% accuracy are obtained for feature set 1 and feature set 

2 respectively (Table 4.9). Best validation performances were calculated as 0.062447 

at epoch 10 for feature set 1 (Figure 4.11) and  0.062428 at epoch 8 for the feature 

set 2 (Figure 3.12). 

 
Training Function: Levenberg-Marquardt  

Input: 5 feature x 2 channel 

Figure 4.10 Structure of individualized ANN training with LM function for the feature set 1 

Table 4.9 Accuracy rate of trained ANNs with external data. 

Feature Set Mean Accuracy % ± Std 

Feature Set 1 89.08 2.10 

Feature Set 2 87.98 6.91 

 

 

Figure 4.11 Performance plot of trained ANN with the feature set 1 
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Figure 4.12 Performance plot of trained ANN with the feature set 2 

Two ANN’s trained with LM function and 40 HLNs by using only raw EMG data 

and raw EMG data with the addition of the feature set 1 (Figure 4.13 & Figure 4.14). 

As a result of the training process, 84.42% accuracy and 93.25% accuracy are 

obtained for raw data and raw data with the addition of the feature set 1, respectively. 

Best validation performances were calculated as 0.15008 at epoch 14 for raw data 

and  0.044472 at epoch 7 for raw data with the addition of the feature set 1. 

 
Training Function: Levenberg-Marquardt  

Input: 100 raw data sample x 2 channel 

Figure 4.13 Structure of individualized ANN training with LM function for raw  EMG data 
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Training Function: Levenberg-Marquardt  

Input: (100 raw EMG data sample + 5 feature) x 2 channel 

Figure 4.14 Structure of individualized ANN training with LM function for the feature set 1 and raw  

EMG data 

 

Figure 4.15 Performance plot of trained ANN with raw EMG data 
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Figure 4.16 Performance plot of trained ANN with raw EMG data and feature set 1 

Effects of Feature Groups on ANN Accuracy 

In order to determine the effect of feature groups on ANN accuracy, the groups 

were excluded one by one. Feature group 3 gave the lowest accuracy rate with 

59.26%. In contrast, Feature group 1 gave the highest accuracy rate of 84.20% 

individually. When the groups were removed one by one, the most significant 

decrease was seen when group 1 was removed with approximately 7% (Table 4.10). 

Table 4.10 Effects of feature groups on ANN accuracy 

Input Feature Groups Accuracy % ± Std 

Feature Group 1+2+3 90.01 1.2 

Feature Group 1+2 89.31 0.89 

Feature Group 1+3 87.55 1.11 

Feature Group 2+3 82.19 1.57 

Feature Group 1 84.20 1.03 

Feature Group 2 78.31 1.68 

Feature Group 3 59.26 0.75 

 

ANN has been trained by removing features one by one. When MAV, VAR, WL, 

DASDV, and WAMP features excluded individually, the accuracy rate of the 
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classifier has been increased slightly (Table 4.11). Even On the other hand, when the 

RMS, MFL, and SSC were excluded, the mean accuracy rates decreased. This 

contradicts some points with the experiment of the individual testing of the features 

in Section 3.5. For example, although MAV is the feature that provides the highest 

accuracy for the EI group, accuracy is increased when excluded alone. On the other 

hand, although the SSC feature remained below the average for individual 

classification success, overall classification success decreased when excluded. This 

showed that the success of individual classification of properties can be misleading. 

Table 4.11 Effect of feature exclusion on ANN accuracy 

Excluded Feature Accuracy % ± Std 

MAV 91.13 1.46 

RMS 88.76 1.79 

LOG 90.13 1.79 

SSI 90.86 2.01 

VAR 91.00 2.58 

MFL 89.65 1.36 

WL 91.12 1.24 

AAC 90.67 0.73 

DASDV 91.28 1.06 

SSC 88.61 1.96 

WAMP 91.17 1.36 

 

Hardware has been installed for signal acquisition. After collecting data with 

hardware, features were extracted from this data. In the trials; The effect of feature 

groups, individual features, and generalization and individualization approaches on 

classification performance was evaluated. The best results were obtained between 30 

and 50 hidden layer neurons. In addition, it was observed that the individualization of 

the classifier improves performance. When the frequency information feature group 

was excluded, there was no significant change in performance. When SCG was used 

as a training function, it was observed that performance was lower than LM and BR 

training functions.  
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5CHAPTER FIVE 

CONCLUSION 

In this thesis, it is aimed to classify the transradial EMG signals obtained from a 2 

channel EMG sensor using an ANN. Myoware ™ Muscle Sensor (AT-04-001) was 

used in order to receive the EMG signal. Arduino Mini Pro Leonardo and HC-06 

Bluetooth Communication device are used to transmit the signals received from a 

two-channel EMG sensor to the computer. 

Time-domain features were used in the classification of hand and wrist 

movements. A maximum success rate of 90% with a generalization approach. 

However, a maximum accuracy rate of 95% was obtained when ANN was trained 

individually. 

EMG data obtained from ten subjects were used for hand and wrist movements. 

When the classification of the four movements was examined, when SCG is used as 

a training function, accuracy, sensitivity, specificity and precision metrics are 

significantly decreased. On the other hand, there was no significant difference 

between LM and BR training in terms of used performance metrics. When the 

number of hidden layer neurons was selected between 30 and 50, ANNs gave the 

best results. However, increasing the number of hidden layer neurons increases the 

training time. 

An external EMG data set is obtained and used for further ANN training trials. In 

these trials, feature set 1, feature set 2, raw EMG data and raw EMG data with the 

feature set 1 addition used as input vectors. Accuracy rates calculated as 89.08%, 

87.98%, 84.42% and 93.25% respectively. The addition of the feature set 1 to raw 

data, increased the overall accuracy rating by approximately 8%. 

All studies were conducted using ten subjects and this affects the objectivity of 

success rates. In order to successfully classify more movements, EMG signals can be 

acquired, processed and used for neural network training with more than two sensors. 

In addition, the scope of further studies can be expanded by obtaining data from 

more subjects to ensure that the results are more accurate. 
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In this study, all movements investigated individually, however in further studies 

combinations of movements such as forearm supination of a closed hand, should be 

investigated. Furthermore, proportional movements are not included in this study. In 

future studies, proportional movements should be investigated. With a successful 

classification of proportional and combined movements, the classifier may be 

implemented on a prosthetic arm prototype. Although the signals received from the 

lower arm are classified in this study, the basic principle can be studied for any other 

limb in the body. 
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