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AVERAGE INTEGRATED CAUSATION ENTROPY IN ANALYSIS OF

CHAOTIC DYNAMICAL NETWORKS IN COMPLETE AND CLUSTER

SYNCHRONIZATION

ABSTRACT

The chaotic dynamical systems with characteristically irregular and unpredictable

behavior can form synchronized complex networks when allowed to interact. The

main aim of this thesis is to analyze the synchronized chaotic networks in the view

of information theory and to discover the network connectivity information using the

information-theoretic measures.

The entropy-based measures estimated from observations are a valuable way to

quantify information flow between the subsystems since they can provide a

model-free approach for identifying network structures. This thesis initially addresses

estimating the entropy-based measures to represent the information flow accurately.

A comparative study has been conducted with the existing measures and the

estimators. A new k-nearest neighbor causation entropy estimator based on the

existing causation entropy measure and other similar estimators has been proposed to

represent information flow effectively.

This thesis mainly focuses on inferring the unknown network properties using

limited observations in directed chaotic synchronized networks even if the underlying

dynamics and connections of the network are unknown. The problem is compelling

since the observations in synchronized systems are identical. On the other hand, the

systems can temporarily be perturbed to destroy synchronization. The average

integrated causation entropy measure, proposed herein, evaluated in the partially

reconstructed state space of the network, can be used to determine network

connectivity as the systems tend to resynchronize after perturbations. The average

integrated causation entropy properties have been investigated analytically, and a

novel algorithm has been developed to reveal the network coupling matrix. It has

been found that the proposed measure and related algorithm based on the difference
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of average integrated causation entropy reveals the network structure in random

networks in complete synchronization.

We have also shown that the proposed measure can be used to detect clusters in

chaotic cluster synchronization networks. A novel algorithm has been suggested

based on the k-means clustering of the proposed measure with only single series of

observation. The results indicate that the proposed procedure can distinguish the

systems regarding their memberships in the clusters formed.

Keywords: Synchronization, cluster synchronization, information-theory, causation

entropy, integrated causation entropy, entropy estimation, network reconstruction
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TAM VE KÜME EŞZAMANLILIĞI GÖSTEREN KAOTİK DİNAMİK

AĞLARIN ORTALAMA TOPLAMSAL NEDENSELLİK ENTROPİSİ İLE

ANALİZİ

ÖZ

Karakteristik olarak tahmin edilemeyen davranışlara sahip kaotik dinamik

sistemlerin eşzamanlı karmaşık ağlar oluşturabildiği bilinmektedir. Bu tezin ana

amacı, eşzamanlı kaotik ağları bilgi teorisi ölçülerini kullanarak analiz etmek ve

ağların bağlantılılık bilgisini keşfetmektir.

Gözlemlerden kestirilen entropiye dayalı ölçüler, ağ yapılarının tanılanması için

modelden bağımsız bir yaklaşım sağlayabildiklerinden, alt sistemler arasındaki bilgi

akışını nicelendirebilmek için değerli bir yol sunar. Bu tez ilk olarak, bilgi akışını

doğru bir şekilde nicelendirebilmek için entropiye dayalı ölçülerin kestirilmesi

problemini ele almaktadır. Var olan ölçüler ve kestirimciler ile kıyaslamalı bir çalışma

yapılmıştır. Ağ içindeki sistemler arasındaki bilgi akışını etkin bir şekilde temsil

etmek için var olan nedensellik entropisi ölçüsüne dayalı yeni bir k-en yakın komşu

nedensellik entropi kestirimcisi önerilmiştir.

Esas olarak bu tez, ağın temel dinamikleri ve bağlantılılığı bilinmese bile, yönlü

kaotik eşzamanlı ağlarda sınırlı gözlemler kullanarak bilinmeyen ağ özelliklerinin

çıkarılmasına odaklanmaktadır. Eşzamanlı sistemlerdeki gözlemler aynı olduğu için

problem zorlayıcıdır. Öte yandan, eşzamanlılığı geçici olarak bozmak için sistemler

perturbe edilebilir. Burada önerilen ortalama toplamsal nedensellik entropi ölçüsü,

sistemler yeniden eşzamanlı olma eğilimindeyken kısmen geriçatılan durum uzayında

hesaplanarak, ağ bağlantılarını belirlemek için kullanılabilir. Ortalama toplamsal

nedensellik entropisinin özellikleri analitik olarak incelenmiş ve ağ bağlantılılık

matrisini ortaya çıkarmak için yeni bir algoritma geliştirilmiştir. Önerilen ortalama

toplamsal nedensellik entropisi ölçüsü ve ilgili algoritmanın, rasgele bağlantılar

içeren tam eşzamanlı ağlardaki bağlantılılık yapısını ortaya çıkardığı gösterilmiştir.
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Önerilen ölçünün kaotik küme eşzamanlı ağlarda kümelerin tespiti için

kullanılabileceği de gösterilmiştir. Önerilen yöntem ve k-ortalama kümelenmesini de

kullanılarak bu tür ağlardaki küme aidiyetlerini tek bir gözlem serisi üzerinden

belirleyen yeni bir algoritma önerilmiştir. Sonuçlar, önerilen yaklaşımın küme

eşzamanlı sistem içindeki grupları ayırt edebildiğini göstermektedir.

Anahtar kelimeler: Eşzamanlılık, öbek eşzamanlılığı, bilgi kuramı, nedensellik

entropisi, toplamsal nedensellik entropisi, entropinin kestirimi, ağ geriçatma
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Figure 5.7 The NSE of Î(X1, X2), Î(X1, X3), Î(X2, X3) using Gaussian KDE .......... 69

x
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CHAPTER ONE

INTRODUCTION

The complex networks formed by interactions of identical or similar dynamical

systems allow us to model various natural and artificial phenomena. It is not

surprising that modeling and analyzing such complex networks in physical,

biological, engineering, and social sciences is a subject of ongoing interest. When

interacting systems are chaotic, they exhibit unpredictable behavior due to their

sensitive dependence on initial conditions and parameters, although they are

deterministic systems. The chaotic systems exhibit complex dynamics characterized

mainly by their strange attractors. Coupling chaotic systems within a network create

even more complex behavior to be tamed.

On the other hand, synchronization is a well-known phenomenon observed in

networks of coupled dynamical systems. The term synchronization originates from

two Greek words, ‘chronos’ and ‘syn’ (Pikovsky et al., 2002). These words signify

time and same, respectively. To clarify, it is used for things that occur at the same

time. The synchronization can happen in nature frequently, e.g., fireflies are flashing

their lights synchronously, violinists play their violins simultaneously in an orchestra,

or it happens when everybody is clapping at the same time in the audience. The

common property of these examples is that they all produce rhythms. Synchronization

is related to oscillating objects. Therefore, it is formally defined as ‘an adjustment of

rhythms of oscillating objects due to their weak interaction’ (Pikovsky et al., 2002).

Loosely speaking, the systems in the network replicate each other’s dynamical

behavior when synchronized. It was known by the end of the 17th century that loosely

coupled periodic systems can synchronize (Huygens, 1673). Yet, it was somewhat

surprising, after three centuries later, that chaotic systems could synchronize, too.

Interestingly, this could only be understood in late 20th century (Pecora & Carroll,

1990, 1991; Rulkov et al., 1995; Lorenz & Haman, 1996; Fujisaka & Yamada, 1983),

only several decades later than the introduction of the chaotic systems (Blekhman,

1964).
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Depending on how dynamical behavior is replicated throughout the network, several

types of synchronization have been proposed in the literature; complete (Pecora &

Carroll, 1990), cluster or partial (Hasler et al., 1998), lag (Rosenblum et al., 1997)

and phase (Rosenblum et al., 1996) synchronization.

When all systems in the network follow the same trajectory asymptotically

irrespective of initial conditions of the individual systems, the network is in complete

synchronization. In phase synchronization, there is a ratio between the (generalized)

phases of the systems in the network. If a system in the network is synchronized with

the other systems in amplitude and phase with a time delay, the situation is defined as

lag synchronization. If there is more than one cluster (groups) in the network, the

cluster members converge to the same trajectory asymptotically. However, if the

members of the different clusters do not synchronize with each other; we have cluster

synchronization. The conditions under which dynamical networks will be

synchronous are currently the subject of intense scientific interest. In this thesis, we

mainly deal with complete and cluster synchronization.

The synchronization of chaotic systems has been extensively studied in different

areas of science (Eroglu et al., 2017). One of the applications of chaotic

synchronization is the design of secure communication systems, which are based on

transmitting information by using chaotic signals (Hasler, 1995). Moreover,

Gambuzza et al. have designed a cluster synchronization network of chaotic Chua

systems, ultimately allowing us to model biological networks. The synchronization of

chaotic systems can be used to understand large power distribution networks, social

networks, and the complex networks of cellular and metabolic structures (Strogatz,

2001).

The synchronization conditions under which a network exhibits a particular type of

synchronization have been investigated in the literature extensively. Pecora and

Carroll have proposed a master stability function to obtain the stability of the

synchronous state of a given network previously (Pecora & Carroll, 1998). Belykh et

al. have suggested the connection graph-based stability method that calculates upper
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bounds for complete synchronization in coupled chaotic networks (Belykh et al.,

2005). Furthermore, the design of synchronous networks guaranteed to be

synchronized can be achieved utilizing a controller (Chen et al., 2007; Wu et al.,

2008; Liu & Li, 2017). In the controller-based methods, the complete or cluster

synchronization is achieved by adding inputs to the selected systems. It has been

recently shown that the symmetry in the coupling structure of the network is an

essential property to achieve the desired synchronization scheme (Pecora et al., 2014;

Gambuzza et al., 2020). Pecora et al. have investigated the determination of cluster

synchronization patterns where hidden symmetries exist in the network. The authors

have used computational group theory methods to expose symmetries, which cannot

be detected at first sight in a large-scale network. They have detected the clusters that

can appear in the network by using the transformation matrix that diagonalizes the

Laplacian matrix of the network. Determining the transformation matrix is not a

straightforward task, and the procedure needs the use of tools of the computational

group theory (Pecora et al., 2014).

The stability of the clusters has been analyzed by deriving the variational equations

of the systems around the synchronous state. Therefore, the method requires the

Laplacian matrix of the network, the transformation matrix, and the variational

equations of the systems. To sum up, the design of synchronizing chaotic networks

requires the determination of the state equations, the coupling strengths, and the

coupling connections of the network.

The design and analysis problems cast aside, in many cases of interest, the

underlying dynamical systems in the network are unknown. Although we can gather

the observations from the systems’ outputs, the observations can only be collected

from specific nodes. One of the fundamental problems is to infer useful information

about the network structure using observations gathered from only a subset of

systems in a network.

The information theory can be used as a model-free approach for determining the

network structure using the observed data. The idea of quantifying information flow
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between the dynamical systems using the state variables has been around for quite

some time (Paluš et al., 2001; Bollt, 2012). The information measures of small-scale

networks that consist of coupled logistic maps in complete synchronization have been

studied by Sun and Bollt. The authors have examined whether three logistic maps

in the complete synchronization are coupled directly or not by estimating the transfer

entropies (Sun & Bollt, 2014). However, analysis of dynamical networks in complete

or cluster synchronization via information measures poses some important, open, and

challenging questions.

The extensive reviews on network reconstruction have been presented in (Timme

& Casadiego, 2014; Wang et al., 2016; Wu & Jiang, 2021). The network

reconstruction can be done by implementing various ways, from controller-based

methods to machine learning methods and from statistical perspective to

information-theoretic measures (Liu et al., 2022; Panaggio et al., 2019; Leguia et al.,

2019; Kuzmanovski et al., 2018; Novelli & Lizier, 2021). However, the network

reconstruction in a coupled synchronized network is very rare in the literature (Chen

et al., 2009).

Up to our knowledge, the cluster synchronization of chaotic networks has not been

studied through information-theoretic approaches and the information flow between

the cluster nodes in a complex network has not been discussed in the literature.

Investigation of synchronization from the perspective of information theory leads us

to new questions:

i) “How to quantify the relation between synchronization and information

transfer ?”,

ii) “Is there any information transfer between synchronized groups ?”,

iii) “How to estimate the information transfer between coupling dynamical

systems ?”,

iv) “Can we reconstruct the network via information-theoretic tools? ”,

v) “Can we detect synchronization using the information measures ?”,
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vi) “What will be the information flow when the coupling strength changes in the

network ?”, . . . .

In this thesis, we have mainly dealt with the problem of revealing the unknown

properties of synchronized networks utilizing limited observations, assuming that the

underlying dynamics and connections of the network are unknown. However,

synchronization can be an obstacle to inferring desired properties of the network. The

problem becomes especially hard because the observations from synchronizing nodes

are eventually identical and do not reveal much about the network properties.

1.1 Thesis Statement and Contributions

In this thesis, we have focused on solving two major problems; the unfolding of the

structure of the directed chaotic networks using information theory and the detection

of cluster synchronization in chaotic networks via information-theoretic measures.

First, the reconstruction of the complex network structure from observed data has

been examined. The main problem is to infer or reconstruct the unknown network

coupling scheme using observations from only a subset of individual systems in a

network. In other words, we have focused on the hidden network structure as in a

black box and revealed only from the outputs of the individual dynamics.

We assume that the networks are unidirectional, chaotic, and synchronized.

Although the number of systems in a network is known, we do not observe all the

systems’ outputs. We only observe a single output from individual dynamics. We

assess the states of the individual systems and can add input to the systems at specific

times. There is no a priori knowledge about the underlying dynamics, the coupling

strength, and coupling connections.

Under the assumptions mentioned above, we have solved the network

reconstruction problem by perturbing the systems and estimating

information-theoretic measures. The perturbations disturb the synchronization and
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excite the network by injecting new information into the system. The connection

information is revealed as the injected information flows through the network en route

to the re-synchronization. The state space can be reconstructed by observing only the

system outputs using Takens’ embedding theorem to estimate information theoretic

measures. As a promising information-theoretic measure, we have estimated the

causation entropies between the subsystems using k-nearest neighbor entropy

estimator (Kozachenko & Leonenko, 1987; Kraskov et al., 2004). For this purpose,

we have suggested a k-nearest neighbor entropy estimator for estimating the causation

entropy effectively. Then, we have estimated average integrated causation entropies

(i.e., firstly proposed in this thesis) between the subsystems using the proposed

estimator.

The central hypothesis is that the directly connected nodes contribute to the

average integrated causation entropies less than the non-directed nodes. The

difference in average integrated causation entropies between the reconstructed outputs

can be used to reveal the paths and, therefore, can be used to reconstruct the

connection matrix. We have analytically shown that the difference of this measure for

the possible coupling schemes between the three related systems can be

distinguished. Accordingly, we have proposed novel theorems based on the average

integrated causation entropy difference. We developed an algorithm based on the

properties of the difference in average integrated causation entropy based on these

theorems. The proposed algorithm has been verified with small-size and randomly

coupled networks comprising Chua systems.

The second aim is to analyze information transfer among the same or different

cluster groups in case of cluster synchronization. As a first step, our problem is to

determine clusters in a chaotic network by estimating information measures.

We assume that each system in the network can be observed via a single output.

Besides, the individual dynamics of the nodes and the number of clusters are unknown

in the network. Additionally, to observe the formation of clusters, we can perturb the

systems in the network individually at specific times.

6



As an interesting result, estimating information measures via sequential observation

vectors is insufficient to determine cluster synchronization directly. The state space

reconstructed by observing only the system outputs by means of Takens’ embedding

theorem in delay coordinates is much more revealing to detect clusters via estimated

information measures (Takens, 1981).

We have started by estimating the causation entropies in the reconstructed state

space to determine the clusters in an unknown network. Then, we have defined and

estimated the integrated causation entropy (ICE) and its expected value to detect the

existence of cluster synchronization in the network. The results show that the average

integrated causation entropies (AICEs) can be used to determine the number of

clusters and classify whether the individual systems belong to a particular cluster or

not effectively.

We have demonstrated that we could obtain clusters in the coupled chaotic networks

of Chua’s systems by estimating the AICEs. Then, we have clustered obtained AICE

values using the basic k-means classification algorithm.

1.2 Outline

The thesis is organized as follows. In Chapter 2, we have represented the necessary

mathematical tools, the fundamental theorems and concepts of the state-space

reconstruction, the synchronization, and the entropy. We have summarized the related

synchronization concepts and the synchronization techniques of dynamical systems in

Chapter 3. We have introduced the information-theoretic tools existing in the

literature in Chapter 4. Therein, the theoretical values of the information-theoretic

measures in case of synchronization have been derived briefly.

Chapter 5 focuses on the commonly-used entropy estimation techniques that exist

in the literature. The performance of the entropy measures has been investigated on

linear and nonlinear systems as well as the real dataset to obtain estimators’ optimal

parameters to quantify information flow accurately.
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In Chapter 6, we have introduced our main result, the novel approach to unfolding

the structure of chaotic dynamical networks using causation entropy. We have

presented a method for reconstructing unidirectional chaotic synchronized networks

by injecting random information via impulsive perturbations into the individual

systems. The proposed method is based on the average integrated causation entropy.

Besides, an algorithm has been introduced that reveals the network structure by using

average integrated causation entropy between the systems. The performance of the

proposed algorithm has been illustrated in synchronized networks.

Chapter 7 introduces the detection of clusters via information measures in

continuous coupled chaotic networks. We have shown that the causation entropies

estimated from observations can be used to determine the number of synchronous

clusters and membership information of the network elements in a chaotic network.

Therefore, the average integrated causation measure can detect the clusters. We

propose a novel algorithm to distinguish the clusters in the network. The proposed

procedure has been validated on various chaotic networks.

Chapter 8 concludes the thesis; the main contributions have been summarized, and

future works have been discussed briefly.
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CHAPTER TWO

MATHEMATICAL BACKGROUND

Herein, we have introduced the necessary definitions and theorems used in the

sequel. We have begun with the necessary mathematical definitions of graph theory

and follow up with the definitions of the systems, complex networks, and

synchronization required to follow the upcoming chapters. Also, the state space

reconstruction techniques and Shannon’s entropy definition have been reviewed.

2.1 Graph Theoretic Definitions

Graphs are objects that are used to represent networks naturally. A graph is a

mathematical object that has connections (links) between various objects (Latora et al.,

2017). The existence and the absence of connections can be represented between the

various objects in terms of graphs. Thus, we need to define a set of elements, the graph

nodes, and a set of links between the nodes.

Definition 2.1.1 (Undirected Graph, (Latora et al., 2017)). A graph G ≡ (V,E),

consists of two sets V , ∅ and E. Here, the elements of V = {v1, v2, . . . , vN} are

defined as vertices or nodes and are distinct. The elements of E, consist of the pairs of

elements ofV (E ⊆ V ×V), are defined as edges or links. The link between the node

νi and ν j is denoted with the tuple (i, j) ∈ E. In a graph, particularly an undirected

graph, if there is a link between i and j, the graph also has the vertex of ( j, i).

Definition 2.1.2 (Directed Graph, (Latora et al., 2017)). A directed graph also G ≡

(V,E), consists of two sets V , ∅ and E. The vertices are V = {v1, v2, . . . , vN}. The

elements of E, consist of the pairs of elements ofV (E ⊆ V×V), are defined as links.

The link between the node νi and ν j is denoted with the tuple (i, j) ∈ E. In a directed

graph, if (i, j) symbolizes the link from i to j, the link ( j, i) may not necessarily exist.

The connectivity information of a graph can be defined in terms of the adjacency

matrix defined below.
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Definition 2.1.3 (Adjacency Matrix). The adjacency matrix A ∈ RN×N of a network

whose elements ai j consist of ones or zeros such that

ai j =

1, iff ( j, i) ∈ E
0, otherwise.

(2.1)

The nodes can be connected through several links. The following definition of

degree will prove useful in presenting several results in the upcoming discussions.

Definition 2.1.4 (Node degree). Let A ∈ RN×N be the adjacency matrix associated with

G and the in–degree and out–degree of νi be denoted and kin
i , kout

i . Clearly,

kin
i =

N∑
j=1, j,i

ai j, kout
i =

N∑
j=1, j,i

a ji. (2.2)

The total degree of νi is defined as ki = kin
i + kout

i .

Related to these concepts, another mathematical structure that relays the

connectivity information is the Laplacian matrix, which plays an important role in the

design of synchronous networks.

Definition 2.1.5 (Laplacian Matrix). The Laplacian matrix L ∈ RN×N of a directed

network whose elements Li j, is given by:

Li j =

−ai j, if i , j
kout

i , if i = j.
(2.3)

Briefly, the Laplacian matrix is then L = diag
{
kout

1 , kout
2 , . . . , kout

N

}
− A.

Next, we define isomorphism to compare graphs of identical size and order.

Definition 2.1.6 (Isomorphism (Latora et al., 2017)). Let G1 = (V1,E1) and G2 =

(V2,E2) be two graphs with the same size and order. G1 and G2 are isomorphic if there
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is a bijection Φ : G1 → G2, such that (i, j) ∈ E1 if and only if (Φ(i),Φ( j)) ∈ E2. Then,

the bijection is called an isomorphism.

2.2 Dynamical Networks

In a general setting, the basic elements of a dynamical network consist of a

stochastic system in terms of a stochastic differential equation.

Definition 2.2.1 (Stochastic System).

dx(t) = f (x, t)dt + g(x, t)dW(t) (2.4)

with initial condition x(0) = x0. Here, x(t) = [x1(t), x2(t), . . . , xd(t)]T ∈ Rd is the state

vector. f (x, t) is drift-term and g(x, t) is diffusion term of the stochastic system. W(t)

is a vector of independent Wiener processes.

Each node vi of a graph can be associated with an identical chaotic dynamical

system that connects and interacts with the other systems via the links (edges) of G.

More precisely, the nodes of the state equations of the networks are given in the

sequel.

Definition 2.2.2 (Continuous-time complex network). N non-identical systems can be

coupled to yield a system of stochastic differential equations of the form:

dxi(t) = fi(xi(t),ui, t)dt + gi(xi(t),ui, t)dWi(t) +

N∑
j=1

εi j(t)ai jκihi(xi(t), x j(t), t)dt

xi,t0 = xi(t0)
yi(t) = φi(xi(t),ui, t, η) i = 1, 2, . . . ,N

(2.5)

where xi(t) = [x1
i (t), x2

i (t), . . . , xdi
i (t)]T ∈ Rdi is the state vector of ith system, ui ∈ R

ri is
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the input of ith system, fi : Rdi × Rri × R+ → Rdi represents the local dynamic of ith

system, gi : Rdi × Rri × R+ → Rdi describes coefficient of noise which depends on the

value of state variables and input, dWi(t) ∈ Ωdi and dWi(t) = ξi(t)dt denotes Wiener

process, ξi(t) denotes a noise process of ith system. εi j(t) is time-varying coupling

strength from jth system to ith system, and it is represented in matrix form ε(t) = [εi j(t)]

∈ RN×N . κi is inner coupling matrix, h(xi(t), x j(t), t) : Rd j × R+ → Rdi is coupling

function. yi(t) = [yi1(t), yi2(t), . . . , yimi(t)]
T ∈ Rmi is the output function of ith system and

φi : Rdi ×Rri ×R+×Ωdi → Rmi is observation function and η ∈Ωdi is vector of unknown

parameters. The observation function is unknown; the output can be dispersed, filtered,

or distorted with noise.

If noise does not affect individual node dynamic, gi(·) is zero in (2.5) and it reduces

to:

ẋi(t) = fi(xi(t), t) +

N∑
j=1

εi j(t)ai jκihi(xi(t), x j(t), t)

xi,t0 = xi(t0)
yi(t) = φi(xi(t), t, η) i = 1, 2, . . . ,N.

(2.6)

In discrete time, we can define the network using the difference equations as

follows:

Definition 2.2.3 (Discrete-time complex network).

xi[n + 1] = fi(xi[n]) +

N∑
j=1
i, j

εi jai jκihi(xi[n], x j[n]) + ui[n],

xi,0 = xi[n0]
yi[n] = ri(xi[n], η[n]) i, j = 1, 2, . . . ,N.

(2.7)

Here, xi[n] ∈ Rds is the state of dynamical system νi at time index n, fi : Rds×Rdi → Rds
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represents the inner dynamics of each system and hi : Rds → Rds is the coupling

function, and ui(t) ∈ Rds is the input of νi. We assume that fi and hi are sufficiently

differentiable to ensure the existence and uniqueness of the solutions. εi j is the coupling

strength, κi is the inner coupling matrix, yi[n] ∈ Rm is the output of νi at time n and

ri : Rds → Rm represents the readout function, η ∈ Ω is vector of unknown parameters

and Ω is the related sample space.

In the rest of the thesis, we will use the symbol G to refer (2.5), (2.6) or (2.7),

loosely. We will assume that the outputs are sampled at a proper rate.

Although we observe the sampled outputs of the network (2.5), (2.6) or (2.7), it is

not required to use each sequential observation, in fact, down sampling the outputs will

prove more useful. Therefore, it is generally preferred to resample the outputs of the

individual system using an optimal delay. This issue will be discussed later in Section

2.3.

We will additionally assume that the systems ẋi(t) = fi(xi(t), t) in (2.6) is chaotic in

the sense of Wiggins (Wiggins, 2003).

Definition 2.2.4 (Chaos). One widely accepted definition describes chaos as

“aperiodic long-term behavior in a deterministic system that exhibits sensitive

dependence on initial conditions” (Strogatz, 2018). Mathematically, a dynamical

system is chaotic in an invariant set X, if

i) it is topologically transitive in X,

ii) it is sensitive to initial conditions,

iii) the set of periodic orbits of it is dense in X.

One of the first examples of such systems is the well-known system due to Lorenz,

that models simplified atmospheric interactions, has shown to have aperiodic

behavior, which is extremely sensitive to initial conditions (Lorenz, 1963). The state

space equation of this system is given by (2.8):
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Figure 2.1 Lorenz attractor for σ = 16, b = 4 and r = 45.92.

ẋ1 = σ(x2 − x1)
ẋ2 = −x1x3 + rx1 − x2

ẋ3 = x1x2 − bx3

(2.8)

Here σ, b, r are real parameters. Lorenz’s attractor is illustrated in Figure 2.1.

Another well-studied chaotic dynamical system, Chua’s circuit, is widely used in

many practical situations. The attractor is easily implemented using simple electronic

components shown as Figure 2.2a and has many variations (Chua et al., 1986; Morgül,

1995; Cruz & Chua, 1992; Fortuna et al., 2009).

The state space representation of Chua’s circuit is given as follows :
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Figure 2.2 Chua’s circuit and its nonlinear characteristics

C1
dVC1

dt
= G1[VC2 − VC1] − iR2(vR2)

C2
dVC2

dt
= G1[VC1 − VC2] − iL

L
dViL

dt
= +VC2

(2.9)

where iR2(vR2) = GavR2 +0.5(Ga−Gb)((vR2 + E)− (vR2 −E)) is the equation of nonlinear

resistor and its i − v relation is given in Figure 2.2b.

If we transform variables as in

x1 = VC1/E, x2 = VC2/E, x3 = iL/EG1, α = C2/C1

m0 = Gb/G1, m1 = Gb/G1, τ = tG1/C2, β = C2/LG2
1

(2.10)

the normalized equations of Chua’s circuit become,

ẋ1 =α(x2 − h(x1))
ẋ2 =x1 − x2 + x3

ẋ3 = − βx2

(2.11)

where
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Figure 2.3 Chua Attractor

h(x1) =


m1x1 + (m0 − m1) x1 > 1
m0x1 |x1| ≤ 1
m1x1 + (m1 − m0) x1 < −1

(2.12)

The Chua’s circuit has an attractor known as double scroll for the parameters α = 9,

β = 14.28, γ = 0, m0 = −1/7, m1 = 2/7 and it is known to be chaotic (Chua et al.,

1986). The associated attractor for the chosen parameters is plotted in Figure 2.3.

A possible implementation of the Chua circuit is also given by:

ẋ1 =α(x2 − h(x1))
ẋ2 =x1 − x2 + x3

ẋ3 = − βx2 − γx3

(2.13)

where m0 = −1.27, m1 = −0.68, α = 10, β = 15, γ = 0.0385. It also satisfies all

properties of chaotic systems for these parameters (Fortuna et al., 2009).
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2.3 State Space Reconstruction

Consider a dynamical system ẋi(t) = fi(xi(t), t) in (2.6) with an initial value

xi,t0 = xi(t0). After transients die out, the system’s trajectory converges to an attractor

A. LetM be a manifold andM ⊂ A. Assume that A is a bounded and invariant set.

The system has dense trajectories if it is chaotic according to definition 2.2.4. The

sequential observations can contain squeezed information about the future states of

the dynamics. Thus, densely sampled outputs are redundant and do not yield much

additional information. On the other hand, when we sample the observation too

infrequently, the observations do not provide any information about the dynamics and

become irrelevant. The problem can be resolved using the state space reconstruction

techniques (Takens, 1981; Casdagli et al., 1991; Kantz & Schreiber, 2004; Uzal et al.,

2011; Krämer et al., 2021). The main goal of the reconstruction is to present the state

dynamics by reducing the correlation between the observations and preserving the

important invariants of the dynamics.

Takens proved that even single output from the system could be used to reconstruct

the state space in the embedding theorem (Takens, 1981).

Theorem 2.3.1 (Takens embedding theorem). Let M be a d-dimensional manifold.

For pairs of (Φ, h), Φ : M → M be a smooth diffeomorphism and h : M → R a

smooth function, it is a generic property that the observation map Ψ :M→ RTd is an

immersion and becomes

Ψ(x(t)) = [h(x(t)), h(Φ(x(t))), . . . , h(ΦTd−1(x(t)))] (2.14)

where Td = 2de + 1 is the dimension of the reconstructed attractor and de ∈ Z
+.

A delay coordinate map (time-delayed embedding) is based on Takens embedding

theorem in 2.3.1. Let h be chosen as y(t) = h(x(t)) a smooth measurement function. Φ

is selected by τ delayed measurements, i.e., ΦTk(x(t)) = x(t + Tk) = x(t + kτ) where

k ∈ Z+. Then, a delay coordinate map that reconstructs the state space is defined as:
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x̃(t) = [y(t), y(t + τ), y(t + 2τ), . . . , y(t + (de − 1)τ)] (2.15)

where τ > 0 and de ∈ Z
+ > 1 represent the delay and the embedding dimension,

respectively. τ and de is to be determined in such a way that while the topological

properties of the attractor are preserved, the correlation between the sequential

observations is minimized. One of the many ad hoc techniques exploits the mutual

information between the sequential observations in which τ > 0 is chosen to be the

argument of the first minimum of the time-delayed mutual information described by:

I(y(t), y(t + τ)) =
∑

y(t),y(t+τ)

p(y(t), y(t + τ)) log
[

p(y(t), y(t + τ))
p(y(t))p(y(t + τ))

]
. (2.16)

Here, y(t) is the observation vector at time step t, y(t + τ) is the delayed observation

vector and p(·) is the probability distribution function.

The correlation between the observation vectors will be reduced if observation

vectors are resampled by τ instead of sequentially sampling observations. Sequential

observations do not provide any new information for the immediate future because of

the continuous dynamics of the attractor. On the other hand, if the observations are

resampled too infrequently, they do not represent any information about dynamics.

Hence, there is no correlation between observation vectors. However, if the

resampling duration between observation vectors is chosen as the first local minimum

time-lag τ of mutual information, the amount of information inferred from

observations increases. Furthermore, there is a remarkable speed-up when estimating

the information measures at the reconstructed state space due to the down-sampling

of the data.

de is obtained by minimizing the false nearest neighbors of the states in the

reconstructed space (Abarbanel, 2012). The false nearest neighbor ratio between the

observation vectors should be computed to estimate the embedding dimension. If the
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dimension is less than the embedding dimension, the points that are not real neighbors

to each other may appear very close. The observation points and the false neighbors

differ from each other at the dimension that is equal to or greater than the embedding

dimension. The point and neighbor candidates are defined at d-dimension as:

y(t) = [y(t), y(t + τ), . . . , y(t + (d − 1)τ)]
yNN(t) = [yNN(t), yNN(t + τ), . . . , yNN(t + (d − 1)τ)]

(2.17)

The distance is computed between y(t) and yNN(t) in d and d+1 dimensions as follows:

Rd(t)2 =

d∑
m=1

[y(t + (m − 1)τ) − yNN(t + (m − 1)τ)]2. (2.18)

Rd+1(t)2 =

d+1∑
m=1

[y(t + (m − 1)τ) − yNN(t + (m − 1)τ)]2

=Rd(t)2 + |y(t + dτ) − yNN(t + dτ)|2.
(2.19)

The relative distance is given by:

√
Rd+1(t)2 − Rd(t)2

Rd(t)2 =
|y(t + dτ) − yNN(t + dτ)|

Rd(t)
(2.20)

or

|y(t + dτ) − yNN(t + dτ)|
RA(t)

(2.21)

where RA is the diameter of the attractor.

If the relative distance is more significant than a threshold, then yNN(t) is the false
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neighbor of y(t) at d-dimension. The dimension where the percentage of false nearest

neighbor drops to zero is the embedding dimension (Abarbanel, 2012).
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Figure 2.4 The state space reconstruction of the chaotic attractor. (a) the trajectory of the unknown
chaotic dynamical system. (b) The output of a chaotic dynamical system. (c) The trajectory in the
reconstructed state space. (d) The blue points represent one of the sampled outputs of the reconstructed
state space waveform while the gray line indicates the actual output.

Figure 2.4 illustrates the state space reconstruction technique. The outputs of a

system are observed through the readout function as y(t) = r(x(t), η). With large

enough de, the existence of a smooth transformation x̃(t) = Ψ(x(t)) is guaranteed, and

the crucial topological properties of the attractor is preserved (Takens, 1981).

Let φ : Rde → Rmr be the unknown read out function in the reconstructed space.

The reconstructed output ỹr(t) = φ(x̃(t)) can be formed by considering the possibilities

of the noise, non-uniform delay coordinates, or a noise suppression algorithm. We

choose one of outputs ỹr(t) from the reconstructed state space, and sample it in every
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τ seconds, ỹr(t0 + nτ) = ỹr[n] = ỹr,n and r = 1, 2, . . . ,mr where mr is the number of the

reconstructed outputs of the system and n ∈ Z+, t0 ∈ R
+ ∪ {0}.

2.4 Synchronization

Suppose that f ′i s in (2.6) are chaotic according to definition 2.2.4. Under suitable

conditions of εi j(t), the network in (2.6) can be synchronized.

Definition 2.4.1 (Complete state synchronization). The complete synchronization of

network (2.6) occurs if

lim
t→∞
||xi(t) − x j(t)|| = 0 i , j

lim
t→∞

dxi(t)
dt
. 0 ∀ i, j = 1, 2, . . . ,N.

(2.22)

In complete synchronization, all network members follow the same trajectory

asymptotically.

Definition 2.4.2 (Almost sure output complete synchronization). The outputs of a

complex network in (2.4) synchronize almost surely if

P
{
lim
t→∞
||yi(t) − y j(t)|| = 0

}
= 1 i , j ∀ i = 1, 2, . . . ,N (2.23)

where P(·) is the probability of the event.

Definition 2.4.3 (Cluster state synchronization). Consider N systems form m clusters

in the network in (2.6). The sets of these clusters are denoted as G1, G2, . . . , Gm ⊂ I

are mutually exclusive where G1 = {1, 2, . . . , r1}, G2 = {r1 + 1, r1 + 2, . . . , r2}, . . . ,

Gm = {rm−1 + 1, rm−1 + 2, . . . , rm}, r1 ≤ r2 ≤ . . . ≤ rm, the cluster synchronization occurs

if
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lim
t→∞
||xi(t) − x j(t)|| = 0 i, j ∈ GI i , j

lim
t→∞
||xi(t) − x j(t)|| , 0 i, j < GI

lim
t→∞

dxi(t)
dt
. 0 ∀ i = 1, 2, . . . ,N.

(2.24)

Here, I is the index set of an arbitrary cluster in the network. In cluster

synchronization, the systems in the same cluster synchronize asymptotically, and

there is no synchronization between the systems in different clusters.

Definition 2.4.4 (Almost sure output cluster synchronization). Consider we have a

complex network in (2.4), the outputs achieve almost sure cluster synchronization if

P
{
lim
t→∞
||yi(t) − y j(t)|| = 0

}
= 1 i, j ∈ GI i , j

P
{
lim
t→∞
||yi(t) − y j(t)|| , 0

}
= 1 i, j < GI .

(2.25)

Assume that we have a network in (2.6). In general, in order to determine

synchronization between two systems i and j, the synchronization error between the

systems is defined as:

ei, j(t) = ||xi(t) − x j(t)|| (2.26)

Alternatively, the global synchronization error of a network is defined as:

E(t) =

√√√ 1
N

∑
i, j

||xi(t) − x j(t)||2
 (2.27)
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2.5 Entropy

In this section, we have given definitions of the entropy in discrete and

continuous-time random variables (Cover & Thomas, 2012). Shannon entropy

measures the uncertainty about the outcome of an experiment by observing the

random variable (Shannon, 1948). Clearly, the entropy quantifies the amount of

information needed to get complete information about the outcome.

Consider a random vector X ∈ Rd that has an underlying probability space. Let

Sx be a support set of X. Assume that Sx is countable and finite. In other words,

SX = {x1, x2, x3, . . . , xK}, where K is a positive integer. Let pX(x) be the probability

distribution over SX. A measure of a decrease of uncertainty by an observation drawn

from SX is log
1

pX(x)
and it is called the entropy of X. Formally, the entropy of X is

computed by taking the expectation value over the outcomes:

H(X) = E
[
log

1
pX(x)

]
= −E

[
log pX(x)

]
(2.28)

where pX(x) =
∑K

i=1 piδ(x − xi). The probality of drawing xi is pi = P(x = xi),∑K
i=1 pi = 1. Here, we use the convention that 0 log(0) = 0.

Definition 2.5.1. The (course-grained) entropy of a discrete random variable X is

defined as:

H(X) = −
∑
SX

pX(x) log pX(x) = −

K∑
i=1

pi log pi. (2.29)

The entropy is measured in terms of bits if the base of the logarithm is 2 and in nats if

the base of the logarithm is the Euler number e.

Lemma 2.5.2. H(X) ≥ 0.

Proof : 0 ≤ pX(x) ≤ 1 implies that − log(pX(x)) ≥ 0.
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Definition 2.5.3. The joint entropy of a pair of discrete random variables (X,Y) is

given as:

H(X,Y) = −
∑
SX

∑
SY

pXY(x, y) log pXY(x, y). (2.30)

Here, pXY(x, y) denotes the joint probability function of (X, Y).

Definition 2.5.4. If (X, Y) has the joint probability function pXY(x, y), the conditional

entropy of H(Y | X) is defined as:

H(Y | X) = −
∑
SX

∑
SY

pXY(x, y) log pXY(y | x). (2.31)

The well-known identities of the entropy are listed below:

i) H(X,Y) = H(X) + H(Y | X) (Chain rule) (2.32)

ii) H(X1,X2, . . . ,Xn) =
∑n

i=1 H(Xi | Xi−1, . . . ,X1) (Chain rule for multiple random

variables) (2.33)

iii) H(X | Y) ≤ H(X) (Conditioning reduces entropy) (2.34)

iv) E[ f (X)] ≥ f (E[X]) if f (·) is a convex function (Jensen’s inequality) (2.35)

v) H(g(X)) ≤ H(X) (Entropy of functions of a random variable) (2.36)

Theorem 2.5.5. The coarse-grained entropy is preserved under the homeomorphisms,

i.e., continuous and invertible transformations with continuous inverses.

Proof: Let X and Y be two discrete random variables and Y = g(X) be a

homeomorphism. Then, for every yi ∈ SY , pY(y) =
∑

x:g(x)=y px(x) and
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px(x) = pX(g(x)). Thus,

H(Y) = −
∑
SY

pY(y) log pY(y)

= −
∑
SY

∑
x:g(x)=y

pX(x) log pY(y)

= −
∑
SX

pX(x) log pX(g(x))

= −
∑
SX

pX(x) log pX(x) = H(X). (2.37)

Definition 2.5.6. The differential (fine-grained) entropy of a continuous random

variable X is defined as:

h(X) = −

∫
SX

pX(x) log pX(x)dx, (2.38)

with pX(x) is the probability density function (pdf) of X and SX is the corresponding

support set. It is assumed that pX(x) and the integral in (2.38) exist. 0 log(0) = 0 by

convention. Additionally, pX(x) is bounded and differentiable, i.e., (p′X(x) ≤ L, L ∈

R+). Note that, the differential entropy can be negative unlike H(X) in (2.29).

Definition 2.5.7. The joint differential entropy of two continuous random variables

(X,Y) with joint density function pXY(x, y) is defined as:

h(X,Y) = −

∫
SX

∫
SY

pXY(x, y) log pXY(x, y)dxdy (2.39)

with pXY(x, y) is the joint probability density of (x, y).

Definition 2.5.8. If (X, Y) has a joint density function pXY(x, y), the conditional

entropy of h(X | Y) is defined as:

h(X | Y) = −

∫
SX

∫
SY

pXY(x, y) log pXY(x | y)dxdy. (2.40)
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Here, pXY(x | y) is the conditional pdf and pXY(x | y) = pXY(x, y)/pY(y).

The entropy of a continuous random variable can be approximated via the binning

or “coarse-graining”, i.e., by partitioning the support set.

Theorem 2.5.9. Let X ∈ Rd be a continuous random variable with the density pX(x)

which is Riemann integrable. Suppose that the support set is divided into bins whose

Lebesgue measure ∆ and x∆ is the discretization of x. Then, pX(x∆) ≈ pX(x)∆d.

Hbin(X∆) is defined by:

Hbin(X∆) ≈ h(X) − d log ∆. (2.41)

Clearly, when ∆ decreases, (2.41) approximates the differential entropy in (2.38).

Theorem 2.5.10. Unlike the course-grained entropy, the differential entropy is not

preserved under the homeomorphisms in general (Bossomaier et al., 2016).

Proof: Let X′ = f (X) be a homeomorphism for X. Jx(x′) = det
(
∂x
∂x′

)
is the Jacobi

determinant. Then, p′X′(x
′) = pX(x)Jx(x′) and the differential entropy of X′ becomes:

h(X′) = −

∫
SX′

p′X′(x
′) log p′X′(x

′)dx′

= −

∫
SX′

pX(x)Jx(x′) log pX(x)Jx(x′)dx′ (2.42)

= −

∫
SX

pX(x) log pX(x)JX(X′)dx

, h(X).

The theorem highlights an important difficulty when using the concept of

differential entropy in continuous time signals since the value of the differential

entropy is not invariant under continuous coordinate transformations presented here

as homeomorphisms. We must find a way to obtained course grained entropy from

the observations since our problem involves networks with underlying continuous
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time dynamical systems. Luckily, the state space reconstruction techniques provide

the right tool set.
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CHAPTER THREE

SYNCHRONIZATION OF DYNAMICAL SYSTEMS

In the sequel, we have reviewed the literature on the synchronization of dynamical

systems and represented the necessary tools to design synchronous chaotic dynamical

networks, which will be used as a test bench. The results on complete and cluster

synchronization represented here will be useful in demonstrating the main results of

the information-theoretic approach to identifying synchronous systems.

Synchronization is a phenomenon that occurs in networks of coupled chaotic

dynamical systems frequently. The conditions under which this happens are of

interest. The various types of synchronization have been studied including complete

(Pecora & Carroll, 1990), cluster or partial (Hasler et al., 1998), lag (Rosenblum

et al., 1997) and phase (Rosenblum et al., 1996) synchronizations in the literature.

Loosely, if every member of a network of dynamical systems behaves identically, the

synchronization is complete.

In contrast, the dynamical systems are synchronous if they are in a particular sub-set

of the network and are out of synchrony with other groups of dynamical systems in

cluster synchronization.

The pioneering studies deal with the complete synchronization of small networks

and finding stable synchronization conditions when the network topology changes

(Pecora & Carroll, 2015; Wu & Chua, 1995). The researchers have proposed the

master stability function (MSF) method in these studies. It is based on calculating

eigenvalues of the coupling matrix of the network and Lyapunov exponents of the

internal dynamics of the systems. These calculations can be complicated, especially

for the networks with time-varying coupling terms and random or tangled connections

(Belykh et al., 2004).

Another alternative proposed study, the graph-based stability (GBS) method, has

been put forward to compute upper bounds for global synchronization in coupled

chaotic networks (Belykh et al., 2005). GBS method makes a connection between
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graph theory and synchronization. The proposed study has succeeded in

synchronizing regular and complex networks (Belykh et al., 2004). Synchronization

conditions of networks of linear chains, two and three dimension lattice networks, and

cluster synchronization of nonidentical systems have been derived using GBS during

the last decades (Belykh et al., 2006, 2003; Lu et al., 2010).

Besides, synchronization conditions can be obtained by utilizing an external

controller. The networks consist of a controller, and input is applied to the state

equations of the system. In a recent study, the authors have combined synchronization

and pinning controller and proposed that synchronization can occur by adding a

single pinning controller on a single node (Chen et al., 2007). Afterward, Wu et al.

derived the synchronization conditions for linearly coupled networks with pinning

control (Wu et al., 2008). Cluster synchronization conditions for linearly coupled

networks have also been investigated via intermittent pinning control (Liu & Chen,

2011). In that study, an external control input drives the network nodes at specific

times. In (Wu & Fu, 2014), the cluster synchronization of the network with

nonidentical systems has been investigated, and group synchronization has been

explored in the study via pinning control (Deng, 2014).

The cluster synchronization of coupled networks has been investigated extensively

(Belykh et al., 2000; Yanchuk et al., 2001; Pogromsky et al., 2002). Ma and Liu have

also proposed a new method to obtain cluster synchronization. The main difference of

this study is that the coupling scheme consists of the arbitrarily selected cluster

synchronization patterns (Ma et al., 2006). Recently, the authors have studied the

existence conditions and the stability of cluster synchronization of the networks

(Pecora et al., 2014; Schaub et al., 2016; Nishikawa & Motter, 2016; Wu et al., 2008;

Liu & Chen, 2011; Liu & Li, 2017; Gambuzza et al., 2020). The relation between

network symmetry and cluster synchronization has been investigated. It has been

shown that cluster synchronization mainly depends on the network structure more

than the individual dynamics (Pecora et al., 2014; Sorrentino et al., 2016). In a recent

study, Gambuzza et al. have designed a distributed controller inspired by biological

networks and designed a distributed controller that allows us to cluster specifically
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chosen systems in the network (Gambuzza et al., 2019). Therefore, the design of

dynamical networks with requested synchronization properties is of great scientific

interest, as well as the identification of the system structure of such networks.

3.1 Preliminaries

We need to define some helpful matrix properties to analyze the proposed

approaches in the literature about the synchronization of dynamical systems.

Definition 3.1.1. The connection matrix A = [ai j] ∈ RN×N is defined as diffusive

coupling matrix (DCM) if the following property is held:

N∑
j=1

ai j = 0 i = 1, 2, . . .N, and ai j ≥ 0 for i , j, ai j < 0 for i = j (3.1)

In other words, A has non-negative off-diagonal elements and the property that the sum

of each row is zero.

Diffusely coupled systems utilizing a diffusive coupling matrix have the important

property that the energy exchanged between the coupled systems tends to zero as the

systems synchronize asymptotically. Once the systems synchronize, they evolve

without interaction if no disturbance is in effect.

Definition 3.1.2. Let A be a diffusive coupling matrix, which additionally satisfies

the property of ai j = 1 for i , j, then it is called a diffusive global coupling matrix

(DGCM).

3.2 Design of Synchronous Networks

There are numerous approaches to designing dynamical networks that have desired

synchronization properties. In this section, we briefly summarize the design methods

of synchronization of chaotic systems used in this thesis.
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3.2.1 Global synchronization with master stability function

The synchronous state or the synchronization manifold of N systems in (2.6) is

expressed by

x1 = x2 = . . . = xN (3.2)

for the global synchronization. Suppose that we have a network in (2.6). The state

equation of the network can be written in terms of the Laplacian matrix:

ẋi = fi(xi) + ε

N∑
j=1

ai jκ(x j − xi)

= fi(xi) − ε
N∑

j=1

Li jκx j

(3.3)

Note that if L matrix is DCM, the system in (3.3) yields an invariant synchronization

manifold, i.e., when a flow starts on this manifold, it remains there forever. Also,

when the system in (3.3) completely synchronizes according to (2.22), the individual

systems follow the same trajectory and the coupling terms vanish. MSF determines

the network’s stability and obtains the network’s synchronization conditions given a

coupling matrix A (Frasca et al., 2018). According to Pecora and Carroll, the

assumptions for the MSF approach are (Pecora & Carroll, 1998):

i) All systems in the network are identical.

ii) All systems have the same coupling function.

iii) The synchronization manifold is an invariant manifold.

iv) All systems are approximated near the synchronous state by a linear operator.

MSF approach considers two crucial steps to derive the stability of the
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Figure 3.1 The complete synchronization network example. Each circle represents a chaotic Chua
system

synchronous state. As a first step, the master stability function (i.e., consists of the

linearization around synchronous state and calculation of Lyapunov exponents of the

system.) is computed considering individual dynamics and coupling function. Then,

MSF is applied at critical points that are obtained by the eigenvalues of L and the

coupling strength (Pecora & Carroll, 1998; Belykh et al., 2005; Frasca et al., 2018).

Consider a network that consists of N = 10 Chua systems in Figure 3.1. The

equations of Chua system is given (2.13) and the parameters of the Chua system has

been chosen as m0 = −1.27, m1 = −0.68, α = 10, β = 15, γ = 0.0385. It satisfies all

conditions of being a chaotic system for these parameters. The inner coupling matrix

has been selected as κ = [[1, 0, 0], [0, 0, 0], [0, 0, 0]]. For the network in Figure 3.1 be in

complete synchronization, it has been found that the coupling strength must satisfy ε ≥

105 using MSF (Frasca et al., 2018). We have illustrated the global synchronization

error defined in (2.27) for ε = 1.27 and ε = 105, respectively in Figure 3.2.

3.2.2 A method to realize cluster synchronization

The authors in (Ma et al., 2006) have proposed a new method that ensures

arbitrarily selected patterns in cluster synchronization by selecting an appropriate

coupling scheme.

Consider a network in (2.6) that has N interacting identical systems. Let A = [ai j]

in (2.1) be a symmetric matrix in this network. Suppose that individual members of

the network in (2.6) are in cluster synchronization according to definition 2.4.3. The
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(b) Global synchronization error for ε = 105. The inset plot indicates global synchronization error between 0 and 1 seconds

Figure 3.2 The global synchronization error in Figure 3.1 for various ε’s

coupling connection matrix A must satisfy the following definition:

Definition 3.2.1. Let A ∈ RN×N be a real matrix and has the form:
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Figure 3.3 The cluster synchronization network. While systems 1 and 2 are in the same cluster, systems
3 and 4 form a different cluster. Each circle represents a chaotic Lorenz system.

A = [ai j] =



3A11 A12 0 0 . . . 0 0

A12 5A22 A23 0 . . . 0 0

0 A23 5A23
. . . . . . 0 0

. . . . . .
. . .

. . . . . . 0 0

0 0 0 0 . . . 5Am−1,m−1 Am−1,m

0 0 0 0 . . . Am,m−1 3Am,m


. (3.4)

Here, Ai,i ∈ R
mi×mi , and Ai,i ∈ DGCM, Ai,i+1 ∈ R

mi×mi+1, AT
i+1,i = Ai,i+1 = (Ai,i, 0) if

mi < mi+1 and AT
i+1,i = Ai,i+1 = Ai,i if mi = mi+1 for i = 1, 2, . . . ,m. Then, the following

conditions hold for the eigenvalues of A.

i) λi = 0, i = 1, . . . ,m with corresponding m eigenvectors ξi = (υ1i, . . . , υmi)T where

υki ∈ R
m` , υ1i = (1, 1, . . . , 1), if ` = i. Otherwise, υ1i = (0, 0, . . . , 0).

ii) the other eigenvalues, i.e., λ j < 0, j = m + 1, . . . ,N.

The details of the study have been summarized in (Ma et al., 2006). It is shown that

the stability of the cluster synchronization manifold is derived by choosing a coupling

scheme in (3.4). In light of this information, we can design a cluster synchronization

network.
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Let a network be defined with identical chaotic Lorenz systems as Figure 3.3

depicts. The network has four systems, and each circle represents a Lorenz system.

The systems in the network are coupled through x-state variables with the coupling

strength ai j in Figure 3.3. The state equations are given by (2.8). Here, σ = 10.0,

b = 8/3, r = 28.0 is chosen. Individual Lorenz systems show chaotic behavior for

these parameters (Lorenz, 1963). The connection matrix A = [ai j] is chosen by using

the rules of (Ma et al., 2006):

A = [ai j] =


−3 3 −1 1

3 −3 1 −1

−1 1 −3 3

1 −1 3 −3


(3.5)

To ensure the cluster synchronization in Definition (2.4.3), the coupling strength ε

should be reach a threshold value. According to Ma et al. design, this network has two

clusters depending on ε. Hence, we choose the coupling strength as ε = 10 to ensure

cluster synchronization. The error in (2.26) for all systems in Figure 3.3 is illustrated

in Figure 3.4. We can see that systems 1 and 2 are in the same cluster, but 3 and 4 form

a different cluster. Thus, we can form clusters of chaotic dynamical systems by Ma et

al.’ method (Ma et al., 2006).

3.2.3 Cluster synchronization network via the distributed controller

Gambuzza et al. have proposed the distributed controller-based approach that the

cluster synchronization only occurs in arbitrary sets while the remaining ones are not

synchronized. The details of the study are given in (Gambuzza et al., 2019). Suppose

that we have a network that consists N identical systems with d-dimensional oscillators

defined by (2.6). The network equation can be defined in the Laplacian matrix in (2.3).

Let n2 be the number of nodes we want to synchronize and n1 = N−n2 be the remaining

nodes in the network. S is denoted as a subset of nodes desired to synchronize. If
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distributed controller term is added to the systems, (3.3) becomes,

ẋi = f (xi) − ε
N∑

i=1

Li jκx j + ui (3.6)

where ui =
∑N

j=1L
′
i jκx j are the control inputs. L′i j symbolizes the new link between

i and j that is added or removed from the network. If a link is inserted, L′i j will be

equal to -1, L′i j = 1 in case of the addition of a link, and Li j = 0 otherwise. The new

Laplacian (L” = L + L′) matrix must satisfy the following conditions (Gambuzza

et al., 2019):

i) The nodes in S are not directly connected. However, the neighborhood of each

node in S must be the same.

ii) The coupling strength of the network is fixed, and it is directly related to the

minimum number of links provided by the controller.

The proposed method has been tested on a network of Chua systems given by (2.13).

The Chua systems’ parameters have been selected the same as in the previous section

3.2.1.

Consider we have N = 20 identical Chua systems in the network as shown in Figure

3.5. Let us label the systems as {a, b, . . . t, u}, randomly. The inner coupling matrix has

been chosen as κ = [[1, 0, 0], [0, 1, 0], [0, 0, 0]] and the coupling coefficient has been

selected as ε = 2. If we desire to synchronize the systems labeled k and d, so our

cluster members are S = {k, d}. To achieve synchronization, the neighbors of k and d

must be the same. While kth node is connected to f th and oth nodes, dth node is only

neighbor with j. If we add the links {(k, j), (d, f ), (d, o)}, the neighbors of the nodes k

and d become same as { f , o, j}. Thus, it allows us to synchronize the systems d and

k while the remaining ones are not synchronized. The global synchronization error in

(2.27) E(t) for the network and the error in (2.26) for d and k system ed,k(t) have been

plotted without control and with control (i.e. adding necessary connections) in Figures

3.6 and 3.7, respectively.
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Figure 3.5 The cluster synchronization network via the distributed controller. Each node represents a
Chua system
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Figure 3.6 Synchronization error between d and k system and global synchronization error without
distributed control

The distributed controller provides cluster synchronization in selected nodes in the

network, therefore, can be an alternative to designing clusters in dynamic networks.
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Figure 3.7 Synchronization error between d and k system and global synchronization error with
distributed control

Undoubtedly, the dynamical systems other than chaotic dynamical systems are

able to synchronize. However, the information they generate is predictable as in

synchronization of systems of periodic oscillations which yields a little or no new

information observed after a certain amount of duration. We examine the chaotic

dynamical networks because their information generation features. Since the chaotic

systems can exhibit unpredictable and complex behavior sensitivity to initial

conditions, observations at current time, has a limited future prediction capacity.

Every time we make a measurement we resolve new information about the future state

of the systems. On the other hand, we are sure that observing one system in a network

of synchronized systems will not provide additional information either. Hence,

reconstruction of the network structure from limited observations can be challenging.

We use the designed chaotic networks in this section as test beds for analysis with

average integrated causation entropy which is introduced in the next section. We

assume that the underlying network is unknown except the outputs (observations)

obtained from the designed systems. It is then possible to compare the obtained

connectivity information by the original designs.
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CHAPTER FOUR

INFORMATION THEORY

The basic definitions of information-theoretic tools such as mutual information,

transfer entropy, and causation entropy have been represented in this chapter. Also,

the estimation techniques of the information-theoretic measures in the literature have

been explained in detail.

4.1 Information-Theoretic Tools

Mutual information (MI) between two random variables is defined as a reduction

in uncertainty of one of the related random variables due to measurement of the other

random variable (Cover & Thomas, 2012). MI quantifies the amount of information

about one random variable by observing at least one other related random variable.

Definition 4.1.1. The MI, I(X; Y), between two discrete random variables is defined

as (Cover & Thomas, 2012):

I(X; Y) =
∑
SX

∑
SY

pxy(x, y) log
pxy(x, y)

px(x)py(y)

= H(X) + H(Y) − H(X,Y).
(4.1)

SX and SY are the support sets of X and Y, respectively.

Definition 4.1.2. The MI, I(X; Y), between two continuous random variables X and Y

is defined as (Cover & Thomas, 2012):

I(X; Y) =

∫
SX

∫
SY

pxy(x, y) log
pxy(x, y)

px(x)py(y)
dxdy

=h(X) + h(Y) − h(X,Y).
(4.2)

The following properties can be shown to hold for MI using the definition directly:
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i) I(X; Y) = I(Y; X) (Symmetry) (4.3)

ii) 0 ≤ I(X; Y) (Nonnegativity) (4.4)

iii) I(X; X) = h(X) (4.5)

iv) I(X; Y) ≤ min[h(X), h(Y)] (4.6)

v) I(X1, X2, . . . , Xn; Y) =
∑n

i=n I(Xi; Y | X1, X2, . . . , Xi−1) (Chain rule) (4.7)

Definition 4.1.3. The conditional MI of discrete random variables X,Y, given Z is

given as (Frenzel & Pompe, 2007):

I(X; Y | Z) =
∑
SX

∑
SY

∑
SZ

pXYZ(x, y, z) log
pXYZ(x, y, z)pZ(z)
pXZ(x, z)pYZ(y, z)

= H(X,Z) + H(Y,Z) − H(Z) − H(X,Y,Z).
(4.8)

Similarly, if X,Y,Z are continuous random variables with joint density pXYZ(x, y, z),

I(X; Y | Z) becomes,

I(X; Y | Z) =

∫
SX

∫
SY

∫
SZ

pXYZ(x, y, z) log
pXYZ(x, y, z)pZ(z)
pXZ(x, z)pYZ(y, z)

dxdydz

= h(X,Z) + h(Y,Z) − h(Z) − h(X,Y,Z).
(4.9)

I(X; Y | Z) ≥ 0, and the equality holds if and only if X and Y are independent given Z.

If there exists a homeomorphism between the original state space and reconstructed

state space, and then we estimate the information-theory measures in the reconstructed

state space, the measures are preserved in the estimation of the measures using the

state space. Therefore, following theorem is important.

Theorem 4.1.4. Unlike h(X) in (2.38), fine-grained I(X; Y) is preserved under

homeomorphism (Kraskov et al., 2004).
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Proof: Let X′ = f (X) and Y′ = g(Y) be homeomorphisms for X and Y, respectively.

The Jacobi determinants of X and Y are defined as Jx(x′) = det
(
∂x
∂x′

)
and Jy(y′) =

det
(
∂y
∂y′

)
. The joint density function of (X′,Y′) becomes:

p′X′Y′(x
′, y′) = pXY(x, y)Jx(x′)Jy(y′). (4.10)

If I(X′; Y′) is evaluated using (4.2) we have:

I(X′; Y′) =

∫
Sx′

∫
Sy′

p′X′Y′(x
′, y′) log

p′X′Y′(x
′, y′)

p′X′(x′)p′Y′(y′)
dx′dy′

=

∫
SX′

∫
SY′

pXY(x, y)Jx(x′)Jy(y′) log
pXY(x, y)Jx(x′)Jy(y′)

pX(x)Jx(x′)pY(y)Jy(y′)
dx′dy′

=

∫
SX

∫
SY

pXY(x, y) log
pXY(x, y)

pX(x)pY(y)
dxdy

= I(X; Y).

(4.11)

When the density function is known, the information-theoretic measures such as

entropy and MI of the systems are calculated from the definitions directly. The

differential entropy and MI of well-known distributions are given below:

i) Let X be a uniform distribution in the real interval [a, b]. Then, h(X) = log(b−a).

ii) If X is a Gaussian random variable with zero mean and variance σ, the

probability distribution function is px(x) =
1

√
2πσ2

e−x2/(2σ2). Then, h(X) of the

normal distribution is given by:

h(X) =
1
2

log(2πeσ2) nats. (4.12)

iii) If X = [X1, X2, . . . , Xd] has a multivariate normal distribution whose mean µ and

covariance matrix K, h(X) is defined as:
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h(X) = h(X1, X2, . . . , Xd) = h(Nd(µ,K)) =
1
2

log((2πe)ddet(K)) nats. (4.13)

Here, det[·] denotes the determinant of a given matrix.

iv) Let two Gaussian random variables (X, Y) have distribution with zero mean and

covariance matrix K,

K =

 σ2 ρσ2

ρσ2 σ2

 . (4.14)

where the correlation coefficient is given as ρ. Then,

I(X; Y) = −
1
2

log(1 − ρ2). (4.15)

When ρ = 0, X and Y are independent and I(X; Y) = 0. When ρ = ±1, X and Y

are strongly correlated and I(X; Y) is infinite.

Due to the symmetry of MI, i.e., I(X; Y) = I(Y; X), MI does not indicate which

way the information is flowing between the variables. Therefore, MI cannot measure

the information flow between dynamic systems.

As a promising alternative, transfer entropy (TE) has been proposed to measure the

direction of the information flow by adding transition (dynamic) probabilities rather

than static probabilities. (Schreiber, 2001). A recent study has used the TE to

measure information flow between industrial processes and detect their causality

(Duan et al., 2013). Moreover, Wibral et al. have discussed the fundamental concepts

of information theory and presented a summary of the applications of TE in

neuroscience (Wibral et al., 2014). The authors have argued to characterize

information flows in neuroscience and to quantify neural spike trains through

information measures in (Spinney et al., 2017).
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Let us denote {xn}
N
k=1 and {yn}

N
k=1 as a set of measurements, perhaps with nonuniform

sampling of outputs, taken from two related systems. Here, xn
(k) = (xn, xn−1,. . . , xn−k+1)

denotes as measurements at time steps from n to n−k+1 and yn
(`) = (yn, yn−1,. . . , yn−`+1)

denotes as measurements at time steps from n to n − ` + 1. xn+1 is also a measurement

taken at time step n+1. By rearranging the variables from (X,Y,Z) to (Xn+1,Y(`)
n ,X(k)

n )

in Equation (4.9), respectively, then TE at time n is defined as:

T EY→X = I(Xn+1,Y(`)
n | X

(k)
n )

= H(Xn+1 | X(k)
n ) − H(Xn+1 | X(k)

n ,Y
(`)
n )

= [H(Xn+1,X(k)
n ) − H(X(k)

n )] − [H(Xn+1,X(k)
n ,Y

(`)
n ) − H(X(k)

n ,Y
(`)
n )]

=
∑
xn+1

∑
x(k)

n

∑
y(`)

n

p(xn+1, x(k)
n , y

(`)
n ) log

p(xn+1 | x(k)
n , y(`)

n )

p(xn+1 | x(k)
n )

.

(4.16)

For the continuous random variables, TE becomes :

T EY→X = I(Xn+1,Y(`)
n | X

(k)
n )

= h(Xn+1 | X(k)
n ) − h(Xn+1 | X(k)

n ,Y
(`)
n )

=
[
h(Xn+1,X(k)

n ) + h(X(k)
n ,Y

(`)
n ) − h(X(k)

n ) − h(Xn+1,X(k)
n ,Y

(`)
n )

]
=

∫
S

p(xn+1, x(k)
n , y

(`)
n ) log

p(xn+1 | x(k)
n , y(`)

n )

p(xn+1 | x(k)
n )

dxn+1dx(k)
n dy(`)

n .

(4.17)

The conditional probability densities p(xn+1 | x(k)
n , y(`)

n ) and p(xn+1 | x(k)
n ), and the

integral exist (4.17) because we assumed the solution of the underlying differential

equation system exists. TE is non-negative and is equal to zero if and only if

p(xn+1 | x(k)
n ) = p(xn+1 | x(k)

n , y(`)
n ) holds. As opposed to MI, TE is not necessarily a

symmetric measure, i.e., T EX→Y , T EY→X, and it may indicate which way the

information is flowing.

Theorem 4.1.5. TE is preserved under homeomorphisms.
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Proof : Let X
′(k)
n = f (X(k)

n ), Y
′(`)
n = g(Y(`)

n ) and X
′

n+1 = h(Xn+1) be homeomorphisms

for X(k)
n , Y(`)

n and Xn+1, respectively. The Jacobi determinants of X(k)
n , Y(`)

n and Xn+1 are

defined as Jxn(x
′

n) = det
(
∂xn

∂x′n

)
, Jyn(y

′

n) = det
(
∂yn

∂y′n

)
and Jxn+1(x

′

n+1) = det
(
∂xn+1

∂x′n+1

)
. The

joint density function of (Xn+1,X
′(k)
n ,Y

′(`)
n ) becomes:

p′(x′n+1, x
′(k)
n , y

′(`)
n ) = p(xn+1, x(k)

n , y
(`)
n )Jxn(x

′

n)Jyn(y
′

n)Jxn+1(x
′

n+1) (4.18)

T EY′→X′ =

∫
S

p′(x′n+1, x
′(k)
n , y

′(`)
n ) log

p′(x′n+1 | x
′(k)
n , y

′(`)
n )

p′(x′n+1 | x
′(k)
n )

dx′n+1dx
′(k)
n dy

′(`)
n

=

∫
S

p′(x′n+1, x
′(k)
n , y

′(`)
n ) · · ·

× log
p′(x′n+1, x

′(k)
n , y

′(`)
n )p′(x

′(k)
n )

p′(x
′(k)
n , y

′(`)
n )p′(x′n+1, x

′(k)
n )

dx′n+1dx
′(k)
n dy

′(`)
n

=

∫
S

p(xn+1, x(k)
n , y

(`)
n )Jxn(x

′

n)Jyn(y
′

n)Jxn+1(x
′

n+1) · · ·

× log
p(xn+1, x(k)

n , y(`)
n )p(x(k)

n )

p(x(k)
n , y(`)

n )p(xn+1, x(k)
n )

dx′n+1dx
′(k)
n dy

′(`)
n

=

∫
S

p(xn+1, x(k)
n , y

(`)
n ) log

p(xn+1 | x(k)
n , y(`)

n )

p(xn+1 | x(k)
n )

dxn+1dx(k)
n dy(`)

n

= T EY→X.

(4.19)

Although the TE detects the information flow between two systems, it can be

misleading when measuring the information flow of indirectly coupled systems, even

in a small network, to infer causality (Sun & Bollt, 2014). The causation entropy

(CE) measure has been proposed by Sun and Bollt to overcome this difficulty. It

generalizes the TE and measures information flow from one system to another by

conditioning on a third system, which is generally chosen related to these systems.

The CE indicates if a third system directly affects the information flow between the

two systems.

Definition 4.1.6. CE from X to Y conditioned on a third variable given Z is defined as:
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CEX →Y | Z = H(Yn+1 | Z(m)
n ) − H(Yn+1 | Z(m)

n ,X(k)
n ). (4.20)

The CE from X to Y conditioned on Y and Z is defined as

CEX →Y | (Y, Z) = H(Yn+1 | Y(`)
n ,Z

(m)
n ) − H(Yn+1 | X(k)

n ,Y
(`)
n ,Z

(m)
n ). (4.21)

If k = ` = m = 1, then we have,

CEX →Y | (Y, Z) = H(Yn+1 | Yn,Zn) − H(Yn+1 | Xn,Yn,Zn). (4.22)

The CE for continuous-time random variables is defined by:

CEX →Y | Z = h(Yn+1 | Z(m)
n ) − h(Yn+1 | Z(m)

n ,X(k)
n )

= [h(Yn+1,Z(m)
n ) − h(Z(m)

n ) − h(Yn+1,Z(m)
n ,X(k)

n ) + h(Z(m)
n ,X(k)

n )]

=

∫
S

p(yn+1, x(k)
n , z

(m)
n ) log

p(yn+1 | x(k)
n , z(m)

n )

p(yn+1 | z(m)
n )

dyn+1dx(k)
n dz(m)

n

(4.23)

The following properties hold for CE:

i) CEX→Y | Y = T EX→Y

ii) CEX→Y | ∅ = I(Yn+1, Xn)

Theorem 4.1.7. CE is preserved under homeomorphisms.

Proof : Let Y
′(`)
n = f (Y(`)

n ), Z
′(m)
n = g(Z(m)

n ) and X
′

n+1 = h(Xn+1) be homeomorphisms

for Y(`)
n , Z(m)

n and Xn+1, respectively. The Jacobi determinants of Y(`)
n , Z(m)

n and Xn+1 are

defined as Jyn(y
′

n) = det
(
∂yn

∂y′n

)
, Jzn(z

′

n) = det
(
∂zn

∂z′n

)
and Jxn+1(x

′

n+1) = det
(
∂xn+1

∂x′n+1

)
. The
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joint density function of (Xn+1,Y
′(`)
n ,Z

′(m)
n ) is:

p′(x′n+1, y
′(`)
n , z

′(m)
n ) = p(xn+1, y(`)

n , z
(m)
n )Jyn(y

′

n)Jzn(z
′

n)Jxn+1(x
′

n+1) (4.24)

CE interm of transformed variables is then

CEY′→X′ | Z′ = h(X′n+1 | Z
′
n) − h(X′n+1 | Z

′
n,Y

′
n)

=

∫
S

p′(x′n+1, y
′(`)
n , z

′(m)
n ) log

p′(x′n+1 | y
′(`)
n , z

′(m)
n )

p′(x′n+1 | z
′(m)
n )

dx′n+1dy
′(`)
n dz

′(m)
n

=

∫
S

p′(x′n+1, y
′(`)
n , z

′(m)
n ) · · ·

× log
p′(x′n+1, y

′(`)
n , z

′(m)
n )p′(z

′(m)
n )

p′(y
′(`)
n , z

′(m)
n )p′(x′n+1, z

′(m)
n )

dx′n+1dy
′(`)
n dz

′(m)
n

=

∫
S

p(xn+1, y(`)
n , z

(m)
n )Jyn(y

′

n)Jzn(z
′

n)Jxn+1(x
′

n+1) · · ·

× log
p(xn+1, y(`)

n , z(m)
n )p(z(m)

n )

p(y(`)
n , z(m)

n )p(xn+1, z(m)
n )

dx′n+1dy
′(`)
n dz

′(m)
n

=

∫
S

p(xn+1, y(`)
n , z

(m)
n ) log

p(xn+1 | y(`)
n , z(m)

n )

p(xn+1 | z(m)
n )

dxn+1dy(`)
n dz(m)

n

= CEY→X | Z.

(4.25)

Sun et al. have investigated the CE in detail, extended the CE idea, and defined the

CE on a set of nodes rather than single random variables in (Sun et al., 2015).

Definition 4.1.8. When we measure the information transfer from the set of nodes J

to the set of nodes I by conditioning on the set of nodes K , the CE becomes (Sun

et al., 2015):

CJ→I | K = h(In+1 | Kn) − h(In+1 | Kn, Jn). (4.26)

Theorem 4.1.9 (CE properties). Consider a network in (2.5) and Markov properties

hold. Let NI be defined as set of parents of I (Sun et al., 2015). Then,
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1. If J ⊂ K , then CEJ→I | K = 0 (Redundancy) (4.27)

2. If NI ⊂ K , then CEJ→I | K = 0 for any set of nodes J (No false positive) (4.28)

3. If J ⊂ NI and J 1 K , then CEJ→I | K > 0 (True positive) (4.29)

4. CEJ→I | K = CE(K∪J)→I −CEK→I (Decomposition) (4.30)

The results in Theorem 4.1.9 are proved by using the temporally, spatially, and

faithfully Markov properties (Sun et al., 2015).

The authors in (Sun et al., 2015) have proposed the optimal CE (OCE) principle

based on the properties in Theorem 4.1.9. The OCE principle dictates that the causal

parents of a given node in a network consist of the minimal set of nodes that maximizes

the CE. Based on this principle, the authors have compared OCE with the existing

measures such as the Granger causality (Granger, 1988) and TE to infer the topology

of a causal network. The OCE outperforms previously suggested measures at causal

network inference. It has been emphasized that the revealing causal and non-causal

parents of given nodes in a causal network is a combinatorial problem, and it can be

solved using greedy optimization algorithms.

4.2 Information-Theoretic Tools in case of Synchronization

Here, we discuss what information theoretic measures yield in synchronization. Let

X, Y , and Z be three outputs of related systems. If X and Y are synchronized, (4.1)

becomes,

I(X; Y) = H(X) = H(Y). (4.31)

If they are independent, I(X; Y) = 0.

No information can be gained about one of the systems by gathering the past

observations of the other if two systems are synchronized. Hence, the TE in (4.16)
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yields,

T EY→X = h(Xn+1 | X(k)
n ) − h(Xn+1 | X(k)

n ,Y
(`)
n )

= h(Xn+1 | X(k)
n ) − h(Xn+1 | X(k)

n ) = 0
(4.32)

for the synchronized systems. Similarly, if X and Z systems are synchronized, CE in

(4.20) gives,

CEX→Y | Z = h(Yn+1 | Z(m)
n ) − h(Yn+1 | Z(m)

n ,X(k)
n )

= h(Yn+1 | Z(m)
n ) − h(Yn+1 | Z(m)

n ) = 0.
(4.33)

Additionally, if X and Z systems are in the same cluster, the CE will be zero. On the

other hand, there is always an exchange of information regardless of whether X and Y

are in the same cluster or not when X and Z are in different clusters.

These observations can be exploited to infer network structure. In light of above

discussion, the CE can be the measure to find paths between the systems in a dynamic

network. However, CE is zero in the complete synchronization. The problem is

discussed in detail later in Chapter 6.

49



CHAPTER FIVE

ESTIMATION OF ENTROPY BASED MEASURES

Information flow between the systems can be quantified using the measures

derived from entropies by observing the state variables. Therefore, accurate

estimation of information measures is essential when we aim to quantify the

information flow between the systems. Previously, we have mentioned that if the

density is known, the information-theoretic measures can be calculated directly.

However, we rarely know the pdf in actual cases, and the information-theoretic

measures generally have to be estimated from a finite number of samples.

Suppose there is no prior information about the pdf that is desired to be estimated.

In this case, non-parametric entropy estimators can be used. First, the pdfs are

estimated from the finite number of observations taken from the state variables or

outputs. Then, the entropy and the measures derived are estimated using the pdfs.

Histogram and kernel density estimator (KDE) are well-known and commonly used

methods for non-parametric entropy estimators. However, an important drawback of

these estimation methods is that they require many observations before yielding

accurate enough results.

Alternatively, the entropy and related measures can be directly estimated using a

finite number of discrete observations instead of extracting the pdfs in neighbor-based

entropy estimators (Kozachenko & Leonenko, 1987; Singh et al., 2003).

k-nearest neighbor estimator (kNN) is a direct estimation method using the points

in the distribution. It is assumed that the pdf is uniformly distributed locally in the

sample space for the kNN estimator. If the pdf is not uniform or has a direction in

sample space, the measures may not be estimated accurately (Lombardi & Pant, 2016).

Besides, suppose the correlation between the related random variables is significant,

and there is a functional relation between the variables. In that case, the kNN estimator

may fail, as pointed out in (Gao et al., 2015; Lord et al., 2018).

The local entropy estimation techniques have been introduced to solve this problem
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in recent years. (Lombardi & Pant, 2016; Gao et al., 2015; Lord et al., 2018). Gao

et al. have proposed a new estimator that is robust to nonuniform distributions and

works efficiently with limited data set (Gao et al., 2015). The authors have modified

the kNN entropy estimator by adding a local correction term. When the density has

an alignment in sample space, they have transformed the data through the principal

component analysis and corrected the local volume of the density. Also, it is shown

that the new estimator is more accurate than the standard kNN entropy estimator in

nonuniform distributions because of the added local non-uniformity correction term.

Lord et al. have suggested the geometric kNN (g-kNN) entropy estimator similar to

the proposed recipe by Gao et al. (Lord et al., 2018). The authors have been motivated

by dynamical systems attractors, which may have directions in the sample space. They

transformed the data using singular value decomposition to model this non-uniformity.

They have chosen the ellipsoids as a local volume element in the new space and made

a correction term in entropy estimation by computing the volume of ellipsoids. It has

been demonstrated that the g-kNN entropy estimator outperforms the standard entropy

estimator on the limited data and locally nonuniform distributions. Lombardi and Pant

have proposed a kpN entropy estimator that combines with KDE and kNN estimator

in a recent study. (Lombardi & Pant, 2016). It is based on the assumption that the

data is locally Gaussian in sample space. The entropy estimation has been achieved

by fitting local Gaussian densities for each sample in the distribution. In contrast, the

data’s overall probability distribution is estimated using the kNN estimator (Lombardi

& Pant, 2016). The authors have shown that the kpN entropy estimator is superior to

the standard entropy estimator in nonuniform distributions and high-dimensional data.

It has been pointed out that the accurate estimation of information-theoretic

measures is not a straightforward task because of the variety of the estimators and

their free fine-tuning parameters (Gencaga et al., 2015).

The estimation of information-theoretic measure, specifically TE depends on the

distribution of the observations. Hence, the TE may not be estimated accurately when

the observations are not uniformly distributed in the sample space. The TEs of
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coupled autoregressive Gaussian processes and coupled Lorenz network have been

estimated through histogram, Knuth estimator, and KDE (Gencaga et al., 2015). The

performance of these estimators has been compared in (Gencaga et al., 2015).

Additionally, Xiong et al. have emphasized that the irrelevant interpretation of the

system dynamics can be obtained when we estimate the entropy-based measures by

choosing the wrong estimation methods or selecting the wrong parameters (Xiong

et al., 2017). Therefore, accurate estimations and choosing the best estimation

parameters are essential issues in observed dynamics. The authors have compared the

performance of the linear estimator, KDE, and kNN estimator. The entropy,

conditional entropy, and information storage of coupled Gaussian processes are

estimated using these estimators. The authors have also presented the effects of

non-stationarity and have discussed the limitations of the entropy estimators and their

bias systematically (Xiong et al., 2017).

In summary, it is crucial to choose a robust estimator that exists in the literature

and select the optimal parameters for the estimators. In this section, we have

summarized the non-parametric entropy estimator and neighbor-based estimators.

Then, we determined the optimal parameters of non-parametric and neighbor-based

entropy estimators by estimating the information measures in linear and nonlinear

systems. Obviously, the more accurate the estimation of the underlying information

measures, the more accurate the quantification of the information flow.

5.1 Entropy Estimation Techniques

In this section, we begin by defining the quality of the measures. Then, we outline

the entropy estimation techniques.

Assume that θ is an unknown parameter and a finite set of observations are gathered

from independent and identical distribution (i.i.d.) such that x1, x2, . . . , xN . Here, we

aim to estimate θ from the observed data. A point of estimator θ̂ is defined as
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θ̂ = T (x1, x2, . . . , xN). (5.1)

It is expected that θ̂ is close to θ (Shanmugan & Breipohl, 1988).

Definition 5.1.1 (Bias). If E[θ̂] , θ, then θ̂ is biased. The bias of an estimator is

defined as:

Bias(θ̂) = E[θ̂] − θ. (5.2)

Here, E[θ̂] is expectation of θ̂ over the realizations. If Bias(θ̂) = 0, then the estimator

is unbiased.

Definition 5.1.2 (Normalized Bias). If θ , 0, the normalized bias is :

NB(θ̂) =
E[θ̂] − θ

θ
. (5.3)

It is expected that θ̂ also has a small statistical variation. Mean square error can

measure the variation of θ̂.

Definition 5.1.3 (Mean Square Error (MSE)). MSE is defined as follows:

MS E(θ̂) = E[(θ̂ − θ)2]
MS E(θ̂) = [Bias(θ̂)]2 + Variance(θ̂).

(5.4)

If Bias(θ̂) = 0, then MS E(θ̂) equals to the variance of θ̂.

The standard error of θ̂ is also a measure of the quality of θ̂ and is the positive square

root of the variance of θ̂.

Definition 5.1.4 (Normalized Standard Error). If θ , 0, the normalized standard error

is:
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NS E(θ̂) =
σ̂θ

θ
. (5.5)

Here, σ̂θ is the positive square root of the variance of θ̂.

Definition 5.1.5 (Normalized Mean Standard Error). If θ , 0, the normalized mean

standard error is:

NMS E(θ̂) =
E[(θ̂ − θ)2]

θ2 . (5.6)

If the estimator is unbiased, we use these measures to compare the different

estimators. When NB of the estimation is low, the result yields that

NS E(θ̂) ≈
√

NMS E(θ̂), and it is directly related the performance of the estimator. If

we select the parameters of estimators whose NB values are low, we compare the

NS E values of the estimators.

Now, we continue with the definition of entropy estimation techniques. Throughout

this chapter, we denote the observations as x1, x2, . . . xN (i.e., possibly gathered from a

continuous-time random process X ∈ Rd by sampling.)

5.1.1 Histogram estimator

Suppose we have a large set of measurements, perhaps with a nonuniform sampling

of outputs, taken from a system or the systems. When the range of data is divided

into non-overlapping balls, the number of data inside the balls (frequency) is plotted

with respect to the balls. It is called as histogram and can approximately represent

a probability function. Let S ∈ Rd is a set and S consists of non-overlapping balls

Bm ∈ M, m = 1, 2, . . . ,M whose diameter is ε. The unknown density function px(x) of

the random process X is estimated from N samples via histogram estimator. p̃x(x, Bm)

is the estimator of the density is given by:
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p̃x(x, Bm) =
∑

Bm∈M

the number of points inside Bm

N vol(Bm)
I(xi ∈ Bm) i = 1, 2, . . . ,N.

(5.7)

where I(·) is an indicator function. vol(·) is the volume of Bm. Then, the entropy of a

system is estimated using estimated density function in (5.7).

5.1.2 Kernel density estimator

Consider that we have N observations that are gathered from a process X with pdf

px(x). Then KDE is defined as follows:

p̃x(x,H) =
1
N

N∑
i=1

KH(x − xi) (5.8)

Here, H ∈ Rd×d is positive definite symmetric bandwidth matrix. KH(·) is a kernel

function that is expressed as the weighted sum of base functions given by:

KH(x) = |H|
−

1
2K(H

−
1
2

x
) (5.9)

where K is a kernel base function which satisfies the condition
∫
K(x)dx = 1. There

are various types of kernel base functions; the most common one is the Gaussian kernel

base function:

K(x) =

(
1

2π

) d
2

exp
(
−

1
2

xT x
)
. (5.10)

When the kernel base function is chosen as the Epanechnikov kernel, we have:
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K(x) =

(
3
4

)d d∏
j=1

(1 − x2
j)[u(x j + 1) − u(x j − 1)], x j = [x1, x2, . . . , xd]T . (5.11)

where u(·) unit-step function. The entropy and the entropy-based measures are

estimated using estimated pdf in (5.8).

5.1.3 k-nearest neighbor entropy estimator

Kozechenko and Leonenko have estimated entropy based on computing between

distances of the first neighbor of observations from the distribution in one dimension

in (5.12) (Kozachenko & Leonenko, 1987).

h(X) ≈
1

N − 1

N−1∑
i=1

log(xi+1 − xi) + ψ(1) − ψ(N), xi ∈ R (5.12)

where ψ(x) is the digamma function. ψ(x) = Γ(x)−1dΓ(x)/dx. It satisfies the recursion

ψ(x + 1) = ψ(x) + 1/x and ψ(1) = −C, where C = 0.57772156 is Euler-Mascheroni

constant. Singh et al. have extended entropy estimation in higher dimensions by using

kth nearest neighbors (Singh et al., 2003). Let X be a continuous-time random variable

and its differential entropy is defined in (2.38). A possible choice of an unbiased

estimator is:

ĥ(X) = − E[log px(xi)]

= −
1
N

N∑
i=1

log px(xi).
(5.13)

Here, px(xi) is unknown, and the main goal is estimating it through kNNs of xi. First,

the probability distribution function of kNNs of each xi is computed. Let us define

pk(ε) is the distribution function for the distance ε between point xi and its kth neighbor.
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pk(ε)dε is the probability that one point is inside the ball [ε, ε + dε], (k − 1) points are

inside the ball [0, ε] and N − k− 1 points are greater its distance than kth neighbor. The

probability pk(ε)dε is then:

pk(ε)dε =

(
N − 1

k

)(
N − 2
k − 1

)(
N − k − 1
N − k − 1

)
dPi(ε)

dε
dε(Pi(ε))k−1(1 − Pi(ε))N−k−1

=
(N − 1)!

1!(N − 2)!
(N − 2)!

(k − 1)!(N − k − 1)!
dPi(ε)

dε
dε(Pi(ε))k−1(1 − Pi(ε))N−k−1

= k
(
N − 1

k

)
dPi(ε)

dε
dε(Pi(ε))k−1(1 − Pi(ε))N−k−1.

(5.14)

Pi(ε) is the mass of the ε ball centered at xi. The expected value of the logarithm of

Pi(ε) is defined by:

E(log Pi(ε)) =

∫ ∞

0
dεpk(ε) log(Pi(ε))

=

∫ 1

0
k
(
N − 1

k

)
Pi(ε)(Pi(ε))k−1(1 − Pi(ε))N−k−1 log(Pi(ε))dε

= ψ(k) − ψ(N)

(5.15)

where, ψ(·) denotes the digamma function. Besides, the mass of Pi(ε) can be given as:

Pi(ε) =

∫
B(ε,xi)

px(x)dx

Pi(ε) ≈ V px(xi)
(5.16)

V is the volume of d-dimensional ε ball, i.e., V = cdε
d
i . If ε is equal to 1, then cd

is volume of unit-ball in given metric. cd is equal to 1 for maximum norm and cd =

πd/2/Γ(1 + d/2)/2d for Euclidean distance. The estimation of px(xi) can be carried out

by:
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px(xi) ≈
Pi(ε)

V

px(xi) ≈
Pi(ε)
cdε

d
i

.
(5.17)

The logarithm of the density function is equal to:

log px(xi) ≈ log Pi(ε) − log cd − d log εi

≈ ψ(k) − ψ(N) − log cd − d log εi.
(5.18)

Taking expectations of both sides yields,

E[log px(xi)] ≈ ψ(k) − ψ(N) − logcd − dE[log εi]

E[log px(xi)] ≈ ψ(k) − ψ(N) − logcd −
d
N

N∑
i=1

log εi
(5.19)

Here, εi is twice the distance from xi to kth neighbor. Finally, the entropy of a random

variable X is approximated as:

ĥ(X) = −E[log px(xi)]

= −ψ(k) + ψ(N) + log cd +
d
N

N∑
i=1

log εi.
(5.20)

In a similar analogy, the entropy of Z = (X1, X2) joint random variable is computed

by changing the variables as dz = dx + dy and cd = cdxcdy:

ĥ(X1, X2) = −ψ(k) + ψ(N) + log(cdx1
cdx2

) +
dx1 + dx2

N

N∑
i=1

log εi. (5.21)

58



The MI and the TE can be estimated using kNN-based estimators.

Kraskov-Stögbauer-Grassberger (KSG) estimator is an extension of Singh’s entropy

estimator (Kraskov et al., 2004). Kraskov et al. have proposed two different methods

to estimate MI by searching the neighbors in the marginal spaces. The authors have

studied the performance of the estimators by varying dimensions, the number of

points, and neighbors, respectively. The estimation of MI is given as in (5.22) and

(5.23):

Î(X1; X2) = ψ(k) + ψ(N) −
1
N

N∑
i=1

[
ψ(ηx1(i)) + ψ(ηx2(i))

]
(5.22)

Î(X1; X2) = ψ(k) + ψ(N) −
1
k
−

1
N

N∑
i=1

[ψ(ηx1(i)) + ψ(ηx2(i))] (5.23)

ηx1(i) and ηx2(i) are the number of points with ||x1,i − x1, j|| ≤ εx1(i)/2 and ||x2,i − x2, j|| ≤

εx2(i)/2, respectively. According to Kraskov et al., the MI of the d dimensional variable

is described by:

Î(X) ≡ (d − 1)ψ(N) + ψ(k) − (d − 1)/k −
1
N

N∑
i=1

d∑
j=1

ψ(nx j(i)) (5.24)

where ηx j(i) is the number of points inside the distance ||x j,i−x j, j̃|| ≤ εx j(i)/2 in marginal

spaces j = 1, 2, . . . d, respectively.

The TE has been estimated through the kNNs approach in a study by Zhu et al.

(Zhu et al., 2015).

T̂ EX1→X2 = ψ(k) +
1
N

N∑
i=1

[
ψ(ηx2,n(i) + 1) − ψ(ηx1,n,x2,n(i) + 1) − ψ(ηx2,n+1,x2,n(i) + 1)

]
.

(5.25)
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Here, ηx2,n(i), ηx1,n,x2,n(i), ηx2,n+1,x2,n(i) are the number of points inside the ball centered

x2,n, (x1,n, x2,n), (x2,n+1, x2,n) of diameter εx2,n , ε(x1,n,x2,n), ε(x2,n+1,x2,n), respectively.

We have proposed a kNN estimator for CE inspired by Kraskov and Zhu et al.

Given the observations, the efficient estimation of CE can be achieved by using the

kNN entropy estimation method practically.

ĈEX1→X2 | X3 = ψ(k) +
1
N

N∑
i=1

[
ψ(ηx3,n(i) + 1) − ψ(η(x3,n,x2,n+1)(i) + 1) − ψ(η(x3,n,x1,n)(i) + 1)

]
.

(5.26)

ψ(·) is the digamma function, k is the predefined number of neighbors, and N is the

number of observation points. ηx3,n(i), η(x3,n,x2,n+1)(i), η(x3,n,x1,n)(i) are the number of points

inside the balls B(x3,n, εx3,n), B((x3,n, x2,n+1), ε(x3,n,x2,n+1)), B((x3,n, x1,n), ε(x3,n,x1,n)) where

B(y, ε) is the ball centered at y with the radius ε. ε is determined by calculating the

distance between `th point and the nearest k-neighbor of it.

Figure 5.1 illustrates the number of points determined inside the ball. ε is

determined by calculating the distance between `th point and the nearest k-neighbor

of it. B(x`, ε(`)) is plotted on dashed rectangular using || · ||∞ norm. The number of

points inside the ball is obtained as ηx`(`) = 6.

We have utilized the CE estimator in (5.26) in the following chapters since we

have based our proposed measure on the estimation of CE that reveals the connections

in the network. Additionally, the estimation of CE has been used for analyzing the

information transfer between the inter- and intra-cluster nodes in the network.

5.1.4 kpN entropy estimator

Lombardi and Pant have proposed an entropy estimator which combines KDE with

a kNN entropy estimator in (Lombardi & Pant, 2016). The probability mass function is

computed for each xi point inside pth
k nearest neighbors of xi via using Gaussian KDE.
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ε(`)

k neighbor

x`

2ε(`)

2ε(`)

Figure 5.1 An illustration of the number of points determination in the kNN estimator. The distance
between x` point and its k nearest neighbor point is calculated as ε(`).

Similar to the kNN estimator, the pdf is estimated according to the distance between

xth
i and its kth nearest neighbor. The probability density inside B(ε, xi) is defined as:

px(x) ≈
1

(2π)d|K|d
e(−0.5(x−µ)T K−1(x−µ)) (5.27)

where µ is mean vector and K is covariance matrix of pk neighbors of xi. The pdf is

assumed to be rational with a Gaussian function approximated by using pk
th nearest

neighbors of xi (pk ≥ k) (Lombardi & Pant, 2016). The density inside B(ε, xi) is

computed through this local Gaussian function:

px(x) ≈ px(xi)
g(x)
g(xi)

(5.28)

where

g(x) = e−0.5(x−µ)T K−1(x−µ), (5.29)
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and

g(xi) = e−0.5(xi−µ)T K−1(xi−µ). (5.30)

Accordingly, the mass of ε-ball is equal to:

Pi = px(xi)
Gi

g(xi)
(5.31)

where

Gi =

∫
B(ε,xi)

g(x)dx (5.32)

In the kpN estimator, the density inside B(ε, xi) is assumed Gaussian as opposed

to the uniform density assumption in the kNN entropy estimator. The mean and the

covariance of xi inside the ball consists of pth
k nearest neighbors are computed, to derive

g(xi) from (5.30). Gi in (5.32) contains the Gaussian definite integral inside B(ε, xi) in

(5.33). The entropy of X can be estimated by using (5.28) and (5.31):

ĥ(X) = −E[log px(xi)] ≈ −ψ(k) + ψ(N) −
1
N

N∑
i=1

log g(xi) +
1
N

N∑
i=1

log Gi. (5.33)

We have to consider the optimal parameters of the estimators when estimating the

entropy and the entropy-based measures. The number of observations is crucial in

overall estimation methods since it is directly used in estimating pdf or entropy. Thus,

the determination of the number of observations, diameter size, and the boundaries of

the interval has a significant role in the estimation of pdf for the histogram estimator

(Wand & Jones, 1994). In KDE, the number of observations, the selection of
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bandwidth matrix H, and the kernel base function are parameters that change the

performance of the estimators. Besides, KDE makes accurate estimations in low

dimensions, and it can fail when the dimension increases due to the curse of

dimensionality (Gray & Moore, 2003). When the observations are uniformly

distributed locally, the kNN estimator succeeds in estimating the entropy, as

mentioned before. The main advantage of the kNN estimator is to compute the

entropy fast, even in the high dimensions. However, the entropy estimator can fail

when the density has a specific alignment in the sample space. kpN entropy estimator

can estimate the entropy more accurately for locally nonuniform data by computing

the pk neighborhood of the probability mass function of each point through local

Gaussian kernel density functions. It can represent the tails of the data better if the

data has spread in the probability distribution since this estimator also uses a Gaussian

kernel density function. Therefore, it estimates the entropy more accurately. The

number of observations, k-neighbors, and the number of pk neighbors must be chosen

carefully for the kpN entropy estimator.

5.2 Simulations and Results

This section compares the histogram, KDE, kNN, and kpN entropy estimators on

the same data. We have used the coupled autoregressive processes and bistable system

to test the performance of the estimators because we know the theoretical values of

the entropies for these systems. Therefore, we have measured the performance of the

estimators by comparing our estimations and the theoretical values. We have shown

that the accuracy of the estimation is increased by using the selection of the optimal

parameters in linear and nonlinear systems. Finally, we have performed the estimators

on a real dataset because we do not know the underlying dynamics of the systems, and

the values of entropies are unknown. We have illustrated our result by using statistical

significance hypothesis tests.

We have measured the performance of entropy estimators by computing the

normalized bias (NB) and normalized standard error (NSE) of the estimators. We
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have assumed that if the estimation error does not exceed 5% of the theoretical value,

it is considered acceptable and accurate. Simulations have been performed on a

workstation in parallel with Intel®Xenon®E5630 processors in the Python

environment.

5.2.1 Coupled autoregressive processes

Let us couple d linear autoregressive processes with Gaussian white noise

increments, and their state variables are defined in matrix form:

xn+1 = Axn + ηn (5.34)

with xn = [x1,n, x2,n, . . . , xd,n] ∈ Rd is the state variables at time n, A ∈ Rd×d is the

coupling matrix whose elements are real and ηn = [η1,n, η2,n, . . . , ηd,n] is the Gaussian

noise vector. The MI between two Gaussian processes is written in terms of entropy

using (4.2) and (4.13) which are stated in Chapter 2:

I(X1; X2) = h(X1,n) + h(X2,n) − h(X1,n,X2,n)

=
1
2

log
det(K(X1,n))det(K(X2,n))

det(K(X1,n,X2,n))
(5.35)

Similarly, the TE is defined in terms of entropy and covariance matrix of

autoregressive processes using (4.17) and (4.13) which are stated in Chapter 2:

T EX1→X2 = h(X2,n+1,X(`)
2,n) − h(X(`)

2,n) + h(X(`)
2,n,X

(k)
1,n) − h(X2,n+1,X(`)

2,n,X
(k)
1,n)

=
1
2

log
det(K(X2,n+1,X(`)

2,n))det(K(X(`)
2,n,X

(k)
1,n))

det(K(X2,n+1,X(`)
2,n,X

(k)
1,n))det(K(X(`)

2,n))
.

(5.36)

where x(k)
1,n =

{
x1,n, x1,n−1, x1,n−2, . . . , x1,n−k+1

}
denotes the measurement of a random
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variable X1,n from n to n − k + 1 (k ∈ Z+). If the covariance matrix and time-delayed

covariance matrix are known, the theoretical values of MI and TEs between the systems

in the network are estimated. In short, TE from X1 to X2 is equal to:

T EX1→X2 =
1
2

log

(
K(0)x2 x2K(0)x1 x1 −K(0)2

x1 x2

) (
K(0)2

x2 x2
−K(1)2

x2 x2

)
K(0)x2 x2

(
K(0)2

x2 x2
K(0)x1 x1 + 2K(1)x2 x2K(0)x1 x2K(1)x2 x1 · · ·

−K(1)2
x2 x2

K(0)x1 x1 −K(0)x2 x2K(0)2
x1 x2
−K(0)x2 x2K(1)2

x2 x1

)
(5.37)

Here, K(0)x2 x2 = E[X2,nX2,n], K(0)x1 x2 = E[X1,nX2,n], K(1)x2 x2 = E[X2,n+1X2,i]. Let us

denote αx1 x2 =
(
K(0)x2 x2K(1)x2 x1 −K(0)x2 x1K(1)x2 x2

)2 and

βx1 x2 =
(
K(0)x2 x2K(0)x1 x1 −K(0)2

x1 x2

) (
K(0)2

x2 x2
−K(1)2

x2 x2

)
. Then, the TE is rewritten as

follows (Sun et al., 2015):

T EX1→X2 =
1
2

log
(
1 +

αx1 x2

βx1 x2 − αx1 x2

)
. (5.38)

The theoretical values of MI and TE are obtained by calculating the elements of the

covariance matrix in (5.35) and (5.36). Let us define three coupled autoregressive

processes using (5.34):


x1,n+1

x2,n+1

x3,n+1



0.5 0 0

0.5 0.6 0

0.2 0.7 0.3



x1,n

x2,n

x3,n

 +


η1,n

η2,n

η3,n

 . (5.39)

The mean vector of noise has been chosen as µ = [0, 0, 0]T and the covariance

matrix of the noise has been selected as K = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]. The time

delays have been chosen as k = ` = 1. MI of the systems are equal to

I(X1; X2) = 0.0256 nats, I(X1; X3) = 0.0118 nats, and I(X2; X3) = 0.1899 nats,
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respectively. While T EX2→X1 = T EX3→X1 = T EX3→X2 = 0, T EX1→X2 = 0.092280 nats,

T EX1→X3 = 0.03894 nats, T EX2→X3 = 0.28262 nats for the system in (5.39).

The simulations have been repeated 1000 times. The information measures,

namely, MI and TE, have been estimated for a different number of observations. The

number of observations N has varied from 256 to 2048 in the histogram, KDE, and

kNN estimators. kpN entropy estimator has three parameters: the number of

observations, the number of k-neighbors, and the number of pk neighbors. In general,

when the number of observations is increased, the performance of the kpN estimator

is increased (Lombardi & Pant, 2016). Therefore, the number of observations has

been chosen large enough, e.g., N = 4096 and N = 8192, respectively, in the kpN

entropy estimator.

To begin with, the histogram of MI and TEs between the systems has been

estimated using the density function in (5.7). The estimations have been also

evaluated for different diameters ε with no overlapping and 2−3 ≤ ε ≤ 21. We have

illustrated the NB and NSE of MI of the systems in Figure 5.2 and 5.3, respectively.
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Figure 5.2 The NB of Î(X1, X2), Î(X1, X3), Î(X2, X3) using histogram estimator with respect to N versus
ε

When the number of observations and the interval diameter are increased, the NBs

of MI between the systems decrease. It is shown that the NSEs of MI between the
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Figure 5.3 The NSE of Î(X1, X2), Î(X1, X3), Î(X2, X3) using histogram estimator with respect to N versus
ε

systems are also decreased when the number of observations and the diameter of an

interval are increased. The NSEs of MI are increased in case of ε � 2, but this result

are not plotted in Figure 5.3. We have seen an interval of ε, which makes NB of MIs

minimum. If the ε is greater than the support set of all observations, the histogram

estimator has only one interval. It yields that accurate estimation can be obtained if the

data is (almost) uniform. According to the figures, we have had the minimum NB and

NSE of MI when N = 211 and ε = 1.68 among all parameters. As a result, the accurate

estimations of MI have been obtained as the number of observations increased and the

diameter is in the range of 1 ≤ ε ≤ 2 in the histogram estimator.

Similarly, when we have examined Figures 5.4 and 5.5, the NBs of TEs have been

decreased in case of the number of samples and the diameter of an interval is

increased. The accurate estimations have been achieved for all N and ε > 1 in Figure

5.4. However, the NSEs of TE have been decreased when N > 210 and ε > 1 in Figure

5.5. It is obvious that the minimum NBs and NSEs of TEs have been obtained in the

case of (N, ε) = (211, 2). Besides, it has been noticed that the NB and the NSE of

information measures of the systems X1 and X3 that are not directly connected

systems are higher than the NB and the NSE of information measures of the systems

that are directly connected, i.e., X1 and X2 or X2 and X3.
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Figure 5.4 The NB of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 T̂ EX2→X1 using histogram estimator with respect to
N versus ε
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Figure 5.5 The NSE of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 T̂ EX2→X1 using histogram estimator with respect
to N versus ε

As a second estimator, we have examined KDE. We have chosen the Gaussian

kernel in (5.10) and Epanechnikov kernel in (5.11) as a kernel base functions. The

simulations have been performed by varying the number of observations and the

bandwidth matrix. The diagonal elements of bandwidth matrix has been chosen as

0.1 ≤ h ≤ 1 where |h| = |hii| ∀ i = 1, 2, . . . , d. Other elements are zero hi j = 0 ∀ i , j.

The plots have been illustrated against the diagonal elements of the matrix. We have
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Figure 5.6 The NB of Î(X1, X2), Î(X1, X3), Î(X2, X3) using KDE with Gaussian kernel base function for
varying parameters of (N, |h|)
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Figure 5.7 The NSE of Î(X1, X2), Î(X1, X3), Î(X2, X3) using KDE with Gaussian kernel base function for
varying parameters of (N, |h|)

used a 2-dimensional kernel base function in estimating MI and a 3-dimensional

kernel base function in estimation TEs. While the NBs and the NSEs of MI have been

illustrated in Figures 5.6, 5.7, 5.8 and 5.9, the NBs and the NSEs of TEs between the

systems have shown in Figures 5.10, 5.11, 5.12 and 5.13.

Figure 5.6 has indicated that the NB of MIs between the systems is fairly low for

all N and |h| > 0.3 when we have estimated the MIs with the Gaussian kernel function.

It is seen that NSE of MI is significantly low in Figure 5.7. It is expected that the
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Figure 5.8 The NB of Î(X1, X2), Î(X1, X3), Î(X2, X3) using KDE with Epanechnikov kernel base function
for varying parameters of (N, |h|)
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Figure 5.9 The NSE of Î(X1, X2), Î(X1, X3), Î(X2, X3) using KDE with Epanechnikov kernel base
function for varying parameters of (N, |h|)

performance of a KDE is high when we have estimated the measures with a Gaussian

kernel density function, since the states of coupled autoregressive processes are driven

by Gaussian white noise. If the kernel function is chosen as the Epanechnikov kernel

base function, the NB of MIs between the systems is in an acceptable range for all N

and |h| > 0.6 as shown in Figure 5.8. The NSE of MIs between the systems does not

change considerably by fixing bandwidth and as the number of samples increases in

Figure 5.9. However, if the bandwidth increases, the NSE of MIs between the systems

decreases, as Figure 5.9 indicates. It is appropriate to choose any N and |h| = 0.9
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Figure 5.10 The NB of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 T̂ EX2→X1 using KDE with Gaussian kernel base
function for varying parameters of (N, |h|)
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Figure 5.11 The NSE of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 T̂ EX2→X1 using KDE with Gaussian kernel base
function for varying parameters of (N, |h|)

to get a more accurate estimation in Epanechnikov KDE. When we have compared

Figures 5.7 and 5.9, it has been observed that the NSE of MIs in the estimation with

Epanechnikov base function is greater than the NSE of MIs in the estimation with

Gaussian function.

Similarly, when the TEs between the systems have been estimated with Gaussian

KDE, the NB of TEs has been acceptable for all N and |h| > 0.4 in Figure 5.10. The

NSE of TEs is smaller than 0.05 for all N and |h| as Figure 5.11 illustrates. When the

kernel function is Epanechnikov, the NB of TEs is small in case of (N, |h|) > (29, 0.9)
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Figure 5.12 The NB of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 T̂ EX2→X1 using KDE with Epanechnikov kernel
base function for varying parameters of (N, |h|)
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Figure 5.13 The NSE of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 T̂ EX2→X1 using KDE with Epanechnikov kernel
base function for varying parameters of (N, |h|)

in Figure 5.12. The NSE of TEs is also small when ((N, |h|) = (210, 0.8) is selected in

Epanechnikov KDE as shown in Figure 5.13. The choice of Gaussian kernel function

yields to obtain the best estimations since we observe the coupled Gaussian

processes. We have compared Figures 5.8 and 5.12, it is seen that the dimension of

kernel base function increases. Therefore, the NSE of estimations of information

measures increases when the kernel dimension is increased.

The performance of the kNN entropy estimator has also been investigated. The

information measures have been estimated for varying the number of observations and
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Figure 5.14 The NB of Î(X1, X2), Î(X1, X3), Î(X2, X3) using kNN entropy estimator with respect to N
versus k
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Figure 5.15 The NSE of Î(X1, X2), Î(X1, X3), Î(X2, X3) using kNN entropy estimator with respect to N
versus k

neighbors. The number of neighbors has varied from 1 to 10. The MIs and TEs

between the systems have been estimated using (5.23) and (5.25), respectively. While

Figures 5.14 and 5.15 have illustrated the NB and the NSE of MIs between the systems,

the NB and the NSE of TEs have shown in Figures 5.16 and 5.17, respectively.

We have investigated the NB of MIs between the systems in Figure 5.14 and

obtained good estimations when N = 210 and k > 7. Furthermore, the NSE of MIs is

smaller than 0.02 in case of N = 210, k > 7 as Figure 5.15 depicts. The acceptable TE
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Figure 5.16 The NB of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 , T̂ EX2→X1 using kNN entropy estimator with
respect to N versus k
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Figure 5.17 The NSE of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 , T̂ EX2→X1 using kNN entropy estimator with
respect to N versus k

estimations have been obtained in N = 210 and k > 7 by looking at the NB of TEs in

Figure 5.16. It is seen that the NSEs of TE are also smaller than 0.02, similar to that

of the NSE of MIs in the kNN estimator as shown in Figure 5.17. Besides, kNN

estimators have outperformed histogram estimators and KDE by inspecting the NB

and NSE of MIs and TEs. kNN estimators are more robust than histogram estimators,

and KDE, if the density is locally uniform, N and k are not too small.

Finally, we have focused on the performance of the kpN entropy estimator. We

have chosen the number of neighbors between 1 and 10, and pk/N has been selected

between 0.01 and 0.1 with an increase of 0.01. The NB and NSE of MIs between the
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Figure 5.18 The NB of Î(X1, X2), Î(X1, X3), Î(X2, X3) using kpN entropy estimator with respect to pk/N
versus k when N = 4096
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Figure 5.19 The NB of Î(X1, X2), Î(X1, X3), Î(X2, X3) using kpN entropy estimator with respect to pk/N
versus k when N = 8192

systems have been illustrated for N = 4096 and N = 8192 in Figures 5.18, 5.19, 5.20,

and 5.21. Moreover, Figures 5.22, 5.23, 5.24 and 5.25 have shown that the NB and the

NSE of TEs between the systems for N = 4096 and N = 8192, respectively.

The results have shown that the NB of MIs between the systems is decreased when

the number of samples increases. Hence, kpN has estimated the entropy-based

measures accurately. We have obtained the acceptable estimations by investigating

the NBs of MIs between the systems when pk/N = 0.05 and for all k in Figures 5.18
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Figure 5.20 The NSE of Î(X1, X2), Î(X1, X3), Î(X2, X3) using kpN entropy estimator with respect to pk/N
versus k when N = 4096
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Figure 5.21 The NSE of Î(X1, X2), Î(X1, X3), Î(X2, X3) using kpN entropy estimator with respect to pk/N
versus k when N = 8192

and 5.19. It is seen that the NSE of MIs between the systems takes minimum value

when N = 4096, pk/N = 0.1 and k = 10, N = 8192, pk/N = 0.1 and k = 10 in Figures

5.20 and 5.21, respectively. The NB of TEs has been decreased when pk/N has been

increased and for all k in N = 4096 and N = 8192, as shown in Figures 5.22 and 5.23.

Additionally, the NSE of TEs has become lower than 0.05 for all pk/N, k as

Figures 5.24 and 5.25 illustrate. While the variation of pk/N has not been changed,

the NSE of MIs and TEs between the systems significantly, the NSEs of estimations

have been altered by changing k. We have expected the performance of kpN

estimators to be high since the local distribution is Gaussian in (5.34).
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Figure 5.22 The NB of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 T̂ EX2→X1 using kpN entropy estimator with respect
to pk/N versus k when N = 4096
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Figure 5.23 The NB of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 T̂ EX2→X1 using kpN entropy estimator with respect
to pk/N versus k when N = 8192

In general, estimators’ performance increases as the number of observations

increases, as expected in all estimators. The selection of appropriate volume size is

important to achieve less NBs and NSEs in the histogram estimator. Using Gaussian

KDE as expected in estimating the information measures of coupled Gaussian

processes is advantageous. If the different kernel density function is used in

estimating Gaussian distribution, the NB and the NSE are higher than the Gaussian

kernel function. When the dimension of the data is increased in the Epanechnikov

kernel function, it is observed that the NB of estimations is also increased.

If the estimations are carried out with enough observations, and kNN entropy
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Figure 5.24 The NSE of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 T̂ EX2→X1 using kpN entropy estimator with
respect to pk/N versus k when N = 4096
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Figure 5.25 The NSE of T̂ EX1→X2 , T̂ EX1→X3 , T̂ EX2→X3 T̂ EX2→X1 using kpN entropy estimator with
respect to pk/N versus k when N = 8192

estimators are used, we have obtained the estimations with minimum errors. In the

kpN entropy estimator, the choice of k and pk/N change the NBs of estimations.

However, the NSE slightly changes because of the variation of the pk/N ratio. The

NSE of estimations is changed for the different values of k. We also have determined

the acceptable estimations for Gaussian distributions in the kpN estimator, which are

used efficiently in both KDE and the kNN entropy estimator. Additionally, the NB

and NSE of information measures of systems that are not directly coupled are greater

than the NB and NSE of information measures of systems that are directly coupled

such as NB(Î(X1, X3)) > NB(Î(X1, X2)), NS E(Î(X1, X3)) > NS E(Î(X1, X2)),

NB(T̂ E(X1 → X3)) > NB(T̂ E(X1 → X2)),
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NS E(T̂ E(X1 → X3)) > NS E(T̂ E(X1 → X2)) for all estimators.

The measures derived from entropies are successfully estimated using kNN entropy

estimators. Furthermore, it has been clear that the performance of the Gaussian KDE

is high for the coupled Gaussian autoregressive processes. Thus, the performance of

the estimators is tested in a nonlinear bistable system in the next section.

5.2.2 Bistable system

We have studied the performance of entropy estimators by observing the output of

a bistable system since it is driven by stochastic white noise and is a nonlinear system.

We have expected that Gaussian KDE and kpN estimators perform well for coupled

Gaussian distributions. However, the estimators’ performance in such a nonlinear

system is unclear.

Consider the system given in (2.4). The initial pdf of random variable X is denoted

as p(x0, 0) = p0(x0). The pdf p(x, t) of (2.4) satisfies:

∂p(x, t)
∂x

=
1
2

n∑
i, j=1

∂2

∂xi∂x j
(ai j p) + . . . −

n∑
i=1

∂

∂xi
( fi p) ∀ t > 0, x ∈ Rn. (5.40)

In general form, the Fokker-Planck operator is defined as (Soong, 1973):

Lp =
1
2

n∑
i=1

n∑
j=1

∂2

∂xi∂x j

(
ai j(x)(·)

)
−

n∑
i=1

∂

∂xi
( fi(x)(·)) −

∂

∂t
(·). (5.41)

Lpst =
1
2

n∑
i=1

n∑
j=1

∂2

∂xi∂x j

(
ai j pst

)
−

n∑
i=1

∂

∂xi
( fi(x)(pst)) = 0 (5.42)

with pst is the stationary pdf of a system in (2.4). Let us denote Li, i = 1, 2, . . . ,N as

79



the partial differential operators, if (5.42) can be written in the form

Lpst =

n∑
i=1

Li

[
βi(x)pst(x) + γi(x)

∂pst(x)
∂x

]
= 0 (5.43)

then the solution of (5.43) satisfies,

βi(x)pst(x) + γi(x)
∂pst(x)
∂x

= 0 i = 1, 2, . . . , n. (5.44)

The solution of (5.44) is given as:

pst(x) = c
n∏

i=1

exp
(
−

∫ xi

0

βi(s)
γi(s)

ds
)
. (5.45)

The state equation of the bistable system is:

dx =
1
2

(x − x3)dt +
√
αdW(t) (5.46)

where α is a constant and determines the noise amplitude. The corresponding

Fokker-Planck operator is then:

L fst =
α

2
∂2 pst

∂x2 −
∂

∂x
[0.5(x − x3)pst]. (5.47)

If we rearrange (5.47), we obtain :

∂

∂x

(
−

1
2

(x − x3)pst(x) +
α

2
∂pst(x)
∂x

)
= 0. (5.48)

Here, L1 =
∂

∂x
, β1(x) = −0.5(x − x3) and γ1(x) = 0.5α for the bistable system. If we
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replace the coefficients in (5.45), the stationary pdf becomes,

pst(x) = c1 exp
(
−

1
α

[
−

x2

2
+

x4

4

])
. (5.49)

Since
∫

pst(x)dx = 1, we derive another equation such as:

c1

∫ ∞

∞

exp
(
−

1
α

[
−

x2

2
+

x4

4

])
dx − 1 = 0 (5.50)

In order to find c1 coefficient, (5.50) is solved. Then, c1 becomes,

c1 =
2

π

I
−

1
4

(
1

8α

)
+ I1

4

(
1

8α

)
exp

(
−1
8α

)
. (5.51)

By rearranging (5.49), the stationary probability density of the bistable system takes

the form (Soong, 1973):

pst(x) =
2

π

I
−

1
4

(
1

8α

)
+ I1

4

(
1

8α

)
exp

−
1
4
− x2 +

x4

2
2α

 . (5.52)

In(x) is the modified Bessel function of the first kind. The theoretical value of

entropy is computed through the density formula in (5.52) using (2.38).

We have solved the stochastic differential equation in (5.46) numerically, by

Euler-Maruyama method on fixed time intervals with ∆t = 0.1 s (Kloeden & Platen,

2013). The simulations have been repeated 1000 times for different number of
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Figure 5.26 (a) The NB and (b) the NSE of the ĥ(X) of bistable system in (5.46) using histogram
estimator with respect to N versus ε

observations 2256 ≤ N ≤ 4048 by starting with different initial conditions. The first

2000 samples of the simulations have been removed as transients. α in (5.46) has

been selected as 1. The entropy of the bistable system has been computed numerically

as h(X) = 1.351 nats according to density function which is defined in (5.52). The

entropy estimation has been validated on the system in (5.46) for histogram, KDE,

kNN and kpN entropy estimators.

It has been shown that the NB of entropy decreases when the interval of diameter

increases up to ε ≈ 1 in histogram estimator. The NB of entropy has a minimum for

all N and ε = 1 and the NSE of entropy is smaller than 0.01 for all (N, ε) pairs in

Figure 5.26. The entropy of the bistable system is estimated via Gaussian KDE, and

the NB and NSE are illustrated in Figure 5.27. There are different pairs of (N, |h|) to

minimize the NB of entropy as Figure 5.27. Besides, the NSE of entropy is acceptable

for all estimations of Gaussian KDE. The Epanechnikov kernel function is used in the

estimation of bistable entropy. Figure 5.28 has shown that the NB of entropy is quite

low for a wide range of pairs of (N, |h|). NSE of entropy is also smaller than 0.01.
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Figure 5.27 (a) The NB and (b) NSE of ĥ(X) of the bistable system in (5.46) using KDE with Gaussian
kernel base function for varying parameters of (N, |h|)
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Figure 5.28 (a) The NB and NSE of ĥ(X) of the bistable system in (5.46) using KDE with Epanechnikov
kernel base function for varying parameters of (N, |h|)

The entropy of bistable is estimated with high accuracy when the bandwidth of the

Epanechnikov kernel function is limited.

In Figure 5.29, NB and NSE of the bistable system’s entropy have been illustrated

using the kNN entropy estimator. Although the NB of entropy is biased, the NSE

of entropy has the lowest value in the kNN entropy estimator. The NB and NSE of
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Figure 5.29 (a) The NB and NSE of ĥ(X) of the bistable system in (5.46) using kNN entropy estimator
with respect to N versus k
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Figure 5.30 (a) The NB and NSE of ĥ(X) of the bistable system in (5.46) using kpN entropy estimator
with respect to pk/N versus k when N = 2048

entropy of bistable system are lower than 0.02 in kpN entropy estimator as shown in

Figure 5.30. It has been observed that the kpN entropy estimator estimated the entropy

of the bistable system with the highest accuracy.

A comparative study has been presented for the expected value of estimations and

the NMSEs of entropy in the case of various α in Figure 5.31. In these simulations,
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[ĥ
(X

)]

(b)
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Figure 5.31 (a) The expected value of the entropy estimations by using histogram, Gauss KDE,
Epanechnikov KDE, and kpN entropy estimator. The dashed line shows the theoretical value of the
entropy. (b) The NMSE error of the entropy estimations by using histogram, Gauss KDE, Epanechnikov
KDE, and kpN entropy estimator.

the parameters are selected as in the following: N = 2048 for all estimators, ε = 1 in

histogram, |h| = 0.1 in Gauss KDE, |h| = 0.2 in Epanechnikov KDE, k = 10 in kNN,

k = 10, pk/N = 0.1 in kpN estimators. As the noise level increases, the estimators’ bias

is approximately the same value in Figure 5.31 depicts. If the entropy is estimated via

the histogram, the bias of this estimator decreases first and then increases. In addition,

the NMSE of the estimators is too small for all levels of the noise. The NMSE of

the histogram estimator is slightly more significant than the other estimators. We have

seen that the histogram estimator is less robust than the other estimators in Figure 5.31.
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In summary, we have confirmed that the performance of the histogram estimator

depends on the (N, ε) pair. The bandwidth of kernel is limited in Epanechnikov KDE

since the bistable system’s support set is also bounded, it has been evident that the

estimator’s bias is reduced for the entropy of the bistable system. The tails of

Gaussian KDE go to infinity. Thus, if the entropy of the bistable system is estimated

with Gaussian KDE, it has been expected that the NB of entropy of it is higher than

Epanechnikov KDE. We have determined that the kNN entropy estimator estimates

the entropy and the entropy-based measures efficiently and with high accuracy, if the

density is locally uniform regardless of the dimension of observation. On the other

hand, the entropy estimations are biased when the system is nonlinear, and the

observations are not distributed in sample space like the bistable system. We have

observed that kpN estimator estimates entropy correctly in a nonlinear bistable

system.

5.2.3 Temperature electricity consumption dataset

The performance of the entropy estimators has also been tested on a real dataset.

In Figure 5.32, the dataset have been demonstrated for outside temperature versus

electricity consumption in Turkey. The dataset also includes the causality between

temperature and electricity consumption. In other words, it is clear that the variations

in the ambient temperature cause the variations in the electricity consumption but not

visa versa (Mooij et al., 2016).

Undoubtedly, the theoretical values of the entropy-based measures are unknown in

the real dataset. As a well-known method, we have used the hypothesis tests to measure

the statistical significance of the TE (Vicente et al., 2011; Lizier et al., 2011). The TEs

have been estimated by surrogating the data to measure the performance of the entropy

estimators in the literature (Bossomaier et al., 2016). The estimated TE between two

time-series measures whether or not two variables are independent.

First, we have taken samples of the electricity consumption E, and the temperature

T (Figure 5.32). Then, we have permuted only the time series of temperature denoted
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Figure 5.32 A real dataset that shows the causality of Temperature ◦C → Electricity Consumption [MW]

as T ∗ to destroy causality (Lizier et al., 2011) in the generated surrogate data series.

The null hypothesis becomes,

H0 : T ET ∗→E > T ET→E. (5.53)

In other words,

H0 : The temperature alteration does not affect electricity consumption.

The null hypothesis should be rejected in any estimation method since we do not know

the distribution error of the TE estimations.
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Table 5.1 The significance level pH0 for the null hypothesisH0 with N = 1024, N = 2048 and N = 4096

The Estimators The Parameters
N=1024 N=2048 N=4096

pH0 pH0 pH0

Epanechnikov KDE |h| = 4.5 0.493 0.248 0.026

Gaussian KDE |h| = 2.9 0.244 0.041 0.001

Histogram ε = 4 0.209 0.036 0.002

kpN k = 3, pk/N = 0.1 0.172 0.103 0.028

kNN k = 3 0.037 0.003 0.002

The data T ∗ has been shuffled to generate 10000 different surrogate series, and then

T ET ∗→E has been estimated to test the hypothesis H0. Let pH0 be the significance

level of H0. The null hypothesis H0 is rejected if pH0 < αH0 . We have assumed

that αH0 = 0.05. In Table 5.1, the significance level pH0 for the null hypothesis H0

have been illustrated. The number of samples in estimation has varied from 1024 to

4096, and we have tested the null hypothesis for all estimators whose parameters are

specifically selected for their best estimation performance.

As the number of observations is increased, we have seen that the null hypothesis is

rejected for any type of estimator in Table 5.1. While the histogram and Gauss KDE

estimators have rejected the null hypothesis for N ≥ 2048, the null hypothesis has been

rejected for Epanechnikov KDE and the kpN in the case of N ≥ 4096. The number of

observations should be high enough to determine the causality between the systems in

Table 5.1 to represent the underlying pdf in the histogram, Gauss KDE, Epanechnikov

KDE, and kpN estimators. In the kNN estimator, the null hypothesis has been rejected

for all N as shown in Table 5.1. Even though the kNN estimator has a slight bias,

which can be canceled in expense of additional computational effort, it can be used

effectively to obtain the causality between the systems for this real dataset.

As a result, the kNN entropy estimator has successfully estimated information

measures in linear coupled systems, and kpN and Epanechnikov KDE have been

efficient in estimating entropy in nonlinear systems. The number of observations has

been the most crucial parameter that alters the estimators’ performance in linear
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systems. The parameters which symbolize the bandwidth, such as ε, |h|, and pk/N do

not indicate a specific optimal value for coupled autoregressive processes. However,

we select the optimal ε, |h|, pk/N parameters in bistable system. Hence, we can obtain

accurate estimations by fewer observations and the optimal bandwidth parameters.

In the real dataset, the success of the entropy estimators has also been dependent

on the number of observations. It is also found that when we estimate the TEs of the

systems in the real dataset, the estimations by using the kNN entropy estimator have

a statistical significance level for the small number of observations. We have obtained

the causality for these systems using the kNN entropy estimator.

In summary, we have presented a framework for estimating information-theoretic

measures in this chapter. It is seen that the kNN entropy estimator has a bias for a

small number of samples; however, it estimates the measures quickly. On the other

hand, the KDE or the kpN estimator has had a low bias, but the estimation times have

been relatively long.

Clearly, there is a trade-off between the speed and the accuracy of the estimations,

as usual. If the accuracy of the estimation is crucial, then the KDE or kpN estimator

can be chosen. However, we deal with the chaotic dynamical systems and their

information flow in a network. The volume of data is enormous, even in a small

network. We are more interested in preserving the causality information effectively

rather than estimating the value of the entropy in exact digits. The relative

information measures between the systems in a network can quantify the information

flow to reduce the bias. Hence, we have used the kNN entropy estimator in our

following analysis for fast and accurate enough results. Now, our goal is to reveal

paths in a chaotic dynamical network in complete synchronization using the

information-theoretic tools represented up to this point.
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CHAPTER SIX

UNFOLDING THE STRUCTURE OF CHAOTIC DYNAMICAL NETWORKS

VIA CAUSATION ENTROPY

In this chapter, we address the problem of reconstructing the unknown network

coupling scheme using the observations gathered from only a subset of individual

systems in a network.

There are several approaches to the solution of the problem. In one approach, the

response of an auxiliary network is adjusted via adaptive controllers to match the

response of the network in question (Yu et al., 2006; Yu & Parlitz, 2011; Wu et al.,

2016; Liu et al., 2022). The study in (Chen et al., 2009) addresses the intricate

problem of synchronization in the network. Similar adaptive controller-based studies

are widely used in network reconstruction, they are based on the assumption that the

internal dynamics of each node and the coupling function are known a priori, and the

system under study is observable usually (Yu et al., 2006).

Machine learning methods are also employed in solving network reconstruction

problems. It has been demonstrated that the reconstruction of phase-coupled

Kuramoto networks is possible using artificial neural networks. The transient

dynamics of coupled oscillators by perturbing the systems in the network are used for

obtaining information about the network structure in synchronization (Panaggio et al.,

2019). Leguia et al. have proposed a network reconstruction approach by using the

trajectories as features and then applying two independent feature ranking methods to

rank the importance of each node for predicting the states of other nodes in the

network to obtain the adjacency matrix. The proposed recipe has been reported to

perform well with discrete-time maps and with respect to varying coupling strength,

noise, trajectory length, and network size (Leguia et al., 2019).

As an effective alternative, the network topology can be inferred via

information-theoretic measures. The existing information-theoretic measures are used

in solving model-free problems frequently (Novelli & Lizier, 2021; Lizier et al.,

2011; Stetter et al., 2012; Porfiri & Marín, 2017; Sun et al., 2015). One of such
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measures is the TE suggested by Schreiber (Schreiber, 2001). The TE measures

information flow from one system to a related system by observing the past values of

the first system. It has been widely used in the reconstruction of networks in various

fields such as neuroscience (Vicente et al., 2011), climate networks (Hlinka et al.,

2013) and policy diffusion (Porfiri & Marín, 2017).

An alternative and closely related measure, the CE, allows us to measure

information flow from one system to another by considering a third related system

(Sun & Bollt, 2014). Sun et al. have proposed the optimal causation entropy principle

based on the CE. According to this principle, the causal parents of a system in the

network are the minimal set of nodes that maximizes the CE. The algorithm based on

the optimal causation entropy principle has been shown to be capable of determining

the causal parents of a given node in the network efficiently (Sun et al., 2015).

Furthermore, the authors have illustrated that the algorithm based on the optimal

causation entropy principle outperforms the methods based on the TE and Granger

causality (Granger, 1988) in the coupled Gaussian processes networks. An important

consequence is that the density of links and information diffusion rate are more

important than the number of nodes when inferring the topology (Sun et al., 2015).

In recent years, Novelli and Lizier have compared the properties of the networks

from microscopic to macroscopic scales by using MI, bivariate TE, and multivariate

TE measures (Novelli & Lizier, 2021). In (Novelli & Lizier, 2021), the authors are

not only seeking to infer the network topology via information-theoretical tools on the

microscopic scale but also analyzing the structural properties of the network, such as

the characteristic path length, clustering coefficient, small-worldness coefficient,

degree distribution, and modularity in macroscopic scales. The authors have found

that the multivariate TE outperforms MI and bivariate TE when identifying the

structural properties of the network in large time series. Similarly, a simple test that

infers the causal links has been introduced recently. The proposed test is based on the

difference between two information-theoretic measures estimated directly from

observations. The results have been validated on synthetic and real-world-time series

with known causal relationships. Furthermore, the causal connections between
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nonlinear systems could be recovered where the TE measure fails (Haaga et al., y 28).

Although the studies that infer the network structure in coupled discrete-time maps

are relatively abundant, the work on reconstructing the network topology in a

continuous-time synchronized network is rather thin. In this section, we address the

problem of inferring network topology by only observing the systems’ output when

synchronizing the continuous-time network. We show that the difference of the

course-grained average integrated causation entropies of the coupled systems can be

used as a discriminative feature when reconstructing the topology in a directed

network that exhibits complete synchronization. We assume that random information

can be injected into the network via available inputs of the individual coupled

systems, and a single output is accessible for each node. However, the individual

dynamics of the nodes are not available directly. Nevertheless, the results indicate that

the evolution of the injected entropy through the network can reveal the network

structure in this model-free approach.

6.1 Network Reconstruction via Causation Entropy

Consider the network G, as in definition 2.1.1. We assume that the state equations

of the network is defined as (2.6) or (2.7) and the network is completely synchronized

according to definition 2.4.1.

The outputs yi(t) of (2.6) can be sampled in an optimal way to convert the system

to a discrete one as in (2.7) so that the information-theoretic properties are preserved.

We know that the differential entropy in (2.38) is not preserved under the

diffeomorphisms in general according to Theorem 2.5.10. The TE and the CE are

preserved according to Theorems 4.1.5 and 4.1.7, respectively. Hence, their

estimations provided by observations in reconstructed phase space result in the same

TE and the CE values as the estimation obtained by full state observations up to the

numerical error.

We begin with reconstructing the outputs of yi(t) by using the state space

reconstruction techniques in Section 2.3. Then, TE or CE is estimated in the
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reconstructed space. We claim that the adjacency matrix of A of a network in

complete synchronization can be estimated by using the estimated outputs ỹir,n via

information theoretic measures. Note that no prior knowledge of the underlying

dynamics (i.e., f, g and φi) or coupling strength ε is assumed since we can estimate

the required parameters from the observed outputs only.

Let i, j, k ⊂ V be any three network nodes that are selected randomly. To provide

useful information during the synchronization, we can perturb the inputs to the systems

at specific times. We redefine CE in (4.23) as:

CEi→ j | k(n, ui) = h(Ỹ j,n+1 | Ỹ(d)
k,n,Ui) − h(Ỹ j,n+1 | Ỹ(d)

k,n, Ỹ
(d)
i,n ,Ui) (6.1)

A possible choice for input ui is then,

ui(n) =

αiδ(n) mod (L, n) = 0, L ∈ Z+

0 otherwise
(6.2)

where δ(·) is the Dirac delta function, and αi is uniformly distributed over [−a, a]di ,

a > 0. The duration L between applying two inputs is chosen long enough to reach the

synchronization manifold after the perturbation. The underlined symbol in (6.1), i.e, i,

indicates that the node i is perturbed.

Let us define the integrated causation entropy (ICE) to quantify total information

flow in an interval (Canlı & Günel, 2020):

ICEi→ j | k(ui) = En[CEi→ j | k(n, ui)]. (6.3)

Related to this measure, the average integrated causation entropy (AICE) measures

the average total information flow over the random perturbations:

AICEi→ j | k = Eui

[
ICEi→ j | k(ui)

]
. (6.4)
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The perturbations disturb the synchronization and excite the network by injecting new

information into the system. As the information flows through the network en route

to the re-synchronization, the connection information is revealed since the directly

connected nodes contribute to the AICE less than the non-directed nodes. We propose

that the difference of AICEs between the reconstructed outputs can be used to reveal

the paths and, therefore, can be used to reconstruct the matrix A.

Assume that the network G synchronizes asymptotically. Let us label the outputs

randomly and choose three systems i, j, and k. Let ỹ j[n + 1] = ỹ j,n+1, ỹ(d)
i [n] = ỹ(d)

i,n and

ỹ(d)
k [n] = ỹ(d)

k,n.

The following theorems hold given that the systems in G are identical.

Theorem 6.1.1. Assume that the system i is perturbed with the input (6.2).

i) If i is a source node for which kout
i = 1 and kin

i = 0 (Figure 6.1a), then

|AICEi→ j | k − AICEi→k | j| > 0. (6.5)

ii) If i is neither a source or nor a sink node where kout
i ≥ 1 and kin

i ≥ 1 (Figure

6.1b), then

|AICEi→ j | k − AICEi→k | j| > 0. (6.6)

iii) If i is a source node whose out-degree at least two kout
i ≥ 2 and in-degree is zero

kin
i = 0, certainly (Figure 6.1c), then

|AICEi→ j | k − AICEi→k | j| = 0. (6.7)
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iv) If i is a sink node whose kout
i = 0 and kin

i ≥ 1 (Figure 6.1d and 6.1e), then

|AICEi→ j | k − AICEi→k | j| = 0. (6.8)

Proof: The systems reach the synchronization manifold asymptotically after the

perturbation caused by (6.2).

i) Let us assume that i drives j, and j drives k. Based upon the topology, there

exists a homeomorphism between xk,n+1 and x j,n such that xk,n+1 = Φk j(x j,n)

(Arnold, 1992). Thus, h(Ỹk,n+1 | Ỹ
(d)
j,n ,Ui) = h(Φk j(Ỹ

(d)
j,n) | Ỹ(d)

j,n ,Ui) = 0 and

h(Ỹk,n+1 | Ỹ
(d)
j,n , Ỹ

(d)
i,n ,Ui) = h(Φk j(Ỹ

(d)
j,n) | Ỹ(d)

j,n , Ỹ
(d)
i,n ,Ui) = 0. By using (6.1), (6.3)

and (6.4),

∣∣∣AICEi→ j | k − AICEi→k | j

∣∣∣
=

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
k,n,Ui) − h(Ỹ j,n+1 | Ỹ

(d)
k,n, Ỹ

(d)
i,n ,Ui) . . .

− h(Φk j(Ỹ
(d)
j,n) | Ỹ(d)

j,n ,Ui) +h(Φk j(Ỹ
(d)
j,n) | Ỹ(d)

j,n , Ỹ
(d)
i,n ,Ui)

]]∣∣∣∣∣
=

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
k,n,Ui) − h(Ỹ j,n+1 | Ỹ

(d)
k,n, Ỹ

(d)
i,n ,Ui)

]]∣∣∣∣∣ > 0.

(6.9)

ii) Proof is similar to i) Let us assume that i drives j but i is driven by k. Considering

the topology, there exists a homeomorphism between x j,n+1 and xk,n such that

x j,n+1 = Φ jk(xk,n). Consequently, h(Ỹ j,n+1 | Ỹ
(d)
k,n,Ui) = h(Φ jk(Ỹ

(d)
k ) | Ỹ(d)

k,n,Ui) = 0

and h(Ỹ j,n+1 | Ỹ
(d)
k,n, Ỹ

(d)
i,n ,Ui) = h(Φ jk(Ỹ

(d)
k ) | Ỹ(d)

k,n, Ỹ
(d)
i,n ,Ui) = 0. By using (6.2) and

(6.3),
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∣∣∣AICEi→ j | k − AICEi→k | j

∣∣∣
=

∣∣∣∣∣Eui

[
En

[
h(Φ jk(Ỹ

(d)
k,n) | Ỹ(d)

k,n,Ui) − h(Φ jk(Ỹ
(d)
k,n) | Ỹ(d)

k,n, Ỹ
(d)
i,n ,Ui) . . .

− h(Ỹk,n+1 | Ỹ
(d)
j,n ,Ui) +h(Ỹk,n+1 | Ỹ

(d)
j,n , Ỹ

(d)
i,n ,Ui)

]]∣∣∣∣∣
=

∣∣∣∣∣Eui

[
En

[
−h(Ỹk,n+1 | Ỹ

(d)
j,n ,Ui) + h(Ỹk,n+1 | Ỹ

(d)
j,n , Ỹ

(d)
i,n ,Ui)

]]∣∣∣∣∣ > 0.

(6.10)

iii) Before the perturbations x j = xk. The presence of the input affects both systems

equally and limt→∞ ‖x j(t) − xk(t)‖ = 0. Consequently, h(Ỹ(d)
j,n | Ui) = h(Ỹ(d)

k,n | Ui),

h(Ỹ j,n+1 | Ỹ(d)
k,n,Ui) = h(Ỹk,n+1 | Ỹ(d)

j,n ,Ui). Besides, due to the homeomorphism

between x j,n+1 and xi,n, for some Φ ji we have x j,n+1 = Φ ji(xi,n) and also, the

homeomorphism between xk,n+1 and xi,n yields xk,n+1 = Φki(xi,n). Then by (6.3),

(6.4), we can write:

∣∣∣AICEi→ j | k − AICEi→k | j

∣∣∣
=

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
k,n,Ui) − h(Φ ji(Ỹ

(d)
i,n ) | Ỹ(d)

k,n, Ỹ
(d)
i,n ,Ui) . . .

− h(Ỹk,n+1 | Ỹ
(d)
j,n ,Ui) + h(Φki(Ỹ

(d)
i,n ) | Ỹ(d)

j,n , Ỹ
(d)
i,n ,Ui)

]]∣∣∣∣∣
=

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
k,n,Ui) − h(Ỹk,n+1 | Ỹ

(d)
j,n ,Ui)

]]∣∣∣∣∣
=

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
k,n,Ui) − h(Ỹ j,n+1 | Ỹ

(d)
k,n,Ui)

]]∣∣∣∣∣ = 0.

(6.11)

iv) Suppose that there is a path from j to i and the existence of a path between j and

k is not clear. In this case, i and j are not independent. In case of the existence of

a path between i and k, i and k are not independent, too. In either case, adding

input to i does not destroy the synchronization of j and k; therefore, their

conditional entropies are equal, h(Ỹ(d)
j,n | Ui) = h(Ỹ(d)

k,n | Ui),

h(Ỹ j,n+1 | Ỹ
(d)
k,n,Ui) = h(Ỹk,n+1 | Ỹ

(d)
j,n ,Ui). Then,
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Figure 6.1 The possible coupling schemes between the nodes i, j, and k. The solid line with the arrow
illustrates that the link exists and must be in the indicated direction. The dashed line indicates that the
existence of link is not clear yet. The dashed line with the arrow represents the existence of a link is not
clear, but it must be in the arrow’s direction if it exists.

∣∣∣AICEi→ j | k − AICEi→k | j

∣∣∣
=

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
k,n,Ui) − h(Ỹ j,n+1 | Ỹ

d
k,n, Ỹ

(d)
i,n ,Ui) . . .

− h(Ỹ j,n+1 | Ỹ
(d)
k,n,Ui) +h(Ỹ j,n+1 | Ỹ

(d)
k,n, Ỹ

(d)
i,n ,Ui)

]]∣∣∣∣∣ = 0.

(6.12)

Theorem 6.1.2. Assume that the node i is perturbed.

i) If i is a source node with out-degree at least two kout
i ≥ 2 and in-degree is certainly

zero kin
i = 0 (Figure 6.1c), then

|AICEi→ j | k − AICEk→ j | i| = 0. (6.13)

ii) If i is a sink node with kout
i = 0 and kin

i = 1 (Figure 6.1d), then

|AICEi→ j | k − AICEk→ j | i| > 0. (6.14)
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iii) If i is a sink node with kout
i = 0 and kin

i > 1 (Figure 6.1e), then

|AICEi→ j | k − AICEk→ j | i| = 0. (6.15)

Proof: By definition,

∣∣∣AICEi→ j | k − AICEk→ j | i

∣∣∣
=

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
k,n,Ui) − h(Ỹ j,n+1 | Ỹ

(d)
i,n ,Ui)

]]∣∣∣∣∣ (6.16)

i) Similar to proof of Theorem 6.1.1 case iii) and due to the homeomorphism

between x j,n+1 and xi,n, for some Φ ji we have x j,n+1 = Φ ji(xi,n). Thus,

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
j,n ,Ui) − h(Φ ji(Ỹ

(d)
i,n ) | Ỹ(d)

i,n ,Ui)
]]∣∣∣∣∣

=

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
j,n ,Ui)

]]∣∣∣∣∣ = 0.
(6.17)

ii) Using similar facts in proof of Theorem 6.1.1 case iv), we can write

h(Ỹ j,n+1 | Ỹ
(d)
k,n,Ui) = h(Ỹ j,n+1 | Ỹ

(d)
j,n ,Ui) and h(Ỹ j,n+1 | Ỹ

(d)
j,n ,Ui) , h(Ỹ j,n+1 | Ỹ

(d)
i,n ,Ui).

Hence, |AICEi→ j | k − AICEk→ j | i| > 0.

iii) Suppose at least two paths exist from j to i and k to i. Adding input to the i does

not affect the future states of j. Hence, h(Ỹ j,n+1 | Ỹ
(d)
k,n,Ui) = h(Ỹ j,n+1 | Ỹ

(d)
i,n ,Ui).

The difference of AICEs becomes zero.

Theorem 6.1.3. Assume that the node i is perturbed.
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i) If i is a source node whose kout
i = 1 and kin

i = 0 (Figure 6.1a), and there exist a

path from j to k or k to j, then

|AICEi→ j | k − AICEk→ j | i| > 0
|AICEi→k | j − AICE j→k | i| > 0.

(6.18)

ii) If i is neither a source node or nor a sink node whose kout
i ≥ 1 and kin

i ≥ 0 (Figure

6.1f), and there exist no direct path from j to k or k to j, then

|AICEi→ j | k − AICEk→ j | i| > 0
|AICEi→k | j − AICE j→k | i| > 0.

(6.19)

iii) If i is neither a source node or nor a sink node whose kout
i ≥ 1 and kin

i ≥ 1, and

there exists a direct path from j to k or k to j (Figure 6.1g and 6.1h), then

|AICEi→ j | k − AICEk→ j | i| = 0
|AICEi→k | j − AICE j→k | i| = 0.

(6.20)

iv) If i is a source node whose kout
i = 1 and kin

i is not clear (Figure 6.1i), then

|AICEi→ j | k − AICEk→ j | i| > 0
|AICEi→k | j − AICE j→k | i| = 0.

(6.21)
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Proof: By definition,

∣∣∣AICEi→ j | k − AICEk→ j | i

∣∣∣
=

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
k,n,Ui) − h(Ỹ j,n+1 | Ỹ

(d)
i,n ,Ui)

]]∣∣∣∣∣ (6.22)

and∣∣∣AICEi→k | j − AICE j→k | i

∣∣∣
=

∣∣∣∣∣Eui

[
En

[
h(Ỹk,n+1 | Ỹ

(d)
j,n ,Ui) − h(Ỹk,n+1 | Ỹ

(d)
i,n ,Ui)

]]∣∣∣∣∣ . (6.23)

i) If i drives j, j drives k, and there is no link between i and k, with the similar line

of reasoning,
∣∣∣AICEi→ j | k − AICEk→ j | i

∣∣∣ =

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
k,n,Ui)

]]∣∣∣∣∣ > 0 and∣∣∣AICEi→k | j − AICE j→k | i

∣∣∣ =

∣∣∣∣∣Eui

[
En

[
−h(Ỹk,n+1 | Ỹ

(d)
i,n ,Ui)

]]∣∣∣∣∣ > 0.

ii) If i drives j but i is driven by k, and there is no link between i and k, using the

homeomorphism between i and j, i.e., x j,n+1 = Φ ji(xi,n), (6.22) becomes∣∣∣AICEi→ j | k − AICEk→ j | i

∣∣∣ =

∣∣∣∣∣Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d)
k,n,Ui)

]]∣∣∣∣∣ > 0. Also, by using

homeomorphism between i and k, i.e., xk,n+1 = Φki(xi,n), then (6.23) is equivalent

to
∣∣∣∣∣Eui

[
En

[
h(Ỹk,n+1 | Ỹ

(d)
j,n ,Ui)

]]∣∣∣∣∣ > 0.

iii) Consider i drives j, i is driven by k, and j drives k. It represents a cyclic scheme,

and all nodes influence each other. In this case, there exists homeomorphisms

between x j,n+1 and xk,n for some Φ jk and between x j,n+1 and xi,n for some Φ ji.

Thus,

∣∣∣AICEi→ j | k − AICEk→ j | i

∣∣∣
=

∣∣∣∣∣Eui

[
En

[
h(Φ jk(Ỹ

(d)
k,n) | Ỹ(d)

k,n,Ui) − h(Φ ji(Ỹ
(d)
i,n ) | Ỹ(d)

i,n ,Ui)
]]∣∣∣∣∣ = 0.

(6.24)

Similarly, the homeomorphisms between k and j, k and i yield |AICEi→k | j −

AICE j→k | i| = 0. A possible scheme is i drives j, i is driven by k, and k drives j.

By using the homeomorphisms between the states, |AICEi→ j | k−AICEk→ j | i| = 0.

Similar to theorem 6.1.1, case iv), adding input to i does not affect the future states

of k. Hence, |AICEi→k | j − AICE j→k | i| = 0.
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iv) Consider the case where a path exists from i to j; there is no path between j and k.

Besides, assume that the existence of a path between i and k is unknown, but if it

exists, the path must be from k to i which implies, |AICEi→ j | k −AICEk→ j | i| > 0.

j and k are independent and adding pulse to i does not affect k system’s states,

therefore, |AICEi→k | j − AICE j→k | i| = 0.

There are many possibilities to infer information flow, as shown in Figure 6.1. The

difference of |AICEi→ j | k − AICEi→k | j| distinguishes cases in Figures 6.1a and 6.1b

from Figures 6.1c, 6.1d and 6.1e by using Theorem 6.1.1. Thus, we can remove the

paths by checking this condition. However, Theorem 6.1.1 is not sufficient alone to

classify all cases in Figure 6.1. As a second criterion, we check the difference of

|AICEi→ j | k − AICEk→ j | i|, if (6.7) or (6.8) is satisfied. Theorem 6.1.2 separates cases

in Figures 6.1c, and 6.1e from case in Figure 6.1d. If (6.5) or (6.6) is satisfied, two

additional conditions are checked (|AICEi→ j | k − AICEk→ j | i|,

|AICEi→k | j − AICE j→k | i|). Theorem 6.1.3 is used for deciding either the case in

Figure 6.1a and 6.1f or 6.1g and 6.1h, or 6.1i is the correct scheme. Table 6.1

summarizes the difference of AICEs in Figure 6.1.

6.2 Network Reconstruction Algorithm

Algorithm 1 summarizes how Theorems 6.1.1, 6.1.2 and 6.1.3 can be used to obtain

the adjacency matrix.

We start with a coupling matrix corresponding to a fully-connected network and

assume coupling in both directions between two nodes is equiprobable. We can detect

the paths and then remove contrariwise paths in the algorithm since we can represent

the information flow through paths in the view of Theorems 6.1.1, 6.1.2, and 6.1.3.

In the end, non-existing paths are removed, and the remaining paths reconstruct the

topology.

The estimation of AICEs in Algorithm 1 requires ICE values in (6.3) that is based

on the estimation of CEs defined in (6.1) in an interval. We can use the kNN entropy
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Table 6.1 A summary of the difference of AICEs for the networks in Figure 6.1

|AICEi→ j|k − AICEi→k| j| |AICEi→ j|k − AICEk→ j|i| |AICEi→k| j − AICE j→k|i|

i j

k
(a)

> 0 > 0 > 0

i j

k
(b)

> 0 inconclusive inconclusive

i j

k
(c)

0 0 0

i j

k
(d)

0 > 0 > 0

i j

k
(e)

0 0 0

i j

k
(f)

> 0 > 0 > 0

i j

k
(g)

> 0 0 0

i j

k
(h)

> 0 0 0

i j

k
(i)

> 0 > 0 0
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estimator in (5.26) to estimate the required CEs.

Since our numerical results have finite precision, the conditions (6.5) - (6.21) have

to be checked against a threshold 0 < ε0 � 1 numerically, so that e.g. (6.6) assumed

to hold when |AICEi→ j | k − AICEi→k | j| < ε0. Here, we have chosen i, j, and k

randomly from the network. We have used the hypothesis tests to measure the

statistical significance to determine ε0 (Good, 2005). We have surrogated ith output

denoted as i? by shuffling the observation points of i in time, keeping the remaining

outputs unchanged. Here, we have considered the null hypothesis that

H0 : |AICEi?→ j | k − AICEi?→k | j| = 0. To test the null hypothesis, the empirical

cumulative distribution function of F|AICEi?→ j | k−AICEi?→k | j |
(ε0) has been obtained.

Then, the observation of |AICEi?→ j | k − AICEi?→k | j| > ε0 has become significant

when F̂|AICEi?→ j | k−AICEi?→k | j |
(ε0) ≤ θ where θ is significance threshold. Otherwise, the

null hypothesis has been rejected at (1 − θ). ε0 has been determined only once at

initialization step 3 of Algorithm 1.

We have utilized the NetworkX library to find paths, remove direct paths and

eliminate the irrelevant candidate networks that are not connected graphs or that are

isomorphisms (see definition 2.1.6) when updating the coupling matrix in the

Algorithm 1 (Hagberg et al., t 02,l). Figure 6.2 and 6.3 are the subroutines called from

Algorithm 1. Also, has_path in Figure 6.3 is a NetworkX function that returns True if

a graph has a path from source to target, False otherwise.

We have used the kd-tree searching algorithm in (5.26) to determine the number of

kNNs inside the ball for which the computational complexity is O(M log M) (Bentley,

1975). The complexity of AICEi→ j|k depends on the number random perturbations (K)

in (6.4), L in (6.2) and the overlapping ratio that are needed in the estimation of CE.

Let m be the number of the estimated CE in (6.3). Then, the complexity of estimating

CE’s becomes O(K × m × M × log M). In the worst case, we have 2N(N − 1)(N − 2)

triples of (i, j, k) in the estimation of AICEs, when the perturbed system is either i

or k. Therefore, in the worst case, the complete procedure yields an algorithm of

O(N3 × K × m × M × log M). However, the expected complexity is much better on
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Algorithm 1 Network Reconstruction Algorithm
Input: Y : {y1, y2, . . . , yN}: observed outputs,

L : the duration between two perturbations,
I = {(i, j, k) | i, j, k ⊂ V and j , i, k , i, j , k}: index set of triples,
K : # perturbations,

Output: A: A list of possible coupling matrices
Initialize: A = {1N×N − IN×N} % 1N×N is the unit matrix, IN×N is the identity matrix.

1: procedure Network_Reconstruction(I, Y, L, K)
2: Obtain τ and de of systems by using yi’s, and reconstruct the state space and

observe ỹi,
3: Determine ε0

4: do
5: Select (i, j, k) randomly from I
6: successors = { }
7: for each A inA do
8: Append(successors,Update_Network_Paths(A))
9: if A == successors then

10: returnA
11: A← successors
12: while length(A) ≥ 1 and I , ∅
13: returnA

average since the calculation of AICEs is not needed for all triples of nodes in most

cases.

6.3 Numerical Results

To validate the performance of the proposed algorithm, first, we have tested it on

small networks that consist on 4 systems with various coupling schemes as depicted in

Figure 6.4. Each circle represents a Chua system in Figure 6.4 and described by (2.11).

The simulation parameters are shown in Table 6.2.

Additionally, the coupling function has been chosen as h(xi, x j) = xi − x j in (2.5).

We have solved the differential equations numerically. The sampling time has been

chosen as ts = 0.01. The simulations have been performed in parallel in Python. We

have estimated the CEs in every 8000 samples with an overlapping ratio of 90% of the

frame length. The simulations have been repeated for K = 1000 realizations, and then

the AICEs of subsystems have been estimated.
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1: function Update_Network_Paths(M) % Takes a connectivity matrix M and
returns a list of possible connectivity matrices
% Create an empty list that will carry possible candidate networks

2: candidates = { }
3: Estimate AICEi→ j | k and AICEi→k | j % Estimate AICEs using (6.4) K times
4: if |AICEi→ j | k − AICEi→k | j| > ε0 then
5: Estimate AICEk→ j | i and AICE j→k | i

6: if |AICEi→ j|k − AICEk→ j|i| > ε0 and |AICEi→k| j − AICE j→k|i| > ε0 then
Append(candidates, check_symmetry_rmv(M, i, j, k))
Append(candidates, check_symmetry_rmv(M, i, k, j))
Append(candidates, check_symmetry_rmv(M, k, i, j))
Append(candidates, check_symmetry_rmv(M, j, i, k))

7: else if |AICEi→ j | k − AICEk→ j | i| > ε0 and |AICEi→k | j − AICE j→k | i| ≤ ε0
then Append(candidates, check_symmetry_rmv(M, i, j, ∅))

Append(candidates,check_symmetry_rmv(M, i, k, ∅))
8: else

Append(candidates, check_source_sink(M, k, j, i))
Append(candidates, check_source_sink(M, j, i, k))

9: else
10: Estimate AICEk→ j | i

11: if |AICEi→ j | k − AICEk→ j | i| > ε0 then
Append(candidates, check_symmetry(M, i, j, k, ∅))
Append(candidates, check_symmetry(M, i, k, j, ∅))

12: else
Append(candidates, check_symmetry(M, i, j, k, i))
Append(candidates, check_symmetry(M, k, i, i, j))

13: I ← I \ (i, j, k) % Remove (i, j, k) triple from the set I
14: return candidates

Figure 6.2 Update network paths function is called in Algorithm 1.

The estimated AICEs(i, j, k), i , j , k, have been demonstrated for the network

in Figure 6.4a and 6.4f shown in Figure 6.5. The estimated values of AICEs differ

significantly, which led us to the proposition that the difference in AICEs can be a way

to find paths and remove the indirect paths in the first place. The schemes in Figure

6.4 have been tested by applying Algorithm 1. The adjacency matrices of all schemes

in Figure 6.4 have been found correctly.

The detailed steps of Algorithm 1 for the network in Figure 6.4f have been

illustrated in Figure 6.6. Four systems in the network have been randomly labeled as

{a, b, c, d}. The algorithm runs by adding the input to the systems, and it has been
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1: function check_symmetry_rmv(M, p, q, r) % Takes a connectivity matrix M,
check paths in M and remove paths in temporary matrix C = [ci j] ∈ RN×N by
checking symmetry

2: C←M
3: if index3 == ∅ then
4: if has_path(M, p, q) then cpq = 0
5: else
6: if has_path(M, p, q) and has_path(M, q, r) then

cpq = 0, cqr = 0, cpr = 0, crp = 0
return C

7: function check_source_sink(M, p, q, r) % Takes a connectivity matrix M, check
paths in M and remove paths in temporary matrix C = [ci j] ∈ RN×N in source and
sink node

8: C←M
9: if has_path(M, p, q) and has_path(M, q, r) then

cpq = 0, cqr = 0
return C

10: function check_symmetry(M, p, q, r, s) % Takes a connectivity matrix M, check
paths in M and remove paths in temporary matrix C = [ci j] ∈ RN×N in symmetric
source/sink node or sink nodes

11: C←M
12: if s == ∅ then
13: if has_path(M, q, p) then

cqp = 0, crp = 0, cpr = 0
14: else
15: if has_path(M, p, q) and has_path(M, s, r) then

cpq = 0, csr = 0,
return C

Figure 6.3 Check_symmetry_rmv, check_source_sink and check_symmetry functions are called in
update network paths function.
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Table 6.2 Simulation parameters for the networks Figure 6.4

The Simulation Parameters The Value

α 10

β 15

m0 -1.31

m1 -0.75

κ


1 0 0

0 0 0

0 0 0


L 32000

K 1000

τ 61

de 3

1 2

34

(a)

1 2

34

(b)

1 2

34

(c)

1 2

34

(d)

1 2

34

(e)

1 2

34

(f)

1 2

34

(g)

1 2

34

(h)

Figure 6.4 Small networks to validate the proposed network reconstruction algorithm. Possible schemes
are illustrated: (a) node 1 influences the remaining nodes in a linear chain; (b) all nodes influence each
other in a closed cycle; (c) node 1 drives the remaining nodes; (d) node 1 influences node 2 and 3, node
3 is influenced by node 2 and drives node 4; (e) while there is a closed cycle between 1, 2 and 3, node 4
is influenced by node 3. (f) while node 1 drives node 2, node 2 drives node 3 and 4, there is also a path
from 4 to 3; (g) node 1 influences node 2 and 3, node 3 is influenced by node 2 and drives node 4, node
4 drives node 1; (h) is a fully-connected network.
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(a) The estimated AICEs for the network in Figure 6.4a.
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(b) The estimated AICEs for the network in Figure 6.4f.

Figure 6.5 The cube centered at i, j, k represents the value of AICEi→ j | k in volume and color. The
largest AICEi→ j | k is normalized to 1 unit3.

represented with an arrow in Figures 6.6. Then, the necessary AICEs have been

estimated, and the possible schemes have been listed and updated. The algorithm has

eliminated irrelevant candidate networks such as unconnected graphs. Note that

eliminated irrelevant candidate networks have been colored pale. In the end, the
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algorithm has returned the estimated adjacency matrix of the network.

We have assessed the algorithm’s performance by determining the number of steps

required to reach the results for randomly coupled networks. We have generated

random graphs by using a well-known Erdös-Rényi model (Erdős et al., 1960), and

created random couplings with probabilities p = 0.1, p = 0.2 and p = 0.3 for the

networks with N = 12 nodes. Then, we generated 20 different random schemes for

each link probability. Illustrative examples that are selected randomly for p = 0.1,

p = 0.2 and p = 0.3 are depicted in Figure 6.7. We kept all simulation parameters for

these networks the same. We illustrate the number of iterations required versus the

link probability p in Figure 6.8. The number of iterations has been normalized with

respect to the maximum number of possible iterations. The Algorithm 1 starts with a

fully-connected graph and proceeds by removing impossible links to reconstruct the

network. Thus, the denser the network, the more iterations are required to complete

the algorithm.

In all trials, the algorithm reconstructed the networks correctly.

In this section, we have investigated the network reconstruction problem in

continuous-time chaotic networks in complete synchronization. We assume all the

connected systems are identical, the couplings are unidirectional and have the same

strength, but there is no prior knowledge about underlying dynamics or coupling

strength. Besides, we only know that the systems in the network are completely

synchronized a priori. The approach relies on the perturbation of the individual nodes

of the network with random inputs at specific times to disturb synchronization and

then the reconstruction of the state space from the observed outputs.

The reconstructed outputs have been then used to estimate one of the model-free

information-theoretic measures, namely, the AICE, to quantify information flow in an

interval between the subsystems in the network. We showed that the differences in

AICEs between the reconstructed outputs obtained after injecting random information

into the system reveal the connectivity information. Furthermore, we developed an

algorithm to reconstruct the adjacency matrix of a given network, and we have tested
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Figure 6.7 Randomly selected Erdös-Rényi networks of N = 12 with the probability p = 0.1, p = 0.2,
and p = 0.3, respectively.
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Figure 6.8 The ratio between # of iterations and maximum # of possible iterations of the algorithm with
respect to link probability.

the algorithm with the randomly coupled chaotic networks to demonstrate the validity

of the approach. The results indicate that the proposed algorithm can be used to

reconstruct the network en route to re-synchronization.

Another curious question is whether the detection of clusters can be done in a

chaotic dynamical network in cluster synchronization without the knowledge of the

underlying structure of the network via the CE. The next chapter deals with this issue.
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CHAPTER SEVEN

DETECTION OF CLUSTERS OF CHAOTIC DYNAMICAL NETWORKS

VIA CAUSATION ENTROPY

Determining the network structures by gathering the observation vectors of the

network can be tricky. The internal dynamics of individual systems and the

connections between the systems are generally unknown. Furthermore, it is not

always possible to observe all state variables of the individual systems of the network.

It is essential to characterize such networks and find their communities, to understand

complex structures such as the biological nervous systems or large power distribution

systems. The existing studies have focused on the network reconstruction and the

measures of structural properties of the network (Yu et al., 2006; Timme, 2007;

Alderisio et al., 2017; Lou & Suykens, 2011). Inferring the structure of the cluster

synchronization network via observations has not been investigated in detail so far.

Our goal in this chapter is to obtain the cluster structure of a network using a

limited number of observations gathered from the network’s individual members. We

investigate the information flow between the systems in the continuous-time coupled

chaotic networks when the clusters are re-forming a synchronization pattern after a

perturbation. By perturbing the nodes, we inject additional information into the whole

system. The clustered individual nodes tend to behave similarly, even if they are not

synchronous yet after the perturbation. Hence, the information exchange during the

re-formation of the clusters carries valuable clues. The suggested approach exploits

this fact.

We assume that the individual dynamics of the nodes and the number of clusters are

unknown in the network. Additionally, to observe the formation of clusters, we can

perturb the systems in the network individually at specific times. Besides, we assume

we can observe only one output from each system in the network. The observations can

then be used to reconstruct the phase space according to Takens’ embedding theorem

(Takens, 1981). We estimate the CE by using the reconstructed state space obtained

from the observations. Finally, we estimate ICE and its expected value, i.e., AICE, to
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detect the existence of cluster synchronization in the network.

We show that the AICE can be used to classify whether the systems belong to a

particular cluster. We demonstrate that we obtain clusters in the coupled chaotic

networks of Chua’s systems by estimating the AICEs and clustering obtained AICE

values using the basic k-means classification algorithm (Hartigan, 1975).

Furthermore, we discuss the problem of identifying new clusters due to changing

coupling strengths of the network.

7.1 The Problem Statement

Consider a network with N coupled with identical dynamical systems; the network

forms m clusters according to definition 2.4.3. Let i, j ⊂ V be any network nodes that

are selected randomly. i ∼ j shows that i and j sub-systems are in the same cluster

such that i, j ∈ GI. We perturb ith system every tn seconds. Since the synchronization

manifold is stable, i and j are still members of the same cluster after the perturbations.

On the other hand, consider that i ∈ GI but ` < GI. When the perturbation is repeated

every tn seconds, i and ` are different clusters again. Therefore, we assume that the

cluster scheme in the network remains the same when we perturb each system

individually.

We reconstruct the systems’ state-space individually by observing only one of each

system’s output.

To analyze the information transfer between the inter- and the intra-cluster nodes,

we estimate the CEs of the observations between two perturbations. The perturbations

inject additional information, and we track how this information flows through the

network as the clusters reform. In steady-state, the CE values would be zero

identically without such perturbations, avoiding the determination of the membership

because no new information would be generated by observing any cluster member.

The information injected by the perturbations results in positive CE values on the way

to synchronization. We propose that the response to such information injections must
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be similar among the cluster members and can be exploited to determine cluster

memberships.

The ICE measure in (6.3) is estimated to quantify total information flow while

cluster synchronization re-occurs after a perturbation. The properties of AICE in

(6.4) in cluster synchronization are fairly similar to the CE. When ith and kth systems

belong to the same cluster, p(ỹ(d1)
i ) = p(ỹ(d1)

k ). Therefore,

AICEi→ j | k = Eui

[
ICEi→ j | k(ui)

]
= Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d2)
k,n ,Ui) − h(Ỹ j,n+1 | Ỹ

(d2)
k,n , Ỹ

(d1)
i,n ,Ui)

]]
= Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d2)
k,n ,Ui) − h(Ỹ j,n+1 | Ỹ

(d2)
k,n ,Ui)

]]
= 0.

(7.1)

Otherwise,

AICEi→ j | k = Eui

[
En

[
h(Ỹ j,n+1 | Ỹ

(d2)
k,n ,Ui) − h(Ỹ j,n+1 | Ỹ

(d2)
k,n , Ỹ

(d1)
i,n ,Ui)

]]
> 0, (7.2)

since, h(Ỹ j,n+1 | Ỹ(d2)
k ,Ui) > h(Ỹ j,n+1 |Ỹ(d2)

i , Ỹ(d1)
k ,Ui).

There is no guarantee that transient responses generate stationary or even ergodic

processes after perturbations. Therefore, any method based on time-averaging is not

suitable for analysis directly. The perturbation in (6.2) can be viewed as restart of

the system at every tn. Hence, the averaging over n is averaging over an ensemble

of perturbations, which corresponds to ensemble averaging over the random variable

ICEi→ j | k.

Since, the underlying probability density can be time-varying when calculating

AICEi→ j | k from estimated values of ICEi→ j | k, we set the time windows,

[tn, tn+1], n = 0, 1, . . ., to be overlapping. On the other hand, the methods given by

(5.26), result in local estimations with respect to time inside these frames (Kraskov
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et al., 2004; Zhu et al., 2015). The consequence is that the pdf variations along the

transient trajectory are taken into account naturally. Therefore, the assumption of

ergodicity is not strictly necessary. We only assume that the pdf is continuous with

respect to time, and the overlapping ratio is chosen suitably to follow the time

variations from frame to frame.

The estimated AICEs vary considerably depending on whether the systems indexed

by i, j, and k belong to the same cluster or not. Therefore, we can estimate the AICEs

for all systems in the network by using (6.4), to detect the members of the clusters in

the network by classifying the estimations using k-means classification algorithm.

We determine the number of optimal clusters of AICEs by using the elbow method

in the k-means algorithm (Hartigan, 1975). Let us denote the number of optimal

clusters as Nc, and the centroid of these clusters is given as :

c?` = arg min
c∈R+∪{0}

Nc∑
`=1

∑
i, j,k

∣∣∣AICEi→ j|k − c
∣∣∣2 (7.3)

We assign all AICEs to the closest centroid by computing I= arg min
`

∣∣∣AICEi→ j|k − c?`
∣∣∣ ,

i.e. i, k ∈ GI.

The overall procedure has been summarized in Algorithm 2.
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Algorithm 2 Algorithm for detection of the clusters

Input: N = {1, 2, . . . ,N}: index set of nodes, Y =
{
ya1 , ya2 , . . . , yaN

}
: the systems’

outputs , L: the frame length, K: the number of iterations, 0 < σ ≤ 1: the
overlapping ratio.

Output: m: the number of clusters, GI: the members of the cluster I, I ∈ Z+

Initialize:
1: Obtain τ and de of individual systems for the reconstruction state space by using

yai’s,
2: Reconstruct the state space according to Takens’ theorem
3: I ← 1
4: while N , ∅ do
5: for i ∈ N do
6: for n← 0 to K − 1 do
7: for j ∈ N do
8: for k ∈ N do
9: for [`, ` + L], ` = tn, tn + σL, tn + 2σL, · · · , tn+1 − L do

10: Estimate CEi→ j | k(`) by using (5.26)
11: Estimate ICEi→ j | k (n) using (6.3)
12: Calculate AICEi→ j | k ∀ j, k using (6.4)
13: Construct a matrix of AICEi→ j | k , where each row represents jth

output, each column represents kth output.

14: Sort columns and rows in ascending order.
15: Classify AICEi→ j | k by using k-means algorithm (7.3) return GI
16: Update N by removing the members of the cluster I, i.e. N ← N \GI
17: I ← I + 1
18: m← I
19: return m and G1, ,G2, . . . , Gm

The kd-tree searching algorithm used at step 10 in Algorithm 2 has computational

complexity of O(L log L) (Bentley, 1975). To smooth ICE estimation at step 11, we

use overlapping frames where 0 < σ ≤ 1 determines the successive overlapping frame

ratio. Hence, the computational complexity for each iteration of (i, j, k) is O(K × M ×

L × log L) where M is the number of frames. However, the procedure does not need

to apply for every (i, j, k). The index set of newly obtained clusters can be removed

as in step 16. The AICEs can be estimated without requiring the calculation of the

AICEs of the previously determined clusters. Therefore, if the number of clusters is

m, the complexity of the algorithm is O(m × N2 × K × M × L × log L). The variant

of k-means classification algorithm used at step 15 is known to have time complexity
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of O(m × N2 × P) on average, where P is the number of iterations until convergence

(Lloyd, 1982). It can be replaced by any available clustering algorithm conveniently.

The classification algorithm can return several clusters at each iteration of step 15

at once. The overall time complexity will reduce further. In the worst case, when

N = m, the complexity becomes O(N3 × K × M × L × log L), which corresponds to

no synchronization at all. However, we note that, as the clusters are determined and

removed from the index set, the iterations get faster, effectively.

7.2 Illustrative Examples

We have investigated the coupled chaotic networks which contain identical Chua

systems defined in (2.13) to demonstrate the outcome. The individual systems show

chaotic behavior in both networks according to definition 2.2.4. Each Chua system has

been illustrated with a circle, and a specific color represents each cluster in Figure 7.1.

The network can form 3 different clusters with 8 Chua systems for a particular choice of

parameters in Figure 7.1a. The coupling function has been chosen as hi(xi, x j) = xi−x j.

The parameters for the network shown in Figure 7.1a have been selected same as in

Table 6.2. The connection matrix is given as:

A = [ai j] =



−3 3 −1 1 0 0 0 0

3 −3 1 −1 0 0 0 0

−1 1 −10 5 5 −2 1 1

1 −1 5 −10 5 1 −2 1

0 0 5 5 −10 1 1 −2

0 0 −2 1 1 −6 3 3

0 0 1 −2 1 3 −6 3

0 0 1 1 −2 3 3 −6



(7.4)

For ε = 2, the network has 3 clusters in Figure 7.1a by using design rules definition

in 3.2.1.
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Figure 7.1 Illustrative cluster synchronization networks, where each node represents a Chua system.
There are 3 clusters in (a) given as G1 = {1, 2}, G2 = {3, 4, 5}, G3 = {6, 7, 8}, 4 clusters in (b) given
as G1 = {1}, G2 = {4}, G3 = {6}, G4 = {2, 3, 5, 7}.

The network with 7 Chua systems and 4 clusters has been illustrated in Figure

7.1b. Curiously, the clusters can be formed by network elements that are not directly

coupled. The parameters have been shown in Table 7.1. According to Gambuzza et al.

in Section 3.2.3, a choice of connection matrix as

A = [ai j] =



−4 1 1 0 1 1 0

1 −2 0 1 0 0 0

1 0 −2 1 0 0 0

0 1 1 −3 0 0 1

1 0 0 1 −2 0 0

1 0 0 0 0 −1 0

1 0 0 1 0 0 −2


(7.5)
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Table 7.1 Simulation parameters for the network 7.1b

The Simulation Parameters The Value

α 10

β 15

γ 0.0385

m0 -1.27

m1 -0.68

κ


1 0 0

0 1 0

0 0 0


L 32000

K 1000

τ 55

de 3

results in a scheme of 4 clusters when ε is equal to 0.5 for the network in Figure 7.1b.

The network that forms 17 clusters with 50 Chua systems has been shown in

Figure 7.2a. The parameters for the Chua system in this network are the same as the

parameters for the network in Figure 7.1a. The connection matrix for the network is

represented as in Figure 7.2b, and it is designed by using the design rules in definition

3.2.1.

The simulations have been performed using the odeint function in Python’s scipy

library to solve the network equations (Jones et al., r 07). The sampling period has been

selected as ts = 0.01sec. Note, if there exists t f such that ||xi(t−t f )−x j(t−t f )|| < ε � 1,

∀ t > t f , t ∈ (tn, tn+1) between two perturbations, then i ∼ j ∈ GI. Otherwise, there

exists t f such that ||xi(t − t f ) − x`(t − t f )|| ≥ Le for some Le > 0, ∀ t > t f , t ∈ (tn, tn+1)

between two perturbations, then i / ` < GI. To clarify, the chaotic behavior of the

systems in the network has been guaranteed and the clustering scheme preserved after

the perturbations.
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Figure 7.2 An illustrative cluster synchronization network, where each node represents a Chua system.
There are 17 clusters in (a) The connection matrix of (a) has been illustrated in (b).

Since, by assumption, we do not know the number of clusters in the network

beforehand, we have labeled the outputs randomly with a1, a2, . . . , aN for the
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networks. The time lags have been selected as d1 = d2 = 1 in (7.1). The state spaces

have been reconstructed according to Takens’ theorem. We have estimated the CEs

between the systems using a limited set of reconstructed state space samples

according to (5.26). We have chosen the frame length to be L = 8000 observations.

An overlap between the frames was 90% of the frame length (i.e., σ = 0.1). The

number of neighbors in (5.26) has been selected as k = 10. The Algorithm 2 has been

used to determine cluster membership.

a1 a2 a3 a4 a5 a6 a7 a8
k

a8

a7

a6

a5

a4

a3

a2

a1

j

306.5 0.0 306.5 273.6 306.5 273.6 12.0 273.6

329.0 0.0 329.0 327.9 329.0 327.9 10.9 327.9

306.4 0.0 306.4 273.6 306.4 273.6 12.0 273.6

275.4 0.0 275.3 307.0 275.3 307.0 12.1 306.9

306.5 0.0 306.5 273.6 306.5 273.6 12.0 273.6

275.4 0.0 275.3 307.1 275.3 307.0 12.1 307.0

329.0 0.0 329.0 328.0 329.0 328.0 11.0 327.9

275.4 0.0 275.3 307.0 275.3 307.0 12.1 307.0

i=a2

0

50

100

150

200

250

300

Figure 7.3 The AICE from ath
2 system to other systems by observing any system (AICEa2→ j|k ∀ j, k) for

the network in Figure 7.1a. They have been illustrated in a color bar when we are perturbing the node
I = {a2}.

Since the networks in Figure 7.1a and Figure 7.1b are relatively small, we have

skipped step 4 in the algorithm and calculated all AICEs for all nodes in the networks

for illustrative purposes.

Resulting AICEs have been represented in Figures 7.3, 7.4, 7.5, 7.6 and 7.7 for the

network in Figure 7.1a. Suppose we choose an arbitrary system from the network, e.g.,

a3. We have the AICE’s from a3 to other systems in Figure 7.4. It has been observed

that
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a1 a2 a3 a4 a5 a6 a7 a8
k

a8

a7

a6

a5

a4

a3

a2

a1

j

5.5 305.9 0.0 273.6 5.5 273.6 305.9 273.5

5.5 275.6 0.0 306.2 5.5 306.2 275.6 306.2

5.5 305.9 0.0 273.5 5.5 273.5 305.9 273.5

5.1 327.9 0.0 328.3 5.1 328.3 327.9 328.3

5.5 305.9 0.0 273.5 5.5 273.6 305.9 273.6

5.1 327.8 0.0 328.2 5.1 328.2 327.9 328.2

5.5 275.6 0.0 306.2 5.5 306.2 275.6 306.2

5.1 327.9 0.0 328.3 5.1 328.2 327.9 328.2

i=a3

0

50

100
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200
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300

Figure 7.4 The AICE from ath
3 system to other systems by observing any system (AICEa3→ j|k ∀ j, k) for

the network in Figure 7.1a. They have been illustrated in a color bar when we are perturbing the node
I = {a3}.

AICEa3→ j | a1 ≈ AICEa3→ j | a3 ≈ AICEa3→ j | a5 ≈ 0 ∀ j (7.6)

AICEa3→ j | a2 ≈ AICEa3→ j | a4 ≈ AICEa3→ j | a6 ≈

AICEa3→ j | a7 ≈ AICEa3→ j | a8 ≈ 325 nats.sec j ∈ {a1, a3, a5}
(7.7)

One can deduce that a3 is in the same cluster with a1 and a5 and it is not in the same

cluster with a2, a4, a5, a7, a8 (a3 ∼ a1, a3 ∼ a5 and a3 / {a2, a4, a5, a7, a8}). There

are also 2 different mid-levels in the color bars, as shown in Figure 7.7. It can be seen

that AICEa3→a2 |a6 , AICEa3→a4 |a6 . We can infer that a3 / a2, a3 / a4 and a2 / a4. By

examining AICEa3→a8 |a7 > AICEa3→a2 |a7 � 0, we also say that a3 / a2 / a8. A similar

line of reasoning will yield the number of clusters and each cluster’s members.
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a1 a2 a3 a4 a5 a6 a7 a8
k

a8

a7
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a3

a2

a1

j

5.5 307.5 5.4 273.8 0.0 274.3 307.4 274.3

5.5 276.2 5.5 304.8 0.0 304.8 276.3 304.8

5.5 307.4 5.4 273.5 0.0 273.4 307.4 273.3

5.1 328.8 5.0 327.5 0.0 327.5 328.8 327.5

5.5 307.5 5.5 273.6 0.0 274.3 307.4 274.4

5.0 328.8 5.0 327.5 0.0 327.5 328.9 327.5

5.5 276.2 5.6 304.8 0.0 304.8 276.3 304.8

5.0 328.8 5.0 327.5 0.0 327.5 328.8 327.5
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Figure 7.5 The AICE from ath
5 system to other systems by observing any system (AICEa5→ j|k ∀ j, k) for

the network in Figure 7.1a.They have been illustrated in a color bar when we are perturbing the node
I = {a5}.

When we analyze the AICEs from a2, a5 and a6 to any other systems in Figure 7.7,

it has been observed then

AICEa2→ j | a2 ≈ AICEa2→ j | a7 ≈ AICEa5→ j | a1 ≈ AICEa5→ j | a3

≈ AICEa5→ j | a5 ≈ AICEa8→ j | a4 ≈ AICEa8→ j | a6 ≈ AICEa8→ j | a8 ≈ 0 ∀ j
(7.8)

While a2 and a7 are forming a cluster (a2 ∼ a7), the third cluster consists of a4, a6 and

a8 (a4 ∼ a6 ∼ a8). Also, a5 forms a cluster with a3 and a1 (a5 ∼ a3 ∼ a1). Besides,

AICEa2→a7 | a3 > AICEa2→a6 | a3 > AICEa2→a1 | a3 � 0
AICEa8→a4 | a7 > AICEa8→a3 | a7 > AICEa8→a2 | a7 � 0.

(7.9)

We have noticed that the AICEs are not equal when a2 is in the different clusters with

a1 and a6 by observing a3. Even though a2 and a7 are in the same cluster, it is seen
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Figure 7.6 The AICE from ath
8 system to other systems by observing any system (AICEa8→ j|k ∀ j, k) for

the network in Figure 7.1a. They have been illustrated in a color bar when we are perturbing the node
I = {a8}.

that the information transfer from a2 to a7 by observing a3 is quite greater than zero.

According to (7.9), the AICE of a8 to a4 by observing a7 is considerably greater than

the information transfer from a8 to {a3, a2} by observing a7 . Hence, we have obtained

that a4 and a8 are the members of the same cluster (a4 ∼ a8). Also, we have known

that a8 / a3 / a2, and a8 / a7 but a2 ∼ a7 from previous outcomes. We observe that if

i / j ∼ k, the AICEi→ j | k > 0. Compared to the case, i / j / k, the information flow

between the systems decreases when i / j ∼ k. As a consequence, we conclude that

there are 3 clusters G1 = {a2, a7}, G2 = {a1, a3, a5}, G3 = {a4, a6, a8}, respectively in

Figure 7.7.

The AICEs have demonstrated in Figure 7.8 for the network in Figure 7.1b. We see

that

AICEa2→ j | a2 = 0 ∀ j, (7.10)
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Figure 7.7 The AICEs have been represented after the algorithm has been performed when we are
perturbing the nodes in a2, a3, a5 and a8, respectively for the network as shown in Figure 7.1a.

obviously, the remaining AICE’s are slightly greater than zero. If we choose any of the

j in Figure 7.1b, we observe that

AICEa2→ j | a4 > AICEa2→ j | a6 > AICEa2→ j | a1 ≈

AICEa2→ j | a3 ≈ AICEa2→ j | a5 ≈ AICEa2→ j | a7 � 0.
(7.11)

a2 is a unique member of one of the clusters. Figure 7.8 indicates that

AICEa4→ j | a4 ≈ AICEa6→ j | a6 ≈ 0 ∀ j. (7.12)

Moreover,
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AICEa4→ j | k = 0 ∀ j, k = {a1, a2, a3, a5, a6, a7} � 0
AICEa6→ j | k = 0 ∀ j, k = {a1, a2, a3, a4, a5, a7} � 0.

(7.13)

As a result, a4 and a6 are forming clusters individually.

AICEa7→ j | k ≈ 0 ∀ j, k ∈ {a1, a3, a5, a7}

AICEa7→ j | k > 0 ∀ j, k ∈ {a2, a4, a6} .
(7.14)

Therefore, a1, a3, a5 and a7 belong to same cluster. We can conclude that the clusters

are G1 = {a2}, G2 = {a4}, G3 = {a6}, G4 = {a1, a3, , a5 , a7} for the network in Figure

7.1b.
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Figure 7.8 The AICEs have been represented after the algorithm has been performed when we are
perturbing the nodes in a2, a4, a6 and a7, respectively for the network as shown in Figure 7.1b.
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Table 7.2 The results of k-means classification algorithm for AICEs as shown in Figure 7.8 when i = a2,
i = a7, i = a4 and i = a6, respectively ∀ j, k for the network in Figure 7.1b

i j k ` c?`

a2

a1, a2, a3, a4, a5, a6, a7 a2 1 0

a1, a2, a3, a4, a5, a6, a7 a1, a3, a5, a7 2 61.80

a1, a2, a3, a4, a5, a6, a7 a6 3 159.95

a1, a2, a3, a4, a5, a6, a7 a4 4 272.61

a7

a1, a3, a4, a5, a6, a7 a1, a3, a5, a7 1 8.20

a1, a3, a4, a5, a6, a7 a6 2 140.80

a1, a3, a4, a5, a6, a7 a4 3 269.68

a4
a4, a6 a4 1 0

a4, a6 a6 2 243.77

a6 a6 a6 1 159.52

Additionally, we have demonstrated the results of the k-means classification

algorithm for the sake of repeatability. The k-means algorithm takes the AICEs as an

input, obtains the optimal centroids, and returns the members of the clusters. The

clusters of the network by applying Algorithm 2 have been presented in Table 7.2

together with the obtained centroids.

When we inspect Figures 7.7 and 7.8, the AICEs of the systems slightly change in

case of i and k are fixed but j is varying ( j ∈ {a1, . . . , aN}). Besides, if i and j are fixed

but system k is changed, the AICEs of systems vary. The AICEi→ j | k’s mainly depend

on the choice of systems i and k, but not j.

The network in Figure 7.2a is substantially larger, and it is not easy to detect cluster

schemes by inspection, only. Figure 7.9a illustrates the AICE obtained for this network

when randomly chosen system a16 is perturbed. Once a cluster is determined, only

AICEs for the remaining systems have to be extracted. In the first step, the members of

the cluster G1 has been found to be a16, a34 and a46. In the second iteration, Figure 7.9c

shows the estimation of the AICEa4→ j|k’s for I \ {a16, a34, a46} when we are perturbing

the randomly chosen system a4. Note that, the some of AICEs (AICEa4→ j|k j, k ∈
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(d)

Figure 7.9 (a) The AICEs of the network as shown in Figure 7.2a when we perturb a16 in the first
iteration of algorithm. (b) The sorted AICEs of a16. (c) The corresponding AICEs of a4 were chosen to
be perturbed in the second iteration. (d) The sorted AICEs for I \ {a16, a34, a46}.

{a16, a34, a46}) are not estimated and not shown in Figure 7.9c because we know the

cluster members as G1 = {a16, a34, a46} in the first iteration (Figure 7.9b), already.

For the cluster to which the perturbed node belongs, AICEs tend to be zero. But,

the rest of the sorted AICE , 0 also yield valuable information about the remaining

clusters. Therefore, obtaining more than one cluster at each iteration of step 4 is

possible. Additionally, when AICEs are sorted, the matrix includes clues to choose
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which system is to be perturbed next, as shown in inset indicators of Figures 7.9b and

7.9d. The nodes corresponding to indicated diagonal blocks have very close AICE

values, hence harder to classify. Such groups tend to be classified as synchronous

clusters, but they may not be. One can choose the next node to perturb from such a set

of nodes instead of choosing a random node at each iteration. This reduces the

number of overall iterations. For clarity, we only removed the nodes for which AICE

tends to zero; hence, we did not exploit this fact.

When the algorithm is completed, the following clusters are obtained, which is

expected as the work of Ma et al. indicates (Ma et al., 2006).

G1 = {a16, a34, a46} G2 = {a4, a19} G3 = {a9, a21, a23, a24, a26}

G4 = {a6, a18, a20} G5 = {a25, a29, a43} G6 = {a17, a49}

G7 = {a27, a28, a32} G8 = {a5, a8, a14, a36, a44} G9 = {a1, a3, a37}

G10 = {a11, a31, a42} G11 = {a2, a7, a39} G12 = {a15, a40, a48}

G13 = {a10, a30, a41} G14 = {a13, a22, a47} G15 = {a33, a38}

G16 = {a35, a45} G17 = {a12, a50}

(7.15)

In this section, we have examined the problem of detecting clusters in coupled

continuous-time chaotic networks via information measures. We assume that

sub-systems in the network are forming clusters, and the number of clusters and the

memberships of the nodes in the network are unknown. The individual systems are

perturbed, and their outputs can be observed in a limited time interval. We have

reconstructed the state space of systems by using the observations according to

Takens’ embedding theorem. We have proposed the AICE measure to distinguish the

clusters of the networks. Since there is a diffeomorphism (i.e., differentiable

transformation with differentiable inverse) between the original state space and

reconstructed state space, we estimate the AICEs in the reconstructed state, which is

equivalent to the AICEs of the entire state space. We found that the AICEs of the
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systems vary depending on whether the sub-systems in the network belong to the

same cluster. Besides, when we classify the AICEs of all systems in the network with

the k-means algorithm, we can distinguish the clusters from the observations only,

and no information is required about the individual node model. We have shown in

our numerical results that the AICEs can distinguish the clusters and obtain the

members of clusters regardless of whether the members of clusters are directly

connected or not. The proposed procedure successfully determines the cluster scheme

in the continuous-time dynamical coupled networks of chaotic systems.

7.3 Detection of Cluster Synchronization when the Clusters Change

We have addressed the problem of detection of cluster synchronization using

observation samples in a coupled continuous-time chaotic network when the

coupling’s strengths are changed. Additionally, it has been shown that the clusters can

be determined even if the network forms new clusters in case of the changing

coupling strengths. The CE has been estimated with observation vectors obtained

from the outputs of the nodes of the network to detect cluster synchronization.

We have chosen a coupled chaotic network, and the state equations are given by

using (2.6). Consider this network with five identical chaotic Lorenz systems given as

(2.8). The systems in the network are coupled with xi1-variables. The parameters for

the Lorenz system have been selected as σ = 10.0, b = 8/3, r = 28.0. It is known that

each system shows chaotic behavior for these parameters. The connection matrix has

been chosen as follows:

A = [ai j] =



−2α11 α11 α11 2α12 3α12

α11 −2α11 α11 2α12 3α12

α11 α11 −2α11 α12 4α12

α21 2α21 3α21 −2α22 2α22

3α21 2α21 α21 2α22 −2α22


(7.16)
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Here, the parameters of the connection matrix have been selected as α11 = 2.5,

α12 = α21 = 0.5. It is known that the network can form different cluster schemes by

changing the coupling strength α22 (Belykh et al., 2008). For example, the network has

four clusters when α22 is equal to 0.5. However, if α22 is selected as 3.0, the network

forms two clusters. Both cases for the network have been illustrated in Figure 7.10.

The systems in the network are randomly labeled as {a, b, c, d, f }. The observations

have been gathered, and phase space has been reconstructed according to Takens’

theorem. Hence, the first minimum of time-delayed MI and the embedding dimension

have been estimated for the collected observation samples. It is assumed that the

chaotic attractor forms for every system. The reconstruction of the data part has been

repeated for increasing values of α22. Finally, we have estimated the CEs for each

system in the reconstructed space by overlapping frames.

τ and de have been estimated as 16 and 3 for the individual Lorenz systems. We

have waited long enough for the transients to die out (325 sec). Then, we repeated the

reconstruction process for the observation vectors by changing the α22 coupling

strength. We have estimated the CEs for each node from the reconstructed

observation vectors by taking 40sec frames. The differential equations have been

solved numerically. The sampling time is ts = 0.01. We have repeated the simulations

1000 times.

We have investigated the CEs from given bth system to other systems,

CEb→ j | f ≈ 0 ∀ j = {a, b, c, d, f }, in (i, k) = (b, f ) column. It is shown that b and f

are in the same cluster for all α22 between 1.2 and 2.2. When α22 = 1.2, all CEs

except CEb→ j | f ≈ 0 ∀ j = {a, b, c, d, f } are greater than zero. Hence, there is no

other system inside clusters b and f . When α22 is increased, CEb→ j | c ∀

j = {a, b, c, d, f } approaches to zero. In this case, b, c, and f systems form a new

cluster. It is seen that the CEs of the systems are equal to zero when the new cluster

occurs and is indicated by a black arrow in Figure 7.11.

In Figure 7.12, i = c and the CEs are illustrated by fixing ith system and for all j

systems and for different pairs of (i, k), respectively, in each column. The CEs from cth
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(a) Cluster synchronization network. There are 4 different
clusters for α11 = 2.5, α12 = α21 = 0.5, α22 = 0.5.
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(b) Cluster synchronization network. There are 2 different
clusters for α11 = 2.5, α12 = α21 = 0.5, α22 = 3.0.

Figure 7.10 The coupled chaotic networks. Each circle represents a Lorenz system, and the arrows
indicate the coupling strengths εi j between ith and jth systems.

system to other systems are greater than zero CEc→ j|k , 0 ∀ j, k = {a, b, c, d, f }, k , c in

case of α22 = 1.2. When α22 equals to 2.2, CEc→ j|b ≈ CEc→ j| f ≈ 0 ∀ j = {a, b, c, d, f }.

We have obtained that the cth system forms a new cluster with b and f systems.

Figure 7.13 has depicted i = d and the CEs are illustrated by fixing ith system and

for all j systems and for different pairs of (i, k), respectively. The CEs from dth system

to other systems are also greater than zero CEd→ j|k , 0 ∀ j, k = {a, b, c, d, f }, k , d

when α22 = 1.2. In case of α22 is greater than 2.0, the CEs from dth system to given ath

system become zero CEd→ j|a = 0 ∀ j = {a, b, c, d, f }. The result indicated that the dth

and ath system belong to the same cluster.

The CEs have been illustrated by fixing ith = a system and for all j systems and

for different pairs of (i, k), respectively in Figure 7.14. It is seen that the CEs from ath

system to other systems are greater than zero CEa→ j|k , 0 ∀ j, k = {a, b, c, d, f }, k , a

when α22 = 1.2. ath system is the only member of its cluster in case of α22 = 1.2. When

α22 is increased, CEa→ j|d ∀ j ∈ {a, b, c, d, f }, approach to zero. We have determined

that ath and dth system are forming a new cluster.

Finally, Figure 7.15 have demonstrated the CEs are illustrated by fixing ith = f
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system and for all j systems and for different pairs of (i, k), respectively. When 1.2 ≤

α22 ≤ 2.2, CE f→ j | b ≈ 0 ∀ j = {a, b, c, d, f }, in (i, k) = ( f , b) column. If α22 ≥ 2,

CE f→ j | c ≈ 0 ∀ j = {a, b, c, d, f } and f th, bth and cth system belong to the same cluster.

To sum up, we determined clusters in the network by estimating the CE of the

systems. The CE measure can effectively distinguish the systems forming

synchronization clusters in the network in case of varying coupling strengths.
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CHAPTER EIGHT

CONCLUSION

Complex networks are everywhere. Studying complex networks attracts

considerable interest in various scientific disciplines, from economics to biology,

mechanics to electricity. In particular, various studies of complex networks are

combined with the synchronization phenomenon. The individual node dynamics of a

network can be chaotic in a synchronous network. The coupled chaotic dynamical

systems are particularly useful to model and understand complex networks.

Underlying dynamical systems’ models in coupled networks are unknown in

general. Preliminary information about the coupling connections and the coupling

strengths are barely known.

The main goal of this thesis is to reveal the network structure by gathering the

observations of a subset of systems with predefined restrictions. Inferring network

structure in synchronized chaotic networks can be possible using the information

theory as a model-free approach. The information flow between the subsystems is

evaluated through information measures. If the information measures are estimated

correctly, the information flow of a network can be represented better, and the

unknown desired network properties can emerge.

Motivated by this issue, we have represented a framework of the information

theory measures and their estimators in the literature. The performance of histogram,

KDE, kNN entropy estimator, and kpN entropy estimator have been investigated for

the MI and the TE of linear and nonlinear systems. The TE of a real dataset has also

been estimated via these methods. We have discussed the statistical significance of

the estimation methods of TE by using a hypothesis test. kNN estimator has a

considerable accuracy and a speed for estimation; therefore, we have utilized kNN

estimator to measure the information flow between the subsystems in the network.

There are several methods and algorithms that allow us to understand the complete

and cluster synchronization phenomena, as well as a variety of measures that
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determine information flow in discrete-time maps. However, no unique substantial

measure quantifies information flow in complete, and cluster synchronization in the

continuous-time coupled chaotic networks extensively.

The main goal of this thesis is to reveal the unknown coupling connections in

directed complete synchronized networks from the observations under the

assumptions that underlying dynamics or coupling strength is unknown. We have also

assumed that the individual members of the network are identical; the coupling

strength is the same as for all members; the input can be added to each system at

specific times. Moreover, one single output of the individual node systems is

observed.

Under these assumptions, we have perturbed each system at specific times to

destroy synchronization that allows us to obtain valuable information about the

network connections. Then, we have reconstructed the state space according to

Takens’ theorem that ensures the TE or CE of the systems in the reconstructed space

is the same as the original state space. We analytically showed the differences of

AICEs between the reconstructed outputs obtained after injecting random information

into the system, which can be used to distinguish the paths. Then, we have presented

the theorems on AICEs that yield information about the graph’s topology. We have

extended the proposed theorems to develop an algorithm to reconstruct the adjacency

matrix of a given network. We have used the proposed algorithm on randomly

coupled chaotic networks in complete synchronization. The proposed algorithm

correctly finds the adjacency matrix and reconstructs the directed network en route to

re-synchronization.

As a second goal, we have dealt with detecting the clusters in cluster

synchronization using observations from a single output. While we know the number

of systems in the network, the number of clusters, the connectivity matrix, and

coupling strength are unknown. Besides, the clusters are not necessarily directly

coupled. The proposed AICEs between the systems have also been estimated in the

reconstructed state space by following the same procedure in the previous approach.

141



We have classified the AICEs with the k-means algorithm. An original algorithm has

been presented for the detection of clusters via this approach. We have demonstrated

the results in cluster synchronization networks. Unsurprisingly, the clusters and their

membership can be effectively found using the proposed algorithm.

The contributions of this thesis are summarized as follows:

i) We have suggested a kNN-based CE estimator based on the existing estimator for

efficient estimation.

ii) We have shown that TE or CE measures are preserved under the homeomorphism

so that we can estimate the necessary measures by reconstructing state space via

observations of a single output from each system.

iii) We have proposed the AICE measure based on CE to represent the information

flow.

iv) We have derived the analytical properties of the difference of AICE that enables

us to distinguish the paths in directed networks.

v) An algorithm that reveals the paths of the network and finds the adjacency matrix

has been presented.

vi) The proposed AICE has also been used for distinguishing the clusters in the

network.

vii) A new algorithm that computes necessary AICEs with a k-means clustering

algorithm has been developed.

viii) The detection of cluster pattern change using the CE has been shown.

The synchronization of a chaotic network via information theory enlightens us to

understand the complex networks and causes us to ask many open research questions.
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8.1 Future Work

One important open question is the determination of connectivity in bidirectional

networks given the observations from the node outputs. That problem is more

challenging because the directionality of information can not be inferred directly,

especially in networks that contain loops. As of yet, we have not investigated the role

of AICE in the networks with bidirectional couplings.

Cluster synchronization is of vital importance for modeling complex networks. In

the light of current studies, the network reconstruction of the cluster synchronization

for directional or bidirectional networks has not been investigated yet.

The proposed AICE measure is promising to allow us to detect the coupling

connections in cluster synchronization. In this respect, a more generalized algorithm

can be constructed that takes complete synchronization as a particular case.

Interest in the efficient estimation of entropy-related measures is relatively new. We

believe a more efficient and faster estimation of the measures will prove helpful in

carrying out the proposed analysis in real-time and further extend entropy’s role in

signal analysis and control applications.
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