¥

AN INTELLIGENT INTERFACE FOR A
DISTRIBUTED DATABASE

by
Ilknur SANSLI

February, 2000
iIzZMIR

AN INTELLIGENT INTERFACE FOR A
DISTRIBUTED DATABASE

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of
Dokuz Eyliil University
In Partial Fulfillment of the Requirements for
the Degree of Master of Science in Computer Engineering,

Computer Engineering Program

by
flknur SANSLI

February, 2000
IZMIR

M.Sc THESIS EXAMINATION RESULT FORM

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Dog. Dr. Alp Kut
(Advisor)

DL R
Deee D L Dk

(Committee Member)

Sﬁ.‘ci\am:gb s‘.~.3 sl 0ER ©

(Committee Member)

Approved by the
Graduate School of Natural and Applied Sciences

Prof. Dr. Cahit Helvaci

Director

II

ACKNOWLEDGEMENTS

In choosing the topic “Distributed Database Management Systems” for this study,
the wish to learn Distributed Systems and my interest in Database Management
Systems have a big role. Honestly, this was a long and difficult research, because of
the wide range the topic includes, and the lack of formal definitions for true
distributed database systems. Nevertheless, with the wish to complete this study and
under the auspices of my adviser Do¢. Dr. Alp Kut, my fiancé, and my family, it has
been possible to overcome all the difficulties. [want to thank them all for their

support.

flknur SANSLI

1

ABSTRACT

The aim of this thesis is investigating the topic “Distributed Database Systems”
and implementing a prototype, namely “An Intelligent Interface for a Distributed
Database”. The concept “Distributed Database System” has a wide range including
almost all the topics discussed in the computer science literature and needing a big
coordination of all these topics which can be gathered together under the combined
title of two base topics : Database Management and Networking. As a result of this

wide range, the prototype discussed is implemented on a subrange of the topic.

Nowadays, in which we are at the beginning of year 2000; we are aware of the
fact that, from now on, no two points should be unaware of each other whatever their
distance may be. This is the real need and driving force for a distributed database
technology; because of the changing customer demands and market needs, business
operations became more decentralized geographically. On the other hand, we still
need a central and global view of our systems. Then what we need is the system that
allows distribution of data, but also provides opportunities to integrate them. Here
the most important feature of a distributed database system comes on the scene,
which is called transparency. Due to this feature, users of the distributed database
system are allowed to manage a physically dispersed database as if it were a

centralized database,

When we mention physically dispersed data, heterogeneity is unavoidable.
According to our needs, we may have different limits on the heterogeneity, and these
limits will contribute to different design alternatives. The overall system can be
homogeneous, meaning that each site will have the same database management

system; or they can be heterogeneous having different database management

systems. Here, another important concept in the design of a distributed database is
autonomy, determining the degree of independence for each database management
system, participating in the distributed database. These concepts are important when
we decide to design and use a distributed database system, and there are some
important topics that we should never forget: Fragmentation, Allocation and
Replication. These topics are interested in availability and reliability of the
distributed database, distribution of processing load, and storage cost reduction to
provide high performance, reliability and functionality. Since we have decentralized
business needs, we have to distribute our data. This implies to partition our data to
managable units, called fragmentation. We want to distribute the data over different
sites to provide higher availability by locating it near the greatest demand site. This
process, in other words optimal distribution of the fragments to existing sites is
called allocation. In this distributed environment, we should also be able to acces our
data even in the case of site failures. This need could be satisfied by replicating the
same data unit or fragment into several sites called replication. Accordingly.

fragmentation, allocation and replication are three important design concepts.

Briefly. distributed database management system brings the advantages of
increased reliability and availability, local control over data, modular growth, lower
communication costs and faster response, in return for a price of management and
control complexity. Distributed database technology is one of the most important
developments of recent times, and it has been the subject of intense
resecarch and development effort. Now, we are in the critical point of the transition to
commercial products. At the beginning I mentioned that the distributed database
topic includes a fairly wide range of topics. Today, all these topics are well
researched. However, as the integrated problem that covers all these areas is NP-
hard. much of the existing work has either concentrated on only one of these
problems or restricted the problem space. Accordingly, this thesis has the aim of
examining all of these topics independently, and implementing a prototype in a

restricted problem space.

OZET

Bu tezin amaci Dagitik Veri Tabam Sistemleri konusunda arastirma yapmak ve
dagitik veri tabam iizerinde ¢alisan akilli bir arayiiz prototipi gelistirmektir. Dagitik
Veri Tabam Sistemi kavrami bilgisayar bilimleri literatiiriinde yer alan konularin
hemen hemen hepsini iceren genis bir alana sahiptir ve biitin bu konularin
koordinasyonunu gerektirir. Bu konular Veri Taban1 Yonetimi ve Ag Teknolojileri
ana bashiklari altinda toplanabilir. Konunun bu kadar genis bir alani kapsamasi

nedeniyle, prototip, konunun daraltilmis bir kismu {izerine gergeklestirilmistir.

2000 yihmin baslangicinda oldugumuz giinlimiizde. bizler bundan béyle
aralarindaki uzaklik ne olursa olsun, birbirinden habersiz olan iki nokta olmayacag:
gerceginin Dbilincindeyiz. Bu gergek dagitik veri tabani teknolojisinin ortaya
¢ikmasindaki en 6nemli etken ve itici giigtiir. Degisen miisteri ve pazar ihtiyaglan
giinlimiizde, cografi agidan merkezi olmayan bir yap1 gerektirmektedir. Ote yandan.
her ne kadar dagitik olsa da bizler hala sistemlerimizin merkezi ve global
goriiniimiine ihtiya¢ duymaktayiz. Bu durumda ihtiyacimiz olan sistem. verilerimizi
dagitmaya izin verdigi gibi, bunlar1 bir araya getirmek igin gerekli olanaklan da
bizlere sunmalidir. Bu noktada, dagitik veri tabani sisteminin en 6nemli 6zelligi olan
saydamhik ortaya ¢ikmaktadir. Bu 6zellik sayesinde, dagitik veri tabam kullamcilar
fiziksel olarak dagitilmig bir veri tabanini merkezi bir veri tabani imis gibi yonetme

olanagina kavusur.

Fiziksel olarak dagitilmis verilerden soz ettigimizde, heterojenlik kagimlmazdir.
Ihtiyaglarimiza gore, heterojenlik konusunda farkli limitlerimiz olabilir. Bu limitler

de farkh tasarim alternatiflerini ortaya ¢ikaracaktir. Tiim sistem homojen olabilir,

yani sistem igerisinde yer alan her bélge aym veri tabam yonetim sistemini
kullanabilir; ya da bolgeler heterojen olabilir, dolayisiyla herbir bélge farkh veri
tabaru yonetim sistemine sahip olabilir. Burada dagitik veri tabaru tasariminda
onemli olan bir diger kavram ortaya ¢ikmaktadir: Ozerklik. Bu kavram dagitik veri
tabaninda yer alan herbir veri tabaninin bagimsizlik derecesini saptar. Bu kavramlar
dagitik veri tabami tasarimina ve kullammina karar verildifinde {izerinde Snemle
durulmas: gereken kavramlardir. Aym zamanda unutulmamasi gereken ii¢ 6nemli
konu daha vardir. Bunlar verilerin pargalanmasi, atanmasi ve kopyalanmas:
islemleridir. Bu konular dagitik veri tabamimin kullamilirligi, yiiksek performans
amaci ile islem yikiiniin dagitimi ve veri depolama maliyetinin azaltilmasi. veri
tabaninin glivenilirligi ve fonksiyonelligi ile ilgilidir. Cografi agidan dagitik olan is
ihtiyaglarimiz nedeniyle verilerimizi dagitmaya gerek duydugumuzu belirtmistik. Bu
dagitim parcalama adi verilen, verilerimizin yonetilebilir pargalara bélinmesi isini
gerektirmektedir. Béliinmeden elde edilen herbir pargaya erigimi en uygun hale
getirmek igin, her bir parga en gok ihtiyag duyuldugu bolgeve yerlestirilmelidir. Var
olan parcalarin bulunan bolgelere optimal dagitimi isine atama denir. Bu dagitik
ortamda elbette verilere, c¢esitli aksakliklardan dolay:1 belirli bélgelere erisim
engellendiginde bile ulagma gereksinimi dogacaktir. Bu gereksinim de kopyalama
adt verilen belirli veri gruplarinin ya da parcalarinin birden fazla bdlgeye
kopyalanmasi islemiyle karsilanabilir. Biitiin bu bilgiler 15181nda, pargalama, atama

ve kopvalama {i¢ 6nemli tasarim kavramidir.

Ozetle. her ne kadar yonetimi ve kontrolii merkezi sistemlere gére daha giic olsa
da, dagitik veri tabani y6netim sistemi, sistemin giivenilirligini ve kullanlabilirligini
arttirir, veri lizerinde yerel kontrol saglar, sistemin modiiler biiytimesini kolaylastirir,
iletisim maliyetini azaltr ve veriye daha hizli erisime olanak tanir. Dagitik veri
tabani teknolojisi, son yillarin en 6nemli gelismelerindendir ve bu konuda gliniimiize
dek yogun bir arastirma ve gelisme elde edilmistir. Artik yapilan tiim arastirmalann
ticari uygulamalara gegirilmesi gibi kritik bir noktada bulunulmaktadir. Baslangigta
da degindigimiz gibi, dagitik veri tabari konusu ¢ok genis bir alami kapsayarak
birgok konuyu i¢inde barindirmaktadir. Bu kapsama giren tiim konular tizerinde ayn

ayr1 kapsamli arastirmalar yapilmistir, ancak biitlin bu konularin entegrasyonu

VII

bilesimsel bir problemdir. Bu nedenle mevcut aragtirmalar ya kapsam igindeki
konulardan sadece birine konsantre olmus, ya da problemin alaninda kisitlamalar
yapmuslardir. Biitlin bunlara baghh olarak, bu tezin amaci, dagitik veri tabam
konusunun kapsamindaki biitlin bu konulan incelemek ve belirli varsayimlara gore

kisitlanmis olan bir prototip gelistirmektir.

VIII

CONTENTS
Page
COMIEILS .ottt et et e st e e b e e e ebeestesreave e st e sreereeebeereans VIII
LISE OF FIGUIES ..coveenieriieieciereectistte ettt et sttt ettt ae st et eeaeene e ersesaeenaeseeeteseea XI
Chapter One
INTRODUCTION
1.1 SUDIMATY Lottt stesesie e e reteseraeessesseee e st asraesseaanssaessbeasssseaassasssneesseassnens 1
1.2 Organization Of THESIS c.....vvviveeeusieresieseeeeseessssesss s resseseseeseeone 5
Chapter Two
PRELIMINARY TOPICS FOR DISTRIBUTED DATABASES
2.1 Brief introduction to DBMSccccevveeveenene eeteeete e rareeataere ettt an e teeeteniaenaaas 7

2.2 Brief introduction to Distributed SyStemsccceeceveeriierrennieeneeriereeeneeeenee 11

Page
Chapter Three
INTRODUCTION TO DISTRIBUTED DATABASES

3.1 What is a Distributed Database?c.ccoceverirvrierierivinieneieeienre e essee s 17
3.2 The need for Distributed Database technology..........ccccovveeeevinveeenveviinriniceennes 19
3.3 Distributed Database DESIZN.....cc.ccererrirrecrerreiiirerennetieeeeeeseeeseessesessesseseenesens 22
3.3.1 Fragmentation......coccciieueeieinreeieeeieereseeeeeee s eeses et e ete st e e seseeneseenenes 22
3.3.1.1 Types of fragmentation..........cccccecervemveeeesiesiienieeeeere e 24
3.3.1.2 Ways to test the correctness of decomposition..........cccccvevernrerennennen. 30

3.3.2 REPLCAIION. .. coueiriieteiirteiererecreetee s te s e saessaeseesebeeseeneesbessssessessessensens 30
3.3.3 AIlOCAION ..ottt ettt sttt ettt ste st e s bes e ss e s s e baesnasseabansens 35
3.4 Important concepts in the design of Distributed Databases..........cccceceevueninnene. 36
3.4.1 TTANSPATEIICY .eocvviiemiieirieeniieiieerree st et e ettt e ereesean e e e s st e saeeeessaeesneeeseeanes 36
3.4.2 AULOTIOILY «1.veeeeeieeiieetieeteeeuaeseeeeabeesteesrteseeesabe e smseaeenneessneeesnneseanaesasrenseees 38
3.5 Architectural models for Distributed DBMSs............ccooooiiiiiviiiinniiie 40
3.6 QUETY PIOCESSIIIG c..civerriienreriertieiiereetesteseeentriteteestestessnenseesatessesaeesmtasseeneeseeneenne 41
3.7 Transaction ManageIMIENcuvreueeveeerrerteereaseeresaasvesssreessssasseesseesssesssesnseaneens 45
3.7.1 Introduction t0 TransSactiOnS.......c.eeveerueerueseesurerirernueeerreesinenssesensesseessaessenss 47
3.7.2 Concurrency Control Protocols o B S . . 48
3.7.3 Reliability PrOtOCOIScciiieriiireereiiiert et cee et e e sesa et s 54

Chapter Four
DIFFERENT CLIENT-SERVER DATABASE SYSTEMS
4.1 Client-Server Architecture for Centralized Databases.........cccocevvvevvierircvcnenene. 62

4.2 Client-Server Architecture for Distributed Databasescocvvvveeveiveeinneivieieeiinns 65

Page
Chapter Five
THE CURRENT STATE AND FUTURE EXPECTATIONS

5.1 The state of the current products........c.cceeeccerveereriecrieectre e sre e e 67
5.1.1 OTACLE c.vveeeieeieerte ettt ettt s re s s e st e et e et e s sa e raeeean 70

5. 1.2 SYDASE..oiiireeieeteeteteeee sttt s sttt a s s e e s sne e s e et ane 84

5. 1.3 PEEIDITECE ..cuvieeieeeeireeteete e eeeee ettt e st estesss e e e e e et eesse e snne s eabesasaeeans 90
5.1.4 IBM Solution — DRDA ..ottt ettt esve st sie e e 95
5.1.5 Mariposa Distributed Database Management System.......c.ccecvevvevvrvvennenne 97
5.2 Unsolved ProbIEIScc.ecueverererenviniiiiiiiee e 101
5.3 FULUTE EXPECLATIONS ...uvevirveieeureereieeeereiereesnesisre e st st ssa et eaeeaessansaeneens 104

Chapter Six
INTRODUCTION TO AN INTELLIGENT INTERFACE

6.1 The Structure of a Name Server Databasecccceveinnnnn. M 107
6.2 QUETY PIOCESSING ..ooviuiiieiieeiiiiieiiiiiitcniinc ettt 108
6.2.1 Data Retrieval QUETTES ..cc.eovuieueeieeicrienicriritecrie e 110
6.2.1.1 Selection from one tableoooveeieniinceciii e 110
6.2.1.2 Selection from multiple tables -Join Operation-..........ccccocveieininnnns 117

6.2.2 Data Manipulation (Insert, Update, Delete) Queries........c.ccooevenvieinnnnnnne. 120
6.2.3 PSEUdO COAES ..uveiviieiiiieiee ettt s 126
CONCIUSIONS ...t ceteeteete et e e et esaesre st erae e e satesbee bt srs s e s bt e ase e sasseaassaseenaneersseanseaneans 133

R O I ICES oo oeeeeeeee e e e e eeeeeeseeeeeeteresseeseeeeasanarosssarerresseaseesesseseesessnsssrsssssesssnensesasraenans 135

LIST OF FIGURES

Page
Figure 1.1 The layered view on a distributed SyStem.........coceevveverrreriicieeieneeeinnn 3
Figure 1.2 Centralized Client/Server Modelc.ccecvmiviiiniiicniiiicieeieciecene, 4
Figure 1.3 Distributed Client/Server Model.........cccoeereiiniinineniiiinenneciecee 4
Figure 2.1 An example of atable........ccocoeviiiiiioiiiii 8
Figure 2.2 Traditional File Processing........c.cccoevvereviniiiciniiiinieniiiniiicciesies 10
Figure 2.3 Database ProCessingc.ccoverveeeiiiiinieriniiniiiiniiieieesic e 10
Figure 2.4 Computer NetWOTKcccciviiiiiiiiiiiiiieie e 11
Figure 2.5 Star NetWOTKcoovivirireiiiiieiiiiiiiinc e 14
Figure 2.6 Hierarchical (Tree) Network.........ccovevviiniiiiinciniiiniiiinninicceccniene 15
Figure 2.7 RinNG NetWOTK......cooervtieriiiiiniiiiiiienieitiiinccne s srne e 15
Figure 2.8 Meshed NetWork.......ccoeveiiienieiiriiiiiiiiniiicicciieeccaee s 16
Figure 3.1 Distributed Database ENvironment........c..c.cccceevreverienecrcriineennnesnnn, 18
Figure 3.2 Complete Comparison of Fragmented Tables.........cccccocoiiiiiiiinnnns 28
Figure 3.3 Partitioned JOINcoceeierieiiinniiiiiiiiineiin e 29
Figure 3.4 Simple join Graph......ccocevveevueeincininiiiiiiccicccei e 29
Figure 3.5 Architectural models for distributed DBMSS......ccccoccoviniiniiininiiniinnins 41
Figure 3.6 2PL Lock Graphccocceeerveiiienenncniiniciiiiiiiciiiicni it en 50
Figure 3.7 Strict 2PL Lock Graph.......cccovvevverinienceriniinienieiieeesiecnreie e 50
Figure 3.8 Communication Structure of Centralized 2PLcc.cceeerivivvnniiiinnncns 51
Figure 3.9 Communication Structure of Distributed 2PL........ccccoocervnniinecniiiincis 52
Figure 3.10 Centralized 2PC Communication Structure..........cocceccevvvinriivicennenn .56
Figure 3.11 State Transitions in 2PC Protocol........c.coocvveneenininvninniiniiiiineenens 56

Figure 3.12 State Transitions in 3PC Protocol..........cccccocevieviiinncniiiniiiiinina 58

Page
Figure 4.1 SCS ArChIteCtureouvviiiriiiicrcietreneiecereeareseeenscses s sesessesassesans 63
Figure 4.2 CS-MD ATICRItECLUTE........ccovererrereererererereeeressete et ese e e eseeeeeneaen 63
Figure 4.3 E-CS ATCHItECTUIE.ccererrrerrerrrrerrererinreneseererensessaessesesscosesssssnsonsssesnnen 65
Figure 4.4 An Example of a Distributed DBMS Architecture..........ccccoovevereeneneeen. 66
Figure 5.1 The Client/Server Architecture and Distributed Processing................... 71
Figure 5.2 Two different uses of Primary site Ownership..........cccoovevevevrrverennen.. 76
Figure 5.3 Dynamic OWNEISHIPc.ccvvvurieniirievireteiereetecreeeere e e seseeeeaean 77
Figure 5.4 Shared OWNEIShIP.......cceeveverieeneniieriieeine et eve e 79
Figure 5.5 Multiple Master Replicationccceceeveiviriniieiieeeeciceeiere e 80
Figure 5.6 Updatable Snapshots........cccevuiverievreneneniiereieccee e eteeve s 81
Figure 5.7 Hybrid Configuration..........ccceeveeueeeereirieeereeeseeriereeeereeseereesesseseeseeeossens 82
Figure 5.8 Deferred RPCS......cocoiiiririiieectetreieseeee e er e 83
Figure 6.1 E°R Schema of the Name Server Databaseocvvvevreereesiunreenenn.. 107
Figure 6.2 E’R Schema of an example Student Database................c.cooooeverererenn. 108
Figure 6.3 Fragmentation Schema of an example Student Database..................... 109
Figure 6.4 Allocation Schema of an example Student Databaseccccevuee... 110
Figure 6.5 The main role of Fragmenterccoccceveerenieninieienceceencsicsninien 111
Figure 6.6 An Interface for Data Retrieval Queries.......c.ccooceevvvrireereericneeceeneense 116
Figure 6.7 Selection from a replicated tablecccoevvervieceerienceiniie e 117
Figure 6.8 GENeric QUETY.....ciiviiiriuiiireerireeenieesireeieeresesssneessaseeesessesneessesssseesreesas 118
Figure 6.9 Reduced QUETYccocveruiiiueriienieriieteeteiterite et ee e s sre e seeesees e 119
Figure 6.10 Query with @ Join Operation.........ccoveverreeriererneioieneneenienieneeseeseenes 120
Figure 6.11 Insertion into the Student table........ccccovvivvverieiriinieeere 122
Figure 6.12 The result of the insert operation from the user’s point of view 123
Figure 6.13 Update Propagation EXamplec..ccceveveveivenincnenmniicinncncnieienen 125

Figure 6.14 Queue MeChaniSmcccovuevreeneerieenenieesiieeniensseesieseeseetessesseeesseennens 125

CHAPTER ONE
INTRODUCTION

1.1. Summary

A distributed database can be defined as a database that is not entirely stored at a
single physical location, but rather is dispersed over a network of interconnected
computers. In other words, a distributed database is under the control of a database
management system in which storage devices are not all attached to a common
processor. Simply a distributed database is a union of several databases placed in

different physical locations.

The distributed database concept is brought to light because of the decentralized
business needs. Trying to reach the data being kept in a central database from remote
locations suffer problems such as performance degradation and reliability problems
created by dependence on a central site. Distributed databases on the other hand,
allow partitioning data into manageable parts called fragments and allocating every
fragment to the greatest demand sites, therefore trying to maximize local processing
and improving communications. In addition, distributed databases eliminate single
point of failure possibility, and facilitate growth, by enabling to add new sites
_without affecting the others. Beside these advantages, it is harder to design and

manage a distributed database and to maintain data security.

A Distributed Database Mangement System must operate in a network
environment which consists of computer workstations, network hardware and

software, communication media, transaction processors (distributed transaction

managers) and data processors (local transaction managers or local data managers).
A distributed database can be designed by using data replication, fragmentation
(horizontal partitioning or vertical partitioning) or combinations of replication and
fragmentation. There are two design alternatives: top-down and bottom-up design. In
a top-down fashion, an existing centralized database is separated into more than one
databasé on different sites, thus forming a logically single distributed database. The
need for this change can be performance degradation of the centralized system. On
the contrary, in a bottom-up design the system is decentralized and there are existing
separate databases, these databases maintain their data locally, and update the central
database at regular intervals, meaning that data is not a shared resource. Because
these databases are on non-networked computers, each computer has access only to
the central site and therefore exchange of data among these sites is too expensive. So,
organizations with physically dispersed sites, each maintaining its own data, are
candidates for a distributed database. Here the solution would be combining these

databases into a single virtual distributed database.

The most important feature of a distributed database is transparency, meaning that
the users of a distributed database are not aware of the fact that their operations
involve multiple sites and databases. This feature allows users to use a physically
dispersed database as if it were a centralized database. To make this illusion, there
should be a global schema (a global view of database schema similar to centralized
database), fragmentation schema (a schema to partition the database into logical
fragments), allocation schema (a schema to determine the allocation of fragments to
each site, with or without replication) and local mapping schema (the schema of each
independent DBMS). By using the information gathered from these levels, a
distributed database management system can manage user requests and users will not

be aware of the distribution.

A Distributed Database Management System (DDBMS) must be able to provide

additional functions to those of a centralized DBMS. Some of these are:

1. To access remote sites and transmit queries and data among the various sites
via a communication network.

2. To keep track of the data distribution and replication in the DDBMS catalog.

b

To devise execution strategies for queries and transactions those access data
from more than one site.

To decide on which copy of a replicated data item to access.

To maintain the consistency of copies of a replicated data item.

To maintain the global conceptual schema of the distributed database

S

To recover from individual site crashes and from new types of failures such as

failure of a communication link.

It is obvious that a distributed database management system requires a distributed

system. The layered view on a distributed system can be seen in Figure 1.1.

Applications
DBMS, TPS, ... B,

| Distributed OS

Hardware

Figure 1.1 The layered view on a distributed system.

In a distributed system, client server model is widely used. Traditional client

server model has the structure, which can be seen in Figure 1.2.

Server
Process

Resource

Figure 1.2 Centralized Client/Server Model

There are major problems with this basic clieat/server model. The control of
individual resources is centralized in a single server and each single server is a
potential bottleneck. To improve the performance, multiple implementations of

similar functions can be used. The improved model can be seen in Figure 1.3.

Computer 2 Compuier3 == m Caomputer N

File
Server

Kernel Kernel : Kernel

s LN
<z

Network =

— -

o
e

N Y

Figure 1.3 Distributed Client/Server Model

This model is also used for distributed database systems. Suppose that each
computer in Figure 1.3 has a DBMS running on it. Therefore all these computers

become database servers and one server may need to access a database on another

server. In this case, the server requesting the information becomes a client.

In [COT5200], rules for distributed systems are given. These are:

0. To the user, a distributed system should look exactly like a nondistributed
system

Local autonomy

No reliance on a central site

. Continuous operation

. Location independence

. Fragmentation independence

Replication independence

Distributed query processing

Distributed transaction management

© ® Ny AW N e

Hardware independence

10. Operating system independence
11. Network independence

12. DBMS independence

Different levels in the distribution, autonomy, and heterogeneity forms different
architectural models of distributed databases. These models can be seen in Chapter 3,

Figure 3.5.
1.2. Organization of Thesis

Chapter two has the aim of making an entrance to the topic “Distributed
Databases” from the starting point. This starting point has two main titles, DBMS
(Database Management System) and Distributed Systems. In section 21, data and
data model concepts are introduced and the need for DBMS is explained. In section

2.2, distributed system and basic networking concepts are introduced.

In chapter three, “distributed database” topic is explained in depth. First
distributed database is defined and the need for distributed databases is explained.
Then some important concepts like transparency and autonomy, design issues like
fragmentation, replication and allocation, architectural models, query processing and

transaction management topics are examined in detail.

In chapter four, client-server model is adopted to distributed databases and client-

server database systems are introduced.

Chapter five makes an evaluation of today and the future. In section 5.1, several
current products are introduced and their approaches to the topics of section four are
explained. In section 5.2, unsolved problems are mentioned and, in section 5.3,

future expectations are discussed.

Chapter six is an introduction to an intelligent interface. In this chapter, after
explaining assumptions made in the implementation of the interface, in section 6.1,
the structure of the Name Server Database is given. In 6.2, the way in which an

interface processes data retrieval and data manipulation queries is introduced.

CHAPTER TWO

PRELIMINARY TOPICS FOR DISTRIBUTED
DATABASES

2.1. Brief introduction to DBMS

This section has an objective of giving an idea about what data is, how it can be
managed and under these considerations about data management, what is the promise

of a DBMS.
What does “data” mean?

We can define data as the information that we use and need to store for further
access. Facts and figures we use or store are data [Ozkarahan, 1997]. Data is
represented in several formats including numbers, text strings, images, and voice.
When data stored in files on disks or other media has no meaning, it is only physical.
But when the interpretation of data is made according to the enterprise being the
purpose of that data, the logical structure of data will be formed. Logical structure of

data is the way that data is understood by its users.
What does “data model” mean?
We don’t need to store the data if it doesn’t have any meaning for us. If it has

meaning, some of the data will contribute to the same purpose and will be used

together by having some relationship among them. This relationship is the logical

structure of the data and has a model. As a result, data model is the shape of the

relationship among data which is determined according to the enterprise.

‘What kind of data models do we have?

A database is a structured collection of data related to some real-life phenomena
that we are trying to model [Ozsu & Valduriez, 1991]. There are some different
kinds of data models including the relational model, the hierarchical model, the
network data model and the semantic role model. In fact, these models are our point
of views to data. I want to mention here the relational model which is the most

famous one.

In a relational database, we have different data sets having some relationships
among them. These datasets form a relation. For example, assume we have a set of
NAMES (these names have different meanings for every enterprise, i.e. if we are
interested in a school, these names may belong to the students or lecturers, if our
interest is a company, the names will belong to the employees of the company) and a
set of NUMBERS (according to their types, these numbers can be the
school_numbers of the students or salaries of the employees). If the names and
numbers have meaning, each student will have a school number, or each employee
will have a salary. Assume our enterprice is a school. I can structure the relationship

between the NAMES and NUMBERS as a table shown in Figure 2.1.

STUDENT

| Student_number Student_name

Figure 2.1 An example of a table

Each row in this table will belong to a student. Each cell under the
Student_number column is from the domain NUMBERS and the cells under the
Student_name column is from the domain NAMES. This table in the relational

model is called as a relation.

“Formally, a relation R defined over n sets D1, D2, ... , Dn (not necessarily
distinct) is a set of n-tuples (or simply tuples) <d1,d2, ... , dn> such that d1 € D1, d2
e D2, ..., dn € Dn” [Ozsu & Valduriez, 1991, p.18]. Thus, in a relational model,
relations are two-dimensional tables whose elements are data items. This is a very
simple structure and allows a high degree of independence from the physical data

representation.

The relational model provides a solid foundation to data consistency. Consistent
states of a database can be uniformly defined and maintained through integrity rules.
The relational model also allows set-oriented manipulation of relations. This feature
has led to the development of powerful nonprocedural languages based either on set
theorv (relational algebra) or on logic (relational calculus). These are the most

powerful features of relational model [Ozsu & Valduriez, 1991].

What is a DBMS?

A Database Management System (DBMS) is the result of an important need
called ““data independence™. It can be defined as the seperation of the implementation
details of application programs and manipulation of data which is necessary for
application programs. By this way, applications are independent from the changes of
physical manipulation of data and accordingly, physical changes on data will not
require any change in applications. With the development of database management
systems, instead of data processing in which each application defines and maintains
its own data, the idea of defining and administering data centrally is adopted (Figure
2.2 and Figure 2.3 from [Ozsu & Valduriez, 1991]). Thus, an application
programmer is responsible for only the details of application and let DBMS take care

of data manipulation.

PROGRAM 1 < 3
Data -~ —=-
Description FILE 1 <
l—-/‘
\“N~ﬁﬁ___f,,a-(
PROGRAM 2 E
Data - > e <
Description %
\“ﬂhﬁh_g___,ﬁroj
' w
PROGRAM 3 FILE 3 x
Data ~ -
Description __"/

Figure 2.2 Traditional File Processing

PROGRAM 1

DBMS
PROGRAM 2 [« ® Software < M DATABASE

PRQGRAM 3

Figure 2.3 Database Processing

In [Ozkarahan, 1997] DBMS is defined as a software system embodying

e adata model
e adata language for definition and manipulation of data

-+ means to enforce and implement security, integrity, and concurrency.

10

11

2.2. Brief introduction to Distributed Systems

The goal of this section is to provide the idea of distribution. Thus, it will be clear
that what is the need for distribution, what kind of things may be distributed, and

how they can be interconnected?

What is a distributed system?

A distributed system is a collection of independent equipments interconnected by
a communication medium to do a common work. In this system. if we have
computers as equipments, we will have this definition of [Tanenbaum, 1995, p.2]: A
distributed system is a collection of independent computers that appear to the users
of the system as a single computer.” In this environment, the communication among
independent computers is procured by different network topologies (communication
channels) and the system can also be called as a computer network. “Computer
network is an interconnected collection of autonomous computers that are capable of
exchanging information among them” [Ozsu & Valduriez, 1991, p.42]. In Figure 2.4

general structure of a computer network can be seen.

Cormmunication
Subnet
Switches——"""

\

Figure 2.4 Computer Network

12

The Need for Distribution

With the development of powerful microprocessors and high-speed networks, it is
understood that distributed systems have a much better price/performance ratio than
a single large centralized system. In addition to this real driving force, the existence
of inherently distributed applications need interconnection among different sites
which are autonomous in some degree. Distributed systems also eliminate single
point of failure possibility which is the most dissuasive disadvantage of a central
system; thus distribution is more reliable. In a distribute system, incremental growth
is made simply by adding more processors. Briefly, we can say that, the main reason
for distribution is the need for people to work together and share information in a

convenient way in spite of the fact that they are in different places.
What could be distributed?
Things that might be distributed are [Ozsu & Valduriez, 1991]:

e Processing logic: Processing logic or processing elements could be distributed.

e Function: Various functions of a computer system could be delegated to
various pieces of hardware or software.

e Data: Data used by a number of applications may be distributed to a number of
processing sites.

e Control: The control of the execution of various tasks might be distributed

instead of being performed by one computer system.
In distributed database systems, all of these distribution modes are important.
Basic Networking Concepts
In a computer network, individual computers are communicating with each other

by the help of protocols. “A protocol is an agreement between the communicating

parties on how communication is to proceed” [Tanenbaum, 1995, p.35]. There are

13

two general types of protocols : connection oriented and connectionless. In the
connection oriented protocols, before exchanging data, a connection is established
between the sender and receiver. When data exchanging is done completely, the
connection is terminated. In the connectionless protocols, no setup for
communication is needed. The sender transmits the first message when it is ready.
There may be different types of environments that is suitable for either connection
oriented or connectionless protocols. Connection oriented protocols can cause a
considerable overhead because of the connection establishment phase, although they

are more reliable. Thus the choice is depending on our expectations.

A protocol between the communicating parties might be very complex, because
agreements can be needed at a variety of levels, varying from the low-level details of
bit transmission to the high-level details of how information is to be expressed. To
simplify the task of a protocol, it can be structured in a layered way, with each layer
having the responsibility of different agreement details. Open Systems
Interconnection Reference Model (OSI) developed by International Standards
Organization (ISO) is a standard model for layered protocols. The OSI model is
designed to allow open systems to communicate. In the OSI model, communication
is divided into seven layers. Each layer deals with one specific aspect of the
communication that must be agreed on by the communicating sites. OSI is a

connection oriented protocol. Its layers are:

1. Application layer- user interface layer.

2. Presentation layer- data representation layer.

3. Session layer - enables two applications to communicate across a network.
4. Transport layer - assures reliable transmission.

5. Network layer - sets up pathways. .

6. DataLink layer - puts messages together with headers.

7. Physical layer - transmits bits over the physical medium.

14

Each layer has its own protocol that can be changed independently of the other
one. This characteristic of the layered protocols makes it more attractive than the

others.

But when the overhead of connection oriented protocols is considered,
connectionless protocols can be prefered. The Client/Server model is based on a
simple, connectionless request/reply protocol. In this model, there are two types of
processes. The process that requests a service is called a client, and the process that
replies to the request coming from client is called a server. This is also a layered
protocol, but here the number of layers are decreased, because here no connections
are established, and therefore no need for session management. The client sends a
request to the server asking for some service. The server processes the work and

returns the requested data or an error indicating the problem.

Computer networks can be classified according to various criteria. These are

[Ozsu & Valduriez, 1991]:
e The interconnection structure of computers (topology): As the name indicates,

interconnection structure or topology refers to the way computers on a network

are interconnected. Below, some different topologies can be seen. _

Central
Control
Node

[

Figure 2.5 Star Network

15

[|ll|l\]1

Figure 2.6 Hierarchical (Tree) Network

MNode

Ring
Interface

Figure 2.7 Ring Network

16

I\

N

ES

Figure 2.8 Meshed Network

Besides these topologies above, in the irregular topology, the interconnection

between nodes does not follow a pattern.

¢ Communication schemes.

1. Point-to-point networks: In point to point networks each pair of nodes has a
link connecting them. This link may not be a direct link, it may be an
indirect link with intermediate connections.

2. Multi-point (Broadcast) networks: In multi-point networks, a common

communication channel is utilized by all the nodes in the network.

e Geographic distribution: This classification is made according to geographic

scope, in other words the distance between any two nodes of the network.

1. WAN (Wide Area Network).
2. LAN (Local Area Network).

17

CﬁAPTER THREE
INTRODUCTION TO DISTRIBUTED

DATABASES

3.1. What is a Distributed Database?

A Distributed Database is a single logical database that is spread physically across
computers in multiple locations that are connected by a data communications link. In
[Ozsu & Valduriez, 1991], it is defined as a collection of multiple, logically
interrelated databases distributed over a computer network. Here the distinction
between the first and the second definitions is important to understand the concept.
In the first definition, distributed database is defined as a single logical database that
1s spread across multiple locations, although it is defined as multiple, logically
interrelated databases in the second one. An important point is that the collection
of multiple databases are making up a logical single database in spite of the fact that

they are located at different nodes of the network.

Each part of the distributed database is under the control of a separate DBMS
running on an independent computer system. Each system has autonomous
processing capability serving local applications. Each system participates, as well, in
the execution of one or more global applications. Such applications require data from
more than one site. This requirement implies the existence of a software that
manages these separate DBMSs and integrates them to preserve the logical
integration. This software is a distributed database management system (DDBMS).
In [Ozsu & Valduriez,1991], DDBMS is defined as the software system that permits

18

the management of the distributed database (DDB) and makes the distribution

transparent to the users. Distributed Database Environment can be seen in Figure 3.1.

Site 1

Site 2

Communication
Network

_ .

Figure 3.1 Distributed Database Environment

According to the definitions given above, these assumptions, which are valid in

today’s technology base, can be made [Casavant & Singhal, 1994]:

1. Data is stored at a number of sites. Each site is assumed to logically consist of
a single processor. Even if some sites are multiprocessor machines, the
distributed DBMS is not concerned with the storage and management of data

on this parallel machine.

S

The processors at these sites are interconnected by a computer network rather
than a multiprocessor configuration. The important point here is the emphasis
on loose-interconnection between processors that have their own operating
systems and operate independently.

3. The DDB is a database, not some “collection” of files that can be individually
stored at each node of a computer network. This is the distinction between a
DDB and a collection of files managed by a distributed file system. To form a
DDB, distributed data should be logically related (where the relationship is

defined according to some structural formalism) and access to data should be at

19

a high level (via a common interface). The typical formalism that is used for
establishing the logical relationship is the relational model. In fact, most

existing distributed database system research assumes a relational system.
3.2. The Need for Distributed Database technology

Most business networks fall into one of two categories. The first category includes
organizations using a large centralized database. In this environment, users rely
solely on IS (Information System) departments to provide needed information. The
second category includes organizations where each user or department has its own
collection of data. The organization uses hard copy or replication to share that data.
In this category, by using decentralized database, the network overhead for accessing
the database is eliminated but it is not possible having a global view of the system.
Thus, neither strategy satisfies the need to respond to market changes quickly and
cost-effectively in today's competitive business environment. This inefficiency of
two common types of business solutions (centralized, decentralized) is the real
driving force for a distributed database. In [Richter, 1994}, distributed database is

accepted as a solution with these reasons:

By allowing data to be accessed locally and managed globally, a fully functional
distributed database can supply reliable information anytime and anywhere. It
provides users timely and flexible access to information, it gives them the tools to
analvze their data in more meaningful ways. it optimizes the use of computer
processor power, and it lets the IS department control the safety and integrity of the

data.

Centralized systems store data in tables in a central DBMS. Users access the
tables, Which are on more powerful machines (e.g., a Unix-based minicomputer or a
mainframe, which has a high costed database system), concurrently through either
dumb terminals or their PCs via a LAN. This configuration still solves many of the
problems with maintaining data integrity, eliminating redundant data, and processing

changes, deletions, and updates concurrently. Centralized databases also simplify

20

routine services (e.g., security, back up, and maintenance). Nevertheless, when
dealing with remote access, centralized systems are at the mercy of the
communications lines resulting in performanc¢ degradation. Also, they generally
require a dedicated staff--at least a database administrator, and often an entire IS
department--to construct, optimize, and maintain the database. Another important
disadvantage of centralized systems is their reliability problems created by
dependence on a central site, which is a single point of failure. When organizations
with a centralized database has outgrown the capacity --in terms of either storage or
processing power-- of their current database server or they begin to suffer from the
performance degradation of their centralized system, this situation requires
separating a logically centralized database into a distributed database that spans two
or more computing processes. Typically, this is two computers sitting side by side
(but it may include geographically separated sites) running compatible DBMS
products. Many of the now available commercial database servers support horizontal
scaling, which lets database systems include additional servers or processors. The
database system transparently distributes the data and the database processing load.
Most top-down operations in the business world today work with a comparably sized
or scaled-down version of the original centralized database. This approach ensures
transparency while maintaining data integrity and applications compatibility.
Designing a distributed database by this way is called as a top-down design

approach.

We can define a decentralized database as a collection of independent databases
on non-networked computers. A decentralized configuration has both data and
applications located on independent sites. Key to the decentralized configuration is
the concept that the data is not a shared resource. Each site maintains its data locally
and updates the central database at regular intervals. These sites can share data, but
they typically lack the facilities (e.g., mechanisms and procedures for communication
and data-integrity controls) to do so. Exchange of data among these sites is often
difficult and expensive. So, organizations with physically dispersed sites, each
maintaining its own data, are candidates for a distributed database. A possible

solution for this type of organization might be to combine all the dispersed databases

21

into one central database. However, we just mentioned several disadvantages of
central databases. Instead of a centralized database, a bottom-up integration of a
distributed database --combining existing databases running on mixed systems into a
single, virtual distributed database-- solves these problems. This approach preserves
an organization's investment in database software and applications, as well as.
allowing the data to be stored where it's used most. Designing a distributed database

by this way is called as a bottom-up design approach.

In situations where the data needs to be a shared resource, a distributed multiuser
database may be the solution. As with the decentralized model, each site has an
independent CPU and DBMS, as well as its own data and applications. Also, each
site has an added component to enable shared data: a TM (transaction manager). The
TM analyzes a request for data from the user and directs the request to the
appropriate server. That server acts upon the request as if issuing it locally (thus
distributing the processing) and returns the answer set to the requesting TM. The
requesting TM analyzes, collates, and stores the replies from each server, and

eventually the user sees the result.

We can arrange the needs for distributed databases briefly as:

e Business operations became more decentralized geographically and local
business units want control over data.

e Competition increased at the global level.

e Customer demands and market needs favoured a decentralized management
style and there is a need for consolidation of data across local databases for
integrated decision making.

e Microcomputers increased in power, which encourage the growth of local area
networks, as mainframe costs are high.

o DDBMS encourages data sharing

o DDBMS reduces telecommunication costs.

o DDBMS reduces the risk of telecommunication failures.

22

As a result, the distributed database technology intends to extend the concept of
data independence to environments where data are distributed and replicated over a

number of machines connected by a network.

3.3. Distributed Database Design

In the design of distributed database systems, there are four major aspects that
must be considered [March & Rho, 1995]:

1. The communications network (location of nodes, allocation of computer
resources, network topology, and selection of link capacities),

2. Data allocation (determining the units of data to allocate -fragmentation- and
allocating copies of those units to nodes),

3. Operating strategies related to query optimization and concurrency control
(determining which copy or copies of data to access. where to process the data,
how to route the data, locking and commit protocols),

4. Local database design (record structures, record placement algorithms.

secondary indexes, processing algorithms).

3.3.1. Fragmentation _

In a distributed DBMS to partition the database without regard of physical
location of data, is called “fragmentation”. A relational table may be broken up into
two or more non-overlapping partitions or slices. A table may be broken up
horizontally, vertically, or a combination of both. Partitions may in tum be
replicated. The reason for this partitioning is because the relation is not a suitable

distribution unit.

In a distributed environment, it is desirable to perform as much tasks as possible
at the local level without any access to the other sites. This is an important
performance issue, because the local processing provides an easier management and

a more efficient execution. Although a complete locality is an aim from the

23

performance point of view, it can not be realized due to the distribution requirements
of the system. When the logic of applications is considered, it can be seen that every
application is interested in different parts of a relation. While some applications are
interested in only some tuples of relations thus needing the parts of the relations
obtained by horizontal partitioning, others are interested in only some attributes of
relations obtained by vertical partitioning. Since the locality of accesses of
applications is defined not on entire relations but on their subsets, it is only natural to

consider subsets of relations as distribution units.

When different applications residing at different sites have views on some relation
and an entire relation is considered as a distribution unit, there are two alternatives.
First alternative is storing a relation at only one site without replication. In this case,
there will be an unnecessarily high volume of remote data accesses. Second
alternative is replicating a relation on all or some of the sites where the application
resides. This case, on the other hand, has unnecessarily replication, which causes
problems in executing updates and may not be desirable if storage is limited. Thus.
fragments of relations are the most convenient distribution units for distributed

systems.

The decomposition of a relation into fragments, each being treated as a unit,
permits a number of transactions to execute concurrently. In addition, the
fragmentation of relations typically results in the parallel execution of a single query
by dividing it into a set of subqueries that operate on fragments. Thus fragmentation
typically increases the level of concurrency and therefore the system throughput.
Besides the advantages of fragmentation especially in local access optimization,
there are also some disadvantages of fragmentation. If the applications have
conflicting requirements which prevent decomposition of the relation into mutually
exclusive fragments, those applications whose views are defined on more than one
fragment may suffer performance degradation. Because in such situations, it is
necessary accessing data across partitions. It might, for example, be necessary to
retrieve data from two fragments and then take either their union or their join, which

is costly. Avoiding this is a fundamental fragmentation issue.

24

The extent to which the database should be fragmented is an important decision
that affects the performance of query execution. The measurement of fragmentation
degree is called as granularity. The degree of fragmentation goes from one extreme,
that is not to fragment at all, to the other extreme, to fragment to the level of
individual tuples (in the case of horizontal fragmentation) or to the level of individual
attributes (in the case of vertical fragmentation) [Ozsu & Valduriez, 1991]. If it is too
low, then it needs a lot of management cost. If it is too rough (user level) then the
unnecessary elements should be replicated causing a higher cost. In a vertical
fragmentation, combining data across partitions is more difficult because it requires
joins. What we need, then, is to find a suitable level of fragmentation, which is a
compromise between the two extremes. Such a level can only be defined with respect

to the applications that will run on the database.
3.3.1.1. Types of Fragmentation

There are two fundamental fragmentation strategies: horizontal and vertical.
Furthermore, there is a possibility of nesting fragments in a hybrid fashion (mixed

fragmentation). It is possible to see that many real-life partitioning may be hybrid.

Horizontal Fragmentation: In this type, the relation is partitioned horizontally
into fragments obtained as a selection operation on the global relation. Granularity is
at the tuple level, and the attribute values of the tuple determine the corresponding
fragment meaning that different records (tuples) of a relation will be at different

sites. Thus each fragment has a subset of the tuples of the relation.

Below, there are some basic definitions from [Ozsu & Valduriez, 1991, pp.106,

107], which will be helpful to understand how a relation is divided into subrelations:

Given a relation R(4,;, A3, , A,), where A; is an attribute defined over domain
D,, a simple predicate p; defined on R has the form P; : A; 0 Value where 8 € {=, <,
<=, >, >=} and Value is chosen from the domain of A;(Value € D,). We use Pr; to

denote the set of all simple predicates defined on a relation R;. The members of Pr;

25

are denoted by p; j. Even though simple predicates are quite elegant to deal with,
user queries quite often include more complicated predicates, which are Boolean
combinations of simple predicates. One combination that we are particularly
interested in, called a minterm predicate, is the conjunction of simple predicates.
Given a set Pri={pi;, pi2, ..., pin} Of simple predicates for relation Ri, the set of
minterm predicates Mi={m;;, my,, my} is defined as Mi={m;| my= A p‘ik , where
pik € Priand 1< k <m, 1 <j <z} where p*,-k = Dy OF p‘,-k = — pu. So each simple
predicate can occur in a minterm predicate either in its natural form or its negated

form.

According to the definition of a minterm predicate given above, a horizontal
fragment can be defined as the set of tuples for which a minterm predicate is true.
Thus there are as many horizontal fragments of relation R as there are minterm
predicates. Here, the way in which predicates and minterm predicates are obtained is
an important design issue. From the above definitions of [Ozsu & Valduriez, 1991],
we know that, the definition of horizontal fragments depends on minterm predicates
and minterm predicates are obtained from simple predicates. This means that first we
have to find simple predicates. If fragmentation is the need of distributed
applications, it is obvious that design of fragmentation will be made according to
application needs. So, we have to analyze all user applications and find the predicates
used in user queries. If it is not possible to analyze all of the user applications to
determine these predicates, we should at least investigate the most “important” ones.
By this way we will obtain the groups of tuples having different references by at least
one application and find a set of simple predicates for every fragment groups. A set
of predicates can be used to describe the fragmentation if they are complete and

minimal.

A set of simple predicates P; is said to be complete if and only if there is an equal
probability of access by every application to any two tuples belonging to any
minterm fragment that is defined according to P;. In other words, P is complete if and
only if any two tuples belonging to the same fragment are referenced with the same

probability by any application. Fragments obtained this way are not only logically

26

uniform in that they all satisfy the minterm predicate, but statistically homogeneous.
To obtain a complete set of predicates automatically require the designer to specify
the access probabilities for each tuple of a relation for each application under

consideration.

The second desirable property of the set of predicates which is minimality simply
states that if a predicate influences how fragmentation is performed (i.e., causes a
fragment f to be further fragmented into, say, f; and f), there should be at least one
application that accesses f; and f; differently. In other words, the simple predicate
should be relevant in determining a fragmentation. If all the predicates of a set P, are
relevant, P, is minimal. A predicate is relevant if it contributes to the distinction of

fragments with different access patterns.

After determining the set of simple predicates, which are both complete and
minimal, we can derive minterm predicates on them. These minterm predicates
determine the fragments that are used as candidates in the allocation step. In the
determination of individual minterm predicates, there is a difficulty of encountering
quite large set of minterm predicates. Thus we should eliminate some of the minterm
fragments that may be meaningless. Elimination is performed by finding minterms
that might be contradictory to a set of implications 1. This example from [Ozsu &
Valduriez, 1991, p.113] will help to better understand the process of finding simple
predicates, accordingly finding minterm predicates and elimination of minterm

predicates.

For example, if P, = {p,, p:}, where p, : att =value_1; p,: att = value 2 and the
domain of att is {value 1, value_2}, it is obvious that I contains two implications,
which state]

i;: (art = value 1) = —fatt=value 2)

iy : —(att =value 1) = (att=value 2)

The following four minterm predicates are defined according to P,’:

my : (att = value 1) A (att=value_2)

my : (att = value 1) A —(att=value_2)

27

-m3 : —(att=value_1) A (att=value_ 2)
my : —(att=value_1) A —(att=value_2)
In this case the minterm predicates m; and m4 are contradictory to the

implications I and can therefore be eliminated from M.

There are two types of horizontal fragmentation, primary horizontal
fragmentation and derived horizontal fragmentation. Before defining these types
separately, I want to define the terms source (owner) and target (member) relations
being related with the join connection between relations. ‘The relation at the tail of a
link is called the owner of the link and the relation at the head is called the member’

[Ozsu & Valduriez, 1991].

A primary horizontal fragmentation is defined by a selection operation on the
owner relations of a database schema. The formula used in the selection operation is
a predicate that is defined on the attributes of the owner relation. Primary horizontal
fragments of a relation R can be defined formally as R; = 6 £ (R), 1 <1< w where E;

is the selection formula used to obtain fragment R; .

In derived horizontal fragmentation on the other hand, fragmentation is defined on
a member relation of a link according to selection operation specified on its owner.
In other words, member relation is partitioned according to the predicates being
defined on its owner relation. The link between the owner and the member relations
is defined as an equi-join. The fragmentation of the member relation is made by
using semijoin, because we want to partition a member relation according to the
fragmentation of its owner, but we also want the resulting fragment to be defined
only on the attributes of the member relation. Assume that the owner relation S is
fragmented as S;=or(S) in which each fragment of S is obtained by the formula F;
(here F; is the selection formula defined on the attributes of S, if F; is in conjunctive
normal form, it is a minterm predicate). To apply the derived horizontal
fragmentation to R which is the member relation of S, we should make a semijoin
operation between R and each fragment of S. In formal terms, R; =R 8] §;, 1 < 1<w

where w is the maximum number of fragments that will be defined on R. Then any

28

fragmentation algorithm will need three inputs which are the set of fragments of the
owner relation, the member relation and semijoin predicates between the owner and

the member.

Here, one question may be asked: In a database schema, generally there are more
than two links into a relation R. In this case there is more than one possible derived
horizontal fragmentation of R. Then how should we choose the owner relation
according to which derived horizontal fragmentation is made? The decision is

dependent on the application characteristics.

In both the primary and the derived horizontal fragmentation, reconstruction of a
global relation from its fragments is performed by the union operator. Thus, for a

relation R with fragmentation Fg = {Ry, R»,..., Ry}, R=UR;, VR;eFR.

After all these information about horizontal fragmentation, it is important to state
the way of join operation between fragmented tables. There are several ways to do
that. Every tuple of every fragment of a table can be compared with every tuple of

every fragment of another table. The join graph can be seen in Figure 3.2.

S>X

F2 = S
\\X A

N\

Fn Gn

Figure 3.2 Complete Comparison of Fragmented Tables

29

Although it seems completely true from the operational point of view, it requires
high network traffic and a lot of comparisons. The cost can be reduced if not every

fragments are to be compared with each other. This way is called as a partitioned join
(Figure 3.3).

F1 ><- 1
2 el S)
Fn. Gn

Figure 3.3 Partitioned join

The most optimal case is when every fragment is compared with only one other

fragment. Simple join graph (Figure 3.4):

Fl Gl
F2 — G2
Fn Gn

Figure 3.4 Simple join graph

Vertical Fragmentation: In vertical fragmentation different columns (attributes)
of a file are distributed to different sites. In this case fragmentation is made by using
projection operation on a relation. To preserve unique access, each fragment includes
a primary key column. Beside the primary key, according to the application needs,

fragmentation is continued by choosing other necessary attributes for each fragment.

30

In vertical fragmentation, reconstruction of global relations is made by the join
operation. Detailed information about this type can be found in [Ozsu & Valduriez,
1991], [Muthuraj et al., 1993].

Mixed Fragmentation: The mixed fragmentation means that a fragment is
recursively fragmented, meaning that horizontal fragment might be vertically
fragmented or vertically fragment might be horizontally fragmented. Reconstruction
can be obtained by applying the construction rules in inverse order. Detailed

information about this type can be found in [Ozsu & Valduriez, 1991].
3.3.1.2. Ways to test the correctness of decomposition

There are some rules, which are enforced during fragmentation. These rules
ensure semantic consistency of the database during fragmentation. These are
completeness, reconstruction and disjointness. Completeness means that any data
item that can be found in global relation can also be found in one or more of its
fragments. By this way, data in a global relation is mapped into fragments without
any loss. As the name implies, reconstruction means composing the global relation
from its fragments by using an operator which will be different for every type of
fragmentation (union for horizontal, join for vertical fragmentation). The last one is
disjointness which has the meaning of the fact that any data item can be found in
only one of the fragments of a global relation, in other words, the same data item can
not exist in more than one fragment. In vertical partitioning, disjointness is defined
only on the nonprimary key attributes of a relation, because its primary key attributes

are typically repeated in all its fragments.
3.3.2. Replication

In a distributed DBMS a relational table or a fragment of it may be replicated or
copied and copies may be distributed throughout the database. Replication is a very
important design issue in distributed databases with several advantages. First, by

replication even if some nodes are down, queries can be processed on another copy

31

of data. Second, read-only queries on the same data item can be executed in parallel,
because concurrent accesses to the same data item can be directed to another site
which has the replica of that data; by this way fast response will be given to the user
queries and work load of any site which has replicated data will be decreased. Thus,

replication increase processing power and reliability of the system.

The above advantages of replication are needs of distributed systems that force
replication. But, we should consider the difficulties also in applying replication
technology. Because data is replicated at more than one place, this will require
additional storage space. Replication causes problems especially in update queries,
because when some data item is updated, all of the replicas of that data item should
be updated and this will bring additional time, cost and complexity to update
operations. Besides these, if replicated data is not updated simultaneously, there is a
possibility of getting incorrect data. If replicated data has become inconsistent,
because the replicated data is updated at multiple sites within the same replication
interval, this situation is called an update conflict. Briefly, replication can cause
problems for propagating updates and concurrency control. Therefore, the decision
regarding replication is a trade-off which depends on the ratio of the read-only

queries to the update queries.

Update propagation algorithms are responsible for updates on replicated data.
According to the needs of application domain, dimension of time is a very important
issue and this question arises: when replicated data is updated, do the updates need to
be applied to other copies in real-time or can the updates be propagated on a deferred
basis [Oracle 7]? The answer to this question determines the choice of update
propagation algorithms. In some systems, temporary inconsistencies in replicated
data could be tolereted in a limited time interval, or in others the existence of
inconsistency may cause big problems, no matter if this consistency exists for too
short or long. According to these application domains, there are two main types of
technology. Real-time remote data access and real-time application of updates to

replicated data is provided by synchromous distributed database technology.

32

Deferred remote data access and deferred propagation of replicated data updates is

provided by asynchronous distributed database technology.

With synchronous replication all copies of data are kept exactly synchronized and
consistent. If any copy is updated the update will be immediately applied to all other
copies within the same transaction. Synchronous replication is appropriate when this
exact consistency is important to the business application. Two-phase commit
protocol which will be examined in more detail in section 3.7.3 is an algorithm that
ensures keeping all replicated data synchronous by adopting the “all or nothing
approach”. While two phase commit may be appropriate for situations where a
corporation absolutely needs to synchronize distributed data, it comes at a price:
Since all distributed sites need to synchronously approve a transaction before it is
accepted, if any one site is unavailable, the transaction will have to wait. Operations
are therefore exposed to individual component outages. Furthermore, the elaborate
handshaking mechanism, with messages going back and forth between sites as they
coordinate the acceptance of the data, puts a significant burden on corporate
networks. Briefly, all-or-nothing approach is too costly to employ, when the number
of sites is very large. In [Shirota et al., 1998], this situation is explained as ‘With
eager replication, which updates ail replicas whenever a transaction updates any
instance of the object, a ten-fold increase in the number of sites would result in a
thousand-fold increase in failed transactions (deadlocks)’ and as an alternative to this
all-or-nothing approach, a weak consistency model (allows a certain level of
asynchronosity and do not require replica updates to proceed in at all sites) called

ECHO is introduced.

With asynchronous replication, copies or replicates of data will become
temporarily inconsistent with each other. If one copy is updated, the change will be
propagated and applied to the other copies as a second step, within separate
transactions, that may occur seconds, minutes, hours, or even days later. Copies
therefore can be temporarily inconsistent, but over time the data should converge to
the same values at all sites. Ensuring convergence in asynchronous replication

environments is critical for nearly every application. To ensure convergence, update

33

conflicts must be detected and resolved, so that the data element has the same value
at every site. Alternatively, update conflicts may be avoided by limiting "ownership”,

or the right to update a given data element, to a single site.

Understanding the tradeoffs between these two technologies is key to deterinining
which to use to solve a particular business problem. The tradeoffs between these two
involve application integrity, complexity, performance, and availability and both
technologies will be needed to solve different aspects of the problem. Synchronous
technology ensures application integrity and minimizes complexity, but can be less
available if the systems and networks involved are not reliable. It can also incur poor
response time if network access between systems is slow. Asynchronous technology
maximizes availability and response time, but can be more complex and requires
careful planning and design to ensure application integrity. In asynchronous
technology, transactions operate against local data only. They may initiate deferred
operations which need to be propagated to other systems but if these other systems

are not available the propagation will be deferred until the systems come back up.

Some products use snapshots of changes being one of the implementation
methods of asynchronous replication. The snapshot function monitors source table
updates and at specified intervals (or on user request) extracts and ships that data to
the target or targets to synchronize them. This can be highly efficient, optionally
shipping only the net effect of the period's processing, but suffers from the problem
of extended periods of inconsistency between the source and target replicas.
Snapshots therefore cannot be used to provide continuous or near real time
consistency, severely limiting the potential applications. Snapshots also rely on only
one of the replicas being the source. Therefore all target replicas must be read only,
again limiting the potential applications. Snapshot data replication products are table
consistent. That is, they assure that at the completion of a snapshot replication, all
copies of a table are consistent. As individual transactions may update several tables,
snapshots must be carefully synchronized to prevent inconsistent relationships
between tables. Briefly, snapshots do not maintain the integrity of transactions and

copy individual data tables or data items without maintaining the atomicity of a

34

transaction. With transactions broken, the integrity of the distributed data is
threatened.

In addition to snapshots, triggers are another asynchronous mechanism provided
by some database vendors for the purpose of one-way data replication. A trigger can
be thought as an alarm in the database which is associated with a specific piece of
data. When a change is made to the tagged data item, that change 'triggers' an alarm
inside the source database. The alarm in turn activates replication-specific code
inside the source database which begins the replication process. While offering
customers more flexibility than snapshots, early trigger-based replication systems did
not overcome the fundamental flaw of snapshot technology: the lack of protection of

the transactional integrity of customer data. Trigger limitations include:

e Triggers simply transfer individual data items when they are modified, they do
not keep track of transactions.

e Triggers allow one-way replication only. Data on replicate sites is read-only
and cannot be modified.

e The execution of triggers within a database imposes a performance overhead to
that database.

e Triggers require careful management by database administrators. Someone
needs to keep track of all the 'alarms' going off when data is modified.

e The activation of triggers in a database cannot be easily 'rolled back’ or undone.

To summarize, in early trigger-based replication systems, it is left entirely to the
customer to build applications that kept track of and protected the integrity of

transactions [Sybasel].

To solve the transactional integrity problem, vendors begin to offer transaction-
based replication with triggers or rules. Instead of letting the customers build their
own replication systems using triggers or rules as their assembly tools, triggers are
used in-house to build replication products, thus isolating customers from the

underlying triggers or rules. With the introduction of processes that grouped data

35

changes into transactions after they were triggered inside the source database, trigger
or rule based replication systems solved the problem of losing the transactional
integrity of the data. But this method still has the same problems with non-

transaction based replication with triggers except the first and second shortcomings.
3.3.3. Allocation

After partitioning the database into fragments, second step in a distributed
database design is allocation which means that distributing these fragments into
various sites on the network. In determining the proper sites for fragments, minimal

cost and maximal performance would be the aim of designers.

Minimal cost consists of storage cost (no unnecessary replications), data retrieval
cost (to try to place the fragment on the site of the application), data update cost (to
minimize the replication of the read-write data elements) and communication cost (to
find the sites near the application and to try to maximize the local processing).
Maximal performance consists of minimizing response time (every application
should find a replica of the data on the local or a close site) and maximizing
throughput (to allow several concurrent applications). In fact, minimizing cost and
maximizing performance are closely related issues. When we are trying to minimize

cost, we will be maximizing the performance; the contrary case is also true.

There are two main types of fragment allocation strategies: non-redundant and
redundant. In non-redundant allocation strategy every fragment is stored at only one
site, there 1s no replication; in redundant allocation strategy a fragment may be
replicated on different sites. The redundant storage may rise the efficiency but it is
more complicated to design it. According to these main allocation strategies, there
are three types of allocation algorithms, which are best-fit algorithm, all beneficial
sites algorithm and additional replication algorithm. Best-fit approach is based on
non-redundant strategy and the site, which is determined as the best according to
measurements, is selected to allocate data. Therefore the data will be at only that site

without replication and the system will lack of the advantages coming from

36

replication. All beneficial sites algorithm is based on redundant strategy in which all
the sites that are determined as beneficial in the result of measurements are selected
to allocate the data. The goodness of a site is measured by the benefit of the local
read accesses and the costs of remote update accesses. This may cause unnecessary
replication of data and therefore may result in performance penalties. The third
algorithm is trying to decrease these penalties resulting from best-fit and all
beneficial sites algorithms by having an idea between these extremes. While it is
redundant, because it wants to benefit from replication; it avoids unnecessary
replication by starting from a non-redundant allocation and adding beneficial

replications to the system if necessary.

Briefly, a non-replicated database (commonly called a partitioned database)
contained fragments that are allocated to sites, and there is only one copy of any
fragment on the network. In case of replication, either the database exists in its
entirety at each site (fully replicated database), or fragments are distributed to the
sites in such a way that copies of a fragment may reside in multiple sites (partially

replicated database) [Ozsu & Valduriez, 1991].

3.4. Important concepts in the design of Distributed Databases

3.4.1. Transparency

With the improvement of DBMS, the form of data processing in which data
definition and maintenance were embedded in applications is left and by abstracting
these functions out of the applications and letting them to the responsibility of
DBMS, data independence concept is introduced. Therefore, application programs
are not aware of the logical and physical organization of data and vice versa.
Distributed database technology has the aim of extending the concept of data
independence to environments where data is distributed among different machines

connected by a network.

37

Transparent access to data separates the higher level semantics of the system from
lower level implementation issues. Thus, the database users would see a logically
integrated, single-image database even though it is physically distributed and they
will be able to access the distributed database as if it were a centralized one
[Casavant & Singhal, 1994]. Briefly, the distributed nature of the database is hidden
from users; neither the users nor the programmers need to know where or how the
database stores the data. To the user, operations appear to run against one contiguous
database. The system alone manages distribution. With this transparency given by
the distributed database management system, users continue using familiar database
platforms and products, minimizing the cost of software and hardware purchases and
retraining users. A distributed approach also allows users to continue using familiar

database applications [Richter, 1994].

When we consider the distributed database environment in detail, we can easily
find which futures will be transparent to users. First, different from any DBMS
environment, there is a network that needs to be managed and the user should not be
interested in operational details of the network. This abstraction of user from network
is called network (location or distribution) transparency. Second, in a distributed
database environment, relations are partitioned into fragments, but user queries are
specified on entire relations. In this situation, distributed DBMS should translate the
query specified on entire relations to the several queries specified on the fragments.
This is called fragmentation transparency. Another thing that must be hidden from
user is the replication of data items. The user should act as if there is a single copy of
the data. The system should handle the management of copies, and this feature is

called replication transparency.

Although transparency is the goal of a distributed database technology, there are
still some disagreements in giving full transparency. In [Casavant & Singhal, 1994],
poor manageability, poor modularity and poor message performance are given as
reasons for being against full transparency. It is obvious that transparent access to
data will bring additional complexity to systems, while simplifying the users

progress. But transparency, which is the original goal of distributed database

38

systems, should not be given up. Here, another question arises which is controversial:
Who will be responsible for providing transparency? It can be user applications,
operating system or distributed DBMS itself. When user applications are responsible
for transparency, I think this will damage the concept of data independence. When an
operating system is responsible, there will be a mismatch between requirements of
the distributed DBMS and the functionality of the existing operating systems.
Because, existing operating systems lack the functionality like distributed transaction
support and efficient management of distributed data. Distributed DBMSs also
require some modifications on operation systems traditional functions. In this
context, it will be meaningless to embed too much database functionality inside the
operating system kernel or to change traditional functions of operating system. In
fact, it is clear that the convenience between the operating system and distributed
DBMS is the most important one. The operating system should be flexible enough to
support distributed DBMS functions and implement only the essential OS services
and those DBMS functions that it can efficiently implement. In [Ozsu & Valduriez,
1991, pp. 71,72] this situation is explained as:

It is therefore quite important to realize that reasonable levels of transparency
depend on different components within the data management environment. Nerwork
transparency can easily be handled by the distributed operating-system as part of its
responsibilities for providing replication and fragmentation transparencies. The
DBMS should be responsible for providing a high level of data independence
together with replication and fragmentation transparencies. F inallv the user
interface can support a higher level of transparency not only in terms of a uniform
access method to the data resources from within a language, but also in terms of
structure conmstructs that permit the user to deal with objects in his or her

environment rather than focusing on the details of database description.
3.4.2. Autonomy

There may be different forms of autonomy in an environment consisting of

multiple points if these points have an idea of doing a cooperative work. These points

39

may be totally isolated from the environment they exist, therefore they are as free as
possible in the shape of their work. They may be semi-autonomous, therefore while
being aware of the environment they exist and having a cooperative work with other
points in that environment, they may be free in some details of the work. In a tightly
integrated environment, all the points have to do cooperation and they will never be

free in some decisions although they have capability do to so.

In the context of distributed databases, autonomy indicates the degree to which
individual DBMSs can operate independently. In tightly integrated systems, DBMSs
can not operate independently, ‘although they have the functionality. Thus an entire
database is seen as a logically centralized database by the users. If a system is semi-
autonomous, DBMSs can operate independently, but they can decide to participate in
a federation to make some parts of their database accessible to other DBMSs. In a
total isolation, there is no global control over the execution of individual DBMSs and

therefore they are not aware of the existence of other DBMSs.

It will be difficult to execute user transactions involving multiple DBMSs if they
are totally isolated because of the lack of global control. But there are also benefits of
site autonomy. Some of the benefits of site autonomy are [Oracle 7]:

e Local data is controlled by the local administrator. Therefore, each

administrator's region of responsibility is smaller and more manageable.

¢ Independent failures are less likely to disrupt other nodes of the distributed

system. The global database is partially available as long as one database and
the network are available. No single database failure need halt all global
operations or be a performance bottleneck.

o Failure recovery is usually performed on an individual node basis.

o Nodes can upgrade software independently.

40

3.5. Architectural models for Distributed DBMSs

In Figure 3.5 taken from [Ozsu & Valduriez, 1991], different architectural models
for distributed DBMSs are examined in three dimensions which are autonomy,
distribution and heterogeneity. We know that autonomy means the distribution of
control (tight integration, semi-autonomy and total isolation), distribution means the
data distribution (either the data is distributed physically over multiple sites or it is
kept at only one site), and heterogeneity means differences among individual
DBMSs in terms of data models, query languages and transaction management
protocols (two points are examined, in homogeneous systems each site has the same

DBMS, in heterogeneous systems DBMSs are different).

In a distributed database, there must be three types of schema by which an
integrated view of the individual databases is obtained. These are global schema.
fragmentation schema and allocation schema. A global schema is a global view of all
databases. A fragmentation schema is a one to many mapping between the global
relations and fragments; and defines how relations are partitioned into fragments.
The third one is an allocation schema, which is a mapping between fragments and
sites; and determines the allocation of fragments into sites with or without
replication. If this mapping is one to one, then the database is non-redundant, if the

mapping is one to many, then the database is redundant.

41

Distribution
Distributed,
.) Distributed homoge neous, Cistributad,
Logically integrated ‘ homogenecu s fadarated homogeneous,
and homoganeous DBMS DBMS mu ti-DBMS
multiple DBMSs
Distributed
heteroge necus
DBMS
Homogeneous
/ fademted DEMS
Distributed
hetemgenecus
fedemted DBIMS —J-
. Autonomy
Heteroganesous Mut-DBIMS
integrated DBMS
Jstributec
hate ogenaous
f multFDBMS
: Single site Haterogeneous
Heterogeneity hateroganaou s multi-DBIS
fadarated DBMS

Figure 3.5 Architectural models for distributed DBMSs

In an autonomous environment, since each individual database is free, local
access is done using a local DBMS and its schema. When remote access is necessary,
then this is done through a global schema, which is an integrated view of the
distributed database. If local databases are tightly integrated, this means that they are
not permitted to use their local DBMSs individually, and without distinction between

local or remote, all accesses are done through a global schema.
3.6. Query Processing

There are two main types of languages in which a query can be expressed,
relational algebra and relational calculus. These are mathematical or pure relational
languages and it is proved that both of them are equivalent in expressiveness.
Relational algebra has a procedural nature and there is more than one way to write a
query in relational algebra. Here, an important point is that, each different
representation of the query results in a different execution cost. Therefore it requires

a judgement to select one of the best way by considering the query execution cost.

42

However, relational calculus is more abstract and definitional which means that, the
user only writes the requirements of the query, not the way it should be executed and
let the responsibility of finding a procedure to execute the query, and return the
result, to the query processor module of a DBMS. To give this simplicity to users in
writing queries, non-procedural languages derived from relational calculus are
developed. SQL (Structured Query Language) is a calculus-flavoured language that
uses English language keywords. More information about the query languages can be

found in [Ozkarahan, 1997].

After understanding the query written by a user in an abstract calculus-flavoured
language, the query processor module has to decide the best way to execute it.
Therefore it transforms the high level user query in relational calculus into a
sequence of database operations on relational algebra. There are more than one
equivalent and correct representations of a query in relational- algebra, therefore
query processor has to choose the best one that minimizes resource consumption.
The query processing problem is much more difficult in distributed environments
than in centralized ones, because not only choosing the best order of algebraic
operations, but also a larger number of parameters affect the performance of
distributed queries. In particular, the relations involved in a distributed query may be
fragmented and/or replicated, thereby inducing communication overhead costs. The
distributed query processor must select the best sites to process data, and possibly the
way data should be transformed. This increases the solution space from which to
choose the distributed execution strategy. Briefly, more than a centralized query
processor, the role of a distributed query processor is transforming calculus query

into an algebraic query described on relation fragments.

In [Ozsu & Valduriez, 1991], there are four layers of query processing. The first
three layers are performed by a central site, and use global information; the fourth is

done by the local sites:

1. Query Decomposition: This layer transforms the distributed calculus query

into an algebraic query on global relations.

43

2. Data Localization: The input to the second layer is an algebraic query on
global relations. In this layer, distributed algebraic queries expressed on globai
relations are mapped into queries on physical fragments of relations by
translating relations into fragments. This process is called localization because
its main function is to localize the data involved in the query. This layer
determines which fragments are involved in the query and transforms the
global query into a fragment query.

3. Global Query Optimization: This layer finds the best ordering of operations
in the fragment query by considering the cost function which is a weighted
combination of I/O, CPU, and communication costs. The decision to minimize
communication cost includes data movement between sites and where each
part of the query will be executed. Especially in wide area networks, where the
limited bandwidth makes communication much more costly than local
processing, I/O and CPU cost can be neglected to simplify the cost function.

4. Local Query Optimization: The last layer is performed by all the sites having
fragments involved in the query. Each subquery executing at one site, called a
local query, is then optimized using the local schema of the site. Local

optimization uses the algorithms of centralized systems.

Among the layers of query processing, choosing the best point in the solution
space of all possible execution stategies; namely query optimization, is the most
important one. In choosing the best execution strategy, exhaustive search method is
the most common one. This method exhaustively predicts the cost of each strategy.
and selects the strategy with minimum cost. Although it is very efficient, it causes
high optimization cost when the search space is large. To reduce the cost of
exhaustive search, some heuristics are used. The goal of the heuristics is to restrict
the solution space so that only a few strategies are considered. One of the most
common heuﬁstics is minimizing the size of intermediate relations. This is done by
performing unary operations first and ordering the binary operations by the
increasing sizes of their intermediate relations. Another important heuristic is

replacing join operations by combinations of semijoins. Since the semijoin operation

has the important property of reducing the size of the operand relation, it is prefered

especially in distributed environments to minimize data communication.

According to the time when the query optimization is made, there are two main
types of query optimization, static and dynamic. Static query optimization is done at
query compilation time, before the query is executed. Since the sizes of the
intermediate relations are not known until run time, they must be estimated using
database statistics. Thus the optimality of the strategy is depending on the correctness
of the statistics. Dynamic query optimization is done at query execution time. At any
pbint of execution, the choice of the best operation can be based on accurate
knowledge of the results of the operations executed previously, therefore there is no
need for database statistics. Of course these two types have some advantages and
some disadvantages. First, since static query optimization is done before execution; it
can be advantageous if that query will be executed more than once, thus amortizing
the optimization cost. In dynamic query optimization we have to do optimization for
every execution of the query, which is very expensive. On the other hand, while
static query optimization is based on database statistics, which can have errors
causing sub-optimal solutions, dynamic query optimization is eliminating these
errors by depending on accurate results.

Providing the ad—\./antages of static query optimization while avoiding the issues
generated by inaccurate estimates, hybrid query optimization is derived. The
approach is basically static, but dynamic query optimization may take place at run
time when a high difference between predicted sizes and actual size of intermediate

relations is detected.

In query optimization, to choose an efficient execution plan, we need accurate
estimates of the costs of alternative plan;. bne of the most important factors that
affect plan cost is selectivity, which is the number of tuples satisfying a given
predicate. Therefore, in most cases, the accuracy of selectivity estimates directly
affects the choice of best plan. In [Chen & Roussopoulos, 1994], a method called
“Adaptive Selectivity Estimation Using Query Feedback™ is introduced. The goal of

45

this method is to approximate fy (A is an attribute of relation R, and f, is the actual
distribution of A) by an easily evaluated function f which is able to selfadjust from
subsequent query feedbacks. Thus, given a sequence of queries q1, 92, ... , We can
view f as a sequence fy , f1, f; , ... where f.; is used to estimate the selectivity of g;
and after q; is optimized and executed, f;.; is further adjusted into f; using feedback

(which contains the actual selectivity of query g; after the execution).
3.7. Transaction Management

We need databases to store our meaningful data, then the database should have
some rules to obey while doing any operations on the data. Users may perform
wrong operations (updates, insertions and deletions) or wrong sequences of right
operations on the data and these will introduce inconsistencies in the database. A
database is consistent if it obeys all the consistency (integrity) constraints over it.
Transaction management deals with the problems of always keeping the database in

a consistent state even when concurrent accesses and failures occur.

While concurrency control and reliability protocols try to keep the database
always in a consistent state, another fundamental issue concerning integrity
constraints is constraint checking, that is the process of ensuring that the integrity
constraints are satisfied after a transaction is completed over the database. The cost,
which is associated with the performance of the checking mechanisms. is the main
quantitative measure, which has to be supervised carefully. Different criteria have
been used to assess this performance such as the time to check the validity of the
constraints against updates. Generally, an efficient constraint checking strategy tries
to minimize the utilization of the computing resources involved during the checking
activities. A common goal addressed by previous researchers in this field is to
propose constraint simplification sfrétegies, which manage to derive a better set of
constraints than the initial set. A simplification strategy is said to be efficient if the
evaluation of the generated simplified forms has effectively reduced the cost of
integrity checking compared to the evaluation of the initial constraints. The cost of

evaluating an integrity constraint includes the following main components: (i) the

46

amount of data accessed - this is related to the checking space of the integrity

constraint; (ii) the amount of data transferred across the network; and (iii) the number

of sites involved.

In [Ibrahim et al., 1998], it is showed how the SICSDD (an integrity constraint

subsystem for a relational distributed database, that they have developed) techniques

have effectively reduced the cost of constraint checking in a distributed environment.

Their techniques are constraint preprocessing, constraint distribution and

integrity test generation. They are summarized below:

Constraint preprocessing techniques: There are five steps that are applied

which are performed by the following procedures:

constraint transformation procedure: transforms the constraints
specification at the relational level into a constraints specification at the
fragment level. Initially, each occurrence of a relation R in a constraint 1s
replaced by its n fragment relations, R; .

simplification procedure: simplifies a set of fragment constraints if the
relations involved in the constraints are fragmented on a join/reference attribute
using the same fragmentation algorithm. This reduces the number of
joins/references required during the evaluation of the constraint set.
subsumption procedure: excludes redundant fragment constraints from a set.
Even though a redundant set of constraints is semantically correct, excluding
redundancy can improve the enforcement time.

contradiction procedure: removes the fragment constraints produced by the
constraint transformation procedure, which contradict the fragmentation rules.
reformulation procedure: removes redundant semantic constructs that may
exist and reformulates the set of fragment constraints into alternative forms

which can be in equivalent form.

Constraint distribution techniques: Reduce the number of constraints allocated

to each site by allocating a fragment constraint to a site if and only if there 1s a

47

-

fragment relation at that site which is mentioned in the constraint, so-that whenever
an update occurs at a site, the validation of the fragment constraints at that site
implies the global validity of the update. Consequently, these techniques intend to
allocate each fragment constraint to a site or minimal number of sites and relieve the

irrelevant sites from the computation of certain sets of fragment constraints.

Integrity test generation techniques: Generate integrity tests from the syntactic
structure of the constraints and the update operations. The algorithms applied for

deriving these tests use the substitution, subsumption and absorption rules.

A detailed information can be found at [Ibrahim et al., 1998].

3.7.1. Introduction to Transactions

A transaction is a basic unit of consistent and reliable computation. Similar to the
query. a transaction performs an action on the database and generates a new version
of it. therefore causing a state transition from one state of the database to the other.
An important point here is, while we can not ensure that an execution of the query
will result in a consistent new state of the database; in a transaction this is ensured.
Therefore, a transaction may be thought of as a program with emb@ded database

access queries.

If the transaction can complete its task successfully. we say that the transaction
commits, otherwise it aborts. When a transaction is aborted, its execution is stopped
and all of its already executed actions are undone by returning the database to the
state before their execution. This situation is called as rollback. A transaction may
abort itself if a condition exist that prevent it from completing its task successfully;
or the DBMS may abort a transaction because of the deadlocks or o;cﬁér conditions.
When the commit command is issued, the DBMS understands that the effects of the
transaction will be reflected in the database, and once a transaction is committed, the

results are permanently stored in the database and cannot be undone.

48

There are four properties of transactions; atomicity, consistency, isolation and
durability. These properties are main factors for a transaction to ensure database
consistency and reliability. Atomicity means that either all actions of a transaction
are completed or none of them are. In other words, it refers to the fact that a
transaction itself, in its entirety is a unit of operation. If the execution of the
transaction is interrupted by any sort of failure, DBMS would be responsible for
either completing the remaining actions after recovery or terminating it by undoing
all the actions that have been executed by the help of reliability protocols.
Consistency means the correctness of a transaction meaning the transition from one
consistent database state to another. Ensuring transaction consistency is the
responsibility of concurrency control mechanisms. Isolation is a property of
transactions, requiring the condition that an executing transaction cannot reveal its
results to other concurrent transactions before its commitment. If two concurrent
transactions can reach the same data item that is just updated by one of them, there is
a big possibility that the second one will get incorrect values, because their
operations wont be isolated and interfere with each other. By this property.
incomplete results are not permitted to be seen by other transactions preventing the
lost updates. Besides the lost updates problem. if one transaction’s incompleted
results are seen by others, and the transaction aborts, then all the other transactions
which have used incomplete results have to abort as well. This situation is called as
cascading aborts. Providing isolation property to transactions is also the
responsibility of concurrency control mechanisms. The last property of transactions
is durability meaning that the results of a committed transaction are permanent and
cannot be erased from the database even there is a site failure. In obtaining

durability, again reliability protocols have an important role.

3.7.2.Concurrency Control Protocols

Concurrency control deals with the isolation and consistency properties of
transactions. When a concurrency control will be valid for a distributed database. we
have to care about partitions and replicas of data items also, therefore the problems

of concurrency control in a distributed DBMS are more severe than in a centralized

49

DBMS. In fact, if we execute each transaction alone, one after another, there will be
no inconsistency, but we should also think of the throughput of the system, therefore
we should consider concurrent accesses and find methodologies to solve the
consistency problem. There are two major classes of concurrency control algorithms:

locking-based and timestamp-based.

Locking-based Concurrency Control Algoritms

In the locking-based algorithms, the synchronization of transactions are achieved
by employing physical or logical locks on the portion of the database, which is being
accessed by a transaction. Therefore, when any portion of the database is locked by a
transaction, other concurrent transactions have to wait to access that portion until the
transaction helding the lock finishes its execution. The termination of a transaction
results in the release of its locks and initiation of another transaction that might be

waiting for access to the same data item.

When we aim increased throughput, it seems advantageous for a transaction to
release its locks on any data item, as soon as it finishes operation on it, although it is
not terminated yet. But this will violate the isolation and atomicity properties of
transactions, since transactions will interfere with each other. Therefore, two-phase-

locking algorithm seems to be a solution.

Two-phase-locking (2PL) algorithm

This algorithm states that, a transaction should not release a lock until it is certain
that it will not request another lock. To ensure this rule, 2PL algorithm execute
transactions in two phases which are growing phase where a transaction obtains all
the locks it needs, and shrinking phase, in which all the obtained locks are released.
The point between these two phases, in other words, the point in which a transaction

obtaines all of the locks but has not yet relesed any of them is called the lock point.

Lock point

4

£

i

i Phase 1

Number of locks

1

1 Obtain lock
lRelease lock

L

BEGIN

Phase 2 i
E

Oy

N

Figure 3.6 2PL Lock Graph

50

As shown in Figure 3.6, in this algorithm, a transaction begins to release its locks

in second phase, after obtaining all the locks, finishing operation on them and it is

sure that no other locks wont be needed. This means that in the second phase of a

transaction, other transactions can obtain its locks, therefore increasing the degree of

concurrency. But here, another difficulty, which is the determination of lock point

arises. Besides this difficulty, if the transaction aborts after it releases a lock, other

transactions that have accessed the unlocked data item have to abort as well, causing

cascading aborts. The solution could be strict two-phase locking.

e
Ll

—

:
4 H
1

Number of locks

L

r

! Obtain lock

iRele ase lock

. Transaction

BEGIN T~ —E

Period of
data item
use

" duration

Figure 3.7 Strict 2PL Lock Graph

51

-As can be seen from Figure 3.7, in this algorithm, a transaction releases all the
locks together when the transaction terminates (commits or aborts). This algorithm
can be applied in distributed database environment with some modifications. The
simplest way of doing this is, choosing one site as a lock manager having the

responsibility of all the locks in an entire distributed database.

Here, when a distributed transaction is initiated at one site, the transaction
manager (TM) at that site becomes coordinating TM, and sends a lock request to a
central lock manager. If lock manager grants the lock, it sends “lock granted”
message to coordinating TM. Having granted the lock, coordinating TM now free to
distribute the transaction to participating sites. When participating sites finish their
operation, they send “end of operation” message to coordinating TM. After getting
this message from all the participating sites, coordinating TM informs the lock
manager (LM) that the transaction is terminated. by sending “release locks” message.

The communication structure can be seen in Figure 3.8.

Dala Freczsssors al

particdpaling siles Coordinating THA Central Slle LI
= — — ey ,ﬁ'@*—%ﬂ%
- “-ﬁ--‘
opj‘?ﬂ"_n, —
— et
Eh T~ -
id of O!Jer%;"

Figure 3.8 Communication Structure of Centralized 2PL

Although this is a usable algorithm in a distributed database environment, it
shares the main disadvantage of central algorithms, being single point of failure. The
elimination of this disadvantage can be made by using distributed 2PL algorithm

(Figure 3.9). In this derivation of algorithm, all sites are available to be a lock

52

manager, and each- of them are responsible for lock requests for data at their own
sites. A transaction may read any of the replicated copies of item x, by obtaining a
read lock on one of the copies of x, writing on x requires obtaining write locks for all
copies of x (ROWA rule).

Coordinating TM Particpating LMs Participating DPs

Figure 3.9 Communication Structure of Distributed 2PL

Although it is simple to implement locking-based algorithms, these may result in
deadlocks. A deadlock can be defined as a situation, in which transaction T1 waiting
for item A1l held b}T T2, which is waiting for A2 held by T3, and so on, while Tk 1s
waiting for Ak held by T1; which implies a cycle in the waiting for relationship
[Ullman, 1982]. Therefore, timestamp-based concurrency algorithms are generally

preferred.
Timestamp-based Concurrency Control Algorithms

Basically, all transactions are given a unique timestamp and this timestamp is
attached to all operations of the transaction. Therefore transactions are ordered
according to these timestamps. Timestamps are selected from a totally ordered
domain. In a centralized environment, unique timestamps can be obtained simply by
assigning a counter value. But in a distributed environment, a unique timestamp can

be date/time/site combination, or more formally <local counter value, site identifier>.

53

According to these unique timestamps of transactions, which require access to the
same piece of data, the database management system uses one of a number of
protocols to schedule them. In [Ozsu & Valduriez, 1991, p.299], the timestamp

ordering (TO) rule is given as:

“Given two conflicting operations O;j and Oy belonging, respectively, to
transactions T; and Ty, Oy is executed before Oy if and only if ts(T;)<ts(Tx). In this

case T; is said to be the older transaction and Ty is said to be the younger one.”

In this definition ts(T;) means the timestamp of the transaction T;. The basic TO
algorithm is a simple implementation of the TO rule. In [Ozsu & Valduriez notes.
1999], the basic TO algorithm is described as follows: Each data item is assigned a
write timestamp (wts) and a read timestamp (rts). rts(x) is the largest timestamp of
any read on x and wts(x) is the largest timestamp of any write on X. Ri(x) is the read
operation of transaction Ti, and Wi(x) is the write operation of transaction T

According to these definitions:

for an operation Ri(x) ,

if ts(Ti)<wts(x) then reject Ri(x)
else accept Ri(x) and rts(x) € ts(}Ti) r
for an operation Wi(x) ,

if ts(T))<rts(x) and ts(T;)<wts(x) then reject W;i(x)
else accept Wi(x) and wts(x) € ts(Tj)

A transaction’s operation that is rejected is restarted by the transaction manager
with a new timestamp, therefore has a chance to execute it in the next try and by this

way basic TO algorithm never causes deadlocks.

54

3.7.3. Reliability Protocols

The aim of reliability protocols is maintaining the atomicity and durability of
distributed transactions that execute over a number of databases. Commit,
termination and recovery protocols are the reliability protocols that exist in a

distributed database environment.

We know that, in the case of distributed transactions, the global transaction
contains several local transactions. The global transaction is only successful if all of
the local transactions are successful. Commit protocols ensure that a global
transaction is either successfully completed at each site or aborted. One node among
the participating transaction nodes should play the role of a coordinator node. The

coordinator node is responsible for taking the final commit or abort decision.

During the execution of a distributed transaction, some sites might fail. Although
there is a possibility of failures in participating sites, commit protocol synchronizes
the effects of the transaction among multiple sites; therefore the effect of the
distributed transaction on the distributed database should be all-or-nothing. In the
case of failures, besides commit protocol, there are two other protocols that are
necessary, termination and recovery protocols. These protocols are interested in two
faces of a failure problem. While termination protocols address how operating sites
will be affected from failure, recovery protocols address what the failed site should

do when 1t is recovered and restarted.
Two-Phase Commit Protocol

In [Ozsu & Valduriez, 1991, p349], a brief description of the 2PC protocol that

does not consider failures is as follows:

Initially, the coordinator writes a begin-commit record in its log, sends a
“prepare’’ message to all participant sites, and enters the WAIT state. When a

participant receives a ‘prepare’” message, it checks if it could commit the

55

transaction. If so, the participant writes ready record in the log, sends a “vote-
commit” message to the coordinator, and enters READY state; otherwise, the
participant writes an abort record and sends a “vote-abort” message to the
coordinator. After the coordinator has received a reply from every participant, it
decides whether to commit or to abort the transaction. If even one participant has
registered a negative vote, the coordinator has to abort the transaction globally. So
it writes an abort record, sends a “global-abort” message to all participant sites.
and enters the ABORT state; otherwise, it writes a commit record, sends a “global-
commit” message to all participants, and enters the COMMIT state. The participants
either commit or abort the transaction according to the coordinator’s instructions
and send back an acknowledgement, at which point the coordinator terminates the

transaction by writing an end-of-transaction record in the log.

This is called centralized 2PC protocol since the communication is between the
coordinator and participants only. In this process, participants do not communicate
among themselves. Coordinator site is the site, where the transaction is initiated. In
Figure 3.10, centralized 2PC communication structure and in Figure 3.11 state

transitions for both coordinator and participating sites can be seen.

56

vote-abort/ global-commit/
| Prepare , vote-commit global-abhort | commited/aborted |
I | [|
Phase 1 Phase 2

C-Coordinator site P-Participating sites

Figure 3.10 Centralized 2PC Communication Structure

INITIAL

Prepare

Commit command
Yote-commit

Prepare Prepare
Yote-abort

Global-abort
Ack

Vote-commit (all}

Vote-abort
Global-comrnit

Global-abort

Caoordinator Participants

Figure 3.11 State Transitions in 2PC Protocol

57

The major disadvantage of the two-phase commit protocol is the fact it is a
blocking protocol. Because a site will be blocked while it is waiting for a message
from another site. This means that, other processes competing for resource locks,
held by the blocked process will have to wait for the locks to be released. This can

cause dead-locking.

Another disadvantage of the two-phase commit protocol is the fact a transaction
can hang if a participant site fails while the coordinator is in the ABORT or
COMMIT state -the coordinator is unsure if the transaction has been committed or
aborted. Therefore, it has to wait. If a site is down permanently, this will cause the
coordinator to wait forever and the transaction never gets resolved. On the other
hand, a transaction can also hang if the coordinator goes down and the participant is
in the READY state. The participant can’t unilaterally make a decision to "commit”
or "abort", therefore it remains blocked until the coordinator comes back on-line and
replies "TABORT" or "COMMIT". Else, it will wait forever and the transaction never

gets resolved.
Three-Phase Commit Protocol

Because of the disadvantage of blocking, Three-Phase Commit (3PC) protocol is
designed. The 3PC algorithm is an atomic non-blocking algorithm. A non-blocking
algorithm enables a decision (commit or abort transaction) to be reached at every
participant or at the coordinator despite the permanent failure of other sites (unlike
2PC). Non-blocking protocols are also desirable because they limit the time intervals
during which transactions may be holding valuable resources. The 3PC contains an
additional state, which is between the ready to commit state and the committed
state. This state is called prepared to commit state. The addition of this intermediate

state eliminates blocking since

e There is no state that is “adjacent” to both a commit and an abort state

¢ No noncommittable state that is “adjacent” to a commit state.

58

NN
Coordinator @ Participants

Prapare
Yote-commit

Commit command
Prapare Prpam

Yotecommit
Prepare-to-commit

Votg-abort
Globakabort

Ready-wo-commit
Giobkal comm it

Global commit
Ack

Figure 3.12 State Transitions in 3PC Protocol

More detailed information about termination and recovery protocols used in 2PC
and 3PC protocols can be found in [Ozsu & Valduriez, 1991]. Although 3PC
protocol elimihates the blocking problem, it involves an extra round of message
transmission, which further degrades the performance of DDBSs. In [Reddy &
Kitsuregawa, 1998], a backup commit (BC) protocol is proposed by including
backup phase to 2PC protocol. In this protocol. one backup site is attached to each
coordinator site. After receiving responses from all participants in the first phase. the
coordinator communicates its decision only to its backup site in the backup phase.
Afterwards, it sends final decision to participants. When blocking occurs due to the
failure of the coordinator site, the participant sites consult coordinator's backup site
and follow termination protocols. In this way, BC protocol achieves non-blocking
property in most of the coordinator site failures. However, in the worst case, the
blocking can occur in BC protocol when both the coordinator and its backup site fail
simultaneously. If such a rare case occurs, the participants wait until the recovery of
either the coordinator site or the backup site. BC protocol suits best for DDBS

environments in which sites fail frequently and messages take ionger delivery time.

59

Through simulation experiments it has been shown that BC protocol exhibits
superior throughput and response time performance over 3PC protocol and performs

closely with 2PC protocol.

In {Zhang et al., 1998], a novel approach to atomic commitment of transactions in
distributed database systems is proposed. This approach charges two active nodes,
which are called Master Active Node (MAN) and Secondary Active Node (SAN), by
maintaining passive "blackboards" which record voting status of participant
subtransactions. These active nodes are participating in the process of atomic

commitment of distributed transactions.

We know that 2-phase commit and its derivatives have the synchronization rule
that, the global transaction is successful only when all of the local transactions are
successful, therefore these protocols ensure that a global transaction is either
successfully completed at each site or aborted. Because of this rule, these protocols
represent synchronous replication, which couples together all updates to all locations
participating in an update. This becomes difficult as the number of participating
nodes increases, thus 2-phase commit and its derivatives for updating will be
probably impractical. Any failure in the network or any of the local participating
databases causes the entire transaction to fail, which is very intolerant to failure.
Because of these penalties, different replication approaches are introduced. In these
approaches, the timing between the changes at the different nodes is managed
through mail or store and forward approaches rather than through locked multi-site
transactions. Once the application updates its local data, it is decoupled from the
replication engine, which has the responsibility for propagating the copies of the
changed data to other locations. A transaction managed through a replication
approach is considered successful if it is committed at one site. Although these
approaches are more fault tolerant and therefore more appropriate for many
applications, they can not be used where absolute data synchronization is required for
the application. Examples of such applications would be financial trading and
banking funds transfer. If the application can deal with some inconsistency among

the different data nodes for short periods of time, then replication should be

60

considered as an alternative. Different replication approaches used by some products

of current technology can be found in Chapter 5.1.

61

CHAPTER FOUR
DIFFERENT CLIENT-SERVER DATABASE

SYSTEMS

The general Client-Server model (refer to chapter 2) for network applications can
be easily extended to database systems. The central concept in Client-Server
Database Systems (CS-DBMSs) is that a dedicated machine runs a DBMS and
maintains a main centralized database (DBMS-Server). The users of the system
access the database through either their workstations or PCs via the network. They
usually run their programs locally on their own machines and direct all database
inquiriés and/or updates to the DBMS-Server. In this way, they become the server's
clients. This configuration is termed Standard Client-Server DBMS (SCS) [Delis &
Roussopoulos, 1994]. SCS is the central system, since the database is located at only
one machine and all clients from other machines access it via the network. Different

implementations of SCS from [Delis & Roussopoulos, 1992] are given in section 4.1.

In this model, client and server have different roles. Client’s roles are, managing
the user interface, accepting data from user, processing application logic,
transmitting database request to server, receiving results from server and formatting
results. On the other hand, server’s roles are, accepting database request from clients,
processing database requests, formatting result and transmitting to client, providing
concurrent access control, performing recovery and optimizing query/update

processing.

- The relationship between the client and the server is different in distributed

database systems, a system might act as a server in one transaction and as a client in

62

another. In a distributed client/server relationship, both the client and the server

(hardware and software alike) have data-repository and database-processing duties.
The implementation of client-server model in distributed databases is given in

section 4.2.
4.1.Client-Server Architecture for Centralized Databases

The SCS architecture off-loads CPU processing from the servers to the clients.
The application programs along with other interface utilities, such as the DBMS
presentation manager, are run on the clients without affecting the server. The bulk of
the database processing and I/O remains a server task. Figure 4.1 presents a cluster of

clients with a single server.

To give better response time and increase the system throughput, Client-Server
with Multiple Disks (CS-MD) architecture is developed. The CS-MD architecture
incorporates a large number of disks on the servers and intelligent controllers, which
utilize multiple heads for reading in parallel from replicated data (Figure 4.2). We
assume that each disk has a copy of the database -full replication-, since it provides a
practical approach to the data allocation problem. The job management uses a
locking mechanism similar to that of the SCS concurrent servers with the only
exception that it uses the read-one/write-all protocol, that is, an update commits only
when all disks have finished the update, and a read is done from a single disk, the
one which is idle or has the lightest load. This configuration favours reads at the
expense of updates but avoids the overhead of partial replication and skewed access

patterns.

The major advantage of the CS-MD architecture over SCS is that it distributes
read operations over a number of disks yielding better response times and ultimately
increased system throughput. However, write operations may create additional

conflicts, more blocking, and increased overhead.

SCS Server

Server

Disk

Figure 4.1 SCS Architecture

L

Applicirion Applicarion
SPU&MIE S?{m:m-

Client (it
N

| Comui.SofL l

Applicstion
spofmm

Client

Figure 4.2 CS-MD Architecture

Application
Sofrwgre

Qient

63

The above two architectures centralize the database operations on the servers and

distribute to the clients only application/interface processing. The Enhanced Client-

Server (E-CS) architecture goes further and distributes to the clients a portion of
database operations. Therefore The Enhanced Client-Server DBMS .off-loads disk

accesses from the server by having the clients run a limited DBMS, in terms of

concurrency, and by caching results of server queries to the client disk managers.

Therefore, this model is so important, since it prepares the basics for distributed

client/server database architecture.

To achieve this, it utilizes the local disks available on the client workstations for
caching query results once retrieved from the servers and delivered to the clients.
The additional merit is that the clients' disks are accessed asynchronously
contributing to greater I/O parallelism whenever this is possible. This architecture
requires disk cache management functionality on the clients for dynamic data
migration and incremental maintenance or replacement of cached data. This
functionality is very similar to that of a DBMS except that a) it needs no transaction
recovery and security managers (each client user runs in his/her own locally cached
environment), and b) it is capable of handling cached query results, which are bound

to server(s) relations. The E-CS architecture is depicted.in Figure 4.3.

Initially, the clients can start with either an empty local cache or with some data of
their interest. Queries involving server relations are transmitted to and processed by
the server(s). Their results -in the format of tuples- are shipped to the appropriate
clients for displaying and/or other processing. Clients can then cache these results in
local relations on their disk for later use. At that time, a binding between a client and
the server is created. The binding in the format of query conditions and a timestamp
is stored in the catalog of the client. Bound cached query results are the product of
selections/projections/joins from the server relations. Dynamic caching permits the
clients to define their “operational database space” according to their needs and
constitutes a form of replication. It is reasonable to assume that most clients would
be interested in a subset of the database space, therefore, the degree of replication in
N clients would be less (or a lot less) than N copies (full replication) of the whole

database space.

65

Server Qen DBMS Qien DBMS
DEMS :
] s pphcation
o, T Sofware
Server
Disk
E-CS Server Clieit

Figure 4.3 E-CS Architecture

4.2.Client-Server Architecture for Distributed Databaées

Unlike centralized client/server relationships, in which the database resides
entirely on the server, in distributed client/server relationships, however, both the
client and the server maintain a portion of the database (data and processing) and
alternate between acting as client and as server. In a distributed database, one server
may need to access a database on another server. In this case, the server requesting

the information becomes a client.

We can explain this situation with an example from [Oracle 7]. In Figure 4.4, the
computer that manages the HQ database is acting as a database server when a
statement is issued against its own data (for example, the second statement in each
transaction issues a query against the local DEPT table), and is acting as a client
when it issues a statement against remote data (for example, the first statement in

each transaction is issued against the remote table EMP in the SALES database).

Database Server

Database Server

) S——— | t:‘
DEPT Table - EMP Table
‘ ’ HQ l Sales
Database ‘ Database
Application
TRANSACTION \ i

INSERT INTO EMPQ@SALES..;
DELETE FROM DEBT..;

SELECT. ..
FROM EMPQRSALES. .. ;

COMMIT,

TRANSAGCTION

INSERT INTO EMPRSALES..;
DELETE FROM DEPT..;

SELECT. ..
FROM EMPE@SALES. .. ;

COMMIT;

Figure 4.4 An Example of a Distributed DBMS Architecture

66

67

o

CHAPTER FIVE’ | .
THE CURRENT STATE AND FUTURE

EXPECTATIONS

Up to this point, the necessary information to answer the question “What were the
initial promises and goals of the distributed database technology?”” was given. In this

chapter the answers to the below questions will be examined :

e In section one, “How do the current products measure up to the promises of
distributed database technology?”

e In section two, “Are the goals of distributed database technolgy achievable,
and what are the unsolved problems?” '

e In section three, “What are future expectations?”
5.1. The state of the current products

A first-generation of distributed solutions require conversion of all the databases,
regardless of the platform, to run under the same DBMS program. Since the cost of
converting to a homogeneous, single-vendor solution is too expensive; these
offerings represent a critical first step toward achieving true distributed-database
systems.

Second-generation products solve many of the short-term issues with
heterogeneous distributed-database implementations including cross-server and
cross-platform data access and security, and integration of distributed and

nondistributed systems. New and upcoming releases from the DBMS vendors

68

address many of these issues. Ad&iﬁonally, data-warehousing tools; such as Dynamic -
Information Systems' Omnidex; middleware, including drivers, routers, and
gateways from companies ranging from Borland to IBM; integrated data-access
tools, such as the Personal Series from Uniface and Information Builders' EDA/SQL;
and integrated programming tools, such as Cognos's PowerHouse, Open
Environment's OEC Toolkits, and Inference's ART*Enterprise all provide unique

solutions for data access, security, and integration [Richter 1994].

These second-generation products provide more flexibility in terms of which
systems and DBMS products can be part of the distributed network. However, many
of the technical issues surrounding true transparent distributed databases remain
unsolved in today's commercial products. Nevertheless, the business demand for
client/server and enterprise-wide computing will almost certainly continue to drive

distributed-database technology to more refined and sophisticated heights.

In [Richter 1994], how different products solve data location and transparency

problems and their approaches to commit protocols had been examined briefly:
How different products solve the data location and transparency problem?

e Cincom's Supra Server uses DRDM (Distributed Relational Data Manager)
technology to solve the problem of data location. The DRDM includes a
distributed metadata catalog as well as rules for handling changes across the
system. The metadata catalog includes the key information catalog plus
information about the physical site of the data. All subsequent database
operations (distributed or not) run against the DRDM, thus ensuring accurate
data. . __.. - . o

e Sybase uses its System 10 OmniSQL Gateway interface to provide location
transparency. The OmniSQL Gateway centrally stores a single global catalog
that maps data and other database entitie_s _to their distributed locations. Ali

distributed transactions run through the gateway.

69

e Data-warchouse solutions such as_Omnidex, maintain and use a central
repository of indexed data structures and keywords for rapid data location and
extraction. The drawback to warehousing is that it is read-only and is typically
updated only periodically.

e Oracle stores a central catalog of directories (i.e., data locations) but local

catalogs of data (i.e., data dictionaries).
Approaches that take place of 2PC

Because of some shortcomings of 2PC protocol discussed before, vendors have

moved beyond the traditional two-phase commit.

e Supra Server uses a form of retroactive polling to compensate for a failed
commit. Once a transaction begins (i.e., all sites confirm availability for a
transaction), all involved sites become transaction partners. The coordinating
site posts a list of partners to each of the participating sites. If a site becomes
unavailable for the second phase, Supra Server may, at the discretion of the
remaining partners roll back the entire transaction, or it may ignore the inactive
site and post the changes to the active sites. In the latter case, when the off-line
site becomes available, the DRDM alerts it to changes, and it falls to the newly
restored site to poll the other partners for the updated information.

e Sybase 10 and Oracle 7 “batch” the changes for the inactive site and post them
when the inactive site comes back on-line, using a technique called store and
forward. For example, Sybase SQL Server, using data replication implemented

" through the Sybase 10 Replication Server, selects a primary site as the data
keeper. All changes to the data run against the primary site. When the primary
data_changes, the Replication Server automatically and transparently updates
the replicated data across the distributed system. If a particular site is
unavailable, the Replication Server queues the transactions and posts them as

soon as possible.

Now, different approaches of different vendors will be examined in more detail.

70

-5.1.1.Oracle - e
The information below is taken from [Oracle7].
The Oracle Client/Server Architecture

In the Oracle client/server architecture, the database application and the database
are separated into two parts: a front-end or client portion, and a back-end or server
portion. The client executes the database application that accesses database
information and interacts with a user through the keyboard, screen, and pointing
device such as a mouse. The server executes the Oracle software and handles the

functions required for concurrent, shared data access to an Oracle database.

Although the client application and Oracle can be executed on the same computer,
it may be more efficient and effective when the client portion(s) and server portion
are executed by different computers connected via a network. The following are

examples of distributed processing in Oracle database systems:

e The client and server are located on different computers; these computers are
_connected via a network (see Figure 5.1, Part A).

e A single computer has more than one processor, and different processors

separate the execution of the client application from Oracle (see Figure 5.1,

Part B).

Benefits -of the Oracle client/server architecture in a distributed processing

environment include the following:

e Client applications are not responsible for performing any data processing.
Client applications can concentrate on requesting input from users, requesting
~desired data from the server, and then analyzing and presenting this data using
the display capabilities of the client workstation or the terminal (for example;

using graphics or spreadsheets).

71

¢ Client applications can be designed with no_dependence on the physical
location of the data. If the data is moved or distributed to other database

servers, the application continues to function with little or no modification.

Database Server

A
Client Client
Database Server
| | —
-
t"="=' q —
B ———1 | ——
 — T — — = T
- I
client
_Client -

Figure 5.1 The Client/Server Architecture and Distributed Processing

72

e Oracle exploits the multitasking and shared-memory facilities of its underlying -
operating system. As a result, it delivers a high possible degree of concurrency,
data integrity, and performance to its client applications.

e Client workstations or terminals can be optimized for the presentation of data
(for example, by providing graphics and mouse support) and the server can be
optimized for the processing and storage of data (for example, by having large
amounts of memory and disk space).

e If necessary, Oracle can be scaled. As the system grows, multiple servers can
be added to distribute the database processing load throughout the network
(horizontally scaled). Alternatively, Oracle can be replaced on a less powerful
computer, such as a microcomputer, with Oracle running on a minicomputer or
mainframe, to take advantage of a larger system's performance (vertically
scaled). In either case, all data and applications are maintained with little or no
modification, since Oracle is portable between systems.

e In networked environments, shared data is stored on the servers, rather than on
all computers in the system. This makes it easier and more efficient to manage
concurrent access.

¢ In networked environments, inexpensive, low-end client workstations can be
used to access the remote data of the server effectively.

¢ In networked environments, client applications submit database requests to the
server using SQL statements. Once received, the SQL statement is processed
by the server, and the results are returned to the client application. Network
traffic is kept to a minimum because only the requests and the results are

shipped over the network.

73

Oracle Distributed Database Technology “ o B

Oracle is offering solutions for both synchronus and asynchronous environments.
In [Oracle 7], the offerings of synchronous capability, and asynchronous capability is

given. Briefly, they will be mentioned below :
Oracle7 Synchronous Distributed Capability Overview

o Distributed Queries Data on multiple databases can be queried using the full
functionality of the SQL standard SELECT statement. This includes selection,
join, aggregation, and sorting operations optimized for maximum performance
in a distributed environment.

e Distributed Transactions Data on multiple databases can be modified using
the full functionality of SQL standard UPDATE, DELETE, and INSERT
statements operating as transactions to ensure that either all modifications on
all databases complete successfully or are all rolled back should failures occur.

e Remote Procedure Calls Oracle7 servers can execute remote PL/SQL
procedures on other servers. The remote procedure execution operates within
the same transaction again ensuring that either all modifications complete or
are all rolled back.

e Synchronous Replication PL/SQL triggers can apply all modifications to
tables in one database directly to replicate copies of those tables in other
databases. All modifications are applied within the same transaction to ensure
exact, point-in- time consistency of all copies.

e Location Tfénéi)arency Aplilications can access remote data and execute
remote procedures as easily as they do locally. No special coding is required to
specify data or procedure location. -Applications merely specify the data and-
procedures they need to access using logical names. The mapping from logical
names to exact physical locations is done transparently by the database. Data
and procedures can be moved from one database to another without requiring

that application code be modified.

74

e Commit Transparency Applications can execute distributed transactions

across multiple databases as easily as local transactions. No special coding is
required. The SQL standard COMMIT statement commits both local and
distributed transactions transparently;

¢ Robust Protection Against Failures Systems will fail and networks will fail.
Oracle7 protects the integrity of distributed transactions automatically using a
robust underlying two phase commit protocol. Complex two phase commit
logic does not need to be coded into applications.

e Status Information The status of distributed transactions can be easily
obtained and monitored through standard data dictionary tables within the
database using Oracle Server Manager and other tools. -

o Single Server No additional, special servers need to be installed and
maintained.

e Direct Server-Server Communications Distributed operations are performed
automatically through direct server to server connections. Applications do not
need additional connections to external servers to perform operations such as
distributed queries. Distributed data access does not need to pass through extra
servers impacting performance.

e Compatibility Operations such as procedure calls operate under the same

transactional protections whether they operate locally or remotely.

Oracle7 Asynchronous Distributed Capability Overview

Oracle’s first asynchronous distributed capability was read-only snapshots, which
provides a basic asynchronous replication-capability. One-site, the snapshot master. -
can be updated. All other replicates or snapshots are read-only. Incremental row
changes are propagated using a fast refrres_h~ mechanism. The S_TFQB_SPO_E {qﬁesh group
feature ensures transactional consistency to maintain referential integrity between
multiple snapshots. Read-only snapshots are also very easy to create and administer.
Based on the experience gained from this first offering, Oracle introduced its next
generation asynchronous distributed technology called “Symmetric Replication”:
The capabilities of symmetric replication are:

75

e Basic and Advanced Replication Sﬁpport Asynchrondus replicatibﬁ us;a;ge
models are methodologies for conflict avoidance or conflict detection and
resolution. Applications employing asynchronous replication use one or more
of these methodologies to ensuré data convergence. Symmetric Replication is
designed to support replication models employing both conflict avoidance and
conflict detection and resolution usage methodologies. Unlike other replication
products, the underlying replication mechanisms do not limit users to a single
replication model. Applications can implement primary site, dynamic and

shared ownership models as well as fail-over configurations.
Primary Site Ownership

With primary site ownership, asynchronously replicated data is "owned" by
one site. Ownership means that the site may update the data. Other sites
"subscribe" to the data owned by the primary site, which means that they have
access to read-only copies on their local system. Primary site replication has

many uses. These include:

¢ Distribution of centralized information. For example, product information
such as price lists can be maintained at a corporate headquarters site and
replicated to read-only copies maintained on order entry systems at remote
sales offices.

e Consolidation of remote information. For example, inventory data
maintained on systems in a number of remote warehouse locations can be
replicated to a consolidated read-only copy of the data at a corporate

headquarters site.

76

Information Distribution Information Consclidation

HQ
Product Combined
Info inventory

| Replication Replication
“ ¥ /t

Sales Warehouses

Figure 5.2 Two different uses of Primary Site Ownership

By restricting updates to certain sites, primary site ownership avoids
conflicts. A primary site may own the data in an entire table in which case
other sites subscribe to read-only copies of all or some subset of that table.
Alternatively, multiple sites may own distinct subsets or partitions of the table.
Each site might own a distinct set of rows, i.e., a horizontal partition, or a
distinct set of columns, i.e., a vertical partition, within a table. Other sites then

subscribe to read-only copies of all or some further subsets of the partitions.
Dynamic Ownership

With dynamic ownership the ability or right to update asynchronously
replicated data moves from site to site while ensuring that at any given point in
time only one site may update the data. For example, within an order
_processing system the processing of orders typically follows a well ordered
series of steps, e.g., orders are entered, approved, shipped, billed, collected,
accounted for, etc. Centralized systems allow the application modules that
perform these steps to act on the same data contained in one integrated
database. Each application module acts on an order, i.e., performs updates to

the order data, when the state of the order indicates that the previous processing

77

steps have been completed. For example, the application module that ships an

order will do so only after the order has been entered and approved.

By employing a dynamic ownership replication methodology such a system
can be distributed across multiple sites and databases. Application modules can
reside on different systems. For example, order entry and approval can be
performed on one system, shipping on another, billing on another, and so on.
Order data is replicated to a site when its state indicates that it is ready for the
processing step performed by that site. Data may also be replicated to sites that
need read-only access to the data. For example, order entry sites may wish to

monitor the progression of processing steps for the orders they enter.

Dynamic Ownership
Order Processing System

Billing

Orders

Wor kflow
| Shipping

Order Entry

Replication

Orders

Figure 5.3 Dynamic Ownership

78

Shared Ownership

All of the replication models described thus far, i.e., primary site and
dynamic ownership, share a common property; at any given poinf in time only
one site may update the data while the other sites have read-only access to
replicated copies of the data. In some situations, however, it is desirable to
allow multiple sites to update the same data, potentially at the same time. For
example, it may be desirable to replicate customer data across multiple sites
and systems rather than maintaining customer data centrally. Different site,
though, may need to update this data. Shared ownership allows asynchronous
replication to be employed where primary site and dynamic ownership models
would be too restrictive. As such, in those cases where temporary
inconsistencies can be permitted, but in this case, conflict detection and

resolution methods should be employed.

For example, earlier we discussed how a distributed order entry system
could be implemented using primary site replication methodologies with
horizontal partitioning. In this scenario each sales office owned a distinct
horizontal partition of the tables containing orders and customer information
for the customers serviced by each office. Each sales office entered orders for
its customers, but no others. For some businesses, though, this is not the model.
For example, a retail chain may have several stores in a metropolitan area.
Customers may frequent the store closest to where they live but they will go
into other stores and these other stores will want to take their orders when they
do. If multiple stores perform updates to the same customer and order data,
however, update conflicts potentially could occur. Sophisticated application
developers can identify these conflicts and either select standard resolution

routines or devise their own to implement such systems.

79

Shared
Qrder Entry

HQ

Qrder Entn

Order E

o
~~

Figure 5.4 Shared Ownership

¢ Full Transactional Consistency The referential integrity of replicated data is

ensured.

Automatic Update Conflict Detection and Resolution Resolution routines
can be selected declaratively from a set of predefined standard routines such as
most recent timestamp or site priority. Users can also define their own
customized resolution rules.

Full and Subset Table Replication All rows or only selected rows in a table
can be replicated. Two mechanisms are supported: multiple masters and
updatable snapshots. These two mechanisms can be combined in hybrid

configurations to meet different needs.
Multiple Masters

Multiple master replication supports full table, peer-to-peer replication
between master tables. All master tables at all sites can potentially be updated
depending on the replication model being employed. Changes applied to any
master tables are propagated and applied directly to all other master tables.
Failures of any one site containing master replicated tables will not block

propagation of changes between other master sites.

80

_ _ _..Multiple master replication uses deferred RPCs (described below) as the -~ -

underlying transport mechanism to propagate and apply changes. Changes to
multiple master tables are applied in a transactionally consistent manner to
ensure data and referential consistency. Changes are propagated -either
immediately, i.e., in an event-based manner, or at specified points in time when
connectivity is available or when communications costs are lowest, e.g., during
evening hours. If a remote system is unavailable, the deferred RPCs

propagating change to that system remain in their local queue for later

execution.
Figure 5.5 Multiple Master Replication
Updatable Snapshots

Oracle has extended the initial Oracle7 snapshot mechanism to support
Symmetric Replication. Snapshots, as well as the snapshot masters, can be
updated. Updates to snapshots are propagated and applied to snapshot masters

using deferred RPCs as the underlying mechanism.

Snapshots can be defined to contain a full copy of a master table or a
defined subset of the rows in the master table that satisfy a value-based
selection criterion. Snapshots are refreshed from the master at time-based
intervals or on demand. Any changes to the master table since the last refresh

are then propagated and applied to the snapshot. Multiple snapshots are

81

___refreshed from multiple masters in a transactionally consistent manner t6 -

ensure data and referential integrity.

Master

Figure 5.6 Updatable Snapshots
Hybrid Configurations

Multiple master replication and updatable snapshots can be combined in
hybrid configurations to meet ‘different needs (Figure 5.7). Specifically,
snapshot masters can be replicated in multiple master configurations. This

allows full-table and table subset replication to be combined in one system.

For example, multiple master replication between two snapshot masters can
support replication between two hub sites supporting two geographic regions.
Snapshots can be defined on the masters to replicate full tables or table subsets
to sites within each region. This configuration allows the two master sites to _
function as fail-over sites for each other. An added benefit of this configuration .
is that snapshots can be re-mastered from the other hub site to provide an added

measure of high availability.

82

Multiple Master
Updatable Snaashaots

Updatabl2 Snapshot

Master Master

Snap

Snzp
b R—

Keal-cnly
Snigpshul

o
| |

Figure 5.7 Hybrid Configuration

e Event and Demand-Based Replication Methods Replicated row changes can

be efficiently propagated either immediately or when they are demanded by the
target system.
Deferred Remote Procedure Calls (RPCs) Remote PL/SQL procedures can

be executed in an asynchronous, or store-and-forward, manner.

Deferred RPCs are a flexible, general purpose facility. They are used as a
propagation mechanism for replication. The facility is also available for direct
use to enable calls to remote PL/SQL procedures to be processed in an

asynchronous or store-and-forward manner.

A local transaction initiates the execution of a deferred RPC by submitting a
request to a local propagation queue. Submission into the queue is done within
the local transaction. Entries in the queue are then pushed to their target
location(s) and executed as a second step within separate transactions. If a
remote system is unavailable when the deferred RPC queue is pushed, the
entries for that target system remain in the queue for later propagation. The
deferred RPC queue is durable, protected by the backup and recovery

mechanisms of the Oracle7 server. This guarantees that the request will never

83

be lost and can be propagated and executed when the target system becomes

available.

Deferred RPCs can be easily targeted to one or multiple remote systems.
Multiple deferred RPCs submitted with the same local transaction are executed

together within the same transaction remotely.

Site 1 Forward Site 2

Store / Proc

Figure 5.8 Deferred RPCs

Symmetric Replication generates replication support automatically. No coding is
required. Oracle provides powerful management tools integrated into the database

including:

¢ Replication Catalog Provides a single, consolidated repository of meta data
that defines the distributed / replicated environment, i.e., what database objects
(tables, procedures, triggers, indexes, etc.) are replicated where and how they
are being replicated. The replication catalog is itself replicated to multiple sites
to ensure high availability and easy local access to authorized users.

o Distributed Schema Management Allows replicated environments to be
defined and changed automatically at multiple site by replicating and applying
data definition language (DDL) commands. For example, operations such as
adding an index or check constraint to a table everywhere it is replicated can be
done automatically without requiring tedious and error-prone manual
operations.

e Server Mamiger New Server Manager extensions provide an easy to use,

GUI-based administration capability for Symmetric Replication. Allows

84

administrators to easily query the replication catalog, examine internal
replication engine components, initiate distributed schema management

operations, and troubleshoot problems.

Symmetric Replication is built into the Oracle7 server as an internal, integrated
facility.

¢ Single Server No additional, external components are required that must be
configured, monitored and maintained.

e Standard Components Symmetric Replication is implemented using proven
database components such as tables, views, and PL/SQL procedures that
Oracle users are already familiar with.

e Standard Backup/Recovery Symmetric Replication is protected by Oracle7's
standard backup and recovery mechanisms and procedures. No additional
complex procedures involving extra external components are required.
Database systems can be backed-up and recovered separately without the need

to synchronize operations with other sites.

5.1.2,Sybase
The information below is taken from [Sybasel] and [Sybase2].

As workforces become increasingly decentralized, managing information
effectively is perhaps the single greatest challenge for businesses today. Sybase, the
pioneer in client/server databases, offers a complete solution of database,
middleware, tools, and services that help users access information where and when

_they need it. Sybase tightly integrates these software categories -database,
middleware and tools- into a single architectural framework that supplies products

optimized specifically for the task at hand.

85

Database solution

When businesses need outstanding performance and scalability, Sybase offers the
Sybase SQL Server database family. For extremely large databases, Sybase MPP for
massively parallel processing is an optional extension to SQL Server, as is Sybase
IQ, designed for interactive query processing in the data warehouse. SQL Anywhere
supports mass deployment of SQL databases.

Middleware solution

The Enterprise CONNECT family of products is the industry leader in
interoperability. With Enterprise CONNECT, multiple data sources plug and play
together, and any data source can connect to any development tool. Sybase’s
middleware products include Replication Server, OmniCONNECT, MDI Datab;iée

Gateway, and Enterprise Messaging Services.
Tools

PowerBuilder from Powersoft, a division of Sybase, is the standard for developing
client/server applications that access corporate data. Other Powersoft tools include
InfoMaker for personal data access and reporting, S-Designer for powerful database

design, and Watcom compilers for efficient C/C++ development.

Replication Server

A reliable replication system must do much more than simply copy a piece of

data. The system must also:

e maintain the integrity of the data at the transaction level,

o deliver data quickly and efficiently across the network,

e allow distributed sites to modify data,

¢ be easy to monitor and manage (the most important, perhaps),

o transfer data in any direction across heterogeneous data sources.

86

Two-phase commit protocol is too expensive for normal operations and can stop
the entire system in the face of any component failure. Other approaches use
simplistic table snapshot mechanisms, which are not transaction based, so copies lack
basic relational integrity. Sybase Replication Server is the product which claims

providing the real solution to these problems.

Depending on the design of the distributed system, which uses Replication Server,

there are three types of sites in a distributed system:

e Primary (or sites with primary data only): Locations from which data is
replicated to other systems. Primary data can be modified on these sites.

e Secondary (or sites with replicate data only): Locations, which receive data
from one or more primary sites. The replicated data is read only and cannot be
modified.

e Peer-to-Peer (or hybrid sites with primary and replicate data): Locations from
which data is replicated to other systems, and which receive data from one or
more other primary sites. Peer-to-peer replication environments may involve
applications where update conflicts are avoided or applications where update

conflicts are resolved.

Sybase Replication Server may be used for applications that include any
combination of these types of sites. Information may be replicated to and from

Sybase or non-Sybase data sources.

Replication Server synchronizes replicate copies of data on heterogeneous
platforms throughout a client/server network. It furnishes the highest on-line
transaction processing (OLTP) performance, while enabling you to eliminate the
inherent conflict between OLTP and decision-support performance. It also enables a
high degree of local autonomy and flexibility. Remote sites can update replicate data
by using a safe remote update model. By transforming information in flight,

Replication Server synchronizes databases with different schemas, -formats, and

87

naming conventions. Flexible event replication allows remote notification of events,

so each site can respond based on local needs.

The Replication Server design supports "fail-through" computing - an applications
architecture that allows users to continue their work even though system components
are unavailable. It has reliable store and forward capability. If a remote site is
accessible, the information is forwarded to that site; if one or more remote sites
become unavailable, the information is stored until the connections are re-
established, at which point copies are automatically resynchronized. Corporate sites
can continue operations using their local copy of the data even when remote sites are

inaccessible.
Replication Server solves several major customer problems:

e corporate consolidation: Replication Server lets you maintain a corporate
overview of distributed operations that is very close to real time, even when
distributed business units run on a variety of hardware and DBMS platforms

o decentralization: Replication Server allows you to locate data where it is
needed, making distributed business units much less susceptible to central
computer or network downtime while reducing overall communication costs. It
also allows bidirectional data sharing with a safe approach for replicating
remote updates

e high availability: Replication Server systems remain robust despite typical
hardware, software, and network failures, delivering applications with very
high uptime at a reasonable cost

e live decision support: Replication Server can replicate an OLTP database,
allowing your analysts to run complex decision-support queries on data that is
within seconds of real time, without affecting OLTP performance

. diséster recovery: Replication Server lets you maintain a near-real-time "warm
standby" database to which applications can switch with virtually no downtime

if the primary site fails

88

With the prevalence of heterogeneous database environments, many. organizations
require two-way replication between multivendor sources and targets. Replication
Server, along with the replication agents for different DBMSs, provides a reliable
and maintainable solution that improved reconciliation between systems, reduced
operational and system costs, and facilitated the conversion. It leverages Sybase
Enterprise CONNECT technology to integrate multivendor targets. Enterprise
CONNECT gateways use the same Open Server interfaces as Replication Server, so
it is easy to combine these components. A special Replication Driver for ODBC
allows the system to distribute information to a wide range of ODBC compliant
databases. Together, Replication Agent, Enterprise CONNECT gateways, and the
Replication Driver for ODBC allow to integrate platforms ranging from laptops to

desktops to mainframes.

Sybase Replication Server meets all the critical business needs including the
delivery of live information to remote locations, corporate consolidation of
information from autonomous units, real-time decision support, and continuous
operations despite unexpected outages. Sybase Replication Server fulfils these needs
in a fully heterogeneous environment and allows a high degree of local
customization. Across any number of locations, it replicates data to each local
processing _site. Its event-driven replication and reliable store-and-forward
mechanism ensure that remote locations have information that is as close to real time
as possible. It can work across heterogeneous data sources, pulling together all data
scattered across an organization. While each branch maintains control over its own
primary data, some or all data is replicated to corporate headquarters, so users

throughout the-organization can view up-to-date corporate information at all times.

Because Replication Server replicates data to local processing sites, failures on
networks and remote systems rarely matter to users. Sites can continue operation on
their local copy of the data when the primary data source is down. Many
organizations use Replication Server to create an alternate primary or a "warm
standby" system. Even when the primary data site fails for an extended period, users

continue to get the information they need because the system can fail over to an

89

alternate primary. If a remote site fails, it will be automatically resynchronized with

the primary data source when it comes back on line.
Technical Highlights

e transaction replication maintains the transactional integrity of all distributed
information

e business rules, when enforced enterprise wide, ensure quality and consistency
of data

e primary sites retain control over their data

e Replication Server copies to and from heterogeneous databases. Replication
Agents integrate multivendor sources. Enterprise CONNECT gateways and the
Replication Driver for ODBC integrate multivendor targets

e data relocation is transparent

e data is accessible locally and transparently, ensuring ease of access for all users

e casy-to-use graphical user interfaces give you access to component availability,
transaction tracking and routing, and security management

e sites specify the data they need, down to the row, then subscribe to it to
receive regular updates of critical information

e Replication Server detects updates at the primary site

e Replication Server asynchronously delivers complete transactions to maintain
up-to-date information at all subscribed sites

e user-specified in-flight transformations allow the system to replicate data
between sites despite schema and datatype differences

e users have a wide range of options for specifying subscriptions: a SQL-like
subscription facility allows users to specify conditions; dynamic transaction
routing” enables applicationis to specify the routing of information at run
time; subscriptions to stored procedure parameters notify remote sites of

specified business events

90

5.1.3.PeerDirect - » ‘ o _

The information below is taken from [Rennhackkamp, 1998]. First examining all
the prospects of PeerDirecf, in the evaluation section, Martin Rennhackkamp
evaluates this product according to his criteria for a good replicator which is being
transaction-based, serializable, asynchronous, unobtrusive, robust, configurable,
manageable, efficient, and transparent. Then in section “Replication Evaluation
Checklist”, a list of the key issues for a replication product prepared by PeerDirect
Inc. will be given.

Design Issues

With PeerDirect, a database is maintained at a site. The database is considered as
a collection of work sets. A work set is a set of closely related tables, such as
customers and customer details, or invoices and invoice lines. A work set is further
divided into slices, each of which represents an instance of the work set. For
example, a particular customer, with its details, is one slice. A base record in a base
table uniquely identifies each slice. For example, each customer row in the customers
table is a base record. The choice of base table depends on your business rules. The
only thing that PeerDirect requires is that each work set has a base table. A work set
can be nested under another work set, and the nested tables are then replicated with

the parent work set.

One of PeerDirect’s design goals is that each site stores all and only the data the
users require. Users who have been granted the da subscribe right by the initial
admin user must subscribe to the slices in which they (and other users at the site) are
interested. The users with da_subscribe rights at _any site can subscribe to any
grouping of slices. For this purpose, all the nonnested base records are replicated to
each site so that users can select the records of interest. Their sites will only store and
maintain the data of the nested rows to which they subscribe. When the users with
the da_subscribe rights unsubscribe from a slice, the slice’s data is deleted from the

local site. However, it is still maintained at all the other subscribing sites. It is

91

important to unsubscribe from a slice only after all operations on the slice have been =

successfully replicated. A table can be designated as global, which means it will be
replicated in its entirety to every site. The "admin" user, who is automatically created
when PeerDirect is loaded at the first site, can create new users and grant and revoke

rights to them.

Furthermore, table columns can be grouped in "fragments," or sets of nonprimary-
key columns that are updated together. PeerDirect replicates only the updated
fragments, rather than the entire record, to the interested sites. In some scenarios this
replication can eliminate update collisions. It can also reduce network traffic and
replication processing loads. However, PeerDirect requires each fragment to have a
stamp column, which is a 26-character field, whose name must begin with the letters
stamp. PeerDirect uses the stamp column to store the ID of the user who last updated
the fragment, the site and time at which this update was made, and an encrypted
integrity check value. PeerDirect automatically adds a stamp column to each
replicated table, but if you want to use fragmentation, you must add a stamp column
for each fragment. Because the primary key is considered a nonupdatable part of
each fragment, its values cannot be changed -you must delete and insert rows to
change the primary key values in a fragmentation scheme. PeerDirect supports key

columns of byte, short, long, string, Boolean, and timestamp datatypes.

When you "PeerDirect-enable" a database (as they phrase it), you run a utility that
creates several system tables in the database, which are used to maintain the
replication configuration. The names of these tables are all shorter than eight
characters, and they all start with "d." as in dSite, dUsr, dMsg, and so on. Application
programs should not access these tables, and your database design should not contain

similarly named tables.
Distribution and Subscription

[t is difficult with any replication system to define the entire data replication

scheme. With PeerDirect, you use a C-like language called Distribution Control (DC)

92

to define how your databases should be replicated, shared, and secured. You use DC

to define the work sets, fragments, encrypted columns, operations, and replication
rules in script files. A DC script file can include other DC script files. The script is
compiled using PeerDirect’s DC compiler, DCC, which ensures that the script’s rules
match the database’s physical structure. The distribution information is then
considered part of the database schema and is stored in a DC file associated with the
database. Scripts can be ported between systems easily, and they can be generated
from CASE tools and other similar systems. GUI tools, on the other hand, often
require to redefine the replication configuration interactively -and manually- against
each source database. A GUI-based administration tool is planned for a subsequent

release of PeerDirect.

Users can subscribe and unsubscribe to slices using the PeerDirect Administrator
or by calling the PeerDirect APIs. With the PeerDirect Administrator, you can select
base tables and subscribe to individual slices. However, the user must have the
necessary administrative and subscription rights. Subscriptions, as well as
subscription rights, can also be maintained through the PeerDirect API calls. The
aiternative to subscriptions is to designate a site as a Full Site, meaning it will
contain a copy of the entire database. With PeerDirect 3.0, users can automatically
subscribe to work sets. This ensures that their sitf_s will regularly receive all the new
data allocated to that work set on the source database. For example, if you have auto-
subscribed to the customer work set, any new customers will automatically be

replicated to you.
Projects

Before an application can access a database replicated by PeerDirect, it must be
7 registered as a PeerDirect project. The registfatic;h occurs against théTi;;/éfbi;iﬁent
database. Each project’s unique name is used to add information about the
application to the PeerDirect development .environment. This includes the
"organization" (department or team) developing the project, optionally with a

password. For each project you must also register editions and networks. You can

93

use the PeerDirect Administrator for these tasks, or you can use command-line

utilities. Ideally, a replicator only needs to focus on changes to the database contents,
not necessarily the applications that access it and from this ideal point of view, this

can be a shortcoming of the PeerDirect replicator.
Configurations

PeerDirect can be implemented in one of many replication configurations. It
currently supports Oracle7 and 8, Microsoft SQL Server, Informix, Sybase SQL
Anywhere (with plans for Adaptive Server Anywhere), Microsoft Access, and Corel
Paradox databases on any platform, with support for Sybase SQL Server, IBM DB2,
Pervasive, and others planned for later in 1998. The PeerDirect Replication Server
runs on Windows 95 and Windows NT, and it accesses the database as a client
application, so the database itself can reside on a Windows, Unix, or mainframe

SCrver.

PeerDirect does not force you into a particular replication configuration or data
allocation scheme because of replication software or available platform limitations. It
supports bidirectional peer-to-peer replication among heterogeneous databases

without requiring that you nominate master and slave sites.
Deletions

Delete operations are a bit more complex than insert and update operations when
using PeerDirect replication. When PeerDirect detects a deleted row, it assumes the
row was deleted accidentally and tries to restore the row from another site. As a
result, you must delete rows using the PeerDirect API (calling)tAh_e‘_ _procedure
DSECDeleteRecord) or by inserting rovs)s‘ 1n the PeerDirect sys:em table (called
dDel). When you call the DSECDeleteRecord procedure, PeerDirect ensures that all
related records are also deleted. With the system table approach, you write the key of

the row to be deleted in the dDel system table using a specified syntax. This can be

94

done through a trigger, for example. During the next replication cycle, PeerDirect

calls DSECDeleteRecord for every entry in the dDel table.

Transactions

PeerDirect 3.0 does not support transactions. It replicates the operations

performed on the work sets and fragments.
Evaluation of Martin Rennhackkamp

Considering the criteria for a good replicator, namely transaction-based,
serializable, asynchronous, unobtrusive, robust, configurable, manageable, efficient,
and transparent, PeerDirect fares pretty well. It replicates asynchronously, it is
robust, and it can handle different types of problems. It is highly configurable. It can
replicate peer-to-peer, update-anywhere operations in many directions, which some
competing products cannot do. It can replicate fragments, which few other
replicators can do. It is easy to manage, especially when scaling up to a large
number of databases. Most important, it can replicate transparently berween
Oracle7 and 8, Microsoft SQL Server, Informix, Sybase SQL Anywhere, Microsoft
Access, and Corel Paradox databases, which very few other replication products can
do.

However, in my opinion PeerDirect has two problem areas. First, it doesn't
replicate within transaction boundaries, which means that you can have the effects of
partial transactions replicated to some sites. This problem should be addressed in

the subsequent release. Second, PeerDirect 3.0’s implementation of delete logic is

not always unobtrusive. Some applications may require PeerDirect APl calls to

delete rows, while other databases may require additional triggers to implement its
delete procedures. You may also argue that the requirement to add additional stamp
columns for fragmentation is not unobtrusive, but you must agree that fragmentation
_is very difficult to implement, and few replicators even attempt it. The price of these

database changes for fragmentation may not be so high if you need that kind of logic.

95

Finally — and this is true of any replication product — a-replicator is a tool you
use to implement a business solution. The replicator itself is not the business
solution. You still have to design and implement a replication scheme, which in some
cases may be pretty complex. The replication product only gives you the capabilities
to put your business solution into action. It can influence how well your business

solution is implemented, but you first have to design the business solution.
Replication Evaluation Checklist
When evaluating a replication product, these are key issues to watch:

e Open System - Heterogeneous, Standards-Based
e Flexibility and Scalability

e Performance and Efficiency

o Integrity and Reliability

e Security

e Ease of Use - For Developers

e Ease of Use - For Runtime Administration

e Ease of Use - For End Users
5.1.4.IBM Solution - DRDA
The information below is taken from [IBM_DRDA].

DRDA (Distributed Relational Database Architecture) is a technology that

enables reliable, secure, high performance data access for integrated client/server

solutions. It is an architecture for distributed database protocols that any software... .

vendor can use to develop connectivity solutions that provide applications with
access to remote data. DRDA defines what information must be exchanged and how
it must be exchanged, enabling coordinated communications between systems.

“ DRDA provides full client/server facilities across heterogeneous systems and

96

'databases and is part of IBM's Open Blueprint , the market-leading approach for
open distributed compuiting.

Applications developers benefit from DRDA connectivity because they continue
to use the standard language for data access: SQL, the Structured Query Language, in
either its embedded or callable form. DRDA defines industry-leading technology for

database interoperability:

e Remote Unit of Work - access to a single remote database for processing
related SQL statements

e Distributed Unit of Work - access to multiple remote databases with the ability
to commit updates across all of them

¢ Stored Procedures - invocation of procedures at the remote database location

e DCE Security - identification and authentication of users in environments using
the Distributed Computing Environment (DCE) from the Open Software
Foundation (OSF).

IBM products for end user access, data replication, systems management, and
application development are all enabled by DRDA connections. Database
applications or tools that are coded using standard SQL APIs (i.e., embedded SQL,
SQL CLI or ODBC) can automatically access remote databases merely because the
underlying database client clode handling the SQL is DRDA-enabled, freeing the
application from needing to know the location of the database in the network and

from dealing with the communications code to access it.

Many different software companies have licensed DRDA. Attachmate Corp., File
_Tek. Inc., GrandView DB/DC Systems, Informix Software, Inc., Object Technology
Int'l,, Oracle Corp., Rocket Software, Inc., StarQuest Software, Inc., Sybase/MDI,
Wall Data, Inc., and XDB Systems, Inc. are companies that have products announced

or available that implement DRDA.

97

5.1.5.Mariposa Distributed Database Management System

The Mariposa distributed database management system is an ongoing research
project at the University of California at Berkeley. An information below is taken
from [MARIPOSA manual] and [Sidell et al., 1996].

Mariposa addresses fundamental problems in the standard approach to distributed
data management. Mariposa allows DBMS's which are far apart and under different
administrative domains to work together to process queries. Furthermore, it
introduced an economic paradigm in which processing sites buy and sell data and
query processing services. A Mariposa system consists of a collection of sites, which
provide storage, query processing and name service. Mariposa has been designed

with the following principles:

e Scalability to a large number of cooperating sites. In a WAN environment,
there may be a large number of sites. The goal is to scale to 10,000 servers.

e Local autonomy. Each site must have control over its resources. This includes
which objects to store and which queries to run. Query and data allocation
cannot be done by a central, authoritarian query optimizer.

e Data mobility. It should be easy and efficient to change the “home” of an
object. Preferably, the object should remain available during movement.

¢ No global synchronization. Updates and schema changes should not force a site
to synchronize with all other sites. Otherwise, many common operations will
have exceptionally poor response time.

e Easily configurable policies. It should be easy for a local database
administrator to change the behavior of a Mariposa site. A Mariposa system
should respond gracefully to changes in user activity and data access patterns

to maintain low response time and high system throughput.

98

Overview of the Architecture

When a query is generated at a site, which is, called a “home site”, it is sent from
the frontend application to the Mariposa program running on the server in home site.
The query is passed through a parser, which checks for syntactic correctness and
performs type checking; an optimizer, which produces a query plan that describes
the order in which different steps in the plan will be executed; and a fragmenter,
which changes the plan produced by the optimizer to reflect the data fragmentation
(Every Mariposa table -class- is horizontally partitioned into a collection of
fragments which together store the instances of the table). The final result produced
by the fragmenter is the fragmented query plan. In order to do their work, the parser,
optimizer and fragmenter need information about data types, fragment location, etc.
This information is maintained by a Mariposa name server. The fragmented query
plan describes the operations that will be performed in order to execute the query,
and the order in which they will be carried out. The fragmented query plan is passed
to the query broker, whose job it is to decide where each piece of the fragmented

query plan will be executed. The query broker uses one of two protocols:

e In the long protocol, the query broker contacts the bidder module at each
potential processing site. The bidder responds to requests for bids from the
query broker. When a bidder receives a request to bid on part of a query, it may
either refuse to bid, or return a bid to the query broker. The bid includes the
price to perform the work, and a time bound within which the work must be
completed. If a bidder bids, then it must process the query if it is chosen by the
query broker to do so. The broker waits for responses from the bidders before
selecting the best ones.

e In the short protocol, the query broker uses information collected from the
name server to decide which sites will process the query. It does not contact the

processing sites.

99

After the query broker has specified the processing sites, the backend's
coordinator module takes over. The coordinator notifies the remote sites to begin

processing, collects the results, and returns the answer to the client program.
The Mariposa Replica System

Mariposa permits the replication of data fragments. In the current implementation,
a replica is created from one other replica, which is referred to as its parent. Replicas
created from a parent are called its children. Each replica periodically receives
updates from its parent. This allows Mariposa to use one replica in the place of
another, improving availability during host crashes and network failures, and
improving performance. There are two types of Mariposa replicas: A read-only
replica receives all updates from its parent but cannot process updates; a read-write
replica propagates its updates to its children, as well as receiving updates from its
parent, if it has one. The term update is used to mean any tuple insertion, deletion, or

modification.

Acquiring and maintaining a copy may be thought of as applying streams of
updates from other copy holders, with associated processing costs. In the economic
parlance of Mariposa, a site buys a copy from another site and negotiates to pay for
update streams. The process of buying a new copy is relatively simple. Assume a
Mariposa site S1 owns the only copy of fragment F. If another site, S2, wishes to

store a copy of F, then S2 must perform the following steps:

1. Negotiate for updates: S2 negotiates with S1 to buy an update stream for F.
This contract specifies an update interval T and an update price P. The update
interval specifies that writes to F at S1 will be forwarded to S2 within T time
units of transaction commitment at S1. An update stream contains changes only
from committed transactions. In this way, S2 can be assured that its copy of F
is out of date by an amount bounded by T plus the maximum network delay
plus the «maximum time to install the update stream. In return for the update

stream, S2 will pay S1 P dollars every T time units.

100

2. Negotiate reverse updates: If S2 wants to write to its copy of F, then it must
also contract with S1 to accept an update stream generated at S2. In this case,
there are two update intervals: T ;-»; and T > , Which are not necessarily the
same. T |-, is the frequency with which S1 updates S2, and T ,—; is the
converse. In this case, the price P mentioned in step (1) above is the price paid
by S2 to S1 for S1 sending updates to S2, and for S1 receiving updates from
S2.

3. Construct an initial copy: S2 contracts with S1 to run the query SELECT *
FROM F. S2 will install the result of this query and begin to apply the update
stream generated by S1. If S2 is writing its copy of F, it starts to send updates

to S1 as well.
If a site no longer wishes to maintain a copy, it has a number of options:

e Drop its copy. That is, stop paying for its update streams, delete the fragment
and stop bidding on queries involving the fragment.

o Sell the copy. The site can try to sell its update streams to someone else,
presumably at a profit. If so, then the seller must inform all the creators of
update streams to redirect them to the buyer.

e Stop updating, that is, stop paying for its update streams but don't delete the
fragment. The fragment will become more and more out of date as updates are
made at other sites. If the fragment is split or coalesced, the fragment will
essentially become a view. This view is unlikely to be very useful, since it is
unlikely that queries over the relation will correspond exactly to the view.

Therefore, doing nothing is a possible but not very effective action.

~___In Mariposa, one copy of each fragment is designed to be_the master copy. All

other copies can be freely deleted, but the master copy must be retained until sold.
This will prevent the last copy of a fragment from being deleted. In addition, the
notion of a master fragment is needed to support systematic splitting and coalescing

of fragments.

101

Although Mariposa can. provide standard consistency guarantees two-phase
commit, it also supports temporal divergence between replicas. Mariposa provides

consistency at the cost of greater staleness.
Mariposa Name Service

The purpose of name service is to supply client sites with the necessary
information to run queries on remote data. In order to process a query on remote

data, Mariposa needs the queried tables' metadata at various stages:

e During parsing, the syntactic correctness of the query statement has to be
verified. This requires information about the queried tables' attributes and their
types, about operators used in the query etc.

e The fragmenter needs information about the fragmentation of remote tables.

e The query broker needs to know the location of the remote fragements.

For local tables, this information is stored in the site's local database catalogs. For
remote tables, a name server provides the information stored in the remote database
catalogs to its clients by replicating the remote catalogs. A Mariposa name server is a
regular Mariposa site, which keeps read-only copies of a subset of the system
catalogs of other sites. These copies are maintained by the update streams sent from
the source sites to the name server; as a consequence, information obtained from a
name server will always be out-of-date by a certain amount. The set of sites whose
system tables are on a name server is not fixed and does not have to include every
existing site. The DBA of a site autonomously determines if that site should also
provide name service and which remote sites' catalogs it should replicate.

5.2. Unsolved problems

Although all different solutions of different products existing today cover

important aspects of distributed database technology, there are still significant

102

research problems that remain to be solved. The problems below are some important

ones taken from [Casavant & Singhal, 1994] and summarized:

e Since there is no full understanding of the performance implications in
distributed database design, there is a problem in adopting current protocols
and algorithms to distributed database systems as the systems become
geographically distributed or as the number of system components increases.
There are plenty of performance studies of distributed DBMS, and these
usually employ simplistic models, artificial work loads, or conflicting
assumptions, or they consider only a few special algorithms. The proper way to
deal with scalability issues is to develop general and sufficiently powerful
performance models, measurement tools, and methodologies.

e There is no uﬁderlying design methodology that combines the horizontal and
vertical partitioning techniques; horizontal and vertical partitioning algorithms
have been developed completely independently. What is needed is a
distribution design methodology that encompasses the horizontal and vertical
fragmentation algorithms and uses them as part of a more general strategy.
Such a methodology should take a global relation together with a set of design
criteria and come up with a set of fragments, some of which are obtained via
horizontal fragmentation, while others are obtained via vertical fragmentation.
Another shortcoming of design algorithms is their simplification in the design
step by isolating fragmentation and allocation steps. In fact both steps have
similar inputs, differing only in that fragmentation works on global relations,
whereas allocation considers the fragment relations. They both require
information about the user applications (such as how often they access data and
what the relationship of individual data objects to one another is), but they both
ignore how each makes use of these inputs. What would be more promising is
to extend a methodology discussed above so that the interdependence of the
fragmentation and allocation decisions is properly reflected.

e Even though query languages are becoming increasingly powerful (for
example, new versions of SQL), global query optimization typically focuses on

a subset of the query language-namely, select-project-join (SPJ) queries with

103

conjunctive predicates. However there are other important queries that warrant
optimization, such as queries with disjunctions, unions, aggregations, or
sorting. Although these have been partially addressed in centralized query
optimization, the solutions cannot always be extended to distributed execution.
Another problem is with the query optimization cost. There is a necessary
trade-off between optimization cost and quality of the generated execution
plans. The optimization cost is mainly incurred by searching the solution space
for alternative execution plans. Thus, there are two important components that
affect optimization cost: the size of the solution space and the efficiency of the
search strategy. In a distributed system, the solution space can be quite large,
because of the wide range of distributed execution strategies. Therefore, it is
critical to study the application of efficient search strategies that avoid the
exhaustive search approach. More important, a different search strategy should
be used depending on the kind of query (simple versus complex) and the
application requirements (ad hoc versus repetitive).

The field of data replication needs further experimentation, research on
replication methods for computation and communication, and more work to
enable the systematic exploitation of application-specific properties. Since
there is not consistent framework for comparing competing techniques, it is
difficult to compare different replication products. Another problem with
replication is, all studies exist today were interested in data replication only,
but there is a need for integrated systems in which the replication of data goes
hand in hand with the replication of computation and communication
(including I/O).

As database technology enters new application domains, such as engineering
design, software development, and office information systems, the nature and
requirements for transactions change. These domains require transaction
models that incorporate more abstract operations that execute on complex data.
Thus, work is needed on more complicated transaction models and on
correctness conditions different from serializability.

From previous work, it is showed that runnihg a DBMS as an ordinary

application program on top of a host operating system is undesirable. Therefore

104

some ways are searched to integrate DBMS and operating system functions.
Efforts that include too much of the database functionality inside the operating
system kernel or those that modify tightly closed operating systems are proved
to be unsuccessful. Because there is a mismatch between the requirements of
the DBMS and the functionality of the existing OSs. This is even more true in
the case of distributed DBMSs that require functions like distributed
transaction support, including concurrency control and recovery; efficient
management of distributed persistent data; and more complicated access
methods that existing distributed OSs do not provide. The most logical way is,
the operating system should implement only the essential OS services and
those DBMS functions that it can efficiently implement and then should left the
others to DBMS. The model that best fits this requirement seems to be the
client-server architecture with a small kernel that provides the database
functionality that can efficiently be provided and does not hinder the DBMS in
efficiently implementing other services at the user level. However, which
DBMS services can efficiently be implemented is a controversial issue.
Naming, which is used to give transparent access to system resources; and
transaction management are two debated issues on which there is not a
common idea whether an OS can implement efficiently or not.

5.3. Future expectations

While trying to solve the problems which are unsolved in today’s technology,
unavoidably there will be new requirements and accordingly, this will results in the
change of the existing solutions and development of new ones. By observing
common trends in today’s technology, we can forecast the trends of next-generation

distributed DBMSs. These are changes expected in [Casavant & Singhal, 1994]:

e Advances in the development of cost-effective multiprocessors will make

parallel database servers feasible. This will affect DDBSs in two ways. First,

distributed DBMSs will be implemented on these parallel database servers, - -

requiring the revision of most of the existing algorithms and protocols to

105

operate on the parallel machines. Second, the pafaliel database servers will be
connected as servers to networks, requiring the development of distributed
DBMSs that will have to deal with a hierarchy of data managers.

As distributed database technology infiltrates nonbusiness data-processing-type
application domains such as engineering databases, office information systems,
and software development environments, the requirements of these systems
will change and this will necessitate a shift in emphasis from relational systems
to data models that are more powerful. Current research along these lines
concentrates on object orientation and knowledge base systems.

The diversity of distributed database application domains is probably not
possible through a tightly integrated system design. Distributed database
technology will need to effectively deal with environments that consist of a
federation of autonomous systems. The requirement for interoperability
between autonomous and possibly heterogeneous systems has prompted

research in multidatabase systems.

106

CHAPTER SIX
INTRODUCTIONTO AN INTELLIGENT

INTERFACE

Under the light of all the information given in the previous chapters, an intelligent
interface is trying to implement some of the functions of a distributed database
management system. This interface is implemented as a distributed database model
on the application layer and it is just simulating a distributed database engine

supporting different databases connected through ODBC.

An intelligent interface can create a global view of a distributed database being

designed according to these assumptions:

o All sites have DBMS’s that can be different or the same (homogeneous or
heterogeneous), but the conceptual schema of databases must be the same.
Databases must be tightly integrated; meaning that they are not autonomous
and all access to data must be through an intelligent interface. If all sites are
autonomous, this means that, each site can use its DBMS without taking into
account the global view of the system. The global view of the system will be
given by our interface and if any DBMS executes some transactions directly,
without using our interface, there will be inconsistencies and redundant data in
the system. Therefore I think that, a tightly integrated distributed database
system will be more suitable.

o Tables are fragmented according to primary and derived horizontal

fragmentation (vertical fragmentation is not supported).

T 107

e Any table or any fragment of the tables can be replicated at more than one site.
The intelligent interface uses asynchronous distributed technology; namely
store and forward method for update propagation. In this method, transactions
initiate operations which need to be propagated to other systems, but if these
other systems are not available, the propagation will be deferred until the
systems come back up. A queue mechanism is used for this purpose.

e The structure of tables, fragmentation, replication and allocation information,
in other words all the information describing a distributed database is kept in a
database, which can be called as a Name Server. An interface must be in

connection with a name server to do a certain task.

6.1. The Structure of a Name Server Database

ATTRIBUTES

RELATION FRAGMENT —I

SITES

Figure 6.1 E’R Schema of the Name Server Database

The relation specific information is kept in a table called “RELATION™; the
information about attributes of relations is kept in a table called “ATTRIBUTES”.
Rel_id is a foreign key in the “ATTRIBUTES” table, to indicate the table to which
an attribute belongs. As its name implies, the “FRAGMENT” table is keeping

information about fragments. Since a fragment may belong to a table or a fragment,

108

an attribute called “parent”, indicates the table or the fragment to which a fragment
belongs. A relation or a fragment, as a unit of distribution, can be replicated at many
sites. This distribution information is kept in a relation called “UNIT_DIST”. Again
as the name implies, “SITES” table keeps information about sites. Here the most
important information is alias names of databases, since the connection to databases
is established by using these aliases. It is obvious that the name server is the brain of

our intelligent interface.
6.2. Query Processing

_ There are two main types of queries, data retrieval queries (selection), and data
manipulation queries (insert, update, delete). The functions of the intelligent interface
are implemented and tested on an example Student database. E’R Schema of this test

database can be seen in Figure 6.2.

o

N_ ! course

STUDENT

Owner Owner

Member
Figure 6.2 E’R Schema of an example Student Database

The schema seen in Figure 6.2 is the global conceptual schema from the user’s
point of view. In this view, it is not possible to see any distribution information.
Physically, the Student table is fragmented (since the Student table is the owner
relation, Primary Horizontal Fragmentation is applied). Take table is fragmented
according to the Student table (since it is a member relation, Derived Horizontal
Fragmentation is applied). By allocating corresponding fragments into same sites,
these fragments are distributed. Some fragments are replicated at other sites. Course
table is entirely replicated at all sites. All this distribution information is recorded in

the Name Server database and the task of an Intelligent Interface is giving

109

transparent access to the data by getting help from Name Server. To obtain integrated

view of individual databases, global conceptual schema, fragmentation and allocation

schema are needed. Fragmentation and allocation schemas of an example Student

database can be seen in Figure 6.3 and 6.4.

STUDENT!I
(dept=math)

STUDENT

STUDENT2
(dept=ceng)

/

STUDENTI1
(stid<10)

b

STUDENT12
(stid>=10 and stid<20)

STUDENT!3
(stid>=20)

Figure 6.3.a Primary Horizontal Fragmentation on Student

TAKE

N

TAKE!
(TAKE SJ ;g STUDENTI)

TAKE?2
(TAKE SJ 4y STUDENT2)

v

N

TAKEI1
(TAKE SJ 54 STUDENTI11)

TAKE12
(TAKE SJ s STUDENTI12)

TAKE13
(TAKE SJ o STUDENTI3)

Figure 6.3.b Derived Horizontal Fragmentation on Take

Figure 6.3 Fragmentation Schema of an example Student Database

>

>

110

STUDENTI2
STUDENT11 TAKE12
TAKEI1 COURSE
COURSE

STUDENT11 (replica)

N~

N

SITE 1 SITE 2
STUDENT13 STUDENT2
TAKEI13 TAKE2
COURSE COURSE
TAKE2 (replica) STUDENT1 (re.plica)
TAKEI (replica)

~__ S~

SITE 3 SITE 4

Figure 6.4 Allocation Schema of an example Student Database

6.2.1. Data Retrieval Queries
6.2.1.1. Selection from one table

When a query is produced and the Execute button is clicked, the Fragmenter
procedure is called. The main role of the Fragmenter is converting a user query
which is unaware of being in a distributed database environment, thus does not
contain any fragmentation information; into a distributed query by getting help from

the Name Server (Figure 6.5).

I

User Query (Unaware of distribution)

FRAGMENTER NAME SERVER

Distributed Query

Figure 6.5 The main role of Fragmenter

If the query has no condition part, then the Fragmenter directly calls the
form_fragment_tree procedure. This is a recursive procedure that finds all fragments
of a table in different depths. By forming a fragmentation tree, it finds where these
fragments physically exist and by taking the alias names, it forms the distributed
query. If the query has a condition part (this is a part of the where condition except
the join statement. I called this part as a value_condition), it is not meaningful to
search for all fragments of a selected table. Because, while some fragments meet the
given condition, the others do not. At this point, the Fragmenter first calls the

parse_val_cond procedure. This procedure follows these steps:

o Takes the value_condition of the query which is in the form of :
predicatel or/and predicate2 or/and predicate3 or/and
¢ Parses this value condition into two arrays: predicates and operators. After this
parsing, we have an array called Predicates, containing predicatel,2,3, and an
array called Operators, containing or/and logical operators in the order of

entrance.

112

Example 1:

If the query select * from student where student.student id>=12 and
student.student_id<25 and student.dept=“Math” is issued, parse val cond
procedure parses the value condition of a query into predicates and operators as can

be seen below:

Predicates[1]= ‘Student.student_id>=12’
Predicates[2]= ‘Student.student_id<25’
Predicates[3]= ‘Student.dept="Math”

Operators[1}= ‘and’
Operators[2]= ‘and’

Then fragmenter calls the Compare procedure for each predicate in the array
Predicates. The aim of the Compare procedure is to find fragments of a table that

meets predicates or conditions. Compare procedure executes as follows :

The first predicate Student.student id>=12 is compared with the fragmentation
condition of Studentl which is dept=math, these conditions are on different
attributes, so we have to look to the subfragments of Studentl. The fragmentation
condition of Studentll is on the same attribute, so we have to compare their values.
After the comparison process, it is seen that Studentll is not a suitable fragment.
Then we do the same process with student12, this fragment is suitable. Then we are
comparing the first predicate with Student13 and this is also suitable. Then we are
comparing the first predicate with Student2. They are not on the same attribute and
this fragment has no other sub fragments. Although it’s fragmentation attribute is
different from predicate, this is also a suitable fragment, at least we can not say that
there will not be any tuple that meets our condition in this fragment. Since the
fragmentation condition and the given predicate condition are not on the same

attribute, in this fragment there might be some records meeting our condition. The

113

same steps are repeated for all predicates. At the end, all suitable fragments are

recorded into the save_array that can be seen below:

save_array [1]:=[Student.student_id>=12,Student12]
save_array[2]:=[Student.student_id>=12,Student13]
save_array[3]:=[Student.student_id>=12,Student2]
save_array[4]:=[Student.student_id<25,Student11]
save_array[5]:=[Student.student_id<25,Student12]
save_array[6]:=[Student.student id<25,Student13]
save_array[7]:=[Student.student_id<25,Student2]
save_array[8]:=[Student.dept=""math”,Student11]
save_array[9]:=[Student.dept=""math”,Student12]
save_array[10]:=[Student.dept="math”,Student13]

Now, it is the time to use logical operators, so the fragmenter calls
find_op_priorities procedure. This procedure has the aim of binding predicates with
logical operators. The “AND” logical operator has a priority on the “OR” logical
operator. So at the end of this procedure, it is obvious that, predicatel and predicate2
will be concatenated with the “AND” operator, then the result and predicate3 will be
concatenated again with the “AND” operator. These steps are recorded in array Arr,

the end result will be A2:

Arr[1]:=[Student.st_id>=12, Student.st_1d<25, and, A1]
Arr{2]:=[Student.dept="Math”, Al, and, A2]

The information kept in Arr can be explained as follows:

. ® N-ary logical operations are reduced to binary logical operations.
* If two predicates are concatenated using the “AND” operator, this means that
fragments that meet both predicatel and predicate2 can be found by
intersecting the set of fragments that meet predicatel and the set of fragments

114

that meet predicate2. The fragments found in the result of the intersection are
kept in an array called Result_array.

If two predicates are concatenated using the “OR” operator, this means that
fragments that meet the condition “predicatel OR predicate2” can be found by
taking the union of the set of fragments that meet predicatel and the set of
fragments that meet predicate2. The fragments found in the result of union is
kept in an array called Result_array.

An intermediate result and a predicate can be concatenated using the “AND”
operator, meaning that, it is necessary to intersect the set of fragments in the
intermediate result and the set of fragments meeting the predicate.

An intermediate result and a predicate can be concatenated using the “OR”
operator; meaning that, it is necessary to take the union of the set of fragments
in the intermediate result and the set of fragments meeting the predicate.

There can be at most two intermediate result sets in this system since we are
reducing the operations to binary operations by taking the priorities into
account, and these intermediate results can be concatenated using the “OR”
operator, which means that it is necessary to take the union of two intermediate
fragment sets.

Two intermediate results can not be concatenated using the “AND” operator,
because, in our interface, it is not possible to create a condition like this: (p1 or
p2) and (p3 or p4), since we do not support parentheses. As a result, in our

system it is impossible to see the situation below in an Arr array :

Arr{1]:=[predicatel predicate2,or,Al] -
An[2]:=[predicate3,predicate4,or,A2]
Arr{3]:=[A1,A2,and,A3]

By using our interface, if someone gives this condition in the same order
above, without parentheses, P1 or p2 and p3 or p4, the Find op_priorities
procedure will form the Arr array like this:

115

Ar1]:=[p2,p3,and,Al]
Arr[2]:=[pl,Al,0r,A2]
Ar{3]:=[A2,p4,0r,A3]

When we return to our first example, Predicate[l] and Predicate[2] will be
concatenated using the “AND” operator. So the set of fragments whose conditions
are meeting predicatel, and the set of fragments meeting predicate2 will be
intersected. So the distributed query will be executed on these intersecting fragments
which are student12, studentl3, student2. These fragments are obtained for the Al
intermediate result. Then these fragments which we found for Al will be again
intersected with the fragments of predicate[3]. Resulting fragments are kept in

result_array.

After these steps, the Fragmenter calls the find fragments procedure. This
procedure’s job is to find intersecting fragments for the “AND” operator and unions
of the fragments for the “OR” operator. The find fragments procedure gets the help

of these procedures:

© is_predicate: Finds if the operands of AND/OR operators are a predicate or an
intermediate result.

¢ intersect_predicates: Finds intersecting fragments of two predicates.

* intersect_pre result: Finds intersecting fragments of an intermediate result
and a predicate.

© union_predicates: Finds the union of fragments of two predicates.

* union_pre_result: Finds the union of fragments of intermediate result and the
predicate.

* union_results: Finds the union of two intermediate results, i.e. result_array[1],

result_array[2].

The last step s evaluating these fragments existing in result_array and forming the
distributed query by finding each of these fragment aliases. In Figure 6.6 the screen

of an intelligent interface, which is used to produce selection queries can be seen.

116

student. stid
student. sname

StUdenL SUd e P = bbb e
‘ rtudentdept malh“ and studPantld>5 and student st|d<12

select student stid, student. sname fram student where student dept="math" and student stid>5 and Al
student.stidk12)

Distribtited Evecutinn 501

| select stid, sname from "site1: STUDENT1 1 " where dept:"math' andt:;bﬁ and stid¢12 uniz:m select
stid.sname from " site2:STUDENT 12" where dept="math"" and stid>5 stidk12

10! melahat gefik v v
11 metha bagkomiirci User Query Distributed Query '
(Converted by Fragmenter).

(Unaware of
distribution)

Figure 6.6 An Interface for Data Retrieval Queries

As can be seen from the example query in Figure 6.6, Fragmenter converts the
user query into a distributed query and finds suitable fragments; accordingly the best
suitable sites to execute the query. In data retrieval queries, when it is possible to
retrieve data from multiple replicas located at different sites, choosing the optimal
site is an optimization issue including load balancing and other networking concepts
which is a thesis topic individually. Because of this wide range, in this thesis, the site
choosing process is made randomly, no other optimization is considered. In Figure
6.7 a user query involving the Course table can be seen. Since the Course table is

replicated at four sites, Fragmenter has to make a decision on the site to execute the

query.

117

course.cid
{course.cname

cname
theary of computer

3
M ; DB}:"S ————— Site | was choosen to
CH . Sofviare engnesng execute the query
. Pt w4 programming language

Figure 6.7 Selection from a replicated table

6.2.1.2. Selection from multiple tables -Join Operation-

In Chapter 3 section 3.6, four layers of query processing were explained. One of
them was the localization layer. This layer translates a query on global relations into
a query expressed on physical fragments. In this layer, a global relation is first
reconstructed by applying the reconstruction (or reverse fragmentation) rules and
deriving a relational algebra program whose operands are the fragments. This
process is called a localization program. The query obtained this way is called a

generic query.

118

Example 2:

By using the fragmentation schema of Student table, a generic query for Select *
from Student where dept=“Ceng” can be seen in figure 6.8:

Gdept=-Ceng”

T

()

N

Studentl Student2

TN

Studentll Student12 Studentl3
Figure 6.8 Generic Query

As can be seen in Figure 6.8, and according to the explanations made previously,
to get the correct result of this query, it is not necessary to look at Studentl, or
neither of its fragments, since the fragmentation condition and value condition given
in the query are contradicting. In general, generating a generic query is inefficient,
because important restructurings and simplifications of the generic query can still be
made. To generate simpler and optimized queries, reduction techniques must be
applied to the generic query. A reduced query can be seen in Figure 6.9 for this

example:

119

Gdept=-Ceng”

f

Student2
Figure 6.9 Reduced Query

In queries where multiple tables are involved, the join operation comes on the
scene. Join is the most expensive operation even in centralized databases, thus in a
distributed database environment, this operation gains more importance and needs
optimization. This optimization process is affected by too many parameters in a
distributed database environment and has a considerable wide range. In this thesis,
when a selection query without a join operation is issued, the reduced query is
produced. But because of the complexity of the join operation, it is not optimized and
made by constructing the generic query of the tables involved, no reduction or
optimization is made on a generic query. To process join queries, an Intelligent
Interface reconstructs the global relations from their fragments by union operation,
then executes the queries on these global relations. Since this method requires a lot of
data movement. and join operation has to be applied on very large data sets, this is
not a cost effective method especially in very large distributed databases. Further
studies can concentrate on join operation and optimizations can be made. A user

query including a join operation can be seen in Figure 6.10.

120

student
take
course

TR

student.shame
COUrse. cname
take.score

S0ksking - : , : S
" {select student. sname,course.cname take. score from student take,course where
. |student. stid=take.stid and take.cid=course.cid

.. Distibiited Execution QL sting -

{sname J'];ame) j

Mitknur sansh theory of computer ~ © 0. -
[krusansh datastuctwes 55 :
1]l bagkimiircii data stuctures 85

{alibaskdmicti DBMS % S

Figure 6.10 Query with a Join Operation
6.2.2. Data Manipulation (Insert, Update, Delete) Queries

In this thesis, any selection statement can be executed in any type of the
distributed database, designed by using primary and derived horizontal fragmentation
and replication, as long as the distribution information is recorded in the Name
Server. But, data manipulation operations are more application. dependent and
although it is not impossible, it is difficult to design a general interface for these
operations. As a result, for data manipulation operations, I studied on an example
Student database application, therefore an interface prepared for insert, update, delete

operations is dependent on my application.

121

By using the data manipulation interface prepared for an example Student
database application, it is possible to insert, update or delete a tuple. While making
these operations, just like in selection queries, query reduction techniques are used,
meaning that changes are propagated only at involving fragments. Another important
issue here is, considering replications in the system. It is not sufficient only to find an
involving fragment to execute any query, but it is also necessary to propagate the
changes at all sites, which contain replicas of that fragment. For this purpose a queue
mechanism is used. When a site involved in the query is unreachable for that
moment, the update, insert or delete is recorded in the queue for that site. A timer of
the queue continuously runs and checks the sites in the queue if they become
available. If it finds any site being available, it executes the process in the queue for
illat site, and deletes that queue record immediately. Of course this deferred
propagation of updates may result in temporarily inconsistent data at replicated sites,
but in our example application, real time, exact consistency is not so important.
Copies therefore can be temporarily inconsistent, but over time the data should

converge to the same values at all sites.

In Figure 6.11, an insertion into Student table can be seen. The student id of a
tuple to be inserted is 6 and the department is “math”, according to the fragmentation
schema, this tuple should be inserted into the fragment Studentll. This fragment
physically exists at Site 1 and it is replicated at Site 2. At the same time, the fragment
Studentl which includes Studentl! is at Site 4. Therefore, this insertion operation

should be propagated at Site 1, Site 2 and Site 4.

122

}‘ lnsrt & Update & Delete Stue

sebnem olfjat;

qkarsiyaka

|Sname . |Addiess
] Tiousonsh _— kagpsks msh
» 2 ali bagksmuircu guzelyah - math v
E 7 3‘,62|em sansh hatay o math
: ' v4'_$aade.t sanch kargaka o - -fmatvhv -
‘__ v5 huiseyin sansh ‘kargiyaka ‘ ‘math
: , 10 melahat gefk guizelyah math
B 11 meliha bagkomiircii giizelyah ‘math
f“ 12 wimaz gelik guzelpal 4 ‘M math
H | 15'639'3 gelik glizelyal ” math
B 20 wedat gk gaziemir '_ math ' ;

Figure 6.11 Insertion into the Student table

After an insert operation at Figure 6.11, the user of the Intelligent Interface will

see the result, which is shown in Figure 6.12.

123

, _'Eebnem oldag

kargyaka

" add

d Jorame Toet "
1 iknur sansh ikarsiyaka ‘math
] 2 ali bagkomiircui ‘glizelyal ‘math ;
| 3odemganst hawy math
B 4 saadet sansh ‘kargyaka ‘math
5 hiiseyingansh kargyaka math
] M;ebnemcﬂdag Skargtyak.a _ 'math_Av
|] 10 melahétqéélvi“k») -guizelyall ” » malh 4 :
] . 11 meliha bagkdmiircli guizelyal “math .
L] 12 ypmazceik giebah omah
' 13 ozge gelik Lizelyal “math :
L WLLR0ZGE ¢ guzely | ‘

Figure 6.12 The result of the insert operation from the user’s point of view

As can be seen from Figure 6.12, an intelligent interface made update propagation
transparent to the users. Although the users see the Student table as a whole in a grid,
they are not aware of the fact that, these records came from different fragments of the
Student table, which are distributed to different sites. The users also don’t know the
fact that an insert operation is propagated at three sites. The real results of this insert
operation will be shown by using Database Explorer tool of Delphi. In Figure 6.13,

inserted record can be seen at relevant fragments, which physically exist at Site 1,

Site 2 and Site 4.

Bl sol Explarer

124

Dbject Qlcbom Edk Yrew Options - Help

Defion Data | EnterSL|

I8 course.db
D Studenti 108
M takell.db
site2

g sited

3§ sited

:a DBOENDS 2 Tsed 0 sname i fAddess

28 DefaulDD 1] 1 iknur sansh kargaka ~imath
:'-i Excel Fites N 2 ak baskomiircii jvgijzelyah Cmath
:9 first 3 ozlem sansh hatay math
e FoxPio Files = - - 2
53 1BLOCAL B 4 saade} sansh karsyaka ‘math
B knur A1 L 5 hilseyin gansli kargyaka _imath
B Kimasan 1| | RSN :=brerm oidg karsyaka math
B MS Access 37 Database :

55 Native Ab

& ODBC Al

38

Figure 6.13.a The Studentl1 Fragment at Site kl

Sl

[course.db
(00 Shudent11.08
[studert12.db
[takel2db
sita3

sited

‘Datsbases | Dictionary ’ s {EmersaL] - .
2& DefaultDD & std = [Sname 0] Addrmss =l
°g: Exiel Files 1 dknur gansh kargiyaka math
- ol i i . L. r
28 }ff")‘tP Fles) 2 ali bagkiomiirci glizalyah _math

: 3 IE;)CD&LI = e 3 o2lern sansh hatay math
:g terur) 4i1 4 sasdet yansh kargyaka math
= kimasan - S hiiseyin sansh kargyaka math
B MS Access 37 Database M sebnem aldag kargyaka math
28 Native Al
B ODBC Al
) sec

Figure 6.13.b The Studentl1 Fragment at Site 2

125

Datasbases]n;cﬁc',,ap_,} s s : i h ‘ i
% ExcelFies N [dssd o srame v o faddess o ot Moept oo o | 2
W5 fist 1 dknur sansh kargyaka ‘math
G Fouro s (]2 sibagomiaci guzehar math
% ‘:LOCAL - e ;ansk | P : ;matﬁ
£ 2 Vimasan | e W I
k> MS Access 97 Database] nuseyin jansy ... raspaka . iman
w28 Native Ak DENEERES scbremoda; kagyaka mah
O0BC Ak E 10 melahat gelik __guizelyah) math
& ‘ 11 ,ﬂmeﬁha baskﬁnﬂlcﬁ guze!yai . math
] 12 pimaz gelik glizelyak T iman
5 13 b2ge gelk glizelyah imath
] 20 vedat ipk _gaziemit .math
A N sdeymengk e mah
+ [cowse.db |} _ 22 gtilgen tunca karsyaka) math
+ [studentl.dy £ 23 zegneltunca Kagyska - math _
& [student2DB 24 hasibe i3k cle math
% [takel.db B ' gaziem math
. 2 tokeldd A0 Loge .. mah

Figure 6.13.c The Studentl Fragment at Site 4

Figure 6.13 Update Propagation Example

If any site involved in an insert, update or delete operation is unreachable for that
moment, this operation will be kept in a queue for that site. In Figure 6.14 the records
in the queue can be seen. Pid is the process id of an operation to be performed (I-
insert, U-update, D-delete). Site_id and Unit_id shows the site id and the unit_id on

which an operation to be performed.

41 imelshat celik_karsipska |

BE u

(1 2 21 &h12 U 10 melahatcelk karsypaka math

| 3 41 'sth2 1 146 ergungozek atatirk mah ‘ceng |

1l ¢« 133 D ; 112 | netwiork.

| s 233 o ‘1 12 network

' B 33 3 D 112 inetwork
D

12 inebwork

R e —

Figure 6.14 Queue Mechanism

126

6.2.3. Pscudo Codes

Fragmenter()

If (has_no_join_part) and (has_no_condition_part) {selection from one table}

[f table has fragments {Find all the fragments from Fragment table whose
parent is equal to the table}
For all fragments of the table
Form_Fragment Tree { Divide the query into subqueries which will be
executed on different fragments}

Execute all the subqueries

[f table has no fragments
Find where the table exists {Look at the Unit_Dist table}
[f the table has replicas at more than one site
then find optimal site,
else find the site where the table exists

Execute the query

If (has_no_join_part) and has_condition_part

[f table has fragments
Parse_Val Cond { Divide the value condition into Predicates and
Operators arrays}
For all Predicates
For all Fragments
Compare { Output is Save_Array which has suitable fragments
for each predicate}
Find_Op_Priorities { Find the priorities of AND/OR operators, and
consequently find how the predicates will be

connected by logical operators — Output is Arr

127

Array}
Find Fragments {Find the result Fragment Set to execute the query}

Execute the query on the fragments in Result_Array

If the table has no fragments
Find where the relation exists

Execute the query at that site

If has_join_part

For all tables involved in the query
Form_Fragment_Tree { Form the generic query for a table to generate
global relation}
Execute the query and get all the results of a global relation
Create a tamporary table and fill it with the global data obtained
Execute the user query with join operation on these temporary tables which

represent global relations

Form_Fragment_Tree (Unit_id)

{A unit can be a relation or a fragment}

Search for a unit in Unit_Dist table
[f found {It is a physical unit}
If it is replicated at more than one site
then choose the optimal site and take the alias_name
else take the alias_name of that site
Form the sub query
Add the sub query to the distributed query
If not found {It is a logical unit}
Find all the sub fragments of that unit
For all sub fragments
Form Fragment Tree(Sub_fragment id)

128

Compare (Fr_id, Predicate)

Look to the derived attribute of the Fragment table if that fragment is derived from

another fragment

Ifit is derived
then att=fragmentation attribute of an owner relation

else att=fragmentation attribute of a fragment itself

patt=attribute of the Predicate (selection formula)
[f patt=att
then make a value comparison to see whether that fragment is suitable to
execute query or not
[f it is suitable then find leaves (fr_id, predicate)
else
If the fragment has sub fragments then
For all sub fragments Compare (sub_fragment_id,predicate)
[f the fragment has no sub fragments then

Record into Save Array that the fragment is suitable for a predicate

Find_Leaves (fr_id, predicate)

Find all sub fragments of the fragment
[f it has sub fragments
then
For all sub fragments
Find leaves (sub_fragment id, predicate)
else

Record into Save_Array that the fragment is suitable for a predicate

Find_Op_Priorities (Predicates_Array,Operators_Array)

According to the priority of AND operator to OR operator
Examine the Predicates Array and Operators Array

Find how the predicates are connected with logical operators

{Output is Arr array in the form of Arr [pl,p2, op, A]:

Arr [predicatel, predicate2, logical operator, intermediate_result] or

Arr [intermediate_result, predicate, logical_operator, intermediate_result] or
Arr [predicate, intermediate_result, logical operator, intermediate_result] or
Arr [intermediate_result, intermediate_result, logical operator (OR),

intermediate_result]}

F ind_Fragments (Arr_Array)

For all rows in the Arr array
If logical operator is AND then
If pl=predicate, p2=predicate then intersect_predicates(pl,p2)
[f pl=predicate, p2=intermediate_result then intersect_pre result(pl)

[f pl=intermediate_result, p2=predicate then intersect _pre_result(p2)

If logical operator is OR then
[f pi=predicate, p2=predicate then union_predicates(pl,p2)
If pl=predicate, p2=intermediate_result then union_pre_result(pl)
If pl=intermediate_result, p2=predicate then union_pre result(p2)

If pl=intermediate_result, p2=intermediate_result then union_results()

{Intermediate result is kept in Result_Array, at the end the fragments found in the

Result Array will form the distributed query}

129

130

Intersect_Predicates(p1,p2)

Find the fragment set for the predicate pl from Save_Array>FS1
Find the fragment set for the predicate p2 from Save_Array—FS2
Find FS1 N FS2 and record this set into Result_Array

Intersect_Pre_ Result(p)

Find the fragment set for the predicate p from Save_Array5FS1
RS= the set recorded in the Result_Array
Find FS1 M RS and record this set into Result_Array

Union_Predicates(p1,p2)

Find the fragment set for the predicate pl from Save_Array3FS1
* Find the fragment set for the predicate p2 from Save_Array->FS2
Find FS1 U FS2 and record this set into Result_Array

Union_Pre_Result(p)

Find the fragment set for the predicate p from Save_Array>FSI
RS= the set recorded in the Result_Array
Find FS1 W RS and record this set into Result_Array

131

Union_Results()

RS1=the set recorded in the Result Array[1]
RS2=the set recorded in the Result Array[2]
Find RS1 W RS2 and record this set into Result_Array

{The number of columns in the Result Array depends on the number of elements
found as a result of set union or intersection operations. But there can be at most to
rows in the Result Array. We can see this fact in an example. Assume that the user

query has the condition part like:

pl and p2 or p3 and p4 and p5 or p6

Ar[1]=[pl,p2,and,A1]> The result Al will be at Result_Array[1]

Ar[2]=[p3,p4,and,A2]> The result A2 will be at Result_Array[2]

Arr[3)=[A2,p5,and,A3]> The set in the Result_Array[2] and the set of
fragments which are suitable with pS will be
intersected. The result will be kept in

Result Array{2]

Arr[4]=[A1,A3,0r,A4]> The set in the Result_Array[1] union
The set in the Result_Array[2] will be kept in the
Result_Array[1]. Result_Array[2] will be cleared

Ar[5]=[A4,p6,0r,A5]> The union of the set in the Result_Array[1] and the
set of fragments which are suitable with P6 will be
taken. The result will be kept in Result_Array[1]}

132

Process_Queue()

Repeat
For each record in the queue
If the site becomes available then
If process_id=I" then Insert Entry()
If process_id="U’ then Update Entry()
If process_id=‘D’ then Delete_Entry()

Delete the record from the queue

133

CONCLUSIONS

In this thesis, | tried to implement an intelligent interface, which is a prototype of
a Distributed Database Management System. As a result of the time limitation of this
study, the complexity and the wide range it includes, | made some restrictions on the
functions of this system. I believe that this study will give a general framework to
understand the topic “Distributed Database Management System”, and the prototype
[implemented will also help to imagine functions of such a system. Another

important issue for this study is, aiming to be the basis for future works on this topic.

This study can be extended by future works on the topics below:

® When there is more than one site where the query can be executed, the site
choosing process can be optimized by considering the network load of the
system.

® Reduced query plans can be generated instead of the generic query, for the join
operation.

® The user interface can be generalized, so that it can run on all types of
distributed database systems for data manipulation operations. (An application
independent interface can be implemented.)

® A module for the configuration of the Name Server can be implemented. By
using this module designers of a distributed database system can enter data
which introduce the distributed database system to an intelligent interface. In
the interface introduced in this thesis, this process is made directly by using the
Name Server database, i.¢, there is no interface to manipulate data in the Name

Server database.

134

®* A module for the design of a distributed database can be implemented. The
interface introduced in this thesis is running on a distributed database designed
according to some restrictions, it can not design a distributed database. By
using this design module, it can be possible to fragment a table according to a
given criteria, to reconstruct a table from its fragments, to replicate a fragment
or a table at sites, or to allocate fragments or tables to sites.

® In the design of a distributed database, the Name Server can be replicated at all
sites, or it can be located at only one site. Since the Name Server database is
the brain of an intelligent interface, this selection is a very important design
issue. When replicating the Name Server at more than one site, there should be
mechanisms to synchronize data at all Name Servers. On the other hand, when
the Name Server is located at only one site, since all transactions need the data
on the Name Server, there might be a bottleneck in the system. It i1s strongly
recommended that, the brain of a distributed database should not be a central,
single point of failure, this would be a dilemma. Therefore it is more suitable to
distribute the Name Server database and implement strict mechanisms to keep
all Name Servers consistent. Here, for data changes on Name Servers, all or
nothing approach can be used.

® The same design altemnatives for the Name Server database is also valid for a
queue mechanism. Each site can maintain its own local queue, or there can be
only one queue mechanism at only one site. Each of these design alternatives
brings some advantages and disadvantages, just like in Name Server location

selection case.

The topics discussed above are future works that can be based on my research.
Beside these, it is also important to consider the current and new trends in distributed
database technology, which are parallel servers, distributed knowledge bases and
distributed object-oriented databases. It will be a*great honour for me, that my study

would be the basis for further studies on these topics.

135

REFERENCES

[Casavant & Singhal, 1994]. Thomas L. Casavant & Mukesh Singhal. Readings in
Distributed Computing Systems. [EEE Computer Society Press.

|fChen & Roussopoulos, 1994]. Chungmin Melvin Chen & Nick Roussopoulos.

Adoptive Selectivity Estimation Using Query Feedback. Proceedings of the 1994

ACM SIGMOD International Conference on Management of Data, Minneapolis,
Minnesota, May 24-27, 1994. ACM Press 1994, SIGMOD Record 23(2), June

1994.

[COT5200]. Distributed Database Systems (Advanced topics in DS) lecture notes.
Monash University, Faculty of Information Technology, School of Computer

Science & Software Engineering. Internet address:

http://www.ct.mpnash.edu.au/Azaslavs/cot5200-link/

[Delis & Roussopoulos, 1992]. Alexios Delis & Nick Roussopoulos. Performance

and Scalability of Client-Server Database Architectures. 18" International

Conference on Very Large Data Bases, August 23-27, 1992, Vancouver, Canada,

Proceedings.

[Delis & Roussopoulos, 1994]. Alex Delis & Nick Roussopoulos. Management of
Updates in the Enhanced Client-Server DBMS. Proceedings of the 14%

International Conference on Distributed Computing Systems. June 21-24, 1994,

Poznan, Poland, IEEE Computer Society Press.

136

[IBM_DRDA]. DRDA (Distributed Relational Database Architecture). IBM

Software. Internet adress: hip://www.software.ibm.com/data/drda. html.

[Ibrahim et al., 1998]. H. Ibrahim, W.A. Gray and N.J. Fiddian. Optimizing

Fragment Constraints. Proceedings of the 9" International Workshop on Database

and Expert Systems Applications, August 24-28, 1998, Vienna, Austria. IEEE

Computer Society Press.

[March & Rho, 1995]. Salvatore T. March & Sangkyu Rho. Allocating Data and

Operations to Nodes in Distributed Database Design. IEEE Transactions on

Knowledge and Data Engineering, Vol. 7, No. 2, April 1995.

[MARIPOSA_ manual]. Mariposa Distributed Database Management System User

Manual v.1.0. Internet adress: hutp://mariposa.cs.berkeley.edu/download.html.

[Muthuraj et al., 1993]. Jaykumar Muthuraj, Sharma Chakravarthy, Ravi
Varadarajan, Shamkant B. Navathe. A Formal Approach to the Vertical

Partitioning Problem in Distributed Database Design. Proceedings of the 2™

International Conference on Parallel and Distributed Information Systems, San

Diego, CA, USA, January 20-23, 1993. [EEE Computer Society Press.

[Oracle 7]. Oracle 7, Release 7.3.4, Documentation Library.

[Ozkarahan, 1997]. Esen Ozkarahan. Database Mangement Concepts, Design and

Practice (2" ed.). Saray Medical Publication.

[Ozsu & Valduriez, 1991]. M. Tamer Ozsu & Patrick Valduriez. Principles of
Distributed Database Systems. Prentice-Hall, Inc.

137

[Ozsu & Valduriez_notes, 1999]. M. Tamer Ozsu & Patrick Valduriez. Principles of
Distributed Database Systems, (2™ ed.) Viewable Notes on Distributed Transaction

Management.

Internet address: http://web.cs.ualberta.ca/~database/ddbook/notes/Transaction/index. htm.

[Reddy & Kitsuregawa, 1998]. P. Krishna Reddy & Masaru Kitsuregawa. Reducing:
the Blocking in Two-Phase Commit Protocol Employing Backup Sites.

Proceedings of the 3™ International Conference on Cooperative Information

Systems, New York, USA, August 20-22, 1998. IEEE Computer Society Press.

[Rennhackkamp, 1998]. Martin Rennhackkamp. Peerdirect-Heterogeneous
‘ Replication comes of age. DBMS Magazine, May 1998. DBMS Online.

[Richter, 1994]. Jane Richter. Distributing Data. Byte Special Report, June 1994.

[Shirota et al., 1999]. Yukari Shirota, Atsushi Uzawa, Hiroko Mano, Takashi Yano.
The ECHO Method : Concurrency Control Method for a Large-Scale Distributed

Database. Proceedings of the 15" International Conference on Data Engineering,

23-26 March 1999, Sydney, Australia. [EEE Computer Society Press.

[Sidell et al., 1996]. Jeff Sidell, Paul M. Aoki, Adam Sah, Carl Staelin, Michael

Stonebraker and Andrew Yu. Data Replication in Mariposa. Proceedings of the 12

International Conference on Data Engineering, Feb. 26-March 1, 1996, New
Orleans, Louisiana, USA. IEEE Computer Society Press.

[Sybasel]. Alex Moissis. Sybase Replication Server: A Practical Architecture for
Distributing and Sharing Corporate Information. Sybase Inc. Internet address:

http/www.sybase.com/products/datamove/repserver wpaper.html.

[Sybase2]. Sybase Replication Server. Sybase Inc. Internet address:

http:#/www sybase.com/products/system1 l/repsrvr.html.

138

[Tanenbaum, 1995]. Andrew S. Tanenbaum. Distributed Operating Systems. 1995 by
Prentice-Hall, Inc.

[Ullman, 1982]. Jeffrey D. Ullman. Principles of Database Systems. (2" ed.).

Computer Science Press, Inc.

[Zhang et al., 1999]. Zhili Zhang, William Perrizo, Victor T.-S. Shi. Atomic

Commitment in Database Systems over Active Networks. Proceedings of the 15™

International Conference on Data Engineering, 23-26 March 1999, Sydney,
Australia. IEEE Computer Society Press.

