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DETECTING AND CLASSIFYING FABRIC DEFECTS WITH COMPUTER-
VISION ALGORITHMS

ABSTRACT

Image processing has been employed in a variety of fields since the advent of image
processing techniques. One of these fields is textile. The existence of any defect in a fabric
is one of the most important factors affecting the quality of the fabric. There are many
types of fabric defects that can occur for various reasons. It's critical to figure out what

caused the defect and fix it so that it doesn't occur again.

Automation of fabric defect detection has recently attracted a lot of interest in view of
the development in artificial intelligence technology in order to be able to discover defects
with a high degree of success and to limit the harm to the manufacturer. However, some
problems are encountered in this area. Fabric defect detection is a challenging subject
since there exist a great number of defects that might result from a variety of issues.
Additionally, the restriction of this study is that the Tilda database is one of the limited

datasets that contain fabric defect samples and can be accessed in this field.

This thesis focuses on analyzing different feature extraction methods and different
classifiers and discussing the advantages and disadvantages of the combinations. Different
cases have been created that handle the data sets from different angles and apply different
methods. While three different methods (EL, KNN, and SVM) have been tested in the
classification stage, different CNN-based approaches (ResNet18, ResNet50, GooglLeNet,
and AlexNet ) have been tested in the feature extraction stage. The results obtained have

been also compared with the results of ResNet18, ResNet50, GooglLeNet, and AlexNet.

Keywords: fabric defect classification, CNN, machine learning, deep learning.
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BILGISAYAR-GORME ALGORITMALARI iLE KUMAS HATALARININ
TESPITi VE SINIFLANDIRILMASI

0z

Goriintli isleme, goriintii isleme tekniklerinin ortaya c¢ikmasindan bu yana c¢esitli
alanlarda kullanilmistir. Bu alanlardan biri de tekstildir. Bir kumasta herhangi bir kusurun
varlig1 bu kumagin kalitesini etkileyen en dnemli faktorlerden biridir. Cesitli nedenlerle
olusabilen bir¢ok kumas kusuru tiirii vardir. Kusura neyin neden oldugunu bulmak ve

tekrar olusmamasi i¢in diizeltmek ¢ok onemlidir.

Kumas kusur tespitinin otomasyonu, hatalar yiiksek derecede basari ile kesfedebilmek
ve lreticiye verilen zarar1 sinirlandirmak i¢in yapay zeka teknolojisindeki gelismeler goz
Oniine alindiginda son zamanlarda biiyiik ilgi gormiistiir. Ancak bu alanda bazi sorunlarla
karsilagilmaktadir. Kumas kusur tespiti, ¢esitli sorunlardan kaynaklanabilecek ¢ok sayida
kusur bulundugundan zorlu bir konudur. Ayrica bu caligmanin kisitliligi, Tilda veri
tabaninin kumas kusur 6rneklerini igeren ve bu alanda erisilebilen sinirlt veri setlerinden

biri olmasidir.

Bu tez, farkli 6znitelik ¢ikarma yontemlerini ve farkli siniflandiricilar analiz etmeye
ve bu kombinasyonlarin avantaj ve dezavantajlarini tartismaya odaklanmaktadir. Veri
kiimelerini farkli acilardan ele alan ve farkli yontemler uygulayan farkli durumlar
olusturulmustur. Siniflandirma asamasinda ii¢ farkli yontem (EL, KNN ve SVM) test
edilirken, Oznitelik ¢ikarma asamasinda CNN tabanli farkli yaklasimlar (ResNetl8,
ResNet50, GoogleNet ve AlexNet) test edilmistir. Elde edilen sonuglar ResNetl8,
ResNet50, GoogLeNet ve AlexNet sonuglartyla da karsilastirilmistir.

Anahtar Kelimeler: kumas kusuru siniflandirma, KSA, makine Ogrenmesi, derin

Oogrenme.
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CHAPTER ONE

INTRODUCTION

The textile industry, one of Turkey's more established industrial sectors, has had a
considerable influence on the country's economy throughout the years in terms of both the
employment opportunities it provides and the value it contributes to the production
process (Ala & Ikiz, 2015). One of the most important subsectors of the textile industry is
the woven fabric sector. Additionally, woven fabric exports account for a significant
portion of all global textile exports. On the other hand, as in the manufacture of all goods,
defects are inevitable in the production of woven fabrics. Woven fabric defects are the
variations that impact the fabric's look, modify the fabric's structure, and result in
modifications to the region's limits (Diilgeroglu Kisaoglu, 2010). The Turkish Standards
Institute (TSE) defines fabric defects as "defects in fabrics that can be seen and evaluated
due to yarn, auxiliary materials, workmanship, machinery, equipment or working method
and spoil the appearance of the fabric" (2005). Therefore, defects on fabrics cause some
negative consequences such as customer dissatisfaction and financial loss. If there is a
defect in a fabric, it causes 45-65% decrease in price of it (Srinivasan et al., 1992).
Traditionally, fabric defect detection is done by human vision. Detection of fabric defects
can be done on-line during fabric production or off-line after fabric production (Hanbay
& Talu, 2014). Preventing the fabric defects depends on intervening as soon as any defect
occurs. While the possibility of intervention during production is eliminated in off-line
control, there is a possibility that the error rate increases in on-line control during
production. Although human-based control is a common type of control, it has a number
of disadvantages (Table 1.1). Personnel who will provide fabric control are selected
among trained and experienced people in this field. In the study of Ala and Ikiz (2015),
production is carried out on 30 weaving looms and the personnel work in three shifts. This
creates the need for a large number of personnel in a company. Despite the high costs, the

success of finding defects is low.



Table 1.1. The disadvantages of traditional defect control

Disadvantage Explanation

There is a loss of manpower due to the employment of
Loss of human power . '
trained personnel who are assigned only to find defects.

If the control is done after fabric production, it causes
Waste of time )
time loss.

It has been reported that the experienced personnel in this

field can find 70% of the defects (Dorrity et al., 1995).

Low success rate

In addition to the salaries of the personnel employed for
Higher cost the control process, the cost is high due to the fact that

some of the defects cannot be found by the personnel.

At least 30 percent of the defects cannot be found.
High rate of error Personnel worked in this field may be tired and unable to

concentrate.

According to the study of Kisaoglu (2002), fabric defects are divided into four
categories: defects in the weft direction, defects in the warp direction, defects on the fabric
surface and edge defects. Some defect names belonging to these four types are given in
Table 1.2. As a result of our reviews, it is seen that different numbers of fabric defects as
well as different groupings of these defects have been reported in the literature. Goldberg

(1950) categorized fabric defects into five groups and cited 194 distinct types of defects.



They are divided into six classes and 130 distinct defects in accordance with ISO
standards. Automatic defect classification is a challenging endeavor since there is such a

wide diversity of fabric types and defect types.

Table 1.2. Defects according to their direction

Defect direction Defects

Weft bar, dense-loose pick spacing, weft loops,
Defects in the weft direction )
dirty yarn

Defects in the warp direction Drafting, warp end

Fibrous weft, hole, lattice, untwisted yarn, knot,

fly

Defects on the fabric surface

Edge defects Temple mark, tightloose warp, selvedge fault

Some samples of defects belonging to the types are given in Figure 1.1. Defects in (a)
and (b) are the defects in weft direction. Defects in (c) and (d) are the defects in warp
direction. Defects in (e) and (f) are on the fabric surface. Defects in (g) and (h) are the
edge defects. As can be seen from these samples, some of the defects are obvious, while
others are more difficult to understand. Considering that the working personnel are trying
to find the fabric defects on the board that flows at a certain speed during production, most
minor defects may be overlooked. For this reason, while there are actually many errors,
in practice only 40-50 of these defects are recorded on the quality control cards by textile

companies (Ala & Ikiz, 2015).



(& (h)

Figure 1.1. Fabric defect samples (a) weft bar (b) dense-loose pick spacing (c) drafting (d) warp end (¢) hole
(f) fly (g) tight-loose warp (h) selvedge fault (Kisaoglu, 2002)

Ala & Ikiz (2015) have encountered 3211 defects in 140.062 meters of fabric in their
study. According to the study, broken warp, stopping mark, warp stack, weft stack, half
wrong lift, double pick, missing warp, missing weft, tight-loose warp, and wrong lift are
the top 10 most common defect types (Table 1.3). The ten most common defects constitute

94.74% of the total number of defects.



Table 1.3. Most common defect types

Defect Type Direction Number of Percentage of
Defects Defects
Broken warp Warp direction 1542 48.02
Stopping Mark Weft direction 492 15.32
Warp stack Warp direction 279 8.69
Weft stack Weft direction 221 6.88
Half wrong lift Weft direction 191 5.95
Double Pick Weft direction 104 3.24
Missing warp Warp direction 69 2.15
Missing weft Weft direction 65 2.02
Tight-loose warp Warp direction 40 1.25
Wrong Lift Weft direction 39 1.21
SUM 3042 94.74

Since the formation of these defects can be caused by raw materials, machinery or

human beings, it is in the benefit of the manufacturer to determine the type of defect and

take action accordingly (Baris and Ozek, 2019). Therefore, traditional defect control

cannot fully meet the expectations considering the disadvantages mentioned above. Over

the last two decades, many studies have been conducted in the field of automatic fabric

control to avoid them (Rasheed et al., 2020). Automatic detection has a number of

benefits, including lessening the loss of human power, cutting down on the time and

expense needed for control, providing more precise results, and recording the detection

process in order to catch future defects (Kisaoglu, 2002). Some of the automated systems

in this field are merely designed to identify problems; others classify them after doing so.

Studies to categorize defects are only doing so for certain defect kinds due to the vast array

of defect types that might exist in textiles.




The objectives of this study can be listed as follows:

1- To perform fabric defect control, which is traditionally done using human power,

with high accuracy rate via computer vision.

2- To classify defect types using image processing and deep learning methods

3- To design a lower-cost automated system with higher success, instead of a costly

control process with 70% success in the best case.

4- To save the manufacturer, who wants to perform the control process automatically,

from foreign dependency and to meet with a much more affordable domestic system.

5- Textile industry is one of the leading sectors in Turkey (Uyanik & Celikel, 2019). It
is obvious that launching a domestic product in this field will make significant

contributions to our country's economy.

The organization of this thesis consists of eight chapters. In the first chapter, frequently
encountered fabric defects, the types of these defects and the reasons for the search for an
automatic system are mentioned. In the second chapter, a detailed literature review is
included. Studies using different feature extraction methods and studies using different
classifiers are examined separately. The third chapter deals with data mining. The fourth
chapter contains information about the dataset. In the fifth chapter, the methods used for
feature extraction (deep learning based approaches, and the proposed system) in the study
are discussed. The sixth chapter consists of the bacground for classification methods.
While the seventh chapter includes experimental results, the eighth chapter contains

explanations about the findings of the study and future studies.



CHAPTER TWO

LITERATURE REVIEW

Considering that each picture is a matrix, it is costly to take the entire matrix as input
due to the size of the matrices. For this reason, feature extraction methods are used to
reduce the cost in image classification studies. In the literature, it is seen that different
feature extraction methods have been used before using a classifier. Gray level co-
occurrence matrix (GLCM), Local Binary Patterns (LBP), Principal Component Analysis
(PCA), Independent Component Analysis (ICA) are among the commonly used feature

extraction methods.

Yildiz et al. (2016) have proposed a system that classifies the fabric defects using the
input images obtained from a thermal camera. K-Nearest Neghbor has been used for
recognition of the defects using the features extracted via Gray level co-occurrence matrix
(GLCM). In this study, four types of defect (hole, tear, nep, foreign yarn) have been tried
to be recognized. Experiments show that the system achieves the classification with 96%

success rate.

An algorithm has been developed using the combination of wavelet theory and co-
occurrence matrix in the study of Latif-Amet et al. (2000). Images are divided to non-
overlapping subframes. Frames are classified as defected-non-defected with the help of
the features extracted from each frame. Classification is carried out with a success of up

to 90.78%.

Zuo et al. (2012) have divided the images to non-overlapping windows and they use
texture enhancement method to discriminate the defected area from the background.
Features of the defected area is extracted using gray level co-occurrence matrice, and they
are classified using euclidean distance classifier. The experiments have been performed

on 19 fabric images with the five defect types (broken end, mispick, netting multiples,



slack end, thick bar). According to the experiments, they obtain higher accuracy rate
(88.79) when non-local means algorithm is used for denoising before gray level co-
occurrence matrice. 67.30% success has been achieved when using the method without

denoising.

Hamdi et al. (2016) identify the patterns of patterned fabrics and split them into blocks
of equal sizes. Features are extracted from images using GLCM. Defected blocks are
identified using Euclidean distance. Experiments have been performed on a fabric
database. There are three types of pattern in the database (dot, box, and star). They obtain

high accuracy rates according to the experimental results.

Ngan et al. (2005) have developed WGIS (wavelet preprocessed golden image
subtraction) method. The experiments have been tested on 60 patterned images (30 non-

defected, 30 defected). The success rate is 96.7%

Features are extracted using four scale dyadic wavelet decomposition in the study of
Lambert & Bock (1997). Following that, a neural network is used to classify these
features. They underline that the speed of the wavelet transform gives the devised

approach less temporal complexity than the other methods.

Yang et al. (2004) compare six different methods based on wavelet transform. They
have been tested on 900 sample images (466 defected, 434 non-defected). Defected
samples contains eight fabric defect type. Discriminative feature extraction using adaptive
wavelet has been the best methods among the others. It successfully classifies the images

with a 95.8% accuracy rate.

Kang et al. (2013) use the combination of wavelet transform and neural network.
Accuracy rate for recognition the defects is above 90%. It is stated that the system

developed is not sufficient for smaller fabric defects.



Sabeenian et al. (2011) have developed a system that detects and classifies the fabric
defects. The features are extracted from the images (stored in the database) using Multi
Resolution Combined Statistical and Spatial Frequency (MRCSF). These features are
compared with the test images to decide whether there is a defect in the test image. Nearest
neighborhood algorithm is used for defect detection phase. Then, defect type is found.
However, it is not specified which method is used at classification stage. Experiments
have been performed on two different fabric type: normal fabrics and silk fabrics. In the
developed system, 85% success has been achieved in classifying the defects of normal

fabrics, while silk fabric defects have been classified with 80% success.

Tajeripour et al. (2008) use the modified version of Local Binary Patterns (LBP) to
reduce the complexity. A defect-free and patterned image is divided into frames. LBP is
applied to each frame and the reference property vector is calculated. A suitable threshold
is determined for these defect-free fabrics. In the test image divided into the frames, the

defective frame is determined by the threshold.

Li et al. (2019) develop an algorithm based on the combination of gabor and histogram
of oriented gradients (HOG). Gabor-HOG has been used for feature extraction. Then,
defective regions of the fabrics have been detected using low-rank decomposition. Their
experiments have been performed for the dot-patterned fabrics, the star-patterned fabrics,
and the box-patterned fabrics. The algorithm detects the defective regions correctly

according to the experimental results.

In the study of Ananthavaram et al.(2012), it is aimed to find defects in patterned
fabrics by combining Regular Bands (RB) and Independent Component Analysis (ICA)
methods. According to the tests, it is concluded that better results have been obtained
when histogram equalization method is applied. It is indicated that the proposed approach

is suitable for real-time applications.



Martinez-Leon et al. (2016) develop a system to detect the defects in patterned fabrics
using the entropy feature calculated from histogram differences and totals. The image is
converted to an entropy image where the defects have lower values, and a simple threshold
is used to determine if the fabric is defective or not. In this study, test have been performed
to detect the defects of broken end, thick bar, thin bar, hole, multiple netting and 96.1%

success has been achieved.

Sakhare et al. (Sakhare et al., 2015) compare the performances of six approaches
(statistical approach, morphological approach, Fast Fourier Transform (FFT), Discrete
Cosine Transform (DCT), Wavelet Transform, and Gabor Filter). Input images are divided
into four parts. The mean of these parts is used to identify the defective part. The existence
of a hole in the defect is first investigated. If the defect is not a hole, the remaining sorts
of defects are examined for classification. Testing has been done to classify four different
types of defects in the study. The experiments indicate that FFT has produced the best

result. DCT has also shown to be the second-most effective technique.

Mottalib et al. (Mottalib et al., 2015) use Bayesian classifier in their study. After
segmenting of the defect from a fabric image, four features are extracted from the defect
window segmented. These features are height of defect window, width of defect window,
height to width ratio of defect window, and number of defective regions. Five fabric
defects have been aimed to detect (color yarn, vertical missing yarn, horizontal missing
yarn, hole, spot). They have used 70 of 128 input images for training phase and the rest
for testing phase. Non-defected images have been classified with the success rate of 100%.

In total, 99.19% success rate has been obtained.

Ozkaya et al. (Ozkaya et al., 2018) have used thresholding, HSV transformations, and
morphological opening/closing operations to detect the faults in fabrics. They have
proposed an on-line fault detection system. Stains, rips and tears, pencil scratches have

been tried to detect in their study.
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Fabric images have been examined using morphological filters in the study of Mak et
al. (2009). First, the features are extracted from non-defective images using Gabor wavelet
network. Then, the input image is compared with these extracted features. If the image
has the same background as any non-defective image previously introduced into the
system, whether there is a defect in the image is investigated. In the study, experiments
have been carried out on offline and real-time systems. 97.4% success has been achieved

in offline systems and 96.7% success in real-time systems.

Chan et al. (Chan & Pang, 2000) have used central spatial frequency spectrum to
classify the defects of double yarn, missing yarn, webs or broken fabric, and yarn densities
variation using seven features extracted from the images. They have obtained very good

results in this study.

The difference of offset Gaussian (DOOG) filter has been used in the study of Bagkur
(2013). Testing phase has been carried out on 32 images. The system cannot find only one
defect in a fabric image containing six different errors, but it correctly detects and

recognizes the remaining five defects.

The studies performed by Faouzi et al (2014), Hamdi et al. (2018), Thorave & Biradar
(2014), Campbell et al. (1999) are the studies using unsupervised machine learning
systems. Faouzi et al. (2014) use fuzzy c-means (FCM) to the parameters of straight-line
ratio, ratio of dark areas, and gap ratio. Fabrics with the defects of missing warp, missing
weft, oil stains, and holes have been used for experiments. Hamdi et al. (2018) have
developed a system that automatically defects the defects in patterned fabrics without any
training steps. Images are divided into non-overlapping blocks after the determination of
periodic patterns in fabric images. K-Means algorithm is applied to median values of
blocks for classifying them as defected or non-defected. The success rate of the system
reaches 95%. Thorave & Biradar (2014) remove the noise effect using median filter, and
apply the K-Means algorithm. Their algorithm has low computation time. In this study,

they obtain a success rate of 96%. Model-based clustering method is used to detect linear
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defects in knitted and woven fabrics in the study of Campbell et al. (1999). Bayes
Information Criterion (BIC) based model has been selected. The developed method gives
the best and effective result compared to the methods of thresholding, binary image

rotation, and background subtraction.

Although there are many studies for the fabrics of plain, woven and knitted, there are
very few studies done for patterned and colored patterned fabrics. Oni et al. (2018) have
examined the studies for detection of these types of fabrics in the literature. Seven features
have been extracted from the images using frequency spectrum analysis in the study of
Yu et al. (2005). Back propogation neural networks have been used for color
classification. In the study of Li et al. (2012), energy-based local binary pattern has been
used for the images in L*a*b* space. Habib et al. (2013) use back propogation in their
study. Autocorrelation function and gray level co-occurrence matrix have been used in the

study of Zhu et al. (2015).

Abdellah et al. (2014), Dongli et al. (2013), Ghosh et al. (2011) have been developed

systems using support vector machines (SVM).

In the study of Abdellah et al. (2014), necessary parameters are obtained by using
genetic algorithm to reach the most suitable SVM classifier also in case of a small number
of sample data in hand. A classification is performed with the SVM technique using the
geometric properties of the defects. The images with the defects of missing yarn, spot,
hole, and oil stains have been used for experiments. Defects have been recognized with

the success rate of 94.84%.

Dongli et al. (2013) combine gabor filter and SVM. Optimal parameters for SVM have
been selected using genetic algorithms. The developed system is effective in identifying
and classifying common monochrome cloth defects. The success rate for identifying

defects is up to 94%.
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Numerous studies in the area of fabric defect inspection use neural networks (NN) (Kuo
& Lee, 2003; Huang & Chen, 2001; Kumar, 2003; Jmali et al., 2014; Rebhi et al., 2015;
Biiyilikkabasakal, 2010; Celik et al., 2014; Hanbay et al., 2015; Hanbay et al., 2017; Yu et
al., 2005; Habib et al, 2013; Behera & Mani, 2007).

Kuo & Lee have used a feedback neural network using three features extracted from
the defects (maximum length, maximum width and grey level of defects) (Kuo and Lee,
2003). Classifier has been trained with four classes: weft lacking, warp lacking, hole, oil
stain. Success rate of classification for the defects of weft lacking and warp lacking is up

to 95%, and it is up to 100% for the defects of holes and oil stains.

Huang & Chen have developed a neural network based fuzzy system (Huang and Chen,
2001). 144 gray level images have been used for classification of eight types of defects
(double ends, double picks, missing end, missing pick, hole, light filling bar, cobweb, oil
stain). They compare the performances of neural network and fuzzy version of neural
network. The performance of fuzzy neural network is superior to neural network

according to their experiments.

Kumar has used a feedforward neural network to classify the defects in twill and plain-
woven fabrics (Kumar, 2003). Three defect types (mispick, netting multiplies, thin bar)
for twill woven fabrics and four defect types (double-weft, thin bar, broken ends, slack

pick) for plain woven fabrics have been tried for recognition.

Jmali et al. have used a single layer neural network to classify the defects of warp
threads, weft threads, oil stains, and hole (Jmali et al., 2014). 45 input images have been
used for experiments. Test have been performed using the regression curve. They have

obtained high performance from the developed system.

Rebhi et al. use back-propogation neural network using the five features extracted from

discrete cosine transforms (DCT) of H-images (homogeneity images obtained from input
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images) (2015). These features are vertical energy, horizontal energy, diagonal energy,
energy mean, and energy standard deviation. They use a dataset provided by a textile

industry in Tunisia. There are 89 images (13 non-defected, 76 defected) in the dataset.

Biiyiikkabasakal (2010) has been aimed to recognize the defects in the fabrics by
extracting the feature vectors of images using principal component analysis (PCA).
Defects have been classified using neural networks. In the study, the system has been
trained for the defects of warp leakage, warp tip, abrage and weft leakage. In the testing
phase, 40 images have been used includig these defects. According to the experiments, a

success of 83% has been achieved.

In the study of Celik et al.(2014), a system that detects fabric defects in offline and
real-time systems is recommended using linear filters and morphological processes. Tests
have been performed for five different defect types (missing warp, missing weft, dirty
yarn, hole and knot). The defects detected have been classified using an feedforward
neural networks with an average success rate of 96.3%. In this study, higher success rate

has been obtained real-time systems than offline systems.

Hanbay et al (2015) use the methods of co-HOG (Co-occurrence Histograms of
Oriented Gradients), wavelet transform and gray level co-occurrence matrix to extract the
features and use artificial neural network to train the system in their study. 9165 test
images (3242 defected, 5923 non-defected) have been used for the experiments. When
using the wavelet transform, defects are classified with a 90% success rate. Also, it is seen

that the cost has decreased considerably.

Hanbay et al. (2017) apply neural networks to the seven features extracted from the
images using fourier frequency spectrum. Experiments have been performed for both off-
line and on-line systems. The number of sample fabrics used in the experiments is 11.000.

The system recognizes non-defected fabrics and fabrics with the needle defects with 100%
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success rate. It recognizes the lycra defects with 86% success rate, while it recognizes the

yarn defects with 92% success rate.

The methods based on CNN have become popular in recent years.

Zhu et al. (2020) optimize DenseNet which is a CNN algorithm. They combine the new

method with a new hardware for fabric defect detection.

Karlekar et al. (2015) use wavelet decomposition and different preprocessing

operations to obtain segmented defect.

Chang et al. (2018) develop a new method for patterned fabrics. Fabrics are divided

into lattices including periodic patterns. Then, the lattice containing the defect is detected.

Wei et al. (2019) make a combination of compressive sampling theorem with CNN.
The new method is more effective compared to traditional methods and performs well in

small data sets.

Wang et al. (2018) develop a CNN based system which have two major parts. One is
global frame classification part. It classifies the image samples using background features.
The other is sub-frame detection part. The part checks whether each sample contains

defected areas or not. The second part uses output of the first part for checking operation.

Zhao et al. (2020) develop a CNN model based on visual long-short-term memory
(VLSTM).

Guan et al. (2019) use VGG (Visual Geometry Group) model for CNN. Simon & Uma
(2020) extract the features using CNN and perform the classification using SVM. In this
study, SVM is compared to DenseNet201, ResNet50, ResNet101, Inceptionv3 and
AlexNet.
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Seker et al. (2016) use autoencoder algorithm as a deep learning algorithm to detect the
fabric defects. It is the first study which uses transfer learning in the area of fabric defect.
They aim to increase the feature extraction achievement. 88% accuracy rate has been
obtained in this study which classifies the fabric images as defected-non-defected.
Classification success rate is higher in the defect types of holes and stains while it is lower

in other defects.

There are some challenges in CNN. For this reason, there are studies developed to solve
the challenges of CNN-based studies. CNN algorithms have long execution times.
Therefore, some studies aim to shorten this period (Liu et al., 2018; Wei et al., 2018). Wei
et al. (2018) suggest VGG based RCNN to speed up the detection process. CNN
algorithms cannot be successful for small sample sizes. So, developing CNN algorithms
in this area has been aimed in some studies. Li et al. (2019) develop Wide-And-Compact
Network (WACNet). Wei et al. (2019) develop CS-CNN (compressive sampling)
theorem. They make a comparison between the performances of CS-CNN, CNN, KNN,
multi-layer perceptron (MLP) and SVM. In the study of Seker (2018), this disadvantages
has been overcome by using transfer learning. A pre-trained model AlexNet is used.
Fabrics are tried to be divided into two different classes as defective and defect-free. There
1s not any preprocessing operation performed before deep learning in some studies, while

learning process is performed after preprocessing operations in others (Jing et al., 2019).

In the studies conducted, two main factors that cause recognition defects are mentioned
(Xin et al., 2009). The first is the quality of the images. An environment where light is
reflected and motor vibration affects success. The second is structurally large curves or

overlaps in the fabric.
New classification approaches are tested on the most known datasets for example Iris,

Adult, Wine, and Breast Cancer Wisconsin ... (Uci Repository). This makes it easier to

compare with the other studies developed. Thus, which method is more effective can be
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said easily. However, there are two known databases called as Parvis (Italian Textile
Institute) and Tilda (Workgroup on Texture Analysis of DFQG) existing in the area of
automatic fabric defect control. The Parvis database is private, and the Tilda database is
now free. Due to lack of public and free datasets for fabric defects, it is seen that different
data sets are used in each study. In addition, since most of the data sets used in the studies
have few examples, the effectiveness of the developed systems are discussed. A fabric
database is proposed in the study of Silvestre-Blanes et al.(2019). The database consists
of 245 images (105 defected, 140 non-defected). There is 12 different defect types. All
images are captured with the size of 4096x256, and they are converted to the size of

256x256. The database is available on the Internet.

In this study, the public part of the Tilda dataset is used. The studies that will be
mentioned next are among the studies using Tilda dataset. While some of these studies
distinguish the images as defected/un-defected, some perform classification according to
defect types. In addition, some of these studies use not only the Tilda dataset, but also
other datasets. The findings shown below are merely the results they acquired using the

Tilda dataset.

Gabor wavelets and Principal Component Analysis (PCA) have been used in the study
of Basturk et al. (Basturk et al., 2007). Gabor wavelets have been used for feature
extraction, and PCA is used to reduce the dimension of features extracted. Experiments
are performed for four defect types (el, e2, €3, e4) of the Tilda dataset. It is obtained that

defects have been detected accurately.

Salem & Nasri (2011) compare the performances of local binary pattern and gray level
co-occurrence matrix. SVM has been used as a classifier to detect the defects such as un-
defected, unrelated corpus, broken end, hole, kink, oil satin, missing weft. According to
the experiments, local binary patterns give more effective results in terms of time and

accuracy.
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In the study of Murino et al. (2004), features have been extracted from the images using
the methods of histogram, co-occurrence matrix and shape descriptor. They are classified
by SVM. Databases of Parvis (1117 elements) and Tilda (1333 elements) have been used
for experiments. Defects in Parvis database are recognized with a 99.11% success rate

while the defects in Tilda database are recognized with a 92.87% success rate.

Jing et al. (2015) use the distance matching function to determine the frequency of
repetition of the pattern in the patterned fabric, and two properties calculated using the
regular band are determined as fabric defects. Defects that disrupt the regularity of the
fabric can be detected by this method. In this study, fabrics containing the defects of
broken end, thick bar, thin bar, hole, multiple netting, and knots in the Tilda database have

been used and the defect detection rate is 96.5% on average.

Kure et al. (2017) investigate homogeneity in fabric images. They use local
neighborhood analysis to measure homogeneity. Experiments have been performed for
six defect types (holes, slack end, loose weft, drop stitch, broken end, missing plush loop)
in Tilda database. A comparison between wavelet transform, gabor transform and the
system developed has been made. According to the experiments, the cross validation
accuracy of the system is higher than the others (96.40%). The disadvantage of the study

is that it only classifies the images according to whether there are defects or not.

Basibiiyiik et al. (2008) have achieved 97% success by applying particle filtering in c1
group of Tilda dataset. Images are divided into sub-windows. Using randomly selected

un-defected images, AR coefficients are calculated.
Bissi et al. (2013) use gabor filter bank and principal component analysis (PCA), and

test the performance using the parts of cl-rl and c1-r3 of Tilda. This study, with more

than 98% success.
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After partitioning the images into blocks, feature vectors extracted from each block are
used in a regression based method which is named PG-LSR in the study of Cao et al.

(2017).

Liu et al. (2019) use ELM (Extreme Learning Machine) method after extracting the
features from segmented defects in fabrics. The accuracy of the system they have

developed is 94.5%.

Jing et al. (2019) use convolutional neural network (CNN) after division the images to
patches. 97.48% classification accuracy rate has been achieved for Tilda. They choose six

classes of Tilda (un-defected, Holes, Carrying, Scratch, Stain, and Knots).

Jeyeraj et al. (2019) use a transfer learning based CNN algorithm called AlexNet. They
obtain high accuracy rate (96.55%).

Sezer et al. (2007) tries to classify the Tilda dataset using Independent Component
Analysis (ICA). In the study, while relatively better results were obtained in c1-rl and c1-
r3 than Tilda's other groups, the result of c¢3-r3 was not shared due to poor success. This

system is very sensitive to external factors.

To detect defects on fabrics with complicated textures, Qu et al. (2016) developed a
system based on dual-sale over-complete dictionary. Experiments using Tilda and their
database belongs to them showed that this system performed well (96.5%). The
disadvantage makes it unsuitable for online fabric assessment. In the study that used the
classifiers of KNN and SVM to compare the performances of optimized and non-
optimized Haralick parameters, it was discovered that optimized Haralick parameters

outperformed (99.00%) non-optimized Haralick parameters (Chandra et al., 2016).
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Kaynar et al. (2017) make a comparison between Local Binary Pattern (LBP) and Gray
Level Co-occurrence Matrix (GLCM). Artificial Neural Network (ANN) is used for

classification after feature extraction is performed using one of LBP and GLCM.

Makaremi et al. (2018) compare several classifiers (SVM, Multilayer Perceptron
(MLP), Adaboost, KNN) to the modified version of LBP (MLBP). The study includes the
results of a 596-image dataset developed by integrating four independent data sets. It is

concluded that the MLP algorithm gives better results (97.31%).

A system that uses a pyramid histogram of edge orientation gradients (PHOG) and a
support vector machine (SVM) is recommended in the study of Cuifang et al. (2020). In
this study, in which the effect of different block sizes is also examined, it is seen that the
detection rate increases as the size increases. They extract features using pyramid
histogram of oriented gradients (PHOG) and perform classification using support vector
machine (SVM). The performance of PHOG is superior to the performances of scale-

invariant feature transform (SIFT) and histogram of oriented gradients (HOG).

When looking at the studies using the Tilda data set, it is clear that the analyzed studies
attempted to identify patterned or non-patterned materials within themselves. Among the
studies examined, there was no study that performed classification by bringing together
the patterned and un-patterned fabrics in the Tilda data set. In this study, patterned and
un-patterned fabrics were brought together and the fabric samples were tried to be

separated as defected/un-defected.
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CHAPTER THREE

DATA MINING

3.1 The Definition of Data Mining

Data is meaningless unless it is processed. Data mining is a technique for converting
raw (unprocessed) data into information. Thanks to data mining, previously unknown
valid and applicable information is obtained from the data stack (Baykal, 2006). It is a
multidisciplinary tool consisting of fields such as statistics, machine learning and database
management (Jackson,2002). It is not a solution in itself; it is a tool that aids in the

decision-making process and gives the knowledge needed to address the problem (Baykal,

2006).

3.2 Data Mining Application Areas

Data mining has applicability in various fields such as banking, economy, health,

security for various reasons. Examples in these fields are given below:

Database analysis,

Risk analysis such as optimizing service delivery,

Decision support systems,

Market research such as identification of similarities between customers,
Rapid diagnosis and treatment in the health sector

3.3 Data Mining Models

In this study, data mining models are examined under four main headings according to

their functions (Figure 3.1).
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Figure 3.1 Data mining models

3.3.1 Clustering

Clustering is the presence of similar elements in the same cluster and dissimilar
elements in different clusters. In clustering, there are no clusters initially. Clusters are

found based on the data.

More data exists every day compared to the previous days. If they can be evaluated,
more data means more opportunities. Having the correct clusters depends on the clustering

algorithm which is used (Figure 3.2).
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Figure 3.2 Clustering algorithms

There are a variety of clustering algorithms, which are grouped into five classes based
on the methodologies they employ. The partitioning-based clustering algorithms are the
first group. Initially, one cluster encompassing all objects is handled in this group. Objects

are repeatedly grouped into clusters, from the roots to the leaves. K-Means (MacQueen,
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1967), K-Medoids (Kaufman & Rousseeuw, 1987), and K-Modes (Huang, 1998) are the

most prominent partitioning-based clustering techniques.

The second group is hierarchical clustering. The structure is based on a tree. It may be
divided into two types: agglomerative and divisive. The structure is integrated from the
leaves to the root in an agglomerative approach. The structure is partitioned from the roots
to the leaves in a divisive approach. BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies) (Zhang et al., 1996), CURE (Clustering Using REpresentatives) (Guha
et al., 2001), ROCK (RObust Clustering using linKs) (Guha et al., 2000), and Chamelon

(Karypis et al., 1999) are some well-known hierarchical based clustering algorithms.

The density-based clustering is the third option. Objects are divided into three
categories: core, border, and noise. For each object, the neighborhood is taken into
account. Unlike previous algorithms, they can find clusters of various forms. DBSCAN
(Ester et al., 1996) and OPTICS (Ordering Points To Identify the Clustering Structure)

(Ankerst et al., 1999) are two of the most prominent density-based clustering algorithms.

Grid-based clustering is the fourth group. The grid layout is used to create clusters
(Sajana et al., 2016). In grid-based algorithms, time complexity is unrelated to the quantity
of data. As a result, clustering algorithms of this type are quick. STING (STatistical
INformation Grid) (Wang et al., 1997), CLIQUE (CLustering In QUEst) (Agrawal et al.,
2005), and WaveCluster (WAVElet based CLUSTER) (Sheikholeslami et al., 1998) are

the most common grid-based clustering algorithms.

Model-based clustering is the fifth and final group. Some techniques are used to
associate data items with one another. This type of algorithm employs two techniques:
neural networks and statistical methodologies. The EM (Expectation-Maximization)

technique is the most widely used model-based clustering algorithm (Dempster et al.,

1977).
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3.3.2 Classification

One of the data mining models is classification. A predefined set which is labelled
exists in a classification problem. When a new sample comes in, it is estimated to which
class this sample belongs. Here, classification algorithms are examined under five main
headings, which are k-nearest neighbors, support vector machines, decision tree, naive
bayes, and neural networks (Figure 3.3). However, there are also classification algorithms

other than those mentioned here.

The main purpose of k-nearest neighbor (KNN) is to classify new objects using the
trained data. The k parameter specifies the number of data to evaluate while finding a new
sample's class label. The label of the sample is assigned to the class in which the majority

of the k closest neighbors to the sample are.

Support vector machine algorithms (SVM), is capable of sorting data into linear in two-
dimensional space, planar in three-dimensional space, and hyperplane in
multidimensional space (Cortes and Vapnik, 1995). Many hyperplanes may exist between
the classes. This method aims to find the best hyperplane that divides the classes.

A decision tree is a decision structure that has the shape of a tree. It does classification
in which the training procedure is done inductively from known classes of sample data
(Su and Zhang, 2006). A decision tree is a structure that is used to divide vast volumes of

data into little groups of data using simple decision-making stages.

Naive Bayes classifier is another algorithm of classification task. It is based on Bayes
theorem. The Bayes theorem considers two occurrences (X and Y). P(X]Y) is the
probability of event X occurring when the event Y occurs (3.1). P(Y|X) is the probability
of event Y occurring when the event X occurs. P(X) is the probability of event X occuring.

P(Y) is the probability of event Y occuring.
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Artificial neural networks (ANNSs) are classification algorithms in which learning, one
of the basic functions of the human brain, is used. The inspiration for artificial neural
networks is the human brain. The challenge of mathematically modeling the human brain's

learning process has shown how the human brain learns.
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Figure 3.3 Classification algorithms
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3.3.3 Regression

Regression is a data mining model in which the target variables of test samples are
estimated using a prediction model built by a training set. It is similar to classification.
Regression is used to predict continuous values, whereas classification is used to predict

categorical values (Han et al., 2011).

3.3.4 Association Rule Mining

Another data mining model is association rule mining (ARM) which seeks to find
frequently recurring patterns (co-occurrences), correlations, or intriguing relationships
between variables in a big collection of data using certain interestingness criteria.

Two steps are followed when finding association rules (Zaki, 1999):

1- Frequently repeated items are found. Each of them is repeated at least as many

times as the minimum number of supports required.

2- Items that are regularly repeated produce strong association rules. These rules must

have a minimum level of support and confidence.
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CHAPTER FOUR

DATASET

The study is tested on the public part of the Tilda dataset. Tilda dataset have images
with 768x512 pixels (Figure 4.1). Images have been resized before processing operations.
The dataset consists of two folders such as cd1 and cd2 (Figure 4.2). Both folders consists
of four groups (Table 4.1). While four groups in cd1 (clrl, c1r3, c2r2, c2r3) consist of un-
patterned fabric samples, the other four groups in cd2 (c3rl, c3r3, c4rl, c4r3) contain
patterned samples. Each group is divided into eight subdirectories (€0, el, e2, €3, e4, e5,
€6, €7), each of which contains 50 samples. Defect-free samples are found in €0, while
samples with various types of defects are found in other subdirectories. The un-defected

fabric is the fabric in which the texture repetition is not broken.

Figure 4.1 Tilda fabric samples (a) c1rl (b) c1r3 (c) c2r2 (d) c2r3 (e) c3r1 (f) c313 (g) c4rl (h) c4r3
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(h)

Figure 4.1 Continues

TILDA DATASET
cd1 cd2
cir c1r3 c3rl c3rd
c2r2 c2r3 cdri c4r3
Figure 4.2 Tilda dataset
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Table 4.1 About Tilda

Un-patterned Fabrics Patterned Fabrics
Group Number of Images Group Number of Images
400 (50 un-defected, 400 (50 un-defected, 350
350 defected) defected)
clrl Classes c3rl Classes
e0, el, e2, e3, e4, e5, e6, e0, el, e2, e3, e4, e5, b,
e’ e’
400 (50 un-defected, 400 (50 un-defected, 350
350 defected) defected)
clr3 Classes c3r3 Classes
e0, el, €2, e3, e4, €5, eb, e0, el, e2, €3, e4, e5, eb,
e’ e’
400 (50 un-defected, 400 (50 un-defected, 350
350 defected) defected)
c2r2 Classes cdrl Classes
e0, el, e2, e3, e4, e5, e6, e0, el, e2, e3, e4, e5, b,
e’ e’
400 (50 un-defected, 400 (50 un-defected, 350
350 defected) defected)
c2r3 Classes c4r3 Classes
e0, el, e2, e3, e4, e5, eb, e0, el, e2, e3, e4, e5, b,
e’ e’
SUM 1600 (200 un-defected, SUM 1600 (200 un-defected,
1400 defected) 1400 defected)
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(b)

Figure 4.3 Resizing from (a) 768x512 to (b) 224x224

Resized samples for each group are given in figures 4.4-4.11.

(a) (b) (©
() ® (®

(d)

(h)
Figure 4.4 Resized samples of clrl (a) €0 (b) el (c) e2 (d) e3 (e) e4 (f) e5 (g) e6 (h) e7

31



(d)

(e) () (® (h)

Figure 4.5 Resized samples of c1r3 (a) €0 (b) el (c) e2 (d) €3 (e) e4 (f) e5 (g) e6 (h) e7

()

(b)

(e) ) ® (h)

Figure 4.6 Resized samples of c2r2 (a) €0 (b) el (c) e2 (d) e3 (e) e4 (f) e5 (g) e6 (h) e7
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(e) () (® (h)

Figure 4.7 Resized samples of c2r3 (a) e0 (b) el (c) e2 (d) €3 (e) e4 (f) e5 (g) e6 (h) e7

BARBINNEY B
BAANRABN BN
SRR REANRNY
SENERARD BB
BASAABARE RS

SREBANARE D 45 y8%

§ R
AR ERNREEN A L e EL)

ZELE,
L ERREDER T
ZEZZRBZED A

8
Figure 4.8 Resized samples of c¢3rl (a) €0 (b) el (c) e2 (d) e3 (e) e4 (f) e5 (g) e6 (h) e7
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Figure 4.9 Resized samples of ¢3r3 (a) e0 (b) el (c) e2 (d) €3 (e) e4 (f) e5 (g) e6 (h) e7

.,,
wgst -
W30 L E

g e
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(h)
Figure 4.10 Resized samples of c4rl (a) €0 (b) el (c) €2 (d) e3 (e) e4 (f) e5 (g) 6 (h) e7
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(® (h)

Figure 4.11 Resized samples of c4r3 (a) €0 (b) el (c) €2 (d) e3 (e) e4 (f) e5 (g) ¢6 (h) e7
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CHAPTER FIVE

BACKGROUND FOR FEATURE EXTRACTION

5.1 Deep Learning Based Feature Extraction

Deep learning is a sub-group of machine learning and is a multi-layered approach
(Tirkoglu et al., 2021). In deep learning, raw data is given to the network and both feature
extraction and learning process are performed by using all images given as input. Deep
learning uses many layers of nonlinear processing units for feature extraction and

conversion.

Deep learning has been used in several research areas in the literature. Robotics, image
processing, video processing, signal processing, object recognition, and the military sector
are just a few industries that apply deep learning. For feature conversion and extraction in
deep learning, several layers of nonlinear processing units are employed. The output from

each previous layer is used by each subsequent layer as input.

5.1.1 Convolutional Neural Network (CNN)

By increasing the number of layers in artificial neural networks, a variety of deep
learning architectures have been developed. Among them is the Convolutional Neural

Network (CNN) (Figure 5.1).

6626  gx1

24>24=6

24x24>1

Defectd

Defect4
+ Defects

Delects

Input Image

Convolutional
Convolutional
Layer

Layer
Max Pooling

Max Pooling
Layer

Image
Partitioned
Layer
Activation
Activation
Fully
Connected
Layer

Figure 5.1 A CNN architecture with seven layers for six classes
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CNN is a multilayer artificial neural network model created specifically for computer
vision applications. It is an approach that provides higher performance compared to other
classification methods. On the other hand, CNN's drawback is the requirement for
powerful hardware resources. The basic layers of CNN based models can be listed as in

Table 5.1.

Table 5.1 Basic layers of CNN

Layer Description

A new image is created in convolution layer by
Convolution extracting more specific features in the image. Filters

have smaller dimensions than input data.

The activation functions of convolutional neural
o . networks are crucial. The most often used activation
Activation Function o ) ] )
function is Relu. Negative values in the input data are set

to 0 in this layer, allowing the network to learn faster.

Pooling is a process used to reduce sizes in deep learning

Pooling ' ' ' '
models to avoid overfitting and reduce time complexity.
A fully connected layer is a one-dimensional matrix that
is connected to all of the neurons in the layer before it.
Fully Connected Layer

This layer is utilized to optimize class scores and is

usually found near the end of the CNN architecture.
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Table 5.1 Continues

Layer Description

The final layer of CNN models is this one. This layer is
responsible for classification process. In this layer, the
softmax classifier is often employed, which gives
Classification o
probabilistic values between 0 and 1 for each class based
on the architectures. As a result, the class predicted by

the model is determined by the highest probability value.

In our study, we tested the performances of four CNN based models such as ResNet18,

ResNet50, GoogleNet, and AlexNet (Figure 5.2).

5.1.1.1 ResNet

ResNet is a pre-trained CNN algorithm (He et al., 2016). It has been trained on more
than one million images. ResNet is the abbreviation form of Residual Network. It has
different versions such as ResNet18, ResNet50, ResNet101, and ResNet152. They include
18, 50, 101, and 152 layers, respectively. As the number of layers increases, the accuracy
rate increases and the execution time also increases. The sizes of input images must be

224-by-224 for ResNet architecture. ResNet18 and ResNet50 have been used in this study.

5.1.1.2 GoogLeNet

GoogleNet (also known as Inception v1) is a pre-trained CNN algorithm like ResNet18
(Szegedy et al., 2015). The sizes of input images must be 224-by-224 for GooglLeNet. It
has an architecture consisting of deeper 22 layers with fewer parameters compared to other

networks (Tellawi, 2019). Therefore, it gives higher success results in less time.
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ResNet18 ResNet50 GoogLeNet AlexNet
Conv(7x7.64) Conv(7x7.64) Conv(7x7.64) Conv(7x7.96)
Convl BN BN MaxPool(3x3) CCN
MaxPool(3x3) MaxPool(3x3) CCN MaxPool(3x3)
v v ¥ v
Conv(1x1,64) T
_Laver-Res? Conw(5x5.128
onv sl i Conv(3x3,192) con
Conv2 FEaEER 3-Layer-Res2b
2-Layer-Res2b i, i CCN MaxPool(3x3)
DRV EL SR MaxPool(3x3) Z
L4
Y Y A
3-Layer-Res3a :
- Inception3a
2-Laver-Res3 4 -] : =
Conv3 i i Inception3b Conv(3x3.256)
2-Layer-Res3b 3-Layer-Res3c MaxPool(3x3
3-Layer-Res3d & Tules]
v v
3-Layer-Res4a Inceptionda v
3-Layer-Res4b Inceptiondb
2-Layer-Resda 3-Layer-Resdc Inceptiondc i !
Conv4 2-Laver-Res4b 3-Layer-Resd4d Inceptiondd S
3-Layer-Resde Inceptionde
3-Layer-Res4f MaxPool(3x3)
v
3-Layer-Res3a - 4
Camial.oh 3-Layer Ressh Juccpticia Conv(3x3,128)
Conv5 BN i = InceptionSb :
b 3-Layer-Resdc 3 MaxPool(3x3)
MaxPool(3x3) AvePool(4x8) AvgPool(3x7)
v v v v
Fully Fe(4096)
Connected Fc(116) Fe(116) Fe(116) Fc(2048)
Layer(s) Fc(116)

Figure 5.2 CNN models used for our study
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5.1.1.3 AlexNet

The AlexNet architecture, which won the ImageNet 2012 competition, is a type of
convolutional neural network designed by Krizhevsky (2012). Information about AlexNet
analysis is as in Figure 5.3. AlexNet is very similar to the LeNet network. However, it
differs from LeNet in that it has more layers. Input dimensions should be 227x227%3 for
AlexNet. Local Response Normalization (LRN) and dropout are new additions to this

network (Alom et al., 2018).

Name Type Activations Learnables

1 data Image Input 227x227=3 -
227x227%3 ithages with 'zerocanter’ normalization

2 convl Convolution 55x55x96 Weights 11x11x3x96
05 11x11x2 conveolutions with stride [4 4] and padding [0 00 0] Bias 1x1%96

ReLU 55%55496

Cross Channel Nor 55x55=96

pooli Max Pooling 27x27%96
3x%3 max pooling with stride [2 2] &
conv2 Grouped Convolution | 27x27=256 Weigh.. 5x5x48x128.
2 groups of 128 5x5x48 convolutions Jand padding [22 2 2] Bias 1x1x128x2
7 |reluz ReLU 27%27=256
RelU
normz2 Cross Channel Nor... | 27=27=256
cross channel normalization with 5 channels par alement
it} pool2 Max Pooling 13%13%256
2x3 max pooling with stride [2 2] and padding [0 0 8 0]
conv3 Convolution 13=13=384 Weights 3=3x236<384
384 3x3x256 convolutions with siride [1 1] and padding [111 1] Bias 1=1=384
relu3 RelLU 13x13«334
RelU
1z | convd Grouped Convolution |13=x13=384 Weigh., 3I=3=192x192.
2 groups of 192 3x2x192 convolutions with stride [1 1] and padding [1 111 Bias 1x1x192=2
relud RelLU 13%13=334
RelU
14 |convh Grouped Convolution |13=13=256 Weigh. 3=3=192=x128.
2 groups of 128 2x3x102 convolutions with stride [1 1] and padding [111 1 Bias 1x1=128x32
15 [relub RelLU 13x13x356
RelU
1% | pools Max Pooling Bx6x156
3%3 max pooling with stride [2 2] and padding [0 0 0 0]
17 |fcB Fully Connected 1=1x4896 Weights 4896=9216
18 |relu RelLU 1x1x4896
RelU
¢ | dropB Dropout 1x1x4896
50% dropout
20 |(fe7 Fully Connected 1=1x4336 Weights 4896=4896
4024 fully connected |ayer Bias 4396=1
z relu? RelLU 1x1=4336
RelU
22 |dropT Dropout 1x1=4896
50% dropout
23 |TcB Fully Connected 1=1x1888 Weights 10@9=4296
1000 fully connected layer Bias 18@8=1
24 | prob Softmax 1x1x138@
softmax
25 | output Classification Cutput

crossentropyex with tench’ and 889 other classes

Figure 5.3 AlexNet analsis result
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5.2 The Proposed Feature Extraction System: Multi-Feature Fusion

Multi-feature fusion technique is proposed in this thesis. The features extracted using
Methodl1 is vector X, and the features extracted using Method2 is vector Y. The feature
fusion is obtained by adding the Y vector after the last element of the X vector (5.1). The

visualized version of the proposed system is in the Figure 5.4.

F=XY)=(x1,%3 i, X0, Y1, Y2s o Ym) (5.1)

Figure 5.5 is the flow chart of the system. Six combinations have been used fort he step
of feature fusion. Then, the fused features have been classified using a classifier. Three
algorihms such as ensemble learning, k-nearest neighbor, and support vector machine

have been tested in the classification step.

Methodl features: X Method2 features: Y

HENE EE
| |

Feature fusion F=(XY)

Figure 5.4 The procedure of the method proposed
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CHAPTER SIX

BACKGROUND FOR CLASSIFICATION

6.1 Ensemble Learning

Ensemble Learning (EL) is a method for performing classification based on predictions
and decisions from multiple classifiers (Baran, 2020). It uses more than one classifier's
information at the same time to apply each classifier's conclusion by consensus. This
method outperforms a single classifier in most cases. The fact that the classifiers' mistakes
differ from one another improves ensemble classification performance. Different subsets
of the training dataset are used to achieve differences in the classifiers' predictions. To

produce and train subsets of the training dataset, the bootstrap approach is utilized.

The predictions from the trained networks must be combined to arrive at a final
outcome. The choice of the right combining approach for the predictions has an impact on
classification performance in the ensemble learning method. The selection of the proper
approach for the classifiers should be considered when choosing the combination
technique. According to the combining procedures, sample selection for the training data
set, and processing processes, there are many ensemble learning approaches. Bagging,

boosting, and voting are the examples of these approaches.

6.1.1 Bagging

The bagging approach is the oldest, simplest, and an effective ensemble-based
approach, in which learners are connected in parallel. It is based on bootstrap sampling
method. By changing the examples each time, the bootstrap sampling approach creates
various subsets from the training data set. A classifier is used to train each sub-training
set. All classifiers categorize distinct sub-training sets at the same time. To aggregate the

classifier estimates, the bagging approach employs the majority vote technique.
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6.1.2 Boosting

The output of the preceding learning algorithm is used as input by algorithms. Unlike
bagging approach, each classifier is affected by the performance of the previous algorithm
in this method, where the algorithms are connected in sequence. The major goal of this
approach is to help learner algorithms with low success rates achieve the target success

rate.

Among the ensemble learning algorithms based on the Boosting approach, the
Adaptive Boosting (Adaboost) algorithm, which was also used in this study, is one of the

most powerful and widely used ensemble methods (Freund and Schapire, 1996).

6.1.3 Voting

Multiple classifiers of the same type train separate subsets of the dataset in boosting
and bagging based ensemble approaches. The same set is classified by several types of
classifiers in the voting technique. Because multiple types of classifiers increase the
variability of the predictions, it improves performance by lowering the ensemble

prediction error.

6.2 K Nearest Neighbor

One of the most popular and straightforward classification techniques is the K Nearest
Neighbor (KNN) algorithm. A K value is determined for the operation of the algorithm.
This K value means the number of elements to look at for classification. The distances
between the sample element and the other elements in the dataset are calculated using
different distance metrics (Chomboon et al., 2015). Euclidean, Manhattan, and Minkowski
are among the most known distance metrics. In Table 6.1, the equation of them are given
for m feature. In these equations, s is sample, and n is neighbor. To estimate which class
the sample element in the dataset belongs to, the nearest K-neighbors of the element are

used. The element is assigned to the class which neighbors belong to most.
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Table 6.1 Distance metrics

Euclidean
m
Manhattan Z |s; — n;
=1

m q
Minkowski (Z (s; — ni)q)

6.3 Support Vector Machine

SVM is a machine learning technique proposed for classification problems in datasets
where the patterns between variables are not known. It is a non-parametric classifier. This

technique is also used for regression analysis like DTs.

Dataset is separated into two classes; training set, and test set. In this technique, the
optimal hyperplane separating the classes is found using a labelled training set (Cortes
and Vapnik, 1995). There may be more than one plane separating the two classes. An

optimal hyperplane is the farthest plane to the nearest data points of the classes.
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If the problem is two-dimensional, the hyperplane is a line (Fig. 6.1). As the number

of dimensions increases, it becomes difficult to find the optimal hyperplane.

hyperplanes

Figure 6.1 SVM
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CHAPTER SEVEN

EXPERIMENTS

7.1 Evaluation Metrics

In determining how well machine learning algorithms rank, the selection of
performance assessment criteria is crucial. The metrics used have an impact on how

algorithms are assessed and comparisons are made.

In fabric defect classification systems, it is aimed to prevent recurrence after any defect
is found. The occurrence of each defect depends on some reasons such as corruption of
machine settings. For example, the machine and its elements should be checked for the
defects caused by the machine. Fixing these problems prevents defects to occur. Studies

in this field aim to achieve the highest performance in the shortest time.

In this study, the methods used in case 1 and case 3 have been compared in terms of
accuracy, sensitivity, specificity, and F-score. These indicators are calculated using True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) (Table
7.1). Accuracy seeks an answer to the question of "How many of all fabric samples have
we labeled correctly?" (7.1). It is investigated how many of all defected fabrics are
predicted correctly through the sensitivity metric (7.2). The specificity metric (7.3)
investigates the inverse: How many un-defected fabrics have been discovered as un-
defected? Precision investigates how many fabrics labeled as defected are actually

defected. The harmonic mean of precision and recall gives the F-Score (7.5).

The majority of earlier studies merely compared the accuracy of learning algorithms.
However, Huang et al. showed the success of the AUC value in their studies in 2003 and
2005. The methods used in case 2 and case 4 have been compared using the values of

accuracy and AUC. The reason for using metrics different from case 1 and case 3 in case
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2 and case 4 is to give the diagonal values of the confusion matrix obtained. Thus, it is

possible to examine the classes classified with the highest and lowest success.

The area under the ROC (Receiver Operating Characteristic) curve is expressed by the
AUC (Area Under Curve) value, which demonstrates how well the classification model
distinguishes between the classes. The ROC curve is an increasing function between (0,
0) and (1, 1). The higher the AUC value, the higher the classification success of the model.

AUC can take the largest value of “1” and the smallest value of “0.5”.

Table 7.1 TP, TN, FP, and FN

Actual
Positive Negative
Positive TP FP
Predicted
Negative FN ™
Accuracy = __ TPHTN (7.1)
TP+FP+TN+FN

e TP

Sensitivity (or Recall) = e (7.2)
pi . TN

Specificty = e (7.3)

F — Score = 2XPrecisionxRecall (7'4)

Precision+Recall

The models' classification performance has been evaluated using 10-fold cross
validation. Thus, the data set is split into ten equal parts as D/, D2, ..., D/0 (Han et al.,
2011). Training and testing processes are repeated 10 times. Partition Di for iteration i is

used for testing while the remaining partitions are utilized for training (Figure 7.1). The
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arithmetic average of the results obtained from each partition gives the success of the

method.

Training partitions Testing partition

Test

Train

Figure 7.1 10-fold cross validation

The suggested method makes use of fabric images from the Tilda database that are bo
th defected and un-defected. Our experimental results consist of four cases. Classification
of the images as defected or un-defected is performed in the first case. The successes of
the methods in the Tilda dataset have been investigated from three different aspects (un-
patterned dataset, patterned dataset, mix). In the second case, the groups of Tilda dataset
have been tried to classify according to the eight classes (e0, el, €2, e3, e4, e5, €6, €7).

Classification of defects using feature fusion has been tested in case 3 and case 4.

7.2 Preliminaries to experiments

If CNN based methods are used only for feature extraction, there is no need to split the
dataset into train and test. So, entire database may be used for training in such type of
studies. However, 70% of the database is reserved for training and 30% for testing to

make comparisons in this study.
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Classification of features drawn from previous layers of CNN is generally less
successful. Therefore, the features taken from the last layers were used in this study (Table
7.2). Layers of ‘pool5’, ‘avg pool’, ‘pool5-drop 7x7 sl1’°, and ‘pool5’ have been used to
extract the features for the methods of ResNet18, ResNet50, GooglLeNet, and AlexNet,

respectively.

Table 7.2 Feature extracted layers of CNN methods

METHOD LAYER
ResNet18 pool5
ResNet50 avg pool

GoogLeNet pool5-drop 7x7 sl

AlexNet pool5

7.3 Experimental Results

7.3.1 Case study 1 - Classification of fabrics as defected/undefected

In the first case, the Tilda dataset has been handled in three different ways (Table 7.3).
The first set consists of defected fabric images and un-defected fabric images in the cl
folder of Tilda. There are 1400 defected images and 200 un-defected images. The second
set consists of defected fabric images and un-defected fabric images in the c2 folder of
Tilda. There are 1400 defected images and 200 un-defected images. The third set consists
of defected fabric images and un-defected fabric images in both the cl and c2 folders.
There are 2800 defected images and 400 un-defected images. Its goal is to see how well
patterned, un-patterned, and both patterned and un-patterned fabrics in the sets can be

classified. Fabrics are classified as defected/un-defected in all three ways (Figure 7.2).
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Table 7.3 Details for case 1

Dataset

Number of Elements

Un-patterned Fabrics of Tilda

1600 (200 un-defected, 1400 defected)

Patterned Fabrics of Tilda

1600 (200 un-defected, 1400 defected)

Mix of Tilda

3200 (400 un-defected, 2800 defected)

Feature
Extraction

e

Classification

===

mE

E. @\

CNN Model

~

Extracted

Ensemble
Learning

<

Features

7

™

__________________________

Recognition of defected fabrics

Figure 7.2 Sample Visualisation of Case 1

Defected

Un-defected

Table 7.4 shows the results of the methods. It can be said that the dataset including un-

patterned fabrics has a greater classification success rate than the others (in general). The

low specificity rates in various datasets and methodologies are due to the fact that the

number of un-defected fabric images is smaller than the number of defected fabric images.

When the accuracy rates of the methods are compared, it is seen that highest accuracy

rate is obtained when using GoogleNet & EL for unpatterned fabrics (93.67%). The
method that performs the best for patterned fabrics is ResNet50 & SVM (89.68%). It has

also been the most successful method for mixed fabrics (89.72%).
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Table 7.4 Results for case 1 (%)

. Un-patterned Patterned .
Method Metric p . . Mix
Fabrics Fabrics
Sensitivity 89.00 87.84 87.93
Specificity 65.22 40.00 69.23
ResNet18 & EL F-Measure 93.67 93.15 93.45
Accuracy 88.31 87.24 87.78
Sensitivity 91.58 90.05 88.74
Specificity 72.12 77.05 75.00
ResNetS0 & EL F-Measure 94.65 9431 93.78
Accuracy 90.31 89.56 88.47
Sensitivity 9031 88.06 87.94
Specificity 59.14 48.00 78.26
GoogleNet & EL F-Measure 93.89 93.24 93.51
Accuracy 93.67 87.43 87.87
Sensitivity 89.01 88.67 87.70
Specificity 68.18 78.57 81.82
AlexNet & EL F-Measure 93.74 82.74 93.42
Accuracy 88.44 88.50 87.68
Sensitivity 94.96 928 93.17
Specificity 39.54 39.75 38.28
ResNet18 &KNN F-Measure 89.66 90.97 90.09
Accuracy 82.88 84.43 83.21
Sensitivity 96.40 93.47 94,14
Specificity 41.87 4232 4225
ResNetS0 & KNN F-Measure 90.02 91.18 90.91
Accuracy 83.63 84.93 84.62
Sensitivity 94.93 91.91 92.83
Specificity 40.65 36.26 36.85
GooglLeNet & KNN F-Measure 90.08 90.21 89.80
Accuracy 83.50 83.18 82.71
Sensitivity 94.11 9222 93.00
Specificity 23.75 29.26 26.45
AlexNet & KNN F-Measure 78.55 86.92 83.68
Accuracy 67.81 78.36 74.05
Sensitivity §7.48 §7.64 87.72
Specificity 3333 60.00 66.67
ResNetl8 & SVM F-Measure 93.26 93.35 9338
Accuracy 87.38 87.55 87.62
Sensitivity 93.06 89.70 90.15
Specificity 84.48 88.89 79.03
ResNetS0 & SVM F-Measure 95.80 94.41 94.40
Accuracy 92.44 89.68 89.72
Sensitivity 87.97 87.99 88.13
Specificity 83.33 58.82 66.67
GoogLeNet & SVM F-Measure 93.54 93.39 93.49
Accuracy 87.94 87.68 87.87
Sensitivity 88.38 88.60 88.18
Specificity 72.00 72.41 49.18
AlexNet & SVM F-Measure 93.61 93.70 9323
Accuracy 88.13 88.30 87.43
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Classifier based comparison is made in Table 7.5. Considering the average accuracy

rates of the classifiers, it is seen that the best classifier is EL (88.70%). SVM is just as
successful as EL (88.48%). KNN is the classifier with the lowest average with 81.11%

accuracy. The specificity of KNN is extremely low (36.44%). The obtained results show

that KNN should not be used in defect detection systems. When the mean of Table 10 is

calculated, sensitivity, specificity, f-measure and accuracy values are 90.42%, 57.35%,

91.93%, 86.12%, respectively. The extremely low specificity values of KNN are the

reason why the specificity average is so low.

Table 7.5 Classifier based comparison (%)

EL BASED AVERAGES
Sensitivity 88.90
Specificity 67.72
F-Measure 92.80
Accuracy 88.77

KNN BASED AVERAGES
Sensitivity 93.62
Specificity 36.44
F-Measure 88.51
Accuracy 81.11

SVM BASED AVERAGES
Sensitivity 88.75
Specificity 67.90
F-Measure 93.80
Accuracy 88.48

Sensitivity
Specificity
F-Measure

Accuracy

AVERAGES

90.42
57.35
91.93
86.12

When the dataset-based averages of the results given in Table 7.6 are examined, it is

seen that the average accuracy rates of un-patterned and patterned fabrics are close to each

other (86.20% and 86.40%, respectively). The average success of the mix dataset, which
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includes both patterned and unpatterned fabric samples, is not much lower than the

average rates of the first two datasets.

Table 7.6 Dataset based comparison (%)

UN-PATTERNED PATTERNED MIX
Sensitivity 91.43 89.87 89.97
Specificity 57.00 55.94 59.14
F Measure 91.71 91.46 91.93
Accuracy 86.20 86.40 85.75

Summary graphic for case 1 is in Figure 7.3.
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Figure 7.3 Summary for case 1

The execution times of the methods to classify different datasets are given in Table 7.7.
Since there are twice as many elements in the Mix dataset as in other datasets, the
execution time of classification methods for this dataset is longer (329.12 seconds). The
average execution times for un-patterned and patterned fabrics are 140.16 and 171.10
seconds, respectively. In the table, the average execution time of the AlexNet&EL method

is very high. The average execution time is 493.75 seconds when EL is used as the
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classifier. On the other hand, when KNN is used as the classifier, the execution time is

90.93 seconds, and when SVM is employed, it is 55.70 seconds.

Table 7.7 Time comparison (seconds)

METHOD Un-pattferned Patter.ned Mix AVERAGE
Fabrics Fabrics
ResNetl18 & EL 116.19 189.40 249.47 185.02
ResNet50 & EL 295.90 361.90 614.99 424.26
GoogLeNet & EL 186.50 206.51 413.68 268.90
AlexNet & EL 720.73 912.26 1657.40 1096.80
ResNet18 &KNN 11.67 15.16 32.40 19.74
ResNet50 & KNN 28.32 38.39 86.39 51.03
GooglLeNet & KNN 23.16 21.61 74.10 39.62
AlexNet & KNN 152.88 152.82 45428 253.33
ResNetl8 & SVM 4.86 5.45 12.42 7.58
ResNet50 & SVM 16.85 18.40 39.43 24.89
GooglLeNet & SVM 9.03 9.46 26.54 15.01
AlexNet & SVM 115.81 121.79 288.32 175.31
AVERAGE 140.16 171.10 329.12

7.3.2 Case Study 2 — Classification of Defects According to Their Types

In the second case, the Tilda dataset's groups (Table 7.8) have been classified using the
eight classes (€0, el, e2, e3, e4, e5, €6, €7) as in Figure 7.4. In each group, there are 50

images of each class.

ResNet50&SVM has the best accuracy rate (77.5%) for the clrl of Tilda database
(Table 7.9). EO has un-defected fabric samples. Considering the class-based accuracy
rates, the class which is classified with the highest success is €0 (81.83%). E2 and e3 are

the classes classified with the lowest rates (the accuracy rate of both is 56.17%).
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Table 7.8 Details for case 2

Folder Dataset Number of elements
clrl group of Tilda 400
Cl clr3 group of Tilda 400
c2r2 group of Tilda 400
c2r3 group of Tilda 400
c3rl group of Tilda 400
o c3r3 group of Tilda 400
c4rl group of Tilda 400
c4r3 group of Tilda 400
Feature ; ;
Fateitiar Claszsification
,,,,,,,,,,,,,,,,,,,,,,,,, F | |
i |' ! F el
mE e
| {j; e
| m _ ‘ — CNN Model -~ %““m.m* ——F &
: : earning F—p
4 . Extracted ed
i Features :{: o3
. . '\\ _/J\ €6
é Dataset el
Promrmmmrmeremne s Recognition of defected fabrics
Figure 7.4 Sample Visualisation of Case 2
Table 7.9 Results for clrl
METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE el el e2 e3 e4 es €6 e7
Acc (%) 63.7
ResNet18&EL i 086 5600 60.00 | 62.00 5200 | 70.00 7200 7600  62.00
Acc (%) 67.8
ResNet18&KNN s 0g0 | 7200 6200 4400 5800 | 76.00 7800 90.00 | 62.00
Acc (%) 753
ResNet18&SVM AUC 0oe 9200 68.00 | 70.00  66.00 | 64.00 | 80.00 78.00 | 84.00
ResNet50&EL Ace (%) 718 2200 6600  70.00  70.00 | 66.00 8400 7400  62.00
AUC 0.95 : : : : : ’ : :
Acc (%) 66.8
ResNet50&KNN AUC 055 | 9000 4600  60.00  44.00  64.00 78.00 | 86.00  66.00
Acc (%) 715
ResNet50&SVM AUC 059 | 9600 5600 8400 8200 | 66.00 7600 86.00  74.00
GoogLeNet&EL ifjcc(%) 829'(5) 72.00 | 64.00 | 50.00 | 48.00 | 50.00 | 76.00 | 80.00 | 60.00
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Table 7.9 Continues

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE el el e2 e3 e4 e5 e6 e7
GoogLeNet& KNN :;cc(%) (7)082 84.00 | 70.00 @ 58.00 | 56.00 | 54,00 78.00 @ 90.00 | 72.00
Acc (%) 72.8
GoogLeNet&SVM AUC 097 92.00 @ 60.00 | 58.00 @ 76.00 | 54.00 @ 78.00 | 88.00 | 76.00
Acc (%) 56.80
AlexNet&EL AUC 092 70.00 @ 46.00 | 50.00 @ 36.00 | 44.00 @ 74.00 | 72.00 | 62.00
Acc (%) 42.3
AlexNet& KNN AUC 074 84.00 | 28.00 @ 20.00 | 26.00 | 24.00 @ 44.00 | 56.00 | 56.00
Acc (%) 60.8
AlexNet&SVM AUC 096 92.00 @ 20.00 | 48.00 @ 60.00 @ 50.00 @ 56.00 | 82.00 @ 78.00
AVERAGE ACCURACY (%) 65.70 | 81.83 53.83  56.17 56.17 | 56.83 | 72.83 | 79.83 | 67.83

ResNet18&SVM is the most successful method (69.50%) for classifying the clr3
dataset (Table 7.10). Unlike Table 15, class e5 has the highest classification performance
(71.67%) in this table. On the other hand, it is clear that e2 is the class classified with the

lowest performance (39.50%).

Table 7.10 Results for c1r3

GENERAL CLASS BASED PERFORMANCE (%)
METHOD
PERFORMANCE el el e2 e3 e4 e5 eb e7
ResNet18&EL i%cc(%) 502;10 54.00 56.00 32.00 36.00 50.00 84.00 42.00 66.00
ResNet1 & KNN i:JcC(%) 509'7530 62.00 44.00 40.00 56.00 66.00 84.00 62.00 62.00
ResNet18&SVM 2;%(%) 609'9550 84.00 66.00 58.00 58.00 68.00 88.00 54.00 80.00
Acc (%) 59.80
ResNet50&EL AUC 089 68.00 64.00 42.00 52.00 64.00 82.00 46.00 60.00
ResNet50&KNN 2;%(%) 504'7310 60.00 44.00 48.00 40.00 78.00 64.00 50.00 50.00
ResNet50&SVM Ace (%) 67.00 78.00 54.00 56.00 64.00 74.00 80.00 58.00 72.00
AUC 0.92
Acc (%) 51.50
GoogLeNet&EL AUC 082 58.00 36.00 42.00 38.00 56.00 74.00 56.00 52.00
0,
GoogLeNet& KNN i:JcC( %) 502'6%0 52.00 30.00 42.00 36.00 70.00 64.00 62.00 60.00
Acc (%) 56.80
GoogLeNet&SVM AUC 089 72.00 42.00 38.00 48.00 50.00 84.00 52.00 68.00
Acc (%) 45.30
AlexNet&EL AUC 086 58.00 40.00 20.00 18.00 44.00 70.00 66.00 46.00
AlexNet& KNN Ace (%) 36.80 78.00 14.00 22.00 12.00 46.00 24.00 40.00 58.00
AUC 0.73
Acc (%) 51.20
AlexNet&SVM AUC 096 90.00 22.00 34.00 44.00 44.00 62.00 54.00 60.00
AVERAGE ACCURACY (%) 54.68 | 67.83 42.67 39.50 41.83 59.17 71.67 53.50 61.17
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According to Table 7.11, ResNet18&SVM is the best method for the c2r2 dataset of
Tilda. The classification performances of €0 and e6 are very close to each other (73.83%
and 73.33%, respectively). This dataset's most challenging class, €3, has a classification

success rate of just 30.33 percent.

Table 7.11 Results for c2r2

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE 0 el €2 e3 e4 e5 €6 e7
0,
ResNetl18S&EL i;cc( %) 409.8050 70.00 38.00 22.00 36.00 56.00 52.00 72.00 50.00
0,
ResNet18&KNN i%cc( %) 5(?8%40 82.00 44,00 34.00 30.00 56.00 72.00 86.00 66.00
0,
ResNet18&SVM i%cc( %) 605;)860 90.00 60.00 60.00 46.00 52.00 72.00 76.00 70.00
0,
ResNet50&EL ASED) G 68.00 72.00 62.00 22.00 50.00 78.00 78.00 64.00
AUC 0.92
0,
ResNet50& KNN 2:;(:( %) 508'83(? 74.00 48.00 52.00 28.00 52.00 76.00 80.00 56.00
0,
ResNet50&SVM 2:;(:( %) 601'93‘? 68.00 50.00 42.00 52.00 54.00 76.00 66.00 82.00
0,
GoogLeNet&EL i%cc( %) 408.8380 72.00 50.00 36.00 26.00 56.00 54.00 66.00 26.00
0,
GoogLeNet&KNN i%cc( %) 501.7760 70.00 36.00 40.00 28.00 60.00 60.00 74.00 46.00
0,
GoogLeNet&SVM i%cc( ) 505;)330 82.00 38.00 52.00 38.00 50.00 58.00 72.00 52.00
Acc (%) 40.50
AlexNet&EL AUC 084 72.00 22.00 18.00 16.00 34.00 24.00 80.00 58.00
0,
AlexNet& KNN Ace (%) 37.80 62.00 12.00 16.00 14.00  40.00 14.00 74.00 70.00
AUC 0.69
0,
AlexNet&SVM Ace (%) 49.00 76.00 46.00 28.00 28.00 36.00 50.00 56.00 72.00
AUC 0.92
AVERAGE ACCURACY (%) 53.13 73.83 43.00 38.50 3033 49.67 57.17 7333 59.33

When compared to other methods, ResNet50&SVM has the highest accuracy rate for
the Tilda c2r3 dataset (Table 7.12). The class classified with the best accuracy rate in this

dataset is €3, which has the lowest rate in Table 17.

Table 7.12 Results for ¢2r3

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE el el e2 e3 e4 es e6 e7

ResNet18&EL Ace (%) 35.00 53.00 | 62.00 | 45.00 | 62.00 | 58.00 @ 50.00 | 60.00 | 50.00
AUC 0.85 ’ ’ : : : : : :
Acc (%) 52.50

ResNet1 & KNN AUC 0.74 63.00 | 52.00 | 31.00 | 60.00 | 60.00 @ 46.00 | 56.00 | 52.00

ResNet18&SVM 2:;(:(%) 604'9010 80.00 | 56.00 @ 55.00 | 72.00 | 66.00 | 66.00 56.00 @ 60.00
Acc (%) 61.5

ResNet50&EL AUC 0.90 75.00 | 62.00 | 31.00 | 80.00 | 64.00 @ 68.00 | 60.00 | 52.00
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Table 7.12 Continues

METHOD GENERAL CLASS BASED PERFORMANCE (%)

PERFORMANCE e0 el e2 e3 e4 e5 e6 e7
Ace (%) 58.50

ResNetS0&KNN 71.00 | 66.00 | 45.00 @ 62.00 | 60.00 | 60.00 | 58.00 | 46.00
AUC 0.78
Ace (%) 67.00

ResNet5S0&SVM 88.00 | 56.00 | 61.00 | 88.00 | 66.00 | 74.00 | 48.00 | 54.00
AUC 0.93
Ace (%) 53.50

GoogLeNet&EL 45.00 | 60.00 | 37.00 | 78.00 | 62.00 | 54.00 | 50.00 & 42.00
AUC 0.77
Ace (%) 59.50

GoogLeNet& KNN 59.00 | 68.00 | 49.00 | 68.00 | 58.00 | 54.00 | 66.00 | 54.00
AUC 0.71
Ace (%) 65.00

GoogLeNet&SVM 71.00 | 56.00 | 59.00 & 86.00 | 62.00 | 64.00 | 56.00 | 66.00
AUC 0.89
40.80

AlexNet&EL Ace (%) 39.00 | 38.00 | 12.00 | 56.00 | 46.00 | 44.00 | 40.00 | 50.00
AUC 0.75
35.50

AlexNet& KNN Ace (%) 45.00 | 26.00 | 39.00 | 30.00 | 44.00 | 20.00 | 54.00 @ 26.00
AUC 0.61
48.00

AlexNet&SVM Ace (%) 75.00 | 50.00 | 35.00 | 54.00 | 42.00 | 46.00 | 36.00 | 46.00
AUC 0.84

AVERAGE ACCURACY (%) 55.07 | 63.67 54.33 | 41.58 | 66.33 | 57.33 | 53.83  53.33 | 49.83

In Table 7.13, ResNet50&SVM has the highest accuracy rate (71.30%), while
AlexNet&KNN has the lowest accuracy rate (48.30%). In this dataset, e4 is the class most
successfully classified (70.67%) among the eight classes, while el is the class with the

lowest success (39.33%).

Table 7.13 Results for ¢3rl

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE e0 el e2 e3 ed e5 e6 e7
0,
ResNet18&EL Acc (%) o435 40.00 20.00 42.00 58.00 74.00 60.00 66.00 76.00
AUC 0.76
0,
ResNet1 & KNN 2ECC(/0) (5)872 60.00 44.00 48.00 58.00 62.00 54.00 66.00 76.00
0,
ResNet18&SVM 2;cc(/o) 603'9250 64.00 40.00 46.00 54.00 90.00 72.00 64.00 76.00
0,
ResNet50&EL Ace (%) 61.00 74.00 30.00 48.00 46.00 74.00 78.00 68.00 70.00
AUC 0.94
0,
ResNet50&KNN ::JCC(A)) (5)672 64.00 34.00 42.00 66.00 70.00 54.00 52.00 68.00
0,
ResNet50&SVM Ace (%) 71.30 72.00 52.00 68.00 82.00 80.00 66.00 82.00 68.00
AUC 0.94
0,
GoogLeNet&EL 2:]0C(A)) (5)17; 38.00 34.00 36.00 44.00 68.00 66.00 80.00 46.00
0,
GoogLeNet& KNN 2ECC(/0) (5)885 72.00 48.00 42.00 68.00 52.00 54.00 68.00 66.00
0,
GoogLeNet&SVM 2;cc(/o) (6)29; 66.00 52.00 58.00 52.00 82.00 64.00 66.00 62.00
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Table 7.13 Continues

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE el el e2 e3 ed e5 e6 e7
Acc (%) 57.8
AlexNet&EL AUC 091 70.00 32.00 36.00 50.00 66.00 60.00 66.00 82.00
Ace (%) 483
AlexNet& KNN AUC 079 74.00 38.00 36.00 56.00 48.00 16.00 54.00 64.00
Ace (%) 62.5
AlexNet&SVM AUC 098 78.00 48.00 56.00 54.00 82.00 60.00 66.00 56.00
AVERAGE ACCURACY (%) 58.87 64.33 3933 46.50 57.33 70.67 58.67 66.50 67.50

When compared to other methods, ResNet50&SVM has the highest accuracy rate for

the Tilda ¢3r3 dataset (Table 7.14). The class classified with the best accuracy rate in this

dataset is e5 (65.33%), while the class classified with the lowest accuracy rate is e2

(31.33%).

Table 7.14 Results for ¢3r3

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE el el e2 e3 e4 eS e6 e7
ResNet18&EL :;cc(%) 309.'7850 24.00 28.00 14.00 30.00 60.00 68.00 56.00 38.00
ResNet18&KNN i;cc(%) 405..6550 48.00 24.00 30.00 30.00 78.00 68.00 46.00 48.00
ResNet18&SVM i%cc(%) 502.5340 46.00 54.00 40.00 32.00 66.00 72.00 70.00 38.00
ResNetS0&EL i:JcC(%) 506.5390 66.00 62.00 24.00 46.00 72.00 80.00 56.00 44.00
ResNet50& KNN 2;%(%) 509'6570 50.00 22.00 44.00 26.00 68.00 80.00 66.00 48.00
ResNet50&SVM 2;cc(%) 506.;3580 64.00 54.00 40.00 50.00 68.00 74.00 62.00 40.00
GoogLeNet&EL 2;%(%) 407..6590 28.00 28.00 34.00 44.00 64.00 74.00 70.00 38.00
GoogLeNet& KNN i%cc(%) 405..6030 40.00 14.00 44.00 32.00 54.00 66.00 58.00 52.00
GoogLeNet&SVM i%cc(%) 501. 5500 42.00 48.00 40.00 46.00 60.00 72.00 62.00 42.00
AlexNet&EL 2;%(%) 402.'7(2‘0 46.00 28.00 12.00 32.00 68.00 44.00 58.00 48.00
AlexNet& KNN 2;%(%) 3(5.;10 54.00 24.00 20.00 26.00 40.00 32.00 52.00 46.00
AlexNet&SVM 2;%(%) 401.'7820 26.00 36.00 34.00 34.00 56.00 54.00 53.00 42.00
AVERAGE ACCURACY (%) 47.13 44.50 35.17 31.33 35.67 62.83 65.33 59.08 43.67

ResNet50&SVM has the highest accuracy rate (57.50%) for c4rl compared to other

methods (Table 7.15). What is interesting about this table is that e0 is among the classes

classified with the lowest accuracy rate (26.33%). E3 has the highest average accuracy

rate (76.33%).
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Table 7.15 Results for c4rl

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE  ¢( el €2 e3 ed e5 €6 e7

Acc (%) | 43.00

ResNet18&EL AUC 06 1200 36.00 56.00 80.00 2800 56.00 3400 42.00
ResNet1 8&KNN Ace (%) 20015000 5800 68.00  78.00 3800 4400 4800  56.00
AUC 0.57
ResNet18&SVM Ace (%) | 330 13900 5800 6800 9200 4200 5800 4000  46.00
AUC 0.73
0,
ResNetS0&EL Ace (%) | 4880 15400 6600 6600 8200 1400 4800 3200 58.00
AUC 0.66
0,
ResNetS0&KNN 2;°C(/") 5036530 3400 56.00 82.00 88.00 36.00 32.00 42.00 58.00
0,
ResNet50&SVM i;cc(“) 507'7530 36.00  70.00 74.00 96.00 38.00 58.00 46.00  42.00
0,
GoogLeNet&EL i;cc(“) 3096590 20.00 48.00 58.00 78.00 26.00 22.00 30.00 34.00
0,
GoogLeNet&KNN i%cc(m 307'5820 18.00 46.00 6600 72.00 12.00 30.00 2600 32.00
0,
GoogLeNet&SVM 2:J°C(/") 4056330 26.00 56.00 60.00 88.00 28.00 34.00 30.00  40.00
Acc (%) | 2850
AlexNet&EL e 0.55 1400 20.00 46.00 7400 800 2200 1400 30.00
Acc (%) | 2030
AlexNet&KNN o o 38.00 400 5800 8.00 10.00 800 16.00  20.00
0,
AlexNet&SVM i;cc(“) 307'5380 30.00  54.00 44.00 80.00 16.00 42.00 10.00  22.00

AVERAGE ACCURACY (%) 43.23 | 26.33 47.67 62.17 76.33 24.67 37.83 30.67 40.00

ResNet50&SVM is the most successful method in c4r3 dataset (59.10%) in Table 7.16.
The method that fails the most is AlexNet&EL (24.80%). When class-based performances
are examined, it is seen that e0 is classified with the highest success (56.50%), and €2 is

classified with the lowest success (28.00%).

Table 7.16 Results for c4r3

GENERAL CLASS BASED PERFORMANCE (%)
LIHNEOID PERFORMANCE
el el e2 e3 e4 e5 eb e7

Acc (%) 41.40
ResNet18&EL AUC 078 36.00 50.00 26.00 70.00 16.00 67.00 20.00 46.00
ResNet1 & KNN Ace (%) 52.40 70.00 68.00 24.00 62.00 42.00 33.00 64.00  56.00

AUC 0.80
ResNet18&SVM i;cc(%) 505 '9110 64.00 52.00 28.00 74.00 42.00 71.00 64.00  46.00
ResNet50&EL i;cc(%) 1)6'9410 72.00 52.00 32.00 30.00 48.00 59.00 38.00  40.00
ResNetS0&KNN i;cc(%) 502;50 80.00 60.00 36.00 58.00 48.00 33.00 54.00  50.00
ResNet50&SVM ::jcc(%) 509;)170 82.00 68.00 44.00 68.00 44.00 65.00 68.00  34.00
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Table 7.16 Continues

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE el el e2 e3 e4 es eb e7
Ace (%) 35.60

GoogLeNet&EL AUC 073 38.00 34.00 14.00 30.00 46.00 59.00 30.00 34.00
Ace (%) 45.10

GoogLeNet& KNN AUC 074 56.00 52.00 32.00 68.00 42.00 18.00 46.00 46.00

GoogLeNet&SVM i:JcC(%) 1)7.8160 50.00 56.00 36.00 58.00 36.00 63.00 40.00 38.00
Acc (%) 24.80

AlexNet&EL AUC 070 46.00 18.00 16.00 24.00 16.00 10.00 32.00  36.00
Acc (%) 37.80

AlexNet& KNN AUC 0.63 46.00 20.00 24.00 48.00 56.00 18.00 46.00 44.00
Acc (%) 33.60

AlexNet&SVM AUC 073 38.00 36.00 24.00 36.00 28.00 35.00 38.00 34.00

AVERAGE (%) 44.23 56.50 47.17 28.00 52.17 38.67 44.25 45.00 42.00

Considering the average accuracy rates of all methods for all sets of Tilda, it is seen
that the success of EL-based classification is 49.77%, the success of KNN-based
classification is 51.00%, and the success of SVM-based classification is 58.49% (Table
7.17). ResNet50&SVM is the most successful method with an average accuracy of
64.65%, while AlexNet&KNN is the least successful method with a rate of 36.95%.

Table 7.17 Average accuracy rates of the methods (%)

ResNet18&EL: 49.86

ResNet18& KNN: 55.88

ResNet18&SVM: 62.56

ResNet50&EL: 58.43

ResNetSO&KNN: 56.33 Average for EL-based classification: 49.77
ResNet50&SVM: 64.65 - Average for KNN-based classification: 50.42
GoogLeNet&EL: 48.74 Average for SVM-based classification: 58.08
GoogLeNet& KNN: 52.53

GoogLeNet&SVM: 57.06

AlexNet&EL: 42.06

AlexNet&KNN: 36.95

AlexNet&SVM: 48.03 -

Summary graphic for case 2 is in Figure 7.5.
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Figure 7.5 Summary for case 2

Average times to classify the features are given in Table 7.18. The EL-based
classification time is 228.55 seconds on average. The KNN-based classification time is
20.59 seconds on average. The SVM based classification time is 34.61 seconds on
average. It is seen that the classification time of EL is approximately 11 times longer than

KNN and approximately 7 times longer than SVM.

Table 7.18 Average classification times (seconds)

ResNetl1S&EL
ResNet18&KNN
ResNet18&SVM
ResNet50&EL
ResNet50&KNN
ResNet50&SVM
GoogLeNet&EL
GoogLeNet& KNN
GoogLeNet&SVM
AlexNet&EL
AlexNet& KNN
AlexNet&SVM

83.68
4.58
7.11

220.10
9.48

17.41

123.63
5.49
9.62

486.79

62.80

104.31

—_—

Average time for EL-based classification:
Average time for KNN-based classification:
Average time for SVM-based classification:
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7.3.3 Case Study 3 — Classification of fabrics as defected/undefected using feature
fusion

In the third case, the features obtained using different feature extraction methods are

brought together and classified with the help of a classifier (Figure 7.6).

Feature
Extraction

a—— § r_I__' ,_I__'

| (T E Defected
E | |
L

Classification

Methodl e

.I‘.-' J Enzemble

y '. j S — Learning <

- Method2 \‘ Un-defected
: ; Extracted

| PN 2%

Features

.........................

Recognition of defected fabrics

Figure 7.6 Sample visualisation of case 3

In Table 7.19, it is seen that the features obtained using ResNetl8&ResNet50 are
classified with the highest accuracy by SVM (90.52%). Additionally, EL's accuracy rate
is close to that of SVM (89.40%). KNN performs the classification with the accuracy of
84.72%. Besides, un-patterned fabrics is a dataset that can be classified with the highest

average accuracy rate (92.38%).

Table 7.20 shows that the features obtained using ResNet18&Googl.eNet are classified
with the highest accuracy by SVM (88.29%). Additionally, EL's accuracy rate is close to
that of SVM (88.27%). KNN performs the classification with the accuracy of 83.65%. On
the other hand, un-patterned fabrics is a dataset that can be classified with the highest

average accuracy rate (87.38%).
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Table 7.19 Performance of ResNetl18 & ResNet50 based feature extraction (%)

i Un- Patterned
Method Metric patterned ] Mix Average
. Fabrics
Fabrics
Sensitivity 92.05 89.66 88.93 90.21
ifici 71.55 67.21 84.38 74.38
ResNet18 & ResNet50 & EL SEEEy
F-Measure 94.76 93.91 93.98 94.22
Accuracy 90.56 88.80 88.84 89.40
Sensitivity 96.14 93.03 93.99 9439
ifici 42.86 42.40 42.56 42,61
ResNet18 & ResNet50 & KNN S
F-Measure 90.46 91.34 91.04 90.95
Accuracy 84.25 85.12 84.80 84.72
Sensitivity 92.77 89.42 90.20 90.80
ifici 86.92 87.50 80.00 84.81
ResNet18 & ResNet50 & SVM RECLTCY
F-Measure 95.78 94.25 94.45 94.83
Accuracy 92.38 89.37 89.81 90.52
AVERAGE ACCURACY (%) 89.06 86.35 87.82
Table 7.20 Performance of ResNetl18 & GoogLeNet based feature extraction (%)
Un-
i Patterned .
A it ol Metric patterned . Mix Average
. Fabrics
Fabrics
Sensitivity 91.18 88.41 87.97 89.19
fici 66.35 51.35 62.50 60.07
ResNet18 & GoogLeNet & EL SJpEEinEly
F-Measure 94.23 88.27 93.41 91.97
Accuracy 89.56 87.55 87.71 88.27
Sensitivity 96.2 92.08 93.55 93.94
ifici 42.19 37.50 39.23 39.64
ResNet18 & GoogLeNet & KNN SJpEEinEly
F-Measure 90.21 90.47 90.21 90.30
Accuracy 83.88 83.61 83.46 83.65
Sensitivity 88.7 88.44 88.24 88.46
ifici 88.46 75.00 66.67 76.71
ResNet18 & GoogLeNet & SVM slezniteily
F-Measure 93.91 93.68 93.51 93.70
Accuracy 88.69 88.24 87.93 88.29
AVERAGE ACCURACY (%) 87.38 86.47 86.37

In Table 7.21, it is seen that the features obtained using ResNetl8&AlexNet are
classified with the highest accuracy by SVM (88.08%). In addition, EL's accuracy rate is
close to that of SVM (88.00%). KNN performs the classification with the accuracy of
74.04%.
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Table 7.21 Performance of ResNetl18 & AlexNet based feature extraction (%)

i Un- Patterned
Method Metric patterned ] Mix Average
Fabrics Fabrics
Sensitivity 89.34 88.27 87.86 88.49
ifci 59.68 68.18 78.95 68.94
ResNet18 & AlexNet & EL Specificity
F-Measure 93.56 93.55 93.48 93.53
Accuracy 88.19 88.00 87.80 88.00
Sensitivity 94.77 92.27 93.53 93.52
TR 24.00 31.76 27.72 27.83
ResNet18 & AlexNet & KNN Specificity
F-Measure 77.84 88.21 84.11 83.39
Accuracy 67.13 80.24 74.74 74.04
Sensitivity 88.57 88.54 87.99 88.37
TR 84.00 71.43 58.49 71.31
ResNet18 & AlexNet &SVM Specificity
F-Measure 93.81 93.67 93.41 93.63
Accuracy 88.50 88.24 87.50 88.08
AVERAGE ACCURACY (%) 81.27 85.49 83.35

Table 7.22 shows that the ResNet50&GoogleNet-obtained features are classified by
SVM with the best degree of accuracy (91.01%). The average accuracy rates of EL and

KNN are 89.65% and 84.28%, respectively.

Table 7.22 Performance of ResNet50 & GoogLeNet based feature extraction (%)

i Un- Patterned
Method Metric patterned . Mix Average
. Fabrics
Fabrics
Sensitivity 92.32 89.48 89.05 90.28
fici 75.65 75.51 76.62 75.93
ResNet50 & GoogLeNet & EL Specificity
F-Measure 95.08 94.07 93.92 9436
Accuracy 91.13 89.06 88.75 89.65
Sensitivity 95.77 93.34 94.02 94.38
ifici 40.05 44.36 41.39 41.93
ResNet50 & GoogLeNet & KNN Specificity
F-Measure 89.53 91.71 90.69 90.64
Accuracy 82.81 85.74 84.28 84.28
Sensitivity 93.45 89.83 90.56 91.28
ifici 86.67 91.30 82.35 86.77
ResNetS0 & GoogLeNet & SVM 2l
F-Measure 96.08 94.51 94.66 95.08
Accuracy 92.94 89.87 90.22 91.01
AVERAGE ACCURACY (%) 88.96 88.22 87.75
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While SVM is always the classifier with the highest accuracy rate in tables 7.19-7.23,
it is seen that the situations have changed in Table 7.23. This table demonstrates that EL
provides the most accurate classification of the ResNet50&AlexNet-obtained features
(89.57%). Both KNN and SVM have average accuracy rates of 75.93% and 88.73%,

respectively.

Table 7.23 Performance of ResNet50 & AlexNet based feature extraction (%)

; Ui Patterned
Method Metric patterned . Mix Average
. Fabrics
Fabrics
Sensitivity 92.13 89.85 88.90 90.29
I 73.68 70.97 82.81 75.82
ResNet50 & AlexNet & EL Specificity
F-Measure 94.90 94.07 93.95 9431
Accuracy 90.81 89.12 88.78 89.57
Sensitivity 95.54 92.18 93.86 93.86
I 26.44 3333 29.62 29.80
ResNet50 & AlexNet & KNN Specificity
F-Measure 80.12 88.98 88.25 85.78
Nite) 70.06 81.36 7637 75.93
Sensitivity 89.43 88.80 88.53 88.92
I 9230 85.71 61.76 79.92
ResNet50 & AlexNet &SVM Specificity
F-Measure 9432 93.94 9351 93.92
Accuracy 89.50 88.74 87.96 88.73
AVERAGE ACCURACY (%) 83.46 86.41 8437

Table 7.24 demonstrates that EL provides the most accurate classification of the
ResNet50&AlexNet-obtained features (88.49%). Both KNN and SVM have average
accuracy rates of 74.88% and 88.41%, respectively. In this table, we would like to point
out that EL has the highest accuracy.

When the classifier-based averages of the results given in Table 7.25 are examined, it
is seen that classification can be performed with an average accuracy rate of about 85.88%.
While the classification successes of EL and SVM are close to each other (88.90% and
89.17%, respectively), the classification success of KNN is lower than EL and SVM
(79.58%). The table shows that the specificity of KNN is extremely low. This shows that

the success of KNN in correctly recognizing un-defected fabrics is low.
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Table 7.24 Performance of GoogLeNet & AlexNet based feature extraction (%)

; Un- Patterned
Method Metric patterned . Mix Average
Fabrics Fabrics
Sensitivity 90.53 88.70 88.15 89.13
AR 64.44 71.88 76.47 70.93
GoogLeNet & AlexNet & EL ERESlIo)
F-Measure 93.98 93.73 93.58 93.76
Accuracy 89.06 88.37 88.03 88.49
Sensitivity 95.17 92.49 93.35 93.67
ifici 25.21 33.44 27.62 28.76
GoogLeNet & AlexNet & KNN RECLTC
F-Measure 79.01 88.77 84.25 84.01
e — 68.63 81.11 74.90 74.88
Sensitivity 88.82 88.62 88.30 88.58
TR 96.15 80.77 58.93 78.62
GooglLeNet & AlexNet &SVM S E G
F-Measure 94.05 93.81 93.42 9376
Accuracy 88.94 88.50 87.78 88.41
AVERAGE ACCURACY (%) 82.21 85.99 83.57
Table 7.25 Performance comparison (%)
_—
EL AVERAGE
Sensitivity 89.60
Specificity 71.01
F Measure 93.69
Accuracy 88.90
KNN AVERAGE AVERAGE
Sensitivity 93.96 - Sensitivity 90.99
Specificity 35.10 Specificity 61.93
F Measure 87.51 F Measure 91.79
Accuracy 79.58 Accuracy 85.88
SVM AVERAGE
Sensitivity 89.40
Specificity 79.69
F Measure 94.15
Accuracy 89.17 —
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Table 7.26 shows the dataset-based averages of the results. It is seen that the average
accuracy rate is highest for patterned fabrics (86.72%). The success of finding unpatterned
fabric defects in fusion features created with AlexNet is lower than others. In all fusions
where AlexNet is not used, the success of finding unpatterned fabric defects is higher than

the others (88.47%).

Table 7.26 Dataset based performance comparison

UN-PATTERNED PATTERNED MIX
Sensitivity 92.38 90.19 90.39
Specificity 67.00 62.20 59.89
F Measure 91.20 92.27 91.88
Accuracy 85.39 86.72 85.54

In order to summarize the findings obtained, the graph of case 3 is in Figure 7.7.
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Figure 7.7 Summary for case 3

Table 7.27 provides the average classification times of the features. The average time

for EL-based classification is 997.43 seconds. The average classification time for KNN is
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228.44 seconds. The average time for SVM-based classification is 120.36 seconds. It can

be shown that EL takes considerably longer to classify the data than KNN and SVM-

roughly 4 and 8 times longer, respectively.

Table 7.27 Classification times (seconds)

METHOD

ResNet18&ResnetS0&EL
ResNet18&ResnetS0&KNN
ResNet18&ResnetS0&SVM
ResNet18& GoogLeNet& EL
ResNet18&GoogLeNet& KNN
ResNet18&GoogLeNet&SVM
ResNet18&AlexNet&EL
ResNet18&AlexNet& KNN
ResNet18&AlexNet&SVM
ResNet50&GoogLeNet& EL
ResNet50&GoogLeNet& KNN
ResNet50&GoogLeNet&SVM
ResNet50&AlexNet&EL
ResNet50&AlexNet& KNN
ResNet50&AlexNet&SVM
GoogLeNet&AlexNet&EL
GoogLeNet&AlexNet& KNN
GoogLeNet&AlexNet&SVM

Un-patterned

Fabrics
382.54
47.48
21.94
305.30
27.93
12.46
853.13
254.71
161.04
471.55
55.50
26.50
1014.20
249.78
159.20
999.97
217.55
136.48

DATASET
Patterned

Fabrics
495.02
47.98
23.44
347.88
26.90
13.87
1061.40
202.32
143.02
576.10
55.03
29.47
1273.20
254.24
169.13
1377.50
221.85
172.10

Mix

923.20
156.59
55.61
630.50
89.46
33.98
1869.10
606.10
294.94
1007.60
117.65
66.66
2333.10
757.74
356.27
2032.50
723.11
290.43

AVERAGE

600.22
84.02
33.66

427.89
48.10
20.10

1261.21

354.38
199.67

685.08
76.06
40.88

1540.17

420.59

228.20

1469.99

387.50
199.67

7.3.4 Case Study 4 — Classification of Defects According to Their Types Using Feature

Fusion

Visualisation of case 4 is as in Figure 7.8. The feature fusion created by combining the

features of two different CNN models is tried to be classified. The classification is not

binary as in case 1 and case 3, but 8-class as in case 2.
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Figure 7.8 Sample visualisation of case 4

In Table 7.28, ResNet50&GoogLeNet&SVM has the highest accuracy rate (80.00%),
while ResNet18&AlexNet&KNN has the lowest accuracy rate (46.30%). In this dataset,
e0 is the class most successfully classified (88.22%) among the eight classes, while e2 is

the class with the lowest success (53.00%).

Table 7.28 Results for clrl

METHOD GENERAL CLASS-BASED PERFORMANCE (%)
PERFORMANCE | e0 el e2 e3 e4 es e6 e7

ResNet18&Resnet50&EL iijcc(%) 7(i§560 92.00 76.00 70.00 64.00 68.00 72.00 78.00 76.00
ResNet18&Resnet50& KNN i;cé%) 606‘8860 88.00 48.00 6.00 50.00 62.00 84.00 88.00 54.00
ResNet18&Resnet50&SVM ::Jcé%) 70?'9090 96.00 54.00 86.00 82.00 68.00 82.00 84.00 80.00
ResNet18&GoogLeNet&EL i:;é%) 605"9300 62.00 64.00 52.00 56.00 62.00 76.00 90.00 60.00
ResNet18&GoogLeNet&KNN Aes P TLO0 7600 6400 5400 6600 6200 8200 9400 70.00
ResNet18&GoogLeNet&SVM iijcc(%) 706'§880 96.00 62.00 74.00 72.00 64.00 78.00 84.00 84.00
ResNet18&AlexNet&EL iijcc(%) 606.§850 86.0 70.00 54.00 40.00 70.00 80.00 66.00 68.00
ResNet18&AlexNet& KNN i;cé%) 406‘,'7370 86.00 32.00 18.00 18.00 36.00 52.00 62.00 66.00
ResNet18&AlexNet&SVM i:;é%) 60%5770 96.00 26.00 54.00 62.00 52.00 62.00 74.00 76.00
ResNet50&GoogLeNet&EL i:;é%) 7(3'9340 82.00 66.00 78.00 66.00 66.00 86.00 90.00 60.00
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Table 7.28 Continues

METHOD GENERAL CLASS-BASED PERFORMANCE (%)
PERFORMANCE | e0 el e2 e3 e4 eS €6 e7
ResNet50&GoogLeNet& KNN i:jcc(%) 700.'9310 96.00 56.00 60.00 48.00 52.00 84.00 92.00 74.00
ResNet50&GoogLeNet&SVM i:JcC(%) 800.'9080 96.00 60.00 78.00 86.00 66.00 82.00 92.00 80.00
ResNet50&AlexNet& EL i:JcC(%) 7(3 '9880 94.00 86.00 72.00 58.00 72.00 88.00 68.00 60.00
ResNet50&AlexNet& KNN i:JcC(%) 406.'7570 86.00 30.00 22.00 28.00 32.00 54.00 64.00 56.00
ResNet50&AlexNet&SVM ::jcc(%) 607.'9380 98.00 38.00 54.00 72.00 54.00 62.00 80.00 80.00
GoogLeNet&AlexNet&EL i:jcc(%) 3692 80.00 68.00 56.00 44.00 60.00 76.00 88.00 62.00
GoogLeNet&AlexNet& KNN i:JcC(%) 408.'7380 86.00 34.00 18.00 30.00 36.00 48.00 66.00 68.00
GoogLeNet&AlexNet&SVM i:JcC(%) 60?'9370 92.00 38.00 48.00 70.00 52.00 70.00 82.00 86.00
AVERAGE ACCURACY (%) 66.93 88.22 54.00 53.00 56.22 57.44 73.22 80.11 70.00

According to Table 7.29, ResNet18&GoogLeNet&SVM is the best method (70.00%)

for the c1r3 dataset of Tilda. Compared to other classes, €0's classification performance

has the greatest rate (75.67%). This dataset's most challenging class, e2,

classification success rate of just 38.22 percent.

Table 7.29 Results for c1r3

METHOD
ResNet18&ResnetS0&EL
ResNet18&Resnet5S0&KNN
ResNet18&Resnet50&SVM
ResNet18&GoogLeNet&EL
ResNet18&GoogLeNet& KNN
ResNet18&GoogLeNet&SVM
ResNet18&AlexNet&EL
ResNet18&AlexNet& KNN
ResNet18&AlexNet&SVM
ResNet50&GoogLeNet&EL
ResNet50&GoogLeNet& KNN

ResNet50&GoogLeNet&SVM

GENERAL
PERFORMANCE
Acc (%) 61.50
AUC 0.89
Acc (%) 59.50
AUC 0.76
Acc (%) 68.50
AUC 0.94
Acc (%) 56.00
AUC 0.83
Acc (%) 60.30
AUC 0.78
Acc (%) 70.00
AUC 0.96
Acc (%) 56.30
AUC 0.96
Acc (%) 38.50
AUC 0.75
Acc (%) 56.00
AUC 0.96
Acc (%) 61.00
AUC 0.89
Acc (%) 56.00
AUC 0.74
Acc (%) 65.50
AUC 0.92

el
56.00

70.00
84.00
60.00
70.00
86.00
92.00
80.00
92.00
66.00
66.00

74.00

72

CLASS-BASED PERFORMANCE (%)

el
62.00

34.00

54.00

50.00

36.00

66.00

38.00

12.00

38.00

58.00

40.00

58.00

e2
40.00

50.00

56.00

40.00

38.00

54.00

30.00

20.00

30.00

52.00

40.00

54.00

e3
62.00

50.00

66.00

48.00

48.00

58.00

56.00

16.00

56.00

56.00

42.00

54.00

e4
70.00

76.00
82.00
54.00
68.00
74.00
54.00
44.00
54.00
64.00
78.00

72.00

e5
82.00

82.00

82.00

86.00

76.00

84.00

70.00

30.00

70.00

78.00

66.00

84.00

€6
58.00

48.00

50.00

54.00

74.00

56.00

42.00

42.00

42.00

52.00

60.00

54.00

has a

e7
62.00

66.00
74.00
56.00
72.00
82.00
66.00
64.00
66.00
62.00
56.00

74.00



Table 7.29 Continues

METHOD GENERAL CLASS-BASED PERFORMANCE (%)
PERFORMANCE el el e2 e3 e4 eS e6 e7
ResNet50&AlexNet&EL i:jcc(%) 602.;)5(;) 66.00 64.00 42.00 56.00 76.00 86.00 54.00 56.00
ResNet50&AlexNet& KNN i:JcC(%) 308.'7(1? 80.00 14.00 18.00 16.00 40.00 34.00 44.00 58.00
ResNet50&AlexNet&SVM i:JcC(%) S(i '9050 92.00 34.00 36.00 54.00 44.00 62.00 48.00 62.00
GoogLeNet&AlexNet&EL i:JcC(%) S(i '8550 62.00 26.00 44.00 42.00 64.00 80.00 58.00 52.00
GoogLeNet&AlexNet& KNN i:JcC(%) 308.'7330 76.00 12.00 20.00 12.00 42.00 32.00 46.00 66.00
GoogLeNet&AlexNet&SVM i:jcc(%) S(i ;)560 90.00 32.00 24.00 44.00 56.00 70.00 48.00 64.00
AVERAGE ACCURACY (%) 56.05 75.67 40.44 38.22 46.44 61.78 69.67 51.67 64.33

The methods of ResNetl8&GoogleNet&SVM and ResNet50&GoogleNet&SVM
have highest rates (both have a classification success of 64.50%) in Table 7.30. E6 is the

class with the highest success (77.89%) while e3 is the class with the lowest success

(31.22%).

Table 7.30 Results for c2r2

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE ¢ el e2 e3 e4 e5 e6 e7
ResNet18&Resnet50&EL i:}cc(%) 60(?'9550 80.00 58.00 58.00 28.00 50.00 76.00 78.00 56.00
ResNet18&Resnet50& KNN i:}cc(%) 506.'7890 74.00 38.00 48.00 24.00 50.00 74.00 86.00 60.00
ResNetl18&Resnet50&SVM ::jcc(%) 605.;)370 82.00 62.00 44.00 58.00 50.00 74.00 74.00 78.00
ResNetlS&GoogLeNet&EL i;}cc(%) 503:)530 82.00 50.00 38.00 22.00 48.00 56.00 76.00 56.00
ResNetlS&GoogLeNet&KNN i;}cc(%) 506.'7890 74.00 38.00 44.00 34.00 54.00 58.00 82.00 70.00
ResNet18&GoogLeNet&SVM i:}cc(%) 604..9560 84.00 46.00 66.00 52.00 50.00 68.00 74.00 76.00
ResNet18&AlexNet& EL i:}cc(%) 50(?.8290 74.00 38.00 28.00 16.00 54.00 54.00 86.00 52.00
ResNet18&AlexNet&KNN Aue W) W0 7200 1000 1600 1400 4600 1600 8400 66.00
ResNet18&AlexNet&SVM ::jcc(%) 55;9530 76.00 50.00 28.00 32.00 42.00 64.00 70.00 66.00
ResNetSO&GoogLeNet&EL i;}cc(%) 602.;)010 64.00 66.00 58.00 30.00 52.00 82.00 78.00 66.00
ResNet50&GoogLeNet& KNN i;}cc(%) 507..7580 72.00 38.00 56.00 34.00 52.00 64.00 88.00 56.00
ResNet50&GoogLeNet&SVM i:}cc(%) 604..9550 80.00 62.00 50.00 50.00 56.00 68.00 72.00 78.00
ResNet50&AlexNet& EL i:}cc(%) 60(?'9840 72.00 58.00 54.00 34.00 50.00 68.00 88.00 62.00
ResNet50&AlexNet& KNN i:}cc(%) At)(?.7510 66.00 16.00 18.00 22.00 42.00 22.00 76.00 62.00
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Table 7.30 Continues

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE | 0 el e2 e3 e4 e5 €6 e7
ResNet50&AlexNet&SVM i:jcc(%) 509;)%‘0 76.00 62.00 38.00 36.00 48.00 76.00 68.00 74.00
GoogLeNet&AlexNet&EL i:JcC(%) 1)9'9530 80.00 54.00 26.00 14.00 52.00 50.00 76.00 44.00
GoogLeNet&AlexNet& KNN i:JcC(%) 307'6890 64.00 12.00 8.00 18.00 36.00 22.00 78.00 64.00
GoogLeNet&AlexNet&SVM i:JcC(%) 507'9540 82.00 60.00 24.00 44.00 42.00 64.00 68.00 76.00
AVERAGE ACCURACY (%) 53.96 75.22 4544 39.00 31.22 48.56 58.67 77.89 64.56

According to Table 7.31, ResNet18&GoogLeNet&SVM is the best method (71.30%)

for the c3r3 dataset of Tilda. EO is the class classified with the highest accuracy rate
(71.00%). E2 is the only class with a classification success of less than 50% (48.22%).

Table 7.31 Results for c2r3

METHOD
ResNet18&Resnet50&EL
ResNet18&Resnet5S0&KNN
ResNet18&Resnet50&SVM
ResNet18&GoogLeNet&EL
ResNet18&GoogLeNet& KNN
ResNet18&GoogLeNet&SVM
ResNet18&AlexNet&EL
ResNet18&AlexNet& KNN
ResNet18&AlexNet&SVM
ResNet50&GoogLeNet&EL
ResNet50&GoogLeNet& KNN
ResNet50&GoogLeNet&SVM
ResNetS0&AlexNet&EL
ResNet50&AlexNet& KNN
ResNet5S0&AlexNet&SVM
GoogLeNet&AlexNet&EL

GoogLeNet&AlexNet& KNN

GENERAL
PERFORMANCE
Acce (%) 63.70
AUC 0.91
Acc (%) 59.80
AUC 0.77
Acc (%) 69.80
AUC 0.96
Ace (%) 59.50
AUC 0.84
Ace (%) 64.30
AUC 0.78
Ace (%) 71.30
AUC 0.93
Acc (%) 58.30
AUC 0.87
Acc (%) 34.30
AUC 0.60
Ace (%) 50.00
AUC 0.84
Ace (%) 66.00
AUC 0.92
Acc (%) 63.20
AUC 0.84
Acc (%) 70.80
AUC 0.95
Acc (%) 65.30
AUC 0.95
Ace (%) 38.50
AUC 0.63
Ace (%) 56.30
AUC 0.91
Ace (%) 56.80
AUC 0.81
Acc (%) 37.00
AUC 0.70

74

el
75.00

69.00

94.00

53.00

71.00

78.00

65.00

47.00

76.00

71.00

84.00

88.00

80.00

51.00

88.00

41.00

67.00

CLASS BASED PERFORMANCE (%)

el
64.00

64.00

60.00

62.00

72.00

58.00

60.00

24.00

46.00

68.00

72.00

58.00

64.00

26.00

48.00

66.00

22.00

e2
47.00

49.00

71.00

51.00

53.00

65.00

43.00

35.00

41.00

61.00

41.00

67.00

51.00

35.00

45.00

35.00

33.00

e3
80.00

66.00

82.00

82.00

72.00

92.00

70.00

24.00

62.00

78.00

72.00

88.00

70.00

40.00

70.00

80.00

34.00

e4
52.00

62.00

70.00

64.00

66.00

76.00

64.00

42.00

42.00

74.00

58.00

74.00

58.00

42.00

48.00

68.00

32.00

e5
72.00

64.00

76.00

54.00

54.00

68.00

54.00

26.00

44.00

64.00

60.00

68.00

74.00

34.00

54.00

60.00

24.00

eb
64.00

52.00

50.00

64.00

60.00

60.00

52.00

44.00

42.00

54.00

60.00

58.00

64.00

48.00

48.00

54.00

54.00

e7
56.00

52.00

54.00

46.00

66.00

72.00

58.00

32.00

46.00

58.00

58.00

64.00

60.00

32.00

48.00

50.00

30.00



Table 7.31 Continues

GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE el el e2 e3 e4 es e6 e7
Acc (%) 52.80
GoogLeNet&AlexNet&SVM AUC 0.87

AVERAGE ACCURACY (%) 57.65 71.00 54.22 4822 68.56 57.67 55.22 54.00 51.67

METHOD

80.00 42.00 45.00 72.00 46.00 44.00 44.00 48.00

ResNet18&Resnet50&SVM is the method with the highest accuracy rate (73.30%) in
Table 7.32. While €0 is the class classified with the highest accuracy rate (72.22%) in this
dataset, el is the class classified with the lowest rate (44.78%).

Table 7.32 Results for c¢3rl

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE e0 el e2 e3 e4 e5 €6 e7

ResNetl18&Resnet50&EL i:}cc(%) 601.;)%‘0 70.00 28.00 52.00 62.00 72.00 72.00 68.00 70.00
ResNetl18&Resnet50& KNN Z:JCC(%) 602.'7570 58.00 40.00 58.00 72.00 68.00 66.00 66.00 72.00
ResNet18&Resnet50&SVM i;“c(%) T 7200 60.00 5600 8000 88.00 7400 8200 74.00
ResNet18&GoogLeNet&EL i:}cc(%) 506.'8330 50.00 34.00 36.00 42.00 64.00 62.00 86.00 76.00
ResNetlS&GoogLeNet&KNN i:}cc(%) 60(?'7%0 66.00 54.00 44.00 68.00 46.00 56.00 72.00 74.00
ResNetlS&GoogLeNet&SVM i:}cc(%) 702.;)360 80.00 74.00 66.00 70.00 82.00 70.00 64.00 72.00
ResNetl18&AlexNet&EL i:}cc(%) 508.;)%0 68.00 34.00 32.00 56.00 64.00 60.00 78.00 72.00
ResNet18&AlexNet& KNN i:}cc(%) (5)38481 82.00 38.00 40.00 58.00 60.00 24.00 62.00 66.00
ResNet18&AlexNet&SVM i:}cc(%) (6)49; 78.00 50.00 54.00 58.00 82.00 58.00 72.00 62.00
ResNet50&GoogLeNet&EL i:}cc(%) 601.'9350 76.00 28.00 42.00 54.00 76.00 70.00 74.00 70.00
ResNetSO&GoogLeNet&KNN i:}cc(%) 601.'8%0 66.00 50.00 48.00 76.00 56.00 58.00 62.00 72.00
ResNetSO&GoogLeNet&SVM i:}cc(%) 7019050 76.00 58.00 68.00 74.00 74.00 72.00 74.00 72.00
ResNet50&AlexNet&EL i:}cc(%) 605.;)380 82.00 32.00 34.00 62.00 76.00 78.00 76.00 82.00
ResNet50&AlexNet& KNN i:}cc(%) 50%'7390 70.00 30.00 50.00 64.00 58.00 32.00 58.00 64.00
ResNet50&AlexNet&SVM i:}cc(%) 60}%'9870 78.00 62.00 54.00 62.00 86.00 64.00 76.00 68.00
GoogLeNet&AleXNet&EL i:}cc(%) 60(?'9020 70.00 26.00 36.00 58.00 70.00 64.00 76.00 80.00
GoogLeNet&AlexNet&KNN i:}cc(%) Sééolo 76.00 46.00 48.00 62.00 46.00 30.00 54.00 70.00
GoogLeNet&AlexNet&SVM i:}cc(%) (6)892 82.00 62.00 58.00 60.00 74.00 70.00 70.00 72.00

AVERAGE ACCURACY (%) 62.53 72.22 44.78 48.67 63.22 69.00 60.00 70.56 71.56
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In Table 7.33, ResNet50&GoogLeNet&SVM has the highest accuracy rate (60.30%),
while GoogleNet &AlexNet&KNN has the lowest accuracy rate (37.50%). In this dataset,

e5 is the class most successfully classified (67.33%) among the eight classes, while e2 is

the class with the lowest success (35.11%).

Table 7.33 Results for ¢3r3

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE @ e0 el e2 e3 e4 eS €6 e7

ResNet18&Resnet5S0&EL i:JcC(%) 507.%3590 68.00 62.00 24.00 52.00 72.00 84.00 58.00 40.00
ResNet18&ResnetS0& KNN i:}cc(%) 501.'77(;) 58.00 26.00 42.00 30.00 68.00 76.00 60.00 54.00
ResNet18&Resnet5S0&SVM i:}cc(%) 509.'93(? 68.00 48.00 42.00 56.00 70.00 74.00 68.00 48.00
ResNet18&GoogLeNet&EL i:}cc(%) 408.'7310 22.00 26.00 36.00 36.00 76.00 76.00 76.00 38.00
ResNet18&GoogLeNet& KNN iijcc(%) 407..6510 40.00 22.00 44.00 32.00 56.00 72.00 60.00 54.00
ResNet18&GoogLeNet&SVM iijcc(%) 506.'54? 52.00 54.00 48.00 42.00 68.00 72.00 68.00 50.00
ResNet18&AlexNet& EL ifjcc(%) 409.'7? 50.00 38.00 28.00 34.00 62.00 72.00 74.00 40.00
ResNet18&AlexNet& KNN i:}cc(%) 308..6060 58.00 26.00 30.00 20.00 44.00 32.00 54.00 40.00
ResNet18&AlexNet&SVM i:}cc(%) 4(3 '7850 32.00 32.00 34.00 32.00 70.00 60.00 62.00 36.00
ResNet50&GoogLeNet&EL i:}cc(%) 508.'93(? 68.00 64.00 24.00 52.00 60.00 86.00 66.00 46.00
ResNet50&GoogLeNet& KNN iijcc(%) 406.'6320 42.00 24.00 38.00 28.00 54.00 74.00 62.00 48.00
ResNet50&GoogLeNet&SVM iijcc(%) 60%390 68.00 50.00 52.00 56.00 64.00 74.00 66.00 52.00
ResNet50&AlexNet& EL i:}cc(%) 509.'9510 76.00 68.00 26.00 48.00 68.00 86.00 54.00 50.00
ResNet50&AlexNet& KNN i:}cc(%) 308.'6520 48.00 24.00 26.00 26.00 42.00 40.00 54.00 48.00
ResNet50&AlexNet&SVM i:}cc(%) S(f '8850 52.00 50.00 40.00 38.00 70.00 62.00 64.00 46.00
GoogLeNet&AlexNet&EL ::jcc(%) S(i '7590 40.00 46.00 38.00 36.00 70.00 74.00 74.00 50.00
GoogLeNet&AlexNet& KNN iijcc(%) 307..6560 58.00 22.00 26.00 26.00 40.00 36.00 52.00 40.00
GoogLeNet&AlexNet&SVM iijcc(%) 407.'7070 32.00 36.00 34.00 36.00 72.00 62.00 66.00 38.00

AVERAGE ACCURACY (%) 50.41 51.78 39.89 35.11 37.78 62.56 67.33 63.22 45.44

According to Table 7.34, ResNet18& ResNet5S0&SVM is the best method (60.50%)

for the c4rl dataset of Tilda. The classification performance of e3 is greatest (72.89%)

compared to other classes. This dataset's most challenging classes are €0 and e4 with the

accuracy rates of 27.89% and 23.11%, respectively.
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Table 7.34 Results for c4rl

T GENERAL CLASS BASED PERFORMANCE (%)

PERFORMANCE el el e2 e3 e4 eS e6 e7

ResNet18&Resnet50&EL i;cc(%) 50(?'6540 18.00 5200 62.00 88.00 32.00 64.00 34.00 54.00
ResNet18&Resnet50&KNN i;cc(%) 5(3'5380 2800 5800 78.00 84.00 32.00 40.00 42.00 72.00
ResNet18&Resnet50&SVM i;“c(%) 609'7530 4200 6800 74.00 96.00 40.00 62.00 48.00 54.00
ResNet18&GoogLeNet &KEL i:j“c(%) 402.6330 2200 3800 44.00 78.00 26.00 5800 26.00 46.00
ResNet18&GoogLeNet &KKNN i:jcc(%) 405_'5330 16.00  56.00 70.00 66.00 18.00 46.00 42.00 48.00
ResNet18&GoogLeNet&SVM i;jcc(%) 503_'6090 3400 6400 56.00 9200 3400 5400 44.00 46.00
ResNet18&AlexNet&EL i:jcc(%) 3_153 400 4600 6200 78.00 2800 46.00 24.00 42.00
ResNet18&AlexNet&KNN i;cc(%) 255300 2600 12.00 76.00 14.00 1000 800 1800 22.00
ResNet18&AlexNet&SVM i;“c(%) 307.6500 2400 5000 4200 78.00 1400 4800 22.00 22.00
ResNet50&GoogLeNet&EL i;“c(%) 501"7000 3200 5200 64.00 78.00 3400 50.00 40.00 58.00
ResNet50&GoogLeNet &KKNN i;“c(%) 50?6500 30.00 5400 88.00 84.00 18.00 38.00 40.00 52.00
ResNet50&GoogLeNet&SVM i:jcc(%) 50§f30 4200 72.00 7200 96.00 38.00 5400 42.00 50.00
ResNet50&AlexNet&EL i:jcc(%) 408_‘6820 2000 62.00 62.00 84.00 16.00 5400 36.00 56.00
ResNet50&AlexNet & KNN i:jcc(%) 302_'5880 30.00 3600 6400 4200 800 1600 32.00 34.00
ResNet50&AlexNet&SVM i;“c(%) 407.6520 36.00 5800 54.00 84.00 18.00 5800 3800 34.00
GoogLeNet&AlexNet&EL i;“c(%) 30?6340 2400 46.00 60.00 66.00 2400 1800 28.00 40.00
GoogLeNet&AlexNet&KNN i;“c(%) 205.'5330 3200 800 6800 2200 10.00 1400 26.00 22.00
GoogLeNet&AlexNet&SVM i:JcC(%) 402_'6030 4200 4800 54.00 8200 16.00 44.00 22.00 28.00
AVERAGE ACCURACY (%) 44.58 27.89  48.89 63.89 72.89 23.11 42.89 33.56 4333
ResNet18&Resnet50&SVM  has the highest accuracy rate (61.70%) while

GoogleNet&AlexNet&EL has the lowest accuracy rate (34.30%) in Table 7.35. On the
other hand, €0 is the class with the highest success (61.00%), while e2 is the class with

the lowest success (29.56%).
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Table 7.35 Results for c4r3

METHOD GENERAL CLASS BASED PERFORMANCE (%)
PERFORMANCE = ¢ el e e3 e4 e e6 e

ResNet18&Resnet50&EL i:}cc(%) 500..8190 68.00 68.00 32.00 42.00 40.00 63.00 46.00 42.00
ResNetl18&Resnet50& KNN i:}cc(%) 502.'8620 76.00 58.00 38.00 60.00 52.00 35.00 52.00 50.00
ResNetl18&Resnet50&SVM i:}cc(%) 601.'9770 82.00 68.00 44.00 78.00 48.00 67.00 64.00 42.00
ResNetlS&GoogLeNet&EL i:jcc(%) 40584(;) 50.00 54.00 20.00 56.00 30.00 71.00 38.00 44.00
ResNetlS&GoogLeNet&KNN i:jcc(%) 509é9;) 72.00 56.00 34.00 72.00 50.00 22.00 52.00 48.00
ResNet18&GoogLeNet&SVM i:}cc(%) 5(;‘:'9930 70.00 52.00 30.00 82.00 52.00 65.00 50.00 38.00
ResNet18&AlexNet&EL i:}cc(%) 400.'7150 44,00 46.00 24.00 60.00 20.00 71.00 20.00 36.00
ResNet18&AlexNet&KNN Ace (4) W) 4000 2600 3000 5000 5600 2000 4400 44.00
ResNet18&AlexNet&SVM ::}cc(%) 308.'83(? 50.00 38.00 30.00 50.00 28.00 43.00 38.00 30.00
ResNetSO&GoogLeNet&EL i:}cc(%) 4(38960 62.00 50.00 36.00 36.00 32.00 61.00 40.00 50.00
ResNetSO&GoogLeNet&KNN i:jcc(%) 501.'8670 86.00 54.00 34.00 66.00 48.00 29.00 50.00 46.00
ResNet50&GoogLeNet&SVM i:}cc(%) 509.'9660 78.00 70.00 38.00 76.00 46.00 71.00 56.00 42.00
ResNet50&AlexNet& EL i:}cc(%) 402..895? 70.00 64.00 32.00 42.00 40.00 59.00 32.00 44.00
ResNet50& AlexNet&KNN Ace (4) WV 5200 3600 2000 5200 5400 2000 48.00 3800
ResNet50&AlexNet&SVM ::}cc(%) 409.;)110 72.00 48.00 34.00 60.00 48.00 53.00 50.00 28.00
GoogLeNet&AlexNet&EL i:}cc(%) 3(;‘:'7350 42.00 36.00 16.00 38.00 26.00 51.00 30.00 36.00
GoogLeNet&AlexNet& KNN i:}cc(%) 306.'6%40 40.00 26.00 22.00 50.00 52.00 16.00 50.00 38.00
GoogLeNet&AlexNet&SVM i:}cc(%) 307.'7190 44,00 44.00 18.00 46.00 30.00 35.00 50.00 30.00

AVERAGE ACCURACY (%) 46.12 61.00 49.67 29.56 56.44 41.78 47.33 45.00 40.33

In terms of accuracy rates, ResNet18&Resnet50&SVM performs the best (67.18%)
when compared to the performances of other methods (Table 7.36). On the other hand, it
is seen that ResNetl 8&AlexNet&KNN has the lowest performance (39.19%). If a
classifier-based comparison is made, the highest average is obtained in SVM-based
classification (58.36%). 48.61% and 55.75% of classification accuracy rates have been

obtained for the classifiers of KNN and EL, respectively.
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Table 7.36 Average accuracy rates

AVERAGE ACCURACY RATES (%)

ResNet18&ResnetS0&EL 60.01 | ResNet18&AlexNet&EL 52.60 |  ResNet50&AlexNet&EL 59.99
ResNet18&ResnetS0&KNN | 58.00 | ResNet18&AlexNet&KNN 39.19 | ResNet50&AlexNet& KNN | 41.03
ResNet18&Resnet50&SVM 67.18 | ResNet18&AlexNet&SVM 50.89 | ResNet50&AlexNet&SVM | 56.95
ResNet18&GoogLeNet&EL | 53.33 | ResNet50&GoogLeNet&EL | 5998 | GoogLeNet&AlexNet&EL | 51.59
ResNet18&GoogLeNet&KNN | 57.01 | ResNet50&GoogLeNet&KNN | 57.05 | GoogLeNet&AlexNet& KNN | 39.38
ResNet18&GoogLeNet&SVM | 64.95 | ResNet50&GoogLeNet&SVM | 66.25 | GoogLeNet&AlexNet&SVM | 53.21

Summary graphic for case 4 is in Figure 7.9. While clr1 is the dataset with the highest

classification success (66.93%), c4rl is the dataset with the lowest classification success

(44.6%).
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Figure 7.9 Summary for case 4

Average times to classify the features are given in Table 7.37. The EL-based
classification time is 449.83 seconds on average. The KNN-based classification time is
44.44 seconds on average. The SVM based classification time is 74.12 seconds on
average. It is seen that the classification time of EL is approximately 10 times longer than

KNN and approximately 6 times longer than SVM.
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Table 7.37 Classification times (seconds)

METHOD
ResNet18&Resnet50&EL
ResNet18&Resnet50&KNN
ResNet18&Resnet50&SVM
ResNet18&GoogLeNet&EL

ResNet18&GoogLeNet& KNN
ResNet18&GoogLeNet&SVM

ResNet18&AlexNet&EL
ResNet18&AlexNet& KNN
ResNet18&AlexNet&SVM
ResNet50&GoogLeNet&EL

ResNet50&GoogLeNet& KNN
ResNet50&GoogLeNet&SVM

ResNetS0&AlexNet&EL
ResNet50&AlexNet& KNN
ResNet5S0&AlexNet&SVM
GoogLeNet&AlexNet&EL
GoogLeNet&AlexNet& KNN
GoogLeNet&AlexNet&SVM

7.4 Analysis

7.4.1 Analysis for Binary Classification (for Case 1 and Case 3)

clrl
231.10

12.38
23.78
189.53
8.20
13.16
423.62
70.71
111.60
277.84
15.26
24.77
490.67
85.75
130.16
473.67
73.49
110.59

clr3
242.58

12.89
22.20
178.76
4.80
12.26
118.32
68.63
118.32
287.12
14.93
25.20
519.97
78.08
133.84
450.88
68.52
117.23

c2r2
224.33

9.28
19.88
197.30
4.74
12.37
506.69
73.93
113.37
260.18
14.91
26.83
578.70
88.71
140.65
561.71
82.18
124.10

DATASET

c2r3
261.33

9.28
21.87
180.78
5.24
12.34
475.42
65.48
109.12
277.47
13.38
28.62
629.04
97.33
153.35
544.76
80.26
131.76

c3rl
252.85

9.75
21.83
196.56
7.85
14.86
431.72
71.55
114.25
313.64
14.93
27.74
569.36
92.75
149.33
442.38
73.04
112.21

c3r3
233.20

13.08
21.98
205.25
4.73
14.81
468.47
70.55
112.27
256.21
14.74
27.75
540.96
81.55
122.74
485.71
76.67
127.73

cdrl
302.36

9.24
22.32
211.15
11.29
15.43
589.67
70.65
108.06
334.60
14.38
26.28
687.69
83.71
133.65
640.37
77.04
130.34

c4r3
446.85

14.13
23.05
243.09
7.87
14.17
805.64
62.62
105.34
513.38
12.28
25.83
1141.30
83.74
127.95
958.20
78.02
119.74

In this section, the results of the tested combinations have been also compared with the

results of the CNN models. In the models, epoch value was taken 5, and learning rate was

taken 0.001. In order for the results to be comparable, 10-fold cross validation was used

in these models as well. The confusion matrices of ResNet18 have been given in Figure

7.10. The results of the CNN models have been also given for 10-fold cross validation.

The target class is shown on the horizontal axis, while the output class is shown on the

vertical axis.
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Figure 7.10 Confusion matrix for ResNet18 (binary classification)

As shown in Table 7.38, the accuracy rates of ResNet50 and GoogleNet are close to
each other (87.87% and 88.07%, respectively). AlexNet's success is the lowest compared
to the other three models. The average accuracy rate for the classification of unpatterned

fabrics is higher than in patterned and mixed fabrics. The graph showing the success of

the models is in Figure 7.11.
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According to the classification times (Table 7.39), ResNet50 is the model with the

longest time to result (8§774.67 seconds on average). The model that results in the shortest

time is AlexNet ( 849 seconds on average).

Table 7.38 Accuracy rates of CNN models for binary classification (%)

METHOD

ResNetl8
Resnet50
GooglLeNet
AlexNet
AVERAGE

92
90
88
86
84
82
80

78

Un-patterned
Fabrics

85.25
91.10
88.90
86.80
88.01

—4&— Un-patterned Fabrics

d

RESNET18

DATASET
Patterned .
Fabrics Mix
88.30 85.31
87.50 85.00
87.60 87.70
83.10 86.80
86.63 86.20

RESNETS50

Patterned Fabrics

GOOGLENET

AVERAGE

86.29
87.87
88.07
85.57

Mix

ALEXNET

Figure 7.11 Summary of CNN models for 2-class classification

Table 7.39 Classification times of CNN models for binary classification (seconds)

METHOD

ResNet18
ResnetS0
GoogLeNet
AlexNet

Un-patterned

Fabrics
1530
8408
2635

641

DATASET

Patterned
Fabrics

1452

9824

2617
635

82

Mix
3033
8092

5019
1271

AVERAGE

2005.00

8774.67

3423.67
849.00



The comparison of case 1 and case 3 with CNN models is given in Table 7.40. It can
be observed that the success of case 3 in patterned fabrics (86.72%) is slightly higher than
the success of case 1 (86.40%) and CNN models (86.63%) for patterned fabrics. On the
other hand, the success of CNN is higher than the successes of case 1 and case 3 in other

datasets (patterned and mix).

Since a feature fusion is created by combining the features of the two models in case

3, the classification time in case 3 is approximately twice the classification time of case 1.

Table 7.40 Comparison for binary classification

Comparison Methods Results
CNN 88.01%
Average accuracy rates for unpatterned fabrics Case 1 86.20%
Case 3 85.39%
CNN 86.63%
Average accuracy rates for patterned fabrics Case 1 86.40%
Case 3 86.72%
CNN 86.20%
Average accuracy rates for mix fabrics Case 1 85.75%
Case 3 85.54%
CNN unpatterned
Dataset classified with highest success Case 1 patterned
Case 3 patterned
CNN mix
Dataset classified with lowest success Case 1 mix
Case 3 unpatterned
CNN 3763.08 sec
Average time Case 1 213.46 sec
Case 3 448.74 sec
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7.4.2 Analysis for 8-Class Classification (for Case 2 and Case 4)

The outcomes of the tested combinations have also been compared with the outcomes
of the CNN models in this section (Like section 7.4.5.1). Epoch value was set to 5 in the
models, and learning rate was set at 0.001. Additionally, 10-fold cross validation was
applied to these models to ensure that the outcomes could be compared. Figure 7.12
contains the confusion matrices of ResNet18. The vertical axis indicates the output class,
and the horizontal axis indicates the target class. Table 7.41 displays the results of CNN
models. ResNetl8 has the greatest accuracy rate (69.89%) compared to other models
(ResNet50, GoogleNet, AlexNet). The second most successful method is ResNet50
(65.75%). The averages of GoogleNet and AlexNet are quite low (48.86%, and 41.89%,
respectively). On the other hand, when dataset-based comparison is made, it is seen that
clrl is the dataset with the highest average accuracy rate (Figure 7.13). When this dataset

is classified using ResNet18, approximately 80% success is achieved.

The average classification accuracy rate of the first four datasets with unpatterned
samples (clrl, cl1r3, c2r2, c2r3) is 61.74%, while the average classification success of the

last four datasets with patterned samples (c3r1, c3r3, c4rl, c4r3) is 51.46%.
The classification times of CNN models are shown in Table 7.42. AlexNet is the model

with the lowest classification time (350 seconds), while ResNet50 has the longest

classification time (2203.75 seconds).
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Figure 7.12 Confusion matrix for ResNet18 (8-class classification)
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Figure 7.12 Continues
Table 7.41 Accuracy rates of CNN models for 8-class classification (%)
DATASETS
METHOD clrl clr3 c2r2 c2r3 c3rl c3r3 cdrl c4r3 | AVERAGE
ResNet18 79.80 70.00 70.50 80.00 72.30 7230 52.80 61.40 69.89
Resnet50 74.30 63.50 7050 71.00 7250 6430 5430 55.60 65.75
GoogLeNet 63.25 54.00 5830 4750 51.50 4250 40.50 33.33 48.86
AlexNet 48.80 4425 46.00 46.00 51.20 4275 31.00 25.10 41.89
AVERAGE 66.54 5794 6133 61.13 61.88 5546 44.65 43.86
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Figure 7.13 Summary of CNN models for 8-class classification

Table 7.42 Classification times of CNN models for 8-class classification (seconds)

METHOD clrl
ResNet18 1580
ResNet50 2270
GoogLeNet 1350
AlexNet 390

clr3
1570
2090
1330
330

c2r2
1630
2210
1300
350

DATASETS
c2r3  c3rl
1640 1620
2250 2280
1310 1300
350 360

c3r3  c4rl c4r3 AVERAGE
1630 1670 1550 1611.25
2250 2180 2100 2203.75
1320 1280 1400 1323.75
340 350 330 350.00

There can be some intriguing conclusions made. The average accuracy rates for the

first four datasets (clrl, clr3, c2r2, and c2r3) are 58.65% for case 2 and 57.15% for case

4, while the average accuracy rates for the next four datasets (c3r1, c3r3, c4rl, and c4r3)

are 50.91% for case 2 and 48.37% for case 4. Similar results were obtained when

examining the results of CNN models. In the light of this information, it can be concluded

that the defects in the unpatterned fabric samples are more easily classified than the defects

in the patterned fabrics.

Clrl is the dataset classified with the highest success on average for case4 and CNN

models. When the maximum performances obtained for the clrl data set are examined,
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classification is achieved with 80% success in case 4, 77.5% in case 2 and 79.8% in CNN

models.

Now that the results of the CNN models have been examined, they can now be

compared with the results of this study. Comparison of them are given in Table 7.43.

Table 7.43 Comparison for 8-class classification

Comparison Methods Results
CNN 61.74%
Average accuracy rates for unpatterned fabrics Case 2 58.65%
Case 4 57.15%
CNN 51.46%
Average accuracy rates for patterned fabrics Case 2 50.91%
Case 4 48.37%
CNN clrl (66.54%)
Dataset classified with highest success Case 2 c3rl (58.87%)
Case 4 clrl (66.93%)
CNN c4r3 (43.86%)
Dataset classified with lowest success Case 2 c4rl (43.23%)
Case 4 carl (44.58%)
CNN 1372 sec
Average time Case 2 95 sec
Case 4 189 sec
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CHAPTER EIGHT

CONCLUSION AND FUTURE WORK

8.1 Conclusion

The decision on the average quality of the fabric rolls is based on the number of defects
detected per unit fabric area. Traditionally, fabric defect control is based on humanpower.
On the basis of the training he/she received and the experience he/she has accrued, an
experienced and specifically trained personel may identify the visible defects in a fabric
(Ala & ikiz, 2014). He or she can then rectify any defects discovered or mark them for
future correction. Although the process has highly cost, it is a control type that does not
achieve high success, as was mentioned in this study. For this reason, the idea of
automating this process has emerged and studies have been started in this area. Given the
recent advancements in technology, automated fabric defect detection systems have

garnered a lot of attention for a number of reasons, including improved product quality.

Especially in recent years, the use of CNN-based models has been very popular not
only in this field but also in all fields. It is obvious that CNN has advantages as well as
disadvantages. However, the disadvantages of CNN are not enough to stain the popularity
of CNN. In the literature, it is seen that CNN models developed by considering the weak
points of CNN models are presented. This thesis aims to present a system that will give
results in less time and is at least as successful as CNN. For these purposes, many cases

have been created and a comprehensive analysis has been carried out for these cases.

The lack of a database containing fabric defects and the difficulties encountered in
creating a new database led us to use the Tilda database, which is the only database open
to access in this field. The study consists of four cases in which the data sets in Tilda are
handled differently. For case 1 and case 3, subdirectories other than e0 have been collected

in one directory, since fabric samples have been tried to be classified as defected or non-
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defected. As a consequence, for un-patterned fabrics, we have 200 non-defected images
and 1400 defected images. On the other hand, the number of images we have for patterned
fabrics is the same as the number of images for un-patterned fabrics. In addition to all of
these, the study looked into the accuracy of classification in a dataset that included both
patterned and un-patterned fabrics. This dataset is called ‘mix’ and it consists of 400 un-
defected images and 2800 defected images from the preceding two datasets. Images with
and without patterns, as well as various textures, have all been identified as defected or
un-defected in this way. For case 2 and case 4, sets of Tilda database have been used as
they are. The performances of eight sets (clrl, clr3, c2r2, ¢2r3, ¢3rl, ¢3r3, c4rl, c4r3)
have been analyzed and compared separately. One feature extraction method and one
classifier are used in case 1 and case 3, while fusion features are obtained and classified

in case 2 and case 4.

Different approaches using four CNN-based models such as ResNetl8, ResNet50,
GoogLeNet, and AlexNet have been used in feature extraction step, while EL, KNN, and
SVM have been used in classification step. In this study, unlike other studies in the field
of fabric defect classification, feature fusion has been used for feature extraction. In
feature fusion approach, binary combinations of ResNet18, ResNet50, GoogLeNet, and
AlexNet  (ResNetl8&ResNet50,  ResNet18&GoogleNet,  ResNetl8&AlexNet,
ResNet50&GoogleNet, ResNet50&AlexNet, GoogleNet&AlexNet) have been

preferred.

The methods used in case 1 and case 2 are as follows:

e ResNetl8&EL
e ResNetl 8&KNN
e ResNetl8&SVM
e ResNetS0&EL
e ResNet5S0&KNN
e ResNet50&SVM
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e GoogleNet&EL

e GoogleNet&KNN
e GoogleNet&SVM
o AlexNet&EL

o AlexNet&KNN

e AlexNet&SVM

The methods used in case 3 and case 4 are as follows:

e ResNetl8&Resnet5S0&EL

e ResNetl 8&Resnet5S0&KNN

e ResNetl8&Resnet50&SVM

e ResNetl8&GooglLeNet&EL

e ResNetl8&GoogLeNet& KNN
e ResNetl8&GooglLeNet&SVM
o ResNetl8&AlexNet&EL

o ResNetl8&AlexNet& KNN

e ResNetl8&AlexNet&SVM

e ResNet50&GoogLeNet&EL

e ResNet50&GoogLeNet& KNN
e ResNet50&GoogleNet&SVM
o ResNet50&AlexNet&EL

o ResNet50&AlexNet& KNN

e ResNet50&AlexNet&SVM

e GoogleNet&AlexNet&EL

e GoogleNet&AlexNet&KNN
o GooglLeNet&AlexNet&SVM
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If we come to the conclusions of the cases mentioned above:

ResNet50 & SVM has the highest performance in the first case. Considering
their average performances, EL and SVM have close values while KNN's value
is low. Additionally, it is seen that the average specificity value of KNN is about
half of the specificity values of other classifiers in case 1, and less than half of
the specificity values of other classifiers in case 3. KNN is a classifier that is
affected by the number of samples, sensitive to variables, and therefore not

robust.

In the second case, the methods are not as successful as in case 1.
ResNet50&SVM has been the highest performing method in case 2 as well as

case 1. SVM is the most efficient classifier.

In the third case, ResNet50&GoogleNet&SVM achieved over 90% on
average. SVM is the highest performing classifier. It is seen that the average
specificity value of KNN is less than half of the specificity values of other
classifiers (as in case 1). EL and SVM are less impacted by the quantity of

samples than KNN, indicating that they are more robust classifiers.

In the next case, ResNetl8&Resnet50&SVM has the highest performance
compared to others. ResNet50 GoogLeNet&SVM is the second most successful

method. The most effective classifier is SVM.

To summarize, it was concluded that the methods tested in all cases gave results close

to CNN. Time comparisons reveal that fusion methods (used in case 3 and case 4) produce
results more slowly than CNN&machine learning combination methods used in cases 1
and 2, but that this delay is incredibly minimal when compared to the completion times of
CNN methods. In this case, machine learning-based classification is more preferable after

CNN-based feature extraction instead of CNN-based classification, considering the time
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advantage. Additionally, classification success of un-patterned fabrics is remarkably
higher than that of patterned fabrics. Therefore, it would be appropriate to make
improvements to increase success in detecting defects on patterned fabrics. Moreover,
when the success rates in case 2 and case 4 are considered, the low rates are striking.
Higher rates may result from doing classification once the images have undergone the

proper preprocessing.

8.2 Future Work

The following issues can be solved in the future:

e [t is aimed to increase the performance by increasing the number of samples

by using augmentation techniques.

e [t is aimed to shorten the time by applying feature selection methods to the

features obtained from CNN-based models.

e Converting the system into a product as a real-time defect checking machine

will close the gap in this area and will be economical as it is a domestic solution.

e [t is obvious that there is a dataset problem in this area. In the future, it is aimed

to create a large database containing a large number of fabric defect samples.
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