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DESIGN AND IMPLEMENTATION OF A DSP BASED ACTIVE NOISE 

CONTROLLER 

ABSTRACT 

     Noise is a general name for all disturbing sounds. Noise not only affects livings, 

but also affects the machines in a bad way. The continuous increase in human 

population and developing technological needs resulted in increasing noise and noise 

variety. Therefore, noise cancellation methods have been spread. Different kinds of 

headphones are used for sharp (high frequency) noises, while active noise 

cancellation methods are used for bass (low frequency) noises. The application areas 

of these active noise controls vary from infant incubators to automobile cabins, and 

from plane cabins to hospital environments. Here, the noises have low frequency 

components. Application of active noise controls on high frequency noises is not 

well developed. In this project, active noise cancellation is used for the dentist drill 

sound, which has very high frequency components. During the project, MATLAB 

software has been used. Firstly the active noise control algorithm is designed in the 

simulation environment. Optimum filter parameters are determined. Then after the 

system performance is justified, hardware parts are implemented. In the hardware 

setup, drill sound is recorded via microphones and the negative sound of this noise is 

transmitted to the room through a speaker. In this way, theorically, the total 

environment noise is reduced and diminished with a particular percentage. The 

hardware setup in this project achieved this theory in the practical life. The noise 

reduction is around fifty percent in a specific area of the room. These results are 

compared with other ANC methods used in this project, and the corresponding 

graphs are added to this report. The advantages and the disadvantages of these ANC 

methods are mentioned. This project differs from previous active noise control 

researches because a different adaptive algorithm is used. First of all, the noise has 

high frequencies. The filter is wideband and normalized. The secondary filter is 

online. The results of the comparison of these ANC researches and this thesis project 

showed that this thesis project performance is better. 

Keywords: Active noise cancellation, ANC applications, online secondary path 

filter, FxLMS algorithm 
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DSP TABANLI AKTİF GÜRÜLTÜ KONTROLÜNÜN TASARIMI VE 

GERÇEKLEMESİ 

ÖZ 

     Gürültü, bütün rahatsız edici sesler için kullanılan genel bir isimdir. Canlıların 

yanı sıra makineleri de kötü bir şekilde etkilemektedir. Ġnsan nüfusundaki sürekli 

artış ve teknolojik ihtiyaçların büyümesi gürültü ve gürültü çeşitliliğini 

arttırmaktadır. Bu yüzden gürültü kontrol metotları geliştirilmiştir. Çeşitli kulaklıklar 

yüksek frekanstaki gürültülerin kontrolü için kullanılırken, aktif gürültü kontrol 

metotları düşük frekanstaki gürültüler için kullanılır. Uygulama alanları bebek 

kuvözlerinden araba kabinlerine, uçak kabinlerinden hastane ortamlarına kadar 

çeşitlilik göstermektedir. Bu alanlarda gürültü düşük frekansa sahiptir. Aktif gürültü 

kontrolleri, yaygın olmamakla birlikte yüksek frekanslar için de kullanılabilmektedir. 

Bu projede, yüksek frekans bileşenlerine sahip olan dişçi delgisi sesleri için aktif 

gürültü kontrolü kullanılmıştır. Uygulama süresi boyunca MATLAB yazılımı 

kullanılmıştır. Öncelikli olarak algoritma simülasyon ortamında tasarlanmıştır. 

Uygun filtre parametreleri bulunmuştur. Sistem performansı doğrulandıktan sonra 

donanım kısımları dâhil edilmiştir. Donanım bölümünde dişçi delgi sesi mikrofonlar 

ile kaydedilir ve oluşturulan eksi ses ortama hoparlör yardımı ile aktarılır. Bu sayede 

teorik olarak ortamdaki gürültü belirli bir oranda yok edilir. Kurulan donanımsal 

yapı, bu teoriyi pratik hayata geçirmiştir. Gürültü elemesi açık alanda yüzde elli 

civarındadır. Elde edilen sonuçlar diğer ANC metotları ile karşılaştırılmış ve 

sonuçlar, grafikler ile birlikte raporlanmıştır. Bu metotların avantajları ve 

dezavantajları listelenmiştir. Projenin önceki araştırmalardan farklılığı geliştirilmiş 

bir algoritmanın kullanılmış olmasıdır. Ġlk olarak, gürültü yüksek frekanslara 

sahiptir. Kullanılan filtre geniş bir bantlıdır ve normalize edilmiştir. Ġkincil yol 

çevrimiçidir. Elde edilen sonuçlar proje performansının yapılan diğer araştırmalardan 

daha iyi olduğunu göstermiştir. 

Anahtar kelimeler: Aktif gürültü kontrolü, ANC uygulamaları, çevrimiçi ikincil yol 

filtresi, FxLMS algoritması 
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CHAPTER ONE 

INTRODUCTION 

 

     Along with the enlarging human population, acoustic noise has become a big 

problem because of industries, electrical devices, gas and fluid transportations, 

vehicles, air planes and so on. Acoustic noise causes serious health problems such as 

hearing loss, hypertension, digestive disturbances, increased heart rate and sleeping 

problem (Goines & Hagler, 2007). Besides, increased mechanical fatigue and 

reduced component life are also the bad consequences of acoustic noises (Abdel, 

Ahmadi & Loo, 1990). In order to overcome these problems passive noise control 

has been implemented for a long time. 

 

     In passive noise control, there is no need for complex filter systems, signal 

processing cards, or any electrical components. Mufflers (Bi, Li, Chen & Liu, 2011), 

silencers (Passive flue gas silencer with mineral fibre absorber, n.d.), acoustic 

attenuators (Acoustic attenuators, n.d.), barriers, enclosures and headphones were 

developed as passive noise controller for instance. This control has been used for 

high frequency signals. Since these signals have shorter wavelengths it is easier to 

attenuate them. This is also valid for communication signals. However, when a signal 

has low frequency (consequently longer wavelength), it is hard to diminish that 

signal. The only way for passive control is using either heavy or expensive materials. 

Since it is not a desirable situation, active noise control was developed (Elliott & 

Nelson, 1993). 

 

     Active noise control was granted that name because it requires active electronic 

parts unlike passive noise control. In this control, the main idea is to produce an anti 

noise signal which will eliminate the existing acoustic noise. The most important 

thing is to obtain the exact amplitude with the opposite phase. Finally, this anti-noise 

cancels the noise signal and the summation becomes just a white noise, which always 

exists. Figure 1.1 shows the visual implementation of this process. 
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Figure 1.1 Active noise cancelling 

 

     ANC requires at least one microphone, one loudspeaker, and an anti-noise signal 

generator, which will eliminate the acoustic noise. These parts can be implemented 

either in a headphone or explicitly. Headphone design is the better one because it 

encircles the ears and also provides passive control. On the other hand, explicit ANC 

has also been studied for decades. These studies are generally for low frequency (less 

than 400 Hz) signals. 

 

     First feedback ANC system was developed by May & Olson (1953). In this 

system, there exists only one microphone, error microphone, and one speaker. This is 

the most basic form of feedback ANC systems. The desired noise was estimated in 

the filter and fed back to the filter input. More detailed information about feedback 

ANC was documented in the section 2.1.   

 

1.1 Headset Applications 

 

     Gan & Kuo (2003), implemented active noise control into communication 

systems using headsets. Headsets do not only apply noise control but also provide 

place for communication hardware. They also the human communication is 

performed contrary to classical ANC headsets, which are used only for noise 

cancelling. Besides, active noise cancellation is implemented two times. One is at the 

receiver side, and the other is at transmitter side. Adaptive feedback ANC system at 

the transmitter side eliminates the noise, enhances the human sound and delivers this 

clear sound to the transmitter unit. Adaptive feedback ANC system at the receiver 
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side, on the other hand, eliminates the environment noise that corrupts the receiving 

signal. These active noise control systems basically use least mean square (LMS) 

algorithms, which is the most popular algorithm to minimize (zero if possible) the 

total system error in ANC systems. These headsets are adaptive for variety of noises, 

robust, and practical. 

 

     Schumacher, Krüger, Jeub, Vary & Beaugeant (2011), proposed a new approach 

for broadband feedback ANC for headsets. At the earliest stage of the headset ANC 

system developments, non adaptive feedback ANC algorithms were used. This 

algorithm is suitable to attenuate low frequency ambient noises. On the other hand, 

adaptive ANC algorithms are effective for larger frequency range and especially 

periodic ambient noises. These two algorithms are combined under a new method 

called novel hybrid feedback ANC. This new combined method provides better 

results, higher overall noise attenuation, compared to pure non-adaptive systems and 

pure adaptive systems. Hybrid feedback ANC based headsets are low-cost, high-

quality and practical compared to the other two methods. Furthermore, due to 

practical constraints, a mixed analog-digital realization was proposed (Schumacher, 

Krüger, Jeub, Vary & Beaugeant, 2011). This realization splits the overall system 

into two parts. In the digital part filtered-x LMS (improved LMS algorithm for real 

environment) is used while in the analog part a control filter is used to prevent the 

ambient noises from sudden jumps.    

 

1.2 Open Environment Applications 

 

     Besides headset, ANC algorithms were used in a number of different applications. 

For example, ANC is used for the estimations of FMRI (Functional Magnetic 

Resonance Imaging) machine noises. These studies are very beneficial because the 

communication between the doctor and the patient in the machine is very important. 

Machine noise generally suppresses the person‟s voice. In order to prevent this, 

Venkate Raghavendra Ramachandran implemented active noise control in fmri 

machines (Ramachandran, Panahi & Perez, 2008). LabVIEW program (as the 

software tool) and FPGA (as the hardware tool) were used with three different ANC 
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system algorithms, namely normalized least mean square (NLMS), recursive least 

squares (RLS) and affine projection algorithm (APA). The overall system 

performances are according to the computation complexity and the signal (human 

voice) to noise ratios (SNR). High SNR values mean better performance. RLS 

algorithm is the best one for this system but it is the most complex one. It should be 

noted that there is a threshold between complexity and performance. Both cannot 

exist in the same algorithm. 

 

     Snoring sounds are also in the ANC application areas. These sounds are usually 

irritating for human ear. Therefore, Kuo and Chakravarthy developed a real-time 

ANC application to reduce the snoring sound (Kuo & Chakravarty, 2006). Lower 

system complexity and overall cost was achieved by using three different FxLMS 

algorithms. Using three different FxLMS algorithms, six snore ANC structures were 

realized. As the hardware, twin-size headboards were used. The snore signals 

showed that there was a wide area with a satisfactory filter performance with a low-

cost. 

 

    When the disturbing noises are considered, periodic ones are prior. Because of 

this, Bodson, Jensen, & Douglas (2001), have focused on this topic in their studies. 

Feedback ANC algorithms were applied to various periodic noises with different 

unknown frequencies. Normally, pure sinusoidal noises with specific frequencies can 

easily be eliminated with adaptive filters. However, this process is a little bit difficult 

for unknown frequencies. For this process, first fundamentals of the noise are 

calculated and the control block parameters are adjusted according to these 

fundamentals and noise magnitudes. Then cascading these blocks with compensators, 

which are formed via the acoustic path and the noise frequencies, results in a good 

performance. In other words, adaptive algorithm is done without using LMS 

algorithm. It uses sinusoidal functions and fundamental frequencies of the noise. 

 

     ANC is also used in infant incubators. It is one of the most crucial practical topics 

in ANC area because infants are very vulnerable to environment sounds. The main 

purpose in this topic is to eliminate the noises in the care unit and infant incubators. 
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The infant incubator was realized with a baby doll, a speaker, an error microphone, 

and a computer system (Thanigai, Kuo & Yenduri, 2007). FxLMS algorithm was 

applied. However, the results included peaks at some points because of the 

nonlinearity of the environment noises. In order to reduce these peaks in output error, 

a different method with M-estimate function was used and the resulting error peaks 

were eliminated. Final ANC error is minimized but may not be enough for some 

cases. Therefore, audio integrated ANC is proposed for this situation. Error signal is 

combined with the audio. This audio was selected as heart sound to provide womb 

effect to the baby. To conclude, not only the baby growing was improved with the 

integrated heart sound but also the baby wasn‟t affected by the minimized (not zero) 

output error. 

 

     In case of the existence of reference microphone, the received data sets definitely 

affect each other. In order to overcome this problem, a new study was developed by 

Yifeng (1997). Different reference signals require different filter parameters and their 

acoustic noises will be different as it can be seen in Figure 1.2. Reference signals 

exist in the same environment and they highly affect each other. Decorrelated filter 

was developed so as to eliminate these effects. Finally, several different independent 

adaptive filter based subsystems were obtained. It is stated that this process can also 

be done with passive isolation, but this method would be more costly. This 

decorrelation filter, therefore, provides a low cost and high robust multi-reference 

ANC system. Figure 1.2 shows its clear block representation.  
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Figure 1.2 Decorrelation filter block representation (Yifeng, 1997) 

 

    There are also ANC-based researches regarding air and fluid noises. Air noise 

research is about fan noises (Homma, 2004). It begins with fan noise analyses. It is 

clear that it would have very different characteristics in space and in a duct. The 

second one is more important because the covering duct also provides passive noise 

control which enhances the performance of active noise control. Then a matching 

model for fun noise in a duct was implemented. This model underwent several active 

noise control methods, mainly LMS algorithms. While applying these algorithms, 8-

segmented model was proposed. That is the duct is divided into 8 segments since the 

fan noise is non-linear at every point in the duct. This 8-segment model requires 8 

different speakers and 8 different microphones as is can be seen in Figure 1.3. This 

process is a little bit costly, but its result is much better than the 1-segment noise 

cancellation. After modeling, the real system was designed and the results of passive 

and active noise controls (first separately then combined model) were observed and 

they are very satisfying. The hardware structure is illustrated in Figure 1.3. 
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Figure 1.3 Air noise cancellation hardware model in a duct (Homma, 2004) 

 

     In the fluid borne study, active noise control is also very important (Wang, 2008). 

If the fluid noise is tried to eliminate just by passive noise control, then it would be 

very costly and not-portable. Firstly, the fluid borne system was modeled on the 

computer. Then the off-line and online noise cancellations were implemented as 

usual. In online cancellation part, there occurs a secondary path. This path represents 

the total effect of digital to analog converter, hardware components and speaker 

response. In the second path estimation part, they used four different estimation 

methods and compared their performances with respect to each other. As the 

adaptive filtering, FxLMS and 2-weights LMS notch filter were used. The second 

method also gave a reasonable result since the fluid noise is periodic, and periodic 

sounds are easy to be eliminated. However, the fluid borne frequency is important 

and it affects the system performance. Wang (2008), also investigated this frequency 

effect after completing the experiment setup with real pump. 

 

     ANC systems are generally applied to low-frequency noises. Another example to 

this is a study about automobile cabin noises (Wang, Gan & Kuo, 2005). Several 

decades ago, the implementation of ANC in an automobile would be unreasonable 

because it requires several hardware components (microphones, speakers, DSP 

boards and so on) and engines sounds are hard to be tracked due to its variety (non-

linearity). Therefore, the FxLMS adaptive algorithm was implemented for a certain 
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narrowband frequency range. First of all, the engine sound was estimated as if a 

periodic sound. Then its harmonics were extracted and 2-weight FxLMS notch filter 

was applied to the engine noise. This algorithm is called as active noise equalizer 

(ANE), different from ANC because the engine noise is not purely periodic and this 

notch filter doesn‟t eliminate the noise entirely. It just reduces the annoying 

frequencies. It seems this study will be a big step for ANC systems in automobiles or 

other transportations. 

 

     Forest machines also generate irritating noises. Forsgren studied on these forest 

machines (Forsgren, 2011). FxLMS algorithm is applied after identification of 

primary and secondary paths. The overall result is reasonable when the system SNR 

values are considered. However, local performances may not be good, especially 

after 300Hz frequency.  

 

     The core of this thesis is an active noise control system for dental drill sounds. 

Dental drills produce broadband noises, which have all frequency values. These 

noises badly affect both the patience and the doctor in a long term. In order to reduce 

these bad effects, this project was performed. The main purpose of this design was to 

overcome high frequency acoustic noises (up to 23 kHz), without using any 

headphone. Frequency values higher than 23 kHz are out of interest because human 

hearing range is upper limited with 23 kHz. Experiments were done by using the 

combinations of the MATLAB blocks and codes, then DSP board. 2 microphones 

and 1 speaker were used for adaptive algorithm. 1 extra microphone was used for 

error measurement. This microphone reading is not fed back to adaptive filter. 

Kaymak, Atherton, Rotter, and Miller also dealt with dental drill sounds (Kaymak, 

Atherton, Rotter & Millar, 2007). They firstly determined the sound characteristics, 

and consecutively applied offline and online FxLMS ANC algorithm. They focused 

on narrowband noises. Therefore, their algorithm only works on particular frequency 

range. Finally, they used offline secondary path. These path parameters were fixed. 

Even though the interested noises are same, this thesis differs from (Kaymak, 

Atherton, Rotter & Millar, 2007) in many ways. First of all, broadband noise 

cancellation was applied. The frequency range is not limited with a single peak 
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value. Second, FxLMS algorithm is normalized, which gives a better performance 

result. Finally, applied secondary path is online. Compared to offline secondary path, 

it is more robust to the environment changes such as device transportation, 

temperature change, and environment vibrations. 

 

     This thesis is organized as follows. In chapter two, theoretical background about 

ANC systems is documented. In this part, Feedback, feedforward, and hybrid ANC 

systems are examined. In feedforward part, there are adaptive filters listed, namely 

wiener filter, steepest descent method, LMS (Least Mean Squares), NLMS 

(Normalized LMS), sign LMS, FxLMS (Filtered-x LMS), linear prediction, kalman 

and particle filters. Definitions, graphical representations, equations, convergence 

boundaries, advantages and disadvantages are listed in this chapter. 

 

     In chapter three, drill sound characteristics are examined. Time domain and 

frequency domain graphs are obtained with different drill sounds. Modeling and 

simulations are performed using different LMS types and filter parameters. 

According to the results, the best algorithm and filter parameters are determined. 

MATLAB blocks are added, step size boundaries are determined, and algorithm 

equations are written with the filter parameters. Also online secondary path is 

modeled.      

    

     Chapter four gives detailed information about hardware setup. Optimum 

positioning of speakers and microphones are calculated with graphical results. 

Hardware microphone input system is added and its characteristic response is 

calculated. DSP card, and speaker features are listed in this chapter. Speaker 

frequency response and its bad effects are also mentioned here. 

 

     Chapter five contains the final FxLMS algorithms, their block representations and 

the algorithm results. These algorithms are separated in two parts, broadband and 

narrowband. Their detailed characteristics and bandpass filtering are documented in 

this chapter. Also acoustic feedback is introduced. Filter parameters are calculated 

and block representation is presented. For the result part, 40 different drill sounds 
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were used. The average performances of offline NLMS, simple online NLMS, 

normalized FxLMS algorithms are calculated for these drill sounds. Additionally, 

narrowband normalized FxLMS and normalized FxLMS with acoustic feedback 

algorithms were developed and tested for specific drill sounds. The graphical and 

numeric results of all these algorithms were added in this chapter. Comparisons of 

these algorithms were also mentioned here.  

 

     As the conclusion part, chapter six is written. Brief information about the project 

and project report, project specialties, the comments on results, comparison of results 

and possible future works are documented in this chapter.     
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CHAPTER TWO 

THEORETICAL BACKGROUND 

 

     In ANC systems, there are mainly three algorithm types, namely feedback (non-

adaptive), feedforward (adaptive) and hybrid ANC. The type of the algorithm is 

specified according to the existence of reference signal. Reference signal represents 

the main noise. If the primary noise can be recorded and fed into the adaptive filter, 

then it is labeled as reference signal.  

 

2.1 Feedback ANC 

 

     Feedback ANC is chosen in the applications where the reference signal cannot be 

reachable or coherently generated. In this situation, error signal is recorded and 

algorithm is applied to the system in order to reduce this error signal regardless of the 

reference signal. This system was firstly introduced by Olson & May (1953). Then it 

was applied using hearing protectors by Carme (1988), Wheeler & Smeatham 

(1992), and Veit (1988).  Figure 2.1 shows a simple representation of feedback ANC 

algorithms (Raphael, n.d.). 

 

 

Figure 2.1 Simple hardware representation of the feedback ANC algorithm 

 

     In this simple representation, e(n) is the error signal and y(n) is the cancelling 

signal. The error microphone is placed in the region of the sound generator such that 

the loop delay is decreased. However, it has several problems as well. First of all, 
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noise attenuation and the frequency range (not enough even though this range can be 

increased by decreasing “d” distance) are broadband limited. Besides, there is most 

likely instability in the system. Finally, because of the loop delay, only the periodic 

noises can be completely eliminated. Therefore, this representation can be improved 

as Figure 2.2. 

 

 

Figure 2.2 Improved feedback ANC algorithm hardware representation 

 

     In this representation the loudspeaker and the error microphone is stored in a 

small area connected to the duct. In this way, the closed area has good roll-off 

characteristics and the microphone is isolated from the nearby surface reflections.  

 

2.1.1 General Analysis of Feedback ANC 

 

     In Figure 2.3, d(n) is the reference signal (primary noise), e(n) is the error signal, 

y(n) is the control signal, v(n) is the secondary noise, W(z) is the controller transfer 

function, S(z) is the transfer function of secondary path (represents the path between 

digital y(n) and the signal at desired noiseless area), and H(z) is the overall transfer 

function. In z-domain Equation (2.1) and Equation (2.2) can be written. 
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Figure 2.3 Block representation of a simple feedback ANC algorithm 

 

 

 𝐻 𝑧 =
𝐸(𝑧)

𝐷(𝑧)
                                                                                                            (2.1)  

 

𝐻 𝑧 =
1

1+𝑊 𝑧 𝑆(𝑧)
                                                                                                   (2.2) 

 

     As H(z) goes to zero then error signal becomes negligible. This is achieved by 

increasing |W(z)S(z)|. This can easily be done by making S(z) = 1 and W(z) =  M, 

where 𝑀 is a large number so that |H(z)| goes to zero. However, in real life S(z) is 

not always constant and there is usually a phase shift resulting instability. If primary 

noise is a sinusoidal wavelength (cos 𝑤𝑐𝑛𝑇 ), where 𝑤𝑐  is cutoff angular frequency 

and 𝑇 is the period. Then the z-domain representation of the sinusoidal wavelength, 

D(z) becomes: 

 

𝐷 𝑧 =
𝑧2−cos(𝑤𝑐𝑇)𝑧

𝑧2−2 cos  𝑤𝑐𝑇 𝑧+1
                                                                                           (2.3) 

 

     Controller transfer function can be selected as: 

 

𝑊 𝑧 = 𝐾
𝑧(𝑧−𝑎)

𝑧2−2 cos  𝑤𝑐𝑇 𝑧+1
                                                                                      (2.4) 

 

     K is the controller gain, (z − a) is introduced to reduce the phase loss, and the 

decimator is to cancel out decimator of D(z). Then the overall system is stable. 
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     To conclude, not requiring a reference microphone, stabilizing periodic noises and 

having a relatively simple algorithm are advantages of feedback ANC systems. On 

the contrary, having limited bandwidth, high possibility of instability, and not being 

robust are the disadvantages. 

 

2.2 Feedforward ANC 

 

2.2.1 Wiener Filter 

 

     In adaptive algorithms, the main purpose is to minimize the estimated error signal. 

Wiener filter is one of the first adaptive filters and it was proposed and published by 

Wiener. However, the discrete-time equivalent was derived Kolmogorov. Wiener 

filter then pioneered to many other algorithms and applications. 

 

 

Figure 2.4 Wiener filter algorithm block representation 

 

     Figure 2.4 shows a clear indication of wiener filtering algorithm. In this situation, 

input and desired vectors are known and filter coefficients are found in order to 

minimize the estimated error. Hence, expectations of error based signals are 

considered. 𝐸{𝑒 𝑛 }, 𝐸{𝑒2 𝑛 }, …, 𝐸{𝑒𝑘 𝑛 } are possible expectation values for 

estimation error. For simplicity e(n) and 𝑒2(𝑛) are considered. Because of the sign 

problem of e(n), generally 𝐸{𝑒2 𝑛 } is used for adaptive filter algorithms. This can 

be equalized to E{e(n). e ∗ (n)} and then E{[d(n) − y(n)]. [d(n) − y(n)] ∗}, where 

„∗‟ represents the conjugate value. Output can be calculated as (2.5).  
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𝑦 𝑛 = 𝒘𝑇 𝑛 .𝒖(𝑛)                                                                                 (2.5) 

 

     𝒘𝑇  is the transpose of the weight matrix 𝒘. If the mean square estimation is 

equalized to zero, then the Equation (2.6) can be found. 

 

𝜕𝐸 { 𝑑 𝑛 −𝑦 𝑛  . 𝑑 𝑛 −𝑦 𝑛  ∗}

𝜕𝑤
= 0                                                                     (2.6) 

 

     
𝜕

𝜕𝑤
 is the partial differential according to the frequency filter coefficient w. Then 

(2.5) in (2.6) results in (2.7). 

 

∂

∂w
 E d n . d n ∗ − E d n [𝐰 n T𝐮 n ]∗ − E 𝐰 n T𝐮 n d n ∗ +

E 𝐰 n T𝐮 n  𝐰 n T𝐮 n  ∗  = 0                                                                  (2.7) 

 

     The first term becomes zero because d(n) is not related with angular frequency.  

Second and third terms are simplified as −2𝐩, where „𝐩‟ is the cross-correlation 

vector of the input and desired signals (Dmitriev, 2012), which is the estimated value 

of the multiplication of 𝒖 𝑛  and 𝒅∗ 𝑛 . Final term is simplified as 2𝐑𝐰. 𝐑 is the 

autocorrelation matrix of the input signal, which is the estimated value of the 

multiplication of 𝒖 𝑛  and 𝒖∗ 𝑛 . The final expression is minimized by these 

Wiener-Hopf equations and optimal weight coefficients, which minimizes the 

estimated error, are found to be as  

 

𝒘 = 𝑹−1.𝒑                                                                                              (2.8)  

 

2.2.2 Steepest Descent Algorithm 

 

     In wiener filter method, the inverse of autocorrelation matrix, 𝑅−1, must be 

calculated. It is not an easy task when the matrix dimension is large. Instead of direct 

calculation of 𝑅−1, the steepest descent algorithm can be used. The steepest descent 
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algorithm which was first published by Debye (1909) is an iterative process that tries 

to minimize a cost function.  This can be achieved by an iterative process. 

 

𝐽(𝑤(𝑛 + 1)) ≤ 𝐽(𝑤(𝑛))                                                                            (2.9) 

 

     Where J(. ) is the cost function. There is variety of cost functions. It simply 

indicates the cost for producing output units. (2.9) implies that weights should be 

updated in the direction of decreasing cost function. In other words, in the opposite 

direction of gradient vector ∇, which gives the maximum increase direction in the 

cost function.  

 

w n + 1 = w n +
1

2
μ(−∇w J(n))                                                                 (2.10) 

 

    𝐽 𝑛  is represented as mean square error, E{ e n  .  e n  ∗}. Similar to (2.7), after 

few more equations (Adaptive signal processing, n.d.) the final equation is to be 

found as 

 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇(𝑝 − 𝑅𝑤(𝑛)),𝑛 = 0,1,2,…                                           (2.11) 

 

     This weight iteration is done until the weight is no longer changes. 𝜇 is the step 

size and specifies the convergence, robustness, convergence speed and steady state 

error. Selecting of the step size μ is crucial because for convergence the maximum 

limit for step size is 
2

𝜆𝑚𝑎𝑥
 and the time constant is calculated as (2.12) (Barner, 2009). 

 

𝜏𝑚 =
−1

𝑙𝑛 (1−𝜇𝜆𝑚 )
                                                                                       (2.12) 

 

     𝜆𝑚are the eigenvalues of the input vector and 𝜆𝑚𝑎𝑥  is the biggest one of these. 
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2.2.3 LMS (Least Mean Squares) 

 

     LMS algorithm is similar to stochastic gradient method and it was first introduced 

by Dernard Widrow and his Ph.D. student Ted Hoff (Stanford University). In 

contrast to steepest gradient method indicated in Equation (2.11), LMS algorithm 

does not require the autocorrelation matrix R and cross correlation vector p. 

Moreover, it can be used in non-stationary processes (time-varying signals) because 

it uses instantaneous samples instead of ensemble averages. It has feedback 

connection (low pass filter) and its computational complexity is low. The process is 

easier, but the algorithm both has slow rate of convergence and is vulnerable to 

gradient noise. 

 

     As in the steepest descent method, update rule is Equation (2.10), where J(n) is 

the cost function. The new parameters are based on instantaneous values. The 

gradient of the cost function is  

 

∇w 𝐉 (n) = −2𝐩 + 2𝐑 𝐰(n)                                                                                   (2.13) 

 

     Cross correlation vector is  

 

𝒑 = 𝒖 𝑛 𝑑∗(𝑛)                                                                                                     (2.14) 

 

     Autocorrelation matrix is 

 

𝑹 = 𝒖 𝑛 𝒖𝐻(𝑛)                                                                                                    (2.15) 

  

     Where 𝑢𝐻(𝑛) is the hermitian (both transpose and conjugate) of u(n). Combining 

these equation gives the final weight update rule. 

  

𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝒖 𝑛 𝑒∗(𝑛)                                                                        (2.16) 

 

     The Equation (2.17) represents the error value.  
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𝑒 𝑛 = 𝑑 𝑛 − 𝒘 𝐻 𝑛 𝒖(𝑛)                                                                                  (2.17) 

 

     Selection of step size 𝜇 is crucial. Small step size results in slower process, but the 

filter becomes more resistant to gradient noise. Upper bounds for step size are 

determined by the Table 2.1 (Schmidt, n.d.). 

 

Table 2.1 LMS algorithm step size upper bounds for system convergence 

Perspective of LMS 

Filter 

Upper bound for  

step-size 

Parameter descriptions 

Zero order solutions of 

LMS filters 

2

𝜆𝑚𝑎𝑥
 

𝜆𝑚𝑎𝑥  is the maximum eigenvalue of 

input correlation matrix 

Long LMS filters 2

𝑀𝑆𝑚𝑎𝑥
 

M is filter length, and 

𝑆𝑚𝑎𝑥  is maximum of input power 

spectral density 

𝐻∞  optimality of LMS 

filters 
min

1≤𝑛≤𝑁

1

||𝑢(𝑛)||2
 

N is the iteration number for training 

the filter, and 

u(n) is the input signal 

 

2.2.4 NLMS (Normalized Least Mean Squares) 

 

     In LMS algorithm step size 𝜇 is chosen constant. Since the process is stochastic, 

the amplitude of the input samples affects the performance (Klippel, n.d.). Structure 

and computation of NLMS algorithm is same as LMS algorithm except in NLMS, 

step size, 𝜇(𝑛), is time dependent. In order to reduce the effect of input samples, step 

size is divided by the square of that input sample. In other words, step size is chosen 

as 

 

𝜇 𝑛 =
𝐾

||𝒖 𝑛 ||2
                                                                                        (2.18) 
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     K is optional gain. Because of the square expression, convergence rate is higher 

than LMS convergence rate. However, because of the possibility of input sample‟s 

being very small, decimator of step size may have an extra term. The final update 

rule becomes (2.19). 

 

𝑤𝑖 𝑛 + 1 = 𝑤𝑖 𝑛 +
𝐾

𝜀 𝑛 +  𝑢𝑖 𝑛   
2 𝑢𝑖 𝑛 𝑒

∗(𝑛)                                                  (2.19) 

 

     𝜀 𝑛  is the regulation factor used to prevent the decimator from being zero, and it 

is chosen as small values. 

 

2.2.5 Sign-error LMS, Sign-data LMS  and Sign-sign LMS 

 

     Sometimes implementation of LMS algorithm into DSP boards, FPGA cards, and 

application-specific integrated circuits (ASICs) may be very hard. In order to reduce 

the complexity, sign operation is involved in the weight update equation. Existence 

of two parameters (u(n) and e(n)) results in the following three different types of 

LMS (Least Mean Squares algorithms, n.d.). 

 

Sign(u) =  

−1   𝑖𝑓  𝑢 < 0
   0   𝑖𝑓  𝑢 = 0
   1   𝑖𝑓  𝑢 > 0

                                                                                      (2.20)  

 

     The following update equations are used in these LMS algorithms. 

 

     Sign-error LMS (Pilot LMS): 

 

𝑤𝑖 𝑛 + 1 = 𝑤𝑖 𝑛 + 𝜇𝑢𝑖 𝑛 𝑠𝑖𝑔𝑛(𝑒∗(𝑛))                                                         (2.21)      

 

     Sign-data LMS (signed regressor): 

                             

𝑤𝑖 𝑛 + 1 = 𝑤𝑖 𝑛 + 𝜇𝑠𝑖𝑔𝑛(𝑢𝑖 𝑛 )𝑒
∗(𝑛)                                                         (2.22) 
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     Sign-sign LMS (zero-forcing LMS): 

      

𝑤𝑖 𝑛 + 1 = 𝑤𝑖 𝑛 + 𝜇𝑠𝑖𝑔𝑛(𝑢𝑖 𝑛 )𝑠𝑖𝑔𝑛(𝑒∗(𝑛))                                             (2.23) 

     

     Sign LMS algorithms may have less implementation complexity but they have 

lower convergence rate (even may not converge) and greater steady-state error. 

Besides, in analog realizations, these algorithms result in different dc offset 

implications.  

 

2.2.6 FxLMS (Filtered-x LMS)  

 

     In ANC systems, in order to eliminate the noise, a secondary anti noise generator 

is used. Because of the existence of secondary path effect, standard LMS algorithm 

does not work on real ANC cases. Figure 2.5 shows a clear indication of LMS and 

FxLMS algorithms. 

 

 

Figure 2.5 Block diagram representation of both LMS and FxLMS algorithms 

  

     Secondary path simply represents the hardware components, such as digital to 

analog, and analog to digital converters, power amplifiers, and preamplifiers, 

reconstruction and antialiasing filters. Figure 2.6 shows the block diagram of inside 

of the secondary path. 
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Figure 2.6 Block representation of the secondary path (Raphael, n.d.) 

    

     Existence of secondary path transfer function results in amplitude and phase 

change (delay) of output signal y(n). Therefore, error signal cannot be minimized. In 

order to compensate this delay and amplitude change, primary noise should also be 

modified. This modification can be done by inverse of the secondary transfer 

function S(z). However, S(z) is not a minimum phase system in general. Instead of 

inverse of S(z), its estimated equivalent is used in order to filter the primary noise. 

Because of this filtering process this algorithm is called as FxLMS algorithm. 

Calculation analysis is same as the LMS analysis. The only difference is using 

filtered 𝑥(𝑛), 𝑥 (𝑛). Final FxLMS equation becomes as follows: 

 

𝑒 𝑛 = 𝑑 𝑛 − 𝑦 (𝑛)                            (2.24) 

 

y (n) = s(n) ∗ y(n)                               (2.25) 

 

y(n) = 𝒘𝑇 𝑛 𝒙(𝑛)                               (2.26) 

 

𝑤𝑘 𝑛 + 1 = 𝑤𝑘 𝑛 − 𝜇𝑒 𝑛 𝑥 (𝑛)                                               (2.27) 

 

     P(z) is primary transfer function, S(z) is secondary transfer function, 𝑆  𝑧  is 

estimated S(z), y(n) is output signal, x(n) is primary input signal, e(n) is error 

signal, 𝑦 (𝑛) is estimated output signal, 𝑥 (𝑛) is filtered input signal, d(n) is desired 

signal, and w(n) is weight vector. 
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     After many years, FxLMS algorithm has been developed by various new 

methods. For example, Sun‟s algorithm, which restricts the primary noise with some 

threshold (Tahir, Wataru & Akinori, 2011) is one of them. By this threshold method, 

impulsive noises are neglected. Other than sun‟s algorithm, normalized FxLMS, 

modified normalized FxLMS (Tahir, Wataru & Akinori, 2011), leaky FxLMS, sign-

sign FxLMS, variable step size FxLMS, and decorrelated FxLMS (Vicente, Elliot & 

Masgrau, n.d.) are some of the methods enhanced in FxLMS algorithm. 

 

2.2.7 LS, Linear Prediction, Kalman, and Particle Filtering 

 

     These algorithms are some of the remaining methods, which can be used for error 

minimization. First of all, in LS method, the inputs exist and the outputs are 

observed. Then a modeling is performed so that the mean square of the difference 

between the model output and the real output is minimized. Through all of these 

processes, our approach is deterministic (time averages are considered), and weight 

estimates are unbiased as long as error measurements have zero mean. 

 

     Linear prediction, on the other hand, tries to estimate the upcoming input value. 

For example, existing input is u(n) and the system is focused on u(n + 1)  so that 

the adaptive filter can eliminate u(n + 1)  value when it comes to the system. Linear 

prediction algorithm has two main types as feedforward and feedback linear 

prediction. Besides, linear prediction-based filters have a variable M, filter order, and 

the filter performance strongly depends on this filter order. 

 

     Kalman filter has a main difference which is being applicable to both stationary 

and non-stationary processes. Algorithm is done recursively and it uses previous 

estimates as well as the new input data. Kalman filters have lots of parameters 

(innovation parameters related with new input datas, kalman gain…ect.) and 

calculations (Maybeck, 1990). 
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     Particle filtering is the most recent adaptive filter algorithm. It has lots of sub-

methods (Arulampalam, Maskell, Gordon & Clapp, 2002) and the number of these 

methods has been continuously increasing. Main idea for particle filter is to divide 

the current input data into particles (M, filter order). Then same process is applied for 

the next input data, and the patterns of each particle are observed and estimated for 

the next input data. Note that, the input data are noisy; therefore, selection of filter 

order is crucial. Larger filter order results in better results, but it also increases the 

computation time. The main purpose is to find an optimum order considering these 

problems. 

 

2.3 Hybrid ANC 

 

     Hybrid ANC is actually the combination of feedback and feedforward ANCs. In 

this ANC system, the input is not available; however, the designer wants to apply an 

adaptive algorithm just based on the error. Therefore, it is also called as adaptive 

feedback ANC (AFANC). The main purpose is still to minimize the mean square. 

The results may be both non-satisfying (because of the lack of the input itself) and 

satisfying (if the input variation is slow enough to track just through the error). There 

is a balance between these situations. A well-designed AFANC can easily perform 

up to 50dB noise reduction in a large room. This reduction is reasonable when 

compared with feedback ANC (not so effective) applications. Figure 2.7 shows a 

clearer indication of these processes (Kuo & Morgan, 2008). 
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Figure 2.7 Block diagram of an adaptive feedback ANC algorithm 

 

     This configuration resembles the FxLMS configuration. The main difference is 

that there is no direct connection from the desired signal to the system. Therefore, 

input values for the adaptive filter is calculated via error signal e(n). Other than that, 

plant transfer functions, LMS algorithm (just an example), and weight parameters 

still exist. The overall performance highly depends on the input frequency. To 

conclude, hybrid ANCs are more vulnerable to high input frequencies than adaptive 

ANCs (Kuo & Morgan, 2008). Since the dentist drill sounds contain high frequency 

components, this method didn‟t preferred. The hybrid ANC also has the 

disadvantages of the normal feedback ANC algorithm.  

 

     In this chapter, feedback, feedforward and hybrid ANC algorithms were 

examined. The types of feedforward algorithms were defined. Definitions, equations, 

derivations, performances, advantages, and disadvantages were explained in a 

detailed way.   
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CHAPTER THREE 

DRILL CHARACTERISTICS, MODELING AND SIMULATION 

 

3.1 Drill Characteristics 

 

     As it is indicated earlier, dentist drills result in high frequency noises. Therefore, 

standard adaptive filter algorithms cannot compensate the noise changes. In order to 

overcome this problem, the drill sound characteristics must be deeply investigated. 

At first, 40 different drill sounds were recorded. 20 of them were from free-running 

drill, and the other 20 were from different drilling processes. To conclude, all 

samples vary from each other regarding both time and frequency domains. Then 

frequency domain magnitudes of the samples were examined because the signal 

power is easily calculated in the frequency domain (power spectral density). By this 

way, one can also know which frequency to focus for the best performance. Power 

spectral density (PSD) is representation of the total power according to a given 

frequency value. It is calculated by the Equation (3.1): 

 

𝑃𝑆𝐷 =
1

𝑁
| 𝑥 𝑛 ∗ 𝑒−𝑗𝑤𝑛𝑁−1

𝑛=0 |2                                                                             (3.1) 

 

     Where N is the window size, x[n] is the signal magnitude at time instance n, and 

𝑤 is the frequency value at which the frequency power is calculated.  

 

     Two different sound examples and their power spectral densities can be seen in 

Figure 3.1. Drill sound 1 is from the free running drill sounds, whereas drill sound 2 

is from the drill sounds recorded while drilling. 
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Figure 3.1 Two different drill sounds in time domain and their power spectral densities 

 

     It is seen that these two sounds have different time domain characteristics. First 

one is more like a periodic sound. Hence, the spectrum domain has a peak around 

frequency 600Hz. In this situation, main purpose is to eliminate this peak. In the 

second example, the sound sample looks like a non-periodic sound. This case is hard 

to implement the ANC algorithm on because it has both a non-linearity and high 

frequency. As it is seen in the spectrum analysis, power peaks are scattered around 

all frequencies and all of these ranges must be minimized. In other words, ANC 

algorithm should be applied to every frequency range, namely broadband ANC, 

which is one of the specialties of this project. 

 

     Note that humans cannot clearly comprehend the frequencies greater than 4 kHz.  

Therefore, the sampling frequency for drill sounds is selected as 8000 Hz since the 

maximum frequency that we are interested in for the drill is 4 kHz respectively. 

Otherwise, an overlapping in the spectrum domain might be the result. In the 

spectrum domains, both sounds have decreasing power magnitudes after around 3.5 

kHz. This is the good part because higher frequencies won‟t be considered. 

 

     The frequency phases are also important in real time ANC applications. Real time 

situations are the focus. Therefore, LMS algorithm fails and it is developed as 
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FxLMS with primary and secondary paths, P(z) and S(z). These paths compensate 

the magnitude and phase changes occurred in the LMS algorithm resulting in online 

real-time adaptive ANC algorithm.   

 

3.2 Modeling and Simulation 

 

     These parts were completely performed as simulation, not as real time 

application. Modeling is performed via MATLAB program. As the first step, DSP 

toolbox of the simulink was used. There is a prepared LMS block performing NLMS 

algorithm, which is the normalized version of the most common ANC adaptive 

algorithm, LMS. There are several options in the block changing the algorithm 

parameters, namely filter length, step size and LMS types. Different LMS 

algorithms, such as LMS, NLMs, sign-error LMS, sign-data LMS, and sign-sign 

LMS, are applied to one of the recorded drill sounds with filter length 256, and step 

size 0.001. Figure 3.2 was obtained as the system error result. 

 

     System error represents the difference between the desired noise d(n) and the 

system output y(n). As it is seen in four of the LMS types, system error is minimized 

after a particular sample number. NLMS algorithm has the best convergence time 

and better steady state error. Hence, NLMS algorithm was used. If the NLMS 

algorithm result is considered, a drill sound with around 0.2 time domain amplitude 

results in 0.01 time domain error amplitude, which means around 25-30 dB signal to 

noise ratio (SNR) was obtained for this sound sample. This result is very satisfying 

compared to previous ANC studies.  
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Figure 3.2 Error signal convergence in LMS, NLMS, sign-error LMS, sign-data LMS, and sign-sign 

LMS algotihms 
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     As the second part, filter length and step size were changed in the LMS block. It 

can easily be guessed that these parameters highly affect the error result to the some 

point. Figure 3.3 clearly shows the convergence of three of the weights and the filter 

output. 

 

 

Figure 3.3 Convergence of 3 weights and the filter output according to filter length and step size 

 

     For better understanding, error convergence was also plotted according to these 

parameters, indicated in Figure 3.4. The indicated error magnitudes are respectively -

1.365e-005, 4.789e-040, 2.028e-005, and 1.871e-038. Increasing filter length results 

in less steady state error. However, it requires more time to converge. Small step 

size, on the other hand relatively reduces the convergence time, but large step size 

may cause instability, which makes the algorithm useless in real time applications.  
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Figure 3.4 Filter error signal according to filter length and step size 

 

     For our online system, filter length was determined to be 256 as a result of 

extensive simulations. After 256 orders, filter lags for some input values because the 

DSP clock speed cannot catch with this filter order in a limited time. After 

determining this filter order, step size was selected according to the Equation (3.2) 

(Schmidt, n.d.). 

 

𝜇 <
2

𝑀𝑆𝑚𝑎𝑥
                                  (3.2) 

 

     M is the filter length, 256 for this project, and 𝑆𝑚𝑎𝑥  is the maximum value of the 

input PSD, 5 for this project. Resulting in Equation (3.3). 

 

𝜇 < 1.56 ∗ 10−3                                        (3.3) 
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     As a result of extensive simulations, the best combination of these parameters was 

found as 0.001 for step size and 256 for the filter length. After these configurations, 

MATLAB LMS block was removed and the whole procedure was done by 

MATLAB functions, and the required blocks. In the real time operations, normalized 

FxLMS algorithm is required. The error signal is supposed to be fed back into the 

filter and the MATLAB LMS block cannot be externally modified to obtain FxLMS 

block. Figure 3.5 shows the NLMS configuration block diagram designed in 

simulink. 

 

 

Figure 3.5 NLMS block diagram designed in MATLAB simulink 

  

     „Discrete FIR Filter‟ is a z-domain filter example for the primary path, which is a 

representation of the sound delay and loss between input and desired microphones. 

Buffer with 256 sample capacity was used in order to store the input samples and 

transport to the LMS subsystem block by block. LMS block adapts the filter weights 

according to NLMS algorithm so that the output error is minimized. Inside of the 

LMS block is as Figure 3.6. 

 



 

32 
 

 

Figure 3.6 Internal structure of the LMS block 

  

     First of all constant 2.2e-6 is regulation factor, and it was used in order for the 

decimator not to be zero. Otherwise, the system output would go to infinity. This 2.2 

value was recommended by the MATLAB.  Constant1, on the other hand, is the step 

size. Delay was used to compensate the filter length. To conclude, the whole NLMS 

system is as Equation (3.4). 

 

𝑤𝑖 𝑛 + 1 = 𝑤𝑖 𝑛 +
0.001

2.2∗10−6+  𝑢𝑖 𝑛   
2 𝑢𝑖 𝑛 𝑒

∗(𝑛)                                        (3.4) 

 

     This project design in simulink has slightly better performance than the 

MATLAB LMS block. First of all, the error results are more satisfying though it is a 

small difference. Then, changing of the primary path in MATLAB LMS block may 

result in instability because it cannot adapt an external code block so easily. Data 

types, sampling frequencies, and frame sizes may differ in these code blocks, and 

some internal variables cannot be modified in MATLAB LMS block. This block is 

not flexible. In the project design, changing primary path can be balanced via the 

other code blocks. Primary path is usually selected as 1-order FIR filter. Let‟s say the 

it is 𝑃 𝑧 =
−7𝑧

10𝑧−5
 . Then Figure 3.7 shows the error results. At 764

th
 sample, error 

value is 0.007737 in MATLAB LMS block, while it is 0.006908 in project LMS 

block. 
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Figure 3.7 Error result comparison between MATLAB LMS block and project LMS block 

 

     These parts were related to the offline NLMS system. However, online NLMS 

systems are required to be implemented, in which an unknown drill sound is received 

and it is eliminated via NLMS algorithm. In order to do this, same simulation is 

preserved except „from workspace‟ block. It was replaced by „from audio device‟. 

Thanks to this block, the microphone connected to the computer receives the drill 

sound continuously and delivers it to the NLMS filter. „Basic online NLMS‟ name 

was assigned for this algorithm. No speakers and secondary paths are involved. 

Figure 3.8 represents the error output for a random drill sound input. Convergence 

was achieved after 10000
th

 sample, which corresponds to 0.1 second. 
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Figure 3.8 Error output of a simple online NLMS algorithm 

 

     Even though this basic online model is satisfying, real time processes require 

more complex models. In order to understand this complexity and to overcome it, 

FxLMS algorithm was introduced. The crucial part is the effects of the secondary 

path and finding the path parameters. The reason why secondary path exists is the 

existence of digital and analog converters, and speaker characteristics. Two methods 

can be applied in order to find the path, namely offline and online. In this project, 

Eriksson Model (Eriksson & Allie, 1989), which is a primary example of online 

secondary path estimations, was used. The main purpose is to design another LMS 

filter in order to eliminate a white noise. This filter compensates the effects of 

secondary path. Figure 3.9 is the block diagram representation of online secondary 

Eriksson Model. 
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Figure 3.9 Eriksson secondary path model integrated in the FxLMS algorithm 

 

     In Figure 3.9, y(n) is the output of the main LMS filter. v(n) is the white noise 

signal, d(n)  is the desired signal, e(n) is the error signal, 𝑦′(𝑛) is the filtered 

version of y(n), and 𝑣 ′(𝑛) is the filtered version of v(n). In the second LMS filter, 

v(n) is the input, e(n) is the desired signal and 𝑒′(𝑛) is the error signal. Hence, 

Equation (3.5) and Equation (3.6) can be written. 

 

𝑒 𝑛 = [𝑑 𝑛 − 𝑦′(𝑛)] + 𝑣′ 𝑛                                                                              (3.5) 

 

     The error signal for the second LMS filter is 𝑒′(𝑛). 

 

𝑒′ 𝑛 = 𝑒 𝑛 − 𝑣 ′ 𝑛 =  𝑑 𝑛 − 𝑦′ 𝑛  + [𝑣 ′(𝑛) − 𝑣 ′(𝑛)]                        (3.6) 

 

     Weight update rule for the second LMS filter becomes (3.7) 

 

𝑠  𝑛 + 1 = 𝑠  𝑛 + 𝜇𝑠𝑒
′ 𝑛 𝑣 𝑛 =

𝑠  𝑛 + 𝜇𝑠𝑣 𝑛 [𝑑 𝑛 − 𝑦′(𝑛)] + 𝜇𝑠𝑣 𝑛 [𝑣
′ 𝑛 − 𝑣 ′(𝑛)]                             (3.7) 

 

     𝑆 (𝑧) is the estimated version of S(z). Therefore, 𝑣 ′ 𝑛 − 𝑣 ′ 𝑛 → 0 and whole 

secondary system becomes a simple LMS system, which eliminates the desired 

signal d(n) with the output signal 𝑦′(𝑛). This situation is the one desired for the 

whole FXLMS filter system. Therefore these second filter weights are fed back to 
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𝑆 (𝑛), as indicated in Figure 2.5. The reason of the usage of white noise is the fact 

that it contains all frequency values and prepares the ANC system for all possible 

secondary path effects 

 

     In the offline secondary path, on the contrary, these filter weights are fixed. The 

system is not robust and even if some small change occurs, whole system corrupts 

and it requires new weight calculations for the correct filter system. The calculation 

of adaptive secondary path coefficients, which is an online method, is one of the 

specialties of this project.  

 

     In this chapter, drill characteristics were derived. According to these 

characteristics, the boundaries and optimum values of NLMS filter parameters and 

LMS filter type were determined. Using these parameters, simulation results were 

documented. Afterwards, the project NLMS block diagram was introduced. 

MATLAB NLMS block and project NLMS block were compared. Simulation results 

of the system after connecting a microphone to the computer were also given. 

Finally, FxLMS algorithm was studied in a mathematical manner with derivations 

and equations. 
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CHAPTER FOUR 

HARDWARE STRUCTURE 

 

 

Figure 4.1 Hardware system, DSP card, speakers, microphones and other components 

 

     As the project hardware, 3 microphones, 2 speakers, 1 DSP board, and many 

electrical components were used as it is seen in Figure 4.1. The speakers represent 

the primary and secondary noise sources. While the first speaker generates the noise 

previously recorded drill sounds, second speaker output eliminates this noise. The 

first microphone was used as the input microphone, which records the original drill 

sound, and was placed right in front of the speaker in order to receive the sound 

directly. For the desired signal to be recorded, second microphone was placed on the 

left side of input microphone. Error microphone, on the other hand, used just to 

measure the signal magnitude in desired noiseless area. The distance representations 

are shown in Figure 4.2. 
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Figure 4.2 Hardware system, speakers and microphones positions 

 

     The error microphone must be placed in the mirror position of the desired signal 

because the noises at these microphones are supposed to be exactly same. This 

system was tested with 3 different distances, and the result is shown in Figure 4.3. 

 

 

Figure 4.3 Power spectral densities of drill sound and error signals according to microphone positions 
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     Too small distance gives bad performance because of proximity (boost) effect 

(Ciletti, 2004) while large distance also gives bad performance because of the signal 

loss. The optimum distance for this project is 5cm. Furthermore, according to a study 

(Mareau, Cazzolato, Zander & Peterson, 2008), noise-free area restricted with the 

signal wavelength, which results in 1cm noise-free area with high frequency drill 

sound components. Because of this, error microphone was selected so that its 

diameter was smaller than 1cm.  

 

     With this microphone positioning, noises were supposed to be exactly same on 

desired and error microphones in terms of magnitude and phase. 

 

     Secondary speaker receives analog signal. DAC system receives the output signal 

from DSP board in digital form, converts it into analog form and sends to the 

secondary speaker as the anti-noise. Other speaker (primary speaker), on the other 

hand, was used to create the main drill noise. 

 

4.1 Microphone Input System 

 

     Project DSP board is digital based and all variables must be in digital form. As the 

analog to digital converter, internal ADC of the TMS320F28335 eZdsp was used 

(Tomar, 2011). The voltage range of this ADC is 0-3V. However, microphone read is 

much smaller than these ranges. Hence, Figure 4.4 was used as preamplifier to 

amplify the microphone input signal to 0-3V range. 
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Figure 4.4 Preamplifier for amplification of the microphone input signal 

  

    𝑉𝑎 , 𝑉𝑏 , and 𝑉𝑐  show the voltage values at the specific nodes. Gain calculations are 

written in Equation (4.1) and Equation (4.2). 

 

𝑉𝑎

2.2+0.47𝑠10−9 =
−𝑉𝑏

44
                                        (4.1) 

 

𝑉𝑏

10
=

10

100
+

−𝑉𝑐

10
                     (4.2) 

 

     While calculating gain, term 
10

100
 is neglected. Then Equation (4.3) and Equation 

(4.4) can be written. 

 

𝑉𝑏 =  −𝑉𝑐                            (4.3) 

 

𝑉𝑐

𝑉𝑎
=

44

2.2+0.47𝑠10−9
                     (4.4) 

 

     In order for the 𝑠 term to affect the decimator, it should at least ten times smaller 

than 2.2.  

 

0.47𝑗𝑤10−9
~
 0.22                                (4.5) 
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     Minimum required frequency for this is (4.6). 

 

𝑤 = 468𝑀𝐻𝑧                                 (4.6) 

 

     The capacitor used in much smaller frequencies has no effect to the gain. 

Therefore, system gain is (4.7). 

  

 𝐺𝑎𝑖𝑛 =
44

2,2
= 20                                 (4.7) 

 

4.2 TMS320F28335 DSP Card 

 

 

Figure 4.5 TMS320F28335 eZdsp board (Tomar, 2011) 

 

     Figure 4.5 is a clear image of the TMS320F28335 eZdsp board. It has 32-bit 

architecture. CPU is up to 150MHz. It has 87 I/O feeding with 3.3V. These IOs can 

be used for PWM outputs, timers, and event catchers. The board has no analog 

output pin. It has 16 of each 256K, 128K, and 64K flash memories. These memories 

were used to store project data. Besides the board has 128-bit encryption key (Texas 

Instruments, n.d.). 
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     After the operations performed in DSP board, the resulting signal is in digital 

form. It should be converted to the analog form in order for the speaker to sound it. 

This process was done by R-2R ladder DAC system (The R/2R DAC, n.d.). 

 

4.3 Speaker 

 

     Secondary noise speaker is Edifier R1900T II. It is a professional speaker. The 

most important thing in the speakers is its frequency response, which is very similar 

in both primary and secondary noise speakers. Edifier Cruiser (n.d.) indicated the 

frequency response of the edifier speaker. 

 

     The speaker has no particular response for the frequencies below 20Hz, and its 

response is stronger for frequencies higher than 1 kHz. This non-stable frequency 

response results in signal distortion. For example, a pure sinusoidal signal was 

recorded and its PSD was calculated. Then this signal was transmitted to the speaker 

and the speaker output signal and its PSD was recorded. Figure 4.6 shows both the 

pure sinusoidal signal PSD and PSD of a sinusoidal signal coming out from the 

speaker. 

 

 

Figure 4.6 Power spectral densities of pure sinusoidal signal and a sinusoidal signal recorded at the 

output of a speaker 
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     The speaker has large response in both low and high frequencies; therefore, the 

speaker output sinusoidal signal differs from the pure sinusoidal signal in the 

indicated manner.  

 

     The hardware components and their characteristics were studied in this chapter. 

Hardware positioning of speakers and microphones were calculated. DSP card, 

speaker, microphone preamplifiers, their features and effects on the system were 

stated. Preamplifier gain was calculated, and speaker effect on a pure sinusoidal 

signal was plotted.  
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CHAPTER FIVE 

PROJECT DESIGN AND RESULTS 

  

5.1 Offline Normalized LMS Algorithm Results 

 

     In the offline normalized LMS algorithm, all simulations were done in the 

MATLAB environment, no real time component included. As indicated before in 

offline NLMS algorithm the step size and the filter length variables are very crucial. 

Here, step size and filter order were determined as 0.001 and 256 respectively. This 

offline normalized LMS algorithm were applied to 40 different drill noises, 20 of 

them are free running and 20 remaining are while drilling an obstacle. The frequency 

and time domain performances in one sample from these categories are shown in 

Figure 5.1. Since the signal magnitudes are smaller than 1, PSDs of these signals are 

negative.  

 

 

Figure 5.1 Time domain and power spectral densities of input and error signals for two different drill 

sounds in offline normalized LMS algorithm 

 

     Also the average performance for these 40 different drill sounds was calculated 

and Table 5.1 was created. 
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Table 5.1 Offline normalized LMS algorithm performance at different frequencies 

  100Hz 500Hz 1000Hz 2000Hz 3000Hz Average 

Offline 

NLMS 24.6dB 17.1dB 11.6dB 16,6dB 18.5dB 17.5dB 

 

5.2 Simple Online Normalized LMS Algorithm Results 

 

     To see the microphone and DSP card performances, simple online NLMS 

algorithm was used. The noise was eliminated in the card. Therefore, secondary 

speaker is not used, and there is no secondary path effect. The noise is received by a 

microphone continuously into the DSP board and NLMS algorithm runs in the board. 

It is the most basic form of online NLMS algorithm. Again 40 different drill sounds 

were used with the primary speaker for performance test. Figure 5.2 represents the 

one of these simple online NLMS algorithm performances. 

 

     The reason why the signal doesn‟t have a particular peak is the fact that RTDX 

channels, which are used to read the internal DSP board memory, cannot store large 

amount of values because of small buffer size. Figure 5.2 shows only the 256 

samples from the drill sound. Average performances were calculated by using 10 

different buffer contents for a single noise. The RTDX buffers get full after these 10 

data stores. The overall average performance for these 40 different drill sounds was 

calculated and Table 5.2 was created. 

 

Table 5.2 Simple online normalized LMS algorithm performance at different frequencies 

  100Hz 500Hz 1000Hz 2000Hz 3000Hz Average 

Basic Online 

normalized 

LMS 8dB 9dB 12dB 8dB 7dB 10dB 

 



 

46 
 

 

Figure 5.2 Power spectral densities of input and error signals in the most basic online normalized 

LMS algorithm 

 

     Note that if a drill sound has a peak at some frequencies, the elimination of the 

noise components which has this peak frequency is greater than the remaining ones. 

This elimination differs from 5dB to 30dB. The results differ from the offline NLMS 

algorithm because input microphone and primary speaker is included to the system, 

and whole adaptive system runs in the DSP board. 

 

5.3 Online Normalized FxLMS Algorithm 

 

     Simple LMS algorithms fail when dealing with real time active noise controls. 

Therefore, FxLMS filters are used in real time implementations. Normalized FxLMS 

algorithm is an advanced version of FxLMS algorithm. Input noise is normalized so 

that error signal and desired signal have better synchronization than they have in 

normal FxLMS filter design. In Figure 5.3 and Figure 5.4, MATLAB normalized 

FxLMS block diagrams are shown. 
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Figure 5.3 MATLAB block diagram of normalized FxLMS algorithm 

 

 

Figure 5.4 Inside of the NLMS1 subsystem 

 

     In the block diagram, memory copy blocks were used in order to observe the 

input, desired, and error signal characteristics. ADC block represents the DSP board 

analog to digital converter, and it has 12-bit resolution. Its range is between 0 and 

4096. Hence, constans3, constant4, constant7, and constant8 were used in order to 
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change 12-bit bias input and desired signals to 8-bit non-bias (0 DC) form. 

Constant2, on the other hand was used in order to add bias to the output signal. 

Afterwards, the output signal is transmitted to the DAC converter, which is a R-2R 

ladder. 

 

     In the NLMS1 sub block, 64, 128 and 256 filter orders were tested and there was 

negligible different beyond 128. Hence, 128-order online secondary path (Erickson‟s 

Model) was used. In this model, a second LMS filter is placed inside the existing 

LMS filter. Then, its weights convolve with the input signal, continuing with normal 

LMS block. This block is same as the Figure 3.6. 

 

5.4 Online Normalized FxLMS Algorithm Results 

 

     Whole online NFxLMS was setup. The noise was tried to be minimized in an 

open area. Now there is a secondary path included because of the secondary noise 

speaker. Overall performances were also tested with 40 drill sounds. One sample of 

each category (free running and drilling) was plotted in Figure 5.5 and Figure 5.6 in 

order for a better understanding of the performance. Since the whole system cannot 

adapt for large frequency range, the performance differs from frequency to 

frequency. Optimum filter parameters and hardware specifications, microphone and 

speaker frequency responses, cannot be the same for all frequencies. Indeed, at some 

frequency, especially low frequencies, the error has more power than the desired 

signal. Remembering speaker has unwanted response at low frequencies, it is 

reasonable that error signal have more power than the desired signal at these 

frequencies. 
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Figure 5.5 Power spectral densities of free-running drill sound and corresponding error signal in 

normalized online FxLMS algorithm 

 

 

Figure 5.6 Power spectral densities of drilling drill sound and corresponding error signal in 

normalized online FxLMS algorithm 

 

     Average SNR performance for all these 40 drill sounds were calculated as 6dB, 

which is a good performance considering general FxLMS performances (Zou, Antila, 
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Lankila & Kataja, 2009). It should be noted that the negative SNR values at low 

frequencies are because of the speaker effect.  

  

5.5 Narrowband Normalized FxLMS Algorithm 

 

     In the most studies, FxLMS filters are used for band limited signals. Normally, 

the noise to be eliminated may have different frequency components as drill sounds. 

A common NLMS algorithm cannot work flawless for all these frequencies. 

Considering periodic noise PSD characteristics, the noise has some peaks at 

particular frequencies. At these frequencies the noise has more power than the 

remaining range densities. Therefore, signal can be band limited to these peak 

frequencies. Figure 5.7 shows the band pass filter used for band limiting process for 

this project, knowing that the noise has one of the main peaks at 1.9 kHz. 

 

 

Figure 5.7 Butterworth band pass filter centered between 1.7 kHz and 2.1 kHz 

 

     This filter was generated in the MATLAB „digital filter design‟ block. The 

performances in DSP board and in the environment are documented in the results 

section. 

 

5.6 Narrowband Normalized FxLMS Algorithm Results 

 

     As it is mentioned before, broadband FxLMS algorithm is hard to implement 

because one common algorithm cannot fit for all frequency component 



 

51 
 

characteristics. Therefore, this algorithm is applied to frequencies which have peak 

magnitudes. This results in band limited filtering. Figure 5.8 and Figure 5.9 were 

formed considering there was a peak value at 1.9 kHz. The first one is PSD 

performance in the MATLAB simulation, and the second one is PSD performance in 

the real environment. The filter range was between 1.7-2.1 kHz. 

 

     It is clearly seen that in MATLAB simulations, there is no frequency component 

other than the filtered ones in the input signal. This is because of butterworth filter. 

NLMS adaptive system only deals with the desired frequency range. Therefore, the 

desired signal and the error signals are almost same at out of butterworth frequency 

range. It should be noted that the distortion is because of the NLMS filter parameters, 

such as step size and regulation factor. To conclude, the performance is around 20dB 

at the peak frequency, which is an expected performance since the system runs in 

simulation environment. 

 

 

Figure 5.8 Power spectral densities of input and error signals in normalized FxLMS algorithm inside 

MATLAB simulation environment 
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Figure 5.9 Power spectral densities of input and error signals in normalized FxLMS algorithm inside 

real environment 

 

     In Figure 5.9, the power spectrum density of desired signal is greater than the one 

in Figure 5.8. This is because in real time applications, normalization method is used. 

In the real environment, there is an obvious reduction in the frequency range 1.7-2.1 

kHz around 8dB, better performance than the broadband FxLMS at this frequency 

range, 5dB. Other than these range, the error signal power usually exceeds the 

desired signal power. The reason why the signals do not exactly fit each other is the 

fact that the secondary speaker distorts the filter output, which has actually no 

frequency values other than 1.7-2.1 kHz range in the DSP board. The clearest proof 

of this distortion is the unrelated peak occurred at 150 Hz component of error signal. 

It should also be noted the signal magnitudes are less than 1; therefore, PSDs of these 

signals are negative. 

 

5.7 Normalized FxLMS Algorithm with Acoustic Feedback 

 

     Bare hardware system has bad effects on the project because the secondary 

speaker output distorts the desired signal because of the open environment. This 

effect is called as acoustic feedback. To eliminate the negative effect of this 

feedback, an additional FIR filter was designed. However, the acoustic feedback 

filter is not common in ANC applications because of its complexity. 
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     In Figure 5.10, F(z) represents the acoustic feedback effect, while 𝑑′(𝑛) is the 

received desired signal and d(n) is the actual desired signal. In the real environment, 

received signal is calculated as (5.1). 

   

 

Figure 5.10 Block diagram of normalized FxLMS system with Acoustic Feedback Filter 

 

𝑑′ 𝑛 = 𝑑 𝑛 + 𝑓 𝑛 ∗ 𝑒(𝑛)                                                                                  (5.1) 

 

     Where „*‟ is the convolution process and f(n) is the time coefficients of the 

acoustic feedback. F(z) block in Figure 5.10 eliminates this distortion occurred in 

desired signal.  

 

     The filter length of F(z) is important. The boundaries are determined by the 

system complexity. The system complexity is mainly related with the maximum 

filter length of the overall system. Therefore, the first normalized FxLMS filter 

length, which is 256, is the overall system complexity. The secondary path filter 

length is negligible compared to the first one. The DSP card clock frequency is 150 

MHz. Then the minimum time required for the consecutive samples is calculated as 

(5.2). 
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𝑡 =  
1

150
. 10−6 .  256  ≅ 0.00000171                                                                (5.2) 

 

     If the equation in (5.1) is considered with a filter length n, then the additional 

filter results in 2n complexity because the convolution process has n number of 

summation and n number of multiplication. The sampling rates of the digital blocks 

are 0.0001 second. As a result of (5.3), the filter length of the acoustic feedback can 

be 29. However, it should be multiple of 2. Therefore, it was determined as order 16. 

 

𝐹𝑖𝑙𝑡𝑒𝑟_𝑂𝑟𝑑𝑒𝑟𝑚𝑎𝑥 = 2𝑛 =
0.0001

0.00000171
≅ 58                                                            (5.3) 

 

     f(n) parameters now can be fixed at optimum values. Let f(n) be as (5.4). 

 

𝑓 𝑛 = 𝑓0 + 𝑓1𝑧
−1 + 𝑓2𝑧

−2+. . . +𝑓15𝑧
−15                                                             (5.4) 

 

     Now the matrix equation of feedback filter coefficients can be written as (5.5). 

 

 

𝑓0 0 0
𝑓1 𝑓0 0
𝑓2 𝑓1 𝑓0

… 

16𝑥16

 
𝑒0

𝑒1

⋮
 

16𝑥1

=  
𝑑′0 − 𝑑0

𝑑′1 − 𝑑1

⋮

 

16𝑥1

                                                    (5.5) 

 

     To digitize d(n), 𝑑′(𝑛), and e(n) values, a pure sinusoidal waveform was 

implemented from the secondary speaker. All these values were determined and then 

f(n) parameters were derived. 

 

5.8 Normalized FxLMS Algorithm with Acoustic Feedback Results 

 

     The implementation of this algorithm was defined in chapter five. The algorithm 

was applied to two different drill sounds. One of them was free running, and the 

other was drilling. The Figure 5.11 and Figure 5.12 show the PSDs of these drill 

sounds and corresponding error signals respectively. The effects of the acoustic path 

are clearly seen in these figures. 
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Figure 5.11 The PSDs of free-running drill sound and system error signal in normalized FxLMS 

algorithm with / without acoustic feedback 

 

     When this algorithm is compared to the normalized FxLMS algorithm, one can 

say that the overall performance is slightly better in adaptive system with acoustic 

feedback, 7dB. The elimination at peak values is better. The range, in which the error 

signal has higher power than desired signal, is narrower. These are the advantages of 

the acoustic feedback. The disadvantages are the fact that the system is not robust 

because the computational time is at its boundary, as indicated in chapter 5.7. 

Besides, the overall performance is not same for all drill sounds since the filter length 

is too small, which is 16. Sometimes, these parameters cannot initiate the overall 

system for some drill sounds. As a future work, the acoustic feedback filter length 

can be increased over 100 by using a fast DSP card. In this way, the total FxLMS 

performance can be increased in a robust manner.   
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Figure 5.12 The PSDs of drilling drill sound and system error signal in normalized FxLMS algorithm 

with /without acoustic feedback 

 

     In this chapter, the block diagrams of the main ANC system, normalized FxLMS, 

was introduced with detailed information. Also the narrowband normalized FxLMS 

algorithm and the butterworth filter characteristics used in this algorithm were 

mentioned. The acoustic feedback effect was introduced. Its reason and possible 

solutions were defined. The acoustic feedback filter was realized in the project 

design. The optimum parameters, system complexity and the time boundary were 

deeply investigated. As the result part, 5 different algorithm results were 

documented. In the offline NLMS algorithm, 40 different drill sounds were applied 

as the input noise to the simulation, and the performance results of two different drill 

sounds were plotted. Also the average of the simulation results was added as a table. 

Then, a microphone was included to the system and whole system was transferred to 

the DSP board, called as simple online NLMS filter. The performance results were 

given in both table and graph formats. Using the main algorithm FxLMS and 

working in real-time, main system performances were obtained. Two different graph 

performances were plotted. Besides, average SNR performance of the algorithm for 

40 different drill sounds was also plotted for easier comprehension. Then, 

narrowband filtering was mentioned. The offline and online results were obtained. 

Afterwards, the acoustic feedback was introduced and the overall system 
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performance was recalculated. The advantages and disadvantages of this feedback 

were determined. To conclude, all filtering methods were used, their performances 

were calculated and plotted, and their comparisons with each other were done 

according to the performances, advantages, and disadvantages. 
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CHAPTER SIX 

CONCLUSION 

 

     Considering active noise control, there are various application areas including all 

kinds of noises. In these areas, the software and hardware systems, methods, 

algorithms and environments differs from each other. Most of these applications are 

related with low frequency noises. In this project, dental drill noises, which have 

high frequencies, were in the focus area.  

 

     First of all, dental drill noise characteristics were investigated. The crucial 

parameters were determined and simulation blocks were prepared with these 

findings. Then different simulations were performed with different ANC methods 

and system parameters, such as step size and filter lengths. It was seen that these 

parameters affect the system performance and convergence speed. Finally, NLMS 

algorithm parameters were optimized as 0.001 for step size and 256 for filter length. 

 

     All simulations were performed in MATLAB environment. Then, to see the effect 

of the microphone and DSP card, the noise was received by a microphone and the 

adaptive normalized LMS filter was performed in the DSP card.  

 

     After extensive simulations, hardware system was designed according to the 

software needs. This design includes a DSP board, TMS320F28335 eZdsp, a primary 

noise speaker, a secondary noise speaker, a desired microphone, an input 

microphone, an error microphone and several electrical components. The positions of 

hardware components were determined, optimized and fixed according to 

calculations and experiments. The effects of the components to each other were also 

considered for better performance. To examine the speaker effect on the output 

signal, pure sinusoidal PSD was observed. The PSD of a pure sinusoidal waveform 

and the sinusoidal waveform at the output of the speaker were different.   

 

     Afterwards, an online secondary path was added in order to deal with magnitude 

and phase change occurred in filter output signal. As the secondary path, Eriksson 
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method, which simply uses another LMS filter with white noise as its input signal, 

was used. This filter was developed as normalized LMS filter. Its order was 

optimized as 128. The step size is same as the first NLMS, which is 0.001.  

 

     Narrowband filter algorithms are more common in the literature, including the 

previous dental drill ANC research. Therefore, for a performance test and 

comparison, the drill noise was narrowed down with a butterworth filter. This 

method was characterized for a particular frequency range and filter parameters. 

Therefore, even if it gave a better performance than normalized FxLMS algorithm, it 

cannot guarantee this performance for all signals. 

 

     To overcome the acoustic feedback effect, which is the effect of error signal on 

the desired microphone, an additional FIR filter was designed. The system 

complexity and time boundaries were determined so that the filter length was 

defined. After defining the length, the coefficients of the filter were calculated. Then 

the whole system was run for some drill sounds. Although the performance was 

better than normalized FxLMS, the robustness and generalization was worse. The 

usage of better hardware setup was determined as the possible solution. 

 

     As the result part, the system was mainly tested in 3 different cases with 40 

different drill sounds, namely offline NLMS, simple online NLMS, online 

normalized FxLMS. Average performance is 6dB in online normalized FxLMS, 

10dB in simple normalized LMS, and 17.5dB in offline normalized LMS. As an 

extra, the band limited normalized FxLMS, and normalized FxLMS with acoustic 

feedback methods were applied. For a specific drill noises, 7dB-SNR in normalized 

FxLMS with acoustic feedback, and 8dB-SNR in narrowband normalized FxLMS 

were obtained. While the maximum performance of offline normalized LMS is 

33dB, the maximum performance of online normalized FxLMS is 12dB. These 

performances were calculated for a particular frequency by using one of the drill 

sounds. According to Zou, Antila, Lankila & Kataja (2009), average normal FxLMS 

performance, in an open environment, is around 3.2dB, and this value was increased 
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to 4.3dB by using an enhanced FxLMS algorithm on a truck cabin. To conclude, 

project has a better performance regarding signal to noise ratios.  

 

     Although there is a research about dental drill noise cancellation (Kaymak, 

Atherton, Rotter & Millar, 2007), this project has lots of specialties. Frequency range 

is not limited with a particular value. It is a broadband implementation. ANC 

algorithm method is normalized FxLMS, which has a better performance compared 

to a simple FxLMS. Secondary path filtering is online instead of offline. This can 

adapt all the environment changes, such as system transportation, environment noise 

& temperature changes and so on. Besides, system acoustic effect was also 

considered for better system performance.  

 

6.1 Future Work 

 

     As the future work, a better DSP card with audio cable inputs and outputs may be 

used. The clock frequency of this card should be higher than the one used in this 

project so that the filter (first LMS, second LMS, and acoustic feedback filter) 

lengths can be increased without lagging problem. For the speakers and 

microphones, more professional ones may be used. These hardwares should have 

frequency response for low frequencies as well. In this way, signal characteristics do 

not corrupt at low frequencies. Finally, an additional decorrelated system (Yifeng, 

1997) may be implemented in order to eliminate the effects of speakers on 

unassociated microphones.    
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