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SEQUENTIAL RECTANGULAR PACKING PROBLEM IN WIRELESS 

TELECOMMUNICATIONS WITH FUZZY EXTENSIONS 

 

ABSTRACT 

In this thesis, a rectangular packing problem in telecommunications context is 

considered. Namely, we introduce a resource allocation modeling framework for a 

sequential two-dimensional packing problem, which may have direct applications in 

wireless telecommunications area pertaining to the IEEE 802.16 standard. The time 

dimension implied by the sequential consideration of frames adds a third dimension 

to the packing problem to some extent. We extend the common features of the frame 

packing problem to include realistic and state-of-the-art features of the current 

wireless data transfer processes. Three novel and representative mathematical 

programming models are developed for the problem, which are intended for 

contribution both to academic literature and professional practice. The developed 

models aim optimal usage of the physical layer defined by the standard, which 

involves data packages sent from a base station to a fixed or mobile user station. The 

data transmitted for each user are modeled as rectangular blocks, dimensions of 

which correspond to time duration and frequencies used in data transfer. Placement 

of these rectangular blocks in a sequence of identical rectangle frames is optimized 

by the developed models, aiming to maximize profit, minimize waste or minimize 

the rectangle count. Quality of service constraints such as maximum delay in transfer 

and minimum data transmission rates restrict the placement of variable-sized 

rectangles. We present the framework for all models, which handle demand 

partitioning and rectangle packing simultaneously. The foundations for fuzzy 

measures and parametrization are also proposed in this thesis, in order to mimic more 

realistic evaluation of actual network resources for practical problems. Thorough 

extensive experimentation, the performance of the developed models in terms of both 

solution times and quality are investigated. We also discuss alternative approaches to 

improve solution performances for the new models. 

 

Keywords : Two-dimensional packing, three-dimensional packing, fuzzy 

optimization, telecommunications, scheduling 
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KABLOSUZ ĠLETĠġĠMDE ARDIġIK DĠKDÖRTGENSEL PAKETLEME 

PROBLEMĠ VE BULANIK UZANIMLARI   

 

ÖZ 

Bu tezde telekomünikasyon alanındaki bir dikdörtgensel paketleme problemi ele 

alınmıştır. Özel olarak, IEEE 802.16 standardına ait kablosuz iletişim alanında 

doğrudan uygulamaları olabilecek sıralı iki boyutlu bir paketleme problemi bazında 

bir kaynak tahsisi modelleme çerçevesi sunulmaktadır. Zaman boyutunun sıralı 

dilimlerin paketlenmesi şeklinde ele alınması probleme bir ölçüde üçüncü bir boyut 

kazandırmaktadır. Ayrıca, ele alınan dilim paketleme probleminin özellikleri 

günümüz kablosuz veri transferinde kullanılan güncel teknolojiyi kapsayacak şekilde 

zenginleştirilmiştir. Problem için hem akademik literature hem de sektöre katkı 

sağlaması hedeflenen özgün ve temsil gücü yüksek üç matematiksel programlama 

modeli geliştirilmiştir. Geliştirilen modeller, standart çerçevesinde tanımlanan ve bir 

baz istasyonundan sabit veya mobil kullanıcı istasyonlarına veri paketi gönderimini 

sağlayan fiziksel katmanın optimal kullanımını hedeflemektedir. Ġletilen veri 

paketleri her kullanıcı için boyutları transferde kullanılan süre ve frekans aralıklarına 

karşılık gelen dikdörtgensel bloklar olarak modellenmektedir. Bu blokların sıralı 

özdeş dikdörtgensel dilimler üzerine yerleştirilmesi, geliştirilen modeller tarafından 

karı maksimize edecek, atığı minimize edecek veya dikdörtgen sayısını minimize 

edecek şekilde eniyilenmektedir. Maksimum gecikme ve minimum veri iletim hızı 

gibi hizmet kalitesi kısıtları değişken boyutlu dikdörtgen blokların yerleşimlerini 

etkilemektedir. Çalışmada talep bölüştürme ve dikdörtgensel paketlemeyi aynı anda 

sağlayan modeller için teorik bir çerceve sunulmuştur. Ayrıca, pratik problemlerde 

gerçek ağ kaynaklarının değerlendirilmesinde faydalı olabilecek bulanık ölçüt ve 

parametreler için temel bir yapı oluşturulmuştur. Gerçekleştirilen kapsamlı sayısal 

deneylerle, geliştirilen modellerin çözüm süresi ve kalitesi bazında performansları 

ölçümlenmiştir. Bunun yanında olası yeni modeller için çözüm performansını 

geliştirebilecek alternatif çözüm yaklaşımları da tartışılmıştır.       

  

Anahtar kelimeler : Ġki boyutlu paketleme, üç boyutlu paketleme, bulanık 

optimizasyon, telekomünikasyon, çizelgeleme 
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CHAPTER ONE 

INTRODUCTION 

 

Three-dimensional bin packing problem (3D-BPP) is generally defined as the 

packing of a given set of rectangular-shaped items into the minimum number of 

three-dimensional rectangular bins without any overlapping. It is assumed that the 

items are packed orthogonally, namely, with each edge parallel to the corresponding 

bin edge. There are an unlimited number of identical three-dimensional containers 

(bins) having width W, height H, and depth D, which can be used for allocating a set 

or list of n rectangular-shaped items, each characterized by width wj  W, height hj,  

H and depth dj  D (j  J = {1,..., n}.  

 

The problem is NP-hard in the strong sense, since it is a generalization of the 

well-known (one-dimensional) bin packing problem (1D-BPP). In 1D-BPP, a set of n 

positive values wj has to be partitioned into the minimum number of subsets so that 

the total value in each subset does not exceed a given bin capacity W. 1D-BPP is 

proven to be NP-hard in the strong sense (Garey & Johnson, 1979; Korte & Vygen, 

2008). So there is little hope of finding even a pseudo-polynomial time optimization 

algorithm for 3D-BPP. 

 

The 3D-BPP is closely related to other three-dimensional loading problems, such 

as Knapsack Loading and Container Loading. Naturally, it finds many industrial 

applications like packaging, mechanical and electronical design, vehicle and pallet 

loading, cutting of materials in production (cutting stock problem), loading area, 

multiprocessor scheduling, task assignment, and several scheduling problems (Eliiyi 

& Eliiyi, 2009). 

 

In the knapsack loading of a container each item has an associated profit, and the 

problem is to choose a subset of the items that fits into a single container (bin) so that 

maximum profit is loaded. If the profit of an item is set to its volume, this 

corresponds to the minimization of wasted space. In the container loading version, all 

the items have to be packed into a single bin, having an infinite height. The problem 
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is thus to find a feasible solution that minimizes the height to which the bin is filled 

(Martello & Toth, 1990). There are several heuristics in the literature for these 

problems, some of which are to be mentioned in the following section (Aho et al., 

1983; Pisinger, 2002).  

 

Another important and frequently studied special case is the two-dimensional bin 

packing problem (2D-BPP), which again finds its obvious applications in areas 

related to the cutting context. Obviously 3D-BPP can also be generalized by adding 

dimensions like time (like for scheduling a bread oven usage) according to the nature 

of our problems. 

 

The model of the problem can be adapted to a vast variation of problems not 

necessarily limited to packing and loading applications. Furthermore, the 

assumptions of the problem can be modified to represent the real-life situation more 

realistically. For instance, balancing conditions and weight distribution of the placed 

items, rotation constraints, geometry of the items or the bins should be considered in 

most cases. Even the amount of knowledge of the item placements in bins might be 

considered as in the cases of online bin packing problems. 

 

The main goal of this thesis is to develop novel exact optimization models for 

solving the downlink (DL) subframe allocation problem in Mobile WiMAX (IEEE 

Std 802.16, 2009) telecommunications standard by satisfying real-network 

constraints such as maximum delay, minimum throughput and subscription priorities 

with power consumption and utilization objectives throughout a sequence of frames 

(Eliiyi & Nasibov, 2010). The downlink (transmission direction from the base station 

to the mobile stations) subframe allocation problem in Mobile WiMAX corresponds 

to a two-dimensional packing problem, and we approach this allocation problem 

through a sequence of DL subframes used in the data transfer to consider also other 

QoS constraints such as maximum delay.  

 

As a result of a thorough review of the related literature and through a careful 

analysis of the current global technological developments, which will be fully 
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disclosed in the next chapter, it is recognized that new studies on modeling and 

solution to the problem of our concern is more than necessary. Including new and 

existing features of the Mobile WiMAX technology in the models for taking into 

account the most recent telecommunications industry requirements is essential. The 

success of the developed models and algorithms will also depend on the solution 

performances attained by sufficient experimentation with realistic problem instances.  

 

These results and facts constitute the main motivation of this thesis, particularly 

considering the latest technology is of great value to the wireless communication 

domain, and an optimization approach in this area will contribute significantly to the 

existing literature. We extend the common features of the frame packing problem to 

include realistic and state-of-the-art features of the current wireless data transfer 

processes. The novel and representative mathematical programming models 

developed for the problem are intended for contribution both to academic literature 

and professional practice. The foundations for fuzzy measures and parametrization 

are also intended to be laid in this thesis, in order to mimic more realistic evaluation 

of actual network resources for practical problems. Thorough extensive 

experimentation, the performance of the developed models in terms of both solution 

times and quality are also investigated.  

 

The problem considered in this thesis is an extended form of the multiple 

knapsack problem with identical capacities (Kellerer et al., 2005), as it will be 

explained in following chapters. However, the existence of the extra constraints and 

different objectives allows handling various decision making alternatives, and the 

variable item or demand sizes requires a nonlinear approach in modeling the 

problem, rendering it even harder.  

 

By taking into account the time division structure of the resource allocation 

sequence and other features of the telecommunications standard, we extend the two-

dimensional nature of the problem to three-dimensional by adding additional 

knapsack and partitioning constraints. In other words, the time element through the 

consideration of a sequence of frames adds a third dimension to this otherwise two-
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dimensional packing problem. The continuous nature of the problem through time 

justifies the formulation through a sequence of frames rather than on a single frame. 

Since most transfers in a wireless telecommunication environment will not be 

completed in time captured by a single frame, we believe that the new problem 

definition in this thesis for partitioning and packing decisions involving multiple 

users over a sequence of frames, as well as novel mathematical formulations, offer 

significant contributions to related literature.       

 

The outline of this thesis is as follows. In the next chapter, a review of the existing 

literature on the multi-dimensional bin packing problem is presented along with 

specific contributions in wireless telecommunications and fuzzy information. We 

define the problem and present the proposed mathematical models in Chapter 3, 

along with some existing preliminary results and approaches for the bin packing 

problem. Experimental computation is presented, analyzed and discussed in Chapter 

4. A fuzzy perspective to the problem is presented in detail in Chapter 5. Finally, 

summary and conclusions are reported in Chapter 6, along with potential future 

research areas. 
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CHAPTER TWO 

LITERATURE SURVEY 

 

In this chapter, we present a thorough review of the existing literature on multi-

dimensional bin packing problems.   

 

2.1 Multi-dimensional Bin Packing Problem 

The NP-completeness and NP-hardness of the multi-dimensional bin packing 

problem are presented by the prominent work of Garey & Johnson (1979). The 

authors proved the complexity of the problem by showing that the basic bin packing 

problem in one dimension (1D-BPP) contained 3-PARTITION as a special case, 

which is one of the basic NP-Complete problems in the strong sense. Due to this 

complexity, most of the literature on bin packing problems deals with approximation 

algorithms, heuristics, and their performances.  

 

Given n items with weights wj and n bins each with capacity c, the mathematical 

formulation of 1D-BPP was given as below by Martello & Toth (1990). 

 

minimize z = 
1

n

i

i

y


  

subject to        
1

, 1,..., ,
n

j ij i

j

w x cy i N n


    

                       
1

1, ,
n

ij

j

x j N


   

                          0,1 , 0,1 , , ,i ijy x i N j N     

where             
1, if bin  is used;

0, otherwise,
i

i
y


 


1, if item  is assigned to bin ;

0, otherwise.
ij

j i
x


 


 

assuming wj  c, for j  N. 
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The basic bin packing problem is considered as one of the milestones for analysis 

of the approximation algorithms. Effects of lower bounds and probabilistic aspects of 

the problem on the performance of the algorithms, as well as the worst-case and 

average-case behaviours of the algorithms for the 1D-BPP have been the primary 

research directions in the area of NP-hard problems (Johnson, 1973; Johnson et al., 

1974; Baker & Coffman, 1981; Martello & Toth, 1990; Coffman et al., 1996). For a 

given list L of items and algorithm A, A(L) being the number of bins used when A is 

applied to L, the optimum number of bins for a packing of L is denoted by z(L), and 

the ratio (A(L) / z(L)) is denoted by RA(L). The absolute worst-case ratio RA for 

algorithm A is then defined as:  

RA = inf{r ≥ 1: RA(L) ≤ r for all lists L},  

and the asymptotic worst-case performance ratio as: 

AR
 = inf{r ≥ 1: for some N > 0, RA(L) ≤ r for all L with z(L) > N}.  

 

Additionally, if all items of the list have a maximum size of , the bounded-size 

performance ratios can be defined as RA() and AR
(). 

 

In one of the earliest studies on 3D-BPP, approached from a container loading 

perpective, an approximation algorithm was presented for minimizing total height 

with an asymptotic performance bound better than a conjectured one in the literature 

(Miyazawa & Wakabayashi, 1997). The authors defined an asymptotic performance 

bound α of an algorithm A as follows: If there exists a constant β such that for all 

item lists L, in which all boxes have height at most Z, then A(L) < αOPT(L) + βZ 

holds. Here, A(L) denotes the height of the packing generated by the algorithm A 

when applied to the list, and OPT(L) denotes the height of an optimal packing of L. 

Furthermore, if for any small ε and any large M, both positive, there is an instance L 

such that A(L) > (α – ε)OPT(L) and OPT(L) > M, then again α is called as the 

asymptotic performance bound of the algorithm A. 

 

The same authors also studied a variant of the same problem, allowing a rotation 

in the z-axis (height), and developed four algorithms with respective to bottom 

shapes of the items. Special bottom shape chosen to be square, the algorithms they 



7 

presented had the same complexity O(n log n) as other known algorithms while 

having better asymptotic performance bounds (Miyazawa & Wakabayashi, 2000). A 

similar study introduced an efficient algorithm by formulating a geometrical model 

that reduced the general three-dimensional packing problem to a finite enumeration 

scheme (Faina, 2000). Proving the validity of the algorithm, the author proposed a 

numerical estimate of the corresponding asymtotic performance bound. 

 

As in the case of 1D-BPP, it is often observed in the literature of 3D-BPP that 

new lower bounds are defined by comparing their performances and dominance 

relations with the previous ones and each other, and the worst-case analysis of these 

bounds are examined. In one such study, an exact algorithm was developed for 

selecting a subset of items that can be packed into a single bin, while maximizing the 

total volume packed (Martello et al., 2000). The authors used the bounds they found 

to obtain two approximation algorithms and an exact branch-and-bound algorithm. A 

later study by Fekete & Schepers (2001) aimed to obtain new fast lower bounds, 

based on dual feasible functions, and provided a general framework for establishing 

new bounds. Similarly, new lower bounds for the problem have been proposed by 

Boschetti (2004), where the items have fixed orientation. The bounds were extended 

by allowing 90º rotations, and experimental tests were evaluated for comparing the 

effectiveness of the new lower bounds. 

 

One disadvantage of relying on worst-case analysis is that, in many real-world 

applications the worst case is almost never observed. Therefore, more meaningful 

results explaining the typical behaviours of the algorithms are necessary. Examining 

the average-case behaviours of the developed heuristics follows this requirement. In 

such an attempt, Coffman et al. (1988) investigated methods for obtaining formal 

probabilistic analyses of heuristics for makespan scheduling and one-dimensional bin 

packing, and presented many of the key results in these research areas. 

 

In another study regarding the probabilistic aspect of the problem (Federgruen & 

van Ryzin, 1997), a unified probabilistic analysis was presented for a general class of 

bin packing problems, describing the objects by a given number of discrete or 
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continuous attribute values. Bins were defined as sets of objects, and the collection of 

feasible bins was merely required to satisfy some general consistency properties. The 

asymptotic optimal value was defined as the value of an easily specified linear 

program, whose size was independent of the number of objects to be packed. The 

analysis suggested that the developed heuristic run in linear time. The authors 

showed that the algorithm had both polynomially fast convergence and polynomial 

running time in several important cases, and they described how their results could 

be used to analyze a general vehicle routing model with capacity and time window 

constraints. 

 

The average-case analysis of algorithms usually assumes independent, identical 

distributions for the inputs. Kenyon (1996) introduced the random-order ratio, a new 

average-case performance metric for bin packing heuristics, and proposed upper and 

lower bounds for this metric for the Best-Fit heuristics. An alternative definition of 

the random-order ratio was also introduced by Coffman et al. (2008). The authors 

shown that the two definitions yielded the same result for Next-Fit, and the random-

order ratio of Next-Fit was 2, which was also equal to its asymptotic worst-case ratio. 

 

For obtaining tighter bounds for problems of optimal packing within one or 

several containers, some new relaxations were developed that led to linear 

programming (LP) models. In such an effort, a column generation-based approach 

was discussed by Scheithauer (1999) along with computational results, and several 

relaxations were defined for container and multi-container loading problems. In 

another LP-based study, a mixed-integer linear programming (MILP) formulation of 

the problem that determined a filling of a big rectangular box with as many small 

rectangular boxes as possible was proposed (Padberg, 2000). The author presented a 

more general formulation that yielded a tighter LP bound of the convex hull than the 

previous MILP approaches for the problem. 

 

The cube packing problem (CPP) is defined as a special case of 3D-BPP, where a 

given list of small cubes is placed into a minimum number of larger identical cubes. 

A parametric version of this problem was defined on online and offline algorithms, 
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and respective asymptotic performance bounds were presented by Miyazawa & 

Wakabayashi (2003). For a generalized d-dimensional cube packing (d-CPP) version 

of the problem, two approximation algorithms were developed by Kohayakawa et al. 

(2004). The first of the algorithms was shown to have an asymptotic performance 

bound that can be made arbitrarily close to 2 - (1/2)
d
, and the latter improved one 

could be made arbitrarily close to 2 – (2/3)
d
. The authors stated that these were the 

first results with non-exponential bounds. 

 

In another heuristic approach, a multi-faced buildup technique was used in the 

packing procedure with no requirement for the packed boxes to form flat layers (Lim 

et al., 2003). The basic algorithm was augmented by a look-ahead strategy, yielding 

an average packing utilization that improved the existing benchmarks significantly. 

The same authors have formulated two heuristics dealing with homogeneous and 

heterogeneous categories in a later study (Lim et al., 2005), regarding box selection, 

space selection, box orientation and new space generation sub-problems. Lins et al. 

(2002) studied a specific problem of packing 3D boxes into an n-container, where the 

boxes can be packed in a given subset of their 6 possible positionings. The 

symmetries in the packings were analyzed through the use of an ordered set of three 

directed graphs with the same edges. 

 

Techniques derived from bin packing algorithms have been used in several studies 

in other contexts. As an example, Coffman et al. (1978) described a fast bin packing-

based algorithm for scheduling n independent tasks on m identical parallel processors 

in a nonpreemptive fashion while minimizing the makespan (total timespan required 

to process all the given tasks). Similarly, Garey et al. (1978) examined some special 

cases of the resource constraints in a scheduling problem, reducing the problem to 

BPP for determining the best performance guarantees for the developed 

approximation algorithms. In another study, the NP-hardness of the generalized fixed 

job scheduling problem was proven by transforming an instance of the problem to 

BPP (Fischetti et al., 1989). In addition, the authors used BPP solutions for obtaining 

tight lower bounds, which were then employed in a branch-and-bound algorithm for 

obtaining the optimal solution of the studied scheduling problem. Another interesting 
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study showed that the protein folding problem, which deals with the interactions 

within the amino acid chains that form a protein’s well-defined three dimensional 

structure, is NP-complete, by a nontrivial transformation of a popular biophysical 

model (hydrophobic-hydrophilic) for protein folding to a modified bin packing 

model (Berger & Leighton, 1998). 

 

In many studies, metaheuristic approaches for the BPP problem are employed. 

Such a study by Faroe et al. (2003) used a heuristic based on guided local search 

(GLS), starting with an upper bound on the number of bins obtained by a greedy 

heuristic. The proposed algorithm iteratively decreased the number of bins, each time 

searching for a feasible packing of the boxes. A general tabu search technique for the 

solution of 2D and 3D-BPP, as well as any of their variants requiring the 

minimization of the number of bins, was developed by Lodi et al. (2004), along with 

the implementation of the corresponding computer code. The user of the computer 

code was only requested to provide a procedure that gave an approximate solution to 

the actual variant to be solved. A two-level tabu search was presented in a recent 

study (Crainic et al., 2009), where the first-level aimed to reduce the number of bins, 

and the second optimized the packing of the bins. The latter procedure reduced the 

size of the search space, based on an interval graph representation of the packing, 

which was previously proposed by a study defining a combinatorial characterization 

of higher-dimensional orthogonal packing (Fekete & Schepers, 2004a). 

 

Fekete & Schepers (2004a) presented a new approach for modeling packings, 

using a graph-theoretical characterization of the feasible packings. Their 

characterization allowed to deal with classes of packings that share a certain 

combinatorial structure, instead of having to consider one packing at a time. Using 

elegant algorithmic properties of certain classes of graphs, the characterization were 

used as the basis for a nice branch-and-bound framework. Based on this study, the 

same authors proposed a new approach for obtaining classes of lower bounds for 

higher-dimensional packing problems (Fekete & Schepers, 2004b), improving and 

simplifying several well-known bounds from previous literature. Following these 

two studies, a two-level tree search algorithm was developed in a later study for 
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solving higher-dimensional packing problems to optimality (Fekete et al., 2007). 

Computational results were reported, including optimal solutions for all 2D test 

problems from recent literature. 

 

Miyazawa & Wakabayashi (2007) introduced approximation algorithms for the 

2D- and 3D-BPP, and the 3D strip packing problem for a special case where each of 

the dimensions of the items to be packed was at most 1/m of the corresponding 

dimension of the recipient, m being a positive integer parameter. They analyzed the 

asymptotic performance of these algorithms. In a more recent study, Miyazawa & 

Wakabayashi (2009) presented approximation algorithms for the 3D-BPP and 3D 

strip packing problem, allowing 90º rotations. They presented the asymptotic 

performance bounds of both algorithms. The algorithms were designed for the more 

general case where the bounded dimensions of the bin given in the input were not 

necessarily equal. Moreover, they showed that the general versions of these problems 

were as hard to approximate as the corresponding oriented version. 

 

Bansal et al. (2006) showed that, unlike the 1D case, the 2D-BPP could not have 

an asymptotic polynomial time approximation scheme (APTAS), unless P = NP. The 

authors presented an APTAS for the special case of packing d-dimensional cubes 

into the minimum number of unit cubes. They also proposed a polynomial time 

algorithm for packing arbitrary 2D rectangles into at most OPT square bins with 

sides of length 1+ε, where OPT denotes the minimum number of unit bins required 

to pack these rectangles. As a corollary, they obtained the first approximation scheme 

for the problem of placing a collection of rectangles in a minimum-area encasing 

rectangle. Hifi (2002) studied the two-staged unconstrained 2D-BPP, and adapted 

some heuristics that used hill-climbing strategies, which produced a good trade-off 

between the computational time and the solution quality. 

 

Lodi et al. (2002) reviewed solution approaches for the general 2D-BPP. They 

listed the heuristics and exact algorithms in the literature both for bin packing where 

the objective is to pack all the items into the minimum number of units, and for strip 

packing. In another noteworthy study, Martello & Vigo (1998) proposed new lower 
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bounds which are used within an exact branch-and-bound algorithm by investigating 

a well known lower bound and determining its worst-case performance. Kenyon & 

Rémila (2000) presented an approximation scheme for 2D strip packing problem 

based on a new linear programming relaxation. For any given ε, their algorithm 

found a feasible solution within a factor of (1+ε) of the optimum with a polynomial 

running time complexity both in number of items and in 1/ε. Caprara & Monaci 

(2004) on the other hand, dealt with the 2D knapsack problem (2KP), aimed at 

packing a maximum-profit subset of rectangles. They considered the natural 

relaxation of 2KP given by the 1KP, with item weights equal to the rectangle areas. 

They presented four exact algorithms based on that relaxation, proving the worst-

case performance of the associated upper bound, and computationally compare them. 

 

The vector scheduling problem and its dual problem, namely, the vector bin 

packing problem are also related problems to the BPP. Such problems naturally arise 

when scheduling tasks that have multiple resource requirements is of concern. The 

vector scheduling problem aims to schedule n d-dimensional tasks on m machines 

such that the maximum load over all dimensions and all machines will be minimized. 

The vector bin packing problem, on the other hand, seeks to minimize the number of 

bins needed to schedule all n tasks such that the maximum load on any dimension 

across all bins is bounded by a fixed quantity, e.g. 1. Chekuri & Khanna (2004) 

obtained a variety of approximability and inapproximability results, improving 

earlier known results for these problems.  

 

In the container loading context, A Peak Filling Slice Push algorithm for the 3D-

BPP was developed by Maarouf et al. (2008). The algorithm recursively divided the 

container into smaller slices and then filled each slice with boxes before pushing 

them to minimize the wasted space. The distributor's or multi-pallet loading problem 

was considered by Terno et al. (2000). The objective of finding the best space 

utilization was restricted by a list of practical aspects, such as technological 

constraints, weight distribution over the pallet, and stability aspects. A branch and 

bound based heuristic was developed for the 3D case, using a layer-wise loading 

strategy with optimal 2D loading patterns. 
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A novel heuristic based on wall-building approach was proposed by Pisinger 

(2002) for maximizing the packed volume. The heuristic decomposed the problem 

into a number of layers, which again were split into a number of strips. The packing 

of a strip was formulated as a Knapsack Problem with capacity equal to the width or 

height of the container. The depth of a layer as well as the thickness of each strip was 

determined through a branch-and-bound approach where at each node only a subset 

of the branches was explored. Several ranking rules regarding layer depths and strip 

widths were presented and compared for homogeneous and heterogeneous instances. 

Large-sized instances with a total box volume up to 90% were solved to optimality, 

and average fillings of container volume exceeding 95% were obtained for these 

instances.  

 

For dealing with a major drawback considering many practical issues in container 

loading problems, some studies took into account the stability of the packed items or 

the weight distribution of the cargo (Castro Silva et al., 2003; Davies & Bischoff, 

1999). In the latter study, the authors considered postprocessing approaches, putting 

forward a new container loading heuristic. The heuristic was evaluated against 

several existing approaches, and it was shown to be capable of producing loading 

arrangements which combined high space utilization with an even weight 

distribution of the cargo. In a more recent study, a new heuristic approach was 

proposed for tackling problems where the cargo had varying degrees of load bearing 

strength (Bischoff, 2006). In such cases, the placement rules must ensure that the 

weight resting on an item remains below the maximum it can withstand without 

suffering crushing damage. Limiting the time required to produce a good solution 

and the amount of technical expertise needed by the user are some key 

considerations. The experimental test results of the study by Bischoff (2006) 

demonstrated that the heuristic outperformed other approaches that had been 

suggested for this type of problem, and that it also performed well on some problems 

where load bearing strength was not an issue.  

 

The issue of balancing conditions and items consisting of clusters of 

parallelepipeds (mutually orthogonal, i.e. tetris-like items) is quite frequent in space 
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engineering, and was studied in a real-world application that dealt with an 

Automated Transfer Vehicle project funded by the European Space Agency (ESA). 

An MILP-based heuristic was proposed that solved the reduced MILP model 

(Fasano, 2004; Fasano, 2008). Dealing with non-standard 3D-packing issues, a 

recursive procedure based on a non-blind local search philosophy was developed. 

The concept of abstract configuration, concerning the relative positions between 

items, was also introduced in this study. The heuristic generated a sequence of good 

abstract configurations and iteratively solved a reduced MILP model, by fixing the 

relative positions of the items corresponding to the current abstract configuration. 

 

Several reported algorithms assume the online version of the BPP. In the online 

BPP, only the layout of the previous items/boxes on the partially filled container and 

the size of the box to be placed next are known at each stage, but no information is 

available about the forthcoming items. This corresponds to situations in which items 

are physical objects, and there is no intermediate space to store them before placing 

them in the bins. Such a problem is encountered when robots are used instead of the 

traditional manual operation in pallet loading. A bin packing algorithm that can 

construct its packings under such circumstances is called an online algorithm and the 

following initial solution approaches in the literature propose algorithms in that main 

category. 

 

The simplest approximate online approach to the bin packing problem was the 

Next-Fit (NF) algorithm (Johnson, 1973). In this algorithm, the first item is assigned 

to bin 1, which is the current bin at the start, and each arriving item with increasing 

indices 2,…,n are considered in order whether it fits the current bin or not. If it does, 

the item is assigned to the current bin; otherwise it is placed in a new bin, which then 

becomes the current one. The time complexity of this approximation algorithm is 

O(n), and it is proved that the absolute worst-case performance ratio is 2. Thus, for 

any instance I of BPP, the solution value NF(I) given by the algorithm and the 

optimal solution value z(I) fulfill the bound NF(I) ≤ 2z(I). An example for NF is 

given in Figure 2.1. 
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Figure 2.1 Worst-case example for the Next-Fit algorithm (Source: Coffman et al. 1996, p. 49) 

 

Since the list given in the example above has no item with size greater than 1/2, it 

can be concluded that NFR
() = 2 for all  ≥ 1/2. Moreover, as  decreases under 

that bound, so does NFR
(), specifically we have NFR

() = 1/ (1 - ) for  ≤ 1/2 

(Johnson, 1973). 

 

The algorithm First-Fit (FF) by Ullman (1971), similarly handles the items 

according to their increasing indices, and assigns each item to the smallest-indexed 

initialized bin into which it fits.  When the current item considered cannot fit into any 

initialized bins at hand, a new bin is utilized. Using the notation above for NF, 

Johnson et al. (1974) proved that FF(I) ≤ (17/10) z(I) + 2, and for some instances 

where z(I) is arbitrarily large, FF(I) > (17/10) z(I) – 8. Hence the asymptotic worst-

case performance ratio FFR
 for algorithm FF is 17/10. 

 

Best-Fit (BF) algorithm was developed (Ullman, 1971; Eilon & Christofides, 

1971; Garey et al., 1972) by modifying FF through assigning the current item to the 

feasible bin having the smallest residual capacity. If there is no such bin, a new bin is 

initiated. If there is more than one having the same capacity, the item is assigned to 

the one with the lowest index. BF has the same worst-case performance ratios as FF 

(Johnson et al., 1974). FF and BF have the same time complexity as O(nlogn), 

achieved by employing a 2-3 tree approach (Aho et al., 1983; Martello & Toth, 

1990). 
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All the three online algorithms described above can be extended with an offline 

approach assuming that the sizes (wj) of the items are known beforehand and items 

are sorted and indexed accordingly as w1 ≥ w2 ≥ … ≥ wn. Then applying NF, FF or 

BF to these items, one obtains Next-Fit Decreasing (NFD), First-Fit Decreasing 

(FFD) and Best-Fit Decreasing (BFD) algorithms having the same time complexity 

as O(nlogn) and respectively with asymptotic worst-case performance ratios, 1.691, 

1.222 and 1.222 (Johnson et al., 1974; Baker & Coffman, 1981; Coffman et al., 

1996). In general, the asymptotic worst-case ratio difference between packing rules 

gets smaller as the lists are ordered in decreasing item size. 

 

Another study on this problem focused on the packing of boxes distributed to 

different customers from a central packaging depot (Hemminki et al., 1998). The 

boxes had various sizes and they arrived on a conveyor belt one at a time, where it 

was not allowed to move the boxes already placed. The objective was to produce 

efficient and stable loads by an online packing algorithm. The algorithms the authors 

developed were based on the above BF and FF principles. 

 

Another special case of the multi-dimensional problem is the 2D variable-sized 

BPP. In this problem, the packing a set of rectangular items into a set of rectangular 

bins is of concern. The bins have different sizes and different costs, and the objective 

is to minimize the overall cost of the bins used for packing the rectangles. Pisinger & 

Segurdi (2002) presented an integer-linear programming formulation of this problem 

and employed Dantzig–Wolfe decomposition, introducing very good quality lower 

bounds for the problem justified by a computational study. They also developed a 

branch-and-price-based exact algorithm for the problem. In another variation of the 

BPP considering different shapes, given a fixed set of identical or different-sized 

circular items, the problem deals with finding the smallest object within which the 

items can be packed. Circular, triangular, squared, rectangular and also strip objects 

were considered by Birgin & Sobral (2008). They treated 2D and 3D problems, 

presenting twice-differentiable models for all these problems and employing a 

strategy to reduce the complexity of evaluating the models. 
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Instead of fixed sized bins, the bin-stretching problem allows to pack the items 

while stretching the size of the bins as least as possible. Some studies presenting 

various online algorithms for the bin-stretching problem determined best lower 

bound performances for specific stretching factors, and pointed out that the bin-

stretching problem is also equivalent to the classical scheduling (load balancing) 

problem, in which the value of the makespan (maximum load) is known in advance 

(Azar & Regev, 2001; Epstein, 2003). Their results may be used as comparative 

measures for a possible bin size fuzzification scheme. In a similar variation of the 

BPP called the extensible BPP, the number of bins is specified as part of the input, 

and bins may be extended to hold more than the usual unit capacity. The cost of a bin 

is taken as 1 if it is not extended, whereas it is taken as the size of the bin if it is 

extended. With a total cost minimization objective for this problem, the study by 

Coffman & Lueker (2006) presented a fully polynomial time asymptotic 

approximation scheme (FPTAAS) with comments on complexity of achieving 

stronger results.   

 

A related but complicated study on proof-assisted property testing considered 

approximate probabilistically checkable proof (PCP) techniques for the 

multidimensional bin-packing problems (Batu et al., 2005). Particularly, the authors 

showed how a verifier could be quickly convinced that a set of multidimensional 

blocks can be packed into a given number of bins, extending a heaviness property 

investigated in the one-dimensional case to the multidimensional case.  

 

The most common metric used to evaluate the effectiveness of a packing 

technique is generally the percentage of the space used. An inherent limitation of this 

metric is its inability to differentiate between two different packing arrangements of 

the same set of objects. Dickinson & Knopf (2000) proposed the point moment 

metric for both the 2D and 3D cases. The metric is based on evaluating the 

compactness of the remaining free space in a packing arrangement. This measure is 

the ratio of a defined moment calculated for the current free space and the initial free 

packing space. The developed metric can also be extended to n-dimensional packing 

problem. 
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A typology of problems in an area provides the basis for a structural analysis of 

the underlying problem types, the identification and definition of standard problems, 

the development of models and algorithms, problem generators, etc. Fortunately, 

such an extensive review study can be found in literature for the area of cutting and 

packing (C&P) problems (Wäscher et al., 2007). Defining common identical 

structures of cutting and packing problems, the authors categorised all problem types 

in the literature. For instance, both packing and cutting problems deal generally with 

two sets of elements, namely a set of large objects (input, supply) and a set of small 

items (output, demand), which are defined exhaustively in one, two, three or an even 

larger number (n) of geometric dimensions. Hence, apart from the studies mentioned 

in this section, the interested reader can refer to this study for a thorough review of 

the C&P literature.  

 

The next section reviews the existing studies on the fuzzy versions of the BPP. 

 

2.2 Fuzzy Approaches 

There are very few studies in literature on multi-dimensional BPP and the related 

variants that take into account the fuzziness of the constraints, objectives, and 

relations between the items and/or bins. This lack of interest may be attributed 

mainly to the tight correspondence of the problem modeling to real-life physical 

problems, allowing or seeking only for optimal placements. 

 

However, in a lot of situations, the defined problems require to be satisfied by 

alternative admissible solutions, taking into account the human or expert choices. 

Similar to the multi-objective decision approaches, sources of fuzziness are to be 

determined, and should be employed for obtaining quick and nice solutions. Some 

examples from the literature on fuzzy BPP are presented below. 

 

As mentioned in the previous section, many metaheuristic approaches are used for 

obtaining near-optimal solutions for 3D-BPP. The same approaches also attracted 

attention for the fuzzy versions of the problem. For instance, a genetic algorithm 
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(GA) was presented by Runarsson et al. (1996) for solving an online dual BPP using 

fuzzy objectives. In the dual BPP, the items are packed into a maximum number of 

bins, assuring a minimum weight for each bin. The dynamic class the authors defined 

assumed, as other online algorithms, that the items must be packed sequentially. 

However, they assumed that more than one future item at a time can be seen. The 

number of bins being packed at any time was fixed, and a bin was replaced by an 

empty one as soon as it was filled. Their results showed that the fuzzy packing 

scheme was essential to solving the problem, and due to the nature of the problem 

the GA behaved closely to that of a micro-GA. 

 

An interesting study by Dexter et al. (1999) considered a medical decision-making 

process concerning the operating room (OR) utilization in a hospital. The goal was to 

use computer simulation to evaluate ten scheduling algorithms from the management 

science literature to determine their relative performance at scheduling as many 

hours of add-on elective cases as possible into the open OR time. The authors 

collected data from a surgical services information system for hours of open OR time 

available for add-on cases in each OR each day, and for the duration of each add-on 

case. These empirical data were used in computer simulations of case scheduling, to 

compare algorithms appropriate for the variable-sized BPP with bounded space. 

Here, the variable size referred to different amounts of open time for each OR. The 

algorithm that maximized OR utilization was Best Fit Descending with fuzzy 

constraints, and this algorithm achieved OR utilizations that were 4% larger than the 

algorithm with the poorest performance. 

 

Kim et al. (2001) considered another fuzzy BPP that dealt with packing non-rigid 

rectangles into an open rectangular bin, as in the strip packing problem. The authors 

employed fuzziness in the height dimension by using triangular fuzzy numbers. The 

goal of the fuzzy BPP was to minimize both the height of a packing and the extra 

cost due to the reduction of each piece. The total cost of the problem was represented 

as the sum of the height cost and the extra cost due to reductions of the pieces, which 

was called the reduction cost. Reducing the height of an item decreased the overall 

height cost but increased the reduction cost due to lower quality of the item. A closed 
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form solution was presented for the fuzzy BPP, in which fuzzy numbers were 

triangular and the reduction cost was formulated using a quadratic function. 

 

In apparel/textile industry, manufacturers develop standard allowed minutes 

(SAMs) databases on various manufacturing operations in order to facilitate 

scheduling, while effective production schedules ensure smoothness of downstream 

operations. However, as the parameters in an apparel manufacturing environment are 

fuzzy and dynamic, these rigid production schedules based on SAMs become futile 

in the presence of any uncertainty. A recent study in this context (Mok et al., 2007) 

proposed a fuzzification scheme to fuzzify the static standard times so as to 

incorporate some uncertainties, in terms of both job-specific and human related 

factors, into the fabric-cutting scheduling problem. A GA-based optimization 

procedure was proposed to search for fault-tolerant schedules using genetic 

algorithms such that makespan and scheduling uncertainties were minimized. 

Experimental results using two sets of real production data indicated that the 

genetically optimized fault-tolerant schedules not only improved the operation 

performance but also minimized scheduling risks. 

 

Regarding the ranking and defuzzification techniques in literature for possible use 

in the fuzzy versions of the BPP, the methods proposed by Dubois & Prade (1983), 

and Fortemps & Roubens (1996), may be employed as in scheduling problems. 

 

One of the important contributions to fuzzy BPP considered a new statement of 

the BPP with the evaluation of the packing quality under fuzzy source constraints 

(Nasibov, 2004). A finite interactive algorithm for solving the problem was 

developed and its accuracy was justified. The author presented estimates for the a 

priori determination of the maximum degree of quality of packing that accelerate the 

process of the solution of the problem. Besides the items to be allocated, there were 

two sets of containers in this study. The first set included m main containers, each 

represented by Sj, where j=1,...,m; and the second set had only one reserve container 

Sm+1. The fuzzy relations between the items and the containers imposed certain 

constraints on the placement of the items. Four relations were defined reflecting the 
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degree of mutual attachment of items, the mutual compatibility of items, the mutual 

attachment of an item to a container, and the mutual compatibility of an item to a 

container, resulting in matrices taking values in the interval [0, 1]. Containers were to 

be filled with respect to certain conditions (e.g. sufficient degree of filling factor so 

that the consistency degree of the final packing was maximized), and a certain 

classical total indicator/measure, such as volume or weight, was minimized for the 

items placed in the reserve container. 

 

A more recent study by Nasibov (2007) specified the task implementation 

competence of a group of executives in the form of fuzzy relations for high-

performance allocation of tasks. The two optimization criteria considered in the 

study were the maximization of the aggregated degree of competence of the entire 

allocation, and the maximization of the degree of the overall level of employment of 

standard executives. Aggregation was performed by means of the Hurwicz operator 

and the Ordered Weighted Average (OWA) operator, which rendered the model 

more flexible and allowed the decision-maker to pursue different strategies. A two-

stage heuristic algorithm was proposed for the solution of the problem, which was a 

generalized variant of task allocation, which is a special case of BPP. An analysis of 

different algorithms and assessment of the results of computational experiments were 

conducted. In the general version of task allocation, the skill of the executives was 

not taken into account, only the quantitative constraints of the workload were 

considered. However, through the use of the theory of fuzzy sets, it was possible to 

take into account high-performance relations between tasks and executives in the 

form of fuzzy relations.  

 

Through careful analysis of the studies in literature, the following main 

application areas of multi-dimensional BPP problems and their fuzzy versions are 

identified as follows:  

 Loading problems (container, vehicle, pallet, cargo), 

 Job scheduling, budgeting problems, 

 Packaging design, loading area, 

 Cutting stock, trim loss problem, textile/apparel applications 
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 Mechanical and electronical design (nanotechnological), 

 Multiprocessor scheduling, load balancing, 

 Resource (memory, space, operating room) allocation,  

 Task allocation, 

 Genetic engineering, biophysics, 

 Parallel query optimization, 

 Wireless telecommunications (data transfer), 

 Assessment of approximation algorithm complexities. 

 

Among these application areas, the multi-dimensional packing problems in 

wireless telecommunications dealing with resource allocation in wireless data 

transfer constitute the main focus area of this thesis. For this reason, the following 

section presents a detailed review of the studies on multi-dimensional BPP, 

pertaining specifically to the wireless telecommunications domain. 

 

2.3 Multi-dimensional Packing in Wireless Telecommunications 

In order to better grasp the contributions by the studies in this area, we first 

present some basic terminology below.  

 

The WiMAX (Worldwide Interoperability for Microwave Access) is one of the 

broadband wireless access technologies, which is based on the IEEE 802.16 standard 

(2009). This standard with its last ammendment (IEEE 802.16m, 2011) achieved the 

distinction of being recognized as a true 4G technology by the International 

Telecommunication Union (ITU). 802.16m, which is also called as WirelessMAN-

Advanced or WiMAX-2, has been recently (March 31
st
, 2011) approved by IEEE as 

a new global standard for mobile WiMAX. The aim of this technology is providing 

wireless data transfer using various transmission modes, including point-to-

multipoint connections and portable or fully mobile cellular type access. A WiMAX 

base station (BS) can provide broadband wireless access in range up to 50 kms for 

fixed stations and 5 to 15 kms for mobile stations (MS) with a maximum data 

download rate of up to 1 Gbps and upload rate of 100 Mbps (IEEE 802.16m, 2011). 
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Apart from its technical qualities, three features of WiMAX mainly attract 

attention of the researchers (So-In et al., 2009a; Necker et al., 2008). These are:  

(1) the use of Orthogonal Frequency Division Multiple Access (OFDMA),  

(2) multiple Quality of Service (QoS) classes that define priorities between data, 

voice and video transmissions for satisfying service guarantees, and  

(3) the so-called Media Access Control (MAC) scheduler of the BS, which 

utilizes the first two aspects. 

 

The first feature, namely OFDMA, is based on Orthogonal Frequency Division 

Multiplexing (OFDM), which is a spread-spectrum technique for state-of-the-art 

broadband wireless systems. The frequency spectrum used for communications is 

divided into a large number of frequency subcarriers to serve different terminals in 

the same time intervals and through the same physical channels. 

 

The second feature, namely the QoS classes, allows the BS to classify the 

terminals according to parameters like minimum throughput requirements regarding 

data transmission rates, and the delay constraints. The QoS support in wireless 

network connections is much more demanding than in wired networks due to its 

highly variable and unpredictable nature, depending both on time and locations of the 

terminals. 

 

The last feature of WiMAX, i.e. the MAC scheduler, constitutes the main focus of 

this thesis, and is responsible for two tasks concerning resource allocation. The first 

is to determine the terminals that will be served in a specific time frame, thus 

forming a service queue while also determining the amount of data required for each 

terminal. This task depends mainly on the QoS parameters used for that particular 

network, and is studied under names like burst construction (Ohseki et al., 2007) or 

packet scheduling (Wongthavarawat & Ganz, 2003). The second task of the MAC 

scheduler is to assign time and frequency intervals to each terminal, referred to as 

frame packing, packet mapping or burst mapping in the literature (Ben-Shimol et al., 

2006; Bacioccola et al., 2007; Ohseki et al., 2007; Necker et al., 2008; So-In et al., 

2009b). Henceforth, we prefer to use the term “frame packing” in our study. 
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IEEE 802.16 standard does not impose any specific admission control 

mechanisms or resource allocation mechanisms for the scheduler. Therefore, the taks 

of the MAC scheduler, or scheduling in general, becomes a significant research area 

for all WiMAX equipment makers and network service providers. So-In et al. 

(2009a) provided an extensive review for the main issues considered in designing 

these mechanisms. The authors explained the physical layers and QoS classes 

defined in the IEEE 802.16 standard, and classified the schedulers based on channel 

state awareness. They listed various criteria and scheduler design factors with respect 

to different QoS considerations, which shape the algorithms and heuristics proposed 

in the literature. Throughput maximization and minimizing power consumption are 

among the major criteria while ensuring system scalability regarding the algorithm 

complexity. 

 

In frame packing, the frame to be packed is a two-dimensional structure defined in 

the IEEE 802.16 standard using OFDMA, in which the frequency channel is divided 

into multiple subcarriers. These subcarriers are grouped into a number of 

subchannels. The time axis of the frame typically covers a 5 milisecond (ms) 

duration. Each user terminal is allocated a certain number of subchannels for a 

certain amount of time. Bidirectional data transfer can be achieved in two ways (So-

In et al., 2009a): 

(1) By frequency division duplexing (FDD) in which uplink (MS-to-BS 

direction) and downlink (BS-to-MS direction) transfers use different 

frequency bands, 

(2) By time division duplexing (TDD) in which the uplink (UL) traffic follows 

the downlink (DL) traffic in time dimension.  

 

Hence, each frame consists of DL and UL subframes. Figure 2.2 shows these in 

TDD mode. In FDD mode, the DL and UL subframes go parallel in time.  
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Figure 2.2 A sample OFDMA frame structure in TDD mode (Source: So-In et al., 2009b, pp. 1) 

 

 

User terminals are mapped to rectangular areas (referred to as bursts) in the 

OFDMA frame. The unit of allocation in WiMAX is a “slot”. The data transmission 

capacity of a slot depends upon the subchannelization, or modulation and coding 

methods. The standard allows more than one burst per mobile station, which 

increases the downlink map (DL-MAP) overhead, that is, the amount of control data. 

The DL-MAP and uplink map (UL-MAP) define the burst-start time and burst-end 

time, modulation types and forward error control mechanisms for each MS.  

 

Other terms and parts of the frame shown in Figure 2.2 can be explained as 

follows: The preambles are used for time synchronization. Frame Control Header 

(FCH) defines MAP lengths and usable subcarriers. Transmit-receive Transition Gap 

(TTG) is the duration that the BS switches from transmit to receive mode, and 

Receive-transmit Transition Gap (RTG) occurs when the BS switches from receive 

to transmit mode. Channel Quality Indicator (CQI) is used to pass the channel state 

condition information. Each OFDM symbol is 102.8 microseconds (μs), so a 5ms 

frame is equal to a duration of 48.6 OFDM symbols. (So-In et al., 2009a; So-In et al., 

2009b). The standard also allows more than one connections packed into one burst 

(burst compaction). However, in each case, the MAC scheduler is required to place 
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rectangles in the frame as efficiently as possible under technology and traffic-specific 

constraints. 

 

The related multi-dimensional BPP literature is mainly on TDD systems, and in 

particular, on the packing of the DL subframe. Wongthavarawat & Ganz (2003) 

performed one of the very few studies on UL packing. They presented an UL packet 

scheduling algorithm and admission control policy to provide QoS support in terms 

of bandwidth and delay bounds for different traffic classes. They investigated the 

factors which affect the network performance through a simulation model. 

 

Most studies on the DL subframe allocation problem aim to maximize the packing 

performance in a single frame, averaging and simplifying the QoS constraints of 

service users such as demand levels, subscription priorities, minimum transmission 

rate or maximum allowable delay (So-In et al., 2009a). As it was stated before, the 

BS performs periodically the tasks of selecting which data packets will be 

transmitted to the users (mobile stations) in the forthcoming frame, usually based on 

QoS requirements summarized above; and grouping the selected packets to 

rectangular data regions and allocating them to the frame disjointly in a way that they 

do not overlap with each other. Hence, there is a two-stage approach comprised of 

two periodical scheduling decisions, the first one about selecting the transmission 

target stations and their corresponding physical features on the frame structure, and 

second one on how to place the corresponding rectangles on the frame without any 

overlap. Cohen & Katzir (2008) named these stages as macro and micro scheduling 

problems respectively, and analyzed their computational complexity aspects 

developing two interdependent approximation algorithms. They transformed the 

macro scheduling problem into the Multiple Choice Knapsack Problem and showed 

that it can be solved in pseudo-polynomial time. Rather than achieving higher 

resource allocation rates, they aimed at simplifying the second phase by reducing the 

number of mobile stations to be packed in the DL subframe without considering any 

priorities or profits. 
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Ben-Shimol et al. (2006) were the first to introduce an OFDMA frame packing 

algorithm. They presented two heuristics, with and without QoS constraints, which 

were evaluated by extensive simulation experiments using the parameters of real 

systems. They placed the data bursts row by row with a non-increasing size order. 

Ohseki et al. (2007) proposed a burst construction and frame packing method in the 

DL subframe. Their objective was not only to decrease the control data ratio within 

the rectangles, but also the control data that must be transmitted at the head of every 

frame, to reach higher throughput. They defined deadlines for each connection using 

the QoS parameters and ordered them according to the remaining times to deadlines. 

 

As the number of bursts to be packed in a frame increases, so does the running 

time of the packing solution. Similarly, when a single terminal connection is mapped 

into multiple rectangular areas as in a study by Bacioccola et al. (2007), additional 

DL-MAP overhead causes inefficient usage of network resources. This particular 

case may be effective when the connection really requires different reliable channels 

using different modulation and coding schemes for different connections, despite the 

additional cost incurred. In the burst compaction case where multiple terminals are 

packed into a single burst, the unique connection identifier (CID) helps differentiate 

the terminals. The DL-MAP overhead is reduced, but may lead to decoding delay at 

the terminal side. 

 

Necker et al. (2008) proposed a genetic algorithm for the DL frame packing 

problem. Simulating the network traffic with three different QoS classes, they 

applied the Next-Fit-Decreasing-Height (NFDH) strip packing approach to maximize 

DL capacity utilization. In strip packing, the objective is to pack all items within the 

minimum height. They based their genome modeling on the variable width and 

height dimension sizes of the DL bursts, since there are many possible height and 

width combinations corresponding to a burst area.  

 

The shapes of the rectangles may change according to the defined objective of the 

problem. For example, minimum power consumption objective forces the allocated 

rectangles to smaller widths, hence smaller processing times on mobile stations, as in 
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So-In et al. (2009b). The authors introduced an algorithm for the DL frame packing. 

They approached the BS resource allocation, or MAC resource scheduling, in two 

steps. First, the scheduler sorts each user terminal in a descending order based on 

their demands for satisfying the QoS throughput guarantee. Then, the bursts are 

packed from right to left and from bottom to top in the DL subframe. The authors 

chose the burst shape that is smallest in width to allow the receiving MS to shut 

down its electronic circuit for the remainder of the DL subframe, thus minimizing 

energy consumption. They enhanced their algorithm in a further study to reduce 

complexity by fixing width or height of the bursts, still ensuring the required QoS 

parameters (So-In et al., 2009c). In a similar way, the maximum bandwidth usage 

refers to a full height utilization of a frame, which corresponds to the utilization of 

the complete frequency range of the BS. 

 

Israeli et al. (2008) approached the problem in a rather different way, although 

they name it as a sequential rectangle placement problem. They aimed to pack a 

queue of MS data packets, and investigated the complexity of subframe allocation as 

regards the ratio of data region areas to subframe area. They specified an order of 

data packets (jobs) using strict priorities. Hence for a user’s rectangle to be placed in 

the DL subframe, they required all the higher-priority packets to be packed before it. 

They showed that their problem is NP-hard, but also that it could be approximated 

within a constant factor if every packet size was limited to some constant fraction of 

the frame area.  

 

Wang et al. (2008) proposed a low complexity heuristic algorithm depending on 

weighted flexibility definitions for minimizing different type spaces in the downlink 

subframes, by adapting a quasi-human based heuristic from a previous study (Wu et 

al.,2002). They did not handle any type of priorities among the users, either.  

 

The most relevant and important contribution regarding the problem considered in 

this thesis in the wireless telecommunications context is a recent study by Lodi et al. 

(2011). The authors introduced two highly efficient heuristics that were developed to 

handle the DL subframe allocation problem practically. The processing budget of the 
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base station’s scheduling process was estimated not to exceed a 1 ms on a state-of-

the-art PC (2.40 GHz, CORE 2 DUO E6600 Desktop, running under Linux). 

Different than our homogeneity assumption regarding the same data transmission 

capacity for each slot (as will be explained in the following chapter while defining 

the problem), they allowed different modulation and coding schemes (MCS) in the 

same DL subframe defined by two zone structures. In this manner, their approach in 

a way was able to handle channel quality feedbacks from the users. They also took 

the downlink and uplink map overhead trade-off into account arising from the 

allocation of a large number of users in one subframe. The first one of these DL 

subframe zones was called the distributed subcarrier permutation, and the other the 

adjacent subcarrier permutation zone. The former one corresponds to the 

homogeneous structure employed in our model, so each slot can carry the same 

amount of data to every MS. But for the second zone, each MS (user) can provide 

detailed information regarding the target transmission/receive rate per defined logical 

bands. Namely, in this zone the data packet size cannot be expressed as a number of 

slots. The locations of the slots in the zone matter, hence the rectangle sizes for a 

user in each logical band of the zone might be different.    

 

The authors defined two different allocation models for the zones explained above 

and analyzed the problem complexities, considering their special cases by Hurkens et 

al. (2011). They proved strong NP-hardness for both models. The optimization 

algorithm for the Distributed Permutation Zone problem was based on a previous 

study by Cicconetti et al. (2010). Some of the algorithm procedures used the greedy 

approach for the subset-sum and dual subset-problems. Although these produced 

solutions with the same waste amounts, the associated packings were quite different 

from each other. As for the Adjacent Permutation Zone problem, the authors 

developed a two-step algorithm, differentiating the packing of high priority large 

sized data packets and the rest. They reformulated one of these steps as a generalized 

assignment problem, and adapted a heuristic from the knapsack literature (Martello 

& Toth, 1990).  
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Lodi et al. (2011) also conducted an extensive analysis of the algorithms with 

realistic parametrization and traffic load for IEEE 802.16, proving that they can still 

provide sufficiently good solutions even when configured for fast execution instead 

of optimality. They compared both algorithms with the most relevant ones in the 

literature (Wang et al. 2008; So-In et al. 2009b) and proved superior performance. 

They claimed that the proposed algorithms and the zone architecture are compatible 

with realistic QoS schemes, and could be applied in real-world BS MAC units. 

Finally it should be noted that, the average solution times for both algorithms were 

around 0.1 ms, much lower than their initial 1 ms target.  

 

In view of the thoroughly-reviewed literature in this chapter, we can conclude that 

any kind of modeling and solution attempt to the problem considering the latest 

technology is of great value to the wireless communication domain, and will 

contribute significantly to the existing literature. Including new features of the 

Mobile WiMAX technology in the models for taking into account the most recent 

telecommunications industry requirements is essential. The success of the developed 

models and algorithms will also depend on the solution performances attained by 

sufficient experimentation with realistic problem instances. 

 



31 

CHAPTER THREE 

PROBLEM DEFINITION AND MATHEMATICAL MODELS 

 

The main focus of this study is the resource allocation problem, which is defined 

as a bin packing problem on a two-dimensional structure that is proposed by the 

IEEE 802.16 standard using OFDMA. The problem context and the basic 

terminology were previously presented in Section 2.3.  

 

We extend the common features of the frame packing problem model to include 

more general characteristics of the wireless data transfer processes involved. Apart 

from building and presenting representative mathematical models, which are not 

presented explicitly in most of the related studies in the literature, we lay the 

foundations for some fuzzy measures and parametrization to mimic more realistic 

evaluation of actual network resources. 

 

Our problem is an extended form of the multiple knapsack problem with identical 

capacities (Kellerer et al., 2005). Identical bins or knapsacks correspond to the 

frames in time division duplexing (TDD). In addition, we deal with extra constraints 

and seek different objectives other than profit maximization for being able to handle 

various decision making alternatives. The item or demand sizes are not fixed, which 

requires nonlinear terms to be incorporated into the model. 

 

As it was stated in Chapter 1 and will be explained further in the following 

sections, by taking into account the time division structure of the resource allocation 

sequence and other features of the telecommunications standard, we extend the two-

dimensional nature of the problem to three-dimensional by adding additional 

knapsack and partitioning constraints. 

 

In the following sections, we present exact nonlinear integer programming models 

with different objectives. The fuzzy variants of these models that adapt most of the 

constraints with respect to multiple objectives are also presented in this chapter. 
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3.1 Sequential Rectangular Packing (SRP) Problem  

We propose a resource allocation modeling framework for a sequential two-

dimensional packing problem which may have direct applications in wireless 

telecommunications area pertaining to the IEEE 802.16 standard. All the models 

described in this chapter aim optimal usage of the physical layer defined by this 

standard, which characterizes the data packages sent from a base station to a fixed or 

mobile network service user station. The data transmitted for each user are modeled 

as rectangular blocks, dimensions of which correspond to time duration and 

frequencies used in the wireless data transfer process. Placement of these rectangular 

blocks in identical rectangle bins called frames, whose dimensions are identified by 

the unit transfer time (usually 5 ms.) and a fixed frequency bandwidth depending on 

the base station’s technological specifications, is modeled as a two-dimensional 

packing problem.  

 

As reviewed in the previous chapter, most studies in the area aim to maximize the 

packing performance of a single frame employing strip packing techniques. These 

models assume identical user demand levels per frame subject to quality of service 

(QoS) constraints such as minimum transmission rate or maximum allowable delay. 

Shapes of the rectangles depend on the objective of the problem, which can be 

minimizing power consumption or maximizing bandwidth usage or throughput. 

 

In this study, a planning horizon is composed of a sequence of frames (as opposed 

to a single frame) for representing the dynamic nature of the problem. Allowing 

varying demand sizes for each user, the aim is to solve interdependent multiple 

packing problems integrated with service level constraints. We hereafter name this 

problem as Sequential Rectangular Packing (SRP) Problem. 

 

We propose four mathematical models for the SRP problem, which differ 

according to the objectives and the constraints involved. Three of these are exact 

nonlinear integer models whereas the last one is a fuzzy optimization model. Before 

delving further into each model's specific details, we firstly identify our common 

assumptions as realistically as possible. Thus, we aim a thorough representation of 
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the up-to-date technology specifications that are valid and commonly used for all the 

models mentioned in this chapter. Next, we introduce the parameters of our problem 

such as the length of the frame sequence that corresponds to the planning or so-called 

scheduling horizon for base station resources, or QoS restrictions for each user. After 

we define the decision variables and their relations with each other, we outline our 

mathematical models. 

 

3.1.1 Assumptions for the SRP Models 

We henceforth label the subscriber stations (mobile or fixed) which require 

wireless data transfer from the base station as “users”. Each user can be allocated at 

most one burst (rectangular area) in a frame. Hence, in our study, the issues of burst 

compaction or utilizing more than one burst in a frame for one user are not 

considered. All models allocate the base station resources in a continuous manner, 

within the solution process and among separate solutions. In particular, the solution 

of a frame sequence is used as input parameter for the following sequence’s problem. 

Some parameters correspond to measures or demands of ongoing data transfers, 

allowing the introduction of new user demands and eliminating some users in 

previous sequences which have completed their transfers. 

 

Regarding the service quality constraints, we consider the minimum data transfer 

rate requirements and maximum allowable delay period parameters. A two-

dimensional unit area used is named as a “slot”, consistent with the related literature. 

Without loss of generality, we assume an identical data transmission capacity for 

each slot, ignoring possible modulation and coding differences allowed by the 

wireless telecommunications standard. Each slot can carry the same amount (bytes) 

of data resulting in homogenous frames in terms of frequency subchannels. Namely, 

rectangles that have the same areas correspond to the same amount of data carriage 

capacities even when they are placed on different frequency channels. 

 

As the number of bursts or number of user rectangles that are to be packed in a 

frame increases, so does the downlink map (DL-MAP) size of a frame. A dynamic 
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assignment of DL-MAP size, which depends on the number of rectangles packed, is 

not considered in the models. Alternatively, we reduce the width of the frames by a 

fixed size for all the problem instances. So for example, instead of a 17x30 sized 

frame which fits most of the problems in the literature, we use a narrower 12x30 

frame to be able reserve the remaining 5x30 block for DL-MAP allocation.  

 

Some of the SRP models aim to serve all user demands in the given sequence. For 

obtaining feasibility for these models, we assume that the capacity of the frames can 

cover total demand for the respective period. For other models aiming at profit 

maximization, we ignore the respective capacity constraints for feasibility, and allow 

for choosing the best or profitable candidate set of user demands to be packed 

optimally. 

 

Without loss of generality, all parameters are assumed to be positive integers. We 

present our parameter notations and definitions below. 

 

3.1.2 Indices and Parameters 

Two indices are used for identifying users and frames. User index is iI = 

{1,...,n}, where n= number of users to be allocated through the frames; whereas we 

index the frames by jJ = {1,...,m}, where m= number of frames in the sequence 

(planning horizon). 

 

Other parameters concerning resource and service level requirements are: 

di : Total amount (in slots) of requested data (new or remaining) for user i, 

si : Minimum data transfer rate (slots/frame) for user i, 

i = min{msi, di} : Data amount (in slots) to be transferred / assigned throughout 

the frame sequence, 

pi : Profit gained by satisfying the data demand i of user i, 

λi : Maximum delay period (in frames) for user i in order not to cause any timeout 

error (data transfer interruption), 
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W : Frame width, H : Frame height, A = WH : Frame area (all frames identical in 

size), 

i
i

A




 
  
 

  : Minimum number of frames to which user i should be assigned,  

θi : Latest frame to maintain or to begin the data transfer for user i (≤ λi for 

ongoing transfers, equal to m+1 for users to whom transfers are yet to be scheduled).  

 

It should be noted that, when a user i is selected for transfer and the demand di is 

not totally satisfied in the frame sequence of a problem instance, its demand will be 

updated as di = di - i for the next frame sequence. 

 

Recall that we assume all parameters di, si, i, pi, λi, W, H, αi and θi  Z+ (positive 

integers), iI. The length of the frame sequence, m, is one of the experimentation 

parameters listed in the next chapter. For use in the fuzzy extensions of the models, 

the parameters di and λi form the most appropriate choices for the application of the 

flexibility assumptions more naturally. Hence, the quality degrees might be evaluated 

according to the demand satisfaction levels and the allocation interval (or delays) 

values of all users, for such a purpose. 

 

3.1.3 Decision Variables 

We define the following binary and integer variables for our models. It should be 

noted that some of the SRP models do not use all of these variables: 

 

1  , user is selected for data transfer in the frame sequence,
, .

0, .
i

if i
u i I

otherwise


  


1  , there is a transfer for user in frame  (assigned a rectangle),
, , .

0, .
ij

if i j
z i I j J

otherwise


    
     

xij : x-coordinate of the left-bottom corner of the rectangle assigned to user i in 

frame j. 

yij : y-coordinate of the left-bottom corner of the rectangle assigned to user i in 

frame j. 
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wij : Width of the rectangle allocated to user i in frame j. 

hij : Height of the rectangle allocated to user i in frame j. 

aij =wij hij : Area of the rectangle allocated to user i in frame j. 

1

( 1)

  , for 1,
,

, for 1.

i i

ij

i j ij

a j
r i I

r a j





 
  

 
, total remaining demand for user i after frame j. 

The artificial binary variables, which will be explained below, are: 

 

ζij, γpqjk, and δpqj. 

 

3.2 Sequential Rectangular Packing with Profit Maximization (SRP-I) 

In the first SRP model, we aim to allocate the base station resources to the most 

profitable subset of users. The characterization of the profit depends on the context, 

in which the problem instance is defined and solved. Obviously, the users who are 

charged more than the others by the service provider are more likely to be favored. 

On the other hand, profit levels might also correspond to subscriber priorities, e.g. 

when allocating network resources in case of humanitarian aid situations where 

uninterrupted communication between government or civil agency members is 

crucial. As another example, the profit could be associated directly with the demand 

value as in a subset sum problem. Namely, the higher the data demand of a user as in 

video transmission requests, the higher its profit level. 

 

In any of the above definitions of the profit parameter, it might be stated that there 

seems no difference between handling the problem on a single frame and through a 

sequence of frames. Actually, the selection of the most profitable subset is the same 

for both, and corresponds to a one-dimensional knapsack problem. However, when it 

comes to optimal or even feasible packing of the user rectangles in a frame, the 

number of users do matter for practical solutions. Distributing the users over a frame 

sequence using some additional constraints, the sizes of the single frame packing 

problems may reduce. This will present an opportunity for obtaining acceptable 

solutions in shorter times, despite the difficulty of the problem that considers the 

packing of all users. Therefore, instead of simple averaging of user demand that 
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corresponds to equal rectangle sizes in each frame, we allow different partition sizes 

of user demand in each frame, as long as all feasibility constraints are satisfied 

according to QoS parameters. 

 

SRP-I represents a realistic modeling approach considering similar examples in 

the literature where an optimal selection or scheduling takes place besides the two-

dimensional packing. Based on the definition of the profits assigned to each user, the 

most rewarding of the feasible packings are sought. In a way, we convert a modified 

multiple knapsack problem with identical capacities to a combination of a 1-D 

knapsack and a simultaneous partitioning-and-packing problem. When the profits are 

identical to demands (i.e., when pi = i), the user selection process is analogous to a 

multiple subset-sum problem. Partitioning is restricted according to the demand sizes 

and QoS constraints, while packings only deal with area allocations. 

 

For this model, the problems that correspond to the case i

i I

mA


  are not 

considered. In this case, the problem reduces to packing all n users in a single frame 

with updated i values i/m. According to the above, the SRP-I model is defined as 

follows: 

 

max K i i

i I

Z p u


                    (3.1) 

 s.t. 

, .ij i i

j J

z u i I


                     (3.2) 

, , .ij iz u i I j J                        (3.3) 

, .ij ij i i

j J

w h u i I


                      (3.4) 

, , , .ij ij ij ijx w W y h H i I j J                        (3.5) 
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
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                (3.6) 
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
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xij, yij, wij, hij, aij ≥ 0, iI, jJ.               (3.15) 

 

The objective function in (3.1) is the maximization of the total profit gained from 

the users that are selected for data transfer. First two constraints (3.2) and (3.3) link 

the decision variables ui and zij. The nonlinear constraint (3.4) enforces the 

satisfaction of the user demand through the sequence of frames, if it is selected. 

Obviously, this means that the rectangle sizes can vary even if the area values are the 

same, as long as the total demand is satisfied. Constraint (3.5) simply limits the 

boundaries of each user rectangle for fully fitting in a frame, while constraint (3.6) 

defines the bounds of variables xij, yij, wij, hij, aij  in relation with zij. The maximum 

delay constraint (3.7) both bounds the values of the variable rij and forces the 
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allocation of a user rectangle in a frame, if the total demand is not satisfied according 

to the QoS parameter λi. The binary variable ζij = 0 if rij > 0 (nonzero remaining 

demand), and 1 otherwise. Thus, constraint (3.8) enforces that there is no remaining 

demand after the last frame for the selected users. 

 

Constraints (3.9)-(3.12) deal with feasible placements of user rectangles, 

preventing overlaps on the two-dimensional frame area. For determining the users 

allocated in the same frame, the variable δpqj is used in (3.9)-(3.12). δpqj = 1 if both 

user p and q are allocated in frame j, and 0 otherwise. Constraint (3.10) manages the 

horizontal positions of the user rectangles. The variable γpqj1 assumes the value of 1 if 

the rectangle of user p is situated on the left of the one of user q in frame j, and γpqj2 

is similarly defined for the rectangle of user q. Constraint (3.11) is the vertical 

positioning version of (3.10); and in a similar fashion, γpqj3 equals 1 if the rectangle 

of user p lies below the one of user q in frame j, and γpqj4 is defined vice versa. 

Constraint (3.12) links all the related binary variables used in (3.9), (3.10) and (3.11) 

for avoiding unnecessary overlap checks. 

 

Lastly, constraint (3.13) enforces the selection of a user if his data transfer still 

continues from previous problem instances/sequences by using the θi parameter 

values, while constraint (3.14) restricts the latest beginning frame of these ongoing 

transfers. The nonnegativity of the integer decision variables is imposed by the 

constraint (3.15). 

 

As presented above, SRP-I extends the rectangular allocation aspect of the frame 

packing problem defined in the literature, using the QoS constraints to a 3D structure 

by considering the sequential time frame element as an additional dimension via the 

binary decision variables and partitioning constraints defined. 

 

3.2.1 Complexity Results for SRP-I 

We next show that the special case of SRP-I where all i are integer multiples of 

W (or where all i are integer multiples of H) is NP-hard in the ordinary sense, and 
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prove through transformation from the Binary Knapsack Problem, which is known to 

be weakly NP-hard (Garey & Johnson, 1979). The following theorem states this 

result formally: 

 

Theorem 3.1. The SRP-I problem with either; 

 i = ΩiW, ∀i, where Ωi is a nonnegative integer multiplier, or  

 i = ΩiH, ∀i, where Ωi is a nonnegative integer multiplier  

is NP-hard in the ordinary sense. 

 

Proof. Note that, for any of the above special cases, once the user subset to be packed 

is selected, an efficient strip packing solution without any overallocation is readily 

available. Namely, as the demand of each user is an exact multiple of the 

width/length of the frame, an optimal solution will assign a rectangular area to each 

user exactly equal to its demand. Therefore, our concern is to find whether there 

exists a feasible subset of users F such that i

i F

p P


 , where P is a positive integer.  

 

To prove the complexity result, we reduce the Knapsack Problem to this special 

case of SRP-I. In an instance of a Knapsack Problem, we are given a set {1,...,k} and 

with each one of its elements i is associated two positive integers qi and vi, reflecting 

the size and the value of i, respectively. Moreover, let Q and V be two positive 

integers. We are asked to find a subset U{1,...,k}such that i

i U

v V


 and i

i U

q Q


 . 

Given this instance of Knapsack Problem, we construct the following instance of 

SRP-I: 

 n = k users 

 i = qi for i =1,..., k 

 pi = vi for i =1,..., k 

 A = Q / m for each of the m frames 

 P = V 

Note that, solving this instance will solve the knapsack instance as well. The 

Knapsack Problem is NP-hard in the ordinary sense, so are the given special cases of 

SRP-I.               



41 

Corollary 3.1. The SRP-I problem is NP-hard in the ordinary sense. 

 

Proof. Without the special demand structure defined by the special cases in Theorem 

3.1, an optimal solution without any overallocation is not trivial for a selected subset 

of users. As the general version of the problem is at least as hard as its special cases, 

the proof follows.             

 

3.2.2 Lower and Upper Bounds for SRP-I 

In this section, we propose a lower bound and an upper bound for the SRP-I 

problem.  In order to establish the proposed upper bound, we first pose the following 

theorem and proof.  

 

Theorem 3.2.  Consider the following instance of the continuous knapsack problem 

(CKP): 

 k = n items 

 qi = i for i =1,..., k 

 vi = pi for i =1,..., k 

 Q = mA.  

The corresponding mathematical model for the CKP can be expressed as: 

max UB i i

i I

Z p u


  

s.t. i i

i I

u mA


 , 

where 0 1, .iu i I     

Solution of this instance will provide an upper bound for SRP-I. 

 

Proof. An exact solution of CKP, having a capacity equal to the total area of all 

frames, provides a relaxation on SRP-I in the following manner: First, it relaxes the 

rectangular packing structure and assumes that the demand of the selected user 

subset can be packed using any tetris-like pattern. Second, it allows partial demand 

allocation for the last selected user. Hence, it provides an upper bound for SRP-I.    
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Based on Theorem 3.2, an exact solution for the defined continuous knapsack 

problem, hence an upper bound for SRP-I, can be obtained in polynomial time by the 

following algorithm (Dantzig, 1957): 

 

AlgorithmUB 

S1. Index the items (corresponding to users in SRP-I) in nonincreasing order of 

their pi/i ratios, 

S2. Find the first item (in order) that does not fully fit into the knapsack. 

Mathematically, find: 

1

min :
i

i

j

s i mA


 
  

 
 . 

S3. The optimal solution is: 

1iu   for 1,..., 1i s  , 

0iu   for 1,...,i s n  , 

1

1

s

i

i
s

s

mA

u














,  

and the upper bound value is computed as: 

1

s

UB i i

i

Z p u


 . 

 

In order to obtain a simple and tight lower bound for the SRP-I problem, the 

following algorithm is used. 

 

AlgorithmLB 

S0. Consider a W by H single frame having area A.  

Set i ← i / m, ∀i ∈ I.  

 min min ,D W H  and  max max ,D W H . 

Compute the number of unit strips of length Dmin required for packing each 

demand. A unit strip of length Dmin is defined as a rectangle having one 
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dimension as Dmin and the other as one. The number of unit strips necessary 

for user i is: 

min

, .i
iN i

D

 
  
 

 

S1. Index the users in nonincreasing order of their pi/i ratios. 

S2. Find the first item (in order) that does not fully fit into the frame. 

 Mathematically, find: 

max

1

min :
i

i

j

s i N D


 
  

 
 . 

S3. The lower bound solution is: 

1iu   for 1,..., 1i s  , 

0iu   for ,...,i s n , 

 and the lower bound value is computed as: 

1

1

s

LB i i

i

Z p u




 . 

 

We incorporate the above upper and lower bounding procedures developed in this 

section, namely AlgorithmLB and AlgorithmUB, into the exact solution scheme of 

SRP-I, as will be explained in Chapter 4. 

 

In the next sections, the two SRP models that cover the case i

i I

mA


 , that is, 

the sum of all user demands being smaller than the total available area, are described. 

They differ from SRP-I mainly by their objective functions, and they might be used 

firstly as individual problems when the sum of all user demands can be satisfied, as 

described in the following sections. Also, they may be defined as subproblems that 

incorporate additional criteria over the SRP-I profit maximization, to form a multi-

criteria perspective. 
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3.3 Sequential Rectangular Packing with Minimum Partitions (SRP-II) 

In this model, no profit is defined for satisfying the data demand of a user. 

Therefore, we either deal with the case where all users are considered for packing 

with all their i fitting in the sequence of frames, or another objective is sought for 

packing an already selected subset of users. SRP-II model is developed for finding 

frame allocations that are as little fragmented as possible. Namely, the number of 

user rectangles or partitions placed in all frames is minimized. 

 

As an example, let us consider a mobile station's downlink demand of 100 slots. 

We can partition this demand as 60 and 40 slots over two frames, and place 

according to other constraints, say with rectangle dimensions 4x15 and 5x8, 

respectively. On the other hand, let us suppose that there is the alternative of 

assigning the same demand to a square with sizes 10x10. Then, assuming all 

remaining feasibility conditions are satisfied, the second alternative with fewer 

partitions (one rectangle instead of two) should be selected according to the objective 

of SRP-II. 

 

Although we have already stated our assumption that ignores the DL-MAP 

overhead, the objective of minimizing the number of rectangles contributes a lot in 

this direction for practical applications and might be employed when the number of 

users is high. Hence, by calculating the actual DL-MAP sizes for our packing 

solutions, we are able to measure solution performances better and solve the same 

packing problems with more realistic updated frame sizes. 

 

As mentioned above, since there is not a selection of a user subset with respect to 

profit, the decision variable ui is not included in this model. Thus, the related 

constraints are modified or omitted accordingly. The SRP-II model formulation is 

below: 

 

min P ij

i I j J

Z z
 

                  (3.16) 

 s.t. 
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.i

i I

mA


                   (3.17) 

, .ij i

j J

z i I


                     (3.18) 

, .ij ij i

j J

w h i I


                    (3.19) 

, , , .ij ij ij ijx w W y h H i I j J                        (3.5) 

1 ( 1) ,

1 ( 1) ,
, .

,

,

ij ij ij

ij ij ij

ij ij ij

ij ij ij

z x W z

z y H z
i I j J

z w Wz

z h Hz

    


    
   

  
  

                (3.6) 

 

1

1 (1 )

0,1 , , .
,

i

ij ij i ij

j
ij

ik ij ij i

k j

A r

i I j J
z z j m



  


 



 

    


    
    




              (3.7) 

0,imr i I                     (3.20) 

 
1,

0,1 , , , ,
2 ,

pj qj pqj

pqj

pj qj pqj

z z
p q I p q j J

z z






   
     

  

              (3.9) 

 

   

1

2 1, 2

1 2

1 ,

1 , 0,1 , , , , .

2 ,

pj pj qj pqj

qj qj pj pqj pqj pqj

pqj pqj pqj

x w x W

x w x W p q I p q j J



  

  

   



         


     

         (3.10) 

 

   

3

4 3 4

3 4

1 ,

1 , , 0,1 , , , , .

2 ,

pj pj qj pqj

qj qj pj pqj pqj pqj

pqj pqj pqj

y h y H

y h y H p q I p q j J



  

  

   



         


   

        (3.11) 

 

 
1 3

2 4

1 2 3 4

2 1 ,

2 1 , , , , .

.

pqj pqj pj pqj

pqj pqj qj pqj

pqj pqj pqj pqj pqj

z

z p q I p q j J

  

  

    

   



        


    

            (3.12) 

1

1, .
i

ij

j

z i I




                    (3.21) 

xij, yij, wij, hij, aij ≥ 0, iI, jJ.               (3.15) 



46 

Constraint (3.16) is the minimization objective for the number of total rectangles 

placed in all the frames. Constraint (3.17) provides the trivial check for the total user 

demand, so that all user areas can fit in available area at least initially. Constraints 

(3.18) and (3.19) are modified forms of the constraints (3.2) and (3.4) of SRP-I, 

excluding the decision variable ui. Similarly, constraint (3.20) is the modified version 

of constraint (3.8); enforcing that there is no remaining demand after the last frame 

for all users. 

 

Since all the users must be placed in this model, by utilizing constraint (3.21) 

instead of its counterpart (3.14) in SRP-I, the latest beginning frames of all ongoing 

user transfers are bounded. It should be noted that this constraint becomes redundant 

for users with new transfers (θi = m+1), because constraint (3.18) already handles 

more. The rest of the constraints are similar to those in the SRP-I model, as well as 

the nonnegativity of the decision variables except rij. 

 

Next, we show that the special case of SRP-II where all users are placed in every 

frame in the sequence is strongly NP-hard: 

 

Theorem 3.3. SRP-II problem is strongly NP-hard. 

 

Proof. The area packing problem APP described in Hurkens et al. (2011) is a special 

case of the SRP-II problem that is defined on a single frame, the proof follows.     

 

3.4 Sequential Rectangular Packing with Minimum Overallocation (SRP-III) 

The objective of the third model, namely SRP-III, is the minimization of 

overallocation or wasted space, which occurs due to the discrete nature of the 

problem. The same user demand or area can be satisfied by different sizes of 

rectangles, and since all parameters and variables are integers, some solutions might 

include rectangle placements with excess (wasted) spaces within. 
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For example, let a user S has a demand of 51 slots. Both a rectangle placement 

with sizes 3x17 and one with 2x26 satisfy her demand. All other constraints fulfilled, 

SRP-III model simply prefers the former solution over the latter as no overallocation 

occurs. In the latter case, there is an overallocation of 1 slot, computed as: 2x26 – 

51=1. 

 

Similar to the main assumption stated in SRP-II, all users can be considered for 

packing and there is no decision regarding the selection of users to be packed. Hence, 

the only difference of SRP-III from SRP-II lies in the objective function, which aims 

the most efficient utilization of the downlink frame areas. All the constraints being 

identical with the SRP-II model, the SRP-III model is defined as follows:  

 

min O im

i I

Z r


                   (3.22) 

 s.t. 

.i

i I

mA


                   (3.17) 

, .ij i

j J

z i I


                     (3.18) 

, .ij ij i

j J

w h i I


                    (3.19) 

, , , .ij ij ij ijx w W y h H i I j J                        (3.5) 

1 ( 1) ,

1 ( 1) ,
, .

,

,

ij ij ij

ij ij ij

ij ij ij

ij ij ij

z x W z

z y H z
i I j J

z w Wz

z h Hz

    


    
   

  
  

                (3.6) 

 

1

1 (1 )

0,1 , , .
,

i

ij ij i ij

j
ij

ik ij ij i

k j

A r

i I j J
z z j m



  


 



 

    


    
    




              (3.7) 

0,imr i I                     (3.20) 

 
1,

0,1 , , , ,
2 ,

pj qj pqj

pqj

pj qj pqj

z z
p q I p q j J

z z






   
     

  
              (3.9) 
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 

   

1

2 1, 2

1 2

1 ,

1 , 0,1 , , , , .

2 ,

pj pj qj pqj

qj qj pj pqj pqj pqj

pqj pqj pqj

x w x W

x w x W p q I p q j J



  

  

   



         


     

         (3.10) 

 

   

3

4 3 4

3 4

1 ,

1 , , 0,1 , , , , .

2 ,

pj pj qj pqj

qj qj pj pqj pqj pqj

pqj pqj pqj

y h y H

y h y H p q I p q j J



  

  

   



         


   

        (3.11) 

 

 
1 3

2 4

1 2 3 4

2 1 ,

2 1 , , , , .

.

pqj pqj pj pqj

pqj pqj qj pqj

pqj pqj pqj pqj pqj

z

z p q I p q j J

  

  

    

   



        


    

            (3.12) 

1

1, .
i

ij

j

z i I




                    (3.21) 

xij, yij, wij, hij, aij ≥ 0, iI, jJ.               (3.15) 

 

 

The objective function in (3.22) is simply the negated sum of the values of the 

decision variables rij after the last frame, which is equivalent to the total 

overallocation. All constraints are identical with SRP-II, and presented here again for 

the sake of completeness. 
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CHAPTER FOUR 

COMPUTATIONAL RESULTS 

 

For validating and testing the models developed in this thesis, two different data 

sets have been generated for computational experimentation. The computational 

results pertaining to these data sets are presented in this chapter. In Section 4.1, we 

present the experiment design and results for the first data set, which has a single 

class of demand and random profits. Section 4.2 describes the data with two classes 

of demands and two classes of profits, and the corresponding computational results 

are supplied.    

 

4.1 Data Set 1: Data with a Single Demand Class and Random Profits 

The first data set was designed by considering 24 different combinations of three 

parameter levels. 10 instances were generated from each combination adding up to a 

total of 240 instances. Differentiating only the number of users, frames and frame 

area sizes, overall experiment design for Data Set 1 is summarized in Table 4.1. 

 

Table 4.1 Parameter levels for Data Set 1 

Parameter name Levels 

n (# of users) 10, 20, 40, and 80 

m (# of frames) 2, 4, and 8 

A = WxH (frame area in slots) 360 (12x30) and 1200 (20x60) 

di ~ UD (16, 128) 

pi ~ UD (48, 240) 

λi ~ UD (1, m) 

θi m+1 (all transfers new) 
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As summarized in Table 4.1, the demand and profit values for this data set are 

uniformly generated independently from each other. All users are assumed to belong 

to a single demand class, and the profits are generated randomly for all users. Subset 

sum logic might be employed using the same problem inputs whenever necessary, by 

simply putting pi = di.  

 

Both problem generation and solution processes are automated by a console 

application developed in C# programming language on MS Visual Studio 2010 IDE 

(integrated development environment). The three models presented in Chapter 3 are 

tested and validated on GAMS 23.9 using BARON 11.5 (Tawarmalani and Sahinidis 

2005) and SCIP 2.1.2 (Achterberg et al. 2008; Achterberg 2009) as different MINLP 

solvers. Moreover, the application design easily allows integration of different 

solvers and algorithms on top of the existing ones developed for this thesis. The 

visual packing results are obtained by developing Excel macro codes in Visual Basic 

language. 

 

The PC configuration used for experimentation was above average with 2.30 GHz 

CORE i7 3610QM processing power, 8 GB RAM memory and run on 64-bit 

Windows 7 operating system. Example GAMS codes for SRP-I, SRP-II and SRP-III 

are provided in Appendix A.1, A.2 and A.3, respectively.  

 

The distributions of the problem instances according to user demand density, 

which is the ratio of total demand to available area, and the overall model sizes in 

terms of decision variable and constraint counts are given in Table 4.2.  

 

Of all the generated instances, 135 instances that correspond to the case where 

i

i I

mA


  are used only for testing and comparing the solutions of models SRP-II 

and SRP-III, which do not involve user profits. The rest (105 problem instances) 

have demand densities higher than 100%, and these are considered for testing the 

SRP-I model. A 20-minute runtime limit is employed for all solutions. 
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Table 4.2 Demand densities and model sizes for Data Set 1 

n A (WxH) m 
Demand density 

(%) 

Average # of 

decision variables 

Average # of 

constraints 

10 

12x30 

2 109 617 1325 

4 48 1221 2588 

8 26 2441 5147 

20x60 

2 28 611 1306 

4 14 1221 2585 

8 8 2441 5146 

20 

12x30 

2 201 2241 4870 

4 99 4447 9600 

8 51 8881 19093 

20x60 

2 61 2221 4810 

4 30 4441 9569 

8 15 8881 19094 

40 

12x30 

2 392 8481 18540 

4 207 16921 36939 

8 101 33785 73605 

20x60 

2 117 8481 18541 

4 59 16881 36741 

8 30 33761 73377 

80 

12x30 

2 759 32961 72282 

4 394 65841 144274 

8 203 131601 288276 

20x60 

2 236 32961 72281 

4 117 65841 144285 

8 61 131521 287570 

 

 

An initial set of runs for the SRP-I problem were completed without employing 

any of the explicit bounds proposed in Section 3.2, and the results are presented in 

Table 4.3. In this case, no problem could be solved to optimality. Furthermore, as it 

can be observed in Table 4.3, feasible solutions of only 25 of the instances could be 
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found by either one of the solvers within the given runtime limit of 20 minutes as 

shown by the # of incumbent solutions column. In particular, SCIP solver reached 

feasible solutions for 23 instances in total, 21 of which has better objective values 

than the ones obtained by BARON, which obtained 9 feasible solutions in 105 

instances. 

 

Table 4.3 Results for incumbent solutions of SRP-I without incorporating any bounds (Data Set 1) 

n A (WxH) m 
# of 

instances 

# of incumbent 

solutions 

Average 

gap (%) 

Average # of 

rectangles 

Average # of 

users packed 

10 12x30 2 6 6 7 15 8 

20 12x30 
2 10 4 51 12 8 

4 3 2 89 7 4 

40 
12x30 

2 10 0 - - - 

4 10 1 96 2 2 

8 6 0 - - - 

20x60 2 10 4 68 21 13 

80 

12x30 

2 10 0 - - - 

4 10 0 - - - 

8 10 0 - - - 

20x60 
2 10 1 75 19 12 

4 10 7 93 7 5 

 

 

The gap averaged over 10 instances is used as a performance measure, where the 

gap percentage is defined as the difference between the best upper bound solution 

and the best/incumbent lower bound solution obtained during the runtime limit (if 

not optimal) by the solver, as a percentage of the upper bound solution. 

Mathematically;  

Incumbent Solution
% Gap = .100Solver

Solver

BestUB

BestUB


.                        (4.1) 
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As it can be seen from Table 4.3, except the smallest problem instances with 10 

users, the average gaps are quite high. Average number of rectangles and users 

packed are also shown in the table. The objective value of the instance with the 

smallest gap value of 4.3%, which was proven to be optimum by an unlimited-time 

run, belongs to a 10-user instance solution. The corresponding packing for this 

solution is illustrated in Figure 4.1. Such a visual representation of the solution is 

generated automatically in MS Excel as output for each problem instance by the 

developed codes. Some example problem input and output files are provided in 

Appendix B. Figure 4.1 is directly taken from such an output file. 

 

The problem input corresponding to Figure 4.1 has 10 users, with a total demand 

of 735 slots and potential profit of 1550, which are to be packed over 2 frames, each 

with size 12x30. 621 decision variables and 1336 constraints were evaluated by the 

SCIP solver to reach the objective value of 1483 in 13 seconds, which couldn't be 

proven to be optimal in 20 minutes. 

 

 

 

Figure 4.1 SRP-I solution for a problem with 10 users packed over 2 frames 
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Note that, 9 of the 10 users are selected for packing in 17 partitions (rectangles) 

over 2 frames, with a total overallocation of only 10 slots. The average area of the 

rectangles placed is 39 slots, compared to the average demand 74 per user. 

 

In order to improve the solution performance for the SRP-I problem, the lower 

and upper bounds defined in Section 3.2.2 were incorporated into the model, and a 

second set of results were obtained for the same 105 instances by using only the 

SCIP solver and a 10-minute runtime limit. The results are presented in Table 4.4. 

The table lists the instances and corresponding experimental parameters, along with 

the performance measure values. The codes for AlgorithmLB and AlgorithmUB can 

be found in Appendix C.1 and C.2, respectively.  

 

Table 4.4 Results for incumbent solutions of SRP-I employing lower and upper bounds (Data Set 1) 

n A (WxH) m # of instances 

Average 

initial gap 

(%) 

Average 

final gap 

(%) 

10 12x30 2 6 7.8 4.6 

20 12x30 
2 10 13.8 13.1 

4 3 10.7 10.6 

40 
12x30 

2 10 14.3 14.3 

4 10 19.4 19.4 

8 6 24.2 24.0 

20x60 2 10 12.2 12.2 

80 

12x30 

2 10 17.3 17.3 

4 10 26.5 26.5 

8 10 38.9 38.9 

20x60 
2 10 18.9 18.9 

4 10 24.7 24.7 

 

 

As the lower bound obtained by AlgorithmLB, which was presented in Section 

3.2.2, is employed in this case, all instances have an initial feasible solution. 
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Therefore, we report the corresponding initial gap percentage between the lower 

bound and the initial upper bound found using AlgorithmUB (see in Section 3.2.2), 

averaged over 10 instances. The initial gap percentage is computed as:   

 

lg lg

lg

LB
% Initial Gap = .100

A orithmUB A orithmLB

A orithmUB

UB

UB


 

 

The average final gap percentage values attained by the solver are also shown in 

Table 4.4, which are computed using equation (4.1). 

 

Although only one optimal solution was obtained in the 10-minute running limit, 

the average gap values listed in Table 4.4 are far superior compared to those 

presented in Table 4.3. The optimal solution corresponds to the same problem 

instance used in Figure 4.1, this time obtained in just six seconds as a result of the 

employment of bounds, and is shown in Figure 4.2. 

 

 

 

Figure 4.2 SRP-I solution for the same problem employing bounds 
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It should also be noted that the optimal packing of the problem shown in Figure 

4.2 has a fewer number of rectangles, 13 as opposed to 17 of Figure 4.1, but with a 

much higher overallocation of 40 slots in total. Consequently, the average area (53 

slots) of the rectangles placed is larger. 

 

The difference between the two set of SRP-I runs suggests that, implementing 

bounds such as the ones described in Section 3.2.2, and probably more sophisticated 

ones, can improve the solution performance further either for exact or approximate 

solutions. 

 

As for the SRP-II and SRP-III models, no feasible solution could be obtained for 

problem instances having 40 or 80 users within the time limit. The results for other 

problem instances with 10 and 20 users are presented in Table 4.5. All problem 

instances with 10 users are solved to optimality by the two models using either one 

of the solvers. The shortest solution times performed by any of the two solvers are 

taken into account while averaging. 

 

Table 4.5 Comparison of SRP-II and SRP-III solutions for n=10, 20 (Data Set 1) 

 

* Numbers of incumbent solutions reached within the 20-minute limit are given in parentheses. 
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The number of optimal solutions obtained by the solver out of the given number 

of instances are listed in the table as well as the average number of rectangles placed, 

the average best solution times and the maximum solution times (in seconds) for 

each parameter combination, by distinguishing model parameters such as frame size 

(A) and frame sequence length (m). It should be noted that the number of user 

rectangles allocated in SRP-II solutions are significantly lower than in the SRP-III 

solutions of the same instances, which justifies this study’s motivation for using the 

SRP-II objective for minimizing the number of partitions. For example, when n=10, 

m=4, and A=12x30, the SRP-II solution allocates 13 rectangles in average, as 

opposed to an average 29 rectangles placed by the SRP-III solutions. 

 

The difference in the solution times of the 10-user instances suggests that 

minimizing the number of rectangles is a more complex objective than minimizing 

overallocation. This might also be observed by looking at the number of optimal 

solutions obtained within the runtime limit for the 20-user problems. On the other 

hand, the difference in average solution times are significant as the number of users 

doubles, where the duration gets much higher with the increasing number of 

variables and constraints. 

 

The variances of average solution times seem higher for the problems with 10 

users and small frames (A=12x30) for both models. This is because of the higher 

demand densities for the 2-frame problems (Table 4.2), and therefore, tighter 

instances. On the other hand, for the instances with larger frame area (A=20x60), the 

SRP-II solutions take longer as the number of frames, m, increases. For the same 

setting, SRP-III solutions show the opposite trend and take shorter times. This result 

is expected, since as observed in Table 4.5, SRP-III assigns rectangles in each frame 

to almost every user to minimize overallocation with no partitioning concern, which 

allows finding solutions in shorter times when compared to tighter settings with 

fewer frames. 

 

Two example packings generated by using SRP-II and SRP-III models are 

presented in Figures 4.3 and 4.4, respectively.  
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Figure 4.3 SRP-II solution for a problem with 10 users packed over 2 frames 

 

 

 

Figure 4.4 SRP-III solution for the same problem with 10 users over 2 frames 
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The same problem input is used for both models: 10 users, with a total demand of 

694 slots, are required to be packed over 2 identical frames of size 12x30. A total of 

611 decision variables and 1309 constraints are handled by the solvers. The SRP-II 

GAMS code for this instance is provided in Appendix A.2.  

 

In Figure 4.3., in line with the objective of SRP-II, the total number of placed 

rectangles are 14 instead of 20, which would be the trivial value if the problem aimed 

packing all 10 users in every frame. As seen from the figure, placing only 5 user 

rectangles was sufficient for the second frame, and the demands of only 4 users are 

partitioned through both frames (users 1, 4, 6 and 7). The total overallocation of the 

solution is 9 slots. 

 

In contrast, the total number of rectangles allocated in SRP-III solution is 18, 

while no overallocation occurred, as seen in Figure 4.4. All demand is partitioned 

through two frames except users 8 and 10. As expected, the average rectangle area 

value is larger in SRP-II solution (50 slots) than in SRP-III (39 slots), which is 

another hint allowing us to distinguish the differences in objectives. 

 

As stated above, the objective of minimizing the number of partitions proves itself 

worthy in terms of the reduction of items to be packed. Specifically in the second 

frame of Figure 4.3, only 5 rectangles are packed instead of 10. Furthermore, it 

should be noted that the objective of minimizing overallocation might be better 

handled on a single frame for simplicity, as there seems no significant reduction in 

the number of rectangles involved (Table 4.5). 

 

In terms of solution time, SRP-III solution for this specific problem instance was 

obtained in much shorter duration than for SRP-II, 19 seconds and 692 seconds, 

respectively. 
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4.2 Data Set 2: Data with Two Demand and Profit Classes 

After examining the results of the runs with Data Set 1 for the exact nonlinear 

integer programming models developed in this thesis, it can be safely stated that the 

theoretical problem difficulties are reflected appropriately. For a more thorough 

analysis, in order to test other network scenario conditions that can simulate real life 

packet traffic load, the structures and parameters of similar problem instances from 

the literature are investigated in detail, and adapted as Data Set 2 for further 

computation. The experiment results for this data set are provided in this section.   

 

For practical purposes, and for compensating our assumption that ignores the DL-

MAP overhead, all problem instances with 80 users are omitted from Data Set 2. 

Examining the results of Section 4.1, it is obvious that the highly combinatorial 

nature of our problems make it nearly impossible to obtain solutions in acceptable 

times for large numbers of users involved (Tables 4.2, 4.3). All instances with large 

frame areas (A=20x60) are also omitted from the data set due to the fact that, as the 

demand densities are lower for these instances and the packings are distributed in a 

very sparse manner, the solutions become trivial and meaningless to evaluate the 

performance of the proposed sequential approach. 

 

For being able to simulate real network traffic load within our experimentation 

boundaries, two different classes of packet traffic are considered. Explicitly, user 

demands are classified as data and voice traffic as in Lodi et al. (2011). Moreover, 

the problem instances in Data Set 2 are generated from two different distributions of 

these classes, namely 75% data versus 25% voice traffic, and 50% from each. 

Hereafter, the distribution of users with 75% data and 25% voice traffic class will be 

denoted as TR1, and the latter distribution with 50% of each class as TR2.  

 

The main difference between these TR1 and TR2 are due to their traffic activity 

levels and packet sizes (Lodi et al., 2011). It is assumed that the MSs with data traffic 

are always active, i.e., the BS has always backlogged data waiting for transmission 

directed to them. Thus, to mimic this continuous flow of data, their maximum delay 

parameter values are assumed lower, to be exact, equal to 2 frames (10 ms) for all 
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computations. On the other hand, since voice applications have a discontinuous 

nature, which assumes lower probabilities for packets waiting for transmission from 

the BS side, the maximum delay values for users with voice traffic are chosen as 

discrete uniform in the interval [3, 8]. 

 

In addition to the classification of demand, as opposed to the independent random 

assignment of profit values regardless of the user demand levels in Data Set 1, the 

users with voice traffic are prioritized in Data Set 2. Namely, higher profit 

coefficients are used for voice traffic than the ones used for data traffic. The 

parameter settings used for Data Set 2 are listed in Table 4.6. 

 

Using the settings in Table 4.6, 180 problem instances were generated in Data Set 

2, where 82 instances that correspond to the case i

i I

mA


  are used for testing and 

comparing the solutions of SRP-II and SRP-III, and the rest (98 problem instances) 

with demand densities higher than 100% are considered for testing SRP-I. All 

instances are tested on the SCIP solver within a 10-minute running limit. The results 

of the new runs are analyzed in the same way presented in Section 4.1 and the same 

computer configuration is used for the runs.   

 

The distributions of the problem instances according to user demand density, 

defined as the ratio of total demand to available area, and the overall model sizes in 

terms of the number of decision variables and constraints are presented in Table 4.7.  

 

The main differences in Data Set 2 as compared to Data Set 1 are the introduction 

of user classes that differ by demand sizes, respective profit values, and maximum 

delay parameters. As presented in Table 4.7, the model sizes do not change, since 

they are only dependent on the values n, and m. However, the demand densities of 

the new problem instances are about 10% higher than the problems of Data Set 1.  
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Table 4.6 Parameter levels for Data Set 2 

Parameter name Levels 

n (# of users) 10, 20, and 40 

m (# of frames) 2, 4, and 8 

A = WxH (frame area in slots) 360 (12x30) 

User class distribution (data + voice) 75% + 25% and 50% + 50% 

di,data or di,voice ~ UD (12, 192) or UD (10, 80) 

pi,data or pi,voice di [UD (1, 6)] or di [UD (6, 12)] 

λi,data or λi,voice  2 or ~ UD (3, 8) 

θi m+1 (all transfers new) 

 

 

Table 4.7 Demand densities and model sizes for Data Set 2 

n m 

Demand density (%) Average # of 

decision 

variables 

Average # 

of 

constraints 

75% data + 

25% voice 

50% data + 

50% voice 

10 

2 119 104 618 1321 

4 69 58 1221 2585 

8 27 23 2441 5155 

20 

2 237 203 2241 4861 

4 117 91 4452 9619 

8 63 57 8881 19118 

40 

2 482 425 8481 18521 

4 227 214 16921 36933 

8 126 98 33789 73679 
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As an initial experiment, the 98 instances are tested for the SRP-I problem without 

using any of the bounds proposed in Section 3.2.2. In this case, no problem could be 

solved to optimality by the SCIP solver within the 10-minute time limit, and only 19 

feasible solutions could be obtained. Four of the feasible packings in the 10-user, 2-

frame instances that belong to TR1 and TR2 distributions have about 2% gaps, one of 

which was proven to be optimal in 4 seconds by the SRP-I runs employing bounds. It 

should be also noted that, three of these feasible solutions are trivial packings that 

packed only one user, and even one rectangle. The results are presented in Table 4.8. 

Gap computations are identical to those in Section 4.1. 

 

Table 4.8 Results for incumbent solutions of SRP-I without incorporating any bounds (Data Set 2) 

n 
Traffic 

distribution 
m 

# of 

instances 

# of incumbent 

solutions 

Average 

gap (%) 

Average # 

of 

rectangles 

Average # 

of users 

packed 

10 
TR1 2 8 8 12 14 8 

TR2 2 5 5* 6 14 8 

20 

TR1 
2 10 1 48 6 3 

4 9 0 - - - 

TR2 
2 10 2 58 8 6 

4 2 0 - - - 

40 

TR1 

2 10 0 - - - 

4 10 0 - - - 

8 10 3 96 1 1 

TR2 

2 10 0 - - - 

4 10 0 - - - 

8 4 0 - - - 

* One of these solutions are later proven to be optimal. 

 

 

Similar to the runs executed in Section 4.1, SRP-I solutions to the same instances 

are explored by incorporating the lower and upper bounds developed in Section 

3.2.2. Since AlgorithmLB is now employed in the solution mechanism, all instances 
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presented in Table 4.8 have guaranteed initial feasible solutions. Moreover, for two 

of the 10-user, 2-frame instances, one of which belongs to TR1 and the other to TR2, 

optimal packings are obtained within 10 and 4 seconds, respectively. The 

corresponding average initial and final gaps attained are reported in Table 4.9 in a 

similar fashion to Table 4.4. 

 

Table 4.9 Results for incumbent solutions of SRP-I employing lower and upper bounds (Data Set 2) 

n 
Traffic 

distribution 
m 

# of 

instances 

Average initial 

gap (%) 

Average 

final gap 

(%) 

10 
TR1 2 8* 6.8 3.6 

TR2 2 5* 10.0 5.1 

20 

TR1 
2 10 15.0 14.0 

4 9 13.6 13.5 

TR2 
2 10 16.8 15.3 

4 2 15.4 15.0 

40 

TR1 

2 10 14.9 14.9 

4 10 20.8 20.8 

8 10 23.3 23.3 

TR2 

2 10 16.3 16.3 

4 10 23.3 23.3 

8 4 21.3 21.3 

* Two of these instances are solved to optimality and not included in this table's calculations. 

 

 

The gap values in Table 4.9 are very close to the ones summarized in Table 4.4. It 

seems that whatever the demand densities are, the dominant factor determining the 

solution time and quality is the problem size, which is defined by the number of 

users and frames involved. Therefore it can be stated that the SRP-I model is robust 

in terms of demand density parameter. 
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One of the two optimal solutions, which is obtained in 10 seconds by the SCIP 

solver, is shown in Figure 4.5. Nine of the 10 users are packed, with an 

overallocation of 5 slots, by filling up all the available area of the two frames. In this 

instance, there is only one user (user 1) with voice traffic demand (28 slots). 

However, having a relatively higher profit coefficient, it contributes to the 6% of the 

optimal total profit gained despite its relatively smaller transfer size (4% of the total 

demand packed). This is a direct result of the data generation scheme used for Data 

Set 2, which involves generating profit values dependent on demand classes. The 

SRP-I GAMS code for this instance is provided in Appendix A.1. 

 

 

 

Figure 4.5 SRP-I solution for a problem with 10 users packed over 2 frames with traffic distribution 

TR1 (75% of users with data + 25% voice traffic) 

 

For the sake of completeness, SRP-II and SRP-III models for the remaining 82 

instances were also executed, despite the lacking effect of different profit classes but 

only higher average demand sizes. In line with the results of Section 4.1, no feasible 
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solution could be obtained for problem instances having 40 users within the runtime 

limit.  

 

The results for problem instances having 10 and 20 users are summarized in Table 

4.10. Nearly all problem instances with 10 users are solved to optimality by the two 

models, regardless of their traffic distributions. As noted before, the determining 

factor affecting the solution performances of these models remains to be the user 

demand size. 

 

Table 4.10 Comparison of SRP-II and SRP-III solutions for n=10, 20 (Data Set 2) 

 

* Number of incumbent solutions reached within the 10-minute limit are given in parentheses. 

 

 

Nevertheless, the two entries in Table 4.10 regarding the average solution times of 

10-user, 4-frame instances for SRP-III model with both traffic distributions are worth 

mentioning. To be precise, excluding the worst, the average solution times of the 

remaining 9 instances become 1.2 and 0.7 seconds respectively for the TR1 and TR2 

cases, instead of 23.7 and 5.4 seconds. 

 

Two optimal packing examples from the mentioned setting (10 users, 4 frames) 

with TR1 distribution are given in Figures 4.6 and 4.7 for comparison. It should be 

noted that the first instance (Figure 4.6) with 80% demand density was solved to 
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optimality within 226 seconds by packing 27 rectangles, while the latter (Figure 4.7) 

having 71% demand density was packed in 0.4 seconds in 40 rectangles. Although 

both optimal values are zero, it seems that SRP-III is much easier to solve when the 

demand density is lower. In fact, all instances of the same setting except the one 

shown in Figure 4.6, have demand densities of at most 77%, and have been solved to 

optimality in times shorter than 2 seconds. The SRP-III GAMS code for the instance 

in Figure 4.7 is provided in Appendix A.3. 

 

 

 

Figure 4.6 SRP-III optimal packing by 27 rectangles of a problem with 10 users over 4 frames with 

traffic distribution TR1 (75% of users with data + 25% voice traffic); with average user demand of 

116 slots 

 

 

 

Figure 4.7 SRP-III optimal packing by 40 rectangles of a problem with 10 users over 4 frames with 

traffic distribution TR1; with average user demand of 102 slots 
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4.3 Discussion  

The computational results presented in this chapter illustrate the complex nature 

of the problems defined in this thesis. A thorough experimentation was performed on 

two separate data sets with different structures, and the analysis suggests that, 

although slightly different results are obtained for the performance of the models 

among the two data sets, the difficulty of obtaining repeated solutions of the problem 

in short periods of time remains unchanged under changing conditions.  

 

Therefore, the inherent complexity of the problem intuitively forces the utilization 

of approximation approaches instead of trying to attain exact solutions. Examining 

the results, one can argue that the solution times for even the smallest problems are 

very poor and unacceptable for most practical situations.  

 

The practical computational target set by Lodi et al. (2011) was ignored in this 

thesis for obvious reasons. First, the significant differences between the structures of 

the single and multiple frame problems render the computational target for the single 

frame problem infeasible for the multiple frame problem. Second, the main aim and 

motivation of this study is to introduce novel exact models for the new problem, 

provide an insight, lay the groundwork and spread canvas for further studies. 

Nevertheless, in addition to the explanation and discussion of the computational 

results provided in Sections 4.1 and 4.2, we present and discuss in this section a 

couple of alternative approaches for the proposed problem for obtaining faster 

approximate results.  

 

In the next sections, we briefly deliberate two alternative modeling and solution 

ideas for reaching higher computational performance instead of obtaining optimal 

solutions. The first is based on a decomposition scheme for the problem while the 

second involves a two-phase heuristic approach. We believe that such approaches, 

and probably some more advanced ones, can result in better solution times for small 

problem instances while making it possible to tackle larger instances in future 

studies.  
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4.3.1 Decomposition of SRP 

The modeling approach in Chapter 3 employed for SRP involves simultaneous 

partitioning and packing of the items along frames. An imminent idea for tackling 

such problems is decomposition.  

 

The problem SRP has two natural components. The first subproblem considers the 

assignment of the users to the frames using maximum delay constraints, and 

partitioning the user demands over the assigned frames. Thus, this subproblem 

involves both the binary decision variables (zij) for frame selection and the demand 

partition variables (aij) for satisfying the feasibility conditions imposed by the QoS 

parameters. 

 

The second subproblem on the other hand encompasses the packing of the 

selected user partitions (rectangles) on their assigned frames. If the rectangle sizes 

are assumed to be variable corresponding to same area values, as in SRP, it would be 

wise to incorporate some efficient and well-known packing methods from the 

literature. 

 

According to the capabilities of the selected algorithm, if needed, some 

randomized size-fixing approaches can also be incorporated as alternative solution 

approaches. These will be mentioned in detail in the next section. 

 

Obviously, each objective of the three SRP models requires different decision 

priorities for the first subproblem, which involves user-frame assignments. For 

example, when the maximization objective of SRP-I is considered, the users to be 

partitioned should be selected by an adaptation of one of the efficient knapsack 

solution approaches in the related literature (Kellerer et al., 2005).  

 

The general flow of the decomposition approach can be summarized as below: 

(1) Solve initially for zij and aij, and fix their values for the second subproblem, 

(2) Fix the assigned rectangle sizes, wij and hij, and pack them without 

overlapping for each frame, 



70 

(3) Compare the objective function value with the previous ones and the relaxed 

bounds, update the best solution value, and terminate consequently either 

after a fixed number of iterations or after a predetermined threshold is 

reached. 

 

As it can be seen from the above flow, the decomposition idea proposed here is a 

basic divide-and-conquer strategy, employing a loop for two different models to 

solve the SRP problem. 

 

All the steps for this decomposition approach can be modeled on the same solvers 

used in the experimental computations. The main aim is to reduce the initial problem 

sizes, hence being able to obtain faster solutions for larger problems with more users 

involved. However, the quality of the solutions should be evaluated carefully with 

this approach, as it surely will yield suboptimal results.  

 

4.3.2 Two-Phased Heuristic Algorithms for SRP 

In this section, ideas for a two-phase heuristic approach for handling SRP are 

presented. In such a heuristic, the first phase can handle the user selection and 

partitioning as in the decomposition approach, while the second phase can consider 

the packing of the partitioned demand through frames. Below, we list some possible 

ideas that define the outline of this heuristic: 

 

 As in the previous decomposition approach, the users to be partitioned can be 

selected by an adaptation of efficient knapsack solution approaches (Kellerer et 

al., 2005). 

 

 Within the heuristic, two different approaches can be considered for 

partitioning each user's total demand, namely i, over the frame sequence. So, 

regardless of the packing algorithm chosen, one can employ two approaches 

for this phase. Note that if a user is selected, it should be assigned at least to αi, 

and at most to m frames. 
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 The first approach is a random partitioning, dividing i in random ti pieces, 

where αi ≤ ti ≤ m. In this method, both the selection process of ti and the 

areas of the pieces are randomly managed. The assignment of the pieces to 

frames should be constrained by the maximum delay parameters, λi.  

 The second partitioning approach involves the division of demand 

parameter i in equal ti pieces, where again αi ≤ ti ≤ m holds.  

 The output of this phase will be the initial frame assignments and areas, but 

the sizes of the rectangles are still to be constructed by the rectangle packing 

stage of the heuristic. In both approaches, the idea is simply to begin the 

packing process as quick and with fewer rectangles per frame as possible. 

 

 For the packing phase of the problem, or explicitly for the DL subframe 

allocation subproblem, again it is possible to select among the many existing 

algorithms in the literature.  

 As summarized in Chapter 2, the algorithm developed by Cicconetti et al. 

(2010), which was represented again in full detail by Lodi et al. (2011) for 

optimally packing of the so-called distributed permutation zone, is one such 

appropriate method. The name of the algorithm is recursive tiles and stripes 

(RTS). But, since the authors also take the DL-MAP overhead issue into 

account, an adaptation of the algorithm is required for SRP.  

 Another algorithm that could be implemented is the eOCSA algorithm, 

which is developed by So-In et al. (2009b) for handling the BS resource 

allocation problem in two stages: First, the scheduler sorts each user 

terminal in a descending order based on their demands for satisfying the 

QoS throughput guarantee. Then, the bursts are packed from right to left and 

from bottom to top in the DL subframe. However, since the selection of 

users is already present at this phase, it would be sufficient to focus on the 

second stage of their algorithm. 

 

The two-phase heuristic defined by the above outline is again based on a natural 

decomposition of the problem into two-phases, hence relies on a divide-and-conquer 

approach. It can be coded and implemented on any platform of preference, and will 
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produce different bounds for the problem if more than one approach is employed at 

different phases. However, as the outline indicates, the quality and the runtime of the 

solutions will be heavily dependent on the performance of the selected algorithms for 

the separate phases. In addition, it must be kept in mind that the solution for the 

decomposed problem, even when it is proven to be optimal, will still be suboptimal 

for SRP, as it provides a relaxation on the original problem. Therefore, the 

performance evaluation of such a heuristic requires extensive computational 

experimentation.   

 

As the computational complexities of the SRP models presented in Chapter 3 

(Theorem 3.1, Corollary 3.1 and Theorem 3.3) and the computational results of this 

chapter suggest, acceptable solutions to these problems in tolerable times are very 

difficult to attain or simply impossible. For this reason, more flexible mechanisms 

are required for still being able to maintain the novelty brought by SRP models, but 

with more practical and realistic representations.  

 

In order to reduce the SRP model sizes defined above, we bring forth some fuzzy 

extensions in the next chapter by adapting consequential objectives and constraints. 

The foundations for these fuzzy measures and parameters are introduced in order to 

imitate a more realistic representation of the actual network resources for potential 

practical problems. 
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CHAPTER FIVE 

A FUZZY PERSPECTIVE FOR SRP 

 

The frame packing solution approaches and typical bin packing algorithms in 

literature do not allow for partial allocations of the items, as reviewed in Chapter 2. 

Explicitly, an item must be placed fully in a bin, or cannot be placed at all by such an 

approach. However, some service resource allocation problems such as wireless 

communication systems may possess highly variable and unpredictable 

characteristics. The service demand levels may not be exactly satisfied in some 

periods of time, or with respect to some criteria. 

 

As mentioned earlier in Section 2.2, Kim et al. (2001) introduced the fuzzy bin 

packing problem defined as packing non-rigid rectangular items into an open 

rectangular bin, namely as a strip packing problem. They employed fuzziness in the 

height dimension by using triangular fuzzy numbers. Their aim was to minimize both 

the height of a packing and the extra cost due to the size reduction of each item. The 

authors presented a closed form solution by representing the total cost as the sum of 

the height cost and the size reduction cost given by a quadratic function. Reducing 

the height of an item decreased the overall height cost but increased the reduction 

cost due to lower quality of the item according to the results of the study.  

 

Nasibov (2004) proposed a new approach for the bin packing problem, which was 

briefly summarized in Section 2.2, with the evaluation of the packing quality under 

fuzzy source constraints. Using the bin packing notation, the items are to be allocated 

in two sets of containers, one is comprised by m main containers Si and the second 

having only one reserve container Sm+1. The author defined four fuzzy relations 

between the items and the containers imposing certain constraints on the placement 

of items, which are also mentioned briefly in the study by Eliiyi & Nasibov (2010). 

 

The four fuzzy relations mentioned, which will be presented in this chapter in 

detail, reflect simply the degrees of the mutual attachment of items, the mutual 

compatibility of items, the mutual attachment of an item to a container, and the 
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mutual compatibility of an item to a container, resulting in several matrices whose 

entries take values from the interval [0, 1]. Containers must be filled with respect to 

certain conditions, e.g. sufficient degree of filling factor, so that the consistency 

degree of the final packing is maximized and certain classical total indicators or 

measures, such as volume or weight, are minimized for the items placed in the 

reserve container. 

 

Along these lines, we propose a framework to extend both the frame packing 

models from the literature and the models developed in this thesis, by using an 

adaptation of the fuzzy constraint approach of Nasibov (2004). Evidently, besides the 

current objectives of the exact models, an overall quality concept of packing in a 

single or a sequence of frames should be incorporated in the new models. 

 

We introduce fuzziness in item areas (burst sizes) to be packed within frames, in 

order to allow partial packing among frames. Assuming triangular fuzzy numbers for 

area values, minimum admissible service rates and overallocation limits might be 

more appropriately represented. Hence, by reducing the size of a user demand, more 

rectangles can be packed in that frame by increasing the capacity utilization. The 

remainder of the reduced user demand may be considered for packing in the next 

frames of the sequence, or may not be packed at all, thereby reducing the overall 

quality level while satisfying higher priority constraints. All these fuzzy user demand 

sizes are defined as positive integers as in frame packing, which may depend on user 

data packet classes, profit or priority levels. In addition, a continuous time basis 

consideration of the frame packing problem might be employed by differentiating 

between frames. Therefore, the frames are identical in size, but their order is 

important. 

 

Before we describe the adaptation of the fuzzy attachment and compatibility 

relations that are defined by Nasibov (2004) in the next section, it should be noted 

that the integration of these relations to existing models should be employed in as a 

simple manner as possible. For example, an attachment value of 1 between an item 

(user or rectangle) and frame will specify that the item must be packed in that frame, 
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and a zero value will assume no such restriction. In contrast, a compatibility value of 

0 between items will indicate the items shouldn’t be placed together in any frame, 

while 1 will describe an absolute independence when placing those in the same 

frame. To keep the new fuzzy models simpler, some of these relations may be 

omitted, which are not relevant depending on the nature of the problem or when 

assigning the values of the corresponding relation matrices might not bring any 

discernible benefits. 

 

5.1 A General Fuzzy Packing Formulation 

The first important contribution of the fuzzy approaches that are presented in this 

section is the introduction of an overall packing quality level as a secondary 

objective or performance measure. In this fashion, when the constraints of the 

existing models are relaxed and suboptimal solutions are obtained, one could 

measure the acceptability of these new solutions. In order to attain such a fuzzy 

measure, Nasibov (2004) defined some mutual consistency degrees for containers at 

hand. His notation is adapted in parallel to the terminology of this thesis, and 

presented as below. 

 

The items are denoted by user indices iI = {1…n}, and the containers by frame 

indices jJ = {1...m}. There are also user classes Qk (k{1…}), equivalent to the 

ones mentioned in Section 4.2, which group users according to their packet type, MS 

features, demand sizes, subscription priorities, respective profit values, and 

maximum delay parameters. Each of these user classes might enforce its specific 

restrictions (QoS parameters) or constraints in the model. 

 

There is an ordered sequence of frames with fixed rectangular sizes of width W 

and height H, where m+1 is defined as the reserve frame. Every frame has an area A 

equal to WxH. As mentioned in the beginning of this chapter, there are four fuzzy 

attachment and compatibility relations within users and between users and frames 

defined as follows: 
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 
1 1( , )R R p q  is the symmetric and reflexive relation indicating the mutual 

attachment degree of users p and q, 

 
2 2( , )R R p q  is the symmetric and reflexive relation indicating the mutual 

compatibility degree of users p and q, 

 
3 3( , )R R p j  is the relation indicating the mutual attachment degree of frame 

j and user p, 

 
4 4( , )R R p j  is the relation indicating the mutual compatibility degree of 

frame j and user p, 

 

where p,qI, jJ. For simplicity, we make use of the binary decision variables zij 

and δpqj, which are defined in Chapter 3, here again. Note that zij = 1 if user i is 

placed in frame j, and 0 otherwise. The other variable δpqj on the other hand, which 

was first described in Section 3.2, and used particularly in constraints (3.9)-(3.12), 

deals with feasible placements of user rectangles on the two-dimensional frame area. 

Recall that δpqj equals 1 if both user p and q are placed in same frame j, and 0 

otherwise. 

 

The matrices representing the relations defined above may be generated or 

defined with respect to service parameters, deadlines, item priorities or mechanisms 

that utilize user specific transfer information. Using these fuzzy relations, the 

consistency degrees for each frame could be defined as below. 

 

1 1
,

( ) 1 max{ ( , ) | 1, 0}, .pj pqj
p q I

K j R p q z j J


                    (5.1) 

2 2
,

( ) min{ ( , ) | 1, 1}, .pj pqj
p q I

K j R p q z j J


                    (5.2) 

3 3( ) 1 max{ ( , ) | 0}, .pj
p I

K j R p j z j J


                    (5.3) 

4 4( ) min{ ( , ) | 1}, .pj
p I

K j R p j z j J


                    (5.4) 

 

K1(j) is the measure of separation of the users that are placed in frame j from those 

that are not, with respect to their mutual attachment levels. K3(j) is the separation 

measure defined according to attachment relations between the users that are not 
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allocated to frame j. Similarly, K2(j) corresponds to the mutual compatibility level of 

users packed in the same frame, whereas K4(j) measures the compatibility between a 

frame j and the users of rectangles which are placed in it. Thus, combining all these 

degrees in one quantity, the following equation is obtained for overall quality level: 

 

1 2 3 4min min{ ( ), ( ), ( ), ( )}.
j J

K j K j K j K j


                 (5.5) 

 

Due to the fuzzy packing formulation of Nasibov (2004), for each pair of user 

class Qk and set of users placed in a frame defined as Uj, the constraints might be 

redefined as below: 

 

( | , ) , , 1.. .k k j kjF i i Q U i I B j J k                        (5.6) 

 

where Fk's are defined as arbitrary linear functions over the domain of users 

belonging to class Qk placed in frame j, and Bkj are convex fuzzy sets. The relation  

in constraint (5.6) may be any of the various comparison relations used for fuzzy 

sets. In fact, the same constraints might also be formulated in the following manner 

to reflect frame-wise constraints for the users of same class:  

 

( ) , , 1.. .
k j

k kj

i Q U

F i B j J k 
 

                     (5.7) 

 

 These constraints may include some classical capacity considerations such as 

total volume, area, weight or cost, as well as the service-quality-related parameters 

such as maximum delay and minimum throughput encountered in 

telecommunications. 

 

Therefore, as regards to the definitions and constraints (5.1)-(5.6), the fuzzy 

packing problem introduced in Nasibov (2004) can be reformulated as a bicriteria 

optimization problem as follows: 

 

max ,                     (5.8) 
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1

min ( )
mi U

F i


                    (5.9) 

 s.t. 

( | , ) , , 1.. .k k j kjF i i Q U i I B j J k                        (5.6) 

 

where Um+1 is the set of users packed in the reserve container. It should be noted 

that, while the original version of the fuzzy packing model defined above assigns 

each user (items) exclusively to one frame (containers), we assume that the same 

attachment and compatibility relations can be generalized and integrated to in the 

partitioned demand nature of our SRP models. 

 

For simplifying the solution of the problem presented above and being able to 

estimate the overall quality level in advance, the maximization objective (5.8) can be 

dropped and a satisfaction degree parameter g can be utilized. In this manner, the 

fuzzy packing problem will be decomposed into a minimization problem comprising 

a crisp objective for the reserve container and fuzzy constraints that depend on the 

value of the parameter g. The decomposed version of the problem takes the 

following form: 

 

, (0,1].g g                    (5.10) 

1

min ( )
mi U

F i


                    (5.9) 

 s.t. 

( | , ) , , 1.. .k k j g kjF i i Q U i I B j J k                      (5.11) 

 

where relation g in constraint (5.11) corresponds to the fulfillment of the 

constraint Fk with degree g. Moreover, for further improving the quality estimates, 

some upper bounds for the feasible values of g are determined with their respective 

proofs (Nasibov, 2004), and implemented in an algorithm developed for the solution 

of the decomposed problem. Most relevant two of these bounds are also presented 

here for the sake of completeness.  

1 3 4
,

min max{1 ( , ), ( , )}.UB
p I j J

g R p j R p j
 

                (5.12) 
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2 1 2
,

ˆmin max{1 ( , ), ( , )}.UB
p q I

g R p q R p q


                (5.13) 

 

In the above equations, 1R̂  is the transitive closure, which is equal to 1

1

nR   

composed by the recursive minimax product of the R1 relation matrices. 

 

Besides the general approach presented above, we propose more SRP specific 

perspectives regarding the particular problem parameters or decision variable. The 

first parameter to be analyzed is the demand parameter of the users, as explained in 

the next section. 

 

5.2 Fuzzy Demand Definitions for SRP 

As stated in the beginning of this chapter, due to highly variable and unpredictable 

characteristics of wireless communication systems, service demand levels may not be 

fully satisfied in some periods of packet transfers between base stations and user 

stations. Moreover, having flexibility on minimum demand satisfaction rates of some 

users or classes of users would allow faster and simpler solutions especially for large 

problems, even reaching optimality for problem cases not reported in Chapter 4. 

 

For this purpose, the SRP models developed in this thesis and presented in 

Chapter 3 incorporate a i parameter to be able to reduce di levels for the problem's 

time horizon to some extent. However, it is observed that, when large number of 

users are to be packed (i.e. when n ≥ 20), more flexibility could be useful to further 

facilitate solution performance. Thus, there is the additional question to assess the 

tradeoff for distinguishing between an optimal solution in longer solution times and a 

suboptimal solution in acceptable times. Obviously, exchanging optimality for fast 

solutions amounts to incurring additional criteria, most of which depend on 

subjective decisions. 

 

Consequently, our first straightforward effort focuses on converting the demand 

parameters i to triangular fuzzy numbers. In this manner, both the reduction in 
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demand satisfaction and the overallocation through the sequence of frames could be 

handled simultaneously. To be more precise, we can define fuzzy demand parameters 

,min ,max( , , )i i i i     where all i,min, i , and i,max are positive integers. As expected, 

i is the actual demand level that has the highest demand satisfaction level =1, and 

the others depicting minimum demand size reduction and maximum overallocation 

limits. The corresponding fuzzy parameter definition is summarized in Figure 5.1. It 

can be said that fuzzy demand parameters penalize reductions in assigned areas or 

overallocations by lower satisfaction levels , while relaxing feasibility conditions. 

The penalties can be directly reflected also on the profit levels to have more tangible 

performance measures. 

 

 

 

Figure 5.1 A general fuzzy demand parameter definition for SRP models 

 

As a simple illustration on a single frame packing, let’s assume that the downlink 

data demands of two mobile stations p and q are defined by the triangular fuzzy 

numbers (54,60,66), (42,47,52)p q   . Three possible rectangular placements of 

the users in a frame j of size W=10, H=20 are shown in Figure 5.2. P1p, P2p and P3p 

represent different rectangle orientations and shapes for user p with an ideal area of 

60 units, whereas P1q, P2q and P3q for user q. In the first case of packing, user 

rectangles P1p and P1q have sizes 5x12 and 4x12 respectively. The unit area 

separately denoted as OA corresponds to the overallocated slot for user q (4x12 - 47 
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= 1). This case is obviously a feasible packing for all the SRP models developed. 

Demand of user p is exactly satisfied, while overallocation of one slot for user q 

results in a 80% overall packing quality level  for this case (computed as 80% = 

(52-48) / (52-47)) by the corresponding membership function.  

 

 

 

Figure 5.2 Possible placements of two users with fuzzy demands on a frame 

 

Overall packing quality levels for Case 2 and Case 3 given in Figure 5.2 are 

evaluated as 33% and 17% respectively in the same manner, and considered to be 

infeasible for the crisp SRP models. It should be noted that, while the partial 

satisfaction due to fuzzy demand parameters cause lower quality levels, the 

remaining available unpacked (shaded in Figure 5.2) frame area of 92 slots in Case 1 

increases gradually in the other cases (95 slots in Case 2, and 100 in Case 3), 

allowing more space for probable placements of other user demands. 

 

Regarding the adaptation of the fuzzy demand concept to SRP problems, the 

necessary modifications are rather straightforward for the SRP-II and SRP-III models 

where there is no profit involved. It might be more appropriate for the adaptation of 

the SRP-I model to incur individual profit penalties defined by i, instead of an 

overall quality level affecting the value of the objective function (3.1). Moreover, for 

the profit maximization case, there is no need to impose an extra limit for 



82 

overallocations. Thus, a more appropriate definition of the fuzzy demand parameter 

for the SRP-I problem should be similar to the one shown in Figure 5.3. 

 

 

 

Figure 5.3 Fuzzy demand parameter definition for the SRP-I model  

 

Therefore, in the adapted version of SRP-I for the cases of fuzzy demand values, 

the modified versions of the objective function (3.1) and constraint (3.4) will take the 

following form. 

 

max i i iK
i I

Z p u


                 (5.14) 

,min ,min( ( )), .ij ij i i i i i

j J

w h u i I   


                  (5.15) 

 

In the above equations, i  [ti,1], and ti's (>0) are included in order to generalize 

minimum demand satisfaction levels for each user. The rest of the constraints are the 

same as defined in Section 3.2. Consequently, depending on the choice of utilization 

of i, either as a decision variable or parameter, fuzzy SRP-I constitutes a convenient 

alternative for producing acceptable solutions. 

 

Following the same ideas, the SRP-II and SRP-III models can be adapted for the 

fuzzy case (Figure 5.1) with an additional overall quality maximization objective and 

by modifying constraint (3.19) used in both models as follows. 
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max                   (5.16) 

,max ,max ,min ,min( ) ( ), .i i i ij ij i i i

j J

w h i I       


                   (5.17) 

 

Similar to the option mentioned for fuzzy SRP-I, objective (5.16) might be 

dropped and the overall packing quality level  can be taken as a problem parameter 

for fuzzy SRP-II and SRP-III. The bidirectional bounds imposed by constraint (5.17) 

can be considered as a pseudo-bicriteria extension for SRP-II, as it also handles the 

overallocation levels explicitly. Therefore, instead of solving a fuzzy version of the 

SRP-III model separately, it might suffice to incorporate the overallocation in fuzzy 

SRP-II model merely by using constraint (5.17). In any case, it is worth investigating 

and experimenting on mechanisms for assigning precise values for parameters i,min 

and i,max in order to reach significant performance gains. 

 

5.3 Alternative Objectives for SRP with Fuzzy Information 

Apart from the objectives of the SRP models proposed in Chapter 3, further 

intuitive objectives come to mind. Three of these different approaches deal with 

decisions regarding the last frame of the sequence. We propose these alternative 

objective functions for SRP with fuzzy information in this section.  

 

First and the simplest of these objective functions is the minimization of the total 

area packed in the last frame of the sequence. Obviously, this objective replaces 

those of SRP-II and SRP-III models, where the case i

i I

mA


  holds. Moreover, if 

the demand density of the problem instance is very low, say less than (m-2)/m, then 

the length of the frame sequence m should be updated accordingly in order to render 

the objective function meaningful. Minimization of the total area packed in the last 

frame of the sequence is evidently analogous to the reserve container objective (5.9) 

of the fuzzy packing problem presented in Section 5.1, and may be expressed as:  
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min LA im

i I

Z a


 ,                 (5.18) 

 

where aim is the nonlinear decision variable for the area of the rectangle assigned 

to user i in the last frame m. Note that, this new objective might be accompanied 

either by the packing quality objective (5.8) and fuzzy attachment and compatibility 

constraints (5.6) given in Section 5.1, or by the fuzzy demand linked objective (5.16) 

and constraint (5.17) given in Section 5.2.  

 

The arguments above are also valid for the second alternative objective function 

proposed, which basically replaces (5.18) with the following.  

 

min LP im

i I

Z z


 .                 (5.19) 

 

The objective in (5.19) minimizes the number of rectangles placed in the last 

frame, where zim is the binary decision variable describing whether user i is assigned 

a rectangle in the last frame m.  

 

The third objective pertaining to the last frame is essentially a makespan objective 

directly relevant to the subframe packing problem for WiMAX, which minimizes the 

latest completion time of all user transfers. Utilizing the time-axis positioning 

decision variable xim and the rectangle width variable wim for each user in the last 

frame, this objective can be expressed as: 

 

min max{ }LF im im
i I

Z x w


  .               (5.20) 

 

Resuming the main scheme of this study and recalling the computational results 

summarized in the previous chapter, the most significant challenge in bin packing 

problems as well as in all frame packing models in the literature, is dealing with the 

large number of items/users involved. For this reason, a sequential packing approach 

has been proposed in this thesis to reduce the problem sizes and obtain faster 

solutions for the new integrated problem. Especially, constraints (3.9) to (3.12), 
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which deal with the feasible placements of user rectangles on the two-dimensional 

frame area, contribute a lot to the already highly-combinatorial nature of the 

problem. Moreover, the computational experimentation for the SRP-II problem 

suggests promising results that can be implemented for similar problems. 

 

The last objective proposed in this section incurs the maximum number of users 

involved in every frame of the sequence, named as the fragmentation level. For 

example, let's assume that in a sequence of two frames there are 9 users packed in the 

first frame and 7 in the second. The resulting fragmentation level of this packing is 

equal to 9. Consequently, the objective is the minimization of this fragmentation 

level, which can be expressed as: 

 

min max{ }F ij
j J

i I

Z z




  .                (5.21) 

 

Although very similar to objective (3.16) of the SRP-II model, the main idea of 

the objective in (5.21) is to maintain an overall balance regarding the user rectangle 

population of each frame. In a way, DL-MAP overhead of the downlink frame is 

tried to be minimized via distributing users as evenly as possible with this objective.  

 

A crude lower bound for ZF in (5.21) can be computed as 
F

n
Z

m

 
  
 

for problem 

instances satisfying i

i I

mA


 . It should also be noted that this lower bound might 

require to be updated if objective (5.21) is implemented together with the fuzzy 

attachment relation R3 presented in Section 5.1. 

 

In the next section, an example packing is used for generating some of the fuzzy 

relational matrices presented in Section 5.1. 

5.4 An Example Packing Using Fuzzy Relation Matrices 

In order to assemble an intelligible and meaningful numerical example, only some 

of the fuzzy relations defined in Section 5.1 are considered for simplicity. The 
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sample problem is the instance whose input file is given in Figure B.2 of Appendix 

B.2, with 10 users over 4 frames of size 12x30, and having a demand density of 80%. 

There are only two explicit classes of users with respect to packet traffic (data and 

voice) type, mainly distinguished by their demand sizes and profit values, and 

defined as Q1 and Q2, respectively. As for the fuzzy relations to be included in the 

example for demonstration, the compatibility relations R2 and R4 within users and 

between users and frames seem appropriate for this setting. In view of the fact that 

the proposed approaches allow partitioning through different frames, attachment 

relations might be too restrictive and irrelevant as objectives.  

 

We start by defining relation R4 first, which is relatively straightforward. Assume 

that users from class Q2 are prioritized; the transfers of users with voice traffic must 

be finished earlier than the last frame. There is no such strict restriction for data 

traffic users of class Q1. However, for demonstration purposes, let’s assume that a 

compatibility value of 0.5 is assigned between any user and the last frame, if the 

demand size of that user is at least half of a frame area. This compatibility scheme 

will direct the packings of such users to earlier frames. Accordingly, fuzzy relation 

R4 for the specific problem instance can be represented by the matrix in Table 5.1. 

 

Table 5.1 Fuzzy relation matrix reflecting the mutual compatibility degrees between users and frames 

(relation R4) 

 
Users 

Frames 1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 

4 0.5 0 0 1 0.5 1 1 0 0.5 1 

 

According to the assumptions listed above, one could easily recognize from the 

contents of the table that the users with voice traffic are 2, 3 and 8, while users 1, 5 
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and 9 with data traffic have demands at least of 180 slots, i.e. more than half the 

frame size. 

 

For the fuzzy relation R2, a similar but more complicated scheme is required. 

Recall that, in the definition of R4, the assignment of the users with large demand 

sizes to the last frame is tried to be avoided. This strategy is adapted between such 

users for compatibility relation R2 as follows: Some space should be allowed on the 

last frame for some of the remaining demand partitions. For this purpose, the users 

are ordered in their nonincreasing sizes of demand as a first step. Then, we simply 

enforce m-1 users with the largest demand sizes to be assigned to separate frames, 

setting their mutual compatibility degrees to 0. In the same manner, other mutual 

compatibility degrees are defined according to the ratio of mutual demand sums of 

users to a single frame area, and the resulting matrix is presented in Table 5.2.  

 

Table 5.2 Fuzzy relation matrix reflecting the mutual compatibility degrees between users (relation 

R2) 

Users 1 2 3 4 5 6 7 8 9 10 

1 1 1 0.9 1 0 0.6 0.8 1 0 0.5 

2 1 1 1 1 1 1 1 1 1 1 

3 0.9 1 1 1 0.9 1 1 1 0.9 0.9 

4 1 1 1 1 1 1 1 1 1 1 

5 0 1 0.9 1 1 0.6 0.8 1 0 0.5 

6 0.6 1 1 1 0.6 1 0.9 1 0.7 0.7 

7 0.8 1 1 1 0.8 0.9 1 1 0.8 0.9 

8 1 1 1 1 1 1 1 1 1 1 

9 0 1 0.9 1 0 0.7 0.8 1 1 0.5 

10 0.5 1 0.9 1 0.5 0.7 0.9 1 0.5 1 

 

 

Including both of the mutual fuzzy relation degrees defined above, the fuzzy 

packing problem has sufficient input accompanied by the two-dimensional placement 

constraints. Moreover, as relations R1 and R3 are not used, upper bounds gUB1 and gUB2 

defined by (5.12) and (5.13) are inactive. The resulting packing problem can be 

solved iteratively utilizing the same solvers used for the computations in Chapter 4. 
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For the sake of simplicity, a simple heuristic approach is used for illustration 

purposes to obtain the feasible packing shown in Figure 5.4. 

 

 

 

Figure 5.4 A feasible fuzzy SRP solution 

 

The solution presented above has an overall packing quality degree π = 0.7, which 

is defined by equation (5.5). 10 users are distributed over 4 frames in 11 rectangles 

with a total overallocation of 4 slots. K4(j) values are 1 for all j, hence the resulting π 

value is due to the degrees of relation R2 (Table 5.2). More precisely, K2(j) values for 

the sequence of frames are respectively 0.8, 0.8, 0.7 and 1. 

 

Basically, the users having the largest demand (users 5, 1, and 9) are distributed to 

the first three frames. The other users follow in nonincreasing order of their demand, 

maintaining the largest possible compatibility degrees as possible besides minimum 

partitioning of users. Once all users are placed in this manner, user 7 is assigned to 

the last frame in a single partition. However, considering the final frame or the 

reserve container objective in (5.9), the rectangle of user 7 is moved in 2 partitions to 

frames 1 and 2, improving the objective and reducing overallocation. The placement 

of user 10 in the last frame, besides being the most appropriate choice regarding the 

overall packing quality, is also the best alternative regarding alternative objectives 

(5.18) and (5.19). 

As opposed to classical single-objective models, the proposed fuzzy extensions 

developed in this chapter aim at satisfying QoS-like service demand constraints for a 
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specific planning horizon using fuzzy constraints and quantities, while compromising 

optimality to some extent to obtain efficient frame packings in acceptable 

computation times. 
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CHAPTER SIX 

CONCLUSION 

 

The span of the bin packing solutions to a variety of problems attracts the 

challenge of many researchers. Merging all aspects of optimization theory and 

practice, there are still a lot of topics yet to be investigated. In some application 

areas, it is observed that some basic assumptions of the classical packing problems 

do not apply, such as definite dimension sizes or rigidity of item shapes. Therefore, 

the primary focus of this thesis is chosen as novel packing modeling approaches that 

might also include fuzzy information. The major contribution of the thesis lies 

mainly in presenting novel general and representative mathematical models that 

include important features of the wireless standard, and providing several practical 

and applicable insights for solving upcoming problems of the area efficiently. 

 

As a first stage of the theoretical study, the novel application area concerning the 

wireless data package transmissions is examined in Chapter 2, and a complete 

analysis of literature is performed. Formalizing a more general and flexible modeling 

perspective in Chapter 3, three exact nonlinear integer programming models with 

different objective functions are presented, which simultaneously handle multiple 

packing problems with sequential time considerations. The complexities of SRP-I 

and SRP-II problems are investigated, as well as an efficient bounding mechanism 

that is incorporated into the SRP-I model.  

 

While developing the models, it is intended that, with slight modifications, it 

could easily be possible to solve different problem instances on more specialized 

optimization packages. In the future, additional assumptions and constraints such as 

burst compaction might be included in the proposed models. Also, instead of a single 

objective such as the minimization of the number of partitions or the maximization of 

utilization as presented in Chapter 3, a quality definition can also be applied using 

fuzzy constraints, integrating different objectives such as the QoS priorities.  
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As the experimental computations reported in Chapter 4 suggest, packing 

alternatives for the same problem instances vary significantly with respect to 

different objectives. Due to the large number of variables and constraints involved, 

small sized problem instances could not be solved in acceptable times. As it was 

explained in Chapter 4, no practical computational runtime target is prioritized in this 

thesis. Instead, by pointing out the significant differences from the problem 

structures in the literature and by using different objectives, new exact models are 

introduced.  

 

Although the exact models developed seem sufficient for effectively capturing 

several aspects and characteristics of real-life problems, clearly that does not 

correspond to an efficient solution process using the solvers at hand. The 

computational results indicate that, even for the more general SRP-I profit 

maximization model, it is very hard to reach optimality within the determined time 

limit. Therefore, the solutions of the proposed model are tried to be improved by 

incorporating tighter bounds than the ones used by the solvers, resulting in 

significant improvement.  

 

Regarding the other models, SRP-II tends to get more difficult as the length of the 

frame sequence increases, whereas SRP-III model finds more opportunity to partition 

demand in a more fragmented way to minimize wasted space. Through extensive 

computation and comparisons, these two models might be adapted with the same 

objectives to different application contexts.  

 

The complexity of the considered problems naturally forces the utilization of 

approximate approaches instead of exact solutions in practical situations. Therefore, 

ideas for alternative modeling and solution methods are also proposed for reaching 

higher computational performance instead of obtaining optimal solutions. The 

performance of the proposed approaches may be worth investigating, as well as some 

other possible heuristic, metaheuristic or hybrid metaheuristic procedures. 
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Throughout Chapter 5 of the thesis, a general fuzzy packing modeling framework 

has been presented with necessary adaptations regarding the extensions of the SRP 

model structures. Also, some implementable alternative objectives are proposed for 

reinforcing the fuzzy versions of SRP in practical situations. Hence, besides 

maximization of the overall quality level, several objectives such as area utilization, 

width of the packing and overallocation are also investigated. The proposed fuzzy 

perspective is applied to an SRP problem instance that has previously been used in 

Chapter 4, defining fuzzy compatibility degrees specific to problem data. It should be 

noted that, besides the use of fuzzy demand parameters, the fuzzification of 

maximum delay parameters is also possible especially for long sequences of frames 

(e.g. m>4). In such a case, the more consecutive the partitioning of the users, the 

better may be the overall packing quality. 

 

Utilizing -cuts for user demand sizes and user class distinctions, different 

packing combinations might be generated and evaluated via different heuristics from 

literature. The fuzzy relations between the structure of problem instances and the 

packing method that is to be implemented for solving that instance might be defined 

even from a hyperheuristic angle. Furthermore, a flexible heuristic selection 

mechanism on a higher decision level may be designed depending on area and 

priority parameters. 

 

For adapting typical bin packing heuristics into the fuzzy approaches developed in 

this thesis, it is always possible to employ one of the ranking and defuzzification 

techniques proposed in the literature (e.g. Dubois & Prade, 1983; Fortemps & 

Roubens, 1996).  

 

Some extensions of the developed SRP models may be applied to assignment-like 

problems with quadratic measures. The models can also be adapted for problems 

involving time-related placement of items. For example, the adaptation of SRP 

models to storage area allocation problems, such as container handling and berth 

operations in port logistics might be worthy of further examination. Some special 

cases of our models might be adapted for the relevant problems in that area. 
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Moreover, new models for the existing scheduling problems could be developed by 

utilizing special features of the two-dimensional packing models presented in this 

thesis.  

 

The specific and overall computational complexity aspects might further be 

explored, and more detailed algorithm performance analyses can be made for future 

solution efforts involving real-life implementation issues. By following the most 

recent studies in the literature, new algorithms might be included to form a 

benchmarking environment with a complete comparison base, possibly employing 

the developed fuzzy approaches, as well. 
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A.1 Sample GAMS Code for an instance of SRP-I  

GAMS code of the SRP-I model for a problem instance is provided in this 

appendix. Note that the below code belongs to the problem instance whose output 

was depicted in Figure 4.5. 

 

$title Sequential Rectangular Packing (SRP) - 5-Maximizing Profit 

with Bounds 

Sets  i users  / 1*10 / 

  j frames  / 1*2 / 

  dim dimensions used in overlapping constraints / 1*4 /; 

Scalars W frame width / 12 / 

  H frame height / 30 / 

  nUsers / 10 / 

  nFrames / 2 / 

  availableProfit / 3102 / 

  knapsackRelaxationBound / 3065 / 

  lowerBound / 2893 /; 

Parameters  d(i)  total amount of data request of user i 

  /1 28,2 99,3 103,4 190,5 90,6 49,7 78,8 35,9 43,10 42/ 

   pr(i)  profit gained from user i 

  /1 168,2 396,3 515,4 950,5 90,6 294,7 312,8 35,9 258,10

 84/ 

   s(i)  minimum data transfer rate of user i per frame (QoS 

parameter) 

  /1 28,2 99,3 103,4 190,5 90,6 49,7 78,8 35,9 43,10 42/ 

   lambda(i) maximum delay period for user i (QoS parameter) 

  /1 7,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10 2/ 

   theta(i)     latest frame to maintain or to begin the data 

transfer for user i 

  /1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,10 3/; 

 

scalar  A frame area; 

A =  W*H; 

 

alias(i,p,q); 

alias(j,k); 

 

parameters phi(i) minimum amount of data to be transferred to user i 

in the problem frame sequence 

           alpha(i); 

* actual demand parameter phi 

phi(i) = min (nFrames * s(i), d(i)); 

* minimum number of frames to be assigned to user i 

alpha(i)= ceil( phi(i) / A); 

 

binary variables 

u_i(i) showing whether user i is selected for data transfer in this 

frame sequence 

z_ij(i,j) showing whether user i is assigned a rectangle in frame j 

or not 

delta(p,q,j) for choosing the users allocated in the same frame 

gamma(p,q,j,dim) used in location overlapping constraints 

sigma(i,j) for connecting r_ij and lambda_i (which are used for 

maximum delay constraints) 
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; 

 

integer variables 

 

x_ij(i,j) x-coordinate of the left-bottom corner of the rectangle 

assigned to user i in frame j 

y_ij(i,j) y-coordinate of the left-bottom corner of the rectangle 

assigned to user i in frame j 

w_ij(i,j) width of the rectangle allocated to user i in frame j 

h_ij(i,j) height of the rectangle allocated to user i in frame j 

a_ij(i,j) area of the rectangle allocated to user i in frame j 

r_ij(i,j) total remaining demand for user i after frame j; 

 

free variables 

 

total_profit profit sum of all selected users; 

 

equations 

 

profitSum objective function definition - maximizing total profit 

areas(i,j) nonlinear area equalities for each frame 

demands(i) demand constraints for each user through the frame 

sequence 

selectedUser(i,j) if user selected then pack all her demand 

 

firstFrame(i,j) total remaining demand for each user i after frame 1 

otherFrames(i,j) total remaining demand for each user i after next 

frames 

 

* sigma variable definitions 

rij_sigmaLower(i,j) defining sigma variables for r_ij with LB 

rij_sigmaUpper(i,j) defining sigma variables for r_ij with UB 

rij_zij_lambda_relation(i,j) relating rij and zij variables with 

maximmum delay parameters 

*for avoiding maximum delay violation after no demand remaining 

rij_lastFrame(i,j) r_ij upper bound only if user i is selected 

 

xWidth(i,j) rectangle position (also dimension) constraints for each 

user & frame on the horizontal axis 

yHeight(i,j) rectangle position (also dimension) constraints for 

each user & frame on the vertical axis 

assignedFrames(i) using parameters alpha's as lower bounds for 

assigned frames for user i 

thetaBounds(i) for forcing the transfer beginning frame for user i 

thetaBoundsForUserSelection(i) for forcing the selection of a user i 

if ongoing transfer 

 

* linking constraints for variables z_ij between x_ij, y_ij, w_ij 

and h_ij 

z0xBinding(i,j) x_ij lower bounds 

z1xBinding(i,j) x_ij upper bounds 

z0yBinding(i,j) y_ij lower bounds 

z1yBinding(i,j) y_ij upper bounds 

z0wBinding(i,j) w_ij lower bounds 

z1wBinding(i,j) w_ij upper bounds 

z0hBinding(i,j) h_ij lower bounds 

z1hBinding(i,j) h_ij upper bounds 

 

* Location overlapping constraints for rectangles in each frame, 
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* (a) for choosing the users allocated in the same frame 

differentFrame(p,q,j) lower bound: at least one user is not 

allocated on frame j 

sameFrame(p,q,j) upper bound: both users p and q may be allocated on 

frame j 

 

* (b) relative positions on the horizontal axis 

gammaLeft(p,q,j) user p on the left of user q if gamma_1 = 1 

gammaRight(p,q,j) user p on the right of user q if gamma_2 = 1 

gammaLeftRight(p,q,j) p cannot be both on the left and right of user 

q if both users are on the same frame 

 

* (c) positions on the vertical axis 

gammaBelow(p,q,j) user p below the user q if gamma_3 = 1 

gammaAbove(p,q,j) user p above the user q if gamma_4 = 1 

gammaBelowAbove(p,q,j) p cannot be both below and above the user q 

if both users are on the same frame 

 

* linking the logical constraints (a), (b) and (c) above 

gammaLeftBelow(p,q,j) 

gammaRightAbove(p,q,j) 

allGammas(p,q,j) 

; 

 

* CONSTRAINT DEFINITIONS 

profitSum.. total_profit =e= sum ((i),u_i(i)*pr(i)) ; 

 

areas(i,j).. a_ij(i,j) =e= w_ij(i,j)*h_ij(i,j); 

 

* demand constraints for each user through the frame sequence 

demands(i).. sum(j, a_ij(i,j)) =g= u_i(i)*phi(i); 

* if user selected then pack all her demand 

selectedUser(i,j).. z_ij(i,j) =l= u_i(i); 

 

*feasibility check with respect to total frame area 

* forcing the beginning of ongoing transfers that remain from 

previous sequences 

thetaBounds(i).. sum (j$(ord(j) <= theta(i)),z_ij(i,j)) =g= u_i(i); 

* force the selection of a user i if her transfer is continuing 

(<=m) 

thetaBoundsForUserSelection(i).. nFrames - theta(i) =l= 

u_i(i)*(1+nFrames-theta(i))-1; 

 

* rectangle position (also dimension) constraints for each user & 

frame 

xWidth(i,j)..  x_ij(i,j) + w_ij(i,j) =l= W; 

yHeight(i,j).. y_ij(i,j) + h_ij(i,j) =l= H; 

 

* using parameters alpha i's as lower bounds 

assignedFrames(i).. sum(j,z_ij(i,j)) =g= u_i(i)*alpha(i); 

 

* linking constraints for variables z_ij between x_ij, y_ij, w_ij 

and h_ij 

z0xBinding(i,j).. z_ij(i,j) - 1 =l= x_ij(i,j); 

z1xBinding(i,j).. x_ij(i,j) =l= (W-1)* z_ij(i,j); 

z0yBinding(i,j).. z_ij(i,j) - 1 =l= y_ij(i,j); 

z1yBinding(i,j).. y_ij(i,j) =l= (H-1)* z_ij(i,j); 

z0wBinding(i,j).. z_ij(i,j) =l= w_ij(i,j); 

z1wBinding(i,j).. w_ij(i,j) =l= W* z_ij(i,j); 
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z0hBinding(i,j).. z_ij(i,j) =l= h_ij(i,j); 

z1hBinding(i,j).. h_ij(i,j) =l= H* z_ij(i,j); 

 

* Location overlapping constraints for rectangles in each frame, 

* (a) for choosing the users allocated in the same frame 

differentFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =l= 

delta(p,q,j) + 1; 

sameFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =g= 

2*delta(p,q,j); 

 

* (b) relative positions on the horizontal axis 

gammaLeft(p,q,j)$(ord(p)<ord(q)).. x_ij(p,j) + w_ij(p,j) - x_ij(q,j) 

=l= (1-gamma(p,q,j,"1"))*W; 

gammaRight(p,q,j)$(ord(p)<ord(q)).. x_ij(q,j) + w_ij(q,j) - 

x_ij(p,j) =l= (1-gamma(p,q,j,"2"))*W; 

gammaLeftRight(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") + 

gamma(p,q,j,"2") =l= 2 - delta(p,q,j); 

 

* (c) positions on the vertical axis 

gammaBelow(p,q,j)$(ord(p)<ord(q)).. y_ij(p,j) + h_ij(p,j) - 

y_ij(q,j) =l= (1-gamma(p,q,j,"3"))*H; 

gammaAbove(p,q,j)$(ord(p)<ord(q)).. y_ij(q,j) + h_ij(q,j) - 

y_ij(p,j) =l= (1-gamma(p,q,j,"4"))*H; 

gammaBelowAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"3") + 

gamma(p,q,j,"4") =l= 2 - delta(p,q,j); 

 

* linking the logical constraints (a), (b) and (c) above 

gammaLeftBelow(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") + 

gamma(p,q,j,"3") =l= 2 * (1 - z_ij(p,j) + delta(p,q,j)); 

gammaRightAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"2") + 

gamma(p,q,j,"4") =l= 2 * (1 - z_ij(q,j) + delta(p,q,j)); 

allGammas(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") + 

gamma(p,q,j,"2") + gamma(p,q,j,"3") + gamma(p,q,j,"4") =g= 

delta(p,q,j); 

 

* PhD Progress 5 2011-12 Ch.3 - corrections for total remaining 

demand 

firstFrame(i,j)$(ord(j) = 1).. r_ij(i,j) =e= phi(i)-a_ij(i,j); 

otherFrames(i,j)$(ord(j) > 1)..  r_ij(i,j) =e= r_ij(i,j-1)-

a_ij(i,j); 

 

* maximum delay constraints (10.07.2012 ideas) 

rij_sigmaLower(i,j).. 1 - A*sigma(i,j) =l= r_ij(i,j); 

rij_sigmaUpper(i,j).. r_ij(i,j) =l= phi(i)*(1-sigma(i,j)); 

rij_zij_lambda_relation(i,j)$(ord(j) <= nFrames-lambda(i)).. sum(k $ 

(ord(k) > ord(j) and ord(k) <= ord(j)+lambda(i)), z_ij(i,k)) =g= 

z_ij(i,j)-sigma(i,j); 

*for avoiding maximum delay violation after no demand remaining 

rij_lastFrame(i,j)$(ord(j)=card(j)).. r_ij(i,j) =l= phi(i)*(1-

u_i(i)); 

 

* Bounds 

* bounding r_ij 

r_ij.UP(i,j) = phi(i); 

r_ij.LO(i,j) = 1-A; 

total_profit.LO = lowerBound; 

total_profit.UP = knapsackRelaxationBound;  

 

MODEL SeqRectPack /ALL/; 
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SeqRectPack.optfile=1; 

 

* instruct SCIP to display less frequently 

$onecho > scip.opt 

display/freq = 500 

$offecho 

 

OPTION optca=1e-5, optcr=1e-5, minlp=scip, reslim=600, 

iterlim=2000000; 

 

scalar starttime; starttime = jnow 

 

SOLVE SeqRectPack USING MINLP MAXIMIZING total_profit; 

execerror=0; 

 

file textOutput /tr1n10m2PR10.gout2/; 

textOutput.pc=6; 

 

put textOutput, SeqRectPack.modelstat:0:0, SeqRectPack.solvestat:0:0 

/; 

put SeqRectPack.objVal:0:0, SeqRectPack.resUsd:0:4, 

SeqRectPack.nodUsd:0:0, SeqRectPack.objEst:0:0  /; 

put SeqRectPack.numVar:0:0, SeqRectPack.numEqu:0:0, 

SeqRectPack.numNZ:0:0, SeqRectPack.numNLNZ:0:0 /; 

put card(i):0:0, card(j):0:0, W:0:0, H:0:0, sum(i, phi(i)):0:0 /; 

put sum(i, u_i.l(i)):0:0, sum(i, phi(i) * u_i.l(i)):0:0, 

availableProfit:0:0, lowerBound:0:0, knapsackRelaxationBound:0:0  /; 

 

loop(i $ u_i.l(i), put ord(i):0:0, sum(j, z_ij.l(i,j)):0:0, 

phi(i):0:0, sum(j, a_ij.l(i,j)):0:0, pr(i):0:0  /; 

         loop(j $ z_ij.l(i,j), 

put ord(j):4:0, x_ij.l(i,j):0:0, y_ij.l(i,j):0:0, w_ij.l(i,j):0:0, 

h_ij.l(i,j):0:0; 

put /;); 

); 
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A.2 Sample GAMS Code for an instance of SRP-II 

GAMS code of the SRP-II model for a problem instance is provided in this 

appendix. Note that the below code belongs to the problem instance whose output 

was depicted in Figure 4.3. 

 

$title Sequential Rectangular Packing (SRP) - 2-Minimizing Partition 

Sets    i users  / 1*10 / 

  j frames  / 1*2 / 

  dim dimensions used in overlapping constraints / 1*4 /; 

Scalars W frame width / 12 / 

  H frame height / 30 / 

  nUsers / 10 / 

  nFrames / 2 / 

; 

Parameters  d(i)  total amount of data request of user i 

  /1 113,2 33,3 46,4 114,5 46,6 109,7 123,8 50,9 30,10 30/ 

   s(i)  minimum data transfer rate of user i per frame (QoS 

parameter) 

  /1 113,2 33,3 46,4 114,5 46,6 109,7 123,8 50,9 30,10 30/ 

   lambda(i) maximum delay period for user i (QoS parameter) 

  /1 1,2 1,3 1,4 1,5 2,6 2,7 1,8 1,9 1,10 1/ 

   theta(i)     latest frame to maintain or to begin the data 

transfer for user i 

  /1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10 2/; 

 

scalar  A frame area; 

A =  W*H; 

 

alias(i,p,q); 

alias(j,k); 

 

parameters phi(i) minimum amount of data to be transferred to user i 

in the problem frame sequence 

           alpha(i); 

* actual demand parameter phi 

phi(i) = min (nFrames * s(i), d(i)); 

* minimum number of frames to be assigned to user i 

alpha(i)= ceil( phi(i) / A); 

 

binary variables 

 

z_ij(i,j) showing whether user i is assigned a rectangle in frame j 

or not 

delta(p,q,j) for choosing the users allocated in the same frame 

gamma(p,q,j,dim) used in location overlapping constraints 

sigma(i,j) for connecting r_ij and lambda_i (which are used for 

maximum delay constraints) 

; 

 

integer variables 

 

x_ij(i,j) x-coordinate of the left-bottom corner of the rectangle 

assigned to user i in frame j 
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y_ij(i,j) y-coordinate of the left-bottom corner of the rectangle 

assigned to user i in frame j 

w_ij(i,j) width of the rectangle allocated to user i in frame j 

h_ij(i,j) height of the rectangle allocated to user i in frame j 

a_ij(i,j) area of the rectangle allocated to user i in frame j 

r_ij(i,j) total remaining demand for user i after frame j; 

 

free variables 

 

z_srp objective function variable for the sequential rectangular 

packing problem 

; 

 

equations 

 

obj objective function definition - for minimizing partial packing 

areas(i,j) nonlinear area equalities for each frame 

demands(i) demand constraints for each user through the frame 

sequence 

simpleFeas feasibility check with respect to total frame area 

 

firstFrame(i,j) total remaining demand for each user i after frame 1 

otherFrames(i,j) total remaining demand for each user i after next 

frames 

 

* sigma variable definitions 

rij_sigmaLower(i,j) defining sigma variables for r_ij with LB 

rij_sigmaUpper(i,j) defining sigma variables for r_ij with UB 

rij_zij_lambda_relation(i,j) relating rij and zij variables with 

maximmum delay parameters 

 

xWidth(i,j) rectangle position (also dimension) constraints for each 

user & frame on the horizontal axis 

yHeight(i,j) rectangle position (also dimension) constraints for 

each user & frame on the vertical axis 

assignedFrames(i) using parameters alpha's as lower bounds for 

assigned frames for user i 

thetaBounds(i) for forcing the transfer beginning frame for user i 

 

* linking constraints for variables z_ij between x_ij, y_ij, w_ij 

and h_ij 

z0xBinding(i,j) x_ij lower bounds 

z1xBinding(i,j) x_ij upper bounds 

z0yBinding(i,j) y_ij lower bounds 

z1yBinding(i,j) y_ij upper bounds 

z0wBinding(i,j) w_ij lower bounds 

z1wBinding(i,j) w_ij upper bounds 

z0hBinding(i,j) h_ij lower bounds 

z1hBinding(i,j) h_ij upper bounds 

 

* Location overlapping constraints for rectangles in each frame, 

* (a) for choosing the users allocated in the same frame 

differentFrame(p,q,j) lower bound: at least one user is not 

allocated on frame j 

sameFrame(p,q,j) upper bound: both users p and q may be allocated on 

frame j 

 

* (b) relative positions on the horizontal axis 

gammaLeft(p,q,j) user p on the left of user q if gamma_1 = 1 
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gammaRight(p,q,j) user p on the right of user q if gamma_2 = 1 

gammaLeftRight(p,q,j) p cannot be both on the left and right of user 

q if both users are on the same frame 

 

* (c) positions on the vertical axis 

gammaBelow(p,q,j) user p below the user q if gamma_3 = 1 

gammaAbove(p,q,j) user p above the user q if gamma_4 = 1 

gammaBelowAbove(p,q,j) p cannot be both below and above the user q 

if both users are on the same frame 

 

* linking the logical constraints (a), (b) and (c) above 

gammaLeftBelow(p,q,j) 

gammaRightAbove(p,q,j) 

allGammas(p,q,j) 

; 

 

* CONSTRAINT DEFINITIONS 

obj.. z_srp =e= sum ((i,j),z_ij(i,j)) ; 

 

areas(i,j).. a_ij(i,j) =e= w_ij(i,j)*h_ij(i,j); 

 

* demand constraints for each user through the frame sequence 

demands(i).. sum(j, a_ij(i,j)) =g= phi(i); 

*feasibility check with respect to total frame area 

simpleFeas.. sum(i,phi(i)) =l= nFrames*A; 

* forcing the beginning of ongoing transfers from previous sequences 

thetaBounds(i).. sum (j$(ord(j) <= theta(i)),z_ij(i,j)) =g= 1; 

 

* rectangle position (also dimension) constraints for each user & 

frame 

xWidth(i,j)..  x_ij(i,j) + w_ij(i,j) =l= W; 

yHeight(i,j).. y_ij(i,j) + h_ij(i,j) =l= H; 

 

* using parameters alpha i's as lower bounds 

assignedFrames(i).. sum(j,z_ij(i,j)) =g= alpha(i); 

 

* linking constraints for variables z_ij between x_ij, y_ij, w_ij 

and h_ij 

z0xBinding(i,j).. z_ij(i,j) - 1 =l= x_ij(i,j); 

z1xBinding(i,j).. x_ij(i,j) =l= (W-1)* z_ij(i,j); 

z0yBinding(i,j).. z_ij(i,j) - 1 =l= y_ij(i,j); 

z1yBinding(i,j).. y_ij(i,j) =l= (H-1)* z_ij(i,j); 

z0wBinding(i,j).. z_ij(i,j) =l= w_ij(i,j); 

z1wBinding(i,j).. w_ij(i,j) =l= W* z_ij(i,j); 

z0hBinding(i,j).. z_ij(i,j) =l= h_ij(i,j); 

z1hBinding(i,j).. h_ij(i,j) =l= H* z_ij(i,j); 

 

* Location overlapping constraints for rectangles in each frame, 

* (a) for choosing the users allocated in the same frame 

differentFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =l= 

delta(p,q,j) + 1; 

sameFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =g= 

2*delta(p,q,j); 

 

* (b) relative positions on the horizontal axis 

gammaLeft(p,q,j)$(ord(p)<ord(q)).. x_ij(p,j) + w_ij(p,j) - x_ij(q,j) 

=l= (1-gamma(p,q,j,"1"))*W; 

gammaRight(p,q,j)$(ord(p)<ord(q)).. x_ij(q,j) + w_ij(q,j) - 

x_ij(p,j) =l= (1-gamma(p,q,j,"2"))*W; 
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gammaLeftRight(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") + 

gamma(p,q,j,"2") =l= 2 - delta(p,q,j); 

 

* (c) positions on the vertical axis 

gammaBelow(p,q,j)$(ord(p)<ord(q)).. y_ij(p,j) + h_ij(p,j) - 

y_ij(q,j) =l= (1-gamma(p,q,j,"3"))*H; 

gammaAbove(p,q,j)$(ord(p)<ord(q)).. y_ij(q,j) + h_ij(q,j) - 

y_ij(p,j) =l= (1-gamma(p,q,j,"4"))*H; 

gammaBelowAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"3") + 

gamma(p,q,j,"4") =l= 2 - delta(p,q,j); 

 

* linking the logical constraints (a), (b) and (c) above 

gammaLeftBelow(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") + 

gamma(p,q,j,"3") =l= 2 * (1 - z_ij(p,j) + delta(p,q,j)); 

gammaRightAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"2") + 

gamma(p,q,j,"4") =l= 2 * (1 - z_ij(q,j) + delta(p,q,j)); 

allGammas(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") + 

gamma(p,q,j,"2") + gamma(p,q,j,"3") + gamma(p,q,j,"4") =g= 

delta(p,q,j); 

 

* PhD Progress 5 2011-12 Ch.3 - corrections for total remaining 

demand 

* 7.7.2012 ideas & corrections UE 

firstFrame(i,j)$(ord(j) = 1).. r_ij(i,j) =e= phi(i)-a_ij(i,j); 

otherFrames(i,j)$(ord(j) > 1)..  r_ij(i,j) =e= r_ij(i,j-1)-

a_ij(i,j); 

 

* maximum delay constraints (10.07.2012 ideas) 

rij_sigmaLower(i,j).. 1 - A*sigma(i,j) =l= r_ij(i,j); 

rij_sigmaUpper(i,j).. r_ij(i,j) =l= phi(i)*(1-sigma(i,j)); 

rij_zij_lambda_relation(i,j)$(ord(j) <= nFrames-lambda(i)).. sum(k $ 

(ord(k) > ord(j) and ord(k) <= ord(j)+lambda(i)), z_ij(i,k)) =g= 

z_ij(i,j)-sigma(i,j); 

 

* Variable Bounds 

* bounding r_ij 

r_ij.UP(i,j) = phi(i); 

r_ij.LO(i,j) = 1-A; 

*z_ij.UP(i,j)$(ord(j) > 1) = 1$(r_ij.L(i,j-1)>0); 

 

* Last frame remaining 

r_ij.UP(i,j)$(ord(j) = card(j)) = 0; 

 

MODEL SeqRectPack /ALL/; 

 

OPTION optca=1e-5, optcr=1e-5, minlp=scip, reslim=600, 

iterlim=2000000; 

 

scalar starttime; starttime = jnow 

 

SOLVE SeqRectPack USING MINLP MINIMIZING z_srp; 

execerror=0; 

 

file textOutput /n10m2a1PR02.gout/; 

textOutput.pc=6; 

 

put textOutput, SeqRectPack.modelstat:0:0, SeqRectPack.solvestat:0:0 

/; 
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put SeqRectPack.objVal:0:0, SeqRectPack.resUsd:0:4, 

SeqRectPack.nodUsd:0:0 /; 

put SeqRectPack.numVar:0:0, SeqRectPack.numEqu:0:0, 

SeqRectPack.numNZ:0:0, SeqRectPack.numNLNZ:0:0 /; 

put card(i):0:0, card(j):0:0, W:0:0, H:0:0, sum(i, phi(i)):0:0 /; 

 

loop(i, put ord(i):0:0, sum(j, z_ij.l(i,j)):0:0, phi(i):0:0, sum(j, 

a_ij.l(i,j)):0:0 /; 

         loop(j $ z_ij.l(i,j), 

put ord(j):4:0, x_ij.l(i,j):0:0, y_ij.l(i,j):0:0, w_ij.l(i,j):0:0, 

h_ij.l(i,j):0:0; 

put /;); 

); 
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A.3 Sample GAMS Code for an instance of SRP-III 

GAMS code of the SRP-III model for a problem instance is provided in this 

appendix. Note that the below code belongs to the problem instance whose output 

was depicted in Figure 4.3. 

 

 
$title Sequential Rectangular Packing (SRP) - 3-Minimizing 

Overallocation 

Sets    i users  / 1*10 / 

         j frames  / 1*4 / 

         dim dimensions used in overlapping constraints / 1*4 /; 

Scalars W frame width / 12 / 

         H frame height / 30 / 

         nUsers / 10 / 

         nFrames / 4 / 

; 

Parameters  d(i)  total amount of data request of user i 

         /1     164,2   129,3   97,4    188,5   23,6    33,7    72,8    

74,9    187,10  55/ 

          s(i)  minimum data transfer rate of user i per frame (QoS 

parameter) 

         /1     164,2   129,3   97,4    188,5   23,6    33,7    72,8    

74,9    187,10  55/ 

          lambda(i) maximum delay period for user i (QoS parameter) 

         /1     2,2     2,3     2,4     2,5     6,6     2,7     3,8     

5,9     2,10    2/ 

          theta(i)     latest frame to maintain or to begin the data 

transfer for user i 

         /1     5,2     5,3     5,4     5,5     5,6     5,7     5,8     

5,9     5,10    5/; 

 

scalar  A frame area; 

A =  W*H; 

 

alias(i,p,q); 

alias(j,k); 

 

parameters phi(i) minimum amount of data to be transferred to user i 

in the problem frame sequence 

           alpha(i); 

* actual demand parameter phi 

phi(i) = min (nFrames * s(i), d(i)); 

* minimum number of frames to be assigned to user i 

alpha(i)= ceil( phi(i) / A); 

 

*scalar starttime; starttime = jnow 

 

binary variables 

 

z_ij(i,j) showing whether user i is assigned a rectangle in frame j 

or not 

delta(p,q,j) for choosing the users allocated in the same frame 

gamma(p,q,j,dim) used in location overlapping constraints 
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sigma(i,j) for connecting r_ij and lambda_i (which are used for 

maximum delay constraints) 

; 

 

integer variables 

 

x_ij(i,j) x-coordinate of the left-bottom corner of the rectangle 

assigned to user i in frame j 

y_ij(i,j) y-coordinate of the left-bottom corner of the rectangle 

assigned to user i in frame j 

w_ij(i,j) width of the rectangle allocated to user i in frame j 

h_ij(i,j) height of the rectangle allocated to user i in frame j 

a_ij(i,j) area of the rectangle allocated to user i in frame j 

r_ij(i,j) total remaining demand for user i after frame j; 

 

free variables 

 

waste total surplus area after the assigned sequence of frames 

; 

 

equations 

 

* the objective value for total wasted (surplus) area used 

wastedArea total area assigned after the last frame 

areas(i,j) nonlinear area equalities for each frame 

demands(i) demand constraints for each user through the frame 

sequence 

simpleFeas feasibility check with respect to total frame area 

 

firstFrame(i,j) total remaining demand for each user i after frame 1 

otherFrames(i,j) total remaining demand for each user i after next 

frames 

 

* sigma variable definitions 

rij_sigmaLower(i,j) defining sigma variables for r_ij with LB 

rij_sigmaUpper(i,j) defining sigma variables for r_ij with UB 

rij_zij_lambda_relation(i,j) relating rij and zij variables with 

maximmum delay parameters 

*for avoiding maximum delay violation after no demand remaining 

*rij_zij_trivial(i,j) for preventing unnecessary assignment after 

all demand is satisfied 

 

xWidth(i,j) rectangle position (also dimension) constraints for each 

user & frame on the horizontal axis 

yHeight(i,j) rectangle position (also dimension) constraints for 

each user & frame on the vertical axis 

assignedFrames(i) using parameters alpha's as lower bounds for 

assigned frames for user i 

thetaBounds(i) for forcing the transfer beginning frame for user i 

 

* linking constraints for variables z_ij between x_ij, y_ij, w_ij 

and h_ij 

z0xBinding(i,j) x_ij lower bounds 

z1xBinding(i,j) x_ij upper bounds 

z0yBinding(i,j) y_ij lower bounds 

z1yBinding(i,j) y_ij upper bounds 

z0wBinding(i,j) w_ij lower bounds 

z1wBinding(i,j) w_ij upper bounds 

z0hBinding(i,j) h_ij lower bounds 
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z1hBinding(i,j) h_ij upper bounds 

 

* Location overlapping constraints for rectangles in each frame, 

* (a) for choosing the users allocated in the same frame 

differentFrame(p,q,j) lower bound: at least one user is not 

allocated on frame j 

sameFrame(p,q,j) upper bound: both users p and q may be allocated on 

frame j 

 

* (b) relative positions on the horizontal axis 

gammaLeft(p,q,j) user p on the left of user q if gamma_1 = 1 

gammaRight(p,q,j) user p on the right of user q if gamma_2 = 1 

gammaLeftRight(p,q,j) p cannot be both on the left and right of user 

q if both users are on the same frame 

 

* (c) positions on the vertical axis 

gammaBelow(p,q,j) user p below the user q if gamma_3 = 1 

gammaAbove(p,q,j) user p above the user q if gamma_4 = 1 

gammaBelowAbove(p,q,j) p cannot be both below and above the user q 

if both users are on the same frame 

 

* linking the logical constraints (a), (b) and (c) above 

gammaLeftBelow(p,q,j) 

gammaRightAbove(p,q,j) 

allGammas(p,q,j) 

; 

 

* CONSTRAINT DEFINITIONS 

* the objective function value for total wasted (surplus) area 

assigned to users 

wastedArea.. waste =e= -sum((i,j)$(ord(j) = card(j)),r_ij(i,j)); 

areas(i,j).. a_ij(i,j) =e= w_ij(i,j)*h_ij(i,j); 

 

* demand constraints for each user through the frame sequence 

demands(i).. sum(j, a_ij(i,j)) =g= phi(i); 

*feasibility check with respect to total frame area 

simpleFeas.. sum(i,phi(i)) =l= nFrames*A; 

* forcing the beginning of ongoing transfers from previous sequences 

thetaBounds(i).. sum (j$(ord(j) <= theta(i)),z_ij(i,j)) =g= 1; 

 

* rectangle position (also dimension) constraints for each user & 

frame 

xWidth(i,j)..  x_ij(i,j) + w_ij(i,j) =l= W; 

yHeight(i,j).. y_ij(i,j) + h_ij(i,j) =l= H; 

 

* using parameters alpha i's as lower bounds 

assignedFrames(i).. sum(j,z_ij(i,j)) =g= alpha(i); 

 

* linking constraints for variables z_ij between x_ij, y_ij, w_ij 

and h_ij 

z0xBinding(i,j).. z_ij(i,j) - 1 =l= x_ij(i,j); 

z1xBinding(i,j).. x_ij(i,j) =l= (W-1)* z_ij(i,j); 

z0yBinding(i,j).. z_ij(i,j) - 1 =l= y_ij(i,j); 

z1yBinding(i,j).. y_ij(i,j) =l= (H-1)* z_ij(i,j); 

z0wBinding(i,j).. z_ij(i,j) =l= w_ij(i,j); 

z1wBinding(i,j).. w_ij(i,j) =l= W* z_ij(i,j); 

z0hBinding(i,j).. z_ij(i,j) =l= h_ij(i,j); 

z1hBinding(i,j).. h_ij(i,j) =l= H* z_ij(i,j); 
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* Location overlapping constraints for rectangles in each frame, 

* (a) for choosing the users allocated in the same frame 

differentFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =l= 

delta(p,q,j) + 1; 

sameFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =g= 

2*delta(p,q,j); 

 

* (b) relative positions on the horizontal axis 

gammaLeft(p,q,j)$(ord(p)<ord(q)).. x_ij(p,j) + w_ij(p,j) - x_ij(q,j) 

=l= (1-gamma(p,q,j,"1"))*W; 

gammaRight(p,q,j)$(ord(p)<ord(q)).. x_ij(q,j) + w_ij(q,j) - 

x_ij(p,j) =l= (1-gamma(p,q,j,"2"))*W; 

gammaLeftRight(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") + 

gamma(p,q,j,"2") =l= 2 - delta(p,q,j); 

 

* (c) positions on the vertical axis 

gammaBelow(p,q,j)$(ord(p)<ord(q)).. y_ij(p,j) + h_ij(p,j) - 

y_ij(q,j) =l= (1-gamma(p,q,j,"3"))*H; 

gammaAbove(p,q,j)$(ord(p)<ord(q)).. y_ij(q,j) + h_ij(q,j) - 

y_ij(p,j) =l= (1-gamma(p,q,j,"4"))*H; 

gammaBelowAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"3") + 

gamma(p,q,j,"4") =l= 2 - delta(p,q,j); 

 

* linking the logical constraints (a), (b) and (c) above 

gammaLeftBelow(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") + 

gamma(p,q,j,"3") =l= 2 * (1 - z_ij(p,j) + delta(p,q,j)); 

gammaRightAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"2") + 

gamma(p,q,j,"4") =l= 2 * (1 - z_ij(q,j) + delta(p,q,j)); 

allGammas(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") + 

gamma(p,q,j,"2") + gamma(p,q,j,"3") + gamma(p,q,j,"4") =g= 

delta(p,q,j); 

 

* PhD Progress 5 2011-12 Ch.3 - corrections for total remaining 

demand 

* 7.7.2012 ideas & corrections UE 

firstFrame(i,j)$(ord(j) = 1).. r_ij(i,j) =e= phi(i)-a_ij(i,j); 

otherFrames(i,j)$(ord(j) > 1)..  r_ij(i,j) =e= r_ij(i,j-1)-

a_ij(i,j); 

 

* maximum delay constraints (10.07.2012 ideas) 

rij_sigmaLower(i,j).. 1 - A*sigma(i,j) =l= r_ij(i,j); 

rij_sigmaUpper(i,j).. r_ij(i,j) =l= phi(i)*(1-sigma(i,j)); 

rij_zij_lambda_relation(i,j)$(ord(j) <= nFrames-lambda(i)).. sum(k $ 

(ord(k) > ord(j) and ord(k) <= ord(j)+lambda(i)), z_ij(i,k)) =g= 

z_ij(i,j)-sigma(i,j); 

*for avoiding maximum delay violation after no demand remaining 

*rij_zij_trivial(i,j)$(ord(j) > 1).. z_ij(i,j) =l= (1-sigma(i,j-1)); 

 

* Variable Bounds 

* bounding r_ij 

r_ij.UP(i,j) = phi(i); 

r_ij.LO(i,j) = 1-A; 

*z_ij.UP(i,j)$(ord(j) > 1) = 1$(r_ij.L(i,j-1)>0); 

 

* Last frame remaining 

r_ij.UP(i,j)$(ord(j) = card(j)) = 0; 

 

MODEL SeqRectPack /ALL/; 

*SeqRectPack.workspace=100; 
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*SeqRectPack.optfile=1; 

 

* instruct BARON to give higher branching priorities 

*$onecho > baron.opt 

*NLPSol 2 

*a_ij.prior 40 

*z_ij.prior 10 

*$offecho 

 

OPTION optca=1e-5, optcr=1e-5, minlp=scip, reslim=600, 

iterlim=2000000; 

 

scalar starttime; starttime = jnow 

 

SOLVE SeqRectPack USING MINLP MINIMIZING waste; 

execerror=0; 

 

file textOutput /Figure4.7-input-tr1n10m4PR08.gout/; 

textOutput.pc=6; 

 

put textOutput, SeqRectPack.modelstat:0:0, SeqRectPack.solvestat:0:0 

/; 

put SeqRectPack.objVal:0:0, SeqRectPack.resUsd:0:4, 

SeqRectPack.nodUsd:0:0 /; 

put SeqRectPack.numVar:0:0, SeqRectPack.numEqu:0:0, 

SeqRectPack.numNZ:0:0, SeqRectPack.numNLNZ:0:0 /; 

put card(i):0:0, card(j):0:0, W:0:0, H:0:0, sum(i, phi(i)):0:0 /; 

 

loop(i, put ord(i):0:0, sum(j, z_ij.l(i,j)):0:0, phi(i):0:0, sum(j, 

a_ij.l(i,j)):0:0 /; 

         loop(j $ z_ij.l(i,j), 

put ord(j):4:0, x_ij.l(i,j):0:0, y_ij.l(i,j):0:0, w_ij.l(i,j):0:0, 

h_ij.l(i,j):0:0; 

put /;); 

); 
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APPENDIX B  

EXAMPLE INPUT AND OUTPUT FILES 
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B.1 Configuration File for Problem Generation and Solutions 

The following XML .config file developed in Visual Studio 2010 IDE is used for 

the generation of the input files for the problem instances used in computational 

experimentation, and solution of these problem instances by any available mixed 

integer nonlinear programming solver with GAMS. Namely, the same executable can 

be used without any additional modification or recompilation for different purposes 

and problem types, merely by changing the respective parameters presented below. 

  

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

  <appSettings> 

    <!-- m: # of frames; n: # of users --> 

    <!-- settings for problem input file generation mechanism --> 

    <!-- the semicolons ";" seperate level values --> 

    <!-- the hyphens "-" seperate lower & upper bound values for the 

corresponding levels --> 

    <add key="userLevel" value="10;20;40"/> 

    <add key="frameSeqLengthLevel" value="2;4;8"/> 

    <!-- the x seperates width & height sizes for frames --> 

    <add key="frameSize" value="12x30"/> 

    <!-- if demand level string is empty or not found transferLevel 

s_i will be used for d_i= m * s_i --> 

    <add key="demandLevel" value="12-192;10-80"/>    <!-- "4-32"--> 

    <!-- if above demand values are used, then number of transfer 

levels will be the same as d_i levels and are used in parallel --> 

    <add key="transferLevel" value="6-24;5-10"/> 

    <!-- frameDependentDemandRatioLevel lower & upper bounds are 

percentage values for the respective frame area --> 

    <!-- if demand level string is empty and 

frameDependentDemandRatioLevel are nonempty, the percentage bounds 

below will be used --> 

    <!-- again as in demand levels above, number of transfer levels 

should be the same as number of frameDependentDemandRatioLevels and 

are used in parallel--> 

    <add key="frameDependentDemandRatioLevel" value=""/>    <!-- "5-

10;5-20"--> 

    <add key="profitLevel" value=""/> 

    <!-- if profit level string is empty or not found 

profitCoefficientLevel will be used --> 

    <!-- if profit coefficient pc is used, then p_i= pc * d_i --> 

    <add key="profitCoefficientLevel" value="4"/>     

    <!-- lambda levels (as frame sequence bounds in percentages) 

might be defined here as well --> 

    <!-- lambda may be greater than m --> 

    <!-- If simulation, these will be actual lambda value intervals 

and always be used explicitly --> 

    <!-- if lambda level string is empty or not found, lambda 

(maximum delay) will be uniformly selected between [1,m] --> 

    <add key="lambdaLevel" value="2-2;3-8"/> 
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    <!-- probabilities for being an ongoing transfer; if ongoing a 

frame index less than or equal to lambda, otherwise frame sequence 

length --> 

    <!-- if theta level string is empty or not found, all demands 

will be for "new" transfers, theta = m+1 --> 

     

    <add key="thetaLevel" value=""/> 

    <!-- number of instances to be generated for each setting 

combination --> 

    <add key="instancePerSetting" value="10"/> 

    <!-- file extension that will be used for SRP problem files --> 

    <add key="genFileExtension" value="txt"/> 

     

    <!-- settings for GAMS model input and solutions --> 

    <add key="gamsExecutable" value="C:\Program 

Files\GAMS\23.9\gams.exe"/> 

    <add key="gamsModelType" value="5-Maximizing Profit with 

Bounds"/> 

    <!-- 1-Feasibility; 2-Minimizing Partition; 3-Minimizing 

Overallocation; 4-Maximizing Profit; 5-Maximizing Profit with Bounds 

--> 

    <add key="gamsModelBaseText" value="SRP-I-profit-limit10min-

scip-bothBounds.gtxt"/> 

    <add key="gamsOutputFormatText" value="SRP-I-bounded-

output.gtxt"/> 

    <add key="gamsOutputExtension" value="gout1"/> 

 

    <!-- more general settings --> 

    <add key="inputFileExtension" value="txt2"/> 

    <!-- Use 1 for problem generation, 2 for GAMS solution, 3 for 

simulation probem generation, etc.--> 

    <add key="programUsage" value="3"/> 

 

    <!-- Simulator settings --> 

    <!-- If simulation problem generation settings are used, then 

all demand, transfer, profit, profit coefficient & lambda related 

settings --> 

    <!-- should be parallel to the number of traffic classes given 

below. Moreover, for profit coefficient the key below should be used 

--> 

    <!-- Naturally, there should be at least two different classes 

for a simulation data generation. --> 

    <add key="trafficClass" value="Data;Voice"/> 

    <!-- the distribution of classes in percentages, thus each level 

should sum up to 100. --> 

    <!-- For example if there are 3 classes, then 50-20-30 is valid 

--> 

    <add key="classDistribution" value="75-25;50-50"/> 

    <!-- if no explicit profit level given, the discrete uniform 

from the below intervals will be used --> 

    <add key="profitCoefficientIntervalLevel" value="1-6;6-12"/> 

     

  </appSettings> 

</configuration> 
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B.2 Example Input Files 

In this appendix, example input files corresponding to the problem instances in 

Figures 4.5, 4.6 and 4.7 are provided. Figure B.1 exhibits the input file for the 

instance in Figure 4.5, involving a problem with 10 users packed over 2 frames with 

traffic distribution TR1 (75% of users with data + 25% voice traffic). 

 

 

 

Figure B.1 Input file of the problem instance in Figure 4.5 

 

In the input files, the first line indicates that there are 10 users to be packed over 2 

frames, with width and height dimensions equal to 12 and 30, respectively. The 

succeeding 10 lines include user data for each user: User index (1) followed by the 

demand size (28), profit value (168), maximum delay value in frames (7), minimum 

transfer rate (28), θi value, i.e. the latest frame to maintain or to begin the data 

transfer for user i (3: new transfer) and lastly the user class (2: user with voice 

traffic). 

 

The first line after the user parameters lines describes the problem instance, as to 

whether the case i

i I

mA


  holds or not. The value of zero means that the 

inequality does not hold, and the instance can be used for SRP-I solutions. This 

indicator is followed by the sum of user demands (757) to be packed, and the total 

area of all frames (720 = 2x12x30). The single entry in the next line (2) denotes the 

number of user traffic classes involved (Data Set 2), followed by their names and 
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respective distributions in percentages in the last two lines. The same logic applies 

for all the sample instance input files. 

 

Figure B.2 exhibits the input file for the instance in Figure 4.6, which involves a 

problem instance with 10 users over 4 frames with traffic distribution TR1 (75% of 

users with data + 25% voice traffic) and an average user demand of 116 slots. 

 

 

 

Figure B.2 Input file of the problem instance in Figure 4.6 

 

As a last example and for comparison, Figure B.3 below exhibits the input file for 

the instance in Figure 4.7: A problem with 10 users over 4 frames with traffic 

distribution TR1; with average user demand of 102 slots. 

 

 

 

Figure B.3 Input file of the problem instance in Figure 4.7 
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B.3 Example Output Files 

In this appendix, example output files corresponding to the problem instances in 

Figures 4.5, 4.6 and 4.7 are provided. Figure B.4 exhibits the output file for the 

instance in Figure 4.5.  

 

 

Figure B.4 Output file of the problem instance in Figure 4.5 

 

The output file given above belongs to an SRP-I solution employing lower and 

upper bounds. The first line shows the GAMS status messages, describing whether 

the solution is optimal or not, and lists its termination condition (normal, time limit, 

user interrupt, etc.). The next line values are respectively the objective function 

value, solution time in seconds, number of branch & bound nodes searched, and the 

last upper bound used by the solver. 

 

The third line is regarding the problem size, and lists respectively the number of 

decision variables, number of constraints, number of nonzero entries in the 

coefficient matrix and number of nonlinear nonzeroes belonging to the model. The 
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fourth line describes the instance briefly: Number of users, frames, frame width and 

height, and lastly the total demand size in slots of all users. 

 

The fifth line is SRP-I specific, and lists the number of users packed, total demand 

size of these users, total available profit of all users, and lastly the initial lower 

(2893) and upper bounds (3065) used. The following lines are concerning the users 

packed in the SRP-I solution, and ordered according to their indices. So, the next line 

first gives the user index (1), the number of frames (2) it is packed in, the demand of 

the user in slots (28), the actual area allocated for the user (28), and the profit gained. 

The next two lines are the respective frame indices, positions and sizes of the 

rectangles assigned to these frames. Hence, for user 1, the first of its two rectangles 

is placed in frame 1, its bottom-left x-y coordinate is (0,0) with width and height 

equal to 2 and 8, respectively. The remaining lines follow in the same manner. 

 

Figure B.5 exhibits the output file for the instance in Figure 4.6. This is not a 

solution of an SRP-I instance, thus the fifth line explained above is not present in this 

output. This is because, if there is a feasible or optimal solution, all users are already 

packed. Moreover, the user profit values are not listed in the corresponding user lines 

for SRP-II and SRP-III problem solutions. 
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Figure B.5 Output file of the problem instance in Figure 4.6 

 

As a last example, Figure B.6 below exhibits the output file for the instance in 

Figure 4.7. 

 



129 

 

Figure B.6 Output file of the problem instance in Figure 4.7 

 

Finally, we include in Figure B.7 below a screen shot of the MS Excel output for 

the instance in Figure 4.7. This output is also generated for each instance 

automatically by the Excel macro procedures developed in Visual Basic language. 
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Figure B.7 MS Excel output screenshot for the problem instance in Figure 4.7 
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APPENDIX C  

C# CODES FOR LOWER AND UPPER BOUNDS OF SRP-I  
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C.1 Code segment for AlgorithmUB  

The code segment below, which is a part of the SRP-I code library, is used for 

obtaining the upper bound for the SRP-I problem.  

 

 

private int KnapsackRelaxationUpperBound() 
        { 
            int totalArea= frames * frameWidth * frameHeight; 
            if (totalDemand<totalArea) return availableProfit; 
            // sorted in nondecreasing order (profit/demand) 
            int[] sortedUsersProfitPerDemand = 
Sorter.OriginalIndexSorted(profit_per_demand); 
            int profitBound = 0; 
            int user=users-1; // zero-indexed, last has the highest 
profit/demand ratio 
 
            while ((totalArea > 0) && (user >= 0)) 
            { 
                int newPack = phi_local[sortedUsersProfitPerDemand[user]]; 
                if (totalArea - phi_local[sortedUsersProfitPerDemand[user]] < 
0) 
                { 
                    double partialProfit= 
(double)profit[sortedUsersProfitPerDemand[user]]* totalArea/newPack; 
                    profitBound += (int)Math.Ceiling(partialProfit); 
                    return profitBound; 
                } else 
             { 
                    profitBound += profit[sortedUsersProfitPerDemand[user]]; 
                    totalArea -= newPack; 
             } 
                user--; 
            }          
 
            return profitBound; 
        } 
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C.2 Code segment for AlgorithmLB 

The code segment below, which is a part of the SRP-I code library, is used for 

obtaining the lower bound for the SRP-I problem.  

 
 
 
 
private int SRP_I_LowerBound() 
        { 
            int frameArea= frameWidth * frameHeight; 
            // sorted in nondecreasing order (profit/demand) 
            int[] sortedUsersProfitPerDemand = 
Sorter.OriginalIndexSorted(profit_per_demand); 
            int profitBound = 0; 
            int user=users-1; // zero-indexed, last has the highest 
profit/demand ratio 
            // choosing the shortest edge of the frame for less 
overallocation, thus tighter bound 
            int shortEdge=frameWidth; 
            int longEdge=frameHeight; 
            if (frameWidth > frameHeight) { 
                shortEdge=frameHeight; 
                longEdge=frameWidth; 
            }  
            // filling the frame by short edges, and ignoring unused spaces if 
there is overalocation; 
            // so if short edge=5 and demandPerFrame is 8, 8/5 ~ 2 short edges 
used, and remainingStrip becomes (remainingStrip - 2) 
            int remainingStrip=longEdge; 
 
            while ((remainingStrip > 0) && (user >= 0)) { 
                int newPack = phi_per_frame[sortedUsersProfitPerDemand[user]]; 
                if (newPack> remainingStrip * shortEdge)  // try the next user  
                { 
                    user--; 
                    if (user < 0) break; 
                     
                } else 
             { 
                    int 
usedStrip=(int)Math.Ceiling((double)phi_per_frame[sortedUsersProfitPerDemand[u
ser]]/shortEdge); 
                    profitBound += profit[sortedUsersProfitPerDemand[user]]; 
                    remainingStrip -= usedStrip; 
             } 
                user--; 
            } 
 
            return profitBound; 
        } 
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