

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

SEQUENTIAL RECTANGULAR PACKING

PROBLEM IN WIRELESS

TELECOMMUNICATIONS WITH FUZZY

EXTENSIONS

by

Uğur ELĠĠYĠ

October, 2013

ĠZMĠR

SEQUENTIAL RECTANGULAR PACKING

PROBLEM IN WIRELESS

TELECOMMUNICATIONS WITH FUZZY

EXTENSIONS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Statistics Program

by

Uğur ELĠĠYĠ

October, 2013

ĠZMĠR

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisor Prof. Dr. Efendi

Nasiboğlu, for his guidance, insight and encouragement throughout this Ph.D. study.

His inspiration and counsel throughout the period of my study at Dokuz Eylül

University were invaluable. It was extremely helpful for my academic career to have

a chance to work with him.

I would like to express my appreciation to the other members of my thesis

committee. I would like to thank Prof. Dr. Urfat Nuriyev, Asst. Prof. Dr. Emel

Kuruoğlu and Prof. Dr. Can Cengiz Çelikoğlu for their continuous support during my

doctoral education at Dokuz Eylül University, for their valuable suggestions,

guidance and continuous support.

I would also like to thank to my other professors/friends for their guidance during

my studies at Dokuz Eylül University. Great thanks to Assoc. Prof Dr. Selma Gürler,

Assoc. Prof. Dr. Özlem Oruç and Prof. Dr. Halil Oruç for providing continuous

support and smile whenever I needed the most.

I would like to emphasize my thankfulness with ultimate respect and gratitude to

my family. I would like to thank my mother Nevin and my late father Nizamettin

Eliiyi, my sister Seda, my second mother and father Hamide and Ali Türsel from the

bottom of my heart. Last but not least, the continuous support, care, and love of my

wife Deniz Türsel Eliiyi is the source and encouragement of this work. Her love has

always given me unlimited strength. She is my best advisor forever.

Uğur ELĠĠYĠ

iv

SEQUENTIAL RECTANGULAR PACKING PROBLEM IN WIRELESS

TELECOMMUNICATIONS WITH FUZZY EXTENSIONS

ABSTRACT

In this thesis, a rectangular packing problem in telecommunications context is

considered. Namely, we introduce a resource allocation modeling framework for a

sequential two-dimensional packing problem, which may have direct applications in

wireless telecommunications area pertaining to the IEEE 802.16 standard. The time

dimension implied by the sequential consideration of frames adds a third dimension

to the packing problem to some extent. We extend the common features of the frame

packing problem to include realistic and state-of-the-art features of the current

wireless data transfer processes. Three novel and representative mathematical

programming models are developed for the problem, which are intended for

contribution both to academic literature and professional practice. The developed

models aim optimal usage of the physical layer defined by the standard, which

involves data packages sent from a base station to a fixed or mobile user station. The

data transmitted for each user are modeled as rectangular blocks, dimensions of

which correspond to time duration and frequencies used in data transfer. Placement

of these rectangular blocks in a sequence of identical rectangle frames is optimized

by the developed models, aiming to maximize profit, minimize waste or minimize

the rectangle count. Quality of service constraints such as maximum delay in transfer

and minimum data transmission rates restrict the placement of variable-sized

rectangles. We present the framework for all models, which handle demand

partitioning and rectangle packing simultaneously. The foundations for fuzzy

measures and parametrization are also proposed in this thesis, in order to mimic more

realistic evaluation of actual network resources for practical problems. Thorough

extensive experimentation, the performance of the developed models in terms of both

solution times and quality are investigated. We also discuss alternative approaches to

improve solution performances for the new models.

Keywords : Two-dimensional packing, three-dimensional packing, fuzzy

optimization, telecommunications, scheduling

v

KABLOSUZ ĠLETĠġĠMDE ARDIġIK DĠKDÖRTGENSEL PAKETLEME

PROBLEMĠ VE BULANIK UZANIMLARI

ÖZ

Bu tezde telekomünikasyon alanındaki bir dikdörtgensel paketleme problemi ele

alınmıştır. Özel olarak, IEEE 802.16 standardına ait kablosuz iletişim alanında

doğrudan uygulamaları olabilecek sıralı iki boyutlu bir paketleme problemi bazında

bir kaynak tahsisi modelleme çerçevesi sunulmaktadır. Zaman boyutunun sıralı

dilimlerin paketlenmesi şeklinde ele alınması probleme bir ölçüde üçüncü bir boyut

kazandırmaktadır. Ayrıca, ele alınan dilim paketleme probleminin özellikleri

günümüz kablosuz veri transferinde kullanılan güncel teknolojiyi kapsayacak şekilde

zenginleştirilmiştir. Problem için hem akademik literature hem de sektöre katkı

sağlaması hedeflenen özgün ve temsil gücü yüksek üç matematiksel programlama

modeli geliştirilmiştir. Geliştirilen modeller, standart çerçevesinde tanımlanan ve bir

baz istasyonundan sabit veya mobil kullanıcı istasyonlarına veri paketi gönderimini

sağlayan fiziksel katmanın optimal kullanımını hedeflemektedir. Ġletilen veri

paketleri her kullanıcı için boyutları transferde kullanılan süre ve frekans aralıklarına

karşılık gelen dikdörtgensel bloklar olarak modellenmektedir. Bu blokların sıralı

özdeş dikdörtgensel dilimler üzerine yerleştirilmesi, geliştirilen modeller tarafından

karı maksimize edecek, atığı minimize edecek veya dikdörtgen sayısını minimize

edecek şekilde eniyilenmektedir. Maksimum gecikme ve minimum veri iletim hızı

gibi hizmet kalitesi kısıtları değişken boyutlu dikdörtgen blokların yerleşimlerini

etkilemektedir. Çalışmada talep bölüştürme ve dikdörtgensel paketlemeyi aynı anda

sağlayan modeller için teorik bir çerceve sunulmuştur. Ayrıca, pratik problemlerde

gerçek ağ kaynaklarının değerlendirilmesinde faydalı olabilecek bulanık ölçüt ve

parametreler için temel bir yapı oluşturulmuştur. Gerçekleştirilen kapsamlı sayısal

deneylerle, geliştirilen modellerin çözüm süresi ve kalitesi bazında performansları

ölçümlenmiştir. Bunun yanında olası yeni modeller için çözüm performansını

geliştirebilecek alternatif çözüm yaklaşımları da tartışılmıştır.

Anahtar kelimeler : Ġki boyutlu paketleme, üç boyutlu paketleme, bulanık

optimizasyon, telekomünikasyon, çizelgeleme

vi

CONTENTS

 Page

Ph.D. THESIS EXAMINATION RESULT FORM .. ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ .. v

LIST OF FIGURES .. viii

LIST OF TABLES .. ix

CHAPTER ONE – INTRODUCTION .. 1

CHAPTER TWO – LITERATURE SURVEY ... 5

2.1 Multi-dimensional Bin Packing Problem .. 5

2.2 Fuzzy Approaches ... 18

2.3 Multi-dimensional Packing in Wireless Telecommunications 22

CHAPTER THREE – PROBLEM DEFINITION AND MATHEMATICAL

MODELS .. 31

3.1 Sequential Rectangular Packing (SRP) Problem... 32

3.1.1 Assumptions for the SRP Models .. 33

3.1.2 Indices and Parameters .. 34

3.1.3 Decision Variables ... 35

3.2 Sequential Rectangular Packing with Profit Maximization (SRP-I) 36

3.2.1 Complexity Results for SRP-I ... 39

3.2.2 Lower and Upper Bounds for SRP-I ... 41

3.3 Sequential Rectangular Packing with Minimum Partitions (SRP-II) 44

3.4 Sequential Rectangular Packing with Minimum Overallocation (SRP-III) 46

vii

CHAPTER FOUR – COMPUTATIONAL RESULTS .. 49

4.1 Data Set 1: Data with a Single Demand Class and Random Profits 49

4.2 Data Set 2: Data with Two Demand and Profit Classes 60

4.3 Discussion ... 68

4.3.1 Decomposition of SRP .. 69

4.3.2 Two-Phased Heuristic Algorithms for SRP ... 70

CHAPTER FIVE – A FUZZY PERSPECTIVE FOR SRP 73

5.1 A General Fuzzy Packing Formulation ... 75

5.2 Fuzzy Demand Definitions for SRP .. 79

5.3 Alternative Objectives for SRP with Fuzzy Information 83

5.4 An Example Packing Using Fuzzy Relation Matrices 86

CHAPTER SIX – CONCLUSION ... 90

REFERENCES ... 94

APPENDICES .. 104

viii

LIST OF FIGURES

 Page

Figure 2.1 Worst-case example for the Next-Fit algorithm 15

Figure 2.2 A sample OFDMA frame structure in TDD mode 25

Figure 4.1 SRP-I solution for a problem with 10 users packed over 2 frames 53

Figure 4.2 SRP-I solution for the same problem employing bounds 55

Figure 4.3 SRP-II solution for a problem with 10 users packed over 2 frames 58

Figure 4.4 SRP-III solution for the same problem with 10 users over 2 frames 58

Figure 4.5 SRP-I solution for a problem with 10 users packed over 2 frames with

traffic distribution TR1 (75% of users with data + 25% voice traffic)....................... 65

Figure 4.6 SRP-III optimal packing by 27 rectangles of a problem with 10 users over

4 frames with traffic distribution TR1 (75% of users with data + 25% voice traffic);

with average user demand of 116 slots .. 67

Figure 4.7 SRP-III optimal packing by 40 rectangles of a problem with 10 users over

4 frames with traffic distribution TR1; with average user demand of 102 slots 67

Figure 5.1 A general fuzzy demand parameter definition for SRP models 80

Figure 5.2 Possible placements of two users with fuzzy demands on a frame 81

Figure 5.3 Fuzzy demand parameter definition for the SRP-I model 82

Figure 5.4 A feasible fuzzy SRP solution .. 88

Figure B.1 Input file of the problem instance in Figure 4.5 124

Figure B.2 Input file of the problem instance in Figure 4.6 125

Figure B.3 Input file of the problem instance in Figure 4.7 125

Figure B.4 Output file of the problem instance in Figure 4.5 126

Figure B.5 Output file of the problem instance in Figure 4.6 128

Figure B.6 Output file of the problem instance in Figure 4.7 129

Figure B.7 MS Excel output screenshot for the problem instance in Figure 4.7 130

ix

LIST OF TABLES

 Page

Table 4.1. Parameter levels for Data Set 1 ... 49

Table 4.2 Demand densities and model sizes for Data Set 1 51

Table 4.3 Results for incumbent solutions of SRP-I without incorporating any

bounds (Data Set 1) .. 52

Table 4.4 Results for incumbent solutions of SRP-I employing lower and upper

bounds (Data Set 1) .. 54

Table 4.5 Comparison of SRP-II and SRP-III solutions for n=10, 20 (Data Set 1) ... 56

Table 4.6 Parameter levels for Data Set 2 .. 62

Table 4.7 Demand densities and model sizes for Data Set 2 62

Table 4.8 Results for incumbent solutions of SRP-I without incorporating any

bounds (Data Set 2) .. 63

Table 4.9 Results for incumbent solutions of SRP-I employing lower and upper

bounds (Data Set 2) .. 64

Table 4.10 Comparison of SRP-II and SRP-III solutions for n=10, 20 (Data Set 2) . 66

Table 5.1 Fuzzy relation matrix reflecting the mutual compatibility degrees between

users and frames (relation R4) .. 86

Table 5.2 Fuzzy relation matrix reflecting the mutual compatibility degrees between

users (relation R2) ... 87

1

CHAPTER ONE

INTRODUCTION

Three-dimensional bin packing problem (3D-BPP) is generally defined as the

packing of a given set of rectangular-shaped items into the minimum number of

three-dimensional rectangular bins without any overlapping. It is assumed that the

items are packed orthogonally, namely, with each edge parallel to the corresponding

bin edge. There are an unlimited number of identical three-dimensional containers

(bins) having width W, height H, and depth D, which can be used for allocating a set

or list of n rectangular-shaped items, each characterized by width wj  W, height hj, 

H and depth dj  D (j  J = {1,..., n}.

The problem is NP-hard in the strong sense, since it is a generalization of the

well-known (one-dimensional) bin packing problem (1D-BPP). In 1D-BPP, a set of n

positive values wj has to be partitioned into the minimum number of subsets so that

the total value in each subset does not exceed a given bin capacity W. 1D-BPP is

proven to be NP-hard in the strong sense (Garey & Johnson, 1979; Korte & Vygen,

2008). So there is little hope of finding even a pseudo-polynomial time optimization

algorithm for 3D-BPP.

The 3D-BPP is closely related to other three-dimensional loading problems, such

as Knapsack Loading and Container Loading. Naturally, it finds many industrial

applications like packaging, mechanical and electronical design, vehicle and pallet

loading, cutting of materials in production (cutting stock problem), loading area,

multiprocessor scheduling, task assignment, and several scheduling problems (Eliiyi

& Eliiyi, 2009).

In the knapsack loading of a container each item has an associated profit, and the

problem is to choose a subset of the items that fits into a single container (bin) so that

maximum profit is loaded. If the profit of an item is set to its volume, this

corresponds to the minimization of wasted space. In the container loading version, all

the items have to be packed into a single bin, having an infinite height. The problem

2

is thus to find a feasible solution that minimizes the height to which the bin is filled

(Martello & Toth, 1990). There are several heuristics in the literature for these

problems, some of which are to be mentioned in the following section (Aho et al.,

1983; Pisinger, 2002).

Another important and frequently studied special case is the two-dimensional bin

packing problem (2D-BPP), which again finds its obvious applications in areas

related to the cutting context. Obviously 3D-BPP can also be generalized by adding

dimensions like time (like for scheduling a bread oven usage) according to the nature

of our problems.

The model of the problem can be adapted to a vast variation of problems not

necessarily limited to packing and loading applications. Furthermore, the

assumptions of the problem can be modified to represent the real-life situation more

realistically. For instance, balancing conditions and weight distribution of the placed

items, rotation constraints, geometry of the items or the bins should be considered in

most cases. Even the amount of knowledge of the item placements in bins might be

considered as in the cases of online bin packing problems.

The main goal of this thesis is to develop novel exact optimization models for

solving the downlink (DL) subframe allocation problem in Mobile WiMAX (IEEE

Std 802.16, 2009) telecommunications standard by satisfying real-network

constraints such as maximum delay, minimum throughput and subscription priorities

with power consumption and utilization objectives throughout a sequence of frames

(Eliiyi & Nasibov, 2010). The downlink (transmission direction from the base station

to the mobile stations) subframe allocation problem in Mobile WiMAX corresponds

to a two-dimensional packing problem, and we approach this allocation problem

through a sequence of DL subframes used in the data transfer to consider also other

QoS constraints such as maximum delay.

As a result of a thorough review of the related literature and through a careful

analysis of the current global technological developments, which will be fully

3

disclosed in the next chapter, it is recognized that new studies on modeling and

solution to the problem of our concern is more than necessary. Including new and

existing features of the Mobile WiMAX technology in the models for taking into

account the most recent telecommunications industry requirements is essential. The

success of the developed models and algorithms will also depend on the solution

performances attained by sufficient experimentation with realistic problem instances.

These results and facts constitute the main motivation of this thesis, particularly

considering the latest technology is of great value to the wireless communication

domain, and an optimization approach in this area will contribute significantly to the

existing literature. We extend the common features of the frame packing problem to

include realistic and state-of-the-art features of the current wireless data transfer

processes. The novel and representative mathematical programming models

developed for the problem are intended for contribution both to academic literature

and professional practice. The foundations for fuzzy measures and parametrization

are also intended to be laid in this thesis, in order to mimic more realistic evaluation

of actual network resources for practical problems. Thorough extensive

experimentation, the performance of the developed models in terms of both solution

times and quality are also investigated.

The problem considered in this thesis is an extended form of the multiple

knapsack problem with identical capacities (Kellerer et al., 2005), as it will be

explained in following chapters. However, the existence of the extra constraints and

different objectives allows handling various decision making alternatives, and the

variable item or demand sizes requires a nonlinear approach in modeling the

problem, rendering it even harder.

By taking into account the time division structure of the resource allocation

sequence and other features of the telecommunications standard, we extend the two-

dimensional nature of the problem to three-dimensional by adding additional

knapsack and partitioning constraints. In other words, the time element through the

consideration of a sequence of frames adds a third dimension to this otherwise two-

4

dimensional packing problem. The continuous nature of the problem through time

justifies the formulation through a sequence of frames rather than on a single frame.

Since most transfers in a wireless telecommunication environment will not be

completed in time captured by a single frame, we believe that the new problem

definition in this thesis for partitioning and packing decisions involving multiple

users over a sequence of frames, as well as novel mathematical formulations, offer

significant contributions to related literature.

The outline of this thesis is as follows. In the next chapter, a review of the existing

literature on the multi-dimensional bin packing problem is presented along with

specific contributions in wireless telecommunications and fuzzy information. We

define the problem and present the proposed mathematical models in Chapter 3,

along with some existing preliminary results and approaches for the bin packing

problem. Experimental computation is presented, analyzed and discussed in Chapter

4. A fuzzy perspective to the problem is presented in detail in Chapter 5. Finally,

summary and conclusions are reported in Chapter 6, along with potential future

research areas.

5

CHAPTER TWO

LITERATURE SURVEY

In this chapter, we present a thorough review of the existing literature on multi-

dimensional bin packing problems.

2.1 Multi-dimensional Bin Packing Problem

The NP-completeness and NP-hardness of the multi-dimensional bin packing

problem are presented by the prominent work of Garey & Johnson (1979). The

authors proved the complexity of the problem by showing that the basic bin packing

problem in one dimension (1D-BPP) contained 3-PARTITION as a special case,

which is one of the basic NP-Complete problems in the strong sense. Due to this

complexity, most of the literature on bin packing problems deals with approximation

algorithms, heuristics, and their performances.

Given n items with weights wj and n bins each with capacity c, the mathematical

formulation of 1D-BPP was given as below by Martello & Toth (1990).

minimize z =
1

n

i

i

y




subject to  
1

, 1,..., ,
n

j ij i

j

w x cy i N n


  

1

1, ,
n

ij

j

x j N


 

    0,1 , 0,1 , , ,i ijy x i N j N   

where
1, if bin is used;

0, otherwise,
i

i
y


 


1, if item is assigned to bin ;

0, otherwise.
ij

j i
x


 


assuming wj  c, for j  N.

6

The basic bin packing problem is considered as one of the milestones for analysis

of the approximation algorithms. Effects of lower bounds and probabilistic aspects of

the problem on the performance of the algorithms, as well as the worst-case and

average-case behaviours of the algorithms for the 1D-BPP have been the primary

research directions in the area of NP-hard problems (Johnson, 1973; Johnson et al.,

1974; Baker & Coffman, 1981; Martello & Toth, 1990; Coffman et al., 1996). For a

given list L of items and algorithm A, A(L) being the number of bins used when A is

applied to L, the optimum number of bins for a packing of L is denoted by z(L), and

the ratio (A(L) / z(L)) is denoted by RA(L). The absolute worst-case ratio RA for

algorithm A is then defined as:

RA = inf{r ≥ 1: RA(L) ≤ r for all lists L},

and the asymptotic worst-case performance ratio as:

AR
 = inf{r ≥ 1: for some N > 0, RA(L) ≤ r for all L with z(L) > N}.

Additionally, if all items of the list have a maximum size of , the bounded-size

performance ratios can be defined as RA() and AR
().

In one of the earliest studies on 3D-BPP, approached from a container loading

perpective, an approximation algorithm was presented for minimizing total height

with an asymptotic performance bound better than a conjectured one in the literature

(Miyazawa & Wakabayashi, 1997). The authors defined an asymptotic performance

bound α of an algorithm A as follows: If there exists a constant β such that for all

item lists L, in which all boxes have height at most Z, then A(L) < αOPT(L) + βZ

holds. Here, A(L) denotes the height of the packing generated by the algorithm A

when applied to the list, and OPT(L) denotes the height of an optimal packing of L.

Furthermore, if for any small ε and any large M, both positive, there is an instance L

such that A(L) > (α – ε)OPT(L) and OPT(L) > M, then again α is called as the

asymptotic performance bound of the algorithm A.

The same authors also studied a variant of the same problem, allowing a rotation

in the z-axis (height), and developed four algorithms with respective to bottom

shapes of the items. Special bottom shape chosen to be square, the algorithms they

7

presented had the same complexity O(n log n) as other known algorithms while

having better asymptotic performance bounds (Miyazawa & Wakabayashi, 2000). A

similar study introduced an efficient algorithm by formulating a geometrical model

that reduced the general three-dimensional packing problem to a finite enumeration

scheme (Faina, 2000). Proving the validity of the algorithm, the author proposed a

numerical estimate of the corresponding asymtotic performance bound.

As in the case of 1D-BPP, it is often observed in the literature of 3D-BPP that

new lower bounds are defined by comparing their performances and dominance

relations with the previous ones and each other, and the worst-case analysis of these

bounds are examined. In one such study, an exact algorithm was developed for

selecting a subset of items that can be packed into a single bin, while maximizing the

total volume packed (Martello et al., 2000). The authors used the bounds they found

to obtain two approximation algorithms and an exact branch-and-bound algorithm. A

later study by Fekete & Schepers (2001) aimed to obtain new fast lower bounds,

based on dual feasible functions, and provided a general framework for establishing

new bounds. Similarly, new lower bounds for the problem have been proposed by

Boschetti (2004), where the items have fixed orientation. The bounds were extended

by allowing 90º rotations, and experimental tests were evaluated for comparing the

effectiveness of the new lower bounds.

One disadvantage of relying on worst-case analysis is that, in many real-world

applications the worst case is almost never observed. Therefore, more meaningful

results explaining the typical behaviours of the algorithms are necessary. Examining

the average-case behaviours of the developed heuristics follows this requirement. In

such an attempt, Coffman et al. (1988) investigated methods for obtaining formal

probabilistic analyses of heuristics for makespan scheduling and one-dimensional bin

packing, and presented many of the key results in these research areas.

In another study regarding the probabilistic aspect of the problem (Federgruen &

van Ryzin, 1997), a unified probabilistic analysis was presented for a general class of

bin packing problems, describing the objects by a given number of discrete or

8

continuous attribute values. Bins were defined as sets of objects, and the collection of

feasible bins was merely required to satisfy some general consistency properties. The

asymptotic optimal value was defined as the value of an easily specified linear

program, whose size was independent of the number of objects to be packed. The

analysis suggested that the developed heuristic run in linear time. The authors

showed that the algorithm had both polynomially fast convergence and polynomial

running time in several important cases, and they described how their results could

be used to analyze a general vehicle routing model with capacity and time window

constraints.

The average-case analysis of algorithms usually assumes independent, identical

distributions for the inputs. Kenyon (1996) introduced the random-order ratio, a new

average-case performance metric for bin packing heuristics, and proposed upper and

lower bounds for this metric for the Best-Fit heuristics. An alternative definition of

the random-order ratio was also introduced by Coffman et al. (2008). The authors

shown that the two definitions yielded the same result for Next-Fit, and the random-

order ratio of Next-Fit was 2, which was also equal to its asymptotic worst-case ratio.

For obtaining tighter bounds for problems of optimal packing within one or

several containers, some new relaxations were developed that led to linear

programming (LP) models. In such an effort, a column generation-based approach

was discussed by Scheithauer (1999) along with computational results, and several

relaxations were defined for container and multi-container loading problems. In

another LP-based study, a mixed-integer linear programming (MILP) formulation of

the problem that determined a filling of a big rectangular box with as many small

rectangular boxes as possible was proposed (Padberg, 2000). The author presented a

more general formulation that yielded a tighter LP bound of the convex hull than the

previous MILP approaches for the problem.

The cube packing problem (CPP) is defined as a special case of 3D-BPP, where a

given list of small cubes is placed into a minimum number of larger identical cubes.

A parametric version of this problem was defined on online and offline algorithms,

9

and respective asymptotic performance bounds were presented by Miyazawa &

Wakabayashi (2003). For a generalized d-dimensional cube packing (d-CPP) version

of the problem, two approximation algorithms were developed by Kohayakawa et al.

(2004). The first of the algorithms was shown to have an asymptotic performance

bound that can be made arbitrarily close to 2 - (1/2)
d
, and the latter improved one

could be made arbitrarily close to 2 – (2/3)
d
. The authors stated that these were the

first results with non-exponential bounds.

In another heuristic approach, a multi-faced buildup technique was used in the

packing procedure with no requirement for the packed boxes to form flat layers (Lim

et al., 2003). The basic algorithm was augmented by a look-ahead strategy, yielding

an average packing utilization that improved the existing benchmarks significantly.

The same authors have formulated two heuristics dealing with homogeneous and

heterogeneous categories in a later study (Lim et al., 2005), regarding box selection,

space selection, box orientation and new space generation sub-problems. Lins et al.

(2002) studied a specific problem of packing 3D boxes into an n-container, where the

boxes can be packed in a given subset of their 6 possible positionings. The

symmetries in the packings were analyzed through the use of an ordered set of three

directed graphs with the same edges.

Techniques derived from bin packing algorithms have been used in several studies

in other contexts. As an example, Coffman et al. (1978) described a fast bin packing-

based algorithm for scheduling n independent tasks on m identical parallel processors

in a nonpreemptive fashion while minimizing the makespan (total timespan required

to process all the given tasks). Similarly, Garey et al. (1978) examined some special

cases of the resource constraints in a scheduling problem, reducing the problem to

BPP for determining the best performance guarantees for the developed

approximation algorithms. In another study, the NP-hardness of the generalized fixed

job scheduling problem was proven by transforming an instance of the problem to

BPP (Fischetti et al., 1989). In addition, the authors used BPP solutions for obtaining

tight lower bounds, which were then employed in a branch-and-bound algorithm for

obtaining the optimal solution of the studied scheduling problem. Another interesting

10

study showed that the protein folding problem, which deals with the interactions

within the amino acid chains that form a protein’s well-defined three dimensional

structure, is NP-complete, by a nontrivial transformation of a popular biophysical

model (hydrophobic-hydrophilic) for protein folding to a modified bin packing

model (Berger & Leighton, 1998).

In many studies, metaheuristic approaches for the BPP problem are employed.

Such a study by Faroe et al. (2003) used a heuristic based on guided local search

(GLS), starting with an upper bound on the number of bins obtained by a greedy

heuristic. The proposed algorithm iteratively decreased the number of bins, each time

searching for a feasible packing of the boxes. A general tabu search technique for the

solution of 2D and 3D-BPP, as well as any of their variants requiring the

minimization of the number of bins, was developed by Lodi et al. (2004), along with

the implementation of the corresponding computer code. The user of the computer

code was only requested to provide a procedure that gave an approximate solution to

the actual variant to be solved. A two-level tabu search was presented in a recent

study (Crainic et al., 2009), where the first-level aimed to reduce the number of bins,

and the second optimized the packing of the bins. The latter procedure reduced the

size of the search space, based on an interval graph representation of the packing,

which was previously proposed by a study defining a combinatorial characterization

of higher-dimensional orthogonal packing (Fekete & Schepers, 2004a).

Fekete & Schepers (2004a) presented a new approach for modeling packings,

using a graph-theoretical characterization of the feasible packings. Their

characterization allowed to deal with classes of packings that share a certain

combinatorial structure, instead of having to consider one packing at a time. Using

elegant algorithmic properties of certain classes of graphs, the characterization were

used as the basis for a nice branch-and-bound framework. Based on this study, the

same authors proposed a new approach for obtaining classes of lower bounds for

higher-dimensional packing problems (Fekete & Schepers, 2004b), improving and

simplifying several well-known bounds from previous literature. Following these

two studies, a two-level tree search algorithm was developed in a later study for

11

solving higher-dimensional packing problems to optimality (Fekete et al., 2007).

Computational results were reported, including optimal solutions for all 2D test

problems from recent literature.

Miyazawa & Wakabayashi (2007) introduced approximation algorithms for the

2D- and 3D-BPP, and the 3D strip packing problem for a special case where each of

the dimensions of the items to be packed was at most 1/m of the corresponding

dimension of the recipient, m being a positive integer parameter. They analyzed the

asymptotic performance of these algorithms. In a more recent study, Miyazawa &

Wakabayashi (2009) presented approximation algorithms for the 3D-BPP and 3D

strip packing problem, allowing 90º rotations. They presented the asymptotic

performance bounds of both algorithms. The algorithms were designed for the more

general case where the bounded dimensions of the bin given in the input were not

necessarily equal. Moreover, they showed that the general versions of these problems

were as hard to approximate as the corresponding oriented version.

Bansal et al. (2006) showed that, unlike the 1D case, the 2D-BPP could not have

an asymptotic polynomial time approximation scheme (APTAS), unless P = NP. The

authors presented an APTAS for the special case of packing d-dimensional cubes

into the minimum number of unit cubes. They also proposed a polynomial time

algorithm for packing arbitrary 2D rectangles into at most OPT square bins with

sides of length 1+ε, where OPT denotes the minimum number of unit bins required

to pack these rectangles. As a corollary, they obtained the first approximation scheme

for the problem of placing a collection of rectangles in a minimum-area encasing

rectangle. Hifi (2002) studied the two-staged unconstrained 2D-BPP, and adapted

some heuristics that used hill-climbing strategies, which produced a good trade-off

between the computational time and the solution quality.

Lodi et al. (2002) reviewed solution approaches for the general 2D-BPP. They

listed the heuristics and exact algorithms in the literature both for bin packing where

the objective is to pack all the items into the minimum number of units, and for strip

packing. In another noteworthy study, Martello & Vigo (1998) proposed new lower

12

bounds which are used within an exact branch-and-bound algorithm by investigating

a well known lower bound and determining its worst-case performance. Kenyon &

Rémila (2000) presented an approximation scheme for 2D strip packing problem

based on a new linear programming relaxation. For any given ε, their algorithm

found a feasible solution within a factor of (1+ε) of the optimum with a polynomial

running time complexity both in number of items and in 1/ε. Caprara & Monaci

(2004) on the other hand, dealt with the 2D knapsack problem (2KP), aimed at

packing a maximum-profit subset of rectangles. They considered the natural

relaxation of 2KP given by the 1KP, with item weights equal to the rectangle areas.

They presented four exact algorithms based on that relaxation, proving the worst-

case performance of the associated upper bound, and computationally compare them.

The vector scheduling problem and its dual problem, namely, the vector bin

packing problem are also related problems to the BPP. Such problems naturally arise

when scheduling tasks that have multiple resource requirements is of concern. The

vector scheduling problem aims to schedule n d-dimensional tasks on m machines

such that the maximum load over all dimensions and all machines will be minimized.

The vector bin packing problem, on the other hand, seeks to minimize the number of

bins needed to schedule all n tasks such that the maximum load on any dimension

across all bins is bounded by a fixed quantity, e.g. 1. Chekuri & Khanna (2004)

obtained a variety of approximability and inapproximability results, improving

earlier known results for these problems.

In the container loading context, A Peak Filling Slice Push algorithm for the 3D-

BPP was developed by Maarouf et al. (2008). The algorithm recursively divided the

container into smaller slices and then filled each slice with boxes before pushing

them to minimize the wasted space. The distributor's or multi-pallet loading problem

was considered by Terno et al. (2000). The objective of finding the best space

utilization was restricted by a list of practical aspects, such as technological

constraints, weight distribution over the pallet, and stability aspects. A branch and

bound based heuristic was developed for the 3D case, using a layer-wise loading

strategy with optimal 2D loading patterns.

13

A novel heuristic based on wall-building approach was proposed by Pisinger

(2002) for maximizing the packed volume. The heuristic decomposed the problem

into a number of layers, which again were split into a number of strips. The packing

of a strip was formulated as a Knapsack Problem with capacity equal to the width or

height of the container. The depth of a layer as well as the thickness of each strip was

determined through a branch-and-bound approach where at each node only a subset

of the branches was explored. Several ranking rules regarding layer depths and strip

widths were presented and compared for homogeneous and heterogeneous instances.

Large-sized instances with a total box volume up to 90% were solved to optimality,

and average fillings of container volume exceeding 95% were obtained for these

instances.

For dealing with a major drawback considering many practical issues in container

loading problems, some studies took into account the stability of the packed items or

the weight distribution of the cargo (Castro Silva et al., 2003; Davies & Bischoff,

1999). In the latter study, the authors considered postprocessing approaches, putting

forward a new container loading heuristic. The heuristic was evaluated against

several existing approaches, and it was shown to be capable of producing loading

arrangements which combined high space utilization with an even weight

distribution of the cargo. In a more recent study, a new heuristic approach was

proposed for tackling problems where the cargo had varying degrees of load bearing

strength (Bischoff, 2006). In such cases, the placement rules must ensure that the

weight resting on an item remains below the maximum it can withstand without

suffering crushing damage. Limiting the time required to produce a good solution

and the amount of technical expertise needed by the user are some key

considerations. The experimental test results of the study by Bischoff (2006)

demonstrated that the heuristic outperformed other approaches that had been

suggested for this type of problem, and that it also performed well on some problems

where load bearing strength was not an issue.

The issue of balancing conditions and items consisting of clusters of

parallelepipeds (mutually orthogonal, i.e. tetris-like items) is quite frequent in space

14

engineering, and was studied in a real-world application that dealt with an

Automated Transfer Vehicle project funded by the European Space Agency (ESA).

An MILP-based heuristic was proposed that solved the reduced MILP model

(Fasano, 2004; Fasano, 2008). Dealing with non-standard 3D-packing issues, a

recursive procedure based on a non-blind local search philosophy was developed.

The concept of abstract configuration, concerning the relative positions between

items, was also introduced in this study. The heuristic generated a sequence of good

abstract configurations and iteratively solved a reduced MILP model, by fixing the

relative positions of the items corresponding to the current abstract configuration.

Several reported algorithms assume the online version of the BPP. In the online

BPP, only the layout of the previous items/boxes on the partially filled container and

the size of the box to be placed next are known at each stage, but no information is

available about the forthcoming items. This corresponds to situations in which items

are physical objects, and there is no intermediate space to store them before placing

them in the bins. Such a problem is encountered when robots are used instead of the

traditional manual operation in pallet loading. A bin packing algorithm that can

construct its packings under such circumstances is called an online algorithm and the

following initial solution approaches in the literature propose algorithms in that main

category.

The simplest approximate online approach to the bin packing problem was the

Next-Fit (NF) algorithm (Johnson, 1973). In this algorithm, the first item is assigned

to bin 1, which is the current bin at the start, and each arriving item with increasing

indices 2,…,n are considered in order whether it fits the current bin or not. If it does,

the item is assigned to the current bin; otherwise it is placed in a new bin, which then

becomes the current one. The time complexity of this approximation algorithm is

O(n), and it is proved that the absolute worst-case performance ratio is 2. Thus, for

any instance I of BPP, the solution value NF(I) given by the algorithm and the

optimal solution value z(I) fulfill the bound NF(I) ≤ 2z(I). An example for NF is

given in Figure 2.1.

15

Figure 2.1 Worst-case example for the Next-Fit algorithm (Source: Coffman et al. 1996, p. 49)

Since the list given in the example above has no item with size greater than 1/2, it

can be concluded that NFR
() = 2 for all  ≥ 1/2. Moreover, as  decreases under

that bound, so does NFR
(), specifically we have NFR

() = 1/ (1 - ) for  ≤ 1/2

(Johnson, 1973).

The algorithm First-Fit (FF) by Ullman (1971), similarly handles the items

according to their increasing indices, and assigns each item to the smallest-indexed

initialized bin into which it fits. When the current item considered cannot fit into any

initialized bins at hand, a new bin is utilized. Using the notation above for NF,

Johnson et al. (1974) proved that FF(I) ≤ (17/10) z(I) + 2, and for some instances

where z(I) is arbitrarily large, FF(I) > (17/10) z(I) – 8. Hence the asymptotic worst-

case performance ratio FFR
 for algorithm FF is 17/10.

Best-Fit (BF) algorithm was developed (Ullman, 1971; Eilon & Christofides,

1971; Garey et al., 1972) by modifying FF through assigning the current item to the

feasible bin having the smallest residual capacity. If there is no such bin, a new bin is

initiated. If there is more than one having the same capacity, the item is assigned to

the one with the lowest index. BF has the same worst-case performance ratios as FF

(Johnson et al., 1974). FF and BF have the same time complexity as O(nlogn),

achieved by employing a 2-3 tree approach (Aho et al., 1983; Martello & Toth,

1990).

16

All the three online algorithms described above can be extended with an offline

approach assuming that the sizes (wj) of the items are known beforehand and items

are sorted and indexed accordingly as w1 ≥ w2 ≥ … ≥ wn. Then applying NF, FF or

BF to these items, one obtains Next-Fit Decreasing (NFD), First-Fit Decreasing

(FFD) and Best-Fit Decreasing (BFD) algorithms having the same time complexity

as O(nlogn) and respectively with asymptotic worst-case performance ratios, 1.691,

1.222 and 1.222 (Johnson et al., 1974; Baker & Coffman, 1981; Coffman et al.,

1996). In general, the asymptotic worst-case ratio difference between packing rules

gets smaller as the lists are ordered in decreasing item size.

Another study on this problem focused on the packing of boxes distributed to

different customers from a central packaging depot (Hemminki et al., 1998). The

boxes had various sizes and they arrived on a conveyor belt one at a time, where it

was not allowed to move the boxes already placed. The objective was to produce

efficient and stable loads by an online packing algorithm. The algorithms the authors

developed were based on the above BF and FF principles.

Another special case of the multi-dimensional problem is the 2D variable-sized

BPP. In this problem, the packing a set of rectangular items into a set of rectangular

bins is of concern. The bins have different sizes and different costs, and the objective

is to minimize the overall cost of the bins used for packing the rectangles. Pisinger &

Segurdi (2002) presented an integer-linear programming formulation of this problem

and employed Dantzig–Wolfe decomposition, introducing very good quality lower

bounds for the problem justified by a computational study. They also developed a

branch-and-price-based exact algorithm for the problem. In another variation of the

BPP considering different shapes, given a fixed set of identical or different-sized

circular items, the problem deals with finding the smallest object within which the

items can be packed. Circular, triangular, squared, rectangular and also strip objects

were considered by Birgin & Sobral (2008). They treated 2D and 3D problems,

presenting twice-differentiable models for all these problems and employing a

strategy to reduce the complexity of evaluating the models.

17

Instead of fixed sized bins, the bin-stretching problem allows to pack the items

while stretching the size of the bins as least as possible. Some studies presenting

various online algorithms for the bin-stretching problem determined best lower

bound performances for specific stretching factors, and pointed out that the bin-

stretching problem is also equivalent to the classical scheduling (load balancing)

problem, in which the value of the makespan (maximum load) is known in advance

(Azar & Regev, 2001; Epstein, 2003). Their results may be used as comparative

measures for a possible bin size fuzzification scheme. In a similar variation of the

BPP called the extensible BPP, the number of bins is specified as part of the input,

and bins may be extended to hold more than the usual unit capacity. The cost of a bin

is taken as 1 if it is not extended, whereas it is taken as the size of the bin if it is

extended. With a total cost minimization objective for this problem, the study by

Coffman & Lueker (2006) presented a fully polynomial time asymptotic

approximation scheme (FPTAAS) with comments on complexity of achieving

stronger results.

A related but complicated study on proof-assisted property testing considered

approximate probabilistically checkable proof (PCP) techniques for the

multidimensional bin-packing problems (Batu et al., 2005). Particularly, the authors

showed how a verifier could be quickly convinced that a set of multidimensional

blocks can be packed into a given number of bins, extending a heaviness property

investigated in the one-dimensional case to the multidimensional case.

The most common metric used to evaluate the effectiveness of a packing

technique is generally the percentage of the space used. An inherent limitation of this

metric is its inability to differentiate between two different packing arrangements of

the same set of objects. Dickinson & Knopf (2000) proposed the point moment

metric for both the 2D and 3D cases. The metric is based on evaluating the

compactness of the remaining free space in a packing arrangement. This measure is

the ratio of a defined moment calculated for the current free space and the initial free

packing space. The developed metric can also be extended to n-dimensional packing

problem.

18

A typology of problems in an area provides the basis for a structural analysis of

the underlying problem types, the identification and definition of standard problems,

the development of models and algorithms, problem generators, etc. Fortunately,

such an extensive review study can be found in literature for the area of cutting and

packing (C&P) problems (Wäscher et al., 2007). Defining common identical

structures of cutting and packing problems, the authors categorised all problem types

in the literature. For instance, both packing and cutting problems deal generally with

two sets of elements, namely a set of large objects (input, supply) and a set of small

items (output, demand), which are defined exhaustively in one, two, three or an even

larger number (n) of geometric dimensions. Hence, apart from the studies mentioned

in this section, the interested reader can refer to this study for a thorough review of

the C&P literature.

The next section reviews the existing studies on the fuzzy versions of the BPP.

2.2 Fuzzy Approaches

There are very few studies in literature on multi-dimensional BPP and the related

variants that take into account the fuzziness of the constraints, objectives, and

relations between the items and/or bins. This lack of interest may be attributed

mainly to the tight correspondence of the problem modeling to real-life physical

problems, allowing or seeking only for optimal placements.

However, in a lot of situations, the defined problems require to be satisfied by

alternative admissible solutions, taking into account the human or expert choices.

Similar to the multi-objective decision approaches, sources of fuzziness are to be

determined, and should be employed for obtaining quick and nice solutions. Some

examples from the literature on fuzzy BPP are presented below.

As mentioned in the previous section, many metaheuristic approaches are used for

obtaining near-optimal solutions for 3D-BPP. The same approaches also attracted

attention for the fuzzy versions of the problem. For instance, a genetic algorithm

19

(GA) was presented by Runarsson et al. (1996) for solving an online dual BPP using

fuzzy objectives. In the dual BPP, the items are packed into a maximum number of

bins, assuring a minimum weight for each bin. The dynamic class the authors defined

assumed, as other online algorithms, that the items must be packed sequentially.

However, they assumed that more than one future item at a time can be seen. The

number of bins being packed at any time was fixed, and a bin was replaced by an

empty one as soon as it was filled. Their results showed that the fuzzy packing

scheme was essential to solving the problem, and due to the nature of the problem

the GA behaved closely to that of a micro-GA.

An interesting study by Dexter et al. (1999) considered a medical decision-making

process concerning the operating room (OR) utilization in a hospital. The goal was to

use computer simulation to evaluate ten scheduling algorithms from the management

science literature to determine their relative performance at scheduling as many

hours of add-on elective cases as possible into the open OR time. The authors

collected data from a surgical services information system for hours of open OR time

available for add-on cases in each OR each day, and for the duration of each add-on

case. These empirical data were used in computer simulations of case scheduling, to

compare algorithms appropriate for the variable-sized BPP with bounded space.

Here, the variable size referred to different amounts of open time for each OR. The

algorithm that maximized OR utilization was Best Fit Descending with fuzzy

constraints, and this algorithm achieved OR utilizations that were 4% larger than the

algorithm with the poorest performance.

Kim et al. (2001) considered another fuzzy BPP that dealt with packing non-rigid

rectangles into an open rectangular bin, as in the strip packing problem. The authors

employed fuzziness in the height dimension by using triangular fuzzy numbers. The

goal of the fuzzy BPP was to minimize both the height of a packing and the extra

cost due to the reduction of each piece. The total cost of the problem was represented

as the sum of the height cost and the extra cost due to reductions of the pieces, which

was called the reduction cost. Reducing the height of an item decreased the overall

height cost but increased the reduction cost due to lower quality of the item. A closed

20

form solution was presented for the fuzzy BPP, in which fuzzy numbers were

triangular and the reduction cost was formulated using a quadratic function.

In apparel/textile industry, manufacturers develop standard allowed minutes

(SAMs) databases on various manufacturing operations in order to facilitate

scheduling, while effective production schedules ensure smoothness of downstream

operations. However, as the parameters in an apparel manufacturing environment are

fuzzy and dynamic, these rigid production schedules based on SAMs become futile

in the presence of any uncertainty. A recent study in this context (Mok et al., 2007)

proposed a fuzzification scheme to fuzzify the static standard times so as to

incorporate some uncertainties, in terms of both job-specific and human related

factors, into the fabric-cutting scheduling problem. A GA-based optimization

procedure was proposed to search for fault-tolerant schedules using genetic

algorithms such that makespan and scheduling uncertainties were minimized.

Experimental results using two sets of real production data indicated that the

genetically optimized fault-tolerant schedules not only improved the operation

performance but also minimized scheduling risks.

Regarding the ranking and defuzzification techniques in literature for possible use

in the fuzzy versions of the BPP, the methods proposed by Dubois & Prade (1983),

and Fortemps & Roubens (1996), may be employed as in scheduling problems.

One of the important contributions to fuzzy BPP considered a new statement of

the BPP with the evaluation of the packing quality under fuzzy source constraints

(Nasibov, 2004). A finite interactive algorithm for solving the problem was

developed and its accuracy was justified. The author presented estimates for the a

priori determination of the maximum degree of quality of packing that accelerate the

process of the solution of the problem. Besides the items to be allocated, there were

two sets of containers in this study. The first set included m main containers, each

represented by Sj, where j=1,...,m; and the second set had only one reserve container

Sm+1. The fuzzy relations between the items and the containers imposed certain

constraints on the placement of the items. Four relations were defined reflecting the

21

degree of mutual attachment of items, the mutual compatibility of items, the mutual

attachment of an item to a container, and the mutual compatibility of an item to a

container, resulting in matrices taking values in the interval [0, 1]. Containers were to

be filled with respect to certain conditions (e.g. sufficient degree of filling factor so

that the consistency degree of the final packing was maximized), and a certain

classical total indicator/measure, such as volume or weight, was minimized for the

items placed in the reserve container.

A more recent study by Nasibov (2007) specified the task implementation

competence of a group of executives in the form of fuzzy relations for high-

performance allocation of tasks. The two optimization criteria considered in the

study were the maximization of the aggregated degree of competence of the entire

allocation, and the maximization of the degree of the overall level of employment of

standard executives. Aggregation was performed by means of the Hurwicz operator

and the Ordered Weighted Average (OWA) operator, which rendered the model

more flexible and allowed the decision-maker to pursue different strategies. A two-

stage heuristic algorithm was proposed for the solution of the problem, which was a

generalized variant of task allocation, which is a special case of BPP. An analysis of

different algorithms and assessment of the results of computational experiments were

conducted. In the general version of task allocation, the skill of the executives was

not taken into account, only the quantitative constraints of the workload were

considered. However, through the use of the theory of fuzzy sets, it was possible to

take into account high-performance relations between tasks and executives in the

form of fuzzy relations.

Through careful analysis of the studies in literature, the following main

application areas of multi-dimensional BPP problems and their fuzzy versions are

identified as follows:

 Loading problems (container, vehicle, pallet, cargo),

 Job scheduling, budgeting problems,

 Packaging design, loading area,

 Cutting stock, trim loss problem, textile/apparel applications

22

 Mechanical and electronical design (nanotechnological),

 Multiprocessor scheduling, load balancing,

 Resource (memory, space, operating room) allocation,

 Task allocation,

 Genetic engineering, biophysics,

 Parallel query optimization,

 Wireless telecommunications (data transfer),

 Assessment of approximation algorithm complexities.

Among these application areas, the multi-dimensional packing problems in

wireless telecommunications dealing with resource allocation in wireless data

transfer constitute the main focus area of this thesis. For this reason, the following

section presents a detailed review of the studies on multi-dimensional BPP,

pertaining specifically to the wireless telecommunications domain.

2.3 Multi-dimensional Packing in Wireless Telecommunications

In order to better grasp the contributions by the studies in this area, we first

present some basic terminology below.

The WiMAX (Worldwide Interoperability for Microwave Access) is one of the

broadband wireless access technologies, which is based on the IEEE 802.16 standard

(2009). This standard with its last ammendment (IEEE 802.16m, 2011) achieved the

distinction of being recognized as a true 4G technology by the International

Telecommunication Union (ITU). 802.16m, which is also called as WirelessMAN-

Advanced or WiMAX-2, has been recently (March 31
st
, 2011) approved by IEEE as

a new global standard for mobile WiMAX. The aim of this technology is providing

wireless data transfer using various transmission modes, including point-to-

multipoint connections and portable or fully mobile cellular type access. A WiMAX

base station (BS) can provide broadband wireless access in range up to 50 kms for

fixed stations and 5 to 15 kms for mobile stations (MS) with a maximum data

download rate of up to 1 Gbps and upload rate of 100 Mbps (IEEE 802.16m, 2011).

23

Apart from its technical qualities, three features of WiMAX mainly attract

attention of the researchers (So-In et al., 2009a; Necker et al., 2008). These are:

(1) the use of Orthogonal Frequency Division Multiple Access (OFDMA),

(2) multiple Quality of Service (QoS) classes that define priorities between data,

voice and video transmissions for satisfying service guarantees, and

(3) the so-called Media Access Control (MAC) scheduler of the BS, which

utilizes the first two aspects.

The first feature, namely OFDMA, is based on Orthogonal Frequency Division

Multiplexing (OFDM), which is a spread-spectrum technique for state-of-the-art

broadband wireless systems. The frequency spectrum used for communications is

divided into a large number of frequency subcarriers to serve different terminals in

the same time intervals and through the same physical channels.

The second feature, namely the QoS classes, allows the BS to classify the

terminals according to parameters like minimum throughput requirements regarding

data transmission rates, and the delay constraints. The QoS support in wireless

network connections is much more demanding than in wired networks due to its

highly variable and unpredictable nature, depending both on time and locations of the

terminals.

The last feature of WiMAX, i.e. the MAC scheduler, constitutes the main focus of

this thesis, and is responsible for two tasks concerning resource allocation. The first

is to determine the terminals that will be served in a specific time frame, thus

forming a service queue while also determining the amount of data required for each

terminal. This task depends mainly on the QoS parameters used for that particular

network, and is studied under names like burst construction (Ohseki et al., 2007) or

packet scheduling (Wongthavarawat & Ganz, 2003). The second task of the MAC

scheduler is to assign time and frequency intervals to each terminal, referred to as

frame packing, packet mapping or burst mapping in the literature (Ben-Shimol et al.,

2006; Bacioccola et al., 2007; Ohseki et al., 2007; Necker et al., 2008; So-In et al.,

2009b). Henceforth, we prefer to use the term “frame packing” in our study.

24

IEEE 802.16 standard does not impose any specific admission control

mechanisms or resource allocation mechanisms for the scheduler. Therefore, the taks

of the MAC scheduler, or scheduling in general, becomes a significant research area

for all WiMAX equipment makers and network service providers. So-In et al.

(2009a) provided an extensive review for the main issues considered in designing

these mechanisms. The authors explained the physical layers and QoS classes

defined in the IEEE 802.16 standard, and classified the schedulers based on channel

state awareness. They listed various criteria and scheduler design factors with respect

to different QoS considerations, which shape the algorithms and heuristics proposed

in the literature. Throughput maximization and minimizing power consumption are

among the major criteria while ensuring system scalability regarding the algorithm

complexity.

In frame packing, the frame to be packed is a two-dimensional structure defined in

the IEEE 802.16 standard using OFDMA, in which the frequency channel is divided

into multiple subcarriers. These subcarriers are grouped into a number of

subchannels. The time axis of the frame typically covers a 5 milisecond (ms)

duration. Each user terminal is allocated a certain number of subchannels for a

certain amount of time. Bidirectional data transfer can be achieved in two ways (So-

In et al., 2009a):

(1) By frequency division duplexing (FDD) in which uplink (MS-to-BS

direction) and downlink (BS-to-MS direction) transfers use different

frequency bands,

(2) By time division duplexing (TDD) in which the uplink (UL) traffic follows

the downlink (DL) traffic in time dimension.

Hence, each frame consists of DL and UL subframes. Figure 2.2 shows these in

TDD mode. In FDD mode, the DL and UL subframes go parallel in time.

25

Figure 2.2 A sample OFDMA frame structure in TDD mode (Source: So-In et al., 2009b, pp. 1)

User terminals are mapped to rectangular areas (referred to as bursts) in the

OFDMA frame. The unit of allocation in WiMAX is a “slot”. The data transmission

capacity of a slot depends upon the subchannelization, or modulation and coding

methods. The standard allows more than one burst per mobile station, which

increases the downlink map (DL-MAP) overhead, that is, the amount of control data.

The DL-MAP and uplink map (UL-MAP) define the burst-start time and burst-end

time, modulation types and forward error control mechanisms for each MS.

Other terms and parts of the frame shown in Figure 2.2 can be explained as

follows: The preambles are used for time synchronization. Frame Control Header

(FCH) defines MAP lengths and usable subcarriers. Transmit-receive Transition Gap

(TTG) is the duration that the BS switches from transmit to receive mode, and

Receive-transmit Transition Gap (RTG) occurs when the BS switches from receive

to transmit mode. Channel Quality Indicator (CQI) is used to pass the channel state

condition information. Each OFDM symbol is 102.8 microseconds (μs), so a 5ms

frame is equal to a duration of 48.6 OFDM symbols. (So-In et al., 2009a; So-In et al.,

2009b). The standard also allows more than one connections packed into one burst

(burst compaction). However, in each case, the MAC scheduler is required to place

26

rectangles in the frame as efficiently as possible under technology and traffic-specific

constraints.

The related multi-dimensional BPP literature is mainly on TDD systems, and in

particular, on the packing of the DL subframe. Wongthavarawat & Ganz (2003)

performed one of the very few studies on UL packing. They presented an UL packet

scheduling algorithm and admission control policy to provide QoS support in terms

of bandwidth and delay bounds for different traffic classes. They investigated the

factors which affect the network performance through a simulation model.

Most studies on the DL subframe allocation problem aim to maximize the packing

performance in a single frame, averaging and simplifying the QoS constraints of

service users such as demand levels, subscription priorities, minimum transmission

rate or maximum allowable delay (So-In et al., 2009a). As it was stated before, the

BS performs periodically the tasks of selecting which data packets will be

transmitted to the users (mobile stations) in the forthcoming frame, usually based on

QoS requirements summarized above; and grouping the selected packets to

rectangular data regions and allocating them to the frame disjointly in a way that they

do not overlap with each other. Hence, there is a two-stage approach comprised of

two periodical scheduling decisions, the first one about selecting the transmission

target stations and their corresponding physical features on the frame structure, and

second one on how to place the corresponding rectangles on the frame without any

overlap. Cohen & Katzir (2008) named these stages as macro and micro scheduling

problems respectively, and analyzed their computational complexity aspects

developing two interdependent approximation algorithms. They transformed the

macro scheduling problem into the Multiple Choice Knapsack Problem and showed

that it can be solved in pseudo-polynomial time. Rather than achieving higher

resource allocation rates, they aimed at simplifying the second phase by reducing the

number of mobile stations to be packed in the DL subframe without considering any

priorities or profits.

27

Ben-Shimol et al. (2006) were the first to introduce an OFDMA frame packing

algorithm. They presented two heuristics, with and without QoS constraints, which

were evaluated by extensive simulation experiments using the parameters of real

systems. They placed the data bursts row by row with a non-increasing size order.

Ohseki et al. (2007) proposed a burst construction and frame packing method in the

DL subframe. Their objective was not only to decrease the control data ratio within

the rectangles, but also the control data that must be transmitted at the head of every

frame, to reach higher throughput. They defined deadlines for each connection using

the QoS parameters and ordered them according to the remaining times to deadlines.

As the number of bursts to be packed in a frame increases, so does the running

time of the packing solution. Similarly, when a single terminal connection is mapped

into multiple rectangular areas as in a study by Bacioccola et al. (2007), additional

DL-MAP overhead causes inefficient usage of network resources. This particular

case may be effective when the connection really requires different reliable channels

using different modulation and coding schemes for different connections, despite the

additional cost incurred. In the burst compaction case where multiple terminals are

packed into a single burst, the unique connection identifier (CID) helps differentiate

the terminals. The DL-MAP overhead is reduced, but may lead to decoding delay at

the terminal side.

Necker et al. (2008) proposed a genetic algorithm for the DL frame packing

problem. Simulating the network traffic with three different QoS classes, they

applied the Next-Fit-Decreasing-Height (NFDH) strip packing approach to maximize

DL capacity utilization. In strip packing, the objective is to pack all items within the

minimum height. They based their genome modeling on the variable width and

height dimension sizes of the DL bursts, since there are many possible height and

width combinations corresponding to a burst area.

The shapes of the rectangles may change according to the defined objective of the

problem. For example, minimum power consumption objective forces the allocated

rectangles to smaller widths, hence smaller processing times on mobile stations, as in

28

So-In et al. (2009b). The authors introduced an algorithm for the DL frame packing.

They approached the BS resource allocation, or MAC resource scheduling, in two

steps. First, the scheduler sorts each user terminal in a descending order based on

their demands for satisfying the QoS throughput guarantee. Then, the bursts are

packed from right to left and from bottom to top in the DL subframe. The authors

chose the burst shape that is smallest in width to allow the receiving MS to shut

down its electronic circuit for the remainder of the DL subframe, thus minimizing

energy consumption. They enhanced their algorithm in a further study to reduce

complexity by fixing width or height of the bursts, still ensuring the required QoS

parameters (So-In et al., 2009c). In a similar way, the maximum bandwidth usage

refers to a full height utilization of a frame, which corresponds to the utilization of

the complete frequency range of the BS.

Israeli et al. (2008) approached the problem in a rather different way, although

they name it as a sequential rectangle placement problem. They aimed to pack a

queue of MS data packets, and investigated the complexity of subframe allocation as

regards the ratio of data region areas to subframe area. They specified an order of

data packets (jobs) using strict priorities. Hence for a user’s rectangle to be placed in

the DL subframe, they required all the higher-priority packets to be packed before it.

They showed that their problem is NP-hard, but also that it could be approximated

within a constant factor if every packet size was limited to some constant fraction of

the frame area.

Wang et al. (2008) proposed a low complexity heuristic algorithm depending on

weighted flexibility definitions for minimizing different type spaces in the downlink

subframes, by adapting a quasi-human based heuristic from a previous study (Wu et

al.,2002). They did not handle any type of priorities among the users, either.

The most relevant and important contribution regarding the problem considered in

this thesis in the wireless telecommunications context is a recent study by Lodi et al.

(2011). The authors introduced two highly efficient heuristics that were developed to

handle the DL subframe allocation problem practically. The processing budget of the

29

base station’s scheduling process was estimated not to exceed a 1 ms on a state-of-

the-art PC (2.40 GHz, CORE 2 DUO E6600 Desktop, running under Linux).

Different than our homogeneity assumption regarding the same data transmission

capacity for each slot (as will be explained in the following chapter while defining

the problem), they allowed different modulation and coding schemes (MCS) in the

same DL subframe defined by two zone structures. In this manner, their approach in

a way was able to handle channel quality feedbacks from the users. They also took

the downlink and uplink map overhead trade-off into account arising from the

allocation of a large number of users in one subframe. The first one of these DL

subframe zones was called the distributed subcarrier permutation, and the other the

adjacent subcarrier permutation zone. The former one corresponds to the

homogeneous structure employed in our model, so each slot can carry the same

amount of data to every MS. But for the second zone, each MS (user) can provide

detailed information regarding the target transmission/receive rate per defined logical

bands. Namely, in this zone the data packet size cannot be expressed as a number of

slots. The locations of the slots in the zone matter, hence the rectangle sizes for a

user in each logical band of the zone might be different.

The authors defined two different allocation models for the zones explained above

and analyzed the problem complexities, considering their special cases by Hurkens et

al. (2011). They proved strong NP-hardness for both models. The optimization

algorithm for the Distributed Permutation Zone problem was based on a previous

study by Cicconetti et al. (2010). Some of the algorithm procedures used the greedy

approach for the subset-sum and dual subset-problems. Although these produced

solutions with the same waste amounts, the associated packings were quite different

from each other. As for the Adjacent Permutation Zone problem, the authors

developed a two-step algorithm, differentiating the packing of high priority large

sized data packets and the rest. They reformulated one of these steps as a generalized

assignment problem, and adapted a heuristic from the knapsack literature (Martello

& Toth, 1990).

30

Lodi et al. (2011) also conducted an extensive analysis of the algorithms with

realistic parametrization and traffic load for IEEE 802.16, proving that they can still

provide sufficiently good solutions even when configured for fast execution instead

of optimality. They compared both algorithms with the most relevant ones in the

literature (Wang et al. 2008; So-In et al. 2009b) and proved superior performance.

They claimed that the proposed algorithms and the zone architecture are compatible

with realistic QoS schemes, and could be applied in real-world BS MAC units.

Finally it should be noted that, the average solution times for both algorithms were

around 0.1 ms, much lower than their initial 1 ms target.

In view of the thoroughly-reviewed literature in this chapter, we can conclude that

any kind of modeling and solution attempt to the problem considering the latest

technology is of great value to the wireless communication domain, and will

contribute significantly to the existing literature. Including new features of the

Mobile WiMAX technology in the models for taking into account the most recent

telecommunications industry requirements is essential. The success of the developed

models and algorithms will also depend on the solution performances attained by

sufficient experimentation with realistic problem instances.

31

CHAPTER THREE

PROBLEM DEFINITION AND MATHEMATICAL MODELS

The main focus of this study is the resource allocation problem, which is defined

as a bin packing problem on a two-dimensional structure that is proposed by the

IEEE 802.16 standard using OFDMA. The problem context and the basic

terminology were previously presented in Section 2.3.

We extend the common features of the frame packing problem model to include

more general characteristics of the wireless data transfer processes involved. Apart

from building and presenting representative mathematical models, which are not

presented explicitly in most of the related studies in the literature, we lay the

foundations for some fuzzy measures and parametrization to mimic more realistic

evaluation of actual network resources.

Our problem is an extended form of the multiple knapsack problem with identical

capacities (Kellerer et al., 2005). Identical bins or knapsacks correspond to the

frames in time division duplexing (TDD). In addition, we deal with extra constraints

and seek different objectives other than profit maximization for being able to handle

various decision making alternatives. The item or demand sizes are not fixed, which

requires nonlinear terms to be incorporated into the model.

As it was stated in Chapter 1 and will be explained further in the following

sections, by taking into account the time division structure of the resource allocation

sequence and other features of the telecommunications standard, we extend the two-

dimensional nature of the problem to three-dimensional by adding additional

knapsack and partitioning constraints.

In the following sections, we present exact nonlinear integer programming models

with different objectives. The fuzzy variants of these models that adapt most of the

constraints with respect to multiple objectives are also presented in this chapter.

32

3.1 Sequential Rectangular Packing (SRP) Problem

We propose a resource allocation modeling framework for a sequential two-

dimensional packing problem which may have direct applications in wireless

telecommunications area pertaining to the IEEE 802.16 standard. All the models

described in this chapter aim optimal usage of the physical layer defined by this

standard, which characterizes the data packages sent from a base station to a fixed or

mobile network service user station. The data transmitted for each user are modeled

as rectangular blocks, dimensions of which correspond to time duration and

frequencies used in the wireless data transfer process. Placement of these rectangular

blocks in identical rectangle bins called frames, whose dimensions are identified by

the unit transfer time (usually 5 ms.) and a fixed frequency bandwidth depending on

the base station’s technological specifications, is modeled as a two-dimensional

packing problem.

As reviewed in the previous chapter, most studies in the area aim to maximize the

packing performance of a single frame employing strip packing techniques. These

models assume identical user demand levels per frame subject to quality of service

(QoS) constraints such as minimum transmission rate or maximum allowable delay.

Shapes of the rectangles depend on the objective of the problem, which can be

minimizing power consumption or maximizing bandwidth usage or throughput.

In this study, a planning horizon is composed of a sequence of frames (as opposed

to a single frame) for representing the dynamic nature of the problem. Allowing

varying demand sizes for each user, the aim is to solve interdependent multiple

packing problems integrated with service level constraints. We hereafter name this

problem as Sequential Rectangular Packing (SRP) Problem.

We propose four mathematical models for the SRP problem, which differ

according to the objectives and the constraints involved. Three of these are exact

nonlinear integer models whereas the last one is a fuzzy optimization model. Before

delving further into each model's specific details, we firstly identify our common

assumptions as realistically as possible. Thus, we aim a thorough representation of

33

the up-to-date technology specifications that are valid and commonly used for all the

models mentioned in this chapter. Next, we introduce the parameters of our problem

such as the length of the frame sequence that corresponds to the planning or so-called

scheduling horizon for base station resources, or QoS restrictions for each user. After

we define the decision variables and their relations with each other, we outline our

mathematical models.

3.1.1 Assumptions for the SRP Models

We henceforth label the subscriber stations (mobile or fixed) which require

wireless data transfer from the base station as “users”. Each user can be allocated at

most one burst (rectangular area) in a frame. Hence, in our study, the issues of burst

compaction or utilizing more than one burst in a frame for one user are not

considered. All models allocate the base station resources in a continuous manner,

within the solution process and among separate solutions. In particular, the solution

of a frame sequence is used as input parameter for the following sequence’s problem.

Some parameters correspond to measures or demands of ongoing data transfers,

allowing the introduction of new user demands and eliminating some users in

previous sequences which have completed their transfers.

Regarding the service quality constraints, we consider the minimum data transfer

rate requirements and maximum allowable delay period parameters. A two-

dimensional unit area used is named as a “slot”, consistent with the related literature.

Without loss of generality, we assume an identical data transmission capacity for

each slot, ignoring possible modulation and coding differences allowed by the

wireless telecommunications standard. Each slot can carry the same amount (bytes)

of data resulting in homogenous frames in terms of frequency subchannels. Namely,

rectangles that have the same areas correspond to the same amount of data carriage

capacities even when they are placed on different frequency channels.

As the number of bursts or number of user rectangles that are to be packed in a

frame increases, so does the downlink map (DL-MAP) size of a frame. A dynamic

34

assignment of DL-MAP size, which depends on the number of rectangles packed, is

not considered in the models. Alternatively, we reduce the width of the frames by a

fixed size for all the problem instances. So for example, instead of a 17x30 sized

frame which fits most of the problems in the literature, we use a narrower 12x30

frame to be able reserve the remaining 5x30 block for DL-MAP allocation.

Some of the SRP models aim to serve all user demands in the given sequence. For

obtaining feasibility for these models, we assume that the capacity of the frames can

cover total demand for the respective period. For other models aiming at profit

maximization, we ignore the respective capacity constraints for feasibility, and allow

for choosing the best or profitable candidate set of user demands to be packed

optimally.

Without loss of generality, all parameters are assumed to be positive integers. We

present our parameter notations and definitions below.

3.1.2 Indices and Parameters

Two indices are used for identifying users and frames. User index is iI =

{1,...,n}, where n= number of users to be allocated through the frames; whereas we

index the frames by jJ = {1,...,m}, where m= number of frames in the sequence

(planning horizon).

Other parameters concerning resource and service level requirements are:

di : Total amount (in slots) of requested data (new or remaining) for user i,

si : Minimum data transfer rate (slots/frame) for user i,

i = min{msi, di} : Data amount (in slots) to be transferred / assigned throughout

the frame sequence,

pi : Profit gained by satisfying the data demand i of user i,

λi : Maximum delay period (in frames) for user i in order not to cause any timeout

error (data transfer interruption),

35

W : Frame width, H : Frame height, A = WH : Frame area (all frames identical in

size),

i
i

A




 
  
 

 : Minimum number of frames to which user i should be assigned,

θi : Latest frame to maintain or to begin the data transfer for user i (≤ λi for

ongoing transfers, equal to m+1 for users to whom transfers are yet to be scheduled).

It should be noted that, when a user i is selected for transfer and the demand di is

not totally satisfied in the frame sequence of a problem instance, its demand will be

updated as di = di - i for the next frame sequence.

Recall that we assume all parameters di, si, i, pi, λi, W, H, αi and θi  Z+ (positive

integers), iI. The length of the frame sequence, m, is one of the experimentation

parameters listed in the next chapter. For use in the fuzzy extensions of the models,

the parameters di and λi form the most appropriate choices for the application of the

flexibility assumptions more naturally. Hence, the quality degrees might be evaluated

according to the demand satisfaction levels and the allocation interval (or delays)

values of all users, for such a purpose.

3.1.3 Decision Variables

We define the following binary and integer variables for our models. It should be

noted that some of the SRP models do not use all of these variables:

1 , user is selected for data transfer in the frame sequence,
, .

0, .
i

if i
u i I

otherwise


  


1 , there is a transfer for user in frame (assigned a rectangle),
, , .

0, .
ij

if i j
z i I j J

otherwise


    


xij : x-coordinate of the left-bottom corner of the rectangle assigned to user i in

frame j.

yij : y-coordinate of the left-bottom corner of the rectangle assigned to user i in

frame j.

36

wij : Width of the rectangle allocated to user i in frame j.

hij : Height of the rectangle allocated to user i in frame j.

aij =wij hij : Area of the rectangle allocated to user i in frame j.

1

(1)

 , for 1,
,

, for 1.

i i

ij

i j ij

a j
r i I

r a j





 
  

 
, total remaining demand for user i after frame j.

The artificial binary variables, which will be explained below, are:

ζij, γpqjk, and δpqj.

3.2 Sequential Rectangular Packing with Profit Maximization (SRP-I)

In the first SRP model, we aim to allocate the base station resources to the most

profitable subset of users. The characterization of the profit depends on the context,

in which the problem instance is defined and solved. Obviously, the users who are

charged more than the others by the service provider are more likely to be favored.

On the other hand, profit levels might also correspond to subscriber priorities, e.g.

when allocating network resources in case of humanitarian aid situations where

uninterrupted communication between government or civil agency members is

crucial. As another example, the profit could be associated directly with the demand

value as in a subset sum problem. Namely, the higher the data demand of a user as in

video transmission requests, the higher its profit level.

In any of the above definitions of the profit parameter, it might be stated that there

seems no difference between handling the problem on a single frame and through a

sequence of frames. Actually, the selection of the most profitable subset is the same

for both, and corresponds to a one-dimensional knapsack problem. However, when it

comes to optimal or even feasible packing of the user rectangles in a frame, the

number of users do matter for practical solutions. Distributing the users over a frame

sequence using some additional constraints, the sizes of the single frame packing

problems may reduce. This will present an opportunity for obtaining acceptable

solutions in shorter times, despite the difficulty of the problem that considers the

packing of all users. Therefore, instead of simple averaging of user demand that

37

corresponds to equal rectangle sizes in each frame, we allow different partition sizes

of user demand in each frame, as long as all feasibility constraints are satisfied

according to QoS parameters.

SRP-I represents a realistic modeling approach considering similar examples in

the literature where an optimal selection or scheduling takes place besides the two-

dimensional packing. Based on the definition of the profits assigned to each user, the

most rewarding of the feasible packings are sought. In a way, we convert a modified

multiple knapsack problem with identical capacities to a combination of a 1-D

knapsack and a simultaneous partitioning-and-packing problem. When the profits are

identical to demands (i.e., when pi = i), the user selection process is analogous to a

multiple subset-sum problem. Partitioning is restricted according to the demand sizes

and QoS constraints, while packings only deal with area allocations.

For this model, the problems that correspond to the case i

i I

mA


 are not

considered. In this case, the problem reduces to packing all n users in a single frame

with updated i values i/m. According to the above, the SRP-I model is defined as

follows:

max K i i

i I

Z p u


 (3.1)

 s.t.

, .ij i i

j J

z u i I


   (3.2)

, , .ij iz u i I j J     (3.3)

, .ij ij i i

j J

w h u i I


   (3.4)

, , , .ij ij ij ijx w W y h H i I j J        (3.5)

1 (1) ,

1 (1) ,
, .

,

,

ij ij ij

ij ij ij

ij ij ij

ij ij ij

z x W z

z y H z
i I j J

z w Wz

z h Hz

    


    
   

  
  

 (3.6)

38

 

1

1 (1)

0,1 , , .
,

i

ij ij i ij

j
ij

ik ij ij i

k j

A r

i I j J
z z j m



  


 



 

    


    
    




 (3.7)

(1),im i ir u i I    (3.8)

 
1,

0,1 , , , ,
2 ,

pj qj pqj

pqj

pj qj pqj

z z
p q I p q j J

z z






   
     

  

 (3.9)

 

   

1

2 1, 2

1 2

1 ,

1 , 0,1 , , , , .

2 ,

pj pj qj pqj

qj qj pj pqj pqj pqj

pqj pqj pqj

x w x W

x w x W p q I p q j J



  

  

   



         


   

 (3.10)

 

   

3

4 3 4

3 4

1 ,

1 , , 0,1 , , , , .

2 ,

pj pj qj pqj

qj qj pj pqj pqj pqj

pqj pqj pqj

y h y H

y h y H p q I p q j J



  

  

   



         


   

 (3.11)

 

 
1 3

2 4

1 2 3 4

2 1 ,

2 1 , , , , .

.

pqj pqj pj pqj

pqj pqj qj pqj

pqj pqj pqj pqj pqj

z

z p q I p q j J

  

  

    

   



        


    

 (3.12)

(1) 1,i i im u m i I        (3.13)

1

, .
i

ij i

j

z u i I




   (3.14)

xij, yij, wij, hij, aij ≥ 0, iI, jJ. (3.15)

The objective function in (3.1) is the maximization of the total profit gained from

the users that are selected for data transfer. First two constraints (3.2) and (3.3) link

the decision variables ui and zij. The nonlinear constraint (3.4) enforces the

satisfaction of the user demand through the sequence of frames, if it is selected.

Obviously, this means that the rectangle sizes can vary even if the area values are the

same, as long as the total demand is satisfied. Constraint (3.5) simply limits the

boundaries of each user rectangle for fully fitting in a frame, while constraint (3.6)

defines the bounds of variables xij, yij, wij, hij, aij in relation with zij. The maximum

delay constraint (3.7) both bounds the values of the variable rij and forces the

39

allocation of a user rectangle in a frame, if the total demand is not satisfied according

to the QoS parameter λi. The binary variable ζij = 0 if rij > 0 (nonzero remaining

demand), and 1 otherwise. Thus, constraint (3.8) enforces that there is no remaining

demand after the last frame for the selected users.

Constraints (3.9)-(3.12) deal with feasible placements of user rectangles,

preventing overlaps on the two-dimensional frame area. For determining the users

allocated in the same frame, the variable δpqj is used in (3.9)-(3.12). δpqj = 1 if both

user p and q are allocated in frame j, and 0 otherwise. Constraint (3.10) manages the

horizontal positions of the user rectangles. The variable γpqj1 assumes the value of 1 if

the rectangle of user p is situated on the left of the one of user q in frame j, and γpqj2

is similarly defined for the rectangle of user q. Constraint (3.11) is the vertical

positioning version of (3.10); and in a similar fashion, γpqj3 equals 1 if the rectangle

of user p lies below the one of user q in frame j, and γpqj4 is defined vice versa.

Constraint (3.12) links all the related binary variables used in (3.9), (3.10) and (3.11)

for avoiding unnecessary overlap checks.

Lastly, constraint (3.13) enforces the selection of a user if his data transfer still

continues from previous problem instances/sequences by using the θi parameter

values, while constraint (3.14) restricts the latest beginning frame of these ongoing

transfers. The nonnegativity of the integer decision variables is imposed by the

constraint (3.15).

As presented above, SRP-I extends the rectangular allocation aspect of the frame

packing problem defined in the literature, using the QoS constraints to a 3D structure

by considering the sequential time frame element as an additional dimension via the

binary decision variables and partitioning constraints defined.

3.2.1 Complexity Results for SRP-I

We next show that the special case of SRP-I where all i are integer multiples of

W (or where all i are integer multiples of H) is NP-hard in the ordinary sense, and

40

prove through transformation from the Binary Knapsack Problem, which is known to

be weakly NP-hard (Garey & Johnson, 1979). The following theorem states this

result formally:

Theorem 3.1. The SRP-I problem with either;

 i = ΩiW, ∀i, where Ωi is a nonnegative integer multiplier, or

 i = ΩiH, ∀i, where Ωi is a nonnegative integer multiplier

is NP-hard in the ordinary sense.

Proof. Note that, for any of the above special cases, once the user subset to be packed

is selected, an efficient strip packing solution without any overallocation is readily

available. Namely, as the demand of each user is an exact multiple of the

width/length of the frame, an optimal solution will assign a rectangular area to each

user exactly equal to its demand. Therefore, our concern is to find whether there

exists a feasible subset of users F such that i

i F

p P


 , where P is a positive integer.

To prove the complexity result, we reduce the Knapsack Problem to this special

case of SRP-I. In an instance of a Knapsack Problem, we are given a set {1,...,k} and

with each one of its elements i is associated two positive integers qi and vi, reflecting

the size and the value of i, respectively. Moreover, let Q and V be two positive

integers. We are asked to find a subset U{1,...,k}such that i

i U

v V


 and i

i U

q Q


 .

Given this instance of Knapsack Problem, we construct the following instance of

SRP-I:

 n = k users

 i = qi for i =1,..., k

 pi = vi for i =1,..., k

 A = Q / m for each of the m frames

 P = V

Note that, solving this instance will solve the knapsack instance as well. The

Knapsack Problem is NP-hard in the ordinary sense, so are the given special cases of

SRP-I. 

41

Corollary 3.1. The SRP-I problem is NP-hard in the ordinary sense.

Proof. Without the special demand structure defined by the special cases in Theorem

3.1, an optimal solution without any overallocation is not trivial for a selected subset

of users. As the general version of the problem is at least as hard as its special cases,

the proof follows. 

3.2.2 Lower and Upper Bounds for SRP-I

In this section, we propose a lower bound and an upper bound for the SRP-I

problem. In order to establish the proposed upper bound, we first pose the following

theorem and proof.

Theorem 3.2. Consider the following instance of the continuous knapsack problem

(CKP):

 k = n items

 qi = i for i =1,..., k

 vi = pi for i =1,..., k

 Q = mA.

The corresponding mathematical model for the CKP can be expressed as:

max UB i i

i I

Z p u




s.t. i i

i I

u mA


 ,

where 0 1, .iu i I   

Solution of this instance will provide an upper bound for SRP-I.

Proof. An exact solution of CKP, having a capacity equal to the total area of all

frames, provides a relaxation on SRP-I in the following manner: First, it relaxes the

rectangular packing structure and assumes that the demand of the selected user

subset can be packed using any tetris-like pattern. Second, it allows partial demand

allocation for the last selected user. Hence, it provides an upper bound for SRP-I. 

42

Based on Theorem 3.2, an exact solution for the defined continuous knapsack

problem, hence an upper bound for SRP-I, can be obtained in polynomial time by the

following algorithm (Dantzig, 1957):

AlgorithmUB

S1. Index the items (corresponding to users in SRP-I) in nonincreasing order of

their pi/i ratios,

S2. Find the first item (in order) that does not fully fit into the knapsack.

Mathematically, find:

1

min :
i

i

j

s i mA


 
  

 
 .

S3. The optimal solution is:

1iu  for 1,..., 1i s  ,

0iu  for 1,...,i s n  ,

1

1

s

i

i
s

s

mA

u














,

and the upper bound value is computed as:

1

s

UB i i

i

Z p u


 .

In order to obtain a simple and tight lower bound for the SRP-I problem, the

following algorithm is used.

AlgorithmLB

S0. Consider a W by H single frame having area A.

Set i ← i / m, ∀i ∈ I.

 min min ,D W H and  max max ,D W H .

Compute the number of unit strips of length Dmin required for packing each

demand. A unit strip of length Dmin is defined as a rectangle having one

43

dimension as Dmin and the other as one. The number of unit strips necessary

for user i is:

min

, .i
iN i

D

 
  
 

S1. Index the users in nonincreasing order of their pi/i ratios.

S2. Find the first item (in order) that does not fully fit into the frame.

 Mathematically, find:

max

1

min :
i

i

j

s i N D


 
  

 
 .

S3. The lower bound solution is:

1iu  for 1,..., 1i s  ,

0iu  for ,...,i s n ,

 and the lower bound value is computed as:

1

1

s

LB i i

i

Z p u




 .

We incorporate the above upper and lower bounding procedures developed in this

section, namely AlgorithmLB and AlgorithmUB, into the exact solution scheme of

SRP-I, as will be explained in Chapter 4.

In the next sections, the two SRP models that cover the case i

i I

mA


 , that is,

the sum of all user demands being smaller than the total available area, are described.

They differ from SRP-I mainly by their objective functions, and they might be used

firstly as individual problems when the sum of all user demands can be satisfied, as

described in the following sections. Also, they may be defined as subproblems that

incorporate additional criteria over the SRP-I profit maximization, to form a multi-

criteria perspective.

44

3.3 Sequential Rectangular Packing with Minimum Partitions (SRP-II)

In this model, no profit is defined for satisfying the data demand of a user.

Therefore, we either deal with the case where all users are considered for packing

with all their i fitting in the sequence of frames, or another objective is sought for

packing an already selected subset of users. SRP-II model is developed for finding

frame allocations that are as little fragmented as possible. Namely, the number of

user rectangles or partitions placed in all frames is minimized.

As an example, let us consider a mobile station's downlink demand of 100 slots.

We can partition this demand as 60 and 40 slots over two frames, and place

according to other constraints, say with rectangle dimensions 4x15 and 5x8,

respectively. On the other hand, let us suppose that there is the alternative of

assigning the same demand to a square with sizes 10x10. Then, assuming all

remaining feasibility conditions are satisfied, the second alternative with fewer

partitions (one rectangle instead of two) should be selected according to the objective

of SRP-II.

Although we have already stated our assumption that ignores the DL-MAP

overhead, the objective of minimizing the number of rectangles contributes a lot in

this direction for practical applications and might be employed when the number of

users is high. Hence, by calculating the actual DL-MAP sizes for our packing

solutions, we are able to measure solution performances better and solve the same

packing problems with more realistic updated frame sizes.

As mentioned above, since there is not a selection of a user subset with respect to

profit, the decision variable ui is not included in this model. Thus, the related

constraints are modified or omitted accordingly. The SRP-II model formulation is

below:

min P ij

i I j J

Z z
 

 (3.16)

 s.t.

45

.i

i I

mA


 (3.17)

, .ij i

j J

z i I


   (3.18)

, .ij ij i

j J

w h i I


   (3.19)

, , , .ij ij ij ijx w W y h H i I j J        (3.5)

1 (1) ,

1 (1) ,
, .

,

,

ij ij ij

ij ij ij

ij ij ij

ij ij ij

z x W z

z y H z
i I j J

z w Wz

z h Hz

    


    
   

  
  

 (3.6)

 

1

1 (1)

0,1 , , .
,

i

ij ij i ij

j
ij

ik ij ij i

k j

A r

i I j J
z z j m



  


 



 

    


    
    




 (3.7)

0,imr i I   (3.20)

 
1,

0,1 , , , ,
2 ,

pj qj pqj

pqj

pj qj pqj

z z
p q I p q j J

z z






   
     

  

 (3.9)

 

   

1

2 1, 2

1 2

1 ,

1 , 0,1 , , , , .

2 ,

pj pj qj pqj

qj qj pj pqj pqj pqj

pqj pqj pqj

x w x W

x w x W p q I p q j J



  

  

   



         


   

 (3.10)

 

   

3

4 3 4

3 4

1 ,

1 , , 0,1 , , , , .

2 ,

pj pj qj pqj

qj qj pj pqj pqj pqj

pqj pqj pqj

y h y H

y h y H p q I p q j J



  

  

   



         


   

 (3.11)

 

 
1 3

2 4

1 2 3 4

2 1 ,

2 1 , , , , .

.

pqj pqj pj pqj

pqj pqj qj pqj

pqj pqj pqj pqj pqj

z

z p q I p q j J

  

  

    

   



        


    

 (3.12)

1

1, .
i

ij

j

z i I




   (3.21)

xij, yij, wij, hij, aij ≥ 0, iI, jJ. (3.15)

46

Constraint (3.16) is the minimization objective for the number of total rectangles

placed in all the frames. Constraint (3.17) provides the trivial check for the total user

demand, so that all user areas can fit in available area at least initially. Constraints

(3.18) and (3.19) are modified forms of the constraints (3.2) and (3.4) of SRP-I,

excluding the decision variable ui. Similarly, constraint (3.20) is the modified version

of constraint (3.8); enforcing that there is no remaining demand after the last frame

for all users.

Since all the users must be placed in this model, by utilizing constraint (3.21)

instead of its counterpart (3.14) in SRP-I, the latest beginning frames of all ongoing

user transfers are bounded. It should be noted that this constraint becomes redundant

for users with new transfers (θi = m+1), because constraint (3.18) already handles

more. The rest of the constraints are similar to those in the SRP-I model, as well as

the nonnegativity of the decision variables except rij.

Next, we show that the special case of SRP-II where all users are placed in every

frame in the sequence is strongly NP-hard:

Theorem 3.3. SRP-II problem is strongly NP-hard.

Proof. The area packing problem APP described in Hurkens et al. (2011) is a special

case of the SRP-II problem that is defined on a single frame, the proof follows. 

3.4 Sequential Rectangular Packing with Minimum Overallocation (SRP-III)

The objective of the third model, namely SRP-III, is the minimization of

overallocation or wasted space, which occurs due to the discrete nature of the

problem. The same user demand or area can be satisfied by different sizes of

rectangles, and since all parameters and variables are integers, some solutions might

include rectangle placements with excess (wasted) spaces within.

47

For example, let a user S has a demand of 51 slots. Both a rectangle placement

with sizes 3x17 and one with 2x26 satisfy her demand. All other constraints fulfilled,

SRP-III model simply prefers the former solution over the latter as no overallocation

occurs. In the latter case, there is an overallocation of 1 slot, computed as: 2x26 –

51=1.

Similar to the main assumption stated in SRP-II, all users can be considered for

packing and there is no decision regarding the selection of users to be packed. Hence,

the only difference of SRP-III from SRP-II lies in the objective function, which aims

the most efficient utilization of the downlink frame areas. All the constraints being

identical with the SRP-II model, the SRP-III model is defined as follows:

min O im

i I

Z r


  (3.22)

 s.t.

.i

i I

mA


 (3.17)

, .ij i

j J

z i I


   (3.18)

, .ij ij i

j J

w h i I


   (3.19)

, , , .ij ij ij ijx w W y h H i I j J        (3.5)

1 (1) ,

1 (1) ,
, .

,

,

ij ij ij

ij ij ij

ij ij ij

ij ij ij

z x W z

z y H z
i I j J

z w Wz

z h Hz

    


    
   

  
  

 (3.6)

 

1

1 (1)

0,1 , , .
,

i

ij ij i ij

j
ij

ik ij ij i

k j

A r

i I j J
z z j m



  


 



 

    


    
    




 (3.7)

0,imr i I   (3.20)

 
1,

0,1 , , , ,
2 ,

pj qj pqj

pqj

pj qj pqj

z z
p q I p q j J

z z






   
     

  
 (3.9)

48

 

   

1

2 1, 2

1 2

1 ,

1 , 0,1 , , , , .

2 ,

pj pj qj pqj

qj qj pj pqj pqj pqj

pqj pqj pqj

x w x W

x w x W p q I p q j J



  

  

   



         


   

 (3.10)

 

   

3

4 3 4

3 4

1 ,

1 , , 0,1 , , , , .

2 ,

pj pj qj pqj

qj qj pj pqj pqj pqj

pqj pqj pqj

y h y H

y h y H p q I p q j J



  

  

   



         


   

 (3.11)

 

 
1 3

2 4

1 2 3 4

2 1 ,

2 1 , , , , .

.

pqj pqj pj pqj

pqj pqj qj pqj

pqj pqj pqj pqj pqj

z

z p q I p q j J

  

  

    

   



        


    

 (3.12)

1

1, .
i

ij

j

z i I




   (3.21)

xij, yij, wij, hij, aij ≥ 0, iI, jJ. (3.15)

The objective function in (3.22) is simply the negated sum of the values of the

decision variables rij after the last frame, which is equivalent to the total

overallocation. All constraints are identical with SRP-II, and presented here again for

the sake of completeness.

49

CHAPTER FOUR

COMPUTATIONAL RESULTS

For validating and testing the models developed in this thesis, two different data

sets have been generated for computational experimentation. The computational

results pertaining to these data sets are presented in this chapter. In Section 4.1, we

present the experiment design and results for the first data set, which has a single

class of demand and random profits. Section 4.2 describes the data with two classes

of demands and two classes of profits, and the corresponding computational results

are supplied.

4.1 Data Set 1: Data with a Single Demand Class and Random Profits

The first data set was designed by considering 24 different combinations of three

parameter levels. 10 instances were generated from each combination adding up to a

total of 240 instances. Differentiating only the number of users, frames and frame

area sizes, overall experiment design for Data Set 1 is summarized in Table 4.1.

Table 4.1 Parameter levels for Data Set 1

Parameter name Levels

n (# of users) 10, 20, 40, and 80

m (# of frames) 2, 4, and 8

A = WxH (frame area in slots) 360 (12x30) and 1200 (20x60)

di ~ UD (16, 128)

pi ~ UD (48, 240)

λi ~ UD (1, m)

θi m+1 (all transfers new)

50

As summarized in Table 4.1, the demand and profit values for this data set are

uniformly generated independently from each other. All users are assumed to belong

to a single demand class, and the profits are generated randomly for all users. Subset

sum logic might be employed using the same problem inputs whenever necessary, by

simply putting pi = di.

Both problem generation and solution processes are automated by a console

application developed in C# programming language on MS Visual Studio 2010 IDE

(integrated development environment). The three models presented in Chapter 3 are

tested and validated on GAMS 23.9 using BARON 11.5 (Tawarmalani and Sahinidis

2005) and SCIP 2.1.2 (Achterberg et al. 2008; Achterberg 2009) as different MINLP

solvers. Moreover, the application design easily allows integration of different

solvers and algorithms on top of the existing ones developed for this thesis. The

visual packing results are obtained by developing Excel macro codes in Visual Basic

language.

The PC configuration used for experimentation was above average with 2.30 GHz

CORE i7 3610QM processing power, 8 GB RAM memory and run on 64-bit

Windows 7 operating system. Example GAMS codes for SRP-I, SRP-II and SRP-III

are provided in Appendix A.1, A.2 and A.3, respectively.

The distributions of the problem instances according to user demand density,

which is the ratio of total demand to available area, and the overall model sizes in

terms of decision variable and constraint counts are given in Table 4.2.

Of all the generated instances, 135 instances that correspond to the case where

i

i I

mA


 are used only for testing and comparing the solutions of models SRP-II

and SRP-III, which do not involve user profits. The rest (105 problem instances)

have demand densities higher than 100%, and these are considered for testing the

SRP-I model. A 20-minute runtime limit is employed for all solutions.

51

Table 4.2 Demand densities and model sizes for Data Set 1

n A (WxH) m
Demand density

(%)

Average # of

decision variables

Average # of

constraints

10

12x30

2 109 617 1325

4 48 1221 2588

8 26 2441 5147

20x60

2 28 611 1306

4 14 1221 2585

8 8 2441 5146

20

12x30

2 201 2241 4870

4 99 4447 9600

8 51 8881 19093

20x60

2 61 2221 4810

4 30 4441 9569

8 15 8881 19094

40

12x30

2 392 8481 18540

4 207 16921 36939

8 101 33785 73605

20x60

2 117 8481 18541

4 59 16881 36741

8 30 33761 73377

80

12x30

2 759 32961 72282

4 394 65841 144274

8 203 131601 288276

20x60

2 236 32961 72281

4 117 65841 144285

8 61 131521 287570

An initial set of runs for the SRP-I problem were completed without employing

any of the explicit bounds proposed in Section 3.2, and the results are presented in

Table 4.3. In this case, no problem could be solved to optimality. Furthermore, as it

can be observed in Table 4.3, feasible solutions of only 25 of the instances could be

52

found by either one of the solvers within the given runtime limit of 20 minutes as

shown by the # of incumbent solutions column. In particular, SCIP solver reached

feasible solutions for 23 instances in total, 21 of which has better objective values

than the ones obtained by BARON, which obtained 9 feasible solutions in 105

instances.

Table 4.3 Results for incumbent solutions of SRP-I without incorporating any bounds (Data Set 1)

n A (WxH) m
of

instances

of incumbent

solutions

Average

gap (%)

Average # of

rectangles

Average # of

users packed

10 12x30 2 6 6 7 15 8

20 12x30
2 10 4 51 12 8

4 3 2 89 7 4

40
12x30

2 10 0 - - -

4 10 1 96 2 2

8 6 0 - - -

20x60 2 10 4 68 21 13

80

12x30

2 10 0 - - -

4 10 0 - - -

8 10 0 - - -

20x60
2 10 1 75 19 12

4 10 7 93 7 5

The gap averaged over 10 instances is used as a performance measure, where the

gap percentage is defined as the difference between the best upper bound solution

and the best/incumbent lower bound solution obtained during the runtime limit (if

not optimal) by the solver, as a percentage of the upper bound solution.

Mathematically;

Incumbent Solution
% Gap = .100Solver

Solver

BestUB

BestUB


. (4.1)

53

As it can be seen from Table 4.3, except the smallest problem instances with 10

users, the average gaps are quite high. Average number of rectangles and users

packed are also shown in the table. The objective value of the instance with the

smallest gap value of 4.3%, which was proven to be optimum by an unlimited-time

run, belongs to a 10-user instance solution. The corresponding packing for this

solution is illustrated in Figure 4.1. Such a visual representation of the solution is

generated automatically in MS Excel as output for each problem instance by the

developed codes. Some example problem input and output files are provided in

Appendix B. Figure 4.1 is directly taken from such an output file.

The problem input corresponding to Figure 4.1 has 10 users, with a total demand

of 735 slots and potential profit of 1550, which are to be packed over 2 frames, each

with size 12x30. 621 decision variables and 1336 constraints were evaluated by the

SCIP solver to reach the objective value of 1483 in 13 seconds, which couldn't be

proven to be optimal in 20 minutes.

Figure 4.1 SRP-I solution for a problem with 10 users packed over 2 frames

54

Note that, 9 of the 10 users are selected for packing in 17 partitions (rectangles)

over 2 frames, with a total overallocation of only 10 slots. The average area of the

rectangles placed is 39 slots, compared to the average demand 74 per user.

In order to improve the solution performance for the SRP-I problem, the lower

and upper bounds defined in Section 3.2.2 were incorporated into the model, and a

second set of results were obtained for the same 105 instances by using only the

SCIP solver and a 10-minute runtime limit. The results are presented in Table 4.4.

The table lists the instances and corresponding experimental parameters, along with

the performance measure values. The codes for AlgorithmLB and AlgorithmUB can

be found in Appendix C.1 and C.2, respectively.

Table 4.4 Results for incumbent solutions of SRP-I employing lower and upper bounds (Data Set 1)

n A (WxH) m # of instances

Average

initial gap

(%)

Average

final gap

(%)

10 12x30 2 6 7.8 4.6

20 12x30
2 10 13.8 13.1

4 3 10.7 10.6

40
12x30

2 10 14.3 14.3

4 10 19.4 19.4

8 6 24.2 24.0

20x60 2 10 12.2 12.2

80

12x30

2 10 17.3 17.3

4 10 26.5 26.5

8 10 38.9 38.9

20x60
2 10 18.9 18.9

4 10 24.7 24.7

As the lower bound obtained by AlgorithmLB, which was presented in Section

3.2.2, is employed in this case, all instances have an initial feasible solution.

55

Therefore, we report the corresponding initial gap percentage between the lower

bound and the initial upper bound found using AlgorithmUB (see in Section 3.2.2),

averaged over 10 instances. The initial gap percentage is computed as:

lg lg

lg

LB
% Initial Gap = .100

A orithmUB A orithmLB

A orithmUB

UB

UB



The average final gap percentage values attained by the solver are also shown in

Table 4.4, which are computed using equation (4.1).

Although only one optimal solution was obtained in the 10-minute running limit,

the average gap values listed in Table 4.4 are far superior compared to those

presented in Table 4.3. The optimal solution corresponds to the same problem

instance used in Figure 4.1, this time obtained in just six seconds as a result of the

employment of bounds, and is shown in Figure 4.2.

Figure 4.2 SRP-I solution for the same problem employing bounds

56

It should also be noted that the optimal packing of the problem shown in Figure

4.2 has a fewer number of rectangles, 13 as opposed to 17 of Figure 4.1, but with a

much higher overallocation of 40 slots in total. Consequently, the average area (53

slots) of the rectangles placed is larger.

The difference between the two set of SRP-I runs suggests that, implementing

bounds such as the ones described in Section 3.2.2, and probably more sophisticated

ones, can improve the solution performance further either for exact or approximate

solutions.

As for the SRP-II and SRP-III models, no feasible solution could be obtained for

problem instances having 40 or 80 users within the time limit. The results for other

problem instances with 10 and 20 users are presented in Table 4.5. All problem

instances with 10 users are solved to optimality by the two models using either one

of the solvers. The shortest solution times performed by any of the two solvers are

taken into account while averaging.

Table 4.5 Comparison of SRP-II and SRP-III solutions for n=10, 20 (Data Set 1)

* Numbers of incumbent solutions reached within the 20-minute limit are given in parentheses.

57

The number of optimal solutions obtained by the solver out of the given number

of instances are listed in the table as well as the average number of rectangles placed,

the average best solution times and the maximum solution times (in seconds) for

each parameter combination, by distinguishing model parameters such as frame size

(A) and frame sequence length (m). It should be noted that the number of user

rectangles allocated in SRP-II solutions are significantly lower than in the SRP-III

solutions of the same instances, which justifies this study’s motivation for using the

SRP-II objective for minimizing the number of partitions. For example, when n=10,

m=4, and A=12x30, the SRP-II solution allocates 13 rectangles in average, as

opposed to an average 29 rectangles placed by the SRP-III solutions.

The difference in the solution times of the 10-user instances suggests that

minimizing the number of rectangles is a more complex objective than minimizing

overallocation. This might also be observed by looking at the number of optimal

solutions obtained within the runtime limit for the 20-user problems. On the other

hand, the difference in average solution times are significant as the number of users

doubles, where the duration gets much higher with the increasing number of

variables and constraints.

The variances of average solution times seem higher for the problems with 10

users and small frames (A=12x30) for both models. This is because of the higher

demand densities for the 2-frame problems (Table 4.2), and therefore, tighter

instances. On the other hand, for the instances with larger frame area (A=20x60), the

SRP-II solutions take longer as the number of frames, m, increases. For the same

setting, SRP-III solutions show the opposite trend and take shorter times. This result

is expected, since as observed in Table 4.5, SRP-III assigns rectangles in each frame

to almost every user to minimize overallocation with no partitioning concern, which

allows finding solutions in shorter times when compared to tighter settings with

fewer frames.

Two example packings generated by using SRP-II and SRP-III models are

presented in Figures 4.3 and 4.4, respectively.

58

Figure 4.3 SRP-II solution for a problem with 10 users packed over 2 frames

Figure 4.4 SRP-III solution for the same problem with 10 users over 2 frames

59

The same problem input is used for both models: 10 users, with a total demand of

694 slots, are required to be packed over 2 identical frames of size 12x30. A total of

611 decision variables and 1309 constraints are handled by the solvers. The SRP-II

GAMS code for this instance is provided in Appendix A.2.

In Figure 4.3., in line with the objective of SRP-II, the total number of placed

rectangles are 14 instead of 20, which would be the trivial value if the problem aimed

packing all 10 users in every frame. As seen from the figure, placing only 5 user

rectangles was sufficient for the second frame, and the demands of only 4 users are

partitioned through both frames (users 1, 4, 6 and 7). The total overallocation of the

solution is 9 slots.

In contrast, the total number of rectangles allocated in SRP-III solution is 18,

while no overallocation occurred, as seen in Figure 4.4. All demand is partitioned

through two frames except users 8 and 10. As expected, the average rectangle area

value is larger in SRP-II solution (50 slots) than in SRP-III (39 slots), which is

another hint allowing us to distinguish the differences in objectives.

As stated above, the objective of minimizing the number of partitions proves itself

worthy in terms of the reduction of items to be packed. Specifically in the second

frame of Figure 4.3, only 5 rectangles are packed instead of 10. Furthermore, it

should be noted that the objective of minimizing overallocation might be better

handled on a single frame for simplicity, as there seems no significant reduction in

the number of rectangles involved (Table 4.5).

In terms of solution time, SRP-III solution for this specific problem instance was

obtained in much shorter duration than for SRP-II, 19 seconds and 692 seconds,

respectively.

60

4.2 Data Set 2: Data with Two Demand and Profit Classes

After examining the results of the runs with Data Set 1 for the exact nonlinear

integer programming models developed in this thesis, it can be safely stated that the

theoretical problem difficulties are reflected appropriately. For a more thorough

analysis, in order to test other network scenario conditions that can simulate real life

packet traffic load, the structures and parameters of similar problem instances from

the literature are investigated in detail, and adapted as Data Set 2 for further

computation. The experiment results for this data set are provided in this section.

For practical purposes, and for compensating our assumption that ignores the DL-

MAP overhead, all problem instances with 80 users are omitted from Data Set 2.

Examining the results of Section 4.1, it is obvious that the highly combinatorial

nature of our problems make it nearly impossible to obtain solutions in acceptable

times for large numbers of users involved (Tables 4.2, 4.3). All instances with large

frame areas (A=20x60) are also omitted from the data set due to the fact that, as the

demand densities are lower for these instances and the packings are distributed in a

very sparse manner, the solutions become trivial and meaningless to evaluate the

performance of the proposed sequential approach.

For being able to simulate real network traffic load within our experimentation

boundaries, two different classes of packet traffic are considered. Explicitly, user

demands are classified as data and voice traffic as in Lodi et al. (2011). Moreover,

the problem instances in Data Set 2 are generated from two different distributions of

these classes, namely 75% data versus 25% voice traffic, and 50% from each.

Hereafter, the distribution of users with 75% data and 25% voice traffic class will be

denoted as TR1, and the latter distribution with 50% of each class as TR2.

The main difference between these TR1 and TR2 are due to their traffic activity

levels and packet sizes (Lodi et al., 2011). It is assumed that the MSs with data traffic

are always active, i.e., the BS has always backlogged data waiting for transmission

directed to them. Thus, to mimic this continuous flow of data, their maximum delay

parameter values are assumed lower, to be exact, equal to 2 frames (10 ms) for all

61

computations. On the other hand, since voice applications have a discontinuous

nature, which assumes lower probabilities for packets waiting for transmission from

the BS side, the maximum delay values for users with voice traffic are chosen as

discrete uniform in the interval [3, 8].

In addition to the classification of demand, as opposed to the independent random

assignment of profit values regardless of the user demand levels in Data Set 1, the

users with voice traffic are prioritized in Data Set 2. Namely, higher profit

coefficients are used for voice traffic than the ones used for data traffic. The

parameter settings used for Data Set 2 are listed in Table 4.6.

Using the settings in Table 4.6, 180 problem instances were generated in Data Set

2, where 82 instances that correspond to the case i

i I

mA


 are used for testing and

comparing the solutions of SRP-II and SRP-III, and the rest (98 problem instances)

with demand densities higher than 100% are considered for testing SRP-I. All

instances are tested on the SCIP solver within a 10-minute running limit. The results

of the new runs are analyzed in the same way presented in Section 4.1 and the same

computer configuration is used for the runs.

The distributions of the problem instances according to user demand density,

defined as the ratio of total demand to available area, and the overall model sizes in

terms of the number of decision variables and constraints are presented in Table 4.7.

The main differences in Data Set 2 as compared to Data Set 1 are the introduction

of user classes that differ by demand sizes, respective profit values, and maximum

delay parameters. As presented in Table 4.7, the model sizes do not change, since

they are only dependent on the values n, and m. However, the demand densities of

the new problem instances are about 10% higher than the problems of Data Set 1.

62

Table 4.6 Parameter levels for Data Set 2

Parameter name Levels

n (# of users) 10, 20, and 40

m (# of frames) 2, 4, and 8

A = WxH (frame area in slots) 360 (12x30)

User class distribution (data + voice) 75% + 25% and 50% + 50%

di,data or di,voice ~ UD (12, 192) or UD (10, 80)

pi,data or pi,voice di [UD (1, 6)] or di [UD (6, 12)]

λi,data or λi,voice 2 or ~ UD (3, 8)

θi m+1 (all transfers new)

Table 4.7 Demand densities and model sizes for Data Set 2

n m

Demand density (%) Average # of

decision

variables

Average #

of

constraints

75% data +

25% voice

50% data +

50% voice

10

2 119 104 618 1321

4 69 58 1221 2585

8 27 23 2441 5155

20

2 237 203 2241 4861

4 117 91 4452 9619

8 63 57 8881 19118

40

2 482 425 8481 18521

4 227 214 16921 36933

8 126 98 33789 73679

63

As an initial experiment, the 98 instances are tested for the SRP-I problem without

using any of the bounds proposed in Section 3.2.2. In this case, no problem could be

solved to optimality by the SCIP solver within the 10-minute time limit, and only 19

feasible solutions could be obtained. Four of the feasible packings in the 10-user, 2-

frame instances that belong to TR1 and TR2 distributions have about 2% gaps, one of

which was proven to be optimal in 4 seconds by the SRP-I runs employing bounds. It

should be also noted that, three of these feasible solutions are trivial packings that

packed only one user, and even one rectangle. The results are presented in Table 4.8.

Gap computations are identical to those in Section 4.1.

Table 4.8 Results for incumbent solutions of SRP-I without incorporating any bounds (Data Set 2)

n
Traffic

distribution
m

of

instances

of incumbent

solutions

Average

gap (%)

Average #

of

rectangles

Average #

of users

packed

10
TR1 2 8 8 12 14 8

TR2 2 5 5* 6 14 8

20

TR1
2 10 1 48 6 3

4 9 0 - - -

TR2
2 10 2 58 8 6

4 2 0 - - -

40

TR1

2 10 0 - - -

4 10 0 - - -

8 10 3 96 1 1

TR2

2 10 0 - - -

4 10 0 - - -

8 4 0 - - -

* One of these solutions are later proven to be optimal.

Similar to the runs executed in Section 4.1, SRP-I solutions to the same instances

are explored by incorporating the lower and upper bounds developed in Section

3.2.2. Since AlgorithmLB is now employed in the solution mechanism, all instances

64

presented in Table 4.8 have guaranteed initial feasible solutions. Moreover, for two

of the 10-user, 2-frame instances, one of which belongs to TR1 and the other to TR2,

optimal packings are obtained within 10 and 4 seconds, respectively. The

corresponding average initial and final gaps attained are reported in Table 4.9 in a

similar fashion to Table 4.4.

Table 4.9 Results for incumbent solutions of SRP-I employing lower and upper bounds (Data Set 2)

n
Traffic

distribution
m

of

instances

Average initial

gap (%)

Average

final gap

(%)

10
TR1 2 8* 6.8 3.6

TR2 2 5* 10.0 5.1

20

TR1
2 10 15.0 14.0

4 9 13.6 13.5

TR2
2 10 16.8 15.3

4 2 15.4 15.0

40

TR1

2 10 14.9 14.9

4 10 20.8 20.8

8 10 23.3 23.3

TR2

2 10 16.3 16.3

4 10 23.3 23.3

8 4 21.3 21.3

* Two of these instances are solved to optimality and not included in this table's calculations.

The gap values in Table 4.9 are very close to the ones summarized in Table 4.4. It

seems that whatever the demand densities are, the dominant factor determining the

solution time and quality is the problem size, which is defined by the number of

users and frames involved. Therefore it can be stated that the SRP-I model is robust

in terms of demand density parameter.

65

One of the two optimal solutions, which is obtained in 10 seconds by the SCIP

solver, is shown in Figure 4.5. Nine of the 10 users are packed, with an

overallocation of 5 slots, by filling up all the available area of the two frames. In this

instance, there is only one user (user 1) with voice traffic demand (28 slots).

However, having a relatively higher profit coefficient, it contributes to the 6% of the

optimal total profit gained despite its relatively smaller transfer size (4% of the total

demand packed). This is a direct result of the data generation scheme used for Data

Set 2, which involves generating profit values dependent on demand classes. The

SRP-I GAMS code for this instance is provided in Appendix A.1.

Figure 4.5 SRP-I solution for a problem with 10 users packed over 2 frames with traffic distribution

TR1 (75% of users with data + 25% voice traffic)

For the sake of completeness, SRP-II and SRP-III models for the remaining 82

instances were also executed, despite the lacking effect of different profit classes but

only higher average demand sizes. In line with the results of Section 4.1, no feasible

66

solution could be obtained for problem instances having 40 users within the runtime

limit.

The results for problem instances having 10 and 20 users are summarized in Table

4.10. Nearly all problem instances with 10 users are solved to optimality by the two

models, regardless of their traffic distributions. As noted before, the determining

factor affecting the solution performances of these models remains to be the user

demand size.

Table 4.10 Comparison of SRP-II and SRP-III solutions for n=10, 20 (Data Set 2)

* Number of incumbent solutions reached within the 10-minute limit are given in parentheses.

Nevertheless, the two entries in Table 4.10 regarding the average solution times of

10-user, 4-frame instances for SRP-III model with both traffic distributions are worth

mentioning. To be precise, excluding the worst, the average solution times of the

remaining 9 instances become 1.2 and 0.7 seconds respectively for the TR1 and TR2

cases, instead of 23.7 and 5.4 seconds.

Two optimal packing examples from the mentioned setting (10 users, 4 frames)

with TR1 distribution are given in Figures 4.6 and 4.7 for comparison. It should be

noted that the first instance (Figure 4.6) with 80% demand density was solved to

67

optimality within 226 seconds by packing 27 rectangles, while the latter (Figure 4.7)

having 71% demand density was packed in 0.4 seconds in 40 rectangles. Although

both optimal values are zero, it seems that SRP-III is much easier to solve when the

demand density is lower. In fact, all instances of the same setting except the one

shown in Figure 4.6, have demand densities of at most 77%, and have been solved to

optimality in times shorter than 2 seconds. The SRP-III GAMS code for the instance

in Figure 4.7 is provided in Appendix A.3.

Figure 4.6 SRP-III optimal packing by 27 rectangles of a problem with 10 users over 4 frames with

traffic distribution TR1 (75% of users with data + 25% voice traffic); with average user demand of

116 slots

Figure 4.7 SRP-III optimal packing by 40 rectangles of a problem with 10 users over 4 frames with

traffic distribution TR1; with average user demand of 102 slots

68

4.3 Discussion

The computational results presented in this chapter illustrate the complex nature

of the problems defined in this thesis. A thorough experimentation was performed on

two separate data sets with different structures, and the analysis suggests that,

although slightly different results are obtained for the performance of the models

among the two data sets, the difficulty of obtaining repeated solutions of the problem

in short periods of time remains unchanged under changing conditions.

Therefore, the inherent complexity of the problem intuitively forces the utilization

of approximation approaches instead of trying to attain exact solutions. Examining

the results, one can argue that the solution times for even the smallest problems are

very poor and unacceptable for most practical situations.

The practical computational target set by Lodi et al. (2011) was ignored in this

thesis for obvious reasons. First, the significant differences between the structures of

the single and multiple frame problems render the computational target for the single

frame problem infeasible for the multiple frame problem. Second, the main aim and

motivation of this study is to introduce novel exact models for the new problem,

provide an insight, lay the groundwork and spread canvas for further studies.

Nevertheless, in addition to the explanation and discussion of the computational

results provided in Sections 4.1 and 4.2, we present and discuss in this section a

couple of alternative approaches for the proposed problem for obtaining faster

approximate results.

In the next sections, we briefly deliberate two alternative modeling and solution

ideas for reaching higher computational performance instead of obtaining optimal

solutions. The first is based on a decomposition scheme for the problem while the

second involves a two-phase heuristic approach. We believe that such approaches,

and probably some more advanced ones, can result in better solution times for small

problem instances while making it possible to tackle larger instances in future

studies.

69

4.3.1 Decomposition of SRP

The modeling approach in Chapter 3 employed for SRP involves simultaneous

partitioning and packing of the items along frames. An imminent idea for tackling

such problems is decomposition.

The problem SRP has two natural components. The first subproblem considers the

assignment of the users to the frames using maximum delay constraints, and

partitioning the user demands over the assigned frames. Thus, this subproblem

involves both the binary decision variables (zij) for frame selection and the demand

partition variables (aij) for satisfying the feasibility conditions imposed by the QoS

parameters.

The second subproblem on the other hand encompasses the packing of the

selected user partitions (rectangles) on their assigned frames. If the rectangle sizes

are assumed to be variable corresponding to same area values, as in SRP, it would be

wise to incorporate some efficient and well-known packing methods from the

literature.

According to the capabilities of the selected algorithm, if needed, some

randomized size-fixing approaches can also be incorporated as alternative solution

approaches. These will be mentioned in detail in the next section.

Obviously, each objective of the three SRP models requires different decision

priorities for the first subproblem, which involves user-frame assignments. For

example, when the maximization objective of SRP-I is considered, the users to be

partitioned should be selected by an adaptation of one of the efficient knapsack

solution approaches in the related literature (Kellerer et al., 2005).

The general flow of the decomposition approach can be summarized as below:

(1) Solve initially for zij and aij, and fix their values for the second subproblem,

(2) Fix the assigned rectangle sizes, wij and hij, and pack them without

overlapping for each frame,

70

(3) Compare the objective function value with the previous ones and the relaxed

bounds, update the best solution value, and terminate consequently either

after a fixed number of iterations or after a predetermined threshold is

reached.

As it can be seen from the above flow, the decomposition idea proposed here is a

basic divide-and-conquer strategy, employing a loop for two different models to

solve the SRP problem.

All the steps for this decomposition approach can be modeled on the same solvers

used in the experimental computations. The main aim is to reduce the initial problem

sizes, hence being able to obtain faster solutions for larger problems with more users

involved. However, the quality of the solutions should be evaluated carefully with

this approach, as it surely will yield suboptimal results.

4.3.2 Two-Phased Heuristic Algorithms for SRP

In this section, ideas for a two-phase heuristic approach for handling SRP are

presented. In such a heuristic, the first phase can handle the user selection and

partitioning as in the decomposition approach, while the second phase can consider

the packing of the partitioned demand through frames. Below, we list some possible

ideas that define the outline of this heuristic:

 As in the previous decomposition approach, the users to be partitioned can be

selected by an adaptation of efficient knapsack solution approaches (Kellerer et

al., 2005).

 Within the heuristic, two different approaches can be considered for

partitioning each user's total demand, namely i, over the frame sequence. So,

regardless of the packing algorithm chosen, one can employ two approaches

for this phase. Note that if a user is selected, it should be assigned at least to αi,

and at most to m frames.

71

 The first approach is a random partitioning, dividing i in random ti pieces,

where αi ≤ ti ≤ m. In this method, both the selection process of ti and the

areas of the pieces are randomly managed. The assignment of the pieces to

frames should be constrained by the maximum delay parameters, λi.

 The second partitioning approach involves the division of demand

parameter i in equal ti pieces, where again αi ≤ ti ≤ m holds.

 The output of this phase will be the initial frame assignments and areas, but

the sizes of the rectangles are still to be constructed by the rectangle packing

stage of the heuristic. In both approaches, the idea is simply to begin the

packing process as quick and with fewer rectangles per frame as possible.

 For the packing phase of the problem, or explicitly for the DL subframe

allocation subproblem, again it is possible to select among the many existing

algorithms in the literature.

 As summarized in Chapter 2, the algorithm developed by Cicconetti et al.

(2010), which was represented again in full detail by Lodi et al. (2011) for

optimally packing of the so-called distributed permutation zone, is one such

appropriate method. The name of the algorithm is recursive tiles and stripes

(RTS). But, since the authors also take the DL-MAP overhead issue into

account, an adaptation of the algorithm is required for SRP.

 Another algorithm that could be implemented is the eOCSA algorithm,

which is developed by So-In et al. (2009b) for handling the BS resource

allocation problem in two stages: First, the scheduler sorts each user

terminal in a descending order based on their demands for satisfying the

QoS throughput guarantee. Then, the bursts are packed from right to left and

from bottom to top in the DL subframe. However, since the selection of

users is already present at this phase, it would be sufficient to focus on the

second stage of their algorithm.

The two-phase heuristic defined by the above outline is again based on a natural

decomposition of the problem into two-phases, hence relies on a divide-and-conquer

approach. It can be coded and implemented on any platform of preference, and will

72

produce different bounds for the problem if more than one approach is employed at

different phases. However, as the outline indicates, the quality and the runtime of the

solutions will be heavily dependent on the performance of the selected algorithms for

the separate phases. In addition, it must be kept in mind that the solution for the

decomposed problem, even when it is proven to be optimal, will still be suboptimal

for SRP, as it provides a relaxation on the original problem. Therefore, the

performance evaluation of such a heuristic requires extensive computational

experimentation.

As the computational complexities of the SRP models presented in Chapter 3

(Theorem 3.1, Corollary 3.1 and Theorem 3.3) and the computational results of this

chapter suggest, acceptable solutions to these problems in tolerable times are very

difficult to attain or simply impossible. For this reason, more flexible mechanisms

are required for still being able to maintain the novelty brought by SRP models, but

with more practical and realistic representations.

In order to reduce the SRP model sizes defined above, we bring forth some fuzzy

extensions in the next chapter by adapting consequential objectives and constraints.

The foundations for these fuzzy measures and parameters are introduced in order to

imitate a more realistic representation of the actual network resources for potential

practical problems.

73

CHAPTER FIVE

A FUZZY PERSPECTIVE FOR SRP

The frame packing solution approaches and typical bin packing algorithms in

literature do not allow for partial allocations of the items, as reviewed in Chapter 2.

Explicitly, an item must be placed fully in a bin, or cannot be placed at all by such an

approach. However, some service resource allocation problems such as wireless

communication systems may possess highly variable and unpredictable

characteristics. The service demand levels may not be exactly satisfied in some

periods of time, or with respect to some criteria.

As mentioned earlier in Section 2.2, Kim et al. (2001) introduced the fuzzy bin

packing problem defined as packing non-rigid rectangular items into an open

rectangular bin, namely as a strip packing problem. They employed fuzziness in the

height dimension by using triangular fuzzy numbers. Their aim was to minimize both

the height of a packing and the extra cost due to the size reduction of each item. The

authors presented a closed form solution by representing the total cost as the sum of

the height cost and the size reduction cost given by a quadratic function. Reducing

the height of an item decreased the overall height cost but increased the reduction

cost due to lower quality of the item according to the results of the study.

Nasibov (2004) proposed a new approach for the bin packing problem, which was

briefly summarized in Section 2.2, with the evaluation of the packing quality under

fuzzy source constraints. Using the bin packing notation, the items are to be allocated

in two sets of containers, one is comprised by m main containers Si and the second

having only one reserve container Sm+1. The author defined four fuzzy relations

between the items and the containers imposing certain constraints on the placement

of items, which are also mentioned briefly in the study by Eliiyi & Nasibov (2010).

The four fuzzy relations mentioned, which will be presented in this chapter in

detail, reflect simply the degrees of the mutual attachment of items, the mutual

compatibility of items, the mutual attachment of an item to a container, and the

74

mutual compatibility of an item to a container, resulting in several matrices whose

entries take values from the interval [0, 1]. Containers must be filled with respect to

certain conditions, e.g. sufficient degree of filling factor, so that the consistency

degree of the final packing is maximized and certain classical total indicators or

measures, such as volume or weight, are minimized for the items placed in the

reserve container.

Along these lines, we propose a framework to extend both the frame packing

models from the literature and the models developed in this thesis, by using an

adaptation of the fuzzy constraint approach of Nasibov (2004). Evidently, besides the

current objectives of the exact models, an overall quality concept of packing in a

single or a sequence of frames should be incorporated in the new models.

We introduce fuzziness in item areas (burst sizes) to be packed within frames, in

order to allow partial packing among frames. Assuming triangular fuzzy numbers for

area values, minimum admissible service rates and overallocation limits might be

more appropriately represented. Hence, by reducing the size of a user demand, more

rectangles can be packed in that frame by increasing the capacity utilization. The

remainder of the reduced user demand may be considered for packing in the next

frames of the sequence, or may not be packed at all, thereby reducing the overall

quality level while satisfying higher priority constraints. All these fuzzy user demand

sizes are defined as positive integers as in frame packing, which may depend on user

data packet classes, profit or priority levels. In addition, a continuous time basis

consideration of the frame packing problem might be employed by differentiating

between frames. Therefore, the frames are identical in size, but their order is

important.

Before we describe the adaptation of the fuzzy attachment and compatibility

relations that are defined by Nasibov (2004) in the next section, it should be noted

that the integration of these relations to existing models should be employed in as a

simple manner as possible. For example, an attachment value of 1 between an item

(user or rectangle) and frame will specify that the item must be packed in that frame,

75

and a zero value will assume no such restriction. In contrast, a compatibility value of

0 between items will indicate the items shouldn’t be placed together in any frame,

while 1 will describe an absolute independence when placing those in the same

frame. To keep the new fuzzy models simpler, some of these relations may be

omitted, which are not relevant depending on the nature of the problem or when

assigning the values of the corresponding relation matrices might not bring any

discernible benefits.

5.1 A General Fuzzy Packing Formulation

The first important contribution of the fuzzy approaches that are presented in this

section is the introduction of an overall packing quality level as a secondary

objective or performance measure. In this fashion, when the constraints of the

existing models are relaxed and suboptimal solutions are obtained, one could

measure the acceptability of these new solutions. In order to attain such a fuzzy

measure, Nasibov (2004) defined some mutual consistency degrees for containers at

hand. His notation is adapted in parallel to the terminology of this thesis, and

presented as below.

The items are denoted by user indices iI = {1…n}, and the containers by frame

indices jJ = {1...m}. There are also user classes Qk (k{1…}), equivalent to the

ones mentioned in Section 4.2, which group users according to their packet type, MS

features, demand sizes, subscription priorities, respective profit values, and

maximum delay parameters. Each of these user classes might enforce its specific

restrictions (QoS parameters) or constraints in the model.

There is an ordered sequence of frames with fixed rectangular sizes of width W

and height H, where m+1 is defined as the reserve frame. Every frame has an area A

equal to WxH. As mentioned in the beginning of this chapter, there are four fuzzy

attachment and compatibility relations within users and between users and frames

defined as follows:

76


1 1(,)R R p q is the symmetric and reflexive relation indicating the mutual

attachment degree of users p and q,


2 2(,)R R p q is the symmetric and reflexive relation indicating the mutual

compatibility degree of users p and q,


3 3(,)R R p j is the relation indicating the mutual attachment degree of frame

j and user p,


4 4(,)R R p j is the relation indicating the mutual compatibility degree of

frame j and user p,

where p,qI, jJ. For simplicity, we make use of the binary decision variables zij

and δpqj, which are defined in Chapter 3, here again. Note that zij = 1 if user i is

placed in frame j, and 0 otherwise. The other variable δpqj on the other hand, which

was first described in Section 3.2, and used particularly in constraints (3.9)-(3.12),

deals with feasible placements of user rectangles on the two-dimensional frame area.

Recall that δpqj equals 1 if both user p and q are placed in same frame j, and 0

otherwise.

The matrices representing the relations defined above may be generated or

defined with respect to service parameters, deadlines, item priorities or mechanisms

that utilize user specific transfer information. Using these fuzzy relations, the

consistency degrees for each frame could be defined as below.

1 1
,

() 1 max{ (,) | 1, 0}, .pj pqj
p q I

K j R p q z j J


      (5.1)

2 2
,

() min{ (,) | 1, 1}, .pj pqj
p q I

K j R p q z j J


     (5.2)

3 3() 1 max{ (,) | 0}, .pj
p I

K j R p j z j J


     (5.3)

4 4() min{ (,) | 1}, .pj
p I

K j R p j z j J


    (5.4)

K1(j) is the measure of separation of the users that are placed in frame j from those

that are not, with respect to their mutual attachment levels. K3(j) is the separation

measure defined according to attachment relations between the users that are not

77

allocated to frame j. Similarly, K2(j) corresponds to the mutual compatibility level of

users packed in the same frame, whereas K4(j) measures the compatibility between a

frame j and the users of rectangles which are placed in it. Thus, combining all these

degrees in one quantity, the following equation is obtained for overall quality level:

1 2 3 4min min{ (), (), (), ()}.
j J

K j K j K j K j


  (5.5)

Due to the fuzzy packing formulation of Nasibov (2004), for each pair of user

class Qk and set of users placed in a frame defined as Uj, the constraints might be

redefined as below:

(| ,) , , 1.. .k k j kjF i i Q U i I B j J k         (5.6)

where Fk's are defined as arbitrary linear functions over the domain of users

belonging to class Qk placed in frame j, and Bkj are convex fuzzy sets. The relation 

in constraint (5.6) may be any of the various comparison relations used for fuzzy

sets. In fact, the same constraints might also be formulated in the following manner

to reflect frame-wise constraints for the users of same class:

() , , 1.. .
k j

k kj

i Q U

F i B j J k 
 

     (5.7)

 These constraints may include some classical capacity considerations such as

total volume, area, weight or cost, as well as the service-quality-related parameters

such as maximum delay and minimum throughput encountered in

telecommunications.

Therefore, as regards to the definitions and constraints (5.1)-(5.6), the fuzzy

packing problem introduced in Nasibov (2004) can be reformulated as a bicriteria

optimization problem as follows:

max , (5.8)

78

1

min ()
mi U

F i


 (5.9)

 s.t.

(| ,) , , 1.. .k k j kjF i i Q U i I B j J k         (5.6)

where Um+1 is the set of users packed in the reserve container. It should be noted

that, while the original version of the fuzzy packing model defined above assigns

each user (items) exclusively to one frame (containers), we assume that the same

attachment and compatibility relations can be generalized and integrated to in the

partitioned demand nature of our SRP models.

For simplifying the solution of the problem presented above and being able to

estimate the overall quality level in advance, the maximization objective (5.8) can be

dropped and a satisfaction degree parameter g can be utilized. In this manner, the

fuzzy packing problem will be decomposed into a minimization problem comprising

a crisp objective for the reserve container and fuzzy constraints that depend on the

value of the parameter g. The decomposed version of the problem takes the

following form:

, (0,1].g g   (5.10)

1

min ()
mi U

F i


 (5.9)

 s.t.

(| ,) , , 1.. .k k j g kjF i i Q U i I B j J k         (5.11)

where relation g in constraint (5.11) corresponds to the fulfillment of the

constraint Fk with degree g. Moreover, for further improving the quality estimates,

some upper bounds for the feasible values of g are determined with their respective

proofs (Nasibov, 2004), and implemented in an algorithm developed for the solution

of the decomposed problem. Most relevant two of these bounds are also presented

here for the sake of completeness.

1 3 4
,

min max{1 (,), (,)}.UB
p I j J

g R p j R p j
 

  (5.12)

79

2 1 2
,

ˆmin max{1 (,), (,)}.UB
p q I

g R p q R p q


  (5.13)

In the above equations, 1R̂ is the transitive closure, which is equal to 1

1

nR 

composed by the recursive minimax product of the R1 relation matrices.

Besides the general approach presented above, we propose more SRP specific

perspectives regarding the particular problem parameters or decision variable. The

first parameter to be analyzed is the demand parameter of the users, as explained in

the next section.

5.2 Fuzzy Demand Definitions for SRP

As stated in the beginning of this chapter, due to highly variable and unpredictable

characteristics of wireless communication systems, service demand levels may not be

fully satisfied in some periods of packet transfers between base stations and user

stations. Moreover, having flexibility on minimum demand satisfaction rates of some

users or classes of users would allow faster and simpler solutions especially for large

problems, even reaching optimality for problem cases not reported in Chapter 4.

For this purpose, the SRP models developed in this thesis and presented in

Chapter 3 incorporate a i parameter to be able to reduce di levels for the problem's

time horizon to some extent. However, it is observed that, when large number of

users are to be packed (i.e. when n ≥ 20), more flexibility could be useful to further

facilitate solution performance. Thus, there is the additional question to assess the

tradeoff for distinguishing between an optimal solution in longer solution times and a

suboptimal solution in acceptable times. Obviously, exchanging optimality for fast

solutions amounts to incurring additional criteria, most of which depend on

subjective decisions.

Consequently, our first straightforward effort focuses on converting the demand

parameters i to triangular fuzzy numbers. In this manner, both the reduction in

80

demand satisfaction and the overallocation through the sequence of frames could be

handled simultaneously. To be more precise, we can define fuzzy demand parameters

,min ,max(, ,)i i i i    where all i,min, i , and i,max are positive integers. As expected,

i is the actual demand level that has the highest demand satisfaction level =1, and

the others depicting minimum demand size reduction and maximum overallocation

limits. The corresponding fuzzy parameter definition is summarized in Figure 5.1. It

can be said that fuzzy demand parameters penalize reductions in assigned areas or

overallocations by lower satisfaction levels , while relaxing feasibility conditions.

The penalties can be directly reflected also on the profit levels to have more tangible

performance measures.

Figure 5.1 A general fuzzy demand parameter definition for SRP models

As a simple illustration on a single frame packing, let’s assume that the downlink

data demands of two mobile stations p and q are defined by the triangular fuzzy

numbers (54,60,66), (42,47,52)p q   . Three possible rectangular placements of

the users in a frame j of size W=10, H=20 are shown in Figure 5.2. P1p, P2p and P3p

represent different rectangle orientations and shapes for user p with an ideal area of

60 units, whereas P1q, P2q and P3q for user q. In the first case of packing, user

rectangles P1p and P1q have sizes 5x12 and 4x12 respectively. The unit area

separately denoted as OA corresponds to the overallocated slot for user q (4x12 - 47

81

= 1). This case is obviously a feasible packing for all the SRP models developed.

Demand of user p is exactly satisfied, while overallocation of one slot for user q

results in a 80% overall packing quality level  for this case (computed as 80% =

(52-48) / (52-47)) by the corresponding membership function.

Figure 5.2 Possible placements of two users with fuzzy demands on a frame

Overall packing quality levels for Case 2 and Case 3 given in Figure 5.2 are

evaluated as 33% and 17% respectively in the same manner, and considered to be

infeasible for the crisp SRP models. It should be noted that, while the partial

satisfaction due to fuzzy demand parameters cause lower quality levels, the

remaining available unpacked (shaded in Figure 5.2) frame area of 92 slots in Case 1

increases gradually in the other cases (95 slots in Case 2, and 100 in Case 3),

allowing more space for probable placements of other user demands.

Regarding the adaptation of the fuzzy demand concept to SRP problems, the

necessary modifications are rather straightforward for the SRP-II and SRP-III models

where there is no profit involved. It might be more appropriate for the adaptation of

the SRP-I model to incur individual profit penalties defined by i, instead of an

overall quality level affecting the value of the objective function (3.1). Moreover, for

the profit maximization case, there is no need to impose an extra limit for

82

overallocations. Thus, a more appropriate definition of the fuzzy demand parameter

for the SRP-I problem should be similar to the one shown in Figure 5.3.

Figure 5.3 Fuzzy demand parameter definition for the SRP-I model

Therefore, in the adapted version of SRP-I for the cases of fuzzy demand values,

the modified versions of the objective function (3.1) and constraint (3.4) will take the

following form.

max i i iK
i I

Z p u


 (5.14)

,min ,min(()), .ij ij i i i i i

j J

w h u i I   


     (5.15)

In the above equations, i  [ti,1], and ti's (>0) are included in order to generalize

minimum demand satisfaction levels for each user. The rest of the constraints are the

same as defined in Section 3.2. Consequently, depending on the choice of utilization

of i, either as a decision variable or parameter, fuzzy SRP-I constitutes a convenient

alternative for producing acceptable solutions.

Following the same ideas, the SRP-II and SRP-III models can be adapted for the

fuzzy case (Figure 5.1) with an additional overall quality maximization objective and

by modifying constraint (3.19) used in both models as follows.

83

max (5.16)

,max ,max ,min ,min() (), .i i i ij ij i i i

j J

w h i I       


        (5.17)

Similar to the option mentioned for fuzzy SRP-I, objective (5.16) might be

dropped and the overall packing quality level  can be taken as a problem parameter

for fuzzy SRP-II and SRP-III. The bidirectional bounds imposed by constraint (5.17)

can be considered as a pseudo-bicriteria extension for SRP-II, as it also handles the

overallocation levels explicitly. Therefore, instead of solving a fuzzy version of the

SRP-III model separately, it might suffice to incorporate the overallocation in fuzzy

SRP-II model merely by using constraint (5.17). In any case, it is worth investigating

and experimenting on mechanisms for assigning precise values for parameters i,min

and i,max in order to reach significant performance gains.

5.3 Alternative Objectives for SRP with Fuzzy Information

Apart from the objectives of the SRP models proposed in Chapter 3, further

intuitive objectives come to mind. Three of these different approaches deal with

decisions regarding the last frame of the sequence. We propose these alternative

objective functions for SRP with fuzzy information in this section.

First and the simplest of these objective functions is the minimization of the total

area packed in the last frame of the sequence. Obviously, this objective replaces

those of SRP-II and SRP-III models, where the case i

i I

mA


 holds. Moreover, if

the demand density of the problem instance is very low, say less than (m-2)/m, then

the length of the frame sequence m should be updated accordingly in order to render

the objective function meaningful. Minimization of the total area packed in the last

frame of the sequence is evidently analogous to the reserve container objective (5.9)

of the fuzzy packing problem presented in Section 5.1, and may be expressed as:

84

min LA im

i I

Z a


 , (5.18)

where aim is the nonlinear decision variable for the area of the rectangle assigned

to user i in the last frame m. Note that, this new objective might be accompanied

either by the packing quality objective (5.8) and fuzzy attachment and compatibility

constraints (5.6) given in Section 5.1, or by the fuzzy demand linked objective (5.16)

and constraint (5.17) given in Section 5.2.

The arguments above are also valid for the second alternative objective function

proposed, which basically replaces (5.18) with the following.

min LP im

i I

Z z


 . (5.19)

The objective in (5.19) minimizes the number of rectangles placed in the last

frame, where zim is the binary decision variable describing whether user i is assigned

a rectangle in the last frame m.

The third objective pertaining to the last frame is essentially a makespan objective

directly relevant to the subframe packing problem for WiMAX, which minimizes the

latest completion time of all user transfers. Utilizing the time-axis positioning

decision variable xim and the rectangle width variable wim for each user in the last

frame, this objective can be expressed as:

min max{ }LF im im
i I

Z x w


  . (5.20)

Resuming the main scheme of this study and recalling the computational results

summarized in the previous chapter, the most significant challenge in bin packing

problems as well as in all frame packing models in the literature, is dealing with the

large number of items/users involved. For this reason, a sequential packing approach

has been proposed in this thesis to reduce the problem sizes and obtain faster

solutions for the new integrated problem. Especially, constraints (3.9) to (3.12),

85

which deal with the feasible placements of user rectangles on the two-dimensional

frame area, contribute a lot to the already highly-combinatorial nature of the

problem. Moreover, the computational experimentation for the SRP-II problem

suggests promising results that can be implemented for similar problems.

The last objective proposed in this section incurs the maximum number of users

involved in every frame of the sequence, named as the fragmentation level. For

example, let's assume that in a sequence of two frames there are 9 users packed in the

first frame and 7 in the second. The resulting fragmentation level of this packing is

equal to 9. Consequently, the objective is the minimization of this fragmentation

level, which can be expressed as:

min max{ }F ij
j J

i I

Z z




  . (5.21)

Although very similar to objective (3.16) of the SRP-II model, the main idea of

the objective in (5.21) is to maintain an overall balance regarding the user rectangle

population of each frame. In a way, DL-MAP overhead of the downlink frame is

tried to be minimized via distributing users as evenly as possible with this objective.

A crude lower bound for ZF in (5.21) can be computed as
F

n
Z

m

 
  
 

for problem

instances satisfying i

i I

mA


 . It should also be noted that this lower bound might

require to be updated if objective (5.21) is implemented together with the fuzzy

attachment relation R3 presented in Section 5.1.

In the next section, an example packing is used for generating some of the fuzzy

relational matrices presented in Section 5.1.

5.4 An Example Packing Using Fuzzy Relation Matrices

In order to assemble an intelligible and meaningful numerical example, only some

of the fuzzy relations defined in Section 5.1 are considered for simplicity. The

86

sample problem is the instance whose input file is given in Figure B.2 of Appendix

B.2, with 10 users over 4 frames of size 12x30, and having a demand density of 80%.

There are only two explicit classes of users with respect to packet traffic (data and

voice) type, mainly distinguished by their demand sizes and profit values, and

defined as Q1 and Q2, respectively. As for the fuzzy relations to be included in the

example for demonstration, the compatibility relations R2 and R4 within users and

between users and frames seem appropriate for this setting. In view of the fact that

the proposed approaches allow partitioning through different frames, attachment

relations might be too restrictive and irrelevant as objectives.

We start by defining relation R4 first, which is relatively straightforward. Assume

that users from class Q2 are prioritized; the transfers of users with voice traffic must

be finished earlier than the last frame. There is no such strict restriction for data

traffic users of class Q1. However, for demonstration purposes, let’s assume that a

compatibility value of 0.5 is assigned between any user and the last frame, if the

demand size of that user is at least half of a frame area. This compatibility scheme

will direct the packings of such users to earlier frames. Accordingly, fuzzy relation

R4 for the specific problem instance can be represented by the matrix in Table 5.1.

Table 5.1 Fuzzy relation matrix reflecting the mutual compatibility degrees between users and frames

(relation R4)

Users

Frames 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1

4 0.5 0 0 1 0.5 1 1 0 0.5 1

According to the assumptions listed above, one could easily recognize from the

contents of the table that the users with voice traffic are 2, 3 and 8, while users 1, 5

87

and 9 with data traffic have demands at least of 180 slots, i.e. more than half the

frame size.

For the fuzzy relation R2, a similar but more complicated scheme is required.

Recall that, in the definition of R4, the assignment of the users with large demand

sizes to the last frame is tried to be avoided. This strategy is adapted between such

users for compatibility relation R2 as follows: Some space should be allowed on the

last frame for some of the remaining demand partitions. For this purpose, the users

are ordered in their nonincreasing sizes of demand as a first step. Then, we simply

enforce m-1 users with the largest demand sizes to be assigned to separate frames,

setting their mutual compatibility degrees to 0. In the same manner, other mutual

compatibility degrees are defined according to the ratio of mutual demand sums of

users to a single frame area, and the resulting matrix is presented in Table 5.2.

Table 5.2 Fuzzy relation matrix reflecting the mutual compatibility degrees between users (relation

R2)

Users 1 2 3 4 5 6 7 8 9 10

1 1 1 0.9 1 0 0.6 0.8 1 0 0.5

2 1 1 1 1 1 1 1 1 1 1

3 0.9 1 1 1 0.9 1 1 1 0.9 0.9

4 1 1 1 1 1 1 1 1 1 1

5 0 1 0.9 1 1 0.6 0.8 1 0 0.5

6 0.6 1 1 1 0.6 1 0.9 1 0.7 0.7

7 0.8 1 1 1 0.8 0.9 1 1 0.8 0.9

8 1 1 1 1 1 1 1 1 1 1

9 0 1 0.9 1 0 0.7 0.8 1 1 0.5

10 0.5 1 0.9 1 0.5 0.7 0.9 1 0.5 1

Including both of the mutual fuzzy relation degrees defined above, the fuzzy

packing problem has sufficient input accompanied by the two-dimensional placement

constraints. Moreover, as relations R1 and R3 are not used, upper bounds gUB1 and gUB2

defined by (5.12) and (5.13) are inactive. The resulting packing problem can be

solved iteratively utilizing the same solvers used for the computations in Chapter 4.

88

For the sake of simplicity, a simple heuristic approach is used for illustration

purposes to obtain the feasible packing shown in Figure 5.4.

Figure 5.4 A feasible fuzzy SRP solution

The solution presented above has an overall packing quality degree π = 0.7, which

is defined by equation (5.5). 10 users are distributed over 4 frames in 11 rectangles

with a total overallocation of 4 slots. K4(j) values are 1 for all j, hence the resulting π

value is due to the degrees of relation R2 (Table 5.2). More precisely, K2(j) values for

the sequence of frames are respectively 0.8, 0.8, 0.7 and 1.

Basically, the users having the largest demand (users 5, 1, and 9) are distributed to

the first three frames. The other users follow in nonincreasing order of their demand,

maintaining the largest possible compatibility degrees as possible besides minimum

partitioning of users. Once all users are placed in this manner, user 7 is assigned to

the last frame in a single partition. However, considering the final frame or the

reserve container objective in (5.9), the rectangle of user 7 is moved in 2 partitions to

frames 1 and 2, improving the objective and reducing overallocation. The placement

of user 10 in the last frame, besides being the most appropriate choice regarding the

overall packing quality, is also the best alternative regarding alternative objectives

(5.18) and (5.19).

As opposed to classical single-objective models, the proposed fuzzy extensions

developed in this chapter aim at satisfying QoS-like service demand constraints for a

89

specific planning horizon using fuzzy constraints and quantities, while compromising

optimality to some extent to obtain efficient frame packings in acceptable

computation times.

90

CHAPTER SIX

CONCLUSION

The span of the bin packing solutions to a variety of problems attracts the

challenge of many researchers. Merging all aspects of optimization theory and

practice, there are still a lot of topics yet to be investigated. In some application

areas, it is observed that some basic assumptions of the classical packing problems

do not apply, such as definite dimension sizes or rigidity of item shapes. Therefore,

the primary focus of this thesis is chosen as novel packing modeling approaches that

might also include fuzzy information. The major contribution of the thesis lies

mainly in presenting novel general and representative mathematical models that

include important features of the wireless standard, and providing several practical

and applicable insights for solving upcoming problems of the area efficiently.

As a first stage of the theoretical study, the novel application area concerning the

wireless data package transmissions is examined in Chapter 2, and a complete

analysis of literature is performed. Formalizing a more general and flexible modeling

perspective in Chapter 3, three exact nonlinear integer programming models with

different objective functions are presented, which simultaneously handle multiple

packing problems with sequential time considerations. The complexities of SRP-I

and SRP-II problems are investigated, as well as an efficient bounding mechanism

that is incorporated into the SRP-I model.

While developing the models, it is intended that, with slight modifications, it

could easily be possible to solve different problem instances on more specialized

optimization packages. In the future, additional assumptions and constraints such as

burst compaction might be included in the proposed models. Also, instead of a single

objective such as the minimization of the number of partitions or the maximization of

utilization as presented in Chapter 3, a quality definition can also be applied using

fuzzy constraints, integrating different objectives such as the QoS priorities.

91

As the experimental computations reported in Chapter 4 suggest, packing

alternatives for the same problem instances vary significantly with respect to

different objectives. Due to the large number of variables and constraints involved,

small sized problem instances could not be solved in acceptable times. As it was

explained in Chapter 4, no practical computational runtime target is prioritized in this

thesis. Instead, by pointing out the significant differences from the problem

structures in the literature and by using different objectives, new exact models are

introduced.

Although the exact models developed seem sufficient for effectively capturing

several aspects and characteristics of real-life problems, clearly that does not

correspond to an efficient solution process using the solvers at hand. The

computational results indicate that, even for the more general SRP-I profit

maximization model, it is very hard to reach optimality within the determined time

limit. Therefore, the solutions of the proposed model are tried to be improved by

incorporating tighter bounds than the ones used by the solvers, resulting in

significant improvement.

Regarding the other models, SRP-II tends to get more difficult as the length of the

frame sequence increases, whereas SRP-III model finds more opportunity to partition

demand in a more fragmented way to minimize wasted space. Through extensive

computation and comparisons, these two models might be adapted with the same

objectives to different application contexts.

The complexity of the considered problems naturally forces the utilization of

approximate approaches instead of exact solutions in practical situations. Therefore,

ideas for alternative modeling and solution methods are also proposed for reaching

higher computational performance instead of obtaining optimal solutions. The

performance of the proposed approaches may be worth investigating, as well as some

other possible heuristic, metaheuristic or hybrid metaheuristic procedures.

92

Throughout Chapter 5 of the thesis, a general fuzzy packing modeling framework

has been presented with necessary adaptations regarding the extensions of the SRP

model structures. Also, some implementable alternative objectives are proposed for

reinforcing the fuzzy versions of SRP in practical situations. Hence, besides

maximization of the overall quality level, several objectives such as area utilization,

width of the packing and overallocation are also investigated. The proposed fuzzy

perspective is applied to an SRP problem instance that has previously been used in

Chapter 4, defining fuzzy compatibility degrees specific to problem data. It should be

noted that, besides the use of fuzzy demand parameters, the fuzzification of

maximum delay parameters is also possible especially for long sequences of frames

(e.g. m>4). In such a case, the more consecutive the partitioning of the users, the

better may be the overall packing quality.

Utilizing -cuts for user demand sizes and user class distinctions, different

packing combinations might be generated and evaluated via different heuristics from

literature. The fuzzy relations between the structure of problem instances and the

packing method that is to be implemented for solving that instance might be defined

even from a hyperheuristic angle. Furthermore, a flexible heuristic selection

mechanism on a higher decision level may be designed depending on area and

priority parameters.

For adapting typical bin packing heuristics into the fuzzy approaches developed in

this thesis, it is always possible to employ one of the ranking and defuzzification

techniques proposed in the literature (e.g. Dubois & Prade, 1983; Fortemps &

Roubens, 1996).

Some extensions of the developed SRP models may be applied to assignment-like

problems with quadratic measures. The models can also be adapted for problems

involving time-related placement of items. For example, the adaptation of SRP

models to storage area allocation problems, such as container handling and berth

operations in port logistics might be worthy of further examination. Some special

cases of our models might be adapted for the relevant problems in that area.

93

Moreover, new models for the existing scheduling problems could be developed by

utilizing special features of the two-dimensional packing models presented in this

thesis.

The specific and overall computational complexity aspects might further be

explored, and more detailed algorithm performance analyses can be made for future

solution efforts involving real-life implementation issues. By following the most

recent studies in the literature, new algorithms might be included to form a

benchmarking environment with a complete comparison base, possibly employing

the developed fuzzy approaches, as well.

94

REFERENCES

Aho, A.V., Hopcroft, J.E., & Ullman, J. (1983). Data structures and algorithms.

Boston: Addison-Wesley.

Azar, Y., & Regev, O. (2001). On-line bin-stretching. Theoretical Computer Science,

268 (1), 17-41.

Bacioccola, A., Cicconetti, C., Lenzini, L., Mingozzi, E., & Erta, A. (2007). A

downlink data region allocation algorithm for IEEE 802.16e OFDMA. In

Proceedings of 6
th

 International Conference on Information, Communications &

Signal Processing (ICICS 2007) (1-5). Singapore: IEEE Press.

Baker, B.S., & Coffman, E.G., Jr. (1981). A tight asymptotic bound for next-fit-

decreasing bin-packing. SIAM Journal on Algebraic and Discrete Methods, 2 (2),

147-152.

Bansal, N., Correa, J.R., Kenyon, C., & Sviridenko, M. (2006). Bin packing in

multiple dimensions: Inapproximability results and approximation schemes.

Mathematics of Operations Research, 31 (1), 31-49.

Batu, T., Rubinfeld, R., & White, P. (2005). Fast approximate PCPs for

multidimensional bin-packing problems. Information and Computation, 96 (1),

42-56.

Ben-Shimol, Y., Kitroser, I., & Dinitz, Y. (2006). Two-dimensional mapping for

wireless OFDMA systems. IEEE Transactions on Broadcasting, 52 (3), 388-396.

Berger, B., & Leighton, T. (1998). Protein folding in the hydrophobic-hydrophilic

(HP) model is NP-complete. Journal of Computational Biology, 5 (1), 27-40.

Birgin, E.G., & Sobral, F.N.C. (2008). Minimizing the object dimensions in circle

and sphere packing problems. Computers & Operations Research, 35 (7), 2357-

2375.

95

Bischoff, E.E. (2006). Three-dimensional packing of items with limited load bearing

strength. European Journal of Operational Research, 168 (3), 952-966.

Boschetti, M.A. (2004). New lower bounds for the three-dimensional finite bin

packing problem. Discrete Applied Mathematics, 140 (1-3), 241-258.

Caprara, A., & Monaci, M. (2004). On the two-dimensional knapsack problem.

Operations Research Letters, 132 (1), 5-14.

Castro Silva, J.L., Soma N.Y., & Maculan, N. (2003). A greedy search for the three-

dimensional bin packing problem: the packing static stability case. International

Transactions in Operational Research, 10 (2), 141-153.

Chekuri, C., & Khanna, S. (2004). On multi-dimensional packing problems. SIAM

Journal on Computing, 33 (4), 837-851.

Cicconetti, C., Lenzini, L., Lodi, A., Martello, S., Mingozzi, E.C., & Monaci, M.

(2010). Efficient two-dimensional data allocation in IEEE 802.16 OFDMA. In

Proceedings of the 29th Conference on Computer Communications (INFOCOM

2010) (2160-2168). New Jersey: IEEE Press.

Coffman, E.G., Jr., Garey, M.R., & Johnson, D.S. (1978). An application of bin-

packing to multiprocessor scheduling. SIAM Journal on Computing, 7 (1), 1-17.

Coffman, E.G., Jr., Lueker, G.S., & Rinnooy Kan, A.H.G. (1988). Asymptotic

methods in the probabilistic analysis of sequencing and packing heuristics.

Management Science, 34 (3), 266-290.

Coffman, E.G., Jr., Garey, M.R., & Johnson, D.S. (1996). Approximation algorithms

for bin packing: a survey. In D. Hochbaum, (Ed.). Approximation Algorithms for

NP-Hard Problems (46-93). Boston: PWS Publishing.

Coffman, E.G., Jr., & Lueker, G.S. (2006). Approximation algorithms for extensible

bin packing. Journal of Scheduling, 9 (1), 63-69.

96

Coffman, E.G., Jr., Csirik, J., Rónyai, L., & Zsbán, A. (2008). Random-order bin

packing. Discrete Applied Mathematics, 156 (14), 2810-2816.

Cohen, R., & Katzir, L. (2008). Computational analysis and efficient algorithms for

micro and macro OFDMA scheduling. In Proceedings of the 27
th

 Conference on

Computer Communications (INFOCOM 2008) (511-519). New Jersey: IEEE

Press.

Crainic, T.G., Perboli, G., & Tadei, R. (2009). TS2PACK: A two-level tabu search

for the three-dimensional bin packing problem. European Journal of Operational

Research, 195 (3), 744-760.

Dantzig, G. (1957). Discrete-variable extremum problems. Operations Research, 5

(2), 266-288.

Davies, A.P., & Bischoff, E.E. (1999). Weight distribution considerations in

container loading. European Journal of Operational Research, 114 (3), 509-527.

Dexter, F., Macario, A., & Traub, R. (1999). Which algorithm for scheduling add-on

elective cases maximizes operating room utilization?: Use of bin packing

algorithms and fuzzy constraints in operating room management. Anesthesiology,

91 (5), 1491-1500.

Dickinson, J.K., & Knopf, G.K. (2000). A moment based metric for 2-D and 3-D

packing. European Journal of Operational Research, 122 (1), 133-144.

Dubois, D., & Prade, H. (1983). Ranking fuzzy numbers in the setting of possibility

theory. Information Sciences, 30 (3), 183-224.

Eilon, S., & Christofides, N. (1971). The loading problem. Management Science

Theory Series, 17 (5), 259-268.

Eliiyi, U., & Eliiyi, D.T. (2009). Applications of bin packing models through the

supply chain. International Journal of Business and Management, 1 (1), 11-19.

97

Eliiyi, U., & Nasibov, E. (2010). A fuzzy perspective for two-dimensional packing of

variable-sized items. In 24
th

 Mini EURO Conference Selected Papers (MEC-

EurOPT-2010). (177-182). Vilnius: VGTU Technika.

Epstein, L. (2003). Bin stretching revisited. Journal Acta Informatica, 39 (2), 97-

117.

Faina, L. (2000). A global optimization algorithm for the three-dimensional packing

problem. European Journal of Operational Research, 126 (2), 340-354.

Faroe, O., Pisinger, D., & Zachariasen, M. (2003). Guided local search for the three-

dimensional bin-packing problem. INFORMS Journal on Computing, 15 (3), 267-

283.

Fasano, G. (2004). A MIP approach for some practical packing problems: Balancing

constraints and tetris-like items. 4OR: A Quarterly Journal of Operations

Research, 2 (2), 161-174.

Fasano, G. (2008). MIP-based heuristic for non-standard 3D-packing problems.

4OR: A Quarterly Journal of Operations Research, 6 (3), 291-310.

Federgruen, A., & van Ryzin, G. (1997). Probabilistic analysis of a generalized bin

packing problem and applications. Operations Research, 45 (4), 596-609.

Fekete, S.P., & Schepers, J. (2001). New classes of fast lower bounds for bin packing

problems. Mathematical Programming, 91 (1), 11-31.

Fekete, S.P., & Schepers, J. (2004a). A combinatorial characterization of higher-

dimensional orthogonal packing. Mathematics of Operations Research, 29 (2),

353-368.

Fekete, S.P., & Schepers, J. (2004b). A general framework for bounds for higher-

dimensional orthogonal packing problems. Mathematical Methods of Operations

Research, 60 (2), 311-329.

98

Fekete, S.P., Schepers, J., & van der Veen, J.C. (2007). An exact algorithm for

higher-dimensional orthogonal packing. Operations Research, 55 (3), 569-587.

Fischetti, M., Martello, S., & Toth, P. (1989). The fixed job schedule problem with

working-time constraints. Operations Research, 37 (3), 395-403.

Fortemps, P., & Roubens, M. (1996). Ranking and defuzzification methods based on

area compensation. Fuzzy Sets and Systems, 82 (3), 319-330.

Garey, M.R., Graham, R.L., & Ullman, J.D. (1972). Worst-case analysis of memory

allocation algorithms. In Proceedings of the Fourth Annual ACM symposium on

Theory of Computing (STOC '72) (143-150). New York: ACM Press.

Garey, M.R., & Johnson, D.S. (1979). Computers and intractability: A guide to the

theory of NP-completeness. San Francisco: W.H. Freeman.

Garey, M.R., Graham, R.L., & Johnson, D.S. (1978). Performance guarantees for

scheduling algorithms. Operations Research, 26 (1), 3-21.

Hemminki, J., Leipala, T., & Nevalainen, O. (1998). On-line packing with boxes of

different sizes. International Journal of Production Research, 36 (8), 2225-2245.

Hifi, M. (2002). Approximate algorithms for the container loading problem.

International Transactions in Operational Research, 9 (6), 747-774.

Hurkens, C., Lodi, A., Martello, S., Monaci, M., & Woeginger, G. (2011).

Complexity and approximation of an area packing problem. Optimization Letters,

6 (1), 1-9.

IEEE 802.16-2009 - IEEE standard for local and metropolitan area networks, part

16: Air interface for broadband wireless access systems (revision of IEEE 802.16-

2004), (2009). Retrieved March 8, 2010, from http://ieeexplore.ieee.org

/xpl/articleDetails.jsp?tp=&arnumber=5062485&queryText%3DIEEE+Std+802

.16%E2%84%A2-2009

99

IEEE Std 802.16m - IEEE standard for local and metropolitan area networks - part

16: Air interface for broadband wireless access systems, amendment 3: Advanced

air interface to IEEE 802.16-2009, (2011). Retrieved January 24, 2012, from

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5765736&query

Text%3DIEEE+Std+802.16%E2%84%A2-2009

Israeli, A., Rawitz, D., & Sharon, O. (2008). On the complexity of sequential

rectangle placement in IEEE 802.16/WiMAX systems. Information and

Computation, 206 (11), 1334-1345.

Johnson, D.S. (1973). Near-optimal bin packing algorithms. Ph.D. Thesis,

Massachusetts Institute of Technology, Department of Mathematics, Cambridge,

Massachusetts, 1973.

Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Jr., & Graham, R.L. (1974).

Worst-case performance bounds for simple one-dimensional packing algorithms.

SIAM Journal on Computing, 3 (4), 299-325.

Kellerer, H., Pferschy, U., & Pisinger, D. (2005). Knapsack problems. Berlin:

Springer Verlag.

Kenyon, C. (1996). Best-fit bin-packing with random order. In Proceedings of the

Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (359-364).

Atlanta: SIAM Press.

Kenyon, C., & Rémila, E. (2000). A near-optimal solution to a two-dimensional

cutting stock problem. Mathematics of Operations Research, 25 (4), 645-656.

Kim, J.K., Lee-Kwang, H., & Yoo, S.W. (2001). Fuzzy bin packing problem. Fuzzy

Sets and Systems, 120 (3), 429-434.

Kohayakawa, Y., Miyazawa, F.K., Raghavan, P., & Wakabayashi, Y. (2004).

Multidimensional cube packing. Algorithmica, 40 (3), 173-187.

100

Korte, B., & Vygen, J. (2008). Combinatorial optimization, theory and algorithms.

Berlin: Springer-Verlag.

Lim, A., Rodrigues, B., & Wang, Y. (2003). A multi-faced buildup algorithm for

three-dimensional packing problems. Omega, 31 (6), 471-481.

Lim, A., Rodrigues, B., & Yang, Y. (2005). 3-D container packing heuristics.

Applied Intelligence, 22 (2), 125-134.

Lins, L., Lins, S., & Morabito, R. (2002). An n-tet graph approach for non-guillotine

packings of n-dimensional boxes into an n-container. European Journal of

Operational Research, 141 (2), 421-439.

Lodi, A., Martello, S., & Monaci, M. (2002). Two-dimensional packing problems: A

survey. European Journal of Operational Research, 141 (2), 241-252.

Lodi, A., Martello, S., & Vigo, D. (2004). TSpack: A unified tabu search code for

multi-dimensional bin packing problems. Annals of Operations Research, 131 (1-

4), 203-213.

Lodi, A., Martello, S., Monaci, M., Cicconetti, C., Lenzini, L., Mingozzi, E.C.,

Eklund, C., & Moilanen, J. (2011). Efficient two-dimensional packing algorithms

for mobile WiMAX. Management Science, 57 (12), 2130-2144.

Maarouf, W.F., Barbar, A.Z., & Owayjan, M.J. (2008). A new heuristic algorithm for

the 3D bin packing problem. In Innovations and Advanced Techniques in Systems,

Computing Sciences and Software Engineering (342-345). Netherlands: Springer.

Martello, S., & Toth, P. (1990). Knapsack problems: Algorithms and computer

implementations. New York: John Wiley.

Martello, S., & Vigo, D. (1998). Exact solution of the two-dimensional finite bin

packing problem. Management Science, 44 (3), 388-399

Martello, S., Pisinger, D., & Vigo, D. (2000). The three-dimensional bin packing

problem. Operations Research, 48 (2), 256-267.

101

Miyazawa, F.K., & Wakabayashi, Y. (1997). An algorithm for the three-dimensional

packing problem with asymptotic performance analysis. Algorithmica, 18 (1),

122-144.

Miyazawa, F.K., & Wakabayashi, Y. (2000). Approximation algorithms for the

orthogonal z-oriented three-dimensional packing problem. SIAM Journal on

Computing, 29 (3), 1008-1029

Miyazawa, F.K., & Wakabayashi, Y. (2003). Cube packing. Theoretical Computer

Science, 297 (1-3), 355-366.

Miyazawa, F.K., & Wakabayashi, Y. (2007). Two- and three-dimensional parametric

packing. Computers & Operations Research, 34 (9), 2589-2603.

Miyazawa, F.K., & Wakabayashi, Y. (2009). Three-dimensional packings with

rotations. Computers & Operations Research, 36 (10), 2801-2815.

Mok, P.Y., Kwong, C.K., & Wong, W.K. (2007). Optimisation of fault-tolerant

fabric-cutting schedules using genetic algorithms and fuzzy set theory. European

Journal of Operational Research, 177 (3), 1876-1893.

Nasibov, E.N. (2004). An algorithm for constructing an admissible solution to the

bin packing problem with fuzzy constraints. Journal of Computer and Systems

Sciences International, 43 (2), 205-212.

Nasibov, E.N. (2007). A problem of task allocation with fuzzy information and two-

stage solution algorithm. Automatic Control and Computer Sciences, 41 (4), 196-

202.

Necker, M.C., Köhn, M., Reifert, A., Scharf, J., & Sommer, J. (2008). Optimized

frame packing for OFDMA systems. In Proceedings of the 67
th

 IEEE Vehicular

Technology Conference (VTC2008 - Spring) (1483-1488). Singapore: IEEE Press.

Ohseki, T., Morita, M., & Inoue, T. (2007). Burst construction and packet mapping

scheme for OFDMA downlinks in IEEE 802.16 systems. In Proceedings of IEEE

102

Global Telecommunications Conference (4307-4311). Washington, DC: IEEE

Press.

Padberg, M. (2000). Packing small boxes into a big box. Mathematical Methods of

Operations Research, 52 (1), 1-21.

Pisinger, D. (2002). Heuristics for the container loading problem. European Journal

of Operational Research, 141 (2), 382-392.

Pisinger, D., & Segurdi, M. (2002). The two-dimensional bin packing problem with

variable bin sizes and costs. Discrete Optimization, 2 (2), 154-167.

Runarsson, T.P., Jonsson, M.T., & Jensson, P. (1996). Dynamic dual bin packing

using fuzzy objectives. In Evolutionary Computation, Proceedings of IEEE

International Conference (219-222). Nagoya: IEEE Press.

Scheithauer, G. (1999). LP-based bounds for the container and multi-container

loading problem. International Transactions in Operational Research, 6 (2), 199-

213.

So-In, C., Jain, R., & Tamimi, A.K. (2009a). Scheduling in IEEE 802.16e mobile

WiMAX networks: Key issues and a survey. IEEE Journal on Selected Areas in

Communications, 27 (2), 156-171.

So-In, C., Jain, R., & Tamimi, A.K. (2009b). OCSA: An algorithm for burst mapping

in IEEE 802.16e mobile WiMAX networks. In Proceedings of 15
th

 Asia Pacific

Conference on Communications (APCC 2009) (52-58). Shanghai: IEEE Press.

So-In, C., Jain, R., & Tamimi, A.K. (2009c). eOCSA: An algorithm for burst

mapping with strict QoS requirements in IEEE 802.16e mobile WiMAX

networks. In Proceedings of 2
nd

 Wireless Days (2009 IFIP) (1-5). Paris: IEEE

Press.

103

Terno, J., Scheithauer, G., Sommerweiss, U., & Riehme, J. (2000). An efficient

approach for the multi-pallet loading problem. European Journal of Operational

Research, 123 (2), 372-381.

Ullman, J.D. (1971). The performance of a memory allocation algorithm. Technical

Report No. 100, Princeton University, New Jersey: Princeton Press.

Wang, T., Feng, H., & Hu, B. (2008). Two-dimensional resource allocation for

OFDMA system. In Proceedings of the IEEE ICC Workshops’08 (1-5). New

Jersey: IEEE Press.

Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting

and packing problems. European Journal of Operational Research, 183 (3), 1109-

1130.

Wongthavarawat, K., & Ganz, A. (2003). Packet scheduling for QoS support in IEEE

802.16 broadband wireless access systems. International Journal of

Communication Systems, 16 (1), 81-96.

Wu, Y-L, Huang, W., Lau, S-C., Wong, C.K., & Yang, G.H. (2002). An effective

quasi-human based heuristic for solving the rectangle packing problem. European

Journal of Operational Research, 141 (2), 341-358.

104

APPENDICES

105

APPENDIX A

SAMPLE GAMS CODES

106

A.1 Sample GAMS Code for an instance of SRP-I

GAMS code of the SRP-I model for a problem instance is provided in this

appendix. Note that the below code belongs to the problem instance whose output

was depicted in Figure 4.5.

$title Sequential Rectangular Packing (SRP) - 5-Maximizing Profit

with Bounds

Sets i users / 1*10 /

 j frames / 1*2 /

 dim dimensions used in overlapping constraints / 1*4 /;

Scalars W frame width / 12 /

 H frame height / 30 /

 nUsers / 10 /

 nFrames / 2 /

 availableProfit / 3102 /

 knapsackRelaxationBound / 3065 /

 lowerBound / 2893 /;

Parameters d(i) total amount of data request of user i

 /1 28,2 99,3 103,4 190,5 90,6 49,7 78,8 35,9 43,10 42/

 pr(i) profit gained from user i

 /1 168,2 396,3 515,4 950,5 90,6 294,7 312,8 35,9 258,10

 84/

 s(i) minimum data transfer rate of user i per frame (QoS

parameter)

 /1 28,2 99,3 103,4 190,5 90,6 49,7 78,8 35,9 43,10 42/

 lambda(i) maximum delay period for user i (QoS parameter)

 /1 7,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10 2/

 theta(i) latest frame to maintain or to begin the data

transfer for user i

 /1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,10 3/;

scalar A frame area;

A = W*H;

alias(i,p,q);

alias(j,k);

parameters phi(i) minimum amount of data to be transferred to user i

in the problem frame sequence

 alpha(i);

* actual demand parameter phi

phi(i) = min (nFrames * s(i), d(i));

* minimum number of frames to be assigned to user i

alpha(i)= ceil(phi(i) / A);

binary variables

u_i(i) showing whether user i is selected for data transfer in this

frame sequence

z_ij(i,j) showing whether user i is assigned a rectangle in frame j

or not

delta(p,q,j) for choosing the users allocated in the same frame

gamma(p,q,j,dim) used in location overlapping constraints

sigma(i,j) for connecting r_ij and lambda_i (which are used for

maximum delay constraints)

107

;

integer variables

x_ij(i,j) x-coordinate of the left-bottom corner of the rectangle

assigned to user i in frame j

y_ij(i,j) y-coordinate of the left-bottom corner of the rectangle

assigned to user i in frame j

w_ij(i,j) width of the rectangle allocated to user i in frame j

h_ij(i,j) height of the rectangle allocated to user i in frame j

a_ij(i,j) area of the rectangle allocated to user i in frame j

r_ij(i,j) total remaining demand for user i after frame j;

free variables

total_profit profit sum of all selected users;

equations

profitSum objective function definition - maximizing total profit

areas(i,j) nonlinear area equalities for each frame

demands(i) demand constraints for each user through the frame

sequence

selectedUser(i,j) if user selected then pack all her demand

firstFrame(i,j) total remaining demand for each user i after frame 1

otherFrames(i,j) total remaining demand for each user i after next

frames

* sigma variable definitions

rij_sigmaLower(i,j) defining sigma variables for r_ij with LB

rij_sigmaUpper(i,j) defining sigma variables for r_ij with UB

rij_zij_lambda_relation(i,j) relating rij and zij variables with

maximmum delay parameters

*for avoiding maximum delay violation after no demand remaining

rij_lastFrame(i,j) r_ij upper bound only if user i is selected

xWidth(i,j) rectangle position (also dimension) constraints for each

user & frame on the horizontal axis

yHeight(i,j) rectangle position (also dimension) constraints for

each user & frame on the vertical axis

assignedFrames(i) using parameters alpha's as lower bounds for

assigned frames for user i

thetaBounds(i) for forcing the transfer beginning frame for user i

thetaBoundsForUserSelection(i) for forcing the selection of a user i

if ongoing transfer

* linking constraints for variables z_ij between x_ij, y_ij, w_ij

and h_ij

z0xBinding(i,j) x_ij lower bounds

z1xBinding(i,j) x_ij upper bounds

z0yBinding(i,j) y_ij lower bounds

z1yBinding(i,j) y_ij upper bounds

z0wBinding(i,j) w_ij lower bounds

z1wBinding(i,j) w_ij upper bounds

z0hBinding(i,j) h_ij lower bounds

z1hBinding(i,j) h_ij upper bounds

* Location overlapping constraints for rectangles in each frame,

108

* (a) for choosing the users allocated in the same frame

differentFrame(p,q,j) lower bound: at least one user is not

allocated on frame j

sameFrame(p,q,j) upper bound: both users p and q may be allocated on

frame j

* (b) relative positions on the horizontal axis

gammaLeft(p,q,j) user p on the left of user q if gamma_1 = 1

gammaRight(p,q,j) user p on the right of user q if gamma_2 = 1

gammaLeftRight(p,q,j) p cannot be both on the left and right of user

q if both users are on the same frame

* (c) positions on the vertical axis

gammaBelow(p,q,j) user p below the user q if gamma_3 = 1

gammaAbove(p,q,j) user p above the user q if gamma_4 = 1

gammaBelowAbove(p,q,j) p cannot be both below and above the user q

if both users are on the same frame

* linking the logical constraints (a), (b) and (c) above

gammaLeftBelow(p,q,j)

gammaRightAbove(p,q,j)

allGammas(p,q,j)

;

* CONSTRAINT DEFINITIONS

profitSum.. total_profit =e= sum ((i),u_i(i)*pr(i)) ;

areas(i,j).. a_ij(i,j) =e= w_ij(i,j)*h_ij(i,j);

* demand constraints for each user through the frame sequence

demands(i).. sum(j, a_ij(i,j)) =g= u_i(i)*phi(i);

* if user selected then pack all her demand

selectedUser(i,j).. z_ij(i,j) =l= u_i(i);

*feasibility check with respect to total frame area

* forcing the beginning of ongoing transfers that remain from

previous sequences

thetaBounds(i).. sum (j$(ord(j) <= theta(i)),z_ij(i,j)) =g= u_i(i);

* force the selection of a user i if her transfer is continuing

(<=m)

thetaBoundsForUserSelection(i).. nFrames - theta(i) =l=

u_i(i)*(1+nFrames-theta(i))-1;

* rectangle position (also dimension) constraints for each user &

frame

xWidth(i,j).. x_ij(i,j) + w_ij(i,j) =l= W;

yHeight(i,j).. y_ij(i,j) + h_ij(i,j) =l= H;

* using parameters alpha i's as lower bounds

assignedFrames(i).. sum(j,z_ij(i,j)) =g= u_i(i)*alpha(i);

* linking constraints for variables z_ij between x_ij, y_ij, w_ij

and h_ij

z0xBinding(i,j).. z_ij(i,j) - 1 =l= x_ij(i,j);

z1xBinding(i,j).. x_ij(i,j) =l= (W-1)* z_ij(i,j);

z0yBinding(i,j).. z_ij(i,j) - 1 =l= y_ij(i,j);

z1yBinding(i,j).. y_ij(i,j) =l= (H-1)* z_ij(i,j);

z0wBinding(i,j).. z_ij(i,j) =l= w_ij(i,j);

z1wBinding(i,j).. w_ij(i,j) =l= W* z_ij(i,j);

109

z0hBinding(i,j).. z_ij(i,j) =l= h_ij(i,j);

z1hBinding(i,j).. h_ij(i,j) =l= H* z_ij(i,j);

* Location overlapping constraints for rectangles in each frame,

* (a) for choosing the users allocated in the same frame

differentFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =l=

delta(p,q,j) + 1;

sameFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =g=

2*delta(p,q,j);

* (b) relative positions on the horizontal axis

gammaLeft(p,q,j)$(ord(p)<ord(q)).. x_ij(p,j) + w_ij(p,j) - x_ij(q,j)

=l= (1-gamma(p,q,j,"1"))*W;

gammaRight(p,q,j)$(ord(p)<ord(q)).. x_ij(q,j) + w_ij(q,j) -

x_ij(p,j) =l= (1-gamma(p,q,j,"2"))*W;

gammaLeftRight(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") +

gamma(p,q,j,"2") =l= 2 - delta(p,q,j);

* (c) positions on the vertical axis

gammaBelow(p,q,j)$(ord(p)<ord(q)).. y_ij(p,j) + h_ij(p,j) -

y_ij(q,j) =l= (1-gamma(p,q,j,"3"))*H;

gammaAbove(p,q,j)$(ord(p)<ord(q)).. y_ij(q,j) + h_ij(q,j) -

y_ij(p,j) =l= (1-gamma(p,q,j,"4"))*H;

gammaBelowAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"3") +

gamma(p,q,j,"4") =l= 2 - delta(p,q,j);

* linking the logical constraints (a), (b) and (c) above

gammaLeftBelow(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") +

gamma(p,q,j,"3") =l= 2 * (1 - z_ij(p,j) + delta(p,q,j));

gammaRightAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"2") +

gamma(p,q,j,"4") =l= 2 * (1 - z_ij(q,j) + delta(p,q,j));

allGammas(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") +

gamma(p,q,j,"2") + gamma(p,q,j,"3") + gamma(p,q,j,"4") =g=

delta(p,q,j);

* PhD Progress 5 2011-12 Ch.3 - corrections for total remaining

demand

firstFrame(i,j)$(ord(j) = 1).. r_ij(i,j) =e= phi(i)-a_ij(i,j);

otherFrames(i,j)$(ord(j) > 1).. r_ij(i,j) =e= r_ij(i,j-1)-

a_ij(i,j);

* maximum delay constraints (10.07.2012 ideas)

rij_sigmaLower(i,j).. 1 - A*sigma(i,j) =l= r_ij(i,j);

rij_sigmaUpper(i,j).. r_ij(i,j) =l= phi(i)*(1-sigma(i,j));

rij_zij_lambda_relation(i,j)$(ord(j) <= nFrames-lambda(i)).. sum(k $

(ord(k) > ord(j) and ord(k) <= ord(j)+lambda(i)), z_ij(i,k)) =g=

z_ij(i,j)-sigma(i,j);

*for avoiding maximum delay violation after no demand remaining

rij_lastFrame(i,j)$(ord(j)=card(j)).. r_ij(i,j) =l= phi(i)*(1-

u_i(i));

* Bounds

* bounding r_ij

r_ij.UP(i,j) = phi(i);

r_ij.LO(i,j) = 1-A;

total_profit.LO = lowerBound;

total_profit.UP = knapsackRelaxationBound;

MODEL SeqRectPack /ALL/;

110

SeqRectPack.optfile=1;

* instruct SCIP to display less frequently

$onecho > scip.opt

display/freq = 500

$offecho

OPTION optca=1e-5, optcr=1e-5, minlp=scip, reslim=600,

iterlim=2000000;

scalar starttime; starttime = jnow

SOLVE SeqRectPack USING MINLP MAXIMIZING total_profit;

execerror=0;

file textOutput /tr1n10m2PR10.gout2/;

textOutput.pc=6;

put textOutput, SeqRectPack.modelstat:0:0, SeqRectPack.solvestat:0:0

/;

put SeqRectPack.objVal:0:0, SeqRectPack.resUsd:0:4,

SeqRectPack.nodUsd:0:0, SeqRectPack.objEst:0:0 /;

put SeqRectPack.numVar:0:0, SeqRectPack.numEqu:0:0,

SeqRectPack.numNZ:0:0, SeqRectPack.numNLNZ:0:0 /;

put card(i):0:0, card(j):0:0, W:0:0, H:0:0, sum(i, phi(i)):0:0 /;

put sum(i, u_i.l(i)):0:0, sum(i, phi(i) * u_i.l(i)):0:0,

availableProfit:0:0, lowerBound:0:0, knapsackRelaxationBound:0:0 /;

loop(i $ u_i.l(i), put ord(i):0:0, sum(j, z_ij.l(i,j)):0:0,

phi(i):0:0, sum(j, a_ij.l(i,j)):0:0, pr(i):0:0 /;

 loop(j $ z_ij.l(i,j),

put ord(j):4:0, x_ij.l(i,j):0:0, y_ij.l(i,j):0:0, w_ij.l(i,j):0:0,

h_ij.l(i,j):0:0;

put /;);

);

111

A.2 Sample GAMS Code for an instance of SRP-II

GAMS code of the SRP-II model for a problem instance is provided in this

appendix. Note that the below code belongs to the problem instance whose output

was depicted in Figure 4.3.

$title Sequential Rectangular Packing (SRP) - 2-Minimizing Partition

Sets i users / 1*10 /

 j frames / 1*2 /

 dim dimensions used in overlapping constraints / 1*4 /;

Scalars W frame width / 12 /

 H frame height / 30 /

 nUsers / 10 /

 nFrames / 2 /

;

Parameters d(i) total amount of data request of user i

 /1 113,2 33,3 46,4 114,5 46,6 109,7 123,8 50,9 30,10 30/

 s(i) minimum data transfer rate of user i per frame (QoS

parameter)

 /1 113,2 33,3 46,4 114,5 46,6 109,7 123,8 50,9 30,10 30/

 lambda(i) maximum delay period for user i (QoS parameter)

 /1 1,2 1,3 1,4 1,5 2,6 2,7 1,8 1,9 1,10 1/

 theta(i) latest frame to maintain or to begin the data

transfer for user i

 /1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10 2/;

scalar A frame area;

A = W*H;

alias(i,p,q);

alias(j,k);

parameters phi(i) minimum amount of data to be transferred to user i

in the problem frame sequence

 alpha(i);

* actual demand parameter phi

phi(i) = min (nFrames * s(i), d(i));

* minimum number of frames to be assigned to user i

alpha(i)= ceil(phi(i) / A);

binary variables

z_ij(i,j) showing whether user i is assigned a rectangle in frame j

or not

delta(p,q,j) for choosing the users allocated in the same frame

gamma(p,q,j,dim) used in location overlapping constraints

sigma(i,j) for connecting r_ij and lambda_i (which are used for

maximum delay constraints)

;

integer variables

x_ij(i,j) x-coordinate of the left-bottom corner of the rectangle

assigned to user i in frame j

112

y_ij(i,j) y-coordinate of the left-bottom corner of the rectangle

assigned to user i in frame j

w_ij(i,j) width of the rectangle allocated to user i in frame j

h_ij(i,j) height of the rectangle allocated to user i in frame j

a_ij(i,j) area of the rectangle allocated to user i in frame j

r_ij(i,j) total remaining demand for user i after frame j;

free variables

z_srp objective function variable for the sequential rectangular

packing problem

;

equations

obj objective function definition - for minimizing partial packing

areas(i,j) nonlinear area equalities for each frame

demands(i) demand constraints for each user through the frame

sequence

simpleFeas feasibility check with respect to total frame area

firstFrame(i,j) total remaining demand for each user i after frame 1

otherFrames(i,j) total remaining demand for each user i after next

frames

* sigma variable definitions

rij_sigmaLower(i,j) defining sigma variables for r_ij with LB

rij_sigmaUpper(i,j) defining sigma variables for r_ij with UB

rij_zij_lambda_relation(i,j) relating rij and zij variables with

maximmum delay parameters

xWidth(i,j) rectangle position (also dimension) constraints for each

user & frame on the horizontal axis

yHeight(i,j) rectangle position (also dimension) constraints for

each user & frame on the vertical axis

assignedFrames(i) using parameters alpha's as lower bounds for

assigned frames for user i

thetaBounds(i) for forcing the transfer beginning frame for user i

* linking constraints for variables z_ij between x_ij, y_ij, w_ij

and h_ij

z0xBinding(i,j) x_ij lower bounds

z1xBinding(i,j) x_ij upper bounds

z0yBinding(i,j) y_ij lower bounds

z1yBinding(i,j) y_ij upper bounds

z0wBinding(i,j) w_ij lower bounds

z1wBinding(i,j) w_ij upper bounds

z0hBinding(i,j) h_ij lower bounds

z1hBinding(i,j) h_ij upper bounds

* Location overlapping constraints for rectangles in each frame,

* (a) for choosing the users allocated in the same frame

differentFrame(p,q,j) lower bound: at least one user is not

allocated on frame j

sameFrame(p,q,j) upper bound: both users p and q may be allocated on

frame j

* (b) relative positions on the horizontal axis

gammaLeft(p,q,j) user p on the left of user q if gamma_1 = 1

113

gammaRight(p,q,j) user p on the right of user q if gamma_2 = 1

gammaLeftRight(p,q,j) p cannot be both on the left and right of user

q if both users are on the same frame

* (c) positions on the vertical axis

gammaBelow(p,q,j) user p below the user q if gamma_3 = 1

gammaAbove(p,q,j) user p above the user q if gamma_4 = 1

gammaBelowAbove(p,q,j) p cannot be both below and above the user q

if both users are on the same frame

* linking the logical constraints (a), (b) and (c) above

gammaLeftBelow(p,q,j)

gammaRightAbove(p,q,j)

allGammas(p,q,j)

;

* CONSTRAINT DEFINITIONS

obj.. z_srp =e= sum ((i,j),z_ij(i,j)) ;

areas(i,j).. a_ij(i,j) =e= w_ij(i,j)*h_ij(i,j);

* demand constraints for each user through the frame sequence

demands(i).. sum(j, a_ij(i,j)) =g= phi(i);

*feasibility check with respect to total frame area

simpleFeas.. sum(i,phi(i)) =l= nFrames*A;

* forcing the beginning of ongoing transfers from previous sequences

thetaBounds(i).. sum (j$(ord(j) <= theta(i)),z_ij(i,j)) =g= 1;

* rectangle position (also dimension) constraints for each user &

frame

xWidth(i,j).. x_ij(i,j) + w_ij(i,j) =l= W;

yHeight(i,j).. y_ij(i,j) + h_ij(i,j) =l= H;

* using parameters alpha i's as lower bounds

assignedFrames(i).. sum(j,z_ij(i,j)) =g= alpha(i);

* linking constraints for variables z_ij between x_ij, y_ij, w_ij

and h_ij

z0xBinding(i,j).. z_ij(i,j) - 1 =l= x_ij(i,j);

z1xBinding(i,j).. x_ij(i,j) =l= (W-1)* z_ij(i,j);

z0yBinding(i,j).. z_ij(i,j) - 1 =l= y_ij(i,j);

z1yBinding(i,j).. y_ij(i,j) =l= (H-1)* z_ij(i,j);

z0wBinding(i,j).. z_ij(i,j) =l= w_ij(i,j);

z1wBinding(i,j).. w_ij(i,j) =l= W* z_ij(i,j);

z0hBinding(i,j).. z_ij(i,j) =l= h_ij(i,j);

z1hBinding(i,j).. h_ij(i,j) =l= H* z_ij(i,j);

* Location overlapping constraints for rectangles in each frame,

* (a) for choosing the users allocated in the same frame

differentFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =l=

delta(p,q,j) + 1;

sameFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =g=

2*delta(p,q,j);

* (b) relative positions on the horizontal axis

gammaLeft(p,q,j)$(ord(p)<ord(q)).. x_ij(p,j) + w_ij(p,j) - x_ij(q,j)

=l= (1-gamma(p,q,j,"1"))*W;

gammaRight(p,q,j)$(ord(p)<ord(q)).. x_ij(q,j) + w_ij(q,j) -

x_ij(p,j) =l= (1-gamma(p,q,j,"2"))*W;

114

gammaLeftRight(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") +

gamma(p,q,j,"2") =l= 2 - delta(p,q,j);

* (c) positions on the vertical axis

gammaBelow(p,q,j)$(ord(p)<ord(q)).. y_ij(p,j) + h_ij(p,j) -

y_ij(q,j) =l= (1-gamma(p,q,j,"3"))*H;

gammaAbove(p,q,j)$(ord(p)<ord(q)).. y_ij(q,j) + h_ij(q,j) -

y_ij(p,j) =l= (1-gamma(p,q,j,"4"))*H;

gammaBelowAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"3") +

gamma(p,q,j,"4") =l= 2 - delta(p,q,j);

* linking the logical constraints (a), (b) and (c) above

gammaLeftBelow(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") +

gamma(p,q,j,"3") =l= 2 * (1 - z_ij(p,j) + delta(p,q,j));

gammaRightAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"2") +

gamma(p,q,j,"4") =l= 2 * (1 - z_ij(q,j) + delta(p,q,j));

allGammas(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") +

gamma(p,q,j,"2") + gamma(p,q,j,"3") + gamma(p,q,j,"4") =g=

delta(p,q,j);

* PhD Progress 5 2011-12 Ch.3 - corrections for total remaining

demand

* 7.7.2012 ideas & corrections UE

firstFrame(i,j)$(ord(j) = 1).. r_ij(i,j) =e= phi(i)-a_ij(i,j);

otherFrames(i,j)$(ord(j) > 1).. r_ij(i,j) =e= r_ij(i,j-1)-

a_ij(i,j);

* maximum delay constraints (10.07.2012 ideas)

rij_sigmaLower(i,j).. 1 - A*sigma(i,j) =l= r_ij(i,j);

rij_sigmaUpper(i,j).. r_ij(i,j) =l= phi(i)*(1-sigma(i,j));

rij_zij_lambda_relation(i,j)$(ord(j) <= nFrames-lambda(i)).. sum(k $

(ord(k) > ord(j) and ord(k) <= ord(j)+lambda(i)), z_ij(i,k)) =g=

z_ij(i,j)-sigma(i,j);

* Variable Bounds

* bounding r_ij

r_ij.UP(i,j) = phi(i);

r_ij.LO(i,j) = 1-A;

*z_ij.UP(i,j)$(ord(j) > 1) = 1$(r_ij.L(i,j-1)>0);

* Last frame remaining

r_ij.UP(i,j)$(ord(j) = card(j)) = 0;

MODEL SeqRectPack /ALL/;

OPTION optca=1e-5, optcr=1e-5, minlp=scip, reslim=600,

iterlim=2000000;

scalar starttime; starttime = jnow

SOLVE SeqRectPack USING MINLP MINIMIZING z_srp;

execerror=0;

file textOutput /n10m2a1PR02.gout/;

textOutput.pc=6;

put textOutput, SeqRectPack.modelstat:0:0, SeqRectPack.solvestat:0:0

/;

115

put SeqRectPack.objVal:0:0, SeqRectPack.resUsd:0:4,

SeqRectPack.nodUsd:0:0 /;

put SeqRectPack.numVar:0:0, SeqRectPack.numEqu:0:0,

SeqRectPack.numNZ:0:0, SeqRectPack.numNLNZ:0:0 /;

put card(i):0:0, card(j):0:0, W:0:0, H:0:0, sum(i, phi(i)):0:0 /;

loop(i, put ord(i):0:0, sum(j, z_ij.l(i,j)):0:0, phi(i):0:0, sum(j,

a_ij.l(i,j)):0:0 /;

 loop(j $ z_ij.l(i,j),

put ord(j):4:0, x_ij.l(i,j):0:0, y_ij.l(i,j):0:0, w_ij.l(i,j):0:0,

h_ij.l(i,j):0:0;

put /;);

);

116

A.3 Sample GAMS Code for an instance of SRP-III

GAMS code of the SRP-III model for a problem instance is provided in this

appendix. Note that the below code belongs to the problem instance whose output

was depicted in Figure 4.3.

$title Sequential Rectangular Packing (SRP) - 3-Minimizing

Overallocation

Sets i users / 1*10 /

 j frames / 1*4 /

 dim dimensions used in overlapping constraints / 1*4 /;

Scalars W frame width / 12 /

 H frame height / 30 /

 nUsers / 10 /

 nFrames / 4 /

;

Parameters d(i) total amount of data request of user i

 /1 164,2 129,3 97,4 188,5 23,6 33,7 72,8

74,9 187,10 55/

 s(i) minimum data transfer rate of user i per frame (QoS

parameter)

 /1 164,2 129,3 97,4 188,5 23,6 33,7 72,8

74,9 187,10 55/

 lambda(i) maximum delay period for user i (QoS parameter)

 /1 2,2 2,3 2,4 2,5 6,6 2,7 3,8

5,9 2,10 2/

 theta(i) latest frame to maintain or to begin the data

transfer for user i

 /1 5,2 5,3 5,4 5,5 5,6 5,7 5,8

5,9 5,10 5/;

scalar A frame area;

A = W*H;

alias(i,p,q);

alias(j,k);

parameters phi(i) minimum amount of data to be transferred to user i

in the problem frame sequence

 alpha(i);

* actual demand parameter phi

phi(i) = min (nFrames * s(i), d(i));

* minimum number of frames to be assigned to user i

alpha(i)= ceil(phi(i) / A);

*scalar starttime; starttime = jnow

binary variables

z_ij(i,j) showing whether user i is assigned a rectangle in frame j

or not

delta(p,q,j) for choosing the users allocated in the same frame

gamma(p,q,j,dim) used in location overlapping constraints

117

sigma(i,j) for connecting r_ij and lambda_i (which are used for

maximum delay constraints)

;

integer variables

x_ij(i,j) x-coordinate of the left-bottom corner of the rectangle

assigned to user i in frame j

y_ij(i,j) y-coordinate of the left-bottom corner of the rectangle

assigned to user i in frame j

w_ij(i,j) width of the rectangle allocated to user i in frame j

h_ij(i,j) height of the rectangle allocated to user i in frame j

a_ij(i,j) area of the rectangle allocated to user i in frame j

r_ij(i,j) total remaining demand for user i after frame j;

free variables

waste total surplus area after the assigned sequence of frames

;

equations

* the objective value for total wasted (surplus) area used

wastedArea total area assigned after the last frame

areas(i,j) nonlinear area equalities for each frame

demands(i) demand constraints for each user through the frame

sequence

simpleFeas feasibility check with respect to total frame area

firstFrame(i,j) total remaining demand for each user i after frame 1

otherFrames(i,j) total remaining demand for each user i after next

frames

* sigma variable definitions

rij_sigmaLower(i,j) defining sigma variables for r_ij with LB

rij_sigmaUpper(i,j) defining sigma variables for r_ij with UB

rij_zij_lambda_relation(i,j) relating rij and zij variables with

maximmum delay parameters

*for avoiding maximum delay violation after no demand remaining

*rij_zij_trivial(i,j) for preventing unnecessary assignment after

all demand is satisfied

xWidth(i,j) rectangle position (also dimension) constraints for each

user & frame on the horizontal axis

yHeight(i,j) rectangle position (also dimension) constraints for

each user & frame on the vertical axis

assignedFrames(i) using parameters alpha's as lower bounds for

assigned frames for user i

thetaBounds(i) for forcing the transfer beginning frame for user i

* linking constraints for variables z_ij between x_ij, y_ij, w_ij

and h_ij

z0xBinding(i,j) x_ij lower bounds

z1xBinding(i,j) x_ij upper bounds

z0yBinding(i,j) y_ij lower bounds

z1yBinding(i,j) y_ij upper bounds

z0wBinding(i,j) w_ij lower bounds

z1wBinding(i,j) w_ij upper bounds

z0hBinding(i,j) h_ij lower bounds

118

z1hBinding(i,j) h_ij upper bounds

* Location overlapping constraints for rectangles in each frame,

* (a) for choosing the users allocated in the same frame

differentFrame(p,q,j) lower bound: at least one user is not

allocated on frame j

sameFrame(p,q,j) upper bound: both users p and q may be allocated on

frame j

* (b) relative positions on the horizontal axis

gammaLeft(p,q,j) user p on the left of user q if gamma_1 = 1

gammaRight(p,q,j) user p on the right of user q if gamma_2 = 1

gammaLeftRight(p,q,j) p cannot be both on the left and right of user

q if both users are on the same frame

* (c) positions on the vertical axis

gammaBelow(p,q,j) user p below the user q if gamma_3 = 1

gammaAbove(p,q,j) user p above the user q if gamma_4 = 1

gammaBelowAbove(p,q,j) p cannot be both below and above the user q

if both users are on the same frame

* linking the logical constraints (a), (b) and (c) above

gammaLeftBelow(p,q,j)

gammaRightAbove(p,q,j)

allGammas(p,q,j)

;

* CONSTRAINT DEFINITIONS

* the objective function value for total wasted (surplus) area

assigned to users

wastedArea.. waste =e= -sum((i,j)$(ord(j) = card(j)),r_ij(i,j));

areas(i,j).. a_ij(i,j) =e= w_ij(i,j)*h_ij(i,j);

* demand constraints for each user through the frame sequence

demands(i).. sum(j, a_ij(i,j)) =g= phi(i);

*feasibility check with respect to total frame area

simpleFeas.. sum(i,phi(i)) =l= nFrames*A;

* forcing the beginning of ongoing transfers from previous sequences

thetaBounds(i).. sum (j$(ord(j) <= theta(i)),z_ij(i,j)) =g= 1;

* rectangle position (also dimension) constraints for each user &

frame

xWidth(i,j).. x_ij(i,j) + w_ij(i,j) =l= W;

yHeight(i,j).. y_ij(i,j) + h_ij(i,j) =l= H;

* using parameters alpha i's as lower bounds

assignedFrames(i).. sum(j,z_ij(i,j)) =g= alpha(i);

* linking constraints for variables z_ij between x_ij, y_ij, w_ij

and h_ij

z0xBinding(i,j).. z_ij(i,j) - 1 =l= x_ij(i,j);

z1xBinding(i,j).. x_ij(i,j) =l= (W-1)* z_ij(i,j);

z0yBinding(i,j).. z_ij(i,j) - 1 =l= y_ij(i,j);

z1yBinding(i,j).. y_ij(i,j) =l= (H-1)* z_ij(i,j);

z0wBinding(i,j).. z_ij(i,j) =l= w_ij(i,j);

z1wBinding(i,j).. w_ij(i,j) =l= W* z_ij(i,j);

z0hBinding(i,j).. z_ij(i,j) =l= h_ij(i,j);

z1hBinding(i,j).. h_ij(i,j) =l= H* z_ij(i,j);

119

* Location overlapping constraints for rectangles in each frame,

* (a) for choosing the users allocated in the same frame

differentFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =l=

delta(p,q,j) + 1;

sameFrame(p,q,j)$(ord(p)<ord(q)).. z_ij(p,j) + z_ij(q,j) =g=

2*delta(p,q,j);

* (b) relative positions on the horizontal axis

gammaLeft(p,q,j)$(ord(p)<ord(q)).. x_ij(p,j) + w_ij(p,j) - x_ij(q,j)

=l= (1-gamma(p,q,j,"1"))*W;

gammaRight(p,q,j)$(ord(p)<ord(q)).. x_ij(q,j) + w_ij(q,j) -

x_ij(p,j) =l= (1-gamma(p,q,j,"2"))*W;

gammaLeftRight(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") +

gamma(p,q,j,"2") =l= 2 - delta(p,q,j);

* (c) positions on the vertical axis

gammaBelow(p,q,j)$(ord(p)<ord(q)).. y_ij(p,j) + h_ij(p,j) -

y_ij(q,j) =l= (1-gamma(p,q,j,"3"))*H;

gammaAbove(p,q,j)$(ord(p)<ord(q)).. y_ij(q,j) + h_ij(q,j) -

y_ij(p,j) =l= (1-gamma(p,q,j,"4"))*H;

gammaBelowAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"3") +

gamma(p,q,j,"4") =l= 2 - delta(p,q,j);

* linking the logical constraints (a), (b) and (c) above

gammaLeftBelow(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") +

gamma(p,q,j,"3") =l= 2 * (1 - z_ij(p,j) + delta(p,q,j));

gammaRightAbove(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"2") +

gamma(p,q,j,"4") =l= 2 * (1 - z_ij(q,j) + delta(p,q,j));

allGammas(p,q,j)$(ord(p)<ord(q)).. gamma(p,q,j,"1") +

gamma(p,q,j,"2") + gamma(p,q,j,"3") + gamma(p,q,j,"4") =g=

delta(p,q,j);

* PhD Progress 5 2011-12 Ch.3 - corrections for total remaining

demand

* 7.7.2012 ideas & corrections UE

firstFrame(i,j)$(ord(j) = 1).. r_ij(i,j) =e= phi(i)-a_ij(i,j);

otherFrames(i,j)$(ord(j) > 1).. r_ij(i,j) =e= r_ij(i,j-1)-

a_ij(i,j);

* maximum delay constraints (10.07.2012 ideas)

rij_sigmaLower(i,j).. 1 - A*sigma(i,j) =l= r_ij(i,j);

rij_sigmaUpper(i,j).. r_ij(i,j) =l= phi(i)*(1-sigma(i,j));

rij_zij_lambda_relation(i,j)$(ord(j) <= nFrames-lambda(i)).. sum(k $

(ord(k) > ord(j) and ord(k) <= ord(j)+lambda(i)), z_ij(i,k)) =g=

z_ij(i,j)-sigma(i,j);

*for avoiding maximum delay violation after no demand remaining

*rij_zij_trivial(i,j)$(ord(j) > 1).. z_ij(i,j) =l= (1-sigma(i,j-1));

* Variable Bounds

* bounding r_ij

r_ij.UP(i,j) = phi(i);

r_ij.LO(i,j) = 1-A;

*z_ij.UP(i,j)$(ord(j) > 1) = 1$(r_ij.L(i,j-1)>0);

* Last frame remaining

r_ij.UP(i,j)$(ord(j) = card(j)) = 0;

MODEL SeqRectPack /ALL/;

*SeqRectPack.workspace=100;

120

*SeqRectPack.optfile=1;

* instruct BARON to give higher branching priorities

*$onecho > baron.opt

*NLPSol 2

*a_ij.prior 40

*z_ij.prior 10

*$offecho

OPTION optca=1e-5, optcr=1e-5, minlp=scip, reslim=600,

iterlim=2000000;

scalar starttime; starttime = jnow

SOLVE SeqRectPack USING MINLP MINIMIZING waste;

execerror=0;

file textOutput /Figure4.7-input-tr1n10m4PR08.gout/;

textOutput.pc=6;

put textOutput, SeqRectPack.modelstat:0:0, SeqRectPack.solvestat:0:0

/;

put SeqRectPack.objVal:0:0, SeqRectPack.resUsd:0:4,

SeqRectPack.nodUsd:0:0 /;

put SeqRectPack.numVar:0:0, SeqRectPack.numEqu:0:0,

SeqRectPack.numNZ:0:0, SeqRectPack.numNLNZ:0:0 /;

put card(i):0:0, card(j):0:0, W:0:0, H:0:0, sum(i, phi(i)):0:0 /;

loop(i, put ord(i):0:0, sum(j, z_ij.l(i,j)):0:0, phi(i):0:0, sum(j,

a_ij.l(i,j)):0:0 /;

 loop(j $ z_ij.l(i,j),

put ord(j):4:0, x_ij.l(i,j):0:0, y_ij.l(i,j):0:0, w_ij.l(i,j):0:0,

h_ij.l(i,j):0:0;

put /;);

);

121

APPENDIX B

EXAMPLE INPUT AND OUTPUT FILES

122

B.1 Configuration File for Problem Generation and Solutions

The following XML .config file developed in Visual Studio 2010 IDE is used for

the generation of the input files for the problem instances used in computational

experimentation, and solution of these problem instances by any available mixed

integer nonlinear programming solver with GAMS. Namely, the same executable can

be used without any additional modification or recompilation for different purposes

and problem types, merely by changing the respective parameters presented below.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <appSettings>

 <!-- m: # of frames; n: # of users -->

 <!-- settings for problem input file generation mechanism -->

 <!-- the semicolons ";" seperate level values -->

 <!-- the hyphens "-" seperate lower & upper bound values for the

corresponding levels -->

 <add key="userLevel" value="10;20;40"/>

 <add key="frameSeqLengthLevel" value="2;4;8"/>

 <!-- the x seperates width & height sizes for frames -->

 <add key="frameSize" value="12x30"/>

 <!-- if demand level string is empty or not found transferLevel

s_i will be used for d_i= m * s_i -->

 <add key="demandLevel" value="12-192;10-80"/> <!-- "4-32"-->

 <!-- if above demand values are used, then number of transfer

levels will be the same as d_i levels and are used in parallel -->

 <add key="transferLevel" value="6-24;5-10"/>

 <!-- frameDependentDemandRatioLevel lower & upper bounds are

percentage values for the respective frame area -->

 <!-- if demand level string is empty and

frameDependentDemandRatioLevel are nonempty, the percentage bounds

below will be used -->

 <!-- again as in demand levels above, number of transfer levels

should be the same as number of frameDependentDemandRatioLevels and

are used in parallel-->

 <add key="frameDependentDemandRatioLevel" value=""/> <!-- "5-

10;5-20"-->

 <add key="profitLevel" value=""/>

 <!-- if profit level string is empty or not found

profitCoefficientLevel will be used -->

 <!-- if profit coefficient pc is used, then p_i= pc * d_i -->

 <add key="profitCoefficientLevel" value="4"/>

 <!-- lambda levels (as frame sequence bounds in percentages)

might be defined here as well -->

 <!-- lambda may be greater than m -->

 <!-- If simulation, these will be actual lambda value intervals

and always be used explicitly -->

 <!-- if lambda level string is empty or not found, lambda

(maximum delay) will be uniformly selected between [1,m] -->

 <add key="lambdaLevel" value="2-2;3-8"/>

123

 <!-- probabilities for being an ongoing transfer; if ongoing a

frame index less than or equal to lambda, otherwise frame sequence

length -->

 <!-- if theta level string is empty or not found, all demands

will be for "new" transfers, theta = m+1 -->

 <add key="thetaLevel" value=""/>

 <!-- number of instances to be generated for each setting

combination -->

 <add key="instancePerSetting" value="10"/>

 <!-- file extension that will be used for SRP problem files -->

 <add key="genFileExtension" value="txt"/>

 <!-- settings for GAMS model input and solutions -->

 <add key="gamsExecutable" value="C:\Program

Files\GAMS\23.9\gams.exe"/>

 <add key="gamsModelType" value="5-Maximizing Profit with

Bounds"/>

 <!-- 1-Feasibility; 2-Minimizing Partition; 3-Minimizing

Overallocation; 4-Maximizing Profit; 5-Maximizing Profit with Bounds

-->

 <add key="gamsModelBaseText" value="SRP-I-profit-limit10min-

scip-bothBounds.gtxt"/>

 <add key="gamsOutputFormatText" value="SRP-I-bounded-

output.gtxt"/>

 <add key="gamsOutputExtension" value="gout1"/>

 <!-- more general settings -->

 <add key="inputFileExtension" value="txt2"/>

 <!-- Use 1 for problem generation, 2 for GAMS solution, 3 for

simulation probem generation, etc.-->

 <add key="programUsage" value="3"/>

 <!-- Simulator settings -->

 <!-- If simulation problem generation settings are used, then

all demand, transfer, profit, profit coefficient & lambda related

settings -->

 <!-- should be parallel to the number of traffic classes given

below. Moreover, for profit coefficient the key below should be used

-->

 <!-- Naturally, there should be at least two different classes

for a simulation data generation. -->

 <add key="trafficClass" value="Data;Voice"/>

 <!-- the distribution of classes in percentages, thus each level

should sum up to 100. -->

 <!-- For example if there are 3 classes, then 50-20-30 is valid

-->

 <add key="classDistribution" value="75-25;50-50"/>

 <!-- if no explicit profit level given, the discrete uniform

from the below intervals will be used -->

 <add key="profitCoefficientIntervalLevel" value="1-6;6-12"/>

 </appSettings>

</configuration>

124

B.2 Example Input Files

In this appendix, example input files corresponding to the problem instances in

Figures 4.5, 4.6 and 4.7 are provided. Figure B.1 exhibits the input file for the

instance in Figure 4.5, involving a problem with 10 users packed over 2 frames with

traffic distribution TR1 (75% of users with data + 25% voice traffic).

Figure B.1 Input file of the problem instance in Figure 4.5

In the input files, the first line indicates that there are 10 users to be packed over 2

frames, with width and height dimensions equal to 12 and 30, respectively. The

succeeding 10 lines include user data for each user: User index (1) followed by the

demand size (28), profit value (168), maximum delay value in frames (7), minimum

transfer rate (28), θi value, i.e. the latest frame to maintain or to begin the data

transfer for user i (3: new transfer) and lastly the user class (2: user with voice

traffic).

The first line after the user parameters lines describes the problem instance, as to

whether the case i

i I

mA


 holds or not. The value of zero means that the

inequality does not hold, and the instance can be used for SRP-I solutions. This

indicator is followed by the sum of user demands (757) to be packed, and the total

area of all frames (720 = 2x12x30). The single entry in the next line (2) denotes the

number of user traffic classes involved (Data Set 2), followed by their names and

125

respective distributions in percentages in the last two lines. The same logic applies

for all the sample instance input files.

Figure B.2 exhibits the input file for the instance in Figure 4.6, which involves a

problem instance with 10 users over 4 frames with traffic distribution TR1 (75% of

users with data + 25% voice traffic) and an average user demand of 116 slots.

Figure B.2 Input file of the problem instance in Figure 4.6

As a last example and for comparison, Figure B.3 below exhibits the input file for

the instance in Figure 4.7: A problem with 10 users over 4 frames with traffic

distribution TR1; with average user demand of 102 slots.

Figure B.3 Input file of the problem instance in Figure 4.7

126

B.3 Example Output Files

In this appendix, example output files corresponding to the problem instances in

Figures 4.5, 4.6 and 4.7 are provided. Figure B.4 exhibits the output file for the

instance in Figure 4.5.

Figure B.4 Output file of the problem instance in Figure 4.5

The output file given above belongs to an SRP-I solution employing lower and

upper bounds. The first line shows the GAMS status messages, describing whether

the solution is optimal or not, and lists its termination condition (normal, time limit,

user interrupt, etc.). The next line values are respectively the objective function

value, solution time in seconds, number of branch & bound nodes searched, and the

last upper bound used by the solver.

The third line is regarding the problem size, and lists respectively the number of

decision variables, number of constraints, number of nonzero entries in the

coefficient matrix and number of nonlinear nonzeroes belonging to the model. The

127

fourth line describes the instance briefly: Number of users, frames, frame width and

height, and lastly the total demand size in slots of all users.

The fifth line is SRP-I specific, and lists the number of users packed, total demand

size of these users, total available profit of all users, and lastly the initial lower

(2893) and upper bounds (3065) used. The following lines are concerning the users

packed in the SRP-I solution, and ordered according to their indices. So, the next line

first gives the user index (1), the number of frames (2) it is packed in, the demand of

the user in slots (28), the actual area allocated for the user (28), and the profit gained.

The next two lines are the respective frame indices, positions and sizes of the

rectangles assigned to these frames. Hence, for user 1, the first of its two rectangles

is placed in frame 1, its bottom-left x-y coordinate is (0,0) with width and height

equal to 2 and 8, respectively. The remaining lines follow in the same manner.

Figure B.5 exhibits the output file for the instance in Figure 4.6. This is not a

solution of an SRP-I instance, thus the fifth line explained above is not present in this

output. This is because, if there is a feasible or optimal solution, all users are already

packed. Moreover, the user profit values are not listed in the corresponding user lines

for SRP-II and SRP-III problem solutions.

128

Figure B.5 Output file of the problem instance in Figure 4.6

As a last example, Figure B.6 below exhibits the output file for the instance in

Figure 4.7.

129

Figure B.6 Output file of the problem instance in Figure 4.7

Finally, we include in Figure B.7 below a screen shot of the MS Excel output for

the instance in Figure 4.7. This output is also generated for each instance

automatically by the Excel macro procedures developed in Visual Basic language.

130

Figure B.7 MS Excel output screenshot for the problem instance in Figure 4.7

131

APPENDIX C

C# CODES FOR LOWER AND UPPER BOUNDS OF SRP-I

132

C.1 Code segment for AlgorithmUB

The code segment below, which is a part of the SRP-I code library, is used for

obtaining the upper bound for the SRP-I problem.

private int KnapsackRelaxationUpperBound()
 {
 int totalArea= frames * frameWidth * frameHeight;
 if (totalDemand<totalArea) return availableProfit;
 // sorted in nondecreasing order (profit/demand)
 int[] sortedUsersProfitPerDemand =
Sorter.OriginalIndexSorted(profit_per_demand);
 int profitBound = 0;
 int user=users-1; // zero-indexed, last has the highest
profit/demand ratio

 while ((totalArea > 0) && (user >= 0))
 {
 int newPack = phi_local[sortedUsersProfitPerDemand[user]];
 if (totalArea - phi_local[sortedUsersProfitPerDemand[user]] <
0)
 {
 double partialProfit=
(double)profit[sortedUsersProfitPerDemand[user]]* totalArea/newPack;
 profitBound += (int)Math.Ceiling(partialProfit);
 return profitBound;
 } else
 {
 profitBound += profit[sortedUsersProfitPerDemand[user]];
 totalArea -= newPack;
 }
 user--;
 }

 return profitBound;
 }

133

C.2 Code segment for AlgorithmLB

The code segment below, which is a part of the SRP-I code library, is used for

obtaining the lower bound for the SRP-I problem.

private int SRP_I_LowerBound()
 {
 int frameArea= frameWidth * frameHeight;
 // sorted in nondecreasing order (profit/demand)
 int[] sortedUsersProfitPerDemand =
Sorter.OriginalIndexSorted(profit_per_demand);
 int profitBound = 0;
 int user=users-1; // zero-indexed, last has the highest
profit/demand ratio
 // choosing the shortest edge of the frame for less
overallocation, thus tighter bound
 int shortEdge=frameWidth;
 int longEdge=frameHeight;
 if (frameWidth > frameHeight) {
 shortEdge=frameHeight;
 longEdge=frameWidth;
 }
 // filling the frame by short edges, and ignoring unused spaces if
there is overalocation;
 // so if short edge=5 and demandPerFrame is 8, 8/5 ~ 2 short edges
used, and remainingStrip becomes (remainingStrip - 2)
 int remainingStrip=longEdge;

 while ((remainingStrip > 0) && (user >= 0)) {
 int newPack = phi_per_frame[sortedUsersProfitPerDemand[user]];
 if (newPack> remainingStrip * shortEdge) // try the next user
 {
 user--;
 if (user < 0) break;

 } else
 {
 int
usedStrip=(int)Math.Ceiling((double)phi_per_frame[sortedUsersProfitPerDemand[u
ser]]/shortEdge);
 profitBound += profit[sortedUsersProfitPerDemand[user]];
 remainingStrip -= usedStrip;
 }
 user--;
 }

 return profitBound;
 }

	img005
	Thesis-FINAL-v2

