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DETECTING AND CLASSIFYING FABRIC DEFECTS WITH COMPUTER-

VISION ALGORITHMS 

 
ABSTRACT 

 
Image processing has been employed in a variety of fields since the advent of image 

processing techniques. One of these fields is textile. The existence of any defect in a fabric 

is one of the most important factors affecting the quality of the fabric. There are many 

types of fabric defects that can occur for various reasons. It's critical to figure out what 

caused the defect and fix it so that it doesn't occur again. 

 

Automation of fabric defect detection has recently attracted a lot of interest in view of 

the development in artificial intelligence technology in order to be able to discover defects 

with a high degree of success and to limit the harm to the manufacturer. However, some 

problems are encountered in this area. Fabric defect detection is a challenging subject 

since there exist a great number of defects that might result from a variety of issues. 

Additionally, the restriction of this study is that the Tilda database is one of the limited 

datasets that contain fabric defect samples and can be accessed in this field. 

 

This thesis focuses on analyzing different feature extraction methods and different 

classifiers and discussing the advantages and disadvantages of the combinations. Different 

cases have been created that handle the data sets from different angles and apply different 

methods. While three different methods (EL, KNN, and SVM) have been tested in the 

classification stage, different CNN-based approaches (ResNet18, ResNet50, GoogLeNet, 

and AlexNet ) have been tested in the feature extraction stage. The results obtained have 

been also compared with the results of ResNet18, ResNet50, GoogLeNet, and AlexNet. 

 

Keywords: fabric defect classification, CNN, machine learning, deep learning.  
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BİLGİSAYAR-GÖRME ALGORİTMALARI İLE KUMAŞ HATALARININ 

TESPİTİ VE SINIFLANDIRILMASI 

 
ÖZ 

 

Görüntü işleme, görüntü işleme tekniklerinin ortaya çıkmasından bu yana çeşitli 

alanlarda kullanılmıştır. Bu alanlardan biri de tekstildir. Bir kumaşta herhangi bir kusurun 

varlığı bu kumaşın kalitesini etkileyen en önemli faktörlerden biridir. Çeşitli nedenlerle 

oluşabilen birçok kumaş kusuru türü vardır. Kusura neyin neden olduğunu bulmak ve 

tekrar oluşmaması için düzeltmek çok önemlidir. 

 

Kumaş kusur tespitinin otomasyonu, hataları yüksek derecede başarı ile keşfedebilmek 

ve üreticiye verilen zararı sınırlandırmak için yapay zekâ teknolojisindeki gelişmeler göz 

önüne alındığında son zamanlarda büyük ilgi görmüştür. Ancak bu alanda bazı sorunlarla 

karşılaşılmaktadır. Kumaş kusur tespiti, çeşitli sorunlardan kaynaklanabilecek çok sayıda 

kusur bulunduğundan zorlu bir konudur. Ayrıca bu çalışmanın kısıtlılığı, Tilda veri 

tabanının kumaş kusur örneklerini içeren ve bu alanda erişilebilen sınırlı veri setlerinden 

biri olmasıdır. 

 

Bu tez, farklı öznitelik çıkarma yöntemlerini ve farklı sınıflandırıcıları analiz etmeye 

ve bu kombinasyonların avantaj ve dezavantajlarını tartışmaya odaklanmaktadır. Veri 

kümelerini farklı açılardan ele alan ve farklı yöntemler uygulayan farklı durumlar 

oluşturulmuştur. Sınıflandırma aşamasında üç farklı yöntem (EL, KNN ve SVM) test 

edilirken, öznitelik çıkarma aşamasında CNN tabanlı farklı yaklaşımlar (ResNet18, 

ResNet50, GoogLeNet ve AlexNet) test edilmiştir. Elde edilen sonuçlar ResNet18, 

ResNet50, GoogLeNet ve AlexNet sonuçlarıyla da karşılaştırılmıştır. 

 

Anahtar kelimeler: kumaş kusuru sınıflandırma, KSA, makine öğrenmesi, derin 

öğrenme. 
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CHAPTER ONE 

INTRODUCTION 

 

The textile industry, one of Turkey's more established industrial sectors, has had a 

considerable influence on the country's economy throughout the years in terms of both the 

employment opportunities it provides and the value it contributes to the production 

process (Ala & İkiz, 2015). One of the most important subsectors of the textile industry is 

the woven fabric sector. Additionally, woven fabric exports account for a significant 

portion of all global textile exports. On the other hand, as in the manufacture of all goods, 

defects are inevitable in the production of woven fabrics. Woven fabric defects are the 

variations that impact the fabric's look, modify the fabric's structure, and result in 

modifications to the region's limits (Dülgeroğlu Kısaoğlu, 2010). The Turkish Standards 

Institute (TSE) defines fabric defects as "defects in fabrics that can be seen and evaluated 

due to yarn, auxiliary materials, workmanship, machinery, equipment or working method 

and spoil the appearance of the fabric" (2005). Therefore, defects on fabrics cause some 

negative consequences such as customer dissatisfaction and financial loss. If there is a 

defect in a fabric, it causes 45-65% decrease in price of it (Srinivasan et al., 1992). 

Traditionally, fabric defect detection is done by human vision. Detection of fabric defects 

can be done on-line during fabric production or off-line after fabric production (Hanbay 

& Talu, 2014). Preventing the fabric defects depends on intervening as soon as any defect 

occurs. While the possibility of intervention during production is eliminated in off-line 

control, there is a possibility that the error rate increases in on-line control during 

production. Although human-based control is a common type of control, it has a number 

of disadvantages (Table 1.1). Personnel who will provide fabric control are selected 

among trained and experienced people in this field. In the study of Ala and İkiz (2015), 

production is carried out on 30 weaving looms and the personnel work in three shifts. This 

creates the need for a large number of personnel in a company. Despite the high costs, the 

success of finding defects is low. 
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Table 1.1. The disadvantages of traditional defect control 

Disadvantage Explanation 

Loss of human power 
There is a loss of manpower due to the employment of 

trained personnel who are assigned only to find defects. 

Waste of time 
If the control is done after fabric production, it causes 

time loss. 

Low success rate 
It has been reported that the experienced personnel in this 

field can find 70% of the defects (Dorrity et al., 1995). 

Higher cost 

In addition to the salaries of the personnel employed for 

the control process, the cost is high due to the fact that 

some of the defects cannot be found by the personnel. 

High rate of error 

At least 30 percent of the defects cannot be found. 

Personnel worked in this field may be tired and unable to 

concentrate.  

 
 

According to the study of Kısaoğlu (2002), fabric defects are divided into four 

categories: defects in the weft direction, defects in the warp direction, defects on the fabric 

surface and edge defects. Some defect names belonging to these four types are given in 

Table 1.2. As a result of our reviews, it is seen that different numbers of fabric defects as 

well as different groupings of these defects have been reported in the literature. Goldberg 

(1950) categorized fabric defects into five groups and cited 194 distinct types of defects. 
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They are divided into six classes and 130 distinct defects in accordance with ISO 

standards. Automatic defect classification is a challenging endeavor since there is such a 

wide diversity of fabric types and defect types.  

 
 
Table 1.2. Defects according to their direction 

Defect direction Defects 

Defects in the weft direction 
Weft bar, dense-loose pick spacing, weft loops, 

dirty yarn 

Defects in the warp direction Drafting, warp end 

Defects on the fabric surface 
Fibrous weft, hole, lattice, untwisted yarn, knot, 

fly 

Edge defects Temple mark, tightloose warp, selvedge fault 

 

 

Some samples of defects belonging to the types are given in Figure 1.1. Defects in (a) 

and (b) are the defects in weft direction. Defects in (c) and (d) are the defects in warp 

direction. Defects in (e) and (f) are on the fabric surface. Defects in (g) and (h) are the 

edge defects. As can be seen from these samples, some of the defects are obvious, while 

others are more difficult to understand. Considering that the working personnel are trying 

to find the fabric defects on the board that flows at a certain speed during production, most 

minor defects may be overlooked. For this reason, while there are actually many errors, 

in practice only 40-50 of these defects are recorded on the quality control cards by textile 

companies (Ala & İkiz, 2015). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

              
                (g) 

 
                 (h) 

Figure 1.1. Fabric defect samples (a) weft bar (b) dense-loose pick spacing (c) drafting (d) warp end (e) hole 

(f) fly (g) tight-loose warp (h) selvedge fault (Kısaoğlu, 2002) 

 

Ala & İkiz (2015) have encountered 3211 defects in 140.062 meters of fabric in their 

study. According to the study, broken warp, stopping mark, warp stack, weft stack, half 

wrong lift, double pick, missing warp, missing weft, tight-loose warp, and wrong lift are 

the top 10 most common defect types (Table 1.3). The ten most common defects constitute 

94.74% of the total number of defects. 
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Table 1.3. Most common defect types 

Defect Type Direction 
Number of 

Defects 

Percentage of 

Defects 

Broken warp  Warp direction 1542 48.02 

Stopping Mark Weft direction 492 15.32 

Warp stack Warp direction 279 8.69 

Weft stack Weft direction 221 6.88 

Half wrong lift Weft direction 191 5.95 

Double Pick Weft direction 104 3.24 

Missing warp Warp direction 69 2.15 

Missing weft Weft direction 65 2.02 

Tight-loose warp Warp direction 40 1.25 

Wrong Lift Weft direction 39 1.21 

SUM 3042 94.74 

 

Since the formation of these defects can be caused by raw materials, machinery or 

human beings, it is in the benefit of the manufacturer to determine the type of defect and 

take action accordingly (Barış and Ozek, 2019). Therefore, traditional defect control 

cannot fully meet the expectations considering the disadvantages mentioned above. Over 

the last two decades, many studies have been conducted in the field of automatic fabric 

control to avoid them (Rasheed et al., 2020). Automatic detection has a number of 

benefits, including lessening the loss of human power, cutting down on the time and 

expense needed for control, providing more precise results, and recording the detection 

process in order to catch future defects (Kısaoğlu, 2002). Some of the automated systems 

in this field are merely designed to identify problems; others classify them after doing so. 

Studies to categorize defects are only doing so for certain defect kinds due to the vast array 

of defect types that might exist in textiles. 
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The objectives of this study can be listed as follows: 

 

1- To perform fabric defect control, which is traditionally done using human power, 

with high accuracy rate via computer vision. 

 

2- To classify defect types using image processing and deep learning methods 

 

3- To design a lower-cost automated system with higher success, instead of a costly 

control process with 70% success in the best case. 

 
4- To save the manufacturer, who wants to perform the control process automatically, 

from foreign dependency and to meet with a much more affordable domestic system. 

 

5- Textile industry is one of the leading sectors in Turkey (Uyanık & Çelikel, 2019). It 

is obvious that launching a domestic product in this field will make significant 

contributions to our country's economy. 

 

The organization of this thesis consists of eight chapters. In the first chapter, frequently 

encountered fabric defects, the types of these defects and the reasons for the search for an 

automatic system are mentioned. In the second chapter, a detailed literature review is 

included. Studies using different feature extraction methods and studies using different 

classifiers are examined separately. The third chapter deals with data mining. The fourth 

chapter contains information about the dataset. In the fifth chapter, the methods used for 

feature extraction (deep learning based approaches, and the proposed system) in the study 

are discussed. The sixth chapter consists of the bacground for classification methods. 

While the seventh chapter includes experimental results, the eighth chapter contains 

explanations about the findings of the study and future studies. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

Considering that each picture is a matrix, it is costly to take the entire matrix as input 

due to the size of the matrices. For this reason, feature extraction methods are used to 

reduce the cost in image classification studies. In the literature, it is seen that different 

feature extraction methods have been used before using a classifier. Gray level co-

occurrence matrix (GLCM), Local Binary Patterns (LBP), Principal Component Analysis 

(PCA), Independent Component Analysis (ICA) are among the commonly used feature 

extraction methods.  

 

Yıldız et al. (2016) have proposed a system that classifies the fabric defects using the 

input images obtained from a thermal camera. K-Nearest Neghbor has been used for 

recognition of the defects using the features extracted via Gray level co-occurrence matrix 

(GLCM). In this study, four types of defect (hole, tear, nep, foreign yarn) have been tried 

to be recognized. Experiments show that the system achieves the classification with 96% 

success rate. 

 

An algorithm has been developed using the combination of wavelet theory and co-

occurrence matrix in the study of Latif-Amet et al. (2000). Images are divided to non-

overlapping subframes. Frames are classified as defected-non-defected with the help of 

the features extracted from each frame. Classification is carried out with a success of up 

to 90.78%. 

 

Zuo et al. (2012) have divided the images to non-overlapping windows and they use 

texture enhancement method to discriminate the defected area from the background. 

Features of the defected area is extracted using gray level co-occurrence matrice, and they 

are classified using euclidean distance classifier. The experiments have been performed 

on 19 fabric images with the five defect types (broken end, mispick, netting multiples, 
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slack end, thick bar). According to the experiments, they obtain higher accuracy rate 

(88.79) when non-local means algorithm is used for denoising before gray level co-

occurrence matrice. 67.30% success has been achieved when using the method without 

denoising. 

 

Hamdi et al. (2016) identify the patterns of patterned fabrics and split them into blocks 

of equal sizes. Features are extracted from images using GLCM. Defected blocks are 

identified using Euclidean distance. Experiments have been performed on a fabric 

database. There are three types of pattern in the database (dot, box, and star). They obtain 

high accuracy rates according to the experimental results.   

 

Ngan et al. (2005) have developed WGIS (wavelet preprocessed golden image 

subtraction) method. The experiments have been tested on 60 patterned images (30 non-

defected, 30 defected). The success rate is 96.7%  

 

Features are extracted using four scale dyadic wavelet decomposition in the study of 

Lambert & Bock (1997). Following that, a neural network is used to classify these 

features. They underline that the speed of the wavelet transform gives the devised 

approach less temporal complexity than the other methods. 

 

Yang et al. (2004) compare six different methods based on wavelet transform. They 

have been tested on 900 sample images (466 defected, 434 non-defected). Defected 

samples contains eight fabric defect type. Discriminative feature extraction using adaptive 

wavelet has been the best methods among the others. It successfully classifies the images 

with a 95.8% accuracy rate. 

 

Kang et al. (2013) use the combination of wavelet transform and neural network. 

Accuracy rate for recognition the defects is above 90%. It is stated that the system 

developed is not sufficient for smaller fabric defects. 
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Sabeenian et al. (2011) have developed a system that detects and classifies the fabric 

defects. The features are extracted from the images (stored in the database) using Multi 

Resolution Combined Statistical and Spatial Frequency (MRCSF). These features are 

compared with the test images to decide whether there is a defect in the test image. Nearest 

neighborhood algorithm is used for defect detection phase. Then, defect type is found. 

However, it is not specified which method is used at classification stage. Experiments 

have been performed on two different fabric type: normal fabrics and silk fabrics. In the 

developed system, 85% success has been achieved in classifying the defects of normal 

fabrics, while silk fabric defects have been classified with 80% success. 

 

Tajeripour et al. (2008) use the modified version of Local Binary Patterns (LBP) to 

reduce the complexity. A defect-free and patterned image is divided into frames. LBP is 

applied to each frame and the reference property vector is calculated. A suitable threshold 

is determined for these defect-free fabrics. In the test image divided into the frames, the 

defective frame is determined by the threshold. 

 

Li et al. (2019) develop an algorithm based on the combination of gabor and histogram 

of oriented gradients (HOG). Gabor-HOG has been used for feature extraction. Then, 

defective regions of the fabrics have been detected using low-rank decomposition. Their 

experiments have been performed for the dot-patterned fabrics, the star-patterned fabrics, 

and the box-patterned fabrics. The algorithm detects the defective regions correctly 

according to the experimental results.  

 

In the study of Ananthavaram et al.(2012), it is aimed to find defects in patterned 

fabrics by combining Regular Bands (RB) and Independent Component Analysis (ICA) 

methods. According to the tests, it is concluded that better results have been obtained 

when histogram equalization method is applied. It is indicated that the proposed approach 

is suitable for real-time applications. 
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Martinez-Leon et al. (2016) develop a system to detect the defects in patterned fabrics 

using the entropy feature calculated from histogram differences and totals. The image is 

converted to an entropy image where the defects have lower values, and a simple threshold 

is used to determine if the fabric is defective or not. In this study, test have been performed 

to detect the defects of broken end, thick bar, thin bar, hole, multiple netting and 96.1% 

success has been achieved. 

 

Sakhare et al. (Sakhare et al., 2015) compare the performances of six approaches 

(statistical approach, morphological approach, Fast Fourier Transform (FFT), Discrete 

Cosine Transform (DCT), Wavelet Transform, and Gabor Filter). Input images are divided 

into four parts. The mean of these parts is used to identify the defective part. The existence 

of a hole in the defect is first investigated. If the defect is not a hole, the remaining sorts 

of defects are examined for classification. Testing has been done to classify four different 

types of defects in the study. The experiments indicate that FFT has produced the best 

result. DCT has also shown to be the second-most effective technique. 

 

Mottalib et al. (Mottalib et al., 2015) use Bayesian classifier in their study. After 

segmenting of the defect from a fabric image, four features are extracted from the defect 

window segmented. These features are height of defect window, width of defect window, 

height to width ratio of defect window, and number of defective regions. Five fabric 

defects have been aimed to detect (color yarn, vertical missing yarn, horizontal missing 

yarn, hole, spot). They have used 70 of 128 input images for training phase and the rest 

for testing phase. Non-defected images have been classified with the success rate of 100%. 

In total, 99.19% success rate has been obtained. 

 

Ozkaya et al. (Ozkaya et al., 2018) have used thresholding, HSV transformations, and 

morphological opening/closing operations to detect the faults in fabrics. They have 

proposed an on-line fault detection system. Stains, rips and tears, pencil scratches have 

been tried to detect in their study.  
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Fabric images have been examined using morphological filters in the study of Mak et 

al. (2009). First, the features are extracted from non-defective images using Gabor wavelet 

network. Then, the input image is compared with these extracted features. If the image 

has the same background as any non-defective image previously introduced into the 

system, whether there is a defect in the image is investigated. In the study, experiments 

have been carried out on offline and real-time systems. 97.4% success has been achieved 

in offline systems and 96.7% success in real-time systems. 

 

Chan et al. (Chan & Pang, 2000) have used central spatial frequency spectrum to 

classify the defects of double yarn, missing yarn, webs or broken fabric, and yarn densities 

variation using seven features extracted from the images. They have obtained very good 

results in this study.  

 

The difference of offset Gaussian (DOOG) filter has been used in the study of Bagkur 

(2013). Testing phase has been carried out on 32 images. The system cannot find only one 

defect in a fabric image containing six different errors, but it correctly detects and 

recognizes the remaining five defects. 

 

The studies performed by Faouzi et al (2014), Hamdi et al. (2018), Thorave & Biradar 

(2014), Campbell et al. (1999) are the studies using unsupervised machine learning 

systems. Faouzi et al. (2014) use fuzzy c-means (FCM) to the parameters of straight-line 

ratio, ratio of dark areas, and gap ratio. Fabrics with the defects of missing warp, missing 

weft, oil stains, and holes have been used for experiments. Hamdi et al. (2018) have 

developed a system that automatically defects the defects in patterned fabrics without any 

training steps. Images are divided into non-overlapping blocks after the determination of 

periodic patterns in fabric images. K-Means algorithm is applied to median values of 

blocks for classifying them as defected or non-defected.  The success rate of the system 

reaches 95%. Thorave & Biradar (2014) remove the noise effect using median filter, and 

apply the K-Means algorithm. Their algorithm has low computation time. In this study, 

they obtain a success rate of 96%. Model-based clustering method is used to detect linear 
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defects in knitted and woven fabrics in the study of Campbell et al. (1999). Bayes 

Information Criterion (BIC) based model has been selected. The developed method gives 

the best and effective result compared to the methods of thresholding, binary image 

rotation, and background subtraction. 

 

Although there are many studies for the fabrics of plain, woven and knitted, there are 

very few studies done for patterned and colored patterned fabrics. Oni et al. (2018) have 

examined the studies for detection of these types of fabrics in the literature. Seven features 

have been extracted from the images using frequency spectrum analysis in the study of 

Yu et al. (2005). Back propogation neural networks have been used for color 

classification. In the study of Li et al. (2012), energy-based local binary pattern has been 

used for the images in L*a*b* space. Habib et al. (2013) use back propogation in their 

study. Autocorrelation function and gray level co-occurrence matrix have been used in the 

study of Zhu et al. (2015). 

 

Abdellah et al. (2014), Dongli et al. (2013), Ghosh et al. (2011) have been developed 

systems using support vector machines (SVM).  

 

In the study of Abdellah et al. (2014), necessary parameters are obtained by using 

genetic algorithm to reach the most suitable SVM classifier also in case of a small number 

of sample data in hand. A classification is performed with the SVM technique using the 

geometric properties of the defects. The images with the defects of missing yarn, spot, 

hole, and oil stains have been used for experiments. Defects have been recognized with 

the success rate of 94.84%. 

 

Dongli et al. (2013) combine gabor filter and SVM. Optimal parameters for SVM have 

been selected using genetic algorithms. The developed system is effective in identifying 

and classifying common monochrome cloth defects. The success rate for identifying 

defects is up to 94%. 
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Numerous studies in the area of fabric defect inspection use neural networks (NN) (Kuo 

& Lee, 2003; Huang & Chen, 2001; Kumar, 2003; Jmali et al., 2014; Rebhi et al., 2015; 

Büyükkabasakal, 2010; Çelik et al., 2014; Hanbay et al., 2015; Hanbay et al., 2017; Yu et 

al., 2005; Habib et al, 2013; Behera & Mani, 2007).  

 

Kuo & Lee have used a feedback neural network using three features extracted from 

the defects (maximum length, maximum width and grey level of defects) (Kuo and Lee, 

2003). Classifier has been trained with four classes: weft lacking, warp lacking, hole, oil 

stain. Success rate of classification for the defects of weft lacking and warp lacking is up 

to 95%, and it is up to 100% for the defects of holes and oil stains.  

 

Huang & Chen have developed a neural network based fuzzy system (Huang and Chen, 

2001). 144 gray level images have been used for classification of eight types of defects 

(double ends, double picks, missing end, missing pick, hole, light filling bar, cobweb, oil 

stain). They compare the performances of neural network and fuzzy version of neural 

network. The performance of fuzzy neural network is superior to neural network 

according to their experiments.  

 

Kumar has used a feedforward neural network to classify the defects in twill and plain-

woven fabrics (Kumar, 2003). Three defect types (mispick, netting multiplies, thin bar) 

for twill woven fabrics and four defect types (double-weft, thin bar, broken ends, slack 

pick) for plain woven fabrics have been tried for recognition. 

 

Jmali et al. have used a single layer neural network to classify the defects of warp 

threads, weft threads, oil stains, and hole (Jmali et al., 2014). 45 input images have been 

used for experiments. Test have been performed using the regression curve. They have 

obtained high performance from the developed system. 

 

Rebhi et al. use back-propogation neural network using the five features extracted from 

discrete cosine transforms (DCT) of H-images (homogeneity images obtained from input 
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images) (2015). These features are vertical energy, horizontal energy, diagonal energy, 

energy mean, and energy standard deviation. They use a dataset provided by a textile 

industry in Tunisia. There are 89 images (13 non-defected, 76 defected) in the dataset.  

 

Büyükkabasakal (2010) has been aimed to recognize the defects in the fabrics by 

extracting the feature vectors of images using principal component analysis (PCA). 

Defects have been classified using neural networks. In the study, the system has been 

trained for the defects of warp leakage, warp tip, abrage and weft leakage. In the testing 

phase, 40 images have been used includig these defects. According to the experiments, a 

success of 83% has been achieved. 

 

In the study of Çelik et al.(2014), a system that detects fabric defects in offline and 

real-time systems is recommended using linear filters and morphological processes. Tests 

have been performed for five different defect types (missing warp, missing weft, dirty 

yarn, hole and knot). The defects detected have been classified using an feedforward 

neural networks with an average success rate of 96.3%. In this study, higher success rate 

has been obtained real-time systems than offline systems. 

 

Hanbay et al (2015) use the methods of co-HOG (Co-occurrence Histograms of 

Oriented Gradients), wavelet transform and gray level co-occurrence matrix to extract the 

features and use artificial neural network to train the system in their study. 9165 test 

images (3242 defected, 5923 non-defected) have been used for the experiments. When 

using the wavelet transform, defects are classified with a 90% success rate. Also, it is seen 

that the cost has decreased considerably. 

 

Hanbay et al. (2017) apply neural networks to the seven features extracted from the 

images using fourier frequency spectrum. Experiments have been performed for both off-

line and on-line systems. The number of sample fabrics used in the experiments is 11.000. 

The system recognizes non-defected fabrics and fabrics with the needle defects with 100% 
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success rate. It recognizes the lycra defects with 86% success rate, while it recognizes the 

yarn defects with 92% success rate. 

 

The methods based on CNN have become popular in recent years.  

 

Zhu et al. (2020) optimize DenseNet which is a CNN algorithm. They combine the new 

method with a new hardware for fabric defect detection.  

 

Karlekar et al. (2015) use wavelet decomposition and different preprocessing 

operations to obtain segmented defect.  

 

Chang et al. (2018) develop a new method for patterned fabrics. Fabrics are divided 

into lattices including periodic patterns. Then, the lattice containing the defect is detected.  

 

Wei et al. (2019) make a combination of compressive sampling theorem with CNN. 

The new method is more effective compared to traditional methods and performs well in 

small data sets. 

 

Wang et al. (2018) develop a CNN based system which have two major parts. One is 

global frame classification part. It classifies the image samples using background features. 

The other is sub-frame detection part. The part checks whether each sample contains 

defected areas or not. The second part uses output of the first part for checking operation.  

 

Zhao et al. (2020) develop a CNN model based on visual long-short-term memory 

(VLSTM).  

 

Guan et al. (2019) use VGG (Visual Geometry Group) model for CNN. Simon & Uma 

(2020) extract the features using CNN and perform the classification using SVM. In this 

study, SVM is compared to DenseNet201, ResNet50, ResNet101, Inceptionv3 and 

AlexNet. 
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Şeker et al. (2016) use autoencoder algorithm as a deep learning algorithm to detect the 

fabric defects. It is the first study which uses transfer learning in the area of fabric defect. 

They aim to increase the feature extraction achievement. 88% accuracy rate has been 

obtained in this study which classifies the fabric images as defected-non-defected. 

Classification success rate is higher in the defect types of holes and stains while it is lower 

in other defects. 

 

There are some challenges in CNN. For this reason, there are studies developed to solve 

the challenges of CNN-based studies. CNN algorithms have long execution times. 

Therefore, some studies aim to shorten this period (Liu et al., 2018; Wei et al., 2018). Wei 

et al. (2018) suggest VGG based RCNN to speed up the detection process. CNN 

algorithms cannot be successful for small sample sizes. So, developing CNN algorithms 

in this area has been aimed in some studies. Li et al. (2019) develop Wide-And-Compact 

Network (WACNet). Wei et al. (2019) develop CS-CNN (compressive sampling) 

theorem. They make a comparison between the performances of CS-CNN, CNN, KNN, 

multi-layer perceptron (MLP) and SVM. In the study of Şeker (2018), this disadvantages 

has been overcome by using transfer learning. A pre-trained model AlexNet is used. 

Fabrics are tried to be divided into two different classes as defective and defect-free. There 

is not any preprocessing operation performed before deep learning in some studies, while 

learning process is performed after preprocessing operations in others (Jing et al., 2019). 

 

In the studies conducted, two main factors that cause recognition defects are mentioned 

(Xin et al., 2009). The first is the quality of the images. An environment where light is 

reflected and motor vibration affects success. The second is structurally large curves or 

overlaps in the fabric.  

 

New classification approaches are tested on the most known datasets for example Iris, 

Adult, Wine, and Breast Cancer Wisconsin … (Uci Repository). This makes it easier to 

compare with the other studies developed. Thus, which method is more effective can be 
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said easily. However, there are two known databases called as Parvis (Italian Textile 

Institute) and Tilda (Workgroup on Texture Analysis of DFG) existing in the area of 

automatic fabric defect control. The Parvis database is private, and the Tilda database is 

now free. Due to lack of public and free datasets for fabric defects, it is seen that different 

data sets are used in each study. In addition, since most of the data sets used in the studies 

have few examples, the effectiveness of the developed systems are discussed. A fabric 

database is proposed in the study of Silvestre-Blanes et al.(2019). The database consists 

of 245 images (105 defected, 140 non-defected). There is 12 different defect types. All 

images are captured with the size of 4096x256, and they are converted to the size of 

256x256. The database is available on the Internet. 

 

In this study, the public part of the Tilda dataset is used. The studies that will be 

mentioned next are among the studies using Tilda dataset. While some of these studies 

distinguish the images as defected/un-defected, some perform classification according to 

defect types. In addition, some of these studies use not only the Tilda dataset, but also 

other datasets. The findings shown below are merely the results they acquired using the 

Tilda dataset. 

 

Gabor wavelets and Principal Component Analysis (PCA) have been used in the study 

of Basturk et al. (Basturk et al., 2007). Gabor wavelets have been used for feature 

extraction, and PCA is used to reduce the dimension of features extracted. Experiments 

are performed for four defect types (e1, e2, e3, e4) of the Tilda dataset. It is obtained that 

defects have been detected accurately. 

 

Salem & Nasri (2011) compare the performances of local binary pattern and gray level 

co-occurrence matrix. SVM has been used as a classifier to detect the defects such as un-

defected, unrelated corpus, broken end, hole, kink, oil satin, missing weft. According to 

the experiments, local binary patterns give more effective results in terms of time and 

accuracy. 
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In the study of Murino et al. (2004), features have been extracted from the images using 

the methods of histogram, co-occurrence matrix and shape descriptor. They are classified 

by SVM. Databases of Parvis (1117 elements) and Tilda (1333 elements) have been used 

for experiments. Defects in Parvis database are recognized with a 99.11% success rate 

while the defects in Tilda database are recognized with a 92.87% success rate. 

 

Jing et al. (2015) use the distance matching function to determine the frequency of 

repetition of the pattern in the patterned fabric, and two properties calculated using the 

regular band are determined as fabric defects. Defects that disrupt the regularity of the 

fabric can be detected by this method. In this study, fabrics containing the defects of 

broken end, thick bar, thin bar, hole, multiple netting, and knots in the Tilda database have 

been used and the defect detection rate is 96.5% on average. 

 

Kure et al. (2017) investigate homogeneity in fabric images. They use local 

neighborhood analysis to measure homogeneity. Experiments have been performed for 

six defect types (holes, slack end, loose weft, drop stitch, broken end, missing plush loop) 

in Tilda database. A comparison between wavelet transform, gabor transform and the 

system developed has been made. According to the experiments, the cross validation 

accuracy of the system is higher than the others (96.40%). The disadvantage of the study 

is that it only classifies the images according to whether there are defects or not. 

 

 Başıbüyük et al. (2008) have achieved 97% success by applying particle filtering in c1 

group of Tilda dataset. Images are divided into sub-windows. Using randomly selected 

un-defected images, AR coefficients are calculated.  

 

Bissi et al. (2013) use gabor filter bank and principal component analysis (PCA), and 

test the performance using the parts of c1-r1 and c1-r3 of Tilda. This study, with more 

than 98% success.  
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After partitioning the images into blocks, feature vectors extracted from each block are 

used in a regression based method which is named PG-LSR in the study of Cao et al. 

(2017).  

 

Liu et al. (2019) use ELM (Extreme Learning Machine) method after extracting the 

features from segmented defects in fabrics. The accuracy of the system they have 

developed is 94.5%.  

 

Jing et al. (2019) use convolutional neural network (CNN) after division the images to 

patches. 97.48% classification accuracy rate has been achieved for Tilda. They choose six 

classes of Tilda (un-defected, Holes, Carrying, Scratch, Stain, and Knots). 

 

Jeyeraj et al. (2019) use a transfer learning based CNN algorithm called AlexNet. They 

obtain high accuracy rate (96.55%).  

 

Sezer et al. (2007) tries to classify the Tilda dataset using Independent Component 

Analysis (ICA). In the study, while relatively better results were obtained in c1-r1 and c1-

r3 than Tilda's other groups, the result of c3-r3 was not shared due to poor success. This 

system is very sensitive to external factors.  

 

To detect defects on fabrics with complicated textures, Qu et al. (2016) developed a 

system based on dual-sale over-complete dictionary. Experiments using Tilda and their 

database belongs to them showed that this system performed well (96.5%). The 

disadvantage makes it unsuitable for online fabric assessment. In the study that used the 

classifiers of KNN and SVM to compare the performances of optimized and non-

optimized Haralick parameters, it was discovered that optimized Haralick parameters 

outperformed (99.00%) non-optimized Haralick parameters (Chandra et al., 2016).  
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Kaynar et al. (2017) make a comparison between Local Binary Pattern (LBP) and Gray 

Level Co-occurrence Matrix (GLCM). Artificial Neural Network (ANN) is used for 

classification after feature extraction is performed using one of LBP and GLCM.  

 

Makaremi et al. (2018) compare several classifiers (SVM, Multilayer Perceptron 

(MLP), Adaboost, KNN) to the modified version of LBP (MLBP). The study includes the 

results of a 596-image dataset developed by integrating four independent data sets. It is 

concluded that the MLP algorithm gives better results (97.31%).  

 

A system that uses a pyramid histogram of edge orientation gradients (PHOG) and a 

support vector machine (SVM) is recommended in the study of Cuifang et al. (2020). In 

this study, in which the effect of different block sizes is also examined, it is seen that the 

detection rate increases as the size increases.  They extract features using pyramid 

histogram of oriented gradients (PHOG) and perform classification using support vector 

machine (SVM). The performance of PHOG is superior to the performances of scale-

invariant feature transform (SIFT) and histogram of oriented gradients (HOG).  

 

When looking at the studies using the Tilda data set, it is clear that the analyzed studies 

attempted to identify patterned or non-patterned materials within themselves. Among the 

studies examined, there was no study that performed classification by bringing together 

the patterned and un-patterned fabrics in the Tilda data set. In this study, patterned and 

un-patterned fabrics were brought together and the fabric samples were tried to be 

separated as defected/un-defected. 
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CHAPTER THREE 

DATA MINING 

 
3.1 The Definition of Data Mining 

 
Data is meaningless unless it is processed. Data mining is a technique for converting 

raw (unprocessed) data into information. Thanks to data mining, previously unknown 

valid and applicable information is obtained from the data stack (Baykal, 2006). It is a 

multidisciplinary tool consisting of fields such as statistics, machine learning and database 

management (Jackson,2002). It is not a solution in itself; it is a tool that aids in the 

decision-making process and gives the knowledge needed to address the problem (Baykal, 

2006). 

 

3.2 Data Mining Application Areas 

 
Data mining has applicability in various fields such as banking, economy, health, 

security for various reasons. Examples in these fields are given below: 

 
• Database analysis, 
• Risk analysis such as optimizing service delivery, 
• Decision support systems, 
• Market research such as identification of similarities between customers, 
• Rapid diagnosis and treatment in the health sector 

 
 
3.3 Data Mining Models 

 
In this study, data mining models are examined under four main headings according to 

their functions (Figure 3.1). 
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Figure 3.1 Data mining models 

 
3.3.1 Clustering  

 

Clustering is the presence of similar elements in the same cluster and dissimilar 

elements in different clusters. In clustering, there are no clusters initially. Clusters are 

found based on the data. 

 

More data exists every day compared to the previous days. If they can be evaluated, 

more data means more opportunities. Having the correct clusters depends on the clustering 

algorithm which is used (Figure 3.2).  
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Figure 3.2 Clustering algorithms 

 

There are a variety of clustering algorithms, which are grouped into five classes based 

on the methodologies they employ. The partitioning-based clustering algorithms are the 

first group. Initially, one cluster encompassing all objects is handled in this group. Objects 

are repeatedly grouped into clusters, from the roots to the leaves. K-Means (MacQueen, 
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1967), K-Medoids (Kaufman & Rousseeuw, 1987), and K-Modes (Huang, 1998) are the 

most prominent partitioning-based clustering techniques. 

 

The second group is hierarchical clustering. The structure is based on a tree. It may be 

divided into two types: agglomerative and divisive. The structure is integrated from the 

leaves to the root in an agglomerative approach. The structure is partitioned from the roots 

to the leaves in a divisive approach. BIRCH (Balanced Iterative Reducing and Clustering 

using Hierarchies) (Zhang et al., 1996), CURE (Clustering Using REpresentatives) (Guha 

et al., 2001), ROCK (RObust Clustering using linKs) (Guha et al., 2000), and Chamelon 

(Karypis et al., 1999) are some well-known hierarchical based clustering algorithms. 

 

The density-based clustering is the third option. Objects are divided into three 

categories: core, border, and noise. For each object, the neighborhood is taken into 

account. Unlike previous algorithms, they can find clusters of various forms. DBSCAN 

(Ester et al., 1996) and OPTICS (Ordering Points To Identify the Clustering Structure) 

(Ankerst et al., 1999) are two of the most prominent density-based clustering algorithms. 

 

Grid-based clustering is the fourth group. The grid layout is used to create clusters 

(Sajana et al., 2016). In grid-based algorithms, time complexity is unrelated to the quantity 

of data. As a result, clustering algorithms of this type are quick. STING (STatistical 

INformation Grid) (Wang et al., 1997), CLIQUE (CLustering In QUEst) (Agrawal et al., 

2005), and WaveCluster (WAVElet based CLUSTER) (Sheikholeslami et al., 1998) are 

the most common grid-based clustering algorithms. 

 

Model-based clustering is the fifth and final group. Some techniques are used to 

associate data items with one another. This type of algorithm employs two techniques: 

neural networks and statistical methodologies. The EM (Expectation-Maximization) 

technique is the most widely used model-based clustering algorithm (Dempster et al., 

1977). 
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3.3.2 Classification  
 

One of the data mining models is classification. A predefined set which is labelled 

exists in a classification problem. When a new sample comes in, it is estimated to which 

class this sample belongs. Here, classification algorithms are examined under five main 

headings, which are k-nearest neighbors, support vector machines, decision tree, naïve 

bayes, and neural networks (Figure 3.3). However, there are also classification algorithms 

other than those mentioned here. 

 

The main purpose of k-nearest neighbor (KNN) is to classify new objects using the 

trained data. The k parameter specifies the number of data to evaluate while finding a new 

sample's class label. The label of the sample is assigned to the class in which the majority 

of the k closest neighbors to the sample are. 

 

Support vector machine algorithms (SVM), is capable of sorting data into linear in two-

dimensional space, planar in three-dimensional space, and hyperplane in 

multidimensional space (Cortes and Vapnik, 1995). Many hyperplanes may exist between 

the classes. This method aims to find the best hyperplane that divides the classes. 

 

A decision tree is a decision structure that has the shape of a tree. It does classification 

in which the training procedure is done inductively from known classes of sample data 

(Su and Zhang, 2006). A decision tree is a structure that is used to divide vast volumes of 

data into little groups of data using simple decision-making stages. 

 

Naive Bayes classifier is another algorithm of classification task. It is based on Bayes 

theorem. The Bayes theorem considers two occurrences (X and Y). P(X|Y) is the 

probability of event X occurring when the event Y occurs (3.1). P(Y|X) is the probability 

of event Y occurring when the event X occurs. P(X) is the probability of event X occuring. 

P(Y) is the probability of event Y occuring. 
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                                               𝑃𝑃(𝑋𝑋|𝑌𝑌) = 𝑃𝑃�𝑌𝑌�𝑋𝑋�𝑃𝑃(𝑋𝑋)
𝑃𝑃(𝑌𝑌)

                                                    (3.1) 

 

Artificial neural networks (ANNs) are classification algorithms in which learning, one 

of the basic functions of the human brain, is used. The inspiration for artificial neural 

networks is the human brain. The challenge of mathematically modeling the human brain's 

learning process has shown how the human brain learns. 

 

Figure 3.3 Classification algorithms 
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3.3.3 Regression 
 

Regression is a data mining model in which the target variables of test samples are 

estimated using a prediction model built by a training set. It is similar to classification. 

Regression is used to predict continuous values, whereas classification is used to predict 

categorical values (Han et al., 2011). 

 

3.3.4 Association Rule Mining 
 

Another data mining model is association rule mining (ARM) which seeks to find 

frequently recurring patterns (co-occurrences), correlations, or intriguing relationships 

between variables in a big collection of data using certain interestingness criteria.  

 

Two steps are followed when finding association rules (Zaki, 1999): 

 

1- Frequently repeated items are found. Each of them is repeated at least as many 

times as the minimum number of supports required. 

 

2- Items that are regularly repeated produce strong association rules. These rules must 

have a minimum level of support and confidence. 
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CHAPTER FOUR 

DATASET 

 
The study is tested on the public part of the Tilda dataset. Tilda dataset have images 

with 768×512 pixels (Figure 4.1). Images have been resized before processing operations. 

The dataset consists of two folders such as cd1 and cd2 (Figure 4.2). Both folders consists 

of four groups (Table 4.1). While four groups in cd1 (c1r1, c1r3, c2r2, c2r3) consist of un-

patterned fabric samples, the other four groups in cd2 (c3r1, c3r3, c4r1, c4r3) contain 

patterned samples. Each group is divided into eight subdirectories (e0, e1, e2, e3, e4, e5, 

e6, e7), each of which contains 50 samples. Defect-free samples are found in e0, while 

samples with various types of defects are found in other subdirectories. The un-defected 

fabric is the fabric in which the texture repetition is not broken. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.1 Tilda fabric samples (a) c1r1 (b) c1r3 (c) c2r2 (d) c2r3 (e) c3r1 (f) c3r3 (g) c4r1 (h) c4r3 
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(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.1 Continues 

 
Figure 4.2 Tilda dataset 
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Table 4.1 About Tilda 

Un-patterned Fabrics Patterned Fabrics 

Group Number of Images Group Number of Images 

c1r1 

400 (50 un-defected, 

350 defected) 

c3r1 

400 (50 un-defected, 350 

defected) 

Classes Classes 

e0, e1, e2, e3, e4, e5, e6, 

e7 

e0, e1, e2, e3, e4, e5, e6, 

e7 

c1r3 

400 (50 un-defected, 

350 defected) 

c3r3 

400 (50 un-defected, 350 

defected) 

Classes Classes 

e0, e1, e2, e3, e4, e5, e6, 

e7 

e0, e1, e2, e3, e4, e5, e6, 

e7 

c2r2 

400 (50 un-defected, 

350 defected) 

c4r1 

400 (50 un-defected, 350 

defected) 

Classes Classes 

e0, e1, e2, e3, e4, e5, e6, 

e7 

e0, e1, e2, e3, e4, e5, e6, 

e7 

c2r3 

400 (50 un-defected, 

350 defected) 

c4r3 

400 (50 un-defected, 350 

defected) 

Classes Classes 

e0, e1, e2, e3, e4, e5, e6, 

e7 

e0, e1, e2, e3, e4, e5, e6, 

e7 

SUM 
1600 (200 un-defected, 

1400 defected) 
SUM 

1600 (200 un-defected, 

1400 defected) 
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(a) 

 
(b) 

Figure 4.3 Resizing from (a) 768×512 to (b) 224×224 

 
Resized samples for each group are given in figures 4.4-4.11. 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.4 Resized samples of c1r1 (a) e0 (b) e1 (c) e2 (d) e3 (e)  e4 (f) e5 (g) e6 (h) e7 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.5 Resized samples of c1r3 (a) e0 (b) e1 (c) e2 (d) e3 (e)  e4 (f) e5 (g) e6 (h) e7 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.6 Resized samples of c2r2 (a) e0 (b) e1 (c) e2 (d) e3 (e)  e4 (f) e5 (g) e6 (h) e7 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.7 Resized samples of c2r3 (a) e0 (b) e1 (c) e2 (d) e3 (e)  e4 (f) e5 (g) e6 (h) e7 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.8 Resized samples of c3r1 (a) e0 (b) e1 (c) e2 (d) e3 (e)  e4 (f) e5 (g) e6 (h) e7 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.9 Resized samples of c3r3 (a) e0 (b) e1 (c) e2 (d) e3 (e)  e4 (f) e5 (g) e6 (h) e7 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.10 Resized samples of c4r1 (a) e0 (b) e1 (c) e2 (d) e3 (e)  e4 (f) e5 (g) e6 (h) e7 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.11 Resized samples of c4r3 (a) e0 (b) e1 (c) e2 (d) e3 (e)  e4 (f) e5 (g) e6 (h) e7 
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CHAPTER FIVE 

BACKGROUND FOR FEATURE EXTRACTION 

 
5.1 Deep Learning Based Feature Extraction 

 

Deep learning is a sub-group of machine learning and is a multi-layered approach 

(Türkoğlu et al., 2021). In deep learning, raw data is given to the network and both feature 

extraction and learning process are performed by using all images given as input. Deep 

learning uses many layers of nonlinear processing units for feature extraction and 

conversion. 

 

Deep learning has been used in several research areas in the literature. Robotics, image 

processing, video processing, signal processing, object recognition, and the military sector 

are just a few industries that apply deep learning. For feature conversion and extraction in 

deep learning, several layers of nonlinear processing units are employed. The output from 

each previous layer is used by each subsequent layer as input. 

 

5.1.1 Convolutional Neural Network (CNN)  
 

By increasing the number of layers in artificial neural networks, a variety of deep 

learning architectures have been developed. Among them is the Convolutional Neural 

Network (CNN) (Figure 5.1). 

 
Figure 5.1 A CNN architecture with seven layers for six classes 
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CNN is a multilayer artificial neural network model created specifically for computer 

vision applications. It is an approach that provides higher performance compared to other 

classification methods. On the other hand, CNN's drawback is the requirement for 

powerful hardware resources. The basic layers of CNN based models can be listed as in 

Table 5.1.  

 
Table 5.1 Basic layers of CNN 

Layer Description 

Convolution 

 

A new image is created in convolution layer by 

extracting more specific features in the image. Filters 

have smaller dimensions than input data. 

 

Activation Function 

 

The activation functions of convolutional neural 

networks are crucial. The most often used activation 

function is Relu. Negative values in the input data are set 

to 0 in this layer, allowing the network to learn faster. 

 

Pooling 

 

Pooling is a process used to reduce sizes in deep learning 

models to avoid overfitting and reduce time complexity. 

 

Fully Connected Layer 

 

A fully connected layer is a one-dimensional matrix that 

is connected to all of the neurons in the layer before it. 

This layer is utilized to optimize class scores and is 

usually found near the end of the CNN architecture. 
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Table 5.1 Continues 

Layer Description 

Classification 

 

The final layer of CNN models is this one. This layer is 

responsible for classification process. In this layer, the 

softmax classifier is often employed, which gives 

probabilistic values between 0 and 1 for each class based 

on the architectures. As a result, the class predicted by 

the model is determined by the highest probability value. 

 

 

In our study, we tested the performances of four CNN based models such as ResNet18, 

ResNet50, GoogLeNet, and AlexNet (Figure 5.2).  

 

5.1.1.1 ResNet 
 

ResNet is a pre-trained CNN algorithm (He et al., 2016). It has been trained on more 

than one million images. ResNet is the abbreviation form of Residual Network. It has 

different versions such as ResNet18, ResNet50, ResNet101, and ResNet152. They include 

18, 50, 101, and 152 layers, respectively. As the number of layers increases, the accuracy 

rate increases and the execution time also increases. The sizes of input images must be 

224-by-224 for ResNet architecture. ResNet18 and ResNet50 have been used in this study.  

 

5.1.1.2 GoogLeNet 
 

GoogleNet (also known as Inception v1) is a pre-trained CNN algorithm like ResNet18 

(Szegedy et al., 2015). The sizes of input images must be 224-by-224 for GoogLeNet. It 

has an architecture consisting of deeper 22 layers with fewer parameters compared to other 

networks (Tellawi, 2019). Therefore, it gives higher success results in less time. 
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Figure 5.2 CNN models used for our study 
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5.1.1.3 AlexNet 
 

The AlexNet architecture, which won the ImageNet 2012 competition, is a type of 

convolutional neural network designed by Krizhevsky (2012). Information about AlexNet 

analysis is as in Figure 5.3. AlexNet is very similar to the LeNet network. However, it 

differs from LeNet in that it has more layers. Input dimensions should be 227×227×3 for 

AlexNet. Local Response Normalization (LRN) and dropout are new additions to this 

network (Alom et al., 2018). 

 

 
Figure 5.3 AlexNet analsis result 
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5.2 The Proposed Feature Extraction System: Multi-Feature Fusion 
 

Multi-feature fusion technique is proposed in this thesis. The features extracted using 

Method1 is vector X, and the features extracted using Method2 is vector Y. The feature 

fusion is obtained by adding the Y vector after the last element of the X vector (5.1). The 

visualized version of the proposed system is in the Figure 5.4. 

 

                                  𝐹𝐹 = (𝑋𝑋,𝑌𝑌) = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛,𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑚𝑚)                             (5.1) 

 

Figure 5.5 is the flow chart of the system. Six combinations have been used fort he step 

of feature fusion. Then, the fused features have been classified using a classifier. Three 

algorihms such as ensemble learning, k-nearest neighbor, and support vector machine 

have been tested in the classification step.   

 

 

 
Figure 5.4 The procedure of the method proposed 
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Figure 5.5 Proposed system 
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CHAPTER SIX 

BACKGROUND FOR CLASSIFICATION 

 

6.1 Ensemble Learning  
 

Ensemble Learning (EL) is a method for performing classification based on predictions 

and decisions from multiple classifiers (Baran, 2020). It uses more than one classifier's 

information at the same time to apply each classifier's conclusion by consensus. This 

method outperforms a single classifier in most cases. The fact that the classifiers' mistakes 

differ from one another improves ensemble classification performance. Different subsets 

of the training dataset are used to achieve differences in the classifiers' predictions. To 

produce and train subsets of the training dataset, the bootstrap approach is utilized.  

 

The predictions from the trained networks must be combined to arrive at a final 

outcome. The choice of the right combining approach for the predictions has an impact on 

classification performance in the ensemble learning method. The selection of the proper 

approach for the classifiers should be considered when choosing the combination 

technique. According to the combining procedures, sample selection for the training data 

set, and processing processes, there are many ensemble learning approaches. Bagging, 

boosting, and voting are the examples of these approaches. 

 

6.1.1 Bagging 
 

The bagging approach is the oldest, simplest, and an effective ensemble-based 

approach, in which learners are connected in parallel. It is based on bootstrap sampling 

method. By changing the examples each time, the bootstrap sampling approach creates 

various subsets from the training data set. A classifier is used to train each sub-training 

set. All classifiers categorize distinct sub-training sets at the same time. To aggregate the 

classifier estimates, the bagging approach employs the majority vote technique. 
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6.1.2 Boosting 
 

The output of the preceding learning algorithm is used as input by algorithms. Unlike 

bagging approach, each classifier is affected by the performance of the previous algorithm 

in this method, where the algorithms are connected in sequence. The major goal of this 

approach is to help learner algorithms with low success rates achieve the target success 

rate. 

 

Among the ensemble learning algorithms based on the Boosting approach, the 

Adaptive Boosting (Adaboost) algorithm, which was also used in this study, is one of the 

most powerful and widely used ensemble methods (Freund and Schapire, 1996). 

 

6.1.3 Voting 
 

Multiple classifiers of the same type train separate subsets of the dataset in boosting 

and bagging based ensemble approaches. The same set is classified by several types of 

classifiers in the voting technique. Because multiple types of classifiers increase the 

variability of the predictions, it improves performance by lowering the ensemble 

prediction error. 

 

6.2 K Nearest Neighbor 
 

One of the most popular and straightforward classification techniques is the K Nearest 

Neighbor (KNN) algorithm. A K value is determined for the operation of the algorithm. 

This K value means the number of elements to look at for classification. The distances 

between the sample element and the other elements in the dataset are calculated using 

different distance metrics (Chomboon et al., 2015). Euclidean, Manhattan, and Minkowski 

are among the most known distance metrics. In Table 6.1, the equation of them are given 

for m feature. In these equations, s is sample, and n is neighbor. To estimate which class 

the sample element in the dataset belongs to, the nearest K-neighbors of the element are 

used. The element is assigned to the class which neighbors belong to most.  
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Table 6.1 Distance metrics 

Euclidean 

 

��(𝑠𝑠𝑖𝑖 − 𝑛𝑛𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1

 

 

Manhattan 

 

� |𝑠𝑠𝑖𝑖 − 𝑛𝑛𝑖𝑖|
𝑚𝑚

𝑖𝑖=1

 

 

Minkowski 

 

��(𝑠𝑠𝑖𝑖 − 𝑛𝑛𝑖𝑖)𝑞𝑞
𝑚𝑚

𝑖𝑖=1

�
𝑞𝑞

 

 

 

 

6.3 Support Vector Machine  
 

SVM is a machine learning technique proposed for classification problems in datasets 

where the patterns between variables are not known. It is a non-parametric classifier. This 

technique is also used for regression analysis like DTs. 

 

Dataset is separated into two classes; training set, and test set. In this technique, the 

optimal hyperplane separating the classes is found using a labelled training set (Cortes 

and Vapnik, 1995). There may be more than one plane separating the two classes. An 

optimal hyperplane is the farthest plane to the nearest data points of the classes. 
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If the problem is two-dimensional, the hyperplane is a line (Fig. 6.1). As the number 

of dimensions increases, it becomes difficult to find the optimal hyperplane. 

 

 

 
Figure 6.1 SVM 
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CHAPTER SEVEN 

EXPERIMENTS 

 

7.1 Evaluation Metrics 
 

In determining how well machine learning algorithms rank, the selection of 

performance assessment criteria is crucial. The metrics used have an impact on how 

algorithms are assessed and comparisons are made.  

 

In fabric defect classification systems, it is aimed to prevent recurrence after any defect 

is found. The occurrence of each defect depends on some reasons such as corruption of 

machine settings. For example, the machine and its elements should be checked for the 

defects caused by the machine. Fixing these problems prevents defects to occur. Studies 

in this field aim to achieve the highest performance in the shortest time. 

 

In this study, the methods used in case 1 and case 3 have been compared in terms of 

accuracy, sensitivity, specificity, and F-score. These indicators are calculated using True 

Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) (Table 

7.1). Accuracy seeks an answer to the question of "How many of all fabric samples have 

we labeled correctly?" (7.1). It is investigated how many of all defected fabrics are 

predicted correctly through the sensitivity metric (7.2). The specificity metric (7.3) 

investigates the inverse: How many un-defected fabrics have been discovered as un-

defected? Precision investigates how many fabrics labeled as defected are actually 

defected. The harmonic mean of precision and recall gives the F-Score (7.5).  

 

The majority of earlier studies merely compared the accuracy of learning algorithms. 

However, Huang et al. showed the success of the AUC value in their studies in 2003 and 

2005. The methods used in case 2 and case 4 have been compared using the values of 

accuracy and AUC. The reason for using metrics different from case 1 and case 3 in case 
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2 and case 4 is to give the diagonal values of the confusion matrix obtained. Thus, it is 

possible to examine the classes classified with the highest and lowest success. 

 

The area under the ROC (Receiver Operating Characteristic) curve is expressed by the 

AUC (Area Under Curve) value, which demonstrates how well the classification model 

distinguishes between the classes. The ROC curve is an increasing function between (0, 

0) and (1, 1). The higher the AUC value, the higher the classification success of the model. 

AUC can take the largest value of “1” and the smallest value of “0.5”. 

 
Table 7.1 TP, TN, FP, and FN 

 Actual 

Positive Negative 

Predicted 
Positive TP FP 

Negative FN TN 

 

                                              𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                        (7.1)        

                                     

                                      𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                     (7.2) 

 

                                                 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                               (7.3)        

                   

                                         𝐹𝐹 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

                                      (7.4) 

 

The models' classification performance has been evaluated using 10-fold cross 

validation. Thus, the data set is split into ten equal parts as D1, D2, ..., D10 (Han et al., 

2011). Training and testing processes are repeated 10 times. Partition Di for iteration i is 

used for testing while the remaining partitions are utilized for training (Figure 7.1). The 
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arithmetic average of the results obtained from each partition gives the success of the 

method. 

 

 
 

Figure 7.1 10-fold cross validation 

 

The suggested method makes use of fabric images from the Tilda database that are bo

th defected and un-defected. Our experimental results consist of four cases. Classification 

of the images as defected or un-defected is performed in the first case. The successes of 

the methods in the Tilda dataset have been investigated from three different aspects (un-

patterned dataset, patterned dataset, mix). In the second case, the groups of Tilda dataset 

have been tried to classify according to the eight classes (e0, e1, e2, e3, e4, e5, e6, e7). 

Classification of defects using feature fusion has been tested in case 3 and case 4.  

 

7.2 Preliminaries to experiments 
 

If CNN based methods are used only for feature extraction, there is no need to split the 

dataset into train and test. So, entire database  may be used for training in such type of 

studies. However, 70% of the database  is reserved for training and 30% for testing to 

make comparisons in this study. 
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Classification of features drawn from previous layers of CNN is generally less 

successful. Therefore, the features taken from the last layers were used in this study (Table 

7.2). Layers of ‘pool5’, ‘avg_pool’, ‘pool5-drop_7x7_s1’, and ‘pool5’ have been used to 

extract the features for the methods of ResNet18, ResNet50, GoogLeNet, and AlexNet, 

respectively.  

 
Table 7.2 Feature extracted layers of CNN methods 

METHOD LAYER 

ResNet18 pool5 

ResNet50 avg_pool 

GoogLeNet pool5-drop_7x7_s1 

AlexNet pool5 

 

 

7.3 Experimental Results  
 
7.3.1 Case study 1 - Classification of fabrics as defected/undefected 

 

In the first case, the Tilda dataset has been handled in three different ways (Table 7.3). 

The first set consists of defected fabric images and un-defected fabric images in the c1 

folder of Tilda. There are 1400 defected images and 200 un-defected images. The second 

set consists of defected fabric images and un-defected fabric images in the c2 folder of 

Tilda. There are 1400 defected images and 200 un-defected images. The third set consists 

of defected fabric images and un-defected fabric images in both the c1 and c2 folders. 

There are 2800 defected images and 400 un-defected images. Its goal is to see how well 

patterned, un-patterned, and both patterned and un-patterned fabrics in the sets can be 

classified. Fabrics are classified as defected/un-defected in all three ways (Figure 7.2). 
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Table 7.3 Details for case 1 

Dataset Number of Elements 
Un-patterned Fabrics of Tilda 1600 (200 un-defected, 1400 defected) 
Patterned Fabrics of Tilda 1600 (200 un-defected, 1400 defected) 
Mix of Tilda 3200 (400 un-defected, 2800 defected) 

 

 
Figure 7.2 Sample Visualisation of Case 1 

 

Table 7.4 shows the results of the methods. It can be said that the dataset including un-

patterned fabrics has a greater classification success rate than the others (in general). The 

low specificity rates in various datasets and methodologies are due to the fact that the 

number of un-defected fabric images is smaller than the number of defected fabric images.  

 

When the accuracy rates of the methods are compared, it is seen that highest accuracy 

rate is obtained when using GoogLeNet & EL for unpatterned fabrics (93.67%). The 

method that performs the best for patterned fabrics is ResNet50 & SVM (89.68%). It has 

also been the most successful method for mixed fabrics (89.72%). 
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Table 7.4 Results for case 1 (%) 

Method  Metric Un-patterned 
Fabrics 

Patterned 
Fabrics Mix 

ResNet18 & EL 

Sensitivity 89.00 87.84 87.93 
Specificity 65.22 40.00 69.23 
F-Measure 93.67 93.15 93.45 
Accuracy 88.31 87.24 87.78 

ResNet50 & EL 

Sensitivity 91.58 90.05 88.74 
Specificity 72.12 77.05 75.00 
F-Measure 94.65 94.31 93.78 
Accuracy 90.31 89.56 88.47 

GoogLeNet & EL 

Sensitivity 90.31 88.06 87.94 
Specificity 59.14 48.00 78.26 
F-Measure 93.89 93.24 93.51 
Accuracy 93.67 87.43 87.87 

AlexNet & EL 

Sensitivity 89.01 88.67 87.70 
Specificity 68.18 78.57 81.82 
F-Measure 93.74 82.74 93.42 
Accuracy 88.44 88.50 87.68 

ResNet18 &KNN 

Sensitivity 94.96 92.28 93.17 
Specificity 39.54 39.75 38.28 
F-Measure 89.66 90.97 90.09 
Accuracy 82.88 84.43 83.21 

ResNet50 & KNN 

Sensitivity 96.40 93.47 94.14 
Specificity 41.87 42.32 42.25 
F-Measure 90.02 91.18 90.91 
Accuracy 83.63 84.93 84.62 

GoogLeNet & KNN 

Sensitivity 94.93 91.91 92.83 
Specificity 40.65 36.26 36.85 
F-Measure 90.08 90.21 89.80 
Accuracy 83.50 83.18 82.71 

AlexNet & KNN 

Sensitivity 94.11 92.22 93.00 
Specificity 23.75 29.26 26.45 
F-Measure 78.55 86.92 83.68 
Accuracy 67.81 78.36 74.05 

ResNet18 & SVM 

Sensitivity 87.48 87.64 87.72 
Specificity 33.33 60.00 66.67 
F-Measure 93.26 93.35 93.38 
Accuracy 87.38 87.55 87.62 

ResNet50 & SVM 

Sensitivity 93.06 89.70 90.15 
Specificity 84.48 88.89 79.03 
F-Measure 95.80 94.41 94.40 
Accuracy 92.44 89.68 89.72 

GoogLeNet & SVM 

Sensitivity 87.97 87.99 88.13 
Specificity 83.33 58.82 66.67 
F-Measure 93.54 93.39 93.49 
Accuracy 87.94 87.68 87.87 

AlexNet & SVM 

Sensitivity 88.38 88.60 88.18 
Specificity 72.00 72.41 49.18 
F-Measure 93.61 93.70 93.23 
Accuracy 88.13 88.30 87.43 

  



53 
 

Classifier based comparison is made in Table 7.5. Considering the average accuracy 

rates of the classifiers, it is seen that the best classifier is EL (88.70%). SVM is just as 

successful as EL (88.48%). KNN is the classifier with the lowest average with 81.11% 

accuracy. The specificity of KNN is extremely low (36.44%). The obtained results show 

that KNN should not be used in defect detection systems. When the mean of Table 10 is 

calculated, sensitivity, specificity, f-measure and accuracy values are 90.42%, 57.35%, 

91.93%, 86.12%, respectively. The extremely low specificity values of KNN are the 

reason why the specificity average is so low. 

 
Table 7.5 Classifier based comparison (%) 

EL BASED AVERAGES 
 

    
Sensitivity 88.90    
Specificity 67.72    
F-Measure 92.80    
Accuracy 88.77    
     

KNN BASED AVERAGES 
 

AVERAGES 

Sensitivity 93.62  Sensitivity 90.42 
Specificity 36.44  Specificity 57.35 
F-Measure 88.51  F-Measure 91.93 
Accuracy 81.11  Accuracy 86.12 
     

SVM BASED AVERAGES 
   

Sensitivity 88.75    
Specificity 67.90    
F-Measure 93.80    
Accuracy 88.48    

 

 

When the dataset-based averages of the results given in Table 7.6 are examined, it is 

seen that the average accuracy rates of un-patterned and patterned fabrics are close to each 

other (86.20% and 86.40%, respectively). The average success of the mix dataset, which 
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includes both patterned and unpatterned fabric samples, is not much lower than the 

average rates of the first two datasets. 
 

Table 7.6 Dataset based comparison (%) 

  UN-PATTERNED PATTERNED MIX 
Sensitivity 91.43 89.87 89.97 
Specificity 57.00 55.94 59.14 
F Measure 91.71 91.46 91.93 
Accuracy 86.20 86.40 85.75 

 

Summary graphic for case 1 is in Figure 7.3.  

 

 
Figure 7.3 Summary for case 1 

 

The execution times of the methods to classify different datasets are given in Table 7.7. 

Since there are twice as many elements in the Mix dataset as in other datasets, the 

execution time of classification methods for this dataset is longer (329.12 seconds). The 

average execution times for un-patterned and patterned fabrics are 140.16 and 171.10 

seconds, respectively. In the table, the average execution time of the AlexNet&EL method 

is very high. The average execution time is 493.75 seconds when EL is used as the 
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classifier. On the other hand, when KNN is used as the classifier, the execution time is 

90.93 seconds, and when SVM is employed, it is 55.70 seconds. 

 
Table 7.7 Time comparison (seconds) 

METHOD Un-patterned 
Fabrics 

Patterned 
Fabrics Mix AVERAGE 

ResNet18 & EL 116.19 189.40 249.47 185.02 

ResNet50 & EL 295.90 361.90 614.99 424.26 

GoogLeNet & EL 186.50 206.51 413.68 268.90 

AlexNet & EL 720.73 912.26 1657.40 1096.80 

ResNet18 &KNN 11.67 15.16 32.40 19.74 

ResNet50 & KNN 28.32 38.39 86.39 51.03 

GoogLeNet & KNN 23.16 21.61 74.10 39.62 

AlexNet & KNN 152.88 152.82 454.28 253.33 

ResNet18 & SVM 4.86 5.45 12.42 7.58 

ResNet50 & SVM 16.85 18.40 39.43 24.89 

GoogLeNet & SVM 9.03 9.46 26.54 15.01 

AlexNet & SVM 115.81 121.79 288.32 175.31 

AVERAGE 140.16 171.10 329.12  

 

7.3.2 Case Study 2 – Classification of Defects According to Their Types 
 

In the second case, the Tilda dataset's groups (Table 7.8) have been classified using the 

eight classes (e0, e1, e2, e3, e4, e5, e6, e7) as in Figure 7.4. In each group, there are 50 

images of each class. 

 

ResNet50&SVM has the best accuracy rate (77.5%) for the c1r1 of Tilda database 

(Table 7.9). E0 has un-defected fabric samples. Considering the class-based accuracy 

rates, the class which is classified with the highest success is e0 (81.83%). E2 and e3 are 

the classes classified with the lowest rates (the accuracy rate of both is 56.17%). 
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Table 7.8 Details for case 2 

Folder Dataset Number of elements 

C1 

c1r1 group of Tilda 400  
c1r3 group of Tilda 400 
c2r2 group of Tilda 400  
c2r3 group of Tilda 400 

C2 

c3r1 group of Tilda 400 
c3r3 group of Tilda 400  
c4r1 group of Tilda 400  
c4r3 group of Tilda 400  

 

 
Figure 7.4 Sample Visualisation of Case 2 

 
Table 7.9 Results for c1r1 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&EL Acc (%) 63.7 56.00 60.00 62.00 52.00 70.00 72.00 76.00 62.00 AUC 0.86 

ResNet18&KNN Acc  (%) 67.8 72.00 62.00 44.00 58.00 76.00 78,00 90.00 62.00 AUC 0.80 

ResNet18&SVM Acc  (%) 75.3 92.00 68.00 70.00 66.00 64.00 80,00 78.00 84.00 AUC 0.96 

ResNet50&EL Acc  (%) 71.8 82.00 66.00 70.00 70.00 66.00 84,00 74.00 62.00 AUC 0.95 

ResNet50&KNN Acc  (%) 66.8 90.00 46.00 60.00 44.00 64.00 78.00 86.00 66.00 AUC 0.85 

ResNet50&SVM Acc  (%) 77.5 96.00 56.00 84.00 82.00 66.00 76,00 86.00 74.00 AUC 0.99 

GoogLeNet&EL Acc  (%) 62.5 72.00 64.00 50.00 48.00 50.00 76.00 80.00 60.00 AUC 0.90 
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Table 7.9 Continues 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

GoogLeNet&KNN Acc  (%) 70.3 84.00 70.00 58.00 56.00 54,00 78.00 90.00 72.00 AUC 0.86 

GoogLeNet&SVM Acc  (%) 72.8 92.00 60.00 58.00 76.00 54.00 78.00 88.00 76.00 AUC 0.97 

AlexNet&EL Acc  (%) 56.80 70.00 46.00 50.00 36.00 44.00 74.00 72.00 62.00 AUC 0.92 

AlexNet&KNN Acc  (%) 42.3 84.00 28.00 20.00 26.00 24.00 44.00 56.00 56.00 AUC 0.74 

AlexNet&SVM Acc  (%) 60.8 92.00 20.00 48.00 60.00 50.00 56.00 82.00 78.00 AUC 0.96 

AVERAGE ACCURACY (%) 65.70 81.83 53.83 56.17 56.17 56.83 72.83 79.83 67.83 

 
 

ResNet18&SVM is the most successful method (69.50%) for classifying the c1r3 

dataset (Table 7.10). Unlike Table 15, class e5 has the highest classification performance 

(71.67%) in this table. On the other hand, it is clear that e2 is the class classified with the 

lowest performance (39.50%). 

 
Table 7.10 Results for c1r3 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&EL Acc (%) 52.50 54.00 56.00 32.00 36.00 50.00 84.00 42.00 66.00 AUC 0.81 

ResNet18&KNN Acc  (%) 59.50 62.00 44.00 40.00 56.00 66.00 84.00 62.00 62.00 AUC 0.73 

ResNet18&SVM Acc  (%) 69.50 84.00 66.00 58.00 58.00 68.00 88.00 54.00 80.00 AUC 0.95 

ResNet50&EL Acc  (%) 59.80 68.00 64.00 42.00 52.00 64.00 82.00 46.00 60.00 AUC 0.89 

ResNet50&KNN Acc  (%) 54.30 60.00 44.00 48.00 40.00 78.00 64.00 50.00 50.00 AUC 0.71 

ResNet50&SVM Acc  (%) 67.00 78.00 54.00 56.00 64.00 74.00 80.00 58.00 72.00 AUC 0.92 

GoogLeNet&EL Acc  (%) 51.50 58.00 36.00 42.00 38.00 56.00 74.00 56.00 52.00 AUC 0.82 

GoogLeNet&KNN Acc  (%) 52.00 52.00 30.00 42.00 36.00 70.00 64.00 62.00 60.00 AUC 0.68 

GoogLeNet&SVM Acc  (%) 56.80 72.00 42.00 38.00 48.00 50.00 84.00 52.00 68.00 AUC 0.89 

AlexNet&EL Acc  (%) 45.30 58.00 40.00 20.00 18.00 44.00 70.00 66.00 46.00 AUC 0.86 

AlexNet&KNN Acc  (%) 36.80 78.00 14.00 22.00 12.00 46.00 24.00 40.00 58.00 AUC 0.73 

AlexNet&SVM Acc  (%) 51.20 90.00 22.00 34.00 44.00 44.00 62.00 54.00 60.00 AUC 0.96 

AVERAGE ACCURACY (%) 54.68 67.83 42.67 39.50 41.83 59.17 71.67 53.50 61.17 
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According to Table 7.11, ResNet18&SVM is the best method for the c2r2 dataset of 

Tilda.  The classification performances of e0 and e6 are very close to each other (73.83% 

and 73.33%, respectively). This dataset's most challenging class, e3, has a classification 

success rate of just 30.33 percent. 

 
Table 7.11 Results for c2r2 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&EL Acc (%) 49.00 70.00 38.00 22.00 36.00 56.00 52.00 72.00 50.00 AUC 0.85 

ResNet18&KNN Acc  (%) 58.80 82.00 44.00 34.00 30.00 56.00 72.00 86.00 66.00 AUC 0.84 

ResNet18&SVM Acc  (%) 65.80 90.00 60.00 60.00 46.00 52.00 72.00 76.00 70.00 AUC 0.96 

ResNet50&EL Acc  (%) 61.80 68.00 72.00 62.00 22.00 50.00 78.00 78.00 64.00 AUC 0.92 

ResNet50&KNN Acc  (%) 58.30 74.00 48.00 52.00 28.00 52.00 76.00 80.00 56.00 AUC 0.80 

ResNet50&SVM Acc  (%) 61.30 68.00 50.00 42.00 52.00 54.00 76.00 66.00 82.00 AUC 0.94 

GoogLeNet&EL Acc  (%) 48.30 72.00 50.00 36.00 26.00 56.00 54.00 66.00 26.00 AUC 0.88 

GoogLeNet&KNN Acc  (%) 51.70 70.00 36.00 40.00 28.00 60.00 60.00 74.00 46.00 AUC 0.76 

GoogLeNet&SVM Acc  (%) 55.30 82.00 38.00 52.00 38.00 50.00 58.00 72.00 52.00 AUC 0.93 

AlexNet&EL Acc  (%) 40.50 72.00 22.00 18.00 16.00 34.00 24.00 80.00 58.00 AUC 0.84 

AlexNet&KNN Acc  (%) 37.80 62.00 12.00 16.00 14.00 40.00 14.00 74.00 70.00 AUC 0.69 

AlexNet&SVM Acc  (%) 49.00 76.00 46.00 28.00 28.00 36.00 50.00 56.00 72.00 AUC 0.92 

AVERAGE ACCURACY (%) 53.13 73.83 43.00 38.50 30.33 49.67 57.17 73.33 59.33 

 
When compared to other methods, ResNet50&SVM has the highest accuracy rate for 

the Tilda c2r3 dataset (Table 7.12). The class classified with the best accuracy rate in this 

dataset is e3, which has the lowest rate in Table 17. 

 
Table 7.12 Results for c2r3 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&EL Acc (%) 55.00 53.00 62.00 45.00 62.00 58.00 50.00 60.00 50.00 
AUC 0.85 

ResNet18&KNN Acc  (%) 52.50 63.00 52.00 31.00 60.00 60.00 46.00 56.00 52.00 
AUC 0.74 

ResNet18&SVM Acc  (%) 64.00 80.00 56.00 55.00 72.00 66.00 66.00 56.00 60.00 
AUC 0.91 

ResNet50&EL Acc  (%) 61.5 75.00 62.00 31.00 80.00 64.00 68.00 60.00 52.00 
AUC 0.90 
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Table 7.12 Continues 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 

e0 e1 e2 e3 e4 e5 e6 e7 

ResNet50&KNN Acc  (%) 58.50 
71.00 66.00 45.00 62.00 60.00 60.00 58.00 46.00 

AUC 0.78 

ResNet50&SVM Acc  (%) 67.00 
88.00 56.00 61.00 88.00 66.00 74.00 48.00 54.00 

AUC 0.93 

GoogLeNet&EL Acc  (%) 53.50 
45.00 60.00 37.00 78.00 62.00 54.00 50.00 42.00 

AUC 0.77 

GoogLeNet&KNN Acc  (%) 59.50 
59.00 68.00 49.00 68.00 58.00 54.00 66.00 54.00 

AUC 0.71 

GoogLeNet&SVM Acc  (%) 65.00 
71.00 56.00 59.00 86.00 62.00 64.00 56.00 66.00 

AUC 0.89 

AlexNet&EL Acc  (%) 40.80 
39.00 38.00 12.00 56.00 46.00 44.00 40.00 50.00 

AUC 0.75 

AlexNet&KNN Acc  (%) 35.50 
45.00 26.00 39.00 30.00 44.00 20.00 54.00 26.00 

AUC 0.61 

AlexNet&SVM Acc  (%) 48.00 
75.00 50.00 35.00 54.00 42.00 46.00 36.00 46.00 

AUC 0.84 

AVERAGE ACCURACY (%) 55.07 63.67 54.33 41.58 66.33 57.33 53.83 53.33 49.83 

 

In Table 7.13, ResNet50&SVM has the highest accuracy rate (71.30%), while 

AlexNet&KNN has the lowest accuracy rate (48.30%). In this dataset, e4 is the class most 

successfully classified (70.67%) among the eight classes, while e1 is the class with the 

lowest success (39.33%). 

 
Table 7.13 Results for c3r1 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&EL Acc (%) 54.5 40.00 20.00 42.00 58.00 74.00 60.00 66.00 76.00 AUC 0.76 

ResNet18&KNN Acc  (%) 58.5 60.00 44.00 48.00 58.00 62.00 54.00 66.00 76.00 AUC 0.76 

ResNet18&SVM Acc  (%) 63.20 64.00 40.00 46.00 54.00 90.00 72.00 64.00 76.00 AUC 0.95 

ResNet50&EL Acc  (%) 61.00 74.00 30.00 48.00 46.00 74.00 78.00 68.00 70.00 AUC 0.94 

ResNet50&KNN Acc  (%) 56.3 64.00 34.00 42.00 66.00 70.00 54.00 52.00 68.00 AUC 0.78 

ResNet50&SVM Acc  (%) 71.30 72.00 52.00 68.00 82.00 80.00 66.00 82.00 68.00 AUC 0.94 

GoogLeNet&EL Acc  (%) 51.5 38.00 34.00 36.00 44.00 68.00 66.00 80.00 46.00 AUC 0.79 

GoogLeNet&KNN Acc  (%) 58.8 72.00 48.00 42.00 68.00 52.00 54.00 68.00 66.00 AUC 0.82 

GoogLeNet&SVM Acc  (%) 62.7 66.00 52.00 58.00 52.00 82.00 64.00 66.00 62.00 AUC 0.95 
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Table 7.13 Continues 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

AlexNet&EL Acc  (%) 57.8 70.00 32.00 36.00 50.00 66.00 60.00 66.00 82.00 AUC 0.91 

AlexNet&KNN Acc  (%) 48.3 74.00 38.00 36.00 56.00 48.00 16.00 54.00 64.00 AUC 0.79 

AlexNet&SVM Acc  (%) 62.5 78.00 48.00 56.00 54.00 82.00 60.00 66.00 56.00 AUC 0.98 

AVERAGE ACCURACY (%) 58.87 64.33 39.33 46.50 57.33 70.67 58.67 66.50 67.50 

 
When compared to other methods, ResNet50&SVM has the highest accuracy rate for 

the Tilda c3r3 dataset (Table 7.14). The class classified with the best accuracy rate in this 

dataset is e5 (65.33%), while the class classified with the lowest accuracy rate is e2 

(31.33%). 

 
Table 7.14 Results for c3r3 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&EL Acc (%) 39.80 24.00 28.00 14.00 30.00 60.00 68.00 56.00 38.00 AUC 0.75 

ResNet18&KNN Acc  (%) 45.50 48.00 24.00 30.00 30.00 78.00 68.00 46.00 48.00 AUC 0.65 

ResNet18&SVM Acc  (%) 52.30 46.00 54.00 40.00 32.00 66.00 72.00 70.00 38.00 AUC 0.84 

ResNet50&EL Acc  (%) 56.30 66.00 62.00 24.00 46.00 72.00 80.00 56.00 44.00 AUC 0.89 

ResNet50&KNN Acc  (%) 50.50 50.00 22.00 44.00 26.00 68.00 80.00 66.00 48.00 AUC 0.67 

ResNet50&SVM Acc  (%) 56.50 64.00 54.00 40.00 50.00 68.00 74.00 62.00 40.00 AUC 0.88 

GoogLeNet&EL Acc  (%) 47.50 28.00 28.00 34.00 44.00 64.00 74.00 70.00 38.00 AUC 0.69 

GoogLeNet&KNN Acc  (%) 45.00 40.00 14.00 44.00 32.00 54.00 66.00 58.00 52.00 AUC 0.63 

GoogLeNet&SVM Acc  (%) 51.50 42.00 48.00 40.00 46.00 60.00 72.00 62.00 42.00 AUC 0.80 

AlexNet&EL Acc  (%) 42.00 46.00 28.00 12.00 32.00 68.00 44.00 58.00 48.00 AUC 0.74 

AlexNet&KNN Acc  (%) 36.80 54.00 24.00 20.00 26.00 40.00 32.00 52.00 46.00 AUC 0.64 

AlexNet&SVM Acc  (%) 41.80 26.00 36.00 34.00 34.00 56.00 54.00 53.00 42.00 AUC 0.72 

AVERAGE ACCURACY (%) 47.13 44.50 35.17 31.33 35.67 62.83 65.33 59.08 43.67 

 
ResNet50&SVM has the highest accuracy rate (57.50%) for c4r1 compared to other 

methods (Table 7.15). What is interesting about this table is that e0 is among the classes 

classified with the lowest accuracy rate (26.33%). E3 has the highest average accuracy 

rate (76.33%).  
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Table 7.15 Results for c4r1 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&EL Acc (%) 43.00 12.00 36.00 56.00 80.00 28.00 56.00 34.00 42.00 AUC 0.62 

ResNet18&KNN Acc  (%) 52.00 26.00 58.00 68.00 78.00 38.00 44.00 48.00 56.00 
AUC 0.57 

ResNet18&SVM Acc  (%) 55.30 38.00 58.00 68.00 92.00 42.00 58.00 40.00 46.00 
AUC 0.73 

ResNet50&EL Acc  (%) 48.80 24.00 66.00 66.00 82.00 14.00 48.00 32.00 58.00 AUC 0.66 

ResNet50&KNN Acc  (%) 53.50 34.00 56.00 82.00 88.00 36.00 32.00 42.00 58.00 AUC 0.63 

ResNet50&SVM Acc  (%) 57.50 36.00 70.00 74.00 96.00 38.00 58.00 46.00 42.00 AUC 0.73 

GoogLeNet&EL Acc  (%) 39.50 20.00 48.00 58.00 78.00 26.00 22.00 30.00 34.00 AUC 0.69 

GoogLeNet&KNN Acc  (%) 37.80 18.00 46.00 66.00 72.00 12.00 30.00 26.00 32.00 AUC 0.52 

GoogLeNet&SVM Acc  (%) 45.30 26.00 56.00 60.00 88.00 28.00 34.00 30.00 40.00 AUC 0.63 

AlexNet&EL Acc  (%) 28.50 14.00 20.00 46.00 74.00 8.00 22.00 14.00 30.00 AUC 0.55 

AlexNet&KNN Acc  (%) 20.30 38.00 4.00 58.00 8.00 10.00 8.00 16.00 20.00 AUC 0.50 

AlexNet&SVM Acc  (%) 37.30 30.00 54.00 44.00 80.00 16.00 42.00 10.00 22.00 AUC 0.58 

AVERAGE ACCURACY (%) 43.23 26.33 47.67 62.17 76.33 24.67 37.83 30.67 40.00 

 
ResNet50&SVM is the most successful method in c4r3 dataset (59.10%) in Table 7.16. 

The method that fails the most is AlexNet&EL (24.80%). When class-based performances 

are examined, it is seen that e0 is classified with the highest success (56.50%), and e2 is 

classified with the lowest success (28.00%). 

 

Table 7.16 Results for c4r3 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&EL Acc (%) 41.40 36.00 50.00 26.00 70.00 16.00 67.00 20.00 46.00 AUC 0.78 

ResNet18&KNN Acc  (%) 52.40 70.00 68.00 24.00 62.00 42.00 33.00 64.00 56.00 AUC 0.80 

ResNet18&SVM Acc  (%) 55.10 64.00 52.00 28.00 74.00 42.00 71.00 64.00 46.00 AUC 0.91 

ResNet50&EL Acc  (%) 46.40 72.00 52.00 32.00 30.00 48.00 59.00 38.00 40.00 AUC 0.91 

ResNet50&KNN Acc  (%) 52.40 80.00 60.00 36.00 58.00 48.00 33.00 54.00 50.00 AUC 0.85 

ResNet50&SVM Acc  (%) 59.10 82.00 68.00 44.00 68.00 44.00 65.00 68.00 34.00 AUC 0.97 
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Table 7.16 Continues 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

GoogLeNet&EL Acc  (%) 35.60 38.00 34.00 14.00 30.00 46.00 59.00 30.00 34.00 AUC 0.73 

GoogLeNet&KNN Acc  (%) 45.10 56.00 52.00 32.00 68.00 42.00 18.00 46.00 46.00 AUC 0.74 

GoogLeNet&SVM Acc  (%) 47.10 50.00 56.00 36.00 58.00 36.00 63.00 40.00 38.00 AUC 0.86 

AlexNet&EL Acc  (%) 24.80 46.00 18.00 16.00 24.00 16.00 10.00 32.00 36.00 AUC 0.70 

AlexNet&KNN Acc  (%) 37.80 46.00 20.00 24.00 48.00 56.00 18.00 46.00 44.00 AUC 0.68 

AlexNet&SVM Acc  (%) 33.60 38.00 36.00 24.00 36.00 28.00 35.00 38.00 34.00 AUC 0.73 

AVERAGE (%) 44.23 56.50 47.17 28.00 52.17 38.67 44.25 45.00 42.00 

 
Considering the average accuracy rates of all methods for all sets of Tilda, it is seen 

that the success of EL-based classification is 49.77%, the success of KNN-based 

classification is 51.00%, and the success of SVM-based classification is 58.49% (Table 

7.17). ResNet50&SVM is the most successful method with an average accuracy of 

64.65%, while AlexNet&KNN is the least successful method with a rate of 36.95%. 

 
Table 7.17 Average accuracy rates of the methods (%) 

ResNet18&EL: 49.86        
ResNet18&KNN: 55.88        
ResNet18&SVM: 62.56        
ResNet50&EL: 58.43        
ResNet50&KNN: 56.33 Average for EL-based classification: 49.77 
ResNet50&SVM: 64.65 Average for KNN-based classification: 50.42 
GoogLeNet&EL: 48.74 Average for SVM-based classification: 58.08 
GoogLeNet&KNN: 52.53        
GoogLeNet&SVM: 57.06        
AlexNet&EL: 42.06        
AlexNet&KNN: 36.95        
AlexNet&SVM: 48.03        

 

Summary graphic for case 2 is in Figure 7.5.  
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Figure 7.5 Summary for case 2 

 

Average times to classify the features are given in Table 7.18. The EL-based 

classification time is 228.55 seconds on average. The KNN-based classification time is 

20.59 seconds on average. The SVM based classification time is 34.61 seconds on 

average. It is seen that the classification time of EL is approximately 11 times longer than 

KNN and approximately 7 times longer than SVM. 

 
Table 7.18 Average classification times (seconds) 

ResNet18&EL 83.68 
 
          

ResNet18&KNN 4.58          
ResNet18&SVM 7.11          
ResNet50&EL 220.10 

 

        
ResNet50&KNN 9.48  Average time for EL-based classification: 228.55 
ResNet50&SVM 17.41  Average time for KNN-based classification: 20.59 
GoogLeNet&EL 123.63  Average time for SVM-based classification: 34.61 
GoogLeNet&KNN 5.49          
GoogLeNet&SVM 9.62          
AlexNet&EL 486.79          
AlexNet&KNN 62.80          
AlexNet&SVM 104.31          
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7.3.3 Case Study 3 – Classification of fabrics as defected/undefected using feature 
fusion 

  

In the third case, the features obtained using different feature extraction methods are 

brought together and classified with the help of a classifier (Figure 7.6).  

 

 
Figure 7.6 Sample visualisation of case 3 

 

In Table 7.19, it is seen that the features obtained using ResNet18&ResNet50 are 

classified with the highest accuracy by SVM (90.52%). Additionally, EL's accuracy rate 

is close to that of SVM (89.40%). KNN performs the classification with the accuracy of 

84.72%. Besides, un-patterned fabrics is a dataset that can be classified with the highest 

average accuracy rate (92.38%). 

 

Table 7.20 shows that the features obtained using ResNet18&GoogLeNet are classified 

with the highest accuracy by SVM (88.29%). Additionally, EL's accuracy rate is close to 

that of SVM (88.27%). KNN performs the classification with the accuracy of 83.65%. On 

the other hand, un-patterned fabrics is a dataset that can be classified with the highest 

average accuracy rate (87.38%). 
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Table 7.19 Performance of ResNet18 & ResNet50 based feature extraction (%) 

Method Metric 
Un-

patterned 
Fabrics 

Patterned 
Fabrics Mix Average 

ResNet18 & ResNet50 & EL 

Sensitivity 92.05 89.66 88.93 90.21 

Specificity 71.55 67.21 84.38 74.38 

F-Measure 94.76 93.91 93.98 94.22 

Accuracy 90.56 88.80 88.84 89.40 

ResNet18 & ResNet50 & KNN 

Sensitivity 96.14 93.03 93.99 94.39 

Specificity 42.86 42.40 42.56 42.61 

F-Measure 90.46 91.34 91.04 90.95 

Accuracy 84.25 85.12 84.80 84.72 

ResNet18 & ResNet50 & SVM 

Sensitivity 92.77 89.42 90.20 90.80 

Specificity 86.92 87.50 80.00 84.81 

F-Measure 95.78 94.25 94.45 94.83 

Accuracy 92.38 89.37 89.81 90.52 

AVERAGE ACCURACY (%) 89.06 86.35 87.82  

 
Table 7.20 Performance of ResNet18 & GoogLeNet based feature extraction (%) 

Method Metric 
Un-

patterned 
Fabrics 

Patterned 
Fabrics Mix Average 

ResNet18 & GoogLeNet & EL 

Sensitivity 91.18 88.41 87.97 89.19 

Specificity 66.35 51.35 62.50 60.07 

F-Measure 94.23 88.27 93.41 91.97 

Accuracy 89.56 87.55 87.71 88.27 

ResNet18 & GoogLeNet & KNN 

Sensitivity 96.2 92.08 93.55 93.94 

Specificity 42.19 37.50 39.23 39.64 

F-Measure 90.21 90.47 90.21 90.30 

Accuracy 83.88 83.61 83.46 83.65 

ResNet18 & GoogLeNet & SVM 

Sensitivity 88.7 88.44 88.24 88.46 

Specificity 88.46 75.00 66.67 76.71 

F-Measure 93.91 93.68 93.51 93.70 

Accuracy 88.69 88.24 87.93 88.29 

AVERAGE ACCURACY (%) 87.38 86.47 86.37  

 

In Table 7.21, it is seen that the features obtained using ResNet18&AlexNet are 

classified with the highest accuracy by SVM (88.08%). In addition, EL's accuracy rate is 

close to that of SVM (88.00%). KNN performs the classification with the accuracy of 

74.04%.  
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Table 7.21 Performance of ResNet18 & AlexNet based feature extraction (%) 

Method Metric 
Un-

patterned 
Fabrics 

Patterned 
Fabrics Mix Average 

ResNet18 & AlexNet & EL 

Sensitivity 89.34 88.27 87.86 88.49 

Specificity 59.68 68.18 78.95 68.94 

F-Measure 93.56 93.55 93.48 93.53 

Accuracy 88.19 88.00 87.80 88.00 

ResNet18 & AlexNet & KNN 

Sensitivity 94.77 92.27 93.53 93.52 

Specificity 24.00 31.76 27.72 27.83 

F-Measure 77.84 88.21 84.11 83.39 

Accuracy 67.13 80.24 74.74 74.04 

ResNet18 & AlexNet &SVM 

Sensitivity 88.57 88.54 87.99 88.37 

Specificity 84.00 71.43 58.49 71.31 

F-Measure 93.81 93.67 93.41 93.63 

Accuracy 88.50 88.24 87.50 88.08 

AVERAGE ACCURACY (%) 81.27 85.49 83.35  

 

Table 7.22 shows that the ResNet50&GoogLeNet-obtained features are classified by 

SVM with the best degree of accuracy (91.01%). The average accuracy rates of EL and 

KNN are 89.65% and 84.28%, respectively. 

 
Table 7.22 Performance of ResNet50 & GoogLeNet based feature extraction (%) 

Method Metric 
Un-

patterned 
Fabrics 

Patterned 
Fabrics Mix Average 

ResNet50 & GoogLeNet & EL 

Sensitivity 92.32 89.48 89.05 90.28 

Specificity 75.65 75.51 76.62 75.93 

F-Measure 95.08 94.07 93.92 94.36 

Accuracy 91.13 89.06 88.75 89.65 

ResNet50 & GoogLeNet & KNN 

Sensitivity 95.77 93.34 94.02 94.38 

Specificity 40.05 44.36 41.39 41.93 

F-Measure 89.53 91.71 90.69 90.64 

Accuracy 82.81 85.74 84.28 84.28 

ResNet50 & GoogLeNet & SVM 

Sensitivity 93.45 89.83 90.56 91.28 

Specificity 86.67 91.30 82.35 86.77 

F-Measure 96.08 94.51 94.66 95.08 

Accuracy 92.94 89.87 90.22 91.01 

AVERAGE ACCURACY (%) 88.96 88.22 87.75  
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While SVM is always the classifier with the highest accuracy rate in tables 7.19-7.23, 

it is seen that the situations have changed in Table 7.23. This table demonstrates that EL 

provides the most accurate classification of the ResNet50&AlexNet-obtained features 

(89.57%). Both KNN and SVM have average accuracy rates of 75.93% and 88.73%, 

respectively. 

 
Table 7.23 Performance of ResNet50 & AlexNet based feature extraction (%) 

Method Metric 
Un-

patterned 
Fabrics 

Patterned 
Fabrics Mix Average 

ResNet50 & AlexNet & EL 

Sensitivity 92.13 89.85 88.90 90.29 

Specificity 73.68 70.97 82.81 75.82 

F-Measure 94.90 94.07 93.95 94.31 

Accuracy 90.81 89.12 88.78 89.57 

ResNet50 & AlexNet & KNN 

Sensitivity 95.54 92.18 93.86 93.86 

Specificity 26.44 33.33 29.62 29.80 

F-Measure 80.12 88.98 88.25 85.78 

Accuracy 70.06 81.36 76.37 75.93 

ResNet50 & AlexNet &SVM 

Sensitivity 89.43 88.80 88.53 88.92 

Specificity 92.30 85.71 61.76 79.92 

F-Measure 94.32 93.94 93.51 93.92 

Accuracy 89.50 88.74 87.96 88.73 

AVERAGE ACCURACY (%) 83.46 86.41 84.37  

 

Table 7.24 demonstrates that EL provides the most accurate classification of the 

ResNet50&AlexNet-obtained features (88.49%). Both KNN and SVM have average 

accuracy rates of 74.88% and 88.41%, respectively. In this table, we would like to point 

out that EL has the highest accuracy. 

 

When the classifier-based averages of the results given in Table 7.25 are examined, it 

is seen that classification can be performed with an average accuracy rate of about 85.88%. 

While the classification successes of EL and SVM are close to each other (88.90% and 

89.17%, respectively), the classification success of KNN is lower than EL and SVM 

(79.58%). The table shows that the specificity of KNN is extremely low. This shows that 

the success of KNN in correctly recognizing un-defected fabrics is low. 
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Table 7.24 Performance of GoogLeNet & AlexNet based feature extraction (%) 

Method Metric 
Un-

patterned 
Fabrics 

Patterned 
Fabrics Mix Average 

GoogLeNet & AlexNet & EL 

Sensitivity 90.53 88.70 88.15 89.13 

Specificity 64.44 71.88 76.47 70.93 

F-Measure 93.98 93.73 93.58 93.76 

Accuracy 89.06 88.37 88.03 88.49 

GoogLeNet & AlexNet & KNN 

Sensitivity 95.17 92.49 93.35 93.67 

Specificity 25.21 33.44 27.62 28.76 

F-Measure 79.01 88.77 84.25 84.01 

Accuracy 68.63 81.11 74.90 74.88 

GoogLeNet & AlexNet &SVM 

Sensitivity 88.82 88.62 88.30 88.58 

Specificity 96.15 80.77 58.93 78.62 

F-Measure 94.05 93.81 93.42 93.76 

Accuracy 88.94 88.50 87.78 88.41 

AVERAGE ACCURACY (%) 82.21 85.99 83.57  

 
Table 7.25 Performance comparison (%) 

EL AVERAGE 
 
    

Sensitivity 89.60    
Specificity 71.01    
F Measure 93.69    
Accuracy 88.90    
     

KNN AVERAGE 
 

AVERAGE 

Sensitivity 93.96  Sensitivity 90.99 
Specificity 35.10  Specificity 61.93 
F Measure 87.51 

 

F Measure 91.79 
Accuracy 79.58  Accuracy 85.88 
     

SVM AVERAGE 
   

Sensitivity 89.40    
Specificity 79.69    
F Measure 94.15    
Accuracy 89.17    
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Table 7.26 shows the dataset-based averages of the results. It is seen that the average 

accuracy rate is highest for patterned fabrics (86.72%). The success of finding unpatterned 

fabric defects in fusion features created with AlexNet is lower than others. In all fusions 

where AlexNet is not used, the success of finding unpatterned fabric defects is higher than 

the others (88.47%). 

 
 
Table 7.26 Dataset based performance comparison 

  UN-PATTERNED PATTERNED MIX 
Sensitivity 92.38 90.19 90.39 
Specificity 67.00 62.20 59.89 
F Measure 91.20 92.27 91.88 
Accuracy 85.39 86.72 85.54 

 

 

In order to summarize the findings obtained, the graph of case 3 is in Figure 7.7. 

 

 
Figure 7.7 Summary for case 3 

 

Table 7.27 provides the average classification times of the features. The average time 

for EL-based classification is 997.43 seconds. The average classification time for KNN is 
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228.44 seconds. The average time for SVM-based classification is 120.36 seconds. It can 

be shown that EL takes considerably longer to classify the data than KNN and SVM-

roughly 4 and 8 times longer, respectively. 

 
Table 7.27 Classification times (seconds) 

 DATASET  

METHOD Un-patterned 
Fabrics 

Patterned 
Fabrics Mix AVERAGE 

ResNet18&Resnet50&EL 382.54 495.02 923.20 600.22 
ResNet18&Resnet50&KNN 47.48 47.98 156.59 84.02 

ResNet18&Resnet50&SVM 21.94 23.44 55.61 33.66 
ResNet18&GoogLeNet&EL 305.30 347.88 630.50 427.89 
ResNet18&GoogLeNet&KNN 27.93 26.90 89.46 48.10 

ResNet18&GoogLeNet&SVM 12.46 13.87 33.98 20.10 
ResNet18&AlexNet&EL 853.13 1061.40 1869.10 1261.21 

ResNet18&AlexNet&KNN 254.71 202.32 606.10 354.38 
ResNet18&AlexNet&SVM 161.04 143.02 294.94 199.67 

ResNet50&GoogLeNet&EL 471.55 576.10 1007.60 685.08 
ResNet50&GoogLeNet&KNN 55.50 55.03 117.65 76.06 
ResNet50&GoogLeNet&SVM 26.50 29.47 66.66 40.88 

ResNet50&AlexNet&EL 1014.20 1273.20 2333.10 1540.17 
ResNet50&AlexNet&KNN 249.78 254.24 757.74 420.59 

ResNet50&AlexNet&SVM 159.20 169.13 356.27 228.20 
GoogLeNet&AlexNet&EL 999.97 1377.50 2032.50 1469.99 
GoogLeNet&AlexNet&KNN 217.55 221.85 723.11 387.50 

GoogLeNet&AlexNet&SVM 136.48 172.10 290.43 199.67 
 
 
7.3.4 Case Study 4 – Classification of Defects According to Their Types Using Feature 
Fusion 

 

Visualisation of case 4 is as in Figure 7.8. The feature fusion created by combining the 

features of two different CNN models is tried to be classified. The classification is not 

binary as in case 1 and case 3, but 8-class as in case 2. 
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Figure 7.8 Sample visualisation of case 4 

 
In Table 7.28, ResNet50&GoogLeNet&SVM has the highest accuracy rate (80.00%), 

while ResNet18&AlexNet&KNN has the lowest accuracy rate (46.30%). In this dataset, 

e0 is the class most successfully classified (88.22%) among the eight classes, while e2 is 

the class with the lowest success (53.00%). 

  
Table 7.28 Results for c1r1 

METHOD GENERAL 
PERFORMANCE 

CLASS-BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&Resnet50&EL Acc (%) 74.50 92.00 76.00 70.00 64.00 68.00 72.00 78.00 76.00 AUC 0.96 

ResNet18&Resnet50&KNN Acc (%) 66.80 88.00 48.00 6.00 50.00 62.00 84.00 88.00 54.00 AUC 0.86 

ResNet18&Resnet50&SVM Acc (%) 79.00 96.00 54.00 86.00 82.00 68.00 82.00 84.00 80.00 AUC 0.99 

ResNet18&GoogLeNet&EL Acc (%) 65.30 62.00 64.00 52.00 56.00 62.00 76.00 90.00 60.00 AUC 0.90 

ResNet18&GoogLeNet&KNN Acc (%) 71.00 76.00 64.00 54.00 66.00 62.00 82.00 94.00 70.00 AUC 0.82 

ResNet18&GoogLeNet&SVM Acc (%) 76.80 96.00 62.00 74.00 72.00 64.00 78.00 84.00 84.00 AUC 0.98 

ResNet18&AlexNet&EL Acc (%) 66.80 86.0 70.00 54.00 40.00 70.00 80.00 66.00 68.00 AUC 0.95 

ResNet18&AlexNet&KNN Acc (%) 46.30 86.00 32.00 18.00 18.00 36.00 52.00 62.00 66.00 AUC 0.77 

ResNet18&AlexNet&SVM Acc (%) 62.70 96.00 26.00 54.00 62.00 52.00 62.00 74.00 76.00 AUC 0.97 

ResNet50&GoogLeNet&EL Acc (%) 74.30 82.00 66.00 78.00 66.00 66.00 86.00 90.00 60.00 AUC 0.94 
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Table 7.28 Continues 

METHOD GENERAL 
PERFORMANCE 

CLASS-BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet50&GoogLeNet&KNN Acc (%) 70.30 96.00 56.00 60.00 48.00 52.00 84.00 92.00 74.00 AUC 0.91 

ResNet50&GoogLeNet&SVM Acc (%) 80.00 96.00 60.00 78.00 86.00 66.00 82.00 92.00 80.00 AUC 0.98 

ResNet50&AlexNet&EL Acc (%) 74.80 94.00 86.00 72.00 58.00 72.00 88.00 68.00 60.00 AUC 0.98 

ResNet50&AlexNet&KNN Acc (%) 46.50 86.00 30.00 22.00 28.00 32.00 54.00 64.00 56.00 AUC 0.77 

ResNet50&AlexNet&SVM Acc (%) 67.30 98.00 38.00 54.00 72.00 54.00 62.00 80.00 80.00 AUC 0.98 

GoogLeNet&AlexNet&EL Acc (%) 66.8 80.00 68.00 56.00 44.00 60.00 76.00 88.00 62.00 AUC 0.93 

GoogLeNet&AlexNet&KNN Acc (%) 48.30 86.00 34.00 18.00 30.00 36.00 48.00 66.00 68.00 AUC 0.78 

GoogLeNet&AlexNet&SVM Acc (%) 67.30 92.00 38.00 48.00 70.00 52.00 70.00 82.00 86.00 AUC 0.97 

AVERAGE ACCURACY (%) 66.93 88.22 54.00 53.00 56.22 57.44 73.22 80.11 70.00 

 

According to Table 7.29, ResNet18&GoogLeNet&SVM is the best method (70.00%) 

for the c1r3 dataset of Tilda.  Compared to other classes, e0's classification performance 

has the greatest rate (75.67%). This dataset's most challenging class, e2, has a 

classification success rate of just 38.22 percent. 

 
Table 7.29 Results for c1r3  

METHOD GENERAL 
PERFORMANCE 

CLASS-BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&Resnet50&EL Acc (%) 61.50 56.00 62.00 40.00 62.00 70.00 82.00 58.00 62.00 AUC 0.89 

ResNet18&Resnet50&KNN Acc (%) 59.50 70.00 34.00 50.00 50.00 76.00 82.00 48.00 66.00 AUC 0.76 

ResNet18&Resnet50&SVM Acc (%) 68.50 84.00 54.00 56.00 66.00 82.00 82.00 50.00 74.00 AUC 0.94 

ResNet18&GoogLeNet&EL Acc (%) 56.00 60.00 50.00 40.00 48.00 54.00 86.00 54.00 56.00 AUC 0.83 

ResNet18&GoogLeNet&KNN Acc (%) 60.30 70.00 36.00 38.00 48.00 68.00 76.00 74.00 72.00 AUC 0.78 

ResNet18&GoogLeNet&SVM Acc (%) 70.00 86.00 66.00 54.00 58.00 74.00 84.00 56.00 82.00 AUC 0.96 

ResNet18&AlexNet&EL Acc (%) 56.30 92.00 38.00 30.00 56.00 54.00 70.00 42.00 66.00 AUC 0.96 

ResNet18&AlexNet&KNN Acc (%) 38.50 80.00 12.00 20.00 16.00 44.00 30.00 42.00 64.00 AUC 0.75 

ResNet18&AlexNet&SVM Acc (%) 56.00 92.00 38.00 30.00 56.00 54.00 70.00 42.00 66.00 AUC 0.96 

ResNet50&GoogLeNet&EL Acc (%) 61.00 66.00 58.00 52.00 56.00 64.00 78.00 52.00 62.00 AUC 0.89 

ResNet50&GoogLeNet&KNN Acc (%) 56.00 66.00 40.00 40.00 42.00 78.00 66.00 60.00 56.00 AUC 0.74 

ResNet50&GoogLeNet&SVM Acc (%) 65.50 74.00 58.00 54.00 54.00 72.00 84.00 54.00 74.00 AUC 0.92 
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Table 7.29 Continues 

METHOD GENERAL 
PERFORMANCE 

CLASS-BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet50&AlexNet&EL Acc (%) 62.50 66.00 64.00 42.00 56.00 76.00 86.00 54.00 56.00 AUC 0.90 

ResNet50&AlexNet&KNN Acc (%) 38.00 80.00 14.00 18.00 16.00 40.00 34.00 44.00 58.00 AUC 0.74 

ResNet50&AlexNet&SVM Acc (%) 54.00 92.00 34.00 36.00 54.00 44.00 62.00 48.00 62.00 AUC 0.95 

GoogLeNet&AlexNet&EL Acc (%) 53.50 62.00 26.00 44.00 42.00 64.00 80.00 58.00 52.00 AUC 0.85 

GoogLeNet&AlexNet&KNN Acc (%) 38.30 76.00 12.00 20.00 12.00 42.00 32.00 46.00 66.00 AUC 0.73 

GoogLeNet&AlexNet&SVM Acc (%) 53.50 90.00 32.00 24.00 44.00 56.00 70.00 48.00 64.00 AUC 0.96 
AVERAGE ACCURACY (%) 56.05 75.67 40.44 38.22 46.44 61.78 69.67 51.67 64.33 

 
The methods of ResNet18&GoogLeNet&SVM and ResNet50&GoogLeNet&SVM 

have highest rates (both have a classification success of 64.50%) in Table 7.30. E6 is the 

class with the highest success (77.89%) while e3 is the class with the lowest success 

(31.22%). 

 
Table 7.30 Results for c2r2 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&Resnet50&EL Acc (%) 60.50 80.00 58.00 58.00 28.00 50.00 76.00 78.00 56.00 AUC 0.95 

ResNet18&Resnet50&KNN Acc  (%) 56.80 74.00 38.00 48.00 24.00 50.00 74.00 86.00 60.00 AUC 0.79 

ResNet18&Resnet50&SVM Acc  (%) 65.30 82.00 62.00 44.00 58.00 50.00 74.00 74.00 78.00 AUC 0.97 

ResNet18&GoogLeNet&EL Acc  (%) 53.50 82.00 50.00 38.00 22.00 48.00 56.00 76.00 56.00 AUC 0.93 

ResNet18&GoogLeNet&KNN Acc  (%) 56.80 74.00 38.00 44.00 34.00 54.00 58.00 82.00 70.00 AUC 0.79 

ResNet18&GoogLeNet&SVM Acc  (%) 64.50 84.00 46.00 66.00 52.00 50.00 68.00 74.00 76.00 AUC 0.96 

ResNet18&AlexNet&EL Acc  (%) 50.20 74.00 38.00 28.00 16.00 54.00 54.00 86.00 52.00 AUC 0.89 

ResNet18&AlexNet&KNN Acc  (%) 40.50 72.00 10.00 16.00 14.00 46.00 16.00 84.00 66.00 AUC 0.73 

ResNet18&AlexNet&SVM Acc  (%) 53.50 76.00 50.00 28.00 32.00 42.00 64.00 70.00 66.00 AUC 0.93 

ResNet50&GoogLeNet&EL Acc  (%) 62.00 64.00 66.00 58.00 30.00 52.00 82.00 78.00 66.00 AUC 0.91 

ResNet50&GoogLeNet&KNN Acc  (%) 57.50 72.00 38.00 56.00 34.00 52.00 64.00 88.00 56.00 AUC 0.78 

ResNet50&GoogLeNet&SVM Acc  (%) 64.50 80.00 62.00 50.00 50.00 56.00 68.00 72.00 78.00 AUC 0.95 

ResNet50&AlexNet&EL Acc  (%) 60.80 72.00 58.00 54.00 34.00 50.00 68.00 88.00 62.00 AUC 0.94 

ResNet50&AlexNet&KNN Acc  (%) 40.50 66.00 16.00 18.00 22.00 42.00 22.00 76.00 62.00 AUC 0.71 
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Table 7.30 Continues 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet50&AlexNet&SVM Acc  (%) 59.80 76.00 62.00 38.00 36.00 48.00 76.00 68.00 74.00 AUC 0.94 

GoogLeNet&AlexNet&EL Acc  (%) 49.50 80.00 54.00 26.00 14.00 52.00 50.00 76.00 44.00 AUC 0.93 

GoogLeNet&AlexNet&KNN Acc  (%) 37.80 64.00 12.00 8.00 18.00 36.00 22.00 78.00 64.00 AUC 0.69 

GoogLeNet&AlexNet&SVM Acc  (%) 57.50 82.00 60.00 24.00 44.00 42.00 64.00 68.00 76.00 AUC 0.94 
AVERAGE ACCURACY (%) 53.96 75.22 45.44 39.00 31.22 48.56 58.67 77.89 64.56 

 
According to Table 7.31, ResNet18&GoogLeNet&SVM is the best method (71.30%) 

for the c3r3 dataset of Tilda. E0 is the class classified with the highest accuracy rate 

(71.00%). E2 is the only class with a classification success of less than 50% (48.22%). 

 
Table 7.31 Results for c2r3 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&Resnet50&EL Acc (%) 63.70 75.00 64.00 47.00 80.00 52.00 72.00 64.00 56.00 AUC 0.91 

ResNet18&Resnet50&KNN Acc  (%) 59.80 69.00 64.00 49.00 66.00 62.00 64.00 52.00 52.00 AUC 0.77 

ResNet18&Resnet50&SVM Acc  (%) 69.80 94.00 60.00 71.00 82.00 70.00 76.00 50.00 54.00 AUC 0.96 

ResNet18&GoogLeNet&EL Acc  (%) 59.50 53.00 62.00 51.00 82.00 64.00 54.00 64.00 46.00 AUC 0.84 

ResNet18&GoogLeNet&KNN Acc  (%) 64.30 71.00 72.00 53.00 72.00 66.00 54.00 60.00 66.00 AUC 0.78 

ResNet18&GoogLeNet&SVM Acc  (%) 71.30 78.00 58.00 65.00 92.00 76.00 68.00 60.00 72.00 
AUC 0.93 

ResNet18&AlexNet&EL Acc  (%) 58.30 65.00 60.00 43.00 70.00 64.00 54.00 52.00 58.00 AUC 0.87 

ResNet18&AlexNet&KNN Acc  (%) 34.30 47.00 24.00 35.00 24.00 42.00 26.00 44.00 32.00 AUC 0.60 

ResNet18&AlexNet&SVM Acc  (%) 50.00 76.00 46.00 41.00 62.00 42.00 44.00 42.00 46.00 AUC 0.84 

ResNet50&GoogLeNet&EL Acc  (%) 66.00 71.00 68.00 61.00 78.00 74.00 64.00 54.00 58.00 AUC 0.92 

ResNet50&GoogLeNet&KNN Acc  (%) 63.20 84.00 72.00 41.00 72.00 58.00 60.00 60.00 58.00 AUC 0.84 

ResNet50&GoogLeNet&SVM Acc  (%) 70.80 88.00 58.00 67.00 88.00 74.00 68.00 58.00 64.00 AUC 0.95 

ResNet50&AlexNet&EL Acc  (%) 65.30 80.00 64.00 51.00 70.00 58.00 74.00 64.00 60.00 AUC 0.95 

ResNet50&AlexNet&KNN Acc  (%) 38.50 51.00 26.00 35.00 40.00 42.00 34.00 48.00 32.00 AUC 0.63 

ResNet50&AlexNet&SVM Acc  (%) 56.30 88.00 48.00 45.00 70.00 48.00 54.00 48.00 48.00 AUC 0.91 

GoogLeNet&AlexNet&EL Acc  (%) 56.80 41.00 66.00 35.00 80.00 68.00 60.00 54.00 50.00 
AUC 0.81 

GoogLeNet&AlexNet&KNN Acc  (%) 37.00 67.00 22.00 33.00 34.00 32.00 24.00 54.00 30.00 AUC 0.70 

 



75 
 

Table 7.31 Continues 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

GoogLeNet&AlexNet&SVM Acc  (%) 52.80 80.00 42.00 45.00 72.00 46.00 44.00 44.00 48.00 AUC 0.87 
AVERAGE ACCURACY (%) 57.65 71.00 54.22 48.22 68.56 57.67 55.22 54.00 51.67 

 

ResNet18&Resnet50&SVM is the method with the highest accuracy rate (73.30%) in 

Table 7.32. While e0 is the class classified with the highest accuracy rate (72.22%) in this 

dataset, e1 is the class classified with the lowest rate (44.78%). 

 

Table 7.32 Results for c3r1 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&Resnet50&EL Acc (%) 61.80 70.00 28.00 52.00 62.00 72.00 72.00 68.00 70.00 AUC 0.94 

ResNet18&Resnet50&KNN Acc  (%) 62.50 58.00 40.00 58.00 72.00 68.00 66.00 66.00 72.00 AUC 0.77 

ResNet18&Resnet50&SVM Acc  (%) 73.30 72.00 60.00 56.00 80.00 88.00 74.00 82.00 74.00 AUC 0.95 

ResNet18&GoogLeNet&EL Acc  (%) 56.30 50.00 34.00 36.00 42.00 64.00 62.00 86.00 76.00 AUC 0.83 

ResNet18&GoogLeNet&KNN Acc  (%) 60.00 66.00 54.00 44.00 68.00 46.00 56.00 72.00 74.00 AUC 0.79 

ResNet18&GoogLeNet&SVM Acc  (%) 72.30 80.00 74.00 66.00 70.00 82.00 70.00 64.00 72.00 AUC 0.96 

ResNet18&AlexNet&EL Acc  (%) 58.00 68.00 34.00 32.00 56.00 64.00 60.00 78.00 72.00 AUC 0.90 

ResNet18&AlexNet&KNN Acc  (%) 53.8 82.00 38.00 40.00 58.00 60.00 24.00 62.00 66.00 AUC 0.84 

ResNet18&AlexNet&SVM Acc  (%) 64.3 78.00 50.00 54.00 58.00 82.00 58.00 72.00 62.00 AUC 0.97 

ResNet50&GoogLeNet&EL Acc  (%) 61.30 76.00 28.00 42.00 54.00 76.00 70.00 74.00 70.00 AUC 0.95 

ResNet50&GoogLeNet&KNN Acc  (%) 61.00 66.00 50.00 48.00 76.00 56.00 58.00 62.00 72.00 AUC 0.80 

ResNet50&GoogLeNet&SVM Acc  (%) 71.00 76.00 58.00 68.00 74.00 74.00 72.00 74.00 72.00 AUC 0.95 

ResNet50&AlexNet&EL Acc  (%) 65.30 82.00 32.00 34.00 62.00 76.00 78.00 76.00 82.00 AUC 0.98 

ResNet50&AlexNet&KNN Acc  (%) 53.30 70.00 30.00 50.00 64.00 58.00 32.00 58.00 64.00 AUC 0.79 

ResNet50&AlexNet&SVM Acc  (%) 68.80 78.00 62.00 54.00 62.00 86.00 64.00 76.00 68.00 AUC 0.97 

GoogLeNet&AlexNet&EL Acc  (%) 60.00 70.00 26.00 36.00 58.00 70.00 64.00 76.00 80.00 AUC 0.92 

GoogLeNet&AlexNet&KNN Acc  (%) 54.00 76.00 46.00 48.00 62.00 46.00 30.00 54.00 70.00 AUC 0.81 

GoogLeNet&AlexNet&SVM Acc  (%) 68.5 82.00 62.00 58.00 60.00 74.00 70.00 70.00 72.00 AUC 0.98 

AVERAGE ACCURACY (%) 62.53 72.22 44.78 48.67 63.22 69.00 60.00 70.56 71.56 
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In Table 7.33, ResNet50&GoogLeNet&SVM has the highest accuracy rate (60.30%), 

while GoogLeNet &AlexNet&KNN has the lowest accuracy rate (37.50%). In this dataset, 

e5 is the class most successfully classified (67.33%) among the eight classes, while e2 is 

the class with the lowest success (35.11%). 

 
Table 7.33 Results for c3r3 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&Resnet50&EL Acc (%) 57.50 68.00 62.00 24.00 52.00 72.00 84.00 58.00 40.00 AUC 0.89 

ResNet18&Resnet50&KNN Acc  (%) 51.70 58.00 26.00 42.00 30.00 68.00 76.00 60.00 54.00 AUC 0.70 

ResNet18&Resnet50&SVM Acc  (%) 59.30 68.00 48.00 42.00 56.00 70.00 74.00 68.00 48.00 AUC 0.90 

ResNet18&GoogLeNet&EL Acc  (%) 48.30 22.00 26.00 36.00 36.00 76.00 76.00 76.00 38.00 AUC 0.71 

ResNet18&GoogLeNet&KNN Acc  (%) 47.50 40.00 22.00 44.00 32.00 56.00 72.00 60.00 54.00 AUC 0.61 

ResNet18&GoogLeNet&SVM Acc  (%) 56.80 52.00 54.00 48.00 42.00 68.00 72.00 68.00 50.00 AUC 0.84 

ResNet18&AlexNet&EL Acc  (%) 49.80 50.00 38.00 28.00 34.00 62.00 72.00 74.00 40.00 AUC 0.78 

ResNet18&AlexNet&KNN Acc  (%) 38.00 58.00 26.00 30.00 20.00 44.00 32.00 54.00 40.00 AUC 0.66 

ResNet18&AlexNet&SVM Acc  (%) 44.80 32.00 32.00 34.00 32.00 70.00 60.00 62.00 36.00 AUC 0.75 

ResNet50&GoogLeNet&EL Acc  (%) 58.30 68.00 64.00 24.00 52.00 60.00 86.00 66.00 46.00 AUC 0.90 

ResNet50&GoogLeNet&KNN Acc  (%) 46.30 42.00 24.00 38.00 28.00 54.00 74.00 62.00 48.00 AUC 0.62 

ResNet50&GoogLeNet&SVM Acc  (%) 60.30 68.00 50.00 52.00 56.00 64.00 74.00 66.00 52.00 AUC 0.89 

ResNet50&AlexNet&EL Acc  (%) 59.50 76.00 68.00 26.00 48.00 68.00 86.00 54.00 50.00 AUC 0.91 

ResNet50&AlexNet&KNN Acc  (%) 38.50 48.00 24.00 26.00 26.00 42.00 40.00 54.00 48.00 AUC 0.62 

ResNet50&AlexNet&SVM Acc  (%) 52.80 52.00 50.00 40.00 38.00 70.00 62.00 64.00 46.00 AUC 0.85 

GoogLeNet&AlexNet&EL Acc  (%) 53.50 40.00 46.00 38.00 36.00 70.00 74.00 74.00 50.00 AUC 0.79 

GoogLeNet&AlexNet&KNN Acc  (%) 37.50 58.00 22.00 26.00 26.00 40.00 36.00 52.00 40.00 AUC 0.66 

GoogLeNet&AlexNet&SVM Acc  (%) 47.00 32.00 36.00 34.00 36.00 72.00 62.00 66.00 38.00 AUC 0.77 
AVERAGE ACCURACY (%) 50.41 51.78 39.89 35.11 37.78 62.56 67.33 63.22 45.44 

 
 

According to Table 7.34, ResNet18& ResNet50&SVM is the best method (60.50%) 

for the c4r1 dataset of Tilda.  The classification performance of e3 is greatest (72.89%) 

compared to other classes. This dataset's most challenging classes are e0 and e4 with the 

accuracy rates of 27.89% and 23.11%, respectively. 
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Table 7.34 Results for c4r1 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&Resnet50&EL Acc (%) 50.50 
18.00 52.00 62.00 88.00 32.00 64.00 34.00 54.00 

AUC 0.64 

ResNet18&Resnet50&KNN Acc  (%) 54.30 28.00 58.00 78.00 84.00 32.00 40.00 42.00 72.00 
AUC 0.58 

ResNet18&Resnet50&SVM Acc  (%) 60.50 42.00 68.00 74.00 96.00 40.00 62.00 48.00 54.00 
AUC 0.73 

ResNet18&GoogLeNet&EL Acc  (%) 42.30 
22.00 38.00 44.00 78.00 26.00 58.00 26.00 46.00 

AUC 0.63 

ResNet18&GoogLeNet&KNN Acc  (%) 45.30 16.00 56.00 70.00 66.00 18.00 46.00 42.00 48.00 
AUC 0.53 

ResNet18&GoogLeNet&SVM Acc  (%) 53.00 34.00 64.00 56.00 92.00 34.00 54.00 44.00 46.00 
AUC 0.69 

ResNet18&AlexNet&EL Acc  (%) 41.3 
4.00 46.00 62.00 78.00 28.00 46.00 24.00 42.00 

AUC 0.57 

ResNet18&AlexNet&KNN Acc  (%) 23.30 
26.00 12.00 76.00 14.00 10.00 8.00 18.00 22.00 

AUC 0.50 

ResNet18&AlexNet&SVM Acc  (%) 37.50 24.00 50.00 42.00 78.00 14.00 48.00 22.00 22.00 
AUC 0.60 

ResNet50&GoogLeNet&EL Acc  (%) 51.00 32.00 52.00 64.00 78.00 34.00 50.00 40.00 58.00 
AUC 0.70 

ResNet50&GoogLeNet&KNN Acc  (%) 50.50 
30.00 54.00 88.00 84.00 18.00 38.00 40.00 52.00 

AUC 0.60 

ResNet50&GoogLeNet&SVM Acc  (%) 58.30 
42.00 72.00 72.00 96.00 38.00 54.00 42.00 50.00 

AUC 0.73 

ResNet50&AlexNet&EL Acc  (%) 48.80 20.00 62.00 62.00 84.00 16.00 54.00 36.00 56.00 
AUC 0.62 

ResNet50&AlexNet&KNN Acc  (%) 32.80 
30.00 36.00 64.00 42.00 8.00 16.00 32.00 34.00 

AUC 0.58 

ResNet50&AlexNet&SVM Acc  (%) 47.50 
36.00 58.00 54.00 84.00 18.00 58.00 38.00 34.00 

AUC 0.62 

GoogLeNet&AlexNet&EL Acc  (%) 38.30 24.00 46.00 60.00 66.00 24.00 18.00 28.00 40.00 
AUC 0.64 

GoogLeNet&AlexNet&KNN Acc  (%) 25.30 
32.00 8.00 68.00 22.00 10.00 14.00 26.00 22.00 

AUC 0.53 

GoogLeNet&AlexNet&SVM Acc  (%) 42.00 
42.00 48.00 54.00 82.00 16.00 44.00 22.00 28.00 

AUC 0.63 
AVERAGE ACCURACY (%) 44.58 27.89 48.89 63.89 72.89 23.11 42.89 33.56 43.33 

 

ResNet18&Resnet50&SVM has the highest accuracy rate (61.70%) while 

GoogLeNet&AlexNet&EL has the lowest accuracy rate (34.30%) in Table 7.35. On the 

other hand, e0 is the class with the highest success (61.00%), while e2 is the class with 

the lowest success (29.56%). 
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Table 7.35 Results for c4r3 

METHOD GENERAL 
PERFORMANCE 

CLASS BASED PERFORMANCE (%) 
e0 e1 e2 e3 e4 e5 e6 e7 

ResNet18&Resnet50&EL Acc (%) 50.10 68.00 68.00 32.00 42.00 40.00 63.00 46.00 42.00 AUC 0.89 

ResNet18&Resnet50&KNN Acc  (%) 52.60 76.00 58.00 38.00 60.00 52.00 35.00 52.00 50.00 AUC 0.82 

ResNet18&Resnet50&SVM Acc  (%) 61.70 82.00 68.00 44.00 78.00 48.00 67.00 64.00 42.00 AUC 0.97 

ResNet18&GoogLeNet&EL Acc  (%) 45.40 50.00 54.00 20.00 56.00 30.00 71.00 38.00 44.00 AUC 0.80 

ResNet18&GoogLeNet&KNN Acc  (%) 50.90 72.00 56.00 34.00 72.00 50.00 22.00 52.00 48.00 AUC 0.81 

ResNet18&GoogLeNet&SVM Acc  (%) 54.90 70.00 52.00 30.00 82.00 52.00 65.00 50.00 38.00 AUC 0.93 

ResNet18&AlexNet&EL Acc  (%) 40.10 44.00 46.00 24.00 60.00 20.00 71.00 20.00 36.00 AUC 0.75 

ResNet18&AlexNet&KNN Acc  (%) 38.80 40.00 26.00 30.00 50.00 56.00 20.00 44.00 44.00 AUC 0.64 

ResNet18&AlexNet&SVM Acc  (%) 38.30 50.00 38.00 30.00 50.00 28.00 43.00 38.00 30.00 AUC 0.80 

ResNet50&GoogLeNet&EL Acc  (%) 45.90 62.00 50.00 36.00 36.00 32.00 61.00 40.00 50.00 AUC 0.86 

ResNet50&GoogLeNet&KNN Acc  (%) 51.60 86.00 54.00 34.00 66.00 48.00 29.00 50.00 46.00 AUC 0.87 

ResNet50&GoogLeNet&SVM Acc  (%) 59.60 78.00 70.00 38.00 76.00 46.00 71.00 56.00 42.00 AUC 0.96 

ResNet50&AlexNet&EL Acc  (%) 42.90 70.00 64.00 32.00 42.00 40.00 59.00 32.00 44.00 AUC 0.88 

ResNet50&AlexNet&KNN Acc  (%) 40.10 52.00 36.00 20.00 52.00 54.00 20.00 48.00 38.00 AUC 0.69 

ResNet50&AlexNet&SVM Acc  (%) 49.10 72.00 48.00 34.00 60.00 48.00 53.00 50.00 28.00 AUC 0.91 

GoogLeNet&AlexNet&EL Acc  (%) 34.30 42.00 36.00 16.00 38.00 26.00 51.00 30.00 36.00 AUC 0.75 

GoogLeNet&AlexNet&KNN Acc  (%) 36.80 40.00 26.00 22.00 50.00 52.00 16.00 50.00 38.00 AUC 0.64 

GoogLeNet&AlexNet&SVM Acc  (%) 37.10 44.00 44.00 18.00 46.00 30.00 35.00 50.00 30.00 AUC 0.79 

AVERAGE ACCURACY (%) 46.12 61.00 49.67 29.56 56.44 41.78 47.33 45.00 40.33 

 
In terms of accuracy rates, ResNet18&Resnet50&SVM performs the best (67.18%) 

when compared to the performances of other methods (Table 7.36). On the other hand, it 

is seen that ResNet18&AlexNet&KNN has the lowest performance (39.19%). If a 

classifier-based comparison is made, the highest average is obtained in SVM-based 

classification (58.36%). 48.61% and 55.75% of classification accuracy rates have been 

obtained for the classifiers of KNN and EL, respectively. 
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Table 7.36 Average accuracy rates 

AVERAGE ACCURACY RATES (%) 
ResNet18&Resnet50&EL 60.01  ResNet18&AlexNet&EL 52.60  ResNet50&AlexNet&EL 59.99 
ResNet18&Resnet50&KNN 58.00  ResNet18&AlexNet&KNN 39.19  ResNet50&AlexNet&KNN 41.03 
ResNet18&Resnet50&SVM 67.18  ResNet18&AlexNet&SVM 50.89  ResNet50&AlexNet&SVM 56.95 
ResNet18&GoogLeNet&EL 53.33  ResNet50&GoogLeNet&EL 59.98  GoogLeNet&AlexNet&EL 51.59 
ResNet18&GoogLeNet&KNN 57.01  ResNet50&GoogLeNet&KNN 57.05  GoogLeNet&AlexNet&KNN 39.38 
ResNet18&GoogLeNet&SVM 64.95  ResNet50&GoogLeNet&SVM 66.25  GoogLeNet&AlexNet&SVM 53.21 

 

Summary graphic for case 4 is in Figure 7.9. While c1r1 is the dataset with the highest 

classification success (66.93%), c4r1 is the dataset with the lowest classification success 

(44.6%). 

 

 
Figure 7.9 Summary for case 4 

 

Average times to classify the features are given in Table 7.37. The EL-based 

classification time is 449.83 seconds on average. The KNN-based classification time is 

44.44 seconds on average. The SVM based classification time is 74.12 seconds on 

average. It is seen that the classification time of EL is approximately 10 times longer than 

KNN and approximately 6 times longer than SVM. 
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Table 7.37 Classification times (seconds) 

 DATASET 

METHOD c1r1 c1r3 c2r2 c2r3 c3r1 c3r3 c4r1 c4r3 
ResNet18&Resnet50&EL 231.10 242.58 224.33 261.33 252.85 233.20 302.36 446.85 

ResNet18&Resnet50&KNN 12.38 12.89 9.28 9.28 9.75 13.08 9.24 14.13 

ResNet18&Resnet50&SVM 23.78 22.20 19.88 21.87 21.83 21.98 22.32 23.05 

ResNet18&GoogLeNet&EL 189.53 178.76 197.30 180.78 196.56 205.25 211.15 243.09 

ResNet18&GoogLeNet&KNN 8.20 4.80 4.74 5.24 7.85 4.73 11.29 7.87 

ResNet18&GoogLeNet&SVM 13.16 12.26 12.37 12.34 14.86 14.81 15.43 14.17 

ResNet18&AlexNet&EL 423.62 118.32 506.69 475.42 431.72 468.47 589.67 805.64 

ResNet18&AlexNet&KNN 70.71 68.63 73.93 65.48 71.55 70.55 70.65 62.62 

ResNet18&AlexNet&SVM 111.60 118.32 113.37 109.12 114.25 112.27 108.06 105.34 

ResNet50&GoogLeNet&EL 277.84 287.12 260.18 277.47 313.64 256.21 334.60 513.38 

ResNet50&GoogLeNet&KNN 15.26 14.93 14.91 13.38 14.93 14.74 14.38 12.28 

ResNet50&GoogLeNet&SVM 24.77 25.20 26.83 28.62 27.74 27.75 26.28 25.83 

ResNet50&AlexNet&EL 490.67 519.97 578.70 629.04 569.36 540.96 687.69 1141.30 

ResNet50&AlexNet&KNN 85.75 78.08 88.71 97.33 92.75 81.55 83.71 83.74 

ResNet50&AlexNet&SVM 130.16 133.84 140.65 153.35 149.33 122.74 133.65 127.95 

GoogLeNet&AlexNet&EL 473.67 450.88 561.71 544.76 442.38 485.71 640.37 958.20 

GoogLeNet&AlexNet&KNN 73.49 68.52 82.18 80.26 73.04 76.67 77.04 78.02 

GoogLeNet&AlexNet&SVM 110.59 117.23 124.10 131.76 112.21 127.73 130.34 119.74 

 
 
7.4 Analysis 
7.4.1 Analysis for Binary Classification (for Case 1 and Case 3) 
 

In this section, the results of the tested combinations have been also compared with the 

results of the CNN models. In the models, epoch value was taken 5, and learning rate was 

taken 0.001. In order for the results to be comparable, 10-fold cross validation was used 

in these models as well. The confusion matrices of ResNet18 have been given in Figure 

7.10. The results of the CNN models have been also given for 10-fold cross validation. 

The target class is shown on the horizontal axis, while the output class is shown on the 

vertical axis. 
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Figure 7.10 Confusion matrix for ResNet18 (binary classification) 

 

As shown in Table 7.38, the accuracy rates of ResNet50 and GoogleNet are close to 

each other (87.87% and 88.07%, respectively). AlexNet's success is the lowest compared 

to the other three models. The average accuracy rate for the classification of unpatterned 

fabrics is higher than in patterned and mixed fabrics. The graph showing the success of 

the models is in Figure 7.11. 
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According to the classification times (Table 7.39), ResNet50 is the model with the 

longest time to result (8774.67 seconds on average). The model that results in the shortest 

time is AlexNet ( 849 seconds on average). 
 

Table 7.38 Accuracy rates of CNN models for binary classification (%) 

DATASET  

METHOD  Un-patterned 
Fabrics 

Patterned 
Fabrics Mix AVERAGE 

ResNet18 85.25 88.30 85.31 86.29 
Resnet50 91.10 87.50 85.00 87.87 
GoogLeNet 88.90 87.60 87.70 88.07 
AlexNet 86.80 83.10 86.80 85.57 
AVERAGE 88.01 86.63 86.20  

  

 
Figure 7.11 Summary of CNN models for 2-class classification 

 

Table 7.39 Classification times of CNN models for binary classification (seconds) 

DATASET 

METHOD  Un-patterned 
Fabrics 

Patterned 
Fabrics Mix AVERAGE 

ResNet18 1530 1452 3033 2005.00 
Resnet50 8408 9824 8092 8774.67 
GoogLeNet 2635 2617 5019 3423.67 
AlexNet 641 635 1271 849.00 
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The comparison of case 1 and case 3 with CNN models is given in Table 7.40. It can 

be observed that the success of case 3 in patterned fabrics (86.72%) is slightly higher than 

the success of case 1 (86.40%) and CNN models (86.63%) for patterned fabrics. On the 

other hand, the success of CNN is higher than the successes of case 1 and case 3 in other 

datasets (patterned and mix). 

 

Since a feature fusion is created by combining the features of the two models in case 

3, the classification time in case 3 is approximately twice the classification time of case 1. 

 
Table 7.40 Comparison for binary classification 

Comparison Methods Results 

Average accuracy rates for unpatterned fabrics 

CNN 88.01% 

Case 1 86.20% 

Case 3 85.39% 

Average accuracy rates for patterned fabrics 

CNN 86.63% 

Case 1 86.40% 

Case 3 86.72% 

Average accuracy rates for mix fabrics 

CNN 86.20% 

Case 1 85.75% 

Case 3 85.54% 

Dataset classified with highest success 

CNN unpatterned 

Case 1 patterned 

Case 3 patterned 

Dataset classified with lowest success 

CNN mix 

Case 1 mix 

Case 3 unpatterned 

Average time 

CNN 3763.08 sec 
Case 1 213.46 sec 

Case 3 448.74 sec 
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7.4.2 Analysis for 8-Class Classification (for Case 2 and Case 4) 
 

The outcomes of the tested combinations have also been compared with the outcomes 

of the CNN models in this section (Like section 7.4.5.1). Epoch value was set to 5 in the 

models, and learning rate was set at 0.001. Additionally, 10-fold cross validation was 

applied to these models to ensure that the outcomes could be compared. Figure 7.12 

contains the confusion matrices of ResNet18. The vertical axis indicates the output class, 

and the horizontal axis indicates the target class. Table 7.41 displays the results of CNN 

models. ResNet18 has the greatest accuracy rate (69.89%) compared to other models 

(ResNet50, GoogLeNet, AlexNet). The second most successful method is ResNet50 

(65.75%). The averages of GoogLeNet and AlexNet are quite low (48.86%, and 41.89%, 

respectively). On the other hand, when dataset-based comparison is made, it is seen that 

c1r1 is the dataset with the highest average accuracy rate (Figure 7.13). When this dataset 

is classified using ResNet18, approximately 80% success is achieved.  

 

The average classification accuracy rate of the first four datasets with unpatterned 

samples (c1r1, c1r3, c2r2, c2r3) is 61.74%, while the average classification success of the 

last four datasets with patterned samples (c3r1, c3r3, c4r1, c4r3) is 51.46%. 

 

The classification times of CNN models are shown in Table 7.42. AlexNet is the model 

with the lowest classification time (350 seconds), while ResNet50 has the longest 

classification time (2203.75 seconds). 
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c1r1 c1r3 

c2r2 c2r3 

 
Figure 7.12 Confusion matrix for ResNet18 (8-class classification) 
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c3r1 c3r3 

c4r1 c4r3 
Figure 7.12 Continues 

 

Table 7.41 Accuracy rates of CNN models for 8-class classification (%) 

 DATASETS  
METHOD c1r1 c1r3 c2r2 c2r3 c3r1 c3r3 c4r1 c4r3 AVERAGE 
ResNet18 79.80 70.00 70.50 80.00 72.30 72.30 52.80 61.40 69.89 
Resnet50 74.30 63.50 70.50 71.00 72.50 64.30 54.30 55.60 65.75 
GoogLeNet 63.25 54.00 58.30 47.50 51.50 42.50 40.50 33.33 48.86 
AlexNet 48.80 44.25 46.00 46.00 51.20 42.75 31.00 25.10 41.89 
AVERAGE 66.54 57.94 61.33 61.13 61.88 55.46 44.65 43.86  
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Figure 7.13 Summary of CNN models for 8-class classification 

 
Table 7.42 Classification times of CNN models for 8-class classification (seconds) 

 DATASETS  
METHOD c1r1 c1r3 c2r2 c2r3 c3r1 c3r3 c4r1 c4r3 AVERAGE 
ResNet18 1580 1570 1630 1640 1620 1630 1670 1550 1611.25 
ResNet50 2270 2090 2210 2250 2280 2250 2180 2100 2203.75 
GoogLeNet 1350 1330 1300 1310 1300 1320 1280 1400 1323.75 
AlexNet 390 330 350 350 360 340 350 330 350.00 

 
 

There can be some intriguing conclusions made. The average accuracy rates for the 

first four datasets (c1r1, c1r3, c2r2, and c2r3) are 58.65% for case 2 and 57.15% for case 

4, while the average accuracy rates for the next four datasets (c3r1, c3r3, c4r1, and c4r3) 

are 50.91% for case 2 and 48.37% for case 4. Similar results were obtained when 

examining the results of CNN models. In the light of this information, it can be concluded 

that the defects in the unpatterned fabric samples are more easily classified than the defects 

in the patterned fabrics. 

 

C1r1 is the dataset classified with the highest success on average for case4 and CNN 

models. When the maximum performances obtained for the c1r1 data set are examined, 
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classification is achieved with 80% success in case 4, 77.5% in case 2 and 79.8% in CNN 

models. 

 

Now that the results of the CNN models have been examined, they can now be 

compared with the results of this study. Comparison of them are given in Table 7.43.  

 
Table 7.43 Comparison for 8-class classification 

Comparison Methods Results 

Average accuracy rates for unpatterned fabrics 

CNN 61.74% 

Case 2 58.65% 

Case 4 57.15% 

Average accuracy rates for patterned fabrics 

CNN 51.46% 

Case 2 50.91% 

Case 4 48.37% 

Dataset classified with highest success 

CNN c1r1 (66.54%) 

Case 2 c3r1 (58.87%) 

Case 4 c1r1 (66.93%) 

Dataset classified with lowest success 

CNN c4r3 (43.86%) 

Case 2 c4r1 (43.23%) 

Case 4 c4r1 (44.58%) 

Average time 

CNN 1372 sec 

Case 2 95 sec 

Case 4 189 sec 
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CHAPTER EIGHT 

CONCLUSION AND FUTURE WORK 

 

8.1 Conclusion 
 

The decision on the average quality of the fabric rolls is based on the number of defects 

detected per unit fabric area. Traditionally, fabric defect control is based on humanpower. 

On the basis of the training he/she received and the experience he/she has accrued, an 

experienced and specifically trained personel may identify the visible defects in a fabric 

(Ala & İkiz, 2014). He or she can then rectify any defects discovered or mark them for 

future correction. Although the process has highly cost, it is a control type that does not 

achieve high success, as was mentioned in this study. For this reason, the idea of 

automating this process has emerged and studies have been started in this area. Given the 

recent advancements in technology, automated fabric defect detection systems have 

garnered a lot of attention for a number of reasons, including improved product quality. 

 

Especially in recent years, the use of CNN-based models has been very popular not 

only in this field but also in all fields. It is obvious that CNN has advantages as well as 

disadvantages. However, the disadvantages of CNN are not enough to stain the popularity 

of CNN. In the literature, it is seen that CNN models developed by considering the weak 

points of CNN models are presented. This thesis aims to present a system that will give 

results in less time and is at least as successful as CNN. For these purposes, many cases 

have been created and a comprehensive analysis has been carried out for these cases. 

 

The lack of a database containing fabric defects and the difficulties encountered in 

creating a new database led us to use the Tilda database, which is the only database open 

to access in this field. The study consists of four cases in which the data sets in Tilda are 

handled differently. For case 1 and case 3, subdirectories other than e0 have been collected 

in one directory, since fabric samples have been tried to be classified as defected or non-
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defected. As a consequence, for un-patterned fabrics, we have 200 non-defected images 

and 1400 defected images. On the other hand, the number of images we have for patterned 

fabrics is the same as the number of images for un-patterned fabrics. In addition to all of 

these, the study looked into the accuracy of classification in a dataset that included both 

patterned and un-patterned fabrics. This dataset is called ‘mix’ and it consists of 400 un-

defected images and 2800 defected images from the preceding two datasets. Images with 

and without patterns, as well as various textures, have all been identified as defected or 

un-defected in this way. For case 2 and case 4, sets of Tilda database have been used as 

they are. The performances of eight sets (c1r1, c1r3, c2r2, c2r3, c3r1, c3r3, c4r1, c4r3) 

have been analyzed and compared separately. One feature extraction method and one 

classifier are used in case 1 and case 3, while fusion features are obtained and classified 

in case 2 and case 4. 

 

Different approaches using four CNN-based models such as ResNet18, ResNet50, 

GoogLeNet, and AlexNet have been used in feature extraction step, while EL, KNN, and 

SVM have been used in classification step. In this study, unlike other studies in the field 

of fabric defect classification, feature fusion has been used for feature extraction. In 

feature fusion approach, binary combinations of ResNet18, ResNet50, GoogLeNet, and 

AlexNet (ResNet18&ResNet50, ResNet18&GoogLeNet, ResNet18&AlexNet, 

ResNet50&GoogLeNet, ResNet50&AlexNet, GoogLeNet&AlexNet) have been 

preferred. 

 

The methods used in case 1 and case 2 are as follows: 

 

• ResNet18&EL 

• ResNet18&KNN 

• ResNet18&SVM 

• ResNet50&EL 

• ResNet50&KNN 

• ResNet50&SVM 
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• GoogLeNet&EL 

• GoogLeNet&KNN 

• GoogLeNet&SVM 

• AlexNet&EL 

• AlexNet&KNN 

• AlexNet&SVM 

 

The methods used in case 3 and case 4 are as follows: 

 

• ResNet18&Resnet50&EL 

• ResNet18&Resnet50&KNN 

• ResNet18&Resnet50&SVM 

• ResNet18&GoogLeNet&EL 

• ResNet18&GoogLeNet&KNN 

• ResNet18&GoogLeNet&SVM 

• ResNet18&AlexNet&EL 

• ResNet18&AlexNet&KNN 

• ResNet18&AlexNet&SVM 

• ResNet50&GoogLeNet&EL 

• ResNet50&GoogLeNet&KNN 

• ResNet50&GoogLeNet&SVM 

• ResNet50&AlexNet&EL 

• ResNet50&AlexNet&KNN 

• ResNet50&AlexNet&SVM 

• GoogLeNet&AlexNet&EL 

• GoogLeNet&AlexNet&KNN 

• GoogLeNet&AlexNet&SVM 
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If we come to the conclusions of the cases mentioned above: 

 

• ResNet50 & SVM has the highest performance in the first case. Considering 

their average performances, EL and SVM have close values while KNN's value 

is low. Additionally, it is seen that the average specificity value of KNN is about 

half of the specificity values of other classifiers in case 1, and less than half of 

the specificity values of other classifiers in case 3. KNN is a classifier that is 

affected by the number of samples, sensitive to variables, and therefore not 

robust. 

 

• In the second case, the methods are not as successful as in case 1. 

ResNet50&SVM has been the highest performing method in case 2 as well as 

case 1. SVM is the most efficient classifier. 

 

• In the third case, ResNet50&GoogLeNet&SVM achieved over 90% on 

average. SVM is the highest performing classifier. It is seen that the average 

specificity value of KNN is less than half of the specificity values of other 

classifiers (as in case 1). EL and SVM are less impacted by the quantity of 

samples than KNN, indicating that they are more robust classifiers.  

 

• In the next case, ResNet18&Resnet50&SVM has the highest performance 

compared to others. ResNet50 GoogLeNet&SVM is the second most successful 

method. The most effective classifier is SVM. 

 

To summarize, it was concluded that the methods tested in all cases gave results close 

to CNN. Time comparisons reveal that fusion methods (used in case 3 and case 4) produce 

results more slowly than CNN&machine learning combination methods used in cases 1 

and 2, but that this delay is incredibly minimal when compared to the completion times of 

CNN methods. In this case, machine learning-based classification is more preferable after 

CNN-based feature extraction instead of CNN-based classification, considering the time 
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advantage. Additionally, classification success of un-patterned fabrics is remarkably 

higher than that of patterned fabrics. Therefore, it would be appropriate to make 

improvements to increase success in detecting defects on patterned fabrics. Moreover, 

when the success rates in case 2 and case 4 are considered, the low rates are striking. 

Higher rates may result from doing classification once the images have undergone the 

proper preprocessing. 

 

8.2 Future Work 
 

The following issues can be solved in the future: 

 

• It is aimed to increase the performance by increasing the number of samples 

by using augmentation techniques. 

 

• It is aimed to shorten the time by applying feature selection methods to the 

features obtained from CNN-based models. 

 

• Converting the system into a product as a real-time defect checking machine 

will close the gap in this area and will be economical as it is a domestic solution. 

 

• It is obvious that there is a dataset problem in this area. In the future, it is aimed 

to create a large database containing a large number of fabric defect samples. 
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