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AUCTION-BASED CHANNEL ALLOCATION APPROACH IN 

WIRELESS NETWORKS 

 

ABSTRACT 

 

We investigate various applications of graph theory and classify them based on 7 

layers of OSI. Most of its applications are related to coloring and channel assignment 

problem (MAC). Other applications can be summarized as routing, topology control, 

interference reduction, sensing function allocation, trellis and state diagrams. As a 

cross layer application (MAC and physical layers) of graph theory, we consider the 

problem of throughput maximization during spectrum allocation under Signal to 

Interference plus Noise Ratio (SINR) constraint in cognitive radio networks. We 

propose a novel auction-based channel allocation algorithm, in which graph coloring 

and bidding theory play an important role and which tries to maximize both total and 

primary users’ utilities while satisfying SINR constraint on primary receivers, 

without controlling secondary user powers. For comparison, we discuss a greedy 

algorithm as well, however, which does not consider interference issue. In order to 

compare results of proposed and greedy algorithms, we propose net throughput by 

taking into account outage probability of primary receiver. Simulation results show 

that exposing higher SINR (outage) threshold not only decreases total system and 

primary users’ throughput, but also worsens channel distribution performance. On 

the other hand, adding auction mechanism significantly increases total gain 

throughput and primary user’ s utility. Especially till SINR threshold values of 20 

dBs, auction provides outstanding performance and proposed algorithm has total 

throughput results close to those of the greedy one even though no interference 

constraint is applied in the greedy algorithm. Another noticeable point of simulation 

results is crossover of net throughputs of proposed and greedy algorithms at a SINR 

threshold level after which results of ABSA-UNIC and NASA-UNIC are much 

better. This clearly shows superiority of proposed mechanism. Simulations were 

carried out using matlab 7.7.0 (R2008b) and codes is given in the attached file 

algorithms.m. 
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KABLOSUZ AĞLARDA AÇIK ARTTIRMAYA DAYALI KANAL 

PAYLAŞIMI YAKLAŞIMI 

 

ÖZ 

 

Çizge teorinin çeşitli uygulamalarını inceliyoruz ve bunları OSI modelinin 7 

katmanına göre sınıflandırıyoruz. Uygulamaların çoğu renklendirme ve bir MAC 

katmanı uygulaması olan kanal ataması problemi ile ilgilidir. Diğer uygulamalar 

yönlendirme, topoloji kontrolü, girişim azaltma, algılama işlev ataması, trellis ve 

durum diyagramlarıdır. Bir çapraz katman (MAC ve fiziksel katman) uygulaması 

olarak, kavramsal radyo ağlarda, işaret girişim gürültü oranı (IGGO) kısıtı altında 

spektrum paylaşımı sırasında toplam çıktıyı maksimize etme problemini ele alıyoruz. 

Renklendirme, fiyat teklifi ve açık arttırma teorisi üzerine kurulu, hem birincil hem 

de ikincil kullanıcılar için toplam faydayı maksimize etmeye çalışan, aynı zamanda 

da birincil alıcıların kesintiye uğramaması için IGGO koşulunun geçerli kalmasını 

sağlayan yeni bir algoritma önermekteyiz. Önerilen algoritma ile sonuçları 

karşılaştırabilmek için girişim etkisini hesaba katmayan bir greedy algoritmayı da ele 

almaktayız. Bunun için, birincil alıcının kesintiye uğrama olasılığını da hesaba katan 

bir net çıktı önermekteyiz. Simülasyon sonuçları daha yüksek IGGO kısıtı 

uygulamanın hem toplam hem de birincil kullanıcıların toplam kazançlarını 

azaltırken, kanal dağılım başarısını da düşürdüğünü göstermektedir. Diğer taraftan 

açık arttırma yönteminin algoritmaya ilavesi, toplam ve ayrı ayrı kullanıcıların 

kazançlarını ciddi biçimde arttırmıştır. Özellikle 20 dB IGGO eşik değerlerine kadar, 

son derece büyük fayda sağladığı görülmüş, sonuçların girişim kısıtı uygulanmayan 

greedy yönteme yakın performans gösterdiği görülmüştür. Simülasyon sonuçlarında 

görülen diğer önemli bir nokta da önerilen ve greedy yöntemlerin net çıktılarının bir 

IGGO eşik değerinde kesişmeleri ve bu değerden sonra önerilen algoritmanın daha 

iyi sonuçlar vermesidir. Üstelik kesişmenin gerçekleştiği noktanın üstündeki SINR 

değerleri pratik SINR değerleri ile son derece uyuşmaktadır. Bu da önerilen 

mekanizmanın açık bir şekilde üstünlüğünü göstermektedir. Simülasyonlar matlab 

7.0.7 (R2008b)’ de gerçekleştirilmiştir ve ekli dosya algorithms.m’ de verilmiştir. 
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CHAPTER ONE 

INTRODUCTION 

  

The paper written by Leonhard Euler on the Seven Bridges of Knigsberg and 

published in 1736 is regarded as the first paper in the history of graph theory. This 

paper, as well as the one written by Vandermonde on the knight problem, carried on 

with the analysis situs initiated by Knobloch, Leibniz, & Euler (1991). More than 

one century after Euler‟s paper on the bridges of Knigsberg and while Listing 

introduced topology, Cayley was led by the study of particular analytical forms 

arising from differential calculus to study a particular class of graphs, the trees. This 

study had many implications in theoretical chemistry. The involved techniques 

mainly concerned the enumeration of graphs having particular properties. 

Enumerative graph theory then rose from the results of Cayley and the fundamental 

results published by Plya between 1935 and 1937 and the generalization of these by 

De Bruijn in 1959. Cayley linked his results on trees with the contemporary studies 

of chemical composition. The fusion of the ideas coming from mathematics with 

those coming from chemistry is at the origin of a part of the standard terminology of 

graph theory. In particular, the term graph was introduced by Sylvester in a paper 

published in 1878 in Nature. 

 

One of the most famous and productive problems of graph theory is the four color 

problem: “Is it true that any map drawn in the plane may have its regions colored 

with four colors, in such a way that any two regions having a common border have 

different colors?” This problem was first posed by Francis Guthrie in 1852 and its 

first written record is in a letter of De Morgan addressed to Hamilton the same year.  

 

The autonomous development of topology from 1860 and 1930 fertilized graph 

theory back through the works of Jordan, Kuratowski and Whitney. Another 

important factor of common development of graph theory and topology came from 

the use of the techniques of modern algebra. The first example of such a use comes 

from the work of the physicist Gustav Kirchhoff, who published in 1845 his 

Kirchhoff‟s circuit laws for calculating the voltage and current in electric circuits. 
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The introduction of probabilistic methods in graph theory, especially in the study 

of Erdös, & Rényi (1959) of the asymptotic probability of graph connectivity, gave 

rise to yet another branch, known as random graph theory, which has been a fruitful 

source of graph-theoretic results.  

 

In mathematics and computer science, graph theory is the study of graphs which 

are mathematical structures used to model pairwise relations between objects from a 

certain collection. A graph in this context refers to a collection of vertices or nodes 

and a collection of edges that connect pairs of vertices. A graph may be undirected, 

meaning that there is no distinction between the two vertices associated with each 

edge, or its edges may be directed from one vertex to another which is defined by 

Knobloch, Leibniz, & Euler (1991).  

 

Graphs are represented graphically by drawing a dot for every vertex, and 

drawing an arc between two vertices if they are connected by an edge. If the graph is 

directed, the direction is indicated by drawing an arrow defined by Knobloch, 

Leibniz, & Euler (1991).  

 

A graph G consists of two types of elements, namely vertices and edges. Every 

edge has two endpoints in the set of vertices, and is said to connect or join the two 

endpoints. An edge can thus be defined as a set of two vertices (or an ordered pair, in 

the case of a directed graph). Alternative models of graph exist; e.g., a graph may be 

thought of as a Boolean binary function over the set of vertices or as a square (0, 1) 

matrix. A vertex (basic element) is simply drawn as a node or a dot. The vertex set of 

G is usually denoted by V(G), or V when there is no danger of confusion. The order 

of a graph is the number of its vertices, i.e. |V(G)|. An edge (a set of two elements) is 

drawn as a line connecting two vertices, called endvertices, or endpoints. An edge 

with endvertices x and y is denoted by xy (without any symbol in between). The 

edge set of G is usually denoted by E(G), or E when there is no danger of confusion. 

The size of a graph is the number of its edges, i.e. |E(G)| defined by Diesel (2000).  
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A graph is a pair G graph = (V, E) of sets satisfying E       ; thus, the elements 

of E are 2-element subsets of V. The elements of V are the vertex vertices (or nodes, 

or points) of the graph G, the elements of E are its edge edges (or lines). The usual 

way to picture a graph is by drawing a dot for each vertex and joining two of these 

dots by a line if the corresponding two vertices form an edge. Just how these dots and 

lines are drawn is considered irrelevant: all that matters is the information which 

pairs of vertices form an edge and which do not. 

 

                                Figure 1.1 The graph on V = {1, . . . , 7} with edge set  

                                   E = {{1, 2}, {1, 5}, {2, 5}, {3, 4}, {5, 7}} 

 

A graph with vertex set V is said to be a graph on V. The vertex set of a graph G 

is referred to as V(G), its edge set as E(G). The number of vertices of a graph G is its 

order, written as |G|; its number of edges is denoted by ||G||. Graphs are finite or 

infinite according to their order.  

 

A loop is an edge whose endvertices are the same vertex. A link has two distinct 

endvertices. An edge is multiple if there is another edge with the same endvertices; 

otherwise it is simple. The multiplicity of an edge is the number of multiple edges 

sharing the same endvertices; the multiplicity of a graph, the maximum multiplicity 

of its edges. A graph is a simple graph if it has no multiple edges or loops, a 

multigraph if it has multiple edges, but no loops, and a multigraph or pseudograph if 

it contains both multiple edges and loops. When stated without any qualification, a 

graph is almost always assumed to be simpleone has to judge from the context. 
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Graph labeling usually refers to the assignment of unique labels (usually natural 

numbers) to the edges and vertices of a graph. Graphs with labeled edges or vertices 

are known as labeled, those without as unlabeled. More specifically, graphs with 

labeled vertices only are vertex-labeled, those with labeled edges only are edge-

labeled defined by Knobloch, Leibniz, & Euler (1991). 

 

 A subgraph of a graph G is a graph whose vertex set is a subset of that of G, and 

whose adjacency relation is a subset of that of G restricted to this subset. In the other 

direction, a supergraph of a graph G is a graph of which G is a subgraph. It is said a 

graph G contains another graph H if some subgraph of G is H or is isomorphic to H. 

A subgraph H is a spanning subgraph, or factor, of a graph G if it has the same vertex 

set as G. It is said H spans G.  

 

A walk is an alternating sequence of vertices and edges, beginning and ending 

with a vertex, where each vertex is incident to both the edge that precedes it and the 

edge that follows it in the sequence, and where the vertices that precede and follow 

an edge are the end vertices of that edge. A walk is closed if its first and last vertices 

are the same, and open if they are different.  

 

The length l of a walk is the number of edges that it uses. For an open walk, l = n -

1, where n is the number of vertices visited (a vertex is counted each time it is 

visited). For a closed walk, l = n (the start/end vertex is listed twice, but is not 

counted twice). A trail is a walk in which all the edges are distinct. A closed trail has 

been called a tour or circuit, but these are not universal, and the latter is often 

reserved for a regular subgraph of degree two. Traditionally, a path referred to what 

is now usually known as an open walk. Nowadays, when stated without any 

qualification, a path is usually understood to be simple, meaning that no vertices (and 

thus no edges) are repeated. A cycle that has odd length is an odd cycle; otherwise it 

is an even cycle. A graph is acyclic if it contains no cycles; unicyclic if it contains 

exactly one cycle; and pancyclic if it contains cycles of every possible length.  
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A tree is a connected acyclic simple graph. A vertex of degree 1 is called a leaf, or 

pendant vertex. An edge incident to a leaf is a leaf edge, or pendant edge. 

 

                              Figure 1.2 A labeled tree with 6 vertices and 5 edges 

 

A subtree of the tree T is a connected subgraph of  T. A forest is an acyclic simple 

graph. A subforest of the forest F is a subgraph of F. A spanning tree is a spanning 

subgraph that is a tree. Every graph has a spanning forest. But only a connected 

graph has a spanning tree.  

 

The complete graph of order n is a simple graph with n vertices in which every 

vertex is adjacent to every other.  

 

A clique in a graph is a set of pairwise adjacent vertices. Since any subgraph 

induced by a clique is a complete subgraph, the two terms and their notations are 

usually used interchangeably. A k-clique is a clique of order k. In figure 1.1, vertices 

1, 2 and 5 form a 3-clique, or a triangle. A maximal clique is a clique that is not a 

subset of any other clique.  

 

The clique number (G) of a graph G is the order of a largest clique in G. 
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In graph theory, degree, especially that of a vertex, is usually a measure of 

immediate adjacency.  

 

An edge connects two vertices; these two vertices are said to be incident to that 

edge, or, equivalently, that edge incident to those two vertices. All degree-related 

concepts have to do with adjacency or incidence.  

 

The degree, or valency, dG(v) of a vertex v in a graph G is the number of edges 

incident to v, with loops being counted twice. A vertex of degree 0 is an isolated 

vertex. A vertex of degree 1 is a leaf. If E is finite, then the total sum of vertex 

degrees is equal to twice the number of edges.  

 

The total degree of a graph is equal to two times the number of edges, loops 

included. This means that for a graph with 3 vertices with each vertex having a 

degree of two (i.e. a triangle) the total degree would be six (e.g. 3 x 2 = 6). The 

general formula for this is total degree = 2n where n = number of edges. 

 

Two vertices u and v are called adjacent if an edge exists between them. This is 

denoted by u v or u v. In figure 1, vertices 1 and 2 are adjacent, but vertices 2 and 4 

are not. The set of neighbors of v, that is, vertices adjacent to v not including v itself, 

forms an induced subgraph called the (open) neighborhood of v and denoted N(v). 

When v is also included, it is called a closed neighborhood and denoted by N[v]. 

When stated without any qualification, a neighborhood is assumed to be open. In 

figure 1.1, vertex 1 has two neighbors: vertices 2 and 5. For a simple graph, the 

number of neighbors that a vertex has coincides with its degree. 

 

A dominating set of a graph is a vertex subset whose closed neighborhood 

includes all vertices of the graph. A vertex v dominates another vertex u if there is an 

edge from v to u. A vertex subset V dominates another vertex subset U if every 

vertex in U is adjacent to some vertex in V. The minimum size of a dominating set is 

the domination number  (G). 
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In computers, a finite, directed or undirected graph (with n vertices, say) is often 

represented by its adjacency matrix: an n-by-n matrix whose entry in row i and 

column j gives the number of edges from the i-th to the j-th vertex. 

 

In graph theory, the word independent usually carries the connotation of pairwise 

disjoint or mutually nonadjacent. In this sense, independence is a form of immediate 

nonadjacency. An isolated vertex is a vertex not incident to any edges. An 

independent set, or coclique, or stable set or staset, is a set of vertices of which no 

pair is adjacent. Since the graph induced by any independent set is an empty graph, 

the two terms are usually used interchangeably.  

 

The independence number  (G) of a graph G is the size of a largest independent 

set of G.  

 

A graph can be decomposed into independent sets in the sense that the entire 

vertex set of the graph can be partitioned into pairwise disjoint independent subsets. 

Such independent subsets are called partite sets, or simply parts.  

 

Connectivity extends the concept of adjacency and is essentially a form (and 

measure) of concatenated adjacency.  

 

If it is possible to establish a path from any vertex to any other vertex of a graph, 

the graph is said to be connected; otherwise, the graph is disconnected. A graph is 

totally disconnected if there is no path connecting any pair of vertices. This is just 

another name to describe an empty graph or independent set.  

 

A cut vertex, or articulation point, is a vertex whose removal disconnects the 

remaining subgraph. A cut set, or vertex cut or separating set, is a set of vertices 

whose removal disconnects the remaining subgraph. A bridge is an analogous edge. 

 

If it is always possible to establish a path from any vertex to every other even after 

removing any k - 1 vertices, then the graph is said to be k-vertex-connected or k-
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connected. Note that a graph is k-connected if and only if it contains internally 

disjoint paths between any two vertices (Diesel, 2000). The example graph above is 

connected (and therefore 1-connected), but not 2-connected. The vertex connectivity 

or connectivity (G) of a graph G is the minimum number of vertices that need to be 

removed to disconnect G.  

 

A graph is k-edge-connected if any subgraph formed by removing any k - 1 edges 

is still connected. The edge connectivity of a graph G is the minimum number of 

edges needed to disconnect G. One well-known result is that K(G)   K‟(G)     (G). 

 

A component is a maximally connected subgraph. A block is either a maximally 

2-connected subgraph, a bridge (together with its vertices), or an isolated vertex. A 

biconnected component is a 2-connected component.  

 

The distance dG(u, v) between two (not necessary distinct) vertices u and v in a 

graph G is the length of a shortest path between them. The subscript G is usually 

dropped when there is no danger of confusion. When u and v are identical, their 

distance is 0. When u and v are unreachable from each other, their distance is defined 

to be infinity. 

 

A weighted graph associates a label (weight) with every edge in the graph. 

Weights are usually real numbers. They may be restricted to rational numbers or 

integers. The weight of a path or the weight of a tree in a weighted graph is the sum 

of the weights of the selected edges. Sometimes a non-edge is labeled by a special 

weight representing infinity. Sometimes the word cost is used instead of weight. 

When stated without any qualification, a graph is always assumed to be unweighted. 

In some writing on graph theory the term network is a synonym for a weighted 

graph. A network may be directed or undirected, it may contain special vertices 

(nodes), such as source or sink. The classical network problems include:  

 

 minimum cost spanning tree, 

 shortest paths, 
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 maximal flow (and the max-flow min-cut theorem)  

 

A directed arc, or directed edge, is an ordered pair of endvertices that can be 

represented graphically as an arrow drawn between the endvertices. In such an 

ordered pair the first vertex is called the initial vertex or tail; the second one is called 

the terminal vertex or head (because it appears at the arrow head). An undirected 

edge disregards any sense of direction and treats both endvertices interchangeably. A 

loop in a digraph, however, keeps a sense of direction and treats both head and tail 

identically. A set of arcs are multiple, or parallel, if they share the same head and the 

same tail. A pair of arcs are anti-parallel if one‟s head/tail is the other‟s tail/head. A 

digraph, or directed graph, or oriented graph, is analogous to an undirected graph 

except that it contains only arcs. A mixed graph may contain both directed and 

undirected edges; it generalizes both directed and undirected graphs. When stated 

without any qualification, a graph is almost always assumed to be undirected. 

 

A digraph is called simple if it has no loops and at most one arc between any pair 

of vertices. When stated without any qualification, a digraph is usually assumed to be 

simple.  

 

A directed path, or just a path when the context is clear, is an oriented simple path 

such that all arcs go the same direction, meaning all internal vertices have in- and 

out-degrees 1. A vertex v is reachable from another vertex u if there is a directed path 

that starts from u and ends at v. Note that in general the condition that u is reachable 

from v does not imply that v is also reachable from u.  

 

A directed cycle, or just a cycle when the context is clear, is an oriented simple 

cycle such that all arcs go the same direction, meaning all vertices have in- and out-

degrees 1. A digraph is acyclic if it does not contain any directed cycle. A finite, 

acyclic digraph with no isolated vertices necessarily contains at least one source and 

at least one sink.  
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The partial order structure of directed acyclic graphs (or DAGs) gives them their 

own terminology. 

 

If there is a directed edge from u to v, then it is said to be a parent of v and v is a 

child of u. If there is a directed path from u to v, it is said u is an ancestor of v and v 

is a descendent of u. 

 

Vertices in graphs can be given colours to identify or label them. Although they 

may actually be rendered in diagrams in different colours, working mathematicians 

generally pencil in numbers or letters (usually numbers) to represent the colours. 

 

Given a graph G (V, E) a k-colouring of G is a map f : V →  {1, . . . , k} with the 

property that (u, v)  E   f(u)   f(v), in other words, every vertex is assigned a 

colour with the condition that adjacent vertices cannot be assigned the same colour. 

 

The chromatic number γ(G) is the smallest k for which G has a k-colouring. 

Given a graph and a colouring, the colour classes of the graph are the sets of vertices 

given the same colour.  

 

A graph invariant is a property of a graph G, usually a number or a polynomial, 

that depends only on the isomorphism class of G. 

 

A graph structure can be extended by assigning a weight to each edge of the 

graph. Graphs with weights, or weighted graphs, are used to represent structures in 

which pairwise connections have some numerical values. For example if a graph 

represents a road network, the weights could represent the length of each road. A 

digraph with weighted edges in the context of graph theory is called a network which 

is defined by Knobloch, Leibniz, & Euler (1991). 

 

Networks have many uses in the practical side of graph theory (for example, to 

model and analyze traffic networks). Within network analysis, the definition of the 

term “network” varies, and may often refer to a simple graph. Applications of graph 
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theory in the form of network analysis split broadly into three categories. Firstly, 

analysis to determine structural properties of a network, such as the distribution of 

vertex degrees and the diameter of the graph. A vast number of graph measures exist, 

and the production of useful ones for various domains remains an active area of 

research. Secondly, analysis to find a measurable quantity within the network, for 

example, for a transportation network, the level of vehicular flow within any portion 

of it. Thirdly, analysis of dynamical properties of networks which were carried out 

by Sachs, Stiebits, & Wilson (1988).  

 

In the literature, various applications of graph theory for wireless networks exist. 

Arbitrary graphs have the advantage of being able to represent all possible network 

configurations. Certain restricted graphs could give an accurate representation to 

certain radio network or network scenario; and illuminate some aspects of the 

problem structure, which might help in solving the problem, and finding the optimal 

solution, such as finding a chromatic number. Most of its applications are to solve 

the problem of channel assignment. Especially automatic channel assignment in 

multi-channel multi-radio wireless mesh networks is a key technique to minimize 

signal interference and increase network capacity. Tree and planar graphs are most 

famous restricted arbitrary graphs used in modeling radio networks. Tree is the 

simplest graphical representation and problems such as message routing and 

propagation can be well addressed using tree models. However, Sachs, Stiebitz, & 

Wilson (1988) stated the tree structure is not flexible enough to represent many 

possible network configurations. 

 

The demand for wireless spectrum has been growing rapidly with the dramatic 

development of the mobile telecommunication industry in the last decades. Recently, 

regulatory bodies like the Federal Communications Commissions (FCC) in the 

United States are recognizing that traditional fixed spectrum allocation can be very 

inefficient, considering that bandwidth demands may vary highly along the time or 

space dimension. In order to fully utilize the scarce spectrum resources, with the 

development of cognitive radio technologies, dynamic spectrum allocation especially 

distributed spectrum allocation becomes a promising approach to increase the 
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efficiency of spectrum usage. This new wireless networking paradigm, dynamic 

spectrum access, is also referred to as Next Generation (xG) wireless networks. 

 

xG networks, however, impose several research challenges due to the broad range 

of available spectrum as well as diverse Quality-of-Service (QoS) requirements of 

applications. These heterogeneities must be captured and handled dynamically as 

mobile terminals roam between wireless architectures and along the available 

spectrum pool. The key enabling technology of xG networks is the cognitive radio. 

Cognitive radio techniques provide the capability to use or share the spectrum in an 

opportunistic manner. Dynamic spectrum access techniques allow the cognitive radio 

to operate in the best available channel. 

 

Main functions of for cognitive radios in xG networks are spectrum sensing, 

spectrum management, spectrum mobility and spectrum sharing. The ultimate 

objective of the cognitive radio is to obtain the best available spectrum through 

cognitive capability and reconfigurability. Since most of the spectrum is already 

assigned, the most important challenge is to share the licensed spectrum without 

interfering with the transmission of other licensed users.  

 

The coloring model based on graph theory is an important model to research on 

channel allocation for cognitive radios, which abstracts the network topology 

including cognitive users and primary users into a graph and gets the channel lists for 

each cognitive user according to the result of spectrum sensing. Therefore, the 

channel allocation problem is formulated as a graph-coloring problem. The cognitive 

network is generally modelled as a undirected graph G = (V, E), where the vertices 

represent the secondary users, and edges represent interferences so that no channels 

can be assigned simultaneously to any adjacent nodes. The graph is referred as the 

interference graph.  

 

The objective of the channel allocation is to maximize the spectrum utilization, 

including both primary users‟ and secondary users‟. Nowadays, more and more 

researchers have already started to study dynamic spectrum allocation via 
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bidding/asking and auction mechanisms. Dynamic channel allocation performance of 

auctions with collusion and cooperation was analyzed and it was shown that through 

user cooperation a much better performance is obtained.  

 

Besides spectrum allocation, another important deployment issue of cognitive 

radio networks is interference management. Many studies concern only dynamic 

spectrum allocation without considering interference constraints on primary users 

because of secondery user activities. On the other hand, some studies investigate 

interference management issue on cognitive networks, whereas they do not consider 

total gain maximization during channel allocation. There is no work involving both 

coloring, auction and bidding theory and interference management on primary users 

without controlling power levels. Existing allocation schemes generally consider 

either power and channel allocation without considering total gain or only total gain 

of primary and secondery users without taking interference constraint into 

consideration. 

 

The thesis is organized as follows. We begin in chapter 2 by giving our literature 

review results where we investigate graph theory applications and classify them 

based on 7 layers of OSI. Next, chapter 3 is problem definition part. Here, we give 

background information about cognitive radio networks, give related work and 

define the problems of channel allocation for secondary users and interference 

management. In chapter 4, we give our contribution work which is throughput 

maximization of auction-based channel allocation for cognitive radio networks under 

interference constraint. Also, we give our algorithm and simulation results. Finally, 

conclusions and summary of our contributions are stated in chapter 5. 
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CHAPTER TWO 

OVERVIEW OF GRAPH THEORY APPLICATIONS AND 

CLASSIFICATION BASED ON OSI LAYERS 

 

In this chapter of the thesis, we investigate applications of graph theory in the 

literature and classify them based on 7 layers of Open Systems Interconnection 

model (OSI). Based on this, we look for open areas in the field of cross-layer 

applications and in the next chapter, we focus on channel assignment and 

interference management issues in cognitive radio networks which are basically 

MAC and physical layer applications. 

 

2.1 Transport And Mac Layer Applications 

 

There are various applications of graph theory of various applications of graph 

theory in different OSI layers. Most of its applications are based on MAC layer. 

 

In the paper “A Client-driven Approach for Channel Management in Wireless 

LANs”, Mishra, Brik, Banerjee, Srinivasan, & Arbaugh (2006) focus on the specific 

problem of channel assignment to improve application throughput on a per-user basis 

and for the network as a whole. 

 

Approaches such as Least Congested Channel Search (LCCS) (Mishra et al, 2006) 

are AP-centric in nature, that is, they capture interference at the APs but do not 

involve client participation. That s why this type of interference is called as Hidden 

Interference Problem. In this work, they show that AP-centric approaches lack the 

ability to detect various similar interference scenarios which can cause serious 

inefficiencies in the channel utilization. Such observations provide the motivation to 

innovate clientcentric models and techniques for channel assignment in the context 

of WLANs. The end goal of this work is to improve application performance. While 

client-based channel assignment solves a part of the problem, load balancing of 

clients among APs is also needed for a complete solution. Through application level 

metrics they show that such a joint solution has significant advantages compared to 
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addressing the two problems independently. They refer to this problem of channel 

assignment with load balancing as channel management. So, they propose a novel 

client-centric model of capturing the interference constraints in a WLAN. Based on 

this model, they develop a centralized technique for addressing the problem of 

channel management. Such centralized approaches are applicable to managed 

networks in organizational settings such as airports, hotels, business offices, and 

centrally managed hotspots. They capture the hidden interference scenarios by 

constructing a set theoretic model called conflict set coloring. 

 

They use the term conflict to denote scenarios where any two stations (APs or 

clients) belonging to different BSS interfere with each other by the virtue of sharing 

the same channel. The goal of channel management based on conflict set coloring is 

to assign channels/colors in such a way that each client is assigned to APs (chosen 

from the range set) which suffer from minimum conflict (or are conflict free if 

possible). They propose a centralized algorithm called CFAssign-RaC (stands for 

conflict set color assignment using Randomized Compaction) which addresses the 

joint problem of channel management. A client is said to be conflict-free if its 

association with an AP on the assigned channel eliminates conflicts at both the AP 

and the client. If there does not exist such an AP, the client then associates to the AP 

such that the AP-client link has minimum conflict where conflict on a particular 

channel can be measured as the number of APs that share the channel.  

 

The goal of channel management over this conflict set system is to assign 

channels to APs in such a way that it minimizes the conflict for each client. This 

solution also yields an association mapping of clients to APs, where a client 

associates to the AP that has the minimum conflict. Here, they model the channel 

assignment problem in WLANs as a vertex coloring problem cognizant of client 

interference. A graph is used to represent conflicts or interference between nodes. 

Such interference can be deduced by obtaining information from the clients. The 

vertices of this graph correspond to APs, and edges correspond to impact of 

interference between pairs of APs. The objective is to assign a fixed number of 

colors (channels) to the vertices (APs) of this graph that minimizes interference. 
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They define a penalty function to evaluate the degree of interference and in order to 

achieve low interference at clients, they must choose an assignment of colors to 

vertices (channels to APs) such that the aggregate value of the penalty functions on 

all edges is minimized. The goal of a channel assignment scheme is to improve user 

perceived throughput and network utilization. Apart from suffering interference from 

other APs and clients associated to other APs, a client shares the medium with clients 

associated to its own AP. The CFAssign-RaC algorithm makes clients associate to 

APs that are conflict free i.e., free from inter-AP interference. However, if many 

clients are already associated to an AP, such clients would experience throughput 

reduction due to considerable intra-AP load. Thus, the channel assignment solution 

should associate clients to APs that minimize a combination of both intra-AP load 

and inter-AP interference. The CFAssign-RaC algorithm (modified to be cognizant 

of client load) jointly solves both the channel assignment and the load balancing 

problems as follows: CFAssign-RaC directly outputs the channel assignment for 

each AP. By using the load-aware objective function to address conflict set coloring, 

the CFAssign-RaC algorithm implicitly decides the association between the clients 

and APs (each client is associated to the AP from its range set which has the 

minimum conflict). This association is a solution to the load balancing problem as 

well. In the simulations, they study the effect of their algorithms on various metrics 

such as application level throughput for both UDP and TCP flows and the MAC 

level collisions. Various metrics were measured to study the effect of their channel 

management algorithm on different layers of the network stack. First, they measured 

the application level nthroughput for both FTP/TCP and CBR/UDP flows. Second, 

they measured the per-packet delay encountered by the CBR/UDP flows at the 

application layer.  

 

This delay includes the queues at transmitting stations, and the MAC level delay 

(because of collisions and backoffs). This delay includes the queues at transmitting 

stations, and the MAC level delay (because of collisions and backoffs). This metric is 

useful in studying the effect on voice applications where a deadline oriented delivery 

of packets is more important than reliability. To summarize, they propose a client-

based model called conflict set coloring that captures interference at the clients to 
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efficiently utilize spectrum in a wireless LAN. They evaluate a centralized algorithm 

called CFAssign-RaC based on conflict set coloring which jointly performs channel 

assignment and load balancing, otherwise called channel management. Through 

extensive simulations and measurements from deployed testbeds they showed the 

practical usefulness of such an approach to centrally managed networks. They 

believe that such client-centric approaches are the key to improved application 

performance in WLANs and can find wider applicability to newer wireless 

technologies.  

 

In the paper called “A Self-Managed Distributed Channel Selection Algorithm for 

WLANs”, Leith, & Clifford (2006) propose a new fully distributed algorithm suited 

to dynamic channel selection by WLANs. In this scheme each AP employs a simple 

learning rule to adaptively select the channel to transmit on.  

 

The algorithm does not require direct communication between APs, hence it is 

referred to as self-managed. The sole information required by the algorithm is 

feedback to each AP on the presence of interference on a given channel; such 

feedback is already commonly provided by WLAN protocols such as 802.11. They 

show that the algorithm is guaranteed to converge to an optimal solution that 

minimises interference between WLANs provided this is feasible. Moreover, they 

demonstrate the convergence is, on average, remarkably fast under a wide range of 

network conditions and topologies.  

 

Let c denote the number of available channels and let each AP maintain a c 

element state vector p. Let    denote the ith element of p with    = 1. The following 

distributed algorithm for updating p is considered. 

 

Algorithm: Distributed Channel Selection 

 

1) Initialise p = [1/c, 1/c, . . . , 1/c]T 

2) Toss a weighted coin to select a channel, with    the probability of selecting    

channel i. Measure the quality of the channel: any interference measure can be used 
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that yields a success when interference/channel noise is within acceptable levels and 

failure otherwise. 

3) On success on channel i, update p as 

        = 1 (1) 

        = 0    i  (2),     i.e. on success staying with that channel. 

4) On failure on channel i, update p as 

       = (1 - b)    (3)  

       = (1 - b)    + b/(c - 1)     i (4), i.e. on a failed transmission multiplicatively 

decrease the probability of using that channel, redistributing the probability evenly 

across the other channels. b is a design parameter, 0 < b < 1. 

5) Return to 2.  

 

Here, choice of Learning Parameter b is important. This parameter determines 

how quickly an AP discounts previous successes on a channel (or failures on other 

channels) on experiencing transmission failures on that channel. When b = 0, no 

action is taken on failures. That is, when b = 0, an AP simply settles forever on the 

first channel on which it experiences a successful transmission. It is easy to see that 

this greedy strategy will not, in general, converge to a proper channel allocation. 

They therefore require b > 0. For b > 0 they have that the algorithm reduces the 

probability of choosing a channel, uniformly increasing the probability of choosing 

the remaining channels. 

 

The key issue in assessing the potential gain is the impact of interference on the 

MAC layer performance. They consider in particular two contrasting examples: (i) a 

naive centralised MAC scheduler that schedules a transmission in every available 

slot and (ii) an 802.11 CSMA/CA MAC scheduler. For naive centralised MAC 

scheduler case, when no channel allocation algorithm is used, network normalised 

throughput is almost zero since all nodes use the same channel for transmission. 

However, when algorithm is used, throughput increases. When an 802.11 CSMA/CA 

MAC scheduler is employed, this time, throughput is low but not zero without 

algorithm. However, throughput increases again when allocation algorithm is used, 

but not as much as that with naive centralised MAC scheduler. 
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In summary, in this paper they consider the problem of a wireless LAN selecting a 

channel to minimise interference with other WLANs. They introduce a new fully 

distributed channel selection algorithm that does not require direct communication 

between APs; that is, the algorithm is self-managing. The sole information required 

by the algorithm is feedback to each AP on the presence of interference on a chosen 

channel; such feedback is already commonly provided by WLAN protocols such as 

802.11. They establish that convergence of the distributed algorithm is guaranteed 

provided that the channel allocation problem is feasible. Extensive simulation results 

are presented that demonstrate rapid convergence under a wide range of network 

conditions and topologies. While the scope of the present paper is confined to 

infrastructure networks with static topology, the utility of the proposed algorithm in 

situations where the network topology is time-varying is briefly discussed.  

 

In the paper called “New graph model for channel assignment in ad-hoc wireless 

networks”, Cheng, C. Huang, X. Huang, & Wu (2005) consider the zero-

interference-minimum-span version of channel assignment problem.  

 

The purpose of channel assignment algorithms is to assign channels to 

transmitting hosts such that cochannel interference is avoided and the total number of 

channels used is minimized (Comellas, & Ozón, 1995). There are some other 

versions of channel assignment problems, for instance, to minimise the total 

interference for a given set of channels (Murphey, Pardalos, & Resende, 1999). 

 

There are two types of interferences: primary interference and secondary 

interference. The primary interference is caused by direct collision, due to 

simultaneous transmissions from hosts that can hear each other. The secondary 

interference is also called hidden terminal interference, which is caused by hosts 

outside the hearing range of each other transmitting to the same receiver. In this 

paper, they present a channel assignment algorithm to eliminate both the primary and 

secondary interference.  
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Double disk (DD) graphs (Cheng at al, 2005) are more realistic than the single 

disk graphs, in which each host is represented as two concentric disks, with the inner 

disk representing the range of the transmitter (or supply area as it is called in cellular 

networks) and the outer disk representing the interference area. The region between 

the outer circle and the inner circle represents the area where the signal is not strong 

enough to be received successfully, but strong enough to interfere with others. Two 

hosts are interfering if one hosts interference area intersects with another hosts 

supply area. However, DD graphs have the problem that they do not distinguish if 

there exist other hosts in the overlapped area.  

 

In this paper, they propose a new graph model, i.e., two cochannel hosts are 

considered to be interfering with each other if and only if the receiver of one 

transmitter is in the interference area of another transmitter. They call it the 

interference double disk graph model. To avoid confusion with the intersect disk (ID) 

graph and the double disk (DD) graph, they use FDD to denote it. Similar to a DD 

graph model, this model considers two concentric disks each representing the 

transmission range and interference range separately, but it more accurately models 

wireless networks. In an FDD graph, an edge exists between two vertices if the inner 

disk of one transmitter overlaps with the outer disk of the other transmitter and there 

exists another node within the overlapped area. A traditional way to represent the 

performance ratio of colouring algorithms is to compare the chromatic number X(G) 

with the clique number W(G), because W(G) is the lower bound for X(G). It has 

been shown that for any UD graph, the chromatic number is bounded by a clique 

number times a constant. In this paper, they try to find out if there is an upper bound 

for w(G)/o(G) in FDD graphs. They prove that this upper bound exists and X(G)   

14 * (W(G) - 1) for FDD graphs. 

 

Given a set of nodes V on the Euclidean plane and each node v is associated with 

two concentric disks with radii    and    respectively, where    = c ×    and 

constant c  1, build an FDD graph on V and assign each node a colour such that no 

node has the same colour as its adjacent nodes in the FDD graph. To construct the 

FDD graph, V is used as the vertex set, and the edge set is constructed in such a way 
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that there exists an edge between two nodes x and y if and only if  x ≠ y, and there 

exists a node w   V that satisfies |xw|  ≤    , |yw|  ≤    or |yw|  ≤    , |xw| ≤   . 

 

They use D(v) and d(v) to denote the area covered by the outer disk and inner disk 

of node v, respectively. Since w could be x or y, the above statement is equivalent to: 

x and y are connected by an edge in G if and only if at least one of the following is 

true:  

(i) D(y) covers x 

(ii) D(x) covers y 

(iii) There exists a node z   V \ {x,y} that lies in the overlapped area of d(x) and   

D(y)  

    (iv) There exists a node z   V \ {x,y} that lies in the overlapped area of D(x) and  

    d(y) 

 

This graph model includes both direct interference edges and indirect interference 

edges, therefore an appropriate vertex colouring of an FDD graph can eliminate both 

direct collisions and hidden terminal collisions. The distributed implementation of 

the channel assignment algorithm would require that each node has knowledge of its 

two-hop neighbourhood, which is obtained within the first three rounds described 

below. Each node has three states: initial, colouring and coloured. Heuristic 2 Round 

1: A node in initial statewould start by broadcasting its own ID, and learn its onehop 

neighbours from the information it has received. Round 2: Once a node receives the 

IDs from all its neighbours, it broadcasts its one-hop neighbours. Based on the 

information it has received from all its neighbours, each node learns itstwo-hop 

neighbours, and then computes a local FDD graph that spans over its two-hop 

neighbours. It then enters the colouring state. Round 3: A node with a stable FDD 

graph would broadcast its degree (i.e., the number of neighbours in its FDD graph), 

and relay this information for its one-hop neighbours. Round 4: To decide a channel 

number, each node would first build a list from its local FDD graph using the 

smallest last order. To get a list of smallest-last order, start with an empty list, pick a 

node with the smallest node degree, put it at the head of the list, and remove it from 

the local FDD graph; repeat until all nodes are in the list. A tie is broken in favour of 
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a smaller node ID. The relative order of two nodes that appear at the list is consistent 

between each other. The node that finds itself at the head of the list would pick the 

smallest channel number not used by its FDD neighbours (i.e. nodes that share an 

edge with it on the FDD graph) and announce its channel immediately, and then go 

to the coloured state. Other nodes once they hear this announcement will remove it 

from the list, update the FDD graph, and relay it for one hop. Round 4 is repeated 

until every node is assigned a channel number. A node in the coloured state would 

periodically announce its channel number and ID, and relay this information for one 

hop.  

 

As a conclusion, in this paper, they consider the collision free channel assignment 

problem in ad-hoc wireless networks. They model the wireless networks by a new 

class of graphs (interference double disk graphs (FDD)). The problem of minimising 

the number of channels needed to eliminate interference is a graph colouring 

problem in FDD graphs. They prove its NP-completeness and provide an upper 

bound for its chromatic number. They design a centralised channel assignment 

approximation algorithm and its distributed implementation that can eliminate both 

direct collisions and hidden terminal collisions. The FDD graph model requires more 

channels than the containment disk (CD) graph model, and less channels than the 

intersection disk (ID) and double disk (DD) graph models. FDD graphs model the 

wireless networks more accurately than CD, ID and DD graphs. The performance 

ratio of this algorithm on FDD graphs is 14 when the radii of outer disks and inner 

disks have a constant ratio. For a more general case where    =    ×    and    is not 

constant, the performance ratio of the sequential colouring algorithm is still 

unknown. The theoretical bound provided in this paper can be used as a worst-case 

estimation on the total number of channels needed in wireless ad-hoc networks. More 

efficient channel assignment algorithms to reduce the number of channels needed can 

be considered. Especially when the traffic pattern is given, or the activity factor of 

nodes is given, channels can be reused between neighbouring nodes when their 

activity periods have no overlap, or their intended receivers are not interfered by the 

others.  
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Another paper related to channel assignment problem is “An Interference-Aware 

Channel Assignment Scheme for Wireless Mesh Networks” (Sen, Murthy, Ganguly, 

& Bhatnagar, 2007). They investigate the following question in this paper: Given the  

 

(i) locations of the wireless mesh routers,  

(ii) transmission and interference ranges of the transmitters,  

(iii) the number of channels available on each link and  

(iv) the number radio interfaces available at each router, what is the largest 

number of links that can be activated simultaneously subject to interference and radio 

constraints so that the resulting network is connected? Their goal is to activate all 

such links and they present an interference-aware channel assignment algorithm that 

realizes this goal. Their channel assignment scheme is traffic unaware in the sense 

that the channels are assigned without taking into account traffic pattern or the paths 

to be taken for establishing connections between source-destination node pairs. In 

this paper, they show that the Link Interference Graph constructed with the widely 

used interference model gives rise to a special class of graphs known as Overlapping 

Double-Disk (ODD) graphs. They prove that the Maximum Independent Set (MIS) 

computation problem is NP-complete, even for this special class of graphs. 

 

The contributions of this paper are summarized below. 

 

 Novel characterization of the Link Interference Graphs as Overlapping 

Double-Disk graphs.  

 Development of a Polynomial Time Approximation Scheme (PTAS) for 

computation of MIS of an ODD graph.  

 Development of a channel assignment algorithm with an objective of 

activating the largest number of links subject to interference and radio 

constraints.  

 Comprehensive performance evaluation of the heuristic solution in 

comparison with the optimal solution obtained by solving an integer linear 

program.  
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They view the routers of a WMN as some points (  , . . . ,   ) (specified by their 

x, y coordinates) on a two dimensional plane. Associated with each point   , 1   j   

n is a transmission range,     and an interference range,   ,         (they assume 

that all routers have identical transmission and interference ranges). At the second 

level of abstraction, they construct a graph G = (V, E), in which each node represents 

a point on the plane (router) and there is an edge from node    to node    if the 

Euclidean distance between the corresponding points    to    is less than or equal to 

the transmission range   . This assumption implies that each router has a circular 

coverage area with the center of the circle at the location of the router. The circular 

coverage area associated with point    (and node   ) will be referred to as the disk 

associated with the point    (and node   ).  

 

The graph G = (V, E) will be referred to as the Potential Communication Graph 

(PCG). A link between any two nodes in this graph indicates that this pair of nodes 

can communicate with each other if their transmitters and receivers are assigned the 

same channel. It may be noted that even though these nodes are within the 

communication range of each other, they may not be able to communicate with each 

other unless the same channel is assigned to both of them. In the absence of the load 

information between source-destination pairs in the network, a good channel 

assignment strategy would be to do channel assignment in such a way that the 

resulting communication graph can support as many simultaneous active links. The 

problem considered in this paper is as follows: Given L, the location of the wireless 

routers   , the transmission range   , the interference range N, the number of 

available channels and K, the number of available radios at each of the routers, the 

problem is to assign channels such that the number of links that can be activated 

simultaneously is maximized subject to radio, interference constraints and the 

resulting graph is connected.  

 

Simultaneous transmission on a common channel on two distinct edges    and    

of PCG connecting nodes (  ,   ) and (  ,   ) respectively are said to interfere with 

each other if minimum d(  ,   ), d(  ,   ), d(  ,   ), d(  ,   ) ≤    , where d(  ,   ) 

indicates the Euclidean distance between the nodes    and    and    indicates the 
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interference range. The Link Interference Graph LIG is constructed as follows: 

Corresponding to every link in PCG, there is a node in LIG and two nodes in LIG 

have an edge between them only if the corresponding links interfere with each other. 

Given the locations (  , . . . ,   ) of the routers on a two dimensional plane, they 

draw a line connecting points    and    to indicate the link la,b between the routers, 

if the distance between    and    less than or equal to   . Similarly, they draw a line 

connecting points    and    to indicate the link      between the routers if the 

distance between    and    less than or equal to   . In order to determine if the links 

     and       interfere with each other, they do the following: They draw a circle with 

centers at the points   ,   ,   ,    with radius   /2. Since d(  ,   )     and     

  , the circles with centers at    and   will overlap. The same thing will happen for 

the circles with centers at    and   . They refer to this figure as Overlapping 

Double-Disks (ODD). The mid-point of the line joining the centers of the two disks 

will be referred to as the center of the double disks. The links      and       will 

interfere with each other if and only if the corresponding ODDs intersect. 

 

The heuristic for the channel assignment takes as input the location of the routers, 

transmission radius, interference radius, number of channels, number of radios on 

each node and outputs the channels assigned to the radios of each router. The 

heuristic starts by reserving one radio on each node for ensuring connectivity later. 

The channel assignment heuristic invokes two functions namely, MIS channel 

assignment and ensure connectivity. At the end of the MIS channel assignment 

algorithm, the topology resulting from the channel assignment may have several 

connected components. To ensure connectivity, algorithm uses the single radio that 

was reserved earlier to connect all the components. The algorithm maintains a set S 

consisting of a single connected component. At each iteration, all paths that connect 

S with some component not in S are examined. The interference degree of a path is 

the largest number of edges interfered by an edge in the path. The path and the 

channel to be assigned on all nodes of this path that lead to the least interference is 

computed. Channel assignments are done on this path and the component    

connected by this path is included into S. This procedure is repeated until all 

components are merged into S.  



 

 

26 

As a result, in this paper, they have provided a heuristic for the channel 

assignment problem in Wireless Mesh Networks. In the process, they characterize 

the LIG as ODD graphs and provide a PTAS to compute MIS for ODD graphs. Their 

results demonstrate the effectiveness of the heuristic.  

 

In the paper “Flow-based Channel Assignment in Channel Constrained Wireless 

Mesh Networks”, Weihuang, Bin, Wang, & Agrawal (2008) first compute the 

minimum number of channels for a feasible conflict free channel assignment, and 

then perform assignment adjusting by taking the number of available orthogonal 

channels into account. Given a WMN and the traffic profile (i.e., traffic demand of 

each MR), the traffic flows among the MRs are modelled as a Linear Programming 

(LP) problem, targeting to find the fair flow of each MR so that each MR has the 

same proportional traffic that can be successfully forwarded to the IGW. Based on 

the fair flows, a weighted flow-based conflict graph is generated for further usage of 

channel assignment. They calculate the minimum number of channels by which a 

flow-based graph can be colored in a way that adjacent edges employ different 

channels. They observe the minimum number of channels for a conflict free channel 

assignment in different topologies, which provides the reference for the network 

design. They also estimate the approximation ratio of the number of channels 

obtained by the heuristic algorithm and the optimal solution. 

 

If the available channels are not enough for a conflict free assignment, their 

algorithm performs a priority-based channel assignment to enable high load radios 

have a dedicated channel for use without conflict with its neighbors. The algorithm 

performs a procedure of channel mergence to allow a set of light traffic radios to 

share a common channel even they are neighbors. The selection of radios for channel 

mergence is based on the traffic load on these radios, which is computed in the flow-

based conflict graph. This means the radio having less traffic is more likely to be 

selected for sharing channels. In addition, the channel can be reassigned to radios if 

the traffic profile in the network is significantly changed.  
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Flow-based channel assignment includes three stages: fair flow formulation, 

conflict-free channel assignment, and channel mergence. Adaptive channel re-

assignment mechanism is also provided to meet significant traffic changes.  

 

Fair Flow Formulation: At the beginning, the IGW discovers the network 

topology and collects the traffic demand information of each MR in the network. To 

reach the fairness for the MR traffic, they define   (0 <    1) as the traffic 

proportion parameter, meaning that each MR can successfully transmit   proportion 

of its aggregate traffic. Let    
   be a binary variable for edge uv, where t denotes a 

time slot used for data transmission over a specific channel k.    
   = 1 indicates link 

uv is active for the packet transmission in time slot t by employing channel k. 

Otherwise,    
   = 0. To determine the flows on the edges, it can be formulated by a 

LP problem subjecting to the following constraints.  

 

 MR-Radio Constraint: Since the transmission or reception has to employ a 

radio, the total number of active links of a MR at a given time slot cannot 

exceed the total number of radios of the MR.  

 MR-Interference Constraint: Given the interference distance    = q ×   , the 

interference region for a pair of transmitting MRs u and v is the union of two 

circles centered at u and v with radius   . The maximum number of 

simultaneous flows in the interference region within a time slot is c(q), where 

c(q) denotes the maximum number of simultaneous transmission in the 

interference region and is determined by the value of q. 

 

 By solving LP problem under constraints they obtain the fair flows, with the 

objective to maximize proportion parameter. According to the calculated traffic 

flows above, a flow graph   (V,   ) can be further generated from G(V, E) by 

removing the edges without traffic. When the network traffic is predominantly 

directed between the MR and the IGW for Internet access, a large number of links in 

G(V, E) will be removed in generating   (V,   ). 
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Conflict-free channel assignment: Once the flow-based conflict graph is 

generated, the channel assignment on flow graph    has been transformed to the node 

coloring problem on conflict graph   . The target of conflict free channel assignment 

on    is to assign different channels to all links within the interference region. It is 

transformed to assign colors (i.e., channels) to the nodes on    in a way such that any 

two adjacent nodes in    are assigned different colors.  

 

The optimal node coloring problem is a NP-hard problem. Greedy node coloring 

algorithm can be implemented to find a near optimal channel assignment. 

Considering each node in sequence   , . . . ,   , it assigns each node with the first 

available channel (e.g. the channel that is least used in nodes and not used by any 

assigned neighbors).  

 

Channel Mergence: If the number of available channels Nch is less than 

Xgreedy(Gc), the channel assignment may not be accomplished due to the shortage 

of channels. In this case, it is unavoidable that two adjacent nodes are colored by 

same color, indicating two neighboring flow links share a common channel. When 

two neighboring flow links share a common channel, it is necessary for the MAC 

protocol to avoid the collision in the case of using the shared channel. In this case, it 

is still needed to reduce the interference in the channel assignment.  

 

For this purpose, they introduce a channel merging algorithm to assign channel in 

a low interference way. For instance, the network has three orthogonal channels and 

fA > fB > fC. By using the greedy channel assignment algorithm, for example, they 

assign channels 1, 2, and 3 to nodes A, B, and C, respectively. If there are only two 

available channels, they have to adjust the assignment of certain node(s). They call 

such adjustment channel mergence. In this case, they need to consider two questions: 

(i) which node should be selected for channel mergence, and (ii) which channel 

should be used for the selected node. In their approach, they choose the node having 

the minimum weight (i.e., the minimum flow) in the flow-based conflict graph. The 

reason behind this is that the node having the minimum weight causes less 

interference on the channel which it is united to. 
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In order to avoid high interference, it is needed to evaluate the interference on 

each node and choose the channel having less interference introduced by the newly 

added node. For example, let us consider channel 1 for node C (i.e.   ). Denote the 

interference at node A on channel 1 as Int1(A), which is interfered by the neighboring 

nodes of A in the conflict graph. The set of neighboring nodes is denoted by N(A). 

Then, they have Int1(A) = Int1(C) =   +   . It is noted that they approximate the 

degree of interference by using the traffic flow. The reason behind it is that more 

traffic to transmit, more interference will be resulted. On the other hand, the 

introduced interference is    +    if they assign fC with channel 2. Due to    +    <    

+   , they finally assign    with channel 2. Therefore, they color nodes B and C with 

the same color, meaning flows B and C share the same channel 2.  

 

In summary, a WMN implements multi-radio and multichannel communication in 

a multi-hop fashion. In this paper, they address the number of channels for a feasible 

conflict free channel assignment and observe it in different topologies. The results 

indicate the reasonable number of channels for a designed WMN. The channels can 

be assigned to the radios if the number of available channels is enough. Channel 

mergence procedure is performed if the number of available channels is less than that 

of required by considering the fair flows in the network.  

 

In the paper “Unit Disk Graph and Physical Interference Model:Putting Pieces 

Together”, Lebhar & Lotker (2009) propose a novel approach that facilitates the use 

of sophisticated theoretical algorithmic tools in real networks with proved guarantees 

of performances and success. They show that it is possible to design an emulation 

scheme of the UDG topology under the SINR model without controlling the power 

levels of the nodes.  

 

As a tractable mathematical object, the unit disk graph (UDG) is a popular model 

that has enabled the development of efficient algorithms for crucial networking 

problems. In a  -UnitDiskGraph, two nodes are connected if and only if their 

distance is at most  , for some   > 0. However, such a connectivity requirement is 

basically not compatible with the reality of wireless networks due to the environment 
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of the nodes as well as the constraints of radio transmission. For this purpose, the 

signal interference plus noise ratio model (SINR) is the more commonly used model 

(Gupta, & Kumar, 2000). The SINR model focuses on radio interferences created 

over the network depending on the distance to transmitters. Nevertheless, due to its 

complexity, this latter model has been the subject of very few theoretical 

investigations and lacks of good algorithmic features. 

 

In this paper, they demonstrate how careful scheduling of the nodes enables the 

two models to be combined to give the benefits of both the algorithmic features of 

the UDG and the physical validity of the SINR. Precisely, they show that it is 

possible to emulate a 1/        -UDG that satisfies the constraints of the SINR over 

any set of n wireless nodes distributed uniformly in a unit square, with only a O(ln3 

n) time and power stretch factor. The main strength of their contribution lies in the 

fact that the scheduling is set in a fully distributed way and considers non-uniform 

power ranges, and it can therefore fit the sensor network setting.  

 

They demonstrate that it is possible to emulate a UDG model in which each link 

satisfies SINR conditions over a set of wireless nodes. The main idea is to force each 

node to transmit at a particular time slot so as to guarantee that, for some   > 0, any 

node belonging to the   neighborhood of any transmitter is able to hear the 

transmitters message under SINR restrictions. This process can be viewed as an 

emulation of a UDG in the sense that the resulting network behavior is the same as a 

UDG. Once this scheduling is set in each node, it is possible to apply any algorithm 

originally designed for a  -UDG with the guarantee of successful transmissions over 

every link under the SINR model. The scheduling of the nodes inherently produces a 

time stretch factor, one of the difficulties of the emulation process is therefore how to 

ensure a low time stretch. They demonstrate that it is indeed possible to emulate a 

UDG with only a polylogarithmic time stretch in the uniform distribution setting. 

The second crucial obstacle that has to be overcome is how to label the nodes for the 

scheduling in a fully distributed way to fit the setting of sensor networks, in which 

nodes have no knowledge of their neighborhood. The labels are necessary to enable 
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the emulation to be repeated in the future. The strength of their contribution lies 

specifically in the randomized labeling procedure that they use for this purpose. 

 

The  -UDG of a set of points S is the graph of a set of vertices S and where there 

is an edge between two nodes u and v if and only if d(u, v) ≤   (d is Euclidean 

distance) (Barrire, Fraigniaud, & Narayanan, 2001). 

 

A UDG may not always be connected if the threshold is not large enough, 

depending on the distribution of the nodes in the plane.  

 

They propose a scheduling scheme that emulates a UDG collision-free under the 

SINR model. The purpose of the scheduling is to force all the nodes transmitting 

simultaneously to be far apart from one another so as to minimize interferences 

within the UDG disks.  

 

In the SINR model it is possible to set a security perimeter  for simultaneous 

emissions, which guarantees interference-free transmissions within any balls of some 

radius R. 

 

The scheduling scheme SCHED is a probabilistic and fully distributed algorithm 

aiming at forcing nodes emitting simultaneously to be at distance at least from one 

another, for some . For their scheduling scheme to distribute the appropriate time 

slots to each node, they first run an original probabilistic labeling scheme at the heart 

of the emulation operation.  

 

If only one set of cells is allowed to emit simultaneously, with only one node 

emitting in each of these cells, the scheme guarantees that all simultaneous 

transmissions are at least -apart and therefore collision-free as long as  has been 

chosen appropriately given the SINR constraints. 

 

The purpose of the probabilistic labeling scheme is to assign a label to each node, 

such that it is unique within its cell. Since the number of nodes in a cell of side can 
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be large, it is necessary to sub-divide these cells into smaller ones of side R so as to 

limit the label sizes. 

 

The delicate part of their scheduling scheme is then to assign unique labels to the 

nodes inside the smaller cells, while there is no central computation available and 

communications can fail due to interferences. To achieve this goal, their scheme uses 

randomization. In a first phase, the nodes pick their label uniformly at random. This 

phase is then repeated a sufficient number of times to ensure that each node has 

picked a label unique in its small cell, in at least one of the rounds, with high 

probability. This enables each uniquely labeled node to transmit its position without 

interference to its neighbors in the cell during the time slot of the round. Description 

of the algorithm LABEL: In Step 1, the nodes identify to which cell they belong and 

produce a first part of their label accordingly: µ(s) for a node s. Steps 2 and 3 

guarantee that only distant smaller cells will emit simultaneously by attributing the 

next part of the labels: k(s) for node s. Steps 4 and 5 consist in repeating random 

number picking. According to the value of the random number  (s) a node s has 

picked, they determine the exact time slot when it is allowed to emit. It then sends 

 (s) along with its geographic position (step 7). If a node receives (i.e. without 

interference) a position that belongs to the same small cell, it records it (step 8). Step 

9 finalizes the labeling process: each node computes its rank in its small cell 

according to the other positions it has recorded during the execution.  

 

Description of the scheduling scheme.: Once the nodes are labeled, the scheduling 

scheme simply consists of enforcing that, in each time slot, there is only one of the 

four sets of cells that is active, and in each cell of the set, at most one node that 

transmits. 

 

To summarise, this paper proposes a novel approach that facilitates the use of 

sophisticated theoretical algorithmic tools in real networks with proved guarantees of 

performances and success. They show that it is possible to design an emulation 

scheme of the UDG topology under the SINR model without controlling the power 

levels of the nodes. By developing an original preprocessing phase of randomized 
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labeling, they provide a tool enabling the transition from a one-shot local broadcast 

to the possibility of unlimited executions on an emulated graph. 

 

In another paper “A Novel Spectrum Allocation Mechanism Based on Graph 

Coloring and Bidding Theory”, Liu, Xu, & Tan (2009) propose a novel distributed 

collusion algorithm to allocate channels in the spectrum pool, through which they 

can obtain the utilities of both the primary users and the cognitive users (who are not 

owner of the spectrum and bidding for some channels from the primary users.). The 

efficient allocation is determined by an interference graph, and the utility can be gain 

from the bids of the secondary users (Akyildiz, Lee, Vuran, & Mohanty, 2006). 

 

Problem Formulation: They abstract the cognitive network as a undirected graph 

G = (V, E), where the vertices represent the secondary users, and edges represent 

interferences so that no channels can be assigned simultaneously to any adjacent 

nodes. They also refer to the graph G as the interference graph. In the follow, they 

use channel and color interchangeably (Liu, Xu, & Tan, 2009).  

 

The objective of the channel allocation is to maximize the spectrum utilization, 

including both primary users and secondary users.  

 

The optimal coloring problem is known to be NP-hard. They first discuss two 

heuristic based approaches that produce good coloring solutions, and then they 

propose a distributed collusion mechanism to solve the problem mentioned in 

equation. 

 

 Distributed random algorithm: The main feature of random algorithm is that 

it needs less of iterations and calculations. In this mechanism, they assume 

that each node generates a random number uniformly from [0,1]. Within one 

round, if the node has the highest random number among all the users, it then 

wins the color, at the same time, the nodes (users) set including this one that 

cause no interference with each other gains this color, too. After one round, 

the nodes obtaining colors go to its request list. If one node needs no more 
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colors, then remove this node from the interference graph and the edges 

connected with it. After that all nodes update their random numbers 

according to the following mechanism: if it wins one color, it divides its 

number by 2; otherwise, it keeps invariant (Liu, Xu, & Tan, 2009). 

 

 Distributed greedy algorithm: As discussed in the previous section, the 

random algorithm may result in low utilities, so, then they discuss a 

distributed greedy algorithm with the objective of maximization of the 

utilization. The distributed greedy algorithm handles colors and nodes one by 

one (Liu, Xu, & Tan, 2009). 

 

 Distributed collusion algorithm: Through the above mechanisms, the system 

utility is finally obtained. But they have not taken the aspects of the user bids 

and the revenue of primary users into account. In this part, they propose a 

novel distributed collusion mechanism with maximal independent set (MIS), 

through which they can not only gain the assigned channels of each node, but 

also get the utilities of both primary and cognitive users.  

 

In summary, they focus on the study of the secondary users who purchase some 

channels for their own communication services. They propose a novel distributed 

collusion mechanism to allocate channels in the spectrum pool with graph coloring 

and bidding theory. Distinguishing to the existing mechanisms, such as distributed 

random and greedy algorithms, simulation results show that the proposed mechanism 

has a similar performance to the greedy (optimal) one, and through which they can 

also obtain the utility of primary users (Liu, Xu, & Tan, 2009). 

 

In the paper “Effective Sensing Function Allocation Using a Distributed Graph 

Coloring and a Slot Allocation Algorithm in Wireless Sensor Networks”, Kawano & 

Miyazaki (2009) propose an algorithm for sensing function allocation. 

 

The proposed algorithm has the following features:  
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 Function distribution balancing: The proposed method can carry out sensing 

function allocation in order to balance the distribution of each sensing 

function in a target monitoring field. Simple packet and low overhead: The 

packet structure used in the proposed method is very simple and contains 

only the source node ID and the color value allocated to the node. Thus, the 

proposed method can be applied to many sensor network systems even if 

their wireless bandwidth is narrow.  

 Robustness: The proposed method dynamically allocates a sensing function 

for the current sensor nodes and their networks. Thus, it is robust against the 

failure or disappearance of the nodes.  

 Rich scalability: Because each node needs to communicate only with its 

neighbors in order to establish the network in the roposed method, this 

network can be scaled.  

 

In this paper, they consider a WSN model. The WSN consists of a BS, which is 

the main node, and many sensor nodes. This WSN is organized autonomously as 

follows: First, many sensor nodes are scattered in the environment. Next, each sensor 

node negotiates with the neighboring sensor nodes and decides its own sensing task. 

Then, on the basis of its own sensing task, the node starts transmitting the sensed 

data to the BS by using a multihop wireless route. The sensing task and the network 

structure are continuously and automatically maintained by periodical negotiations 

among the sensor nodes. An observer can obtain the sensed data from the WSN 

through the BS in order to observe the target monitoring area. Each sensor node has 

wireless communication and data processing functions as well as some sensing 

functions. Although the functioning of each sensor node is relatively simple, the 

observer can obtain environmental information from many networked sensor nodes. 

 

The function allocation problem is defined as the problem of maximizing the 

number of sensor nodes that satisfy the following constraints    and   .  

 

 Constraint   : The sensing function of sensor node    should be different 

from that of any sensor nodes in Ng(  ). Here, Ng(  ) is a set of the one-hop 
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distanced neighboring sensor nodes of sensor node   , 0 ≤ i ≤ N, and N is 

total number of sensor nodes.  

 Constraint   : All required sensing functions should be allocated to sensor 

node    and the sensor nodes in Ng(  ).  

 

The algorithm consists of two processing periods, the sensing period and the 

function allocation period. Each node repeats these two processing periods 

alternately. In the function allocation period, each sensor node decides its own 

sensing time and selects its own sensing functions. In contrast, in the sensing period, 

each sensor node gets the sensed data by using allocated sensing functions. Here, 

they assume that all sensor nodes are synchronized, and their state transitions are 

carried out simultaneously.  

 

Sensing Period: In the sensing period, the actual sensing is simply periodically 

repeated certain times specified by numOfSampling.  

 

Function Allocation Period: The function allocation period consists of two task 

phases. One is the function decision phase in which each sensor node decides its own 

sensing task for the next sensing period. The other is the notify/update phase. In this 

phase, only the color value decided in the function decision phase and sensor node 

ID are exchanged among the neighboring nodes, and used in the next function 

decision phase. In their algorithm, the sensing function is dynamically allocated in 

each function decision phase only using the information of the colors of the 

neighboring nodes. Thus, each sensor node does not need to keep any status or 

information of the neighboring nodes. 

 

In order to realize the sensing function allocation, they introduce a distributed 

graph coloring algorithm and a slot allocation algorithm. The function decision phase 

has three steps: coloring, slot division, and function decision.  

 

Step 1: Coloring a graph coloring algorithm is used as the function allocation 

algorithm. This algorithm is based on DP algorithm that was previously proposed by 
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the authors themselves. In coloring algorithm, color refers to the integer number that 

starts from one. Using a given number of colors, the algorithm colors each node to 

meet constraint   . That is the color allocated to a node should be different from the 

colors of its neighboring nodes. The policy of the color decision for each sensor node 

is relatively simple. Each node just changes the color periodically in order to meet 

the constraint. In general, in distributed graph coloring algorithms, if a sensor node 

detects a color conflict with the neighboring nodes, it tends to change its color to 

avoid the conflict. Here, a color conflict refers to the state that the color allocated to a 

node is the same as the color of one of the neighboring nodes. 

 

However, if the color changing timing is constant and the same among all sensor 

nodes, the simultaneous color changing in the neighboring nodes may generate new 

conflicts. In order to avoid this adverse side effect, they have introduced a new 

probability function that calculates the color changing timing with respect to the 

number of neighboring nodes. Hence, in many cases, the DP coloring algorithm 

avoids a simultaneous color change. In addition, even if some conflicts do occur, 

they can be resolved by the proposed algorithm sooner or later. In the proposed 

algorithm, each sensor node finds a minimum color that is not used in the one-hop 

reachable nodes. This coloring policy is obviously different from that of other graph 

coloring algorithms including DP algorithm. They often perform the graph coloring 

under the given number of colors. The goal of the proposed coloring algorithm is to 

realize color allocation for all involved nodes with the lowest possible number of 

colors in order to meet constraint   .  

 

Step 2: A slot division is realized by using the allocated color information for each 

sensor node. In order to preserve the quality of the environment sensing, the 

variations in the sensing functions need to be mentioned even if the number of 

deployed sensor nodes is not sufficient. To do that, they adopt a method as method 3. 

It is originally developed to realize a dynamic time-slot scheduling for TDMA, 

which uses a distance-2 colored graph. Here, distance-2 graph coloring means that 

each sensor node has a color that is different from the colors of the two-hop 



 

 

38 

reachable nodes. Each node carries out the task, and performs the slot allocation in 

which some sensing functions mapped in the next step should be activated.  

 

Step 3: By using the slot division slcolor and the number of sensing functions 

obtained in step 2, it is carried out actual sensing function allocation and sensing time 

allocation in the sensing period. The task overview is as follows: First, with the 

consideration of the total number of the sensing functions equipped in each sensor 

node, the initial slot allocation process to get slsensor is executed. The color 

allocated to each slot in slsensor indicates the actual sensing function. Next, by 

binding slsensor to slcolor, the final function allocation information is generated. For 

the binding step, there are three variations considered according to the relation 

between the number of sensing functions numOfSensors and slot division slcolor 

realized in step 2, that is,  

 

(1) slcolor is smaller than numOfSensors (numOfSensors  > slcolor -> length). In 

this case, the number of sensing functions in the sensor node is larger than the length 

of slot list slcolor, i.e., the number of elements in slcolor. Thus, some nodes would be 

allocated more than one sensing function.  

(2) slcolor is as the same as numOfSensors (numOfSensors = slcolor -> length). 

The slot of color allocated to node n directly indicates the sensing function allocated 

to the node.  

(3) slcolor is bigger than numOfSensors (numOfSensors < slcolor -> length). In 

this case, because the number of sensing functions is smaller than the length of slot 

list slcolor, i.e., the number of elements in slcolor, an allocated sensing function 

could be duplicated with that of some neighboring nodes. In order to avoid this 

problem, they introduce a time division scheduling method for the nodes allocating 

the same sensing function. 

 

Consequently, they propose a sensing function allocation method that is based on 

a distributed graph coloring and a slot allocation algorithm. The method performs a 

dynamic sensing function allocation in order to balance the distribution of sensing 

functions in the target monitoring area. In addition, the distributed graph coloring 
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algorithm used in the proposed method is so general that it can commonly be applied 

to other function allocation and combinatorial optimization problems in sensor 

network systems and other application fields. 

 

Another paper “A New Channel Assignment Mechanism for Rural Wireless Mesh 

Networks” (Dutta, Jaiswal, Panigrahi, & Rastogi, 2008) proposes a channel 

allocation scheme for the edges in a point-to-point mesh, that allows all edges at a 

node to 

 

1) operate independently of each other, with no synchronization required  

2) do full-duplex data transfer at all times, i.e. a node can be simultaneously 

transmitting and receiving on all its links. They also propose an algorithm that 

achieves a channel allocation with the above properties on all nodes of the given 

graph. Formally, it is given a graph G with bi-directional edges for every link. It is 

required to allocate a channel to each edge (or equivalently color the edge) such that 

for each node in the graph, the set of colors assigned to its incoming edges is disjoint 

from the set of colors assigned to its outgoing.  

 

They propose a naive way to directed edge color a bidirectional graph G as 

follows:  

 

 Vertex color the corresponding undirected graph G, using k colors.  

 Color every out-going edge of a node in G with the color of that node in G. 

As no two adjacent nodes have the same color in G, it is easy to see that for 

any node in G, no out-going edge has the same color as an incoming edge. 

Thus, they have obtained a directed edge coloring of G using k colors.  

 

An important contribution of their work is to present a simple directed edge 

coloring algorithm. Given a vertex-coloring of an undirected graph using k colors, 

they give a directed edge coloring of the corresponding bidirectional graph. No 

overlap is allowed between the set of channels being assigned to the incoming links 

at any node with the set of channels being assigned to the outgoing links. It is desired 
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to minimize the number of channels used for communication in the network under 

this constraint. They frame this channel allocation problem in terms of edge coloring, 

and call it the minimum directed edge coloring problem (or DEC, in short). 

 

To summarize, in this paper they describe a simple channel allocation scheme that 

allows point-to-point links in a rural mesh network to operate in full-duplex mode at 

all times and completely independent of each other. 

 

In the paper “Timely Sensor Data Collection Using Distributed Graph Coloring”, 

Paradis & Han (2008) present a protocol for sensor applications that require periodic 

collection of raw data reports from the entire network in a timely manner. They 

formulate the problem as an NP-hard graph coloring problem. They, then, present 

TIGRA - a distributed heuristic for graph coloring that takes into account application 

semantics and special characteristics of sensor networks. TIGRA ensures that no 

interference occurs and spatial channel reuse is maximized by assigning a specific 

time slot for each node to transmit.  

 

They consider wireless sensor networks with a single sink and multiple 

homogeneous data sources for applications that require raw data periodically. In this 

scenario, each sensor node periodically produces a new value and this value may 

need to traverse multiple hops to reach the sink. The reading from a node can be 

combined with the readings from other nodes on its way to the sink. Given a set of 

sensor values that are generated periodically, the objective is to schedule all the 

transmissions for each period to be completed in the shortest possible amount of 

time. Ideally, all the noninterfering transmissions can be scheduled at the same time 

slot to minimize overall delay. Tree-based collection has been typically used in these 

applications. If the same routing tree topology is maintained, at each period every 

sensor node sends the same number of readings upstream to the sink, whether 

generated at the node or relayed for one of its child nodes.  

 

In many WSN applications, a sensor reading can often be represented with a small 

number of bytes, so more than one reading can fit into a standard transmission 
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packet. They exploit this property to reduce the number of packets transmitted. 

Instead of individually sending each sensor reading, the readings are batched or 

combined at intermediate nodes and forwarded upstream along the tree. They refer to 

this as batch processing. 

 

The problem is to determine the smallest length conflict-free assignment of time 

slots during which the reading generated at each node may be combined with 

readings from other nodes and transmitted to the sink over the routing tree.  

 

Existing distributed graph coloring algorithms cannot be directly applied due to 

the following reasons. Although the data collection graph (or tree) is generated 

initially, the interference set needs to be dynamically determined in a decentralized 

manner given that there is no location information of each node. This implies that the 

graph to be colored is not fully established before coloring begins and many links 

related to schedule conflicts need to be gradually discovered during coloring. In 

addition, wireless links are asymmetric, leading to directed graph. Therefore, they 

propose a new distributed graph coloring heuristic.  

 

One of the fundamental questions is the number of colors used in the coloring. 

The length of each round is determined by the number of colors used to color the 

vertices belonging to that round. The number of colors is determined by the amount 

of interference between the nodes in the round. Each node only transmits (as a child) 

during one of the rounds but can potentially be receiving transmissions (as a parent) 

from its children in any other round, therefore, each node has to actively participate 

in its own coloring as well as coloring for all of its children. There is no concern 

about interference between transmissions that are scheduled in different rounds since 

different rounds are scheduled sequentially; therefore, each node can maintain 

separate palette of available colors for each round that it participates in either as a 

sender or as a receiver. The colors are represented by integers corresponding to a 

time slot assignment within that round. The number of colors in a palette is not 

predetermined, but new colors are only added when necessary. If all the 

transmissions were interfering with each other, each node would need a separate slot 
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to transmit and the number of colors across all the palettes would be equal to the 

number of nodes n. In order to minimize the number of colors, the nodes always try 

to get the lowest available integer from their palette. As colors become unavailable 

when nodes overhear other nodes in the same round using them, those colors get 

deleted and the lowest available remaining color becomes the next candidate. As a 

result of this color palette mechanism, the coloring with a minimal number of colors 

will be produced. A top-down coloring approach is more efficient with a tree based 

collection structure. In TIGRA, a parent node assigns different colors to each of its 

children; as a result, only conflicts between nonrelated pairs of nodes (i.e., nodes 

with different parents) have to be resolved.  

 

In summary, TIGRA can eliminate packet collisions and avoid network 

congestion, two major factors for latency. Other causes for latency include node 

failures due to battery depletion or environmental influence and link failures due to 

external objects and conditions. Since recovery from these faults typically involve 

retransmission, it thereby increases packet delivery latency as well. 

 

Mishra, Banerjeeb, & Arbaugha (2005) define scalable distributed algorithms for 

the channel assignment problem that tries to optimize user performance in wireless 

LAN environments with multiple APs in their paper “Weighted Coloring based 

Channel Assignment for WLANs”.  

 

A channel assignment problem is typically modeled as a graph coloring problem. 

There is a vertex on the graph corresponding to each AP, an edge on this graph 

represents potential interference, and the colors represent the number of non-

overlapping channels. A goal of the channel assignment problem is to cover all APs 

(vertices) with the minimum number of channels (colors) such that no two adjacent 

APs (vertices) use the same channel (color). This is the minimum graph coloring 

problem. They define a weighted variant of the graph-coloring problem, in which it 

is permissible to allocate overlapping channels to neighboring APs. The goal in this 

variant is to minimize the impact of such overlapping channel assignments between 

neighboring APs on user performance. 



 

 

43 

The channel assignment problem for WLANs can be modeled as a graph coloring 

problem in which the APs are the vertices of a graph. A conflict between two APs 

(due to physical proximity and potential interference) is represented by an edge in the 

graph. The goal of this graph coloring problem is to assign a set of distinct colors 

(one corresponding to each available channel). To enable an efficient channel 

assignment under such circumstances, the above graph theoretic formulation is 

extended to a weighted graph coloring problem with a certain objective function. In 

this weighted variant, each vertex corresponds to a distinct AP as before. However, 

each edge on this graph now has a weight associated with it. The weight of an edge 

indicates the importance of using different colors (channels) for the corresponding 

vertices (APs) that are connected by that edge. Here, they assume that the weight of 

an edge indicates the number of clients associated with the two corresponding APs 

that are affected if these APs are assigned the same channel. As a result, they 

formulate channel assignment in WLANs as a weighted vertex coloring problem. 

They propose two efficient, scalable and fault tolerant distributed algorithms that 

achieve significantly better performance than the stateof-the-art Least Congested 

Channel Search (LCCS). Through simulations, they show that the two techniques 

achieve up to 45.5% and 56% reduction in interference for sparse and dense 

topologies respectively with 3 non-overlapping channels. 

 

2.2 Network Layer Applications 

 

In the paper “A New Distributed Algorithm for Virtual Backbone in Wireless 

Sensor Networks with Different Transmission Ranges”, Raei, Fathi, Akhlaghi, & 

Ahmadipoor (2009) propose a new distributed algorithm and show that the achieved 

CDS is within a constant factor of the optimal CDS.  

 

Wireless Sensor Networks (WSNs) have attracted a great deal of research 

attention due to their wide range of potential applications. In WSN, there is no fixed 

or pre-defined infrastructure. The nodes in a WSN generally communicate with each 

other, either through a single hop or multiple hops. Although there is no physical 
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backbone infrastructure, a virtual backbone can be formed by constructing a 

Connected Dominating Set (CDS).  

 

A Dominating Set (DS) of a graph is a subset of nodes such that each node in the 

graph is either in the subset or adjacent to at least one node in that subset. A CDS is a 

DS, which induces a connected sub graph. A CDS is a good candidate of a virtual 

backbone for wireless networks, because any node in the network is less than 1-hop 

away from a CDS node. 

 

With the help of the CDS, routing is easier and can adapt quickly to network 

topology changes. Since, only the CDS nodes are responsible for relaying messages 

for the network, the non-CDS nodes can thus turn off their communication module to 

save energy when they have no data to be transmitted out. 

 

To reduce the traffic during communication and prolong network lifetime and 

simplify the connectivity management, it is desirable to construct a Minimum CDS 

(MCDS). The MCDS problem has been studied intensively in unit disk graph 

(UDG), in which each node has the same transmission range (Clark, Colbourn, & 

Johnson, 1990).  

 

To build a MCDS, they compute a Maximal Independent Set (MIS) of the 

network graph. An independent set (IS) of an undirected graph G(V,E) is a subset of 

V that no two nodes in the subset have an edge. In other words, if I is a IS and u    I , 

v   I then uv  E. An MIS of a graph is an IS that cannot include any more nodes 

within V. Thus an MIS is a DS of a graph. However, in practice, the transmission 

ranges of all nodes are not necessary equal. In this case, a WSN can be modeled 

using a directed graph G(V,E). The nodes in V are located in a Euclidean plane and 

each node      V has a transmission range                   . A directed edge (  ,   ) 

is a member of E if and only if d(  ,   )   r where d(  ,   ) denotes the Euclidean 

distance between    and vj. Such graphs are called disk graphs. An edge (  ,   ) is 

bidirectional if both (  ,   ) and (  ,   ) are in E, i.e., d(  ,   )   min(  ,    . In this 

paper, they only study the MCDS problem in disk graphs where all the edges in the 
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network are bidirectional, called Disk Graphs with Bidirectional links (DGB). The 

main contributions of this paper are as follows: 

 

 The algorithm is fully distributed, which can be easily implemented in WSN. 

 The algorithm has constant approximation ratio in DGB, which reduces the 

overhead of maintaining the backbone and the cost in communication. 

 The algorithm for MCDS problem in DGB has time and message complexity 

of O(n).  

 

They assume that all nodes in WSN are distributed in a two dimensional plane and 

nodes have different transmission ranges. The network topology is modeled as a Disk 

Graph with Bidirectional links, DGB in short. They use G(V, E) to represent such 

networks, where V is the set of sensor nodes and E is the set of edges. Their 

algorithm consists of two phases. In the first phase, they compute a MIS of the 

network graph. The second phase of the algorithm is to choose the minimal number 

of the nodes (called connectors) to make the DS connected, i.e., CDS. Each node    

has a unique id (I  ), a state (  ), a transmission range (  ). In each phase, they select 

nodes with the largest transmission range (  ) among its neighbors, to reduce size of 

the CDS. In each node   , timer (  ) set by the following formula:    = 1/   ×      

where      is maximum time for each timer, then each node with largest    

terminates the timer faster than its neighbors. The algorithm consists of two phases 

MIS construction and CDS construction. 

  

As a result, in this paper, the minimum Connected Dominating Set (MCDS) 

problem in Disk Graphs with only Bidirectional links (DGB) has been studied. The 

disk graphs can be used to model wireless ad-hoc and sensor networks where nodes 

have different transmission ranges. They have proposed a new distributed algorithm 

and shown that the achieved CDS is within a constant factor of the optimal CDS. The 

main approach in their algorithms is to construct a maximal independent set (MIS) 

and then connect them. Through the theoretical analysis, they have shown that their 

algorithm has constant approximation ratio and time and message complexity of 

O(n).  
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Another paper is “A Geo-Routing Algorithm in Planar Graph for Ad-hoc Wireless 

Networks” where Bin Muhammad (2007) presents a fully distributed algorithm to 

compute a planar subgraph for geo-routing in ad-hoc wireless networks. They 

consider the idealized unit disk graph model in which nodes are assumed to be 

connected if, and only if, nodes are within their transmission range. The main 

contribution of this work is a fully distributed algorithm to extract the connected, 

planar graph for routing in the wireless networks. This problem shall be formulated 

in the geometric graph as follows. Let N be a set of nodes deployed in a certain 

region R. The problem is to build a planar graph G = (N, E) on N such that each node 

is connected to its closest neighbors. Formally, the edge (u, v) is a member of E if 

and only if  (u, v)   1, where  (u,v) is the distance between node u and its closest 

neighbor v. In addition, they present a distributed algorithm for routing on the unit 

disk graph, which is fundamentally based upon the famous Face Routing algorithm 

(Kranakis, E., Sing, H. & Urrutia, J., 1999). The main idea of the Face Routing 

algorithm is that an information packet walks along faces of planar graphs and 

proceeds along the line connecting the source and destination nodes. The algorithm 

can be summarized as follows: Start at source s and let F be the face that is 

intersected by line segment joining source s and destination t, st. Explore the 

boundary of face F by traversing the edges of F and remember the intersection point 

p on line st with the edge of F which is nearest to destination t. After traversing all 

edges, go back to p. If reached the destination while traversing the boundary of F, it 

is done. Otherwise, it divides the line st into two line segments where line pt is the 

part of line st not yet traversed. Update face F to be the face which is incident to p 

and which is intersected by the line segment pt in the region of p and start all over 

again. 

 

The overall strategy of the algorithm can be divided in two distinct phases. The 

phase I extracts the connected and planar graph from the given graph while phase II 

does the actual routing on the graph produced by phase I. In the phase I, they propose 

the distributed algorithm, which is based on the work by Theoleyre, Schiller, & Duda 

(2009), on unit disk model. The basic idea of the algorithm is as follows. Each node 

in the given graph, G, broadcasts its identity and position (coordinates) and gathers 
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identities and positions of their neighbor nodes. Using this information, each node 

computes the local Delaunay triangulation, LDG, such that edges of the triangles are 

not larger than one unit. This part of the algorithm is based on the distributed 

algorithm proposed. Now each node sends the message to its neighboring node to 

remove the edges which are not Gabriel edges. When node u receives a message 

REMOVE(edge(u, v)), it accepts if there is no point (some node) lies in the disk of 

diameter uv, otherwise, rejects it by sending the message REJECT(edge(u, v)). If u 

and v both send and receive the message REMOVE, then the edge (u, v) will be 

removed. In other words, if node u has sent the remove message to node v and also 

received the remove message from node v, then the edge (u, v) is removed from the 

local Delaunay graph, LDG. Since DT is planar and GG is connected, therefore, the 

graph produced by the algorithm is planar and connected. In the phase II, the routing 

algorithm is based on the Face algorithm. The basic idea is as follows. Let f be the 

face of G with a starting point s on its boundary that intersects line segment (s, t), 

where t is the destination. Using right-hand rule, traverse the face f in the 

counterclockwise direction. If the edge (u, v) of the face f intersects with (s, t) at s‟ 

and dist(s‟, t) < dist(s, t), then this intersection s becomes the new starting point s. In 

the similar fashion traverse faces until s becomes a destination.  

 

Here is the summary of the algorithm: 

 

1. Given planar G, start with source node S. 

2. Traverse the face f in counter clockwise direction. 

3. If any edge of the f intersects line st (say s‟), where t is the distance node, such 

that d(s, t) < d(s‟, t), then s‟ becomes the new starting node. 

4. Move to the adjacent face and goto 2.  

 

Consequently, they present a technique to extract the connected, planar subgraph 

geometric routing algorithms. They consider the idealized unit disk graph model in 

which nodes are assumed to be connected if, and only if, nodes are within their 

transmission range. The main contribution of this paper is a fully distributed 

algorithm to extract the connected, planar graph for routing in the wireless networks. 
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They have also presented the geometric routing algorithm that is based upon the 

famous Face Routing algorithm. The algorithm is fully distributed and nodes know 

only the position of other nodes and can communicate with neighboring nodes in 

their transmission range.  

 

Another paper is “Efficient Greedy Geographical Non-Planar Routing with 

Reactive Deflectio” (Theoleyre, Schiller, & Duda, 2009) where they present a novel 

geographical routing scheme for spontaneous wireless mesh networks and they 

propose a flexible greedy routing scheme that can be adapted to any variant of 

geographical routing and works for any connectivity graph, not necessarily unit disk 

graphs. The main drawback of greedy geographical routing is packet loss at blocked 

nodes near voids or obstacles. A node must drop a packet when the improvement 

associated with any of its neighbors is negative. In face routing the left-hand rule 

tries to go around a void, but it requires the connectivity graph of nodes to be planar. 

Relative Neighborhood Graphs can yield planar graphs for unit disk graphs (UDG), 

but in real wireless environments, the conditions for obtaining planar graphs are not 

satisfied due to asymmetric links and not circular radio coverage. There is no 

efficient and localized planarization algorithm proposed for a general connectivity 

graph. A possible solution to this problem is the following method: a border node 

initiates local flooding to find the next hop closer to the destination. However, it 

results in long delays and significant overhead. 

 

 Here, they use a reactive method: a node becomes blocked with respect to a given 

destination when it cannot forward a packet to any neighbor closer to the destination. 

Hence, the part of the network not concerned by forwarding this packet does not 

generate any control traffic so that this approach is more scalable. 

 

In their approach, a node chooses a neighbor closer to the destination and not 

blocked for this direction. If a node fails to forward a packet to a given destination, it 

will consider itself as blocked for this direction. It will advertise backwards a list of 

blocked directions so that its neighbors will not choose it as a next hop for these 

directions. If several non blocked neighbors exist, the forwarder chooses the 
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neighbor closest to the destination, i.e. with the best improvement. For advertising 

blocked directions, they propose to use the notion of blocked sectors: a node N 

advertises that it is blocked for any destination that falls in sector S (N,         , 

        ,        ). This proposed algorithm reduces in the long term the route 

length as well. However, they need several useless packet transmissions and 

backtracking before the network converges, and blocked sectors are correctly 

constructed. They propose a mechanism to accelerate the convergence of this 

propagation process by extrapolating the location of a blocked area. To detect the 

border of a void, node N first searches for the blocked k-neighbor closest to the 

direction of the destination D, i.e. minimizing angle ((N,D), (N,BN)) for all blocked 

nodes BN. Then, N constructs the Maximum Connected Set of blocked nodes that 

contains BN: it adds BN to this set, and recursively adds all its blocked neighbors. 

Finally, N computes the forbidden sector that spans the maximum connected set it 

extrapolates the blocked area.  

 

Consequently, they propose a scheme for greedy geographical routing with 

reactive defect detection. The idea is to reactively detect blocked nodes and 

propagate the defect information by computing a set of blocked sectors. To reduce 

the route length and accelerate void detection in dense mesh networks, they propose 

a method to extrapolate void location. 

 

In the paper “Ad-Hoc Networks Beyond Unit Disk Graphs”, Kuhn, Wattenhofer, 

& Zollinger (2003) study a model for ad-hoc networks close enough to reality as to 

represent existing networks, being at the same time concise enough to promote 

strong theoretical results. Unit disk graph model does not account for the presence of 

obstacles, such as walls, buildings, mountains or also weather conditions which 

might obstruct signal propagation. On the other hand, unit disk graphs are simple 

enough to promote strong theoretical results (Kuhn, Wattenhofer, & Zollinger, 

2003). 

 

In a Quasi unit disk graph, two nodes are connected by an edge if their distance is 

less than or equal to d, d being a parameter between 0 and 1. Furthermore, if the 
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distance between two nodes is greater than 1, there is no edge between them. In the 

range between d and 1 the existence of an edge is not specified. 

 

They establish a constructive lower bound for Quasi unit disk graphs showing that 

basically any algorithm without routing tables requires sending of  ( 
 

 
  ) messages 

to route from a source s to a destination t, where c is the length of the shortest path 

between s and t. They show that, with the aid of a topology control graph structure, a 

restricted fooding algorithm is guaranteed not to perform worse and that this 

technique is consequently asymptotically message-optimal. 

 

If the network nodes are known with information about their own and their 

neighbors‟ positions and assume that the message source knows the position of the 

destination the basic assumptions of geometric routing, a more subtle approach than 

flooding of the network is possible. They present a combination of greedy routing 

and restricted flooding. The task of a volatile memory routing algorithm is to 

transmit a message from a source s to a destination t on a graph, where each node of 

the graph holds a memory in which O(log n) bits1 may be stored as long as the 

message is en route. The task of a geometric routing algorithm is to transmit a 

message from a source s to a destination t on a graph while observing the following 

rules:  

 

 Every node is informed about its own and all of its neighbors‟ positions.  

 The source of a message knows the position of the message destination.  

 A message may contain control information about at most O(1) nodes.  

 A node is only allowed to temporarily store a message before retransmission; 

no other memory is available. 

 

A geometric volatile memory routing algorithm is a volatile memory routing 

algorithm additionally observing the first three rules of the definition of geometric 

routing algorithms. They give a lower bound on the message complexity of any 

volatile memory routing algorithm. Then they describe how to obtain a subgraph of a 

given Quasi unit disk graph which forms the basis for their algorithms matching the 
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lower bound. Although asymptotically message-optimal, a flooding-based algorithm 

is prohibitively expensive in most networks for practical purposes. Previous work 

shows that this problem can often be tackled by combining a correct routing 

algorithm (that is guaranteed to find the destination) with a greedy routing scheme. 

They therefore describe a geometric volatile memory routing algorithm that tries to 

leverage the advantages of a greedy routing approach with respect to both conceptual 

simplicity and message-efficiency: In order to route a message, a node simply 

forwards it to its neighbor closest to the destination. Greedy routing can however run 

into a local minimum with respect to the distance to the destination, that is a node 

without any neighbors closer to t. In their case such a local minimum is circumvented 

by employment of restricted flooding, in particular by the aid of the geometric Echo 

algorithm. 

 

Their algorithm GEcho combines both greedy routing and flooding in two modes: 

Generally the message is forwarded in greedy mode as long as possible. Whenever 

running into a local minimum, the algorithm switches to echo mode. In order to keep 

the cost of flooding-based echo low, the algorithm tries to fall back to greedy mode 

as early as possible. The fallback criterion is chosen such that the combined routing 

algorithm is asymptotically optimal with respect to message complexity. In 

particular, the Echo algorithm does not terminate only when finding t, but already 

when finding a node v which is significantly closer to t than the local minimum. 

Consequently, after showing a lower bound on message complexity, they show a 

flooding algorithm based on Quasi UDG matches this lower bound. Moreover, they 

propose an alternative construction of a planar graph which can be used to perform 

geometric routing. 

 

In the paper “A Simple Improved Distributed Algorithm for Minimum CDS in 

Unit Disk Graphs”, Funke, Kesselman, Meyer, & Segal (2005) propose an improved 

distributed 6:91-approximation algorithm for computing a connected dominating set 

in unit disk graphs. Although a wireless ad-hoc network has no physical backbone 

infrastructure, a virtual backbone can be formed by nodes in a connected dominating 

set (CDS) of G. A CDS of G is a subset S  V such that each node in V is adjacent to 
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some node in S and the communication graph induced by S is connected. They 

denote by OPT a minimum CDS in G. The problem is to find a minimum CDS in 

unit disk graphs. They present a very simple 6:91-approximation algorithm for 

computing a minimum CDS in unit disk graphs. The main contribution of this paper 

is an improved analysis of the relationship between the size of a maximal 

independent set and a minimum CDS in a unit disk graph, which yields better bounds 

for many previous algorithms.  

 

A maximal independent set is also a dominating set, which only needs to be 

connected to obtain a CDS. Here, they construct a connected set S and an 

independent set I   S. In a nutshell, they color a node (without connection to D2-

coloring which is used for an assignment of time slots to the nodes such that no 

interference occurs) with the following colors: black, the node is a part of I; blue, it is 

not in S but adjacent to a node in I; grey, it is in S but not in I, red, it is neither black, 

grey, nor blue, but a neighbor to a grey or blue node; and white, it is neither black 

nor grey nor blue, nor a neighbor to a grey or blue node. Initially, one node is colored 

red (this node can be chosen by running a leader election algorithm) and all other 

nodes are colored white. Each red node u (except the first one) keeps its parent grey 

node. The execution of the algorithm is divided into rounds. Each round consists of 

three phases and in each phase they use a conflict-free time slots assignment so that 

each node is able to transmit once. Basically, in a round each red node with 

minimum ID among its red neighbors joins I and its blue parent joins S. Then the 

colors of the relevant nodes are updated accordingly. The algorithm terminates when 

there remain no white or red nodes. 

 

In the paper “A Polynomial Time Solution to Minimum Forwarding Set Problem 

in Wireless Networks under Unit Disk Coverage Model”, Baysan, Sarac, 

Chandrasekaran, & Bereg (2009) investigate Minimum Forwarding Set Problem in 

Wireless Networks.  

 

Energy-efficient broadcast problem has received a significant attention from the 

research community and a large number of studies have been published in the area. 



 

 

53 

One promising approach that was proposed for energy-efficient broadcast is the 

neighbor designation approach where the goal is to prevent unnecessary transmission 

of broadcast packets for energy efficiency (Qayyum, Viennot, & Laouiti, 2002). 

Each node collects 2-hop neighborhood information and then identifies a subset of its 

1-hop neighbors as forwarding nodes for relaying a broadcast message toward its 2-

hop neighbors. The efficiency of neighbor designation approach depends on finding 

a minimum size forwarding node set among the 1-hop neighbors. This problem is 

referred to as minimum forwarding set problem (MFSP) (Qayyum, Viennot, & 

Laouiti, 2002). 

 

The MFSP becomes a geometrical problem when unit disks is used to model the 

coverage area of wireless transmissions. Unit disk graphs (UDGs) are neither perfect 

nor planar graphs. Thus, efficient algorithms proposed for planar and perfect graphs 

cannot be applied to UDGs. MFSP under the unit disk coverage assumption 

resembles to the well-known Minimum Dominating Set (MDS) problem. MDS 

problem for UDGs has been studied extensively. The problem is shown to be NP 

complete for UDGs (Clark, Colbourn, & Johnson, 1990). 

 

Another related problem to MFSP is the well-known Disk Cover (DC) problem 

that tries to find a minimal size set of disks (from a given set of disks) to cover a 

given set of points on a plane (Hochbaum, & Maass, 1985). MFSP is a special 

instance of the DC problem where disks are selected from a given set of 1-hop nodes. 

In this work, they assume a unit disk coverage model for wireless transmissions. In 

addition, as most local knowledge based broadcast approaches, their approach 

requires the availability of 2-hop neighborhood information. The required 

information includes 1) the identities of the 1-hop and 2-hop neighbors and 2) a 

radial ordering of the 2-hop neighbors with respect to the broadcasting node. The 

availability of the position information for the nodes is sufficient to compute the 

radial ordering of the 2-hop neighbors. One simple way of acquiring the position 

information is to use a GPS unit at each node. They present the first polynomial time 

algorithm to solve the MFSP under unit disk coverage model for wireless 

transmission. First, they introduce two properties named as Two-Set Property and 
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Noninterleaving Property. They, then, present an algorithm that uses a dynamic 

programming approach to build an optimal solution and prove its correctness.  

 

In summary, they have studied the MFSP in the context of WANETs. Leveraging 

the practical characteristics of the application environment, they have proposed a 

polynomial time algorithm to build an optimal solution to the MFSP under the unit 

disk coverage model for wireless transmission. This can be used as a basis on the 

design and development of new algorithms for several wireless network applications 

including energy-efficient multicast and broadcast protocols, energy-efficient 

topology control protocols, and energy-efficient virtual backbone construction 

protocols for WANETs and sensor networks. 

 

2.3 Physical Layer Applications 

 

In the paper “A Hybrid Interference Model-based Topology Control Algorithm”, 

Liu, Zhang, Liu, & Dai (2008) address the interference problem in wireless ad-hoc 

networks with the objective of minimizing the interference. Topology control 

protocol plays an important role in ad-hoc networks. It is used for saving energy and 

increasing network capacity in the network perspective. Nodes make local choices 

(such as setting the transmit power level and sleeping a node) with the goal of 

achieving a network property, such as connectivity, symmetry, sparsity, low 

interference. In wireless ad-hoc networks, communication between nodes takes place 

over radio channels. As long as all nodes use the same frequency band for 

communication, any node-to-node transmission will add to the level of interference 

experienced by other users. There are two techniques to compute interference effect:  

 

(a) purely geometric measurement on topology; 

(b) mechanisms from communication theory, such as radio fading, path loss, 

encoding, and modulation. But these interference measures are simple and does not 

account for multihop communications. Reducing interference in the network leads to 

fewer collisions and packet retransmissions, which directly extends the capacity of 

the network and indirectly reduces the power consumption. Therefore, reducing the 
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interference in the reduced graph is an important goal for topology control 

algorithms.  

 

They integrate SINR-based model into graph-based model. They consider a 

wireless ad-hoc network with all nodes V, distributed in a two dimensional plane. 

Each node has its own transmission power which can be adjusted between 0 and 

Pmax, where Pmax denotes the common maximum transmission power 

corresponding to the transmission range dmax. 

 

Unit disk graph, G = (V, E), is often employed to model the original topology of 

an ad-hoc network (Clark, Colbourn, & Johnson, 1990). The communication graph G 

= (V, E) defines the network topology. V is the set of nodes. E is denoted the set of 

wireless links that the nodes in V can use to communicate with each other. Topology 

control is done by selecting a subset of the available links in the network graph G to 

form the reduced graph    
= (V,    

). The resulting topology    
 should have the 

following properties: symmetry, connectivity, sparseness. The resulting topology    
 

should be symmetric, that is, node u is a neighbor of node v if and only if node v is a 

neighbor of node u. Two nodes u and v are connected if there is a path from u to v, 

potentially through multiple hops. If two nodes are connected in G, then they should 

still be connected in    
. Each node in a sparse network has a small number of 

neighbors.  

 

A successful message transmission is divided into two phases: DATA frame and 

ACK frame. So the interference of a bidirectional link can be denoted by Linter (u, v) 

= Linter<u, v>+Linter<v, u>. This definition only calculates one hops interference. 

Currently, they take into account the length of paths in the graph. The path 

interference of a path p = {  ,   , . . . ,   } is defined as the sum of the interference 

of all links in the path. The graph interference is the maximal path interference 

among all interference optimal paths. A resulting topology can be required to reduce 

the graph interference of networks. They describe a topology control algorithm 

HIMTC (Hybrid Interference Model-based Topology Control). The algorithm 

consists of three phases: create RNG of networks, set the transmitting power and 
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reduce interference. In the simulations, they use the following metrics: the graph 

interference and the network capacity.  

 

Instead of using a long, energy-inefficient and high interference edge, 

communication can take place along a multi-hop path composed of short edges that 

connects the two endpoints of the long edge. The maximum power communication 

graph can be properly pruned in order to maintain only energy inefficient and 

capacity efficient edges in their algorithm. As a result of reducing the link 

interference, links have a higher success rate to access the wireless channel. Thereby, 

HIMTC also reduces the path relay and throughput. Consequently, in this paper they 

address the interference problem in wireless ad-hoc network with the objective of 

minimizing the interference. First, they present the excellent feature and the weak 

point on existing interference models. The graph-model based topology control 

captures interference inadequately under the physical model. Then, they propose a 

hybrid interference model that can be easily used in practical network protocols to 

measure the amount of interference in a wireless network. Finally, based on their 

interference model, they study topology control which was considered as an 

inherently graph-theoretic notion in previous literature in a general way. In this paper 

they explicitly analyze topology control with special emphasis on the physical 

definition of interference, or more specifically the SINR. 

 

Wang & Zeng (2007) propose a trellis and a Wiberg-like graph (Wiberg, 2006) 

for a Bose-Chaudhuri-Hochquenghem (BCH) code in frequency domain in the paper 

“Graph representations of BCH codes in frequency domain” and thus the concept of 

codes defined on graphs is extended from time domain to frequency domain. There is 

not a representing approach based on graphs for BCH codes in frequency domain. 

Here, they propose a novel trellis diagram and the corresponding Wiberg-like graph 

for BCH codes in frequency domain. A trellis for a block code C of length in 

frequency domain is defined as an edge labeled directed graph, which has the 

following properties:  

 

(1) all states can be reached from the starting state;  
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(2) the terminating state can be reached from all states;  

(3) the number of edges traversed in passing from the starting state to the 

terminating state along any path is n; and  

(4) the set of n tuples obtained by reading off the edge labels encountered in 

traversing all paths from the starting state to the terminating state is the codeword C 

in frequency domain.  

 

They introduce a Wiberg-like graph for a BCH code in frequency domain. On the 

whole, the Wiberg-like graph bears a strong resemblance to its counterpart in time 

domain and their only difference is that the visible sites and hidden sites are variables 

of a Galois field. However, the structure of frequency-domain trellis is greatly 

different from its counterpart in time domain. A particular character of the trellis 

diagram in frequency domain is that error-correcting capacity of the code can be 

observed from its trellis architecture directly. 

 

As a result, a novel trellis diagram  and a Wiberg-like graph to represent a BCH 

code in frequency domain are proposed and it confirms us that a BCH code not only 

can be defined on graphs in time domain, but also can be defined on graphs in 

frequency domain. Trellis structure of BCH codes in frequency domain is 

investigated as well. 

 

In the paper “Wheel Codes: Turbo-like Codes on Graphs of Small Order”, 

Radebaugh, Koetter, & Powell (2003) investigate a specific class of codes on graphs 

called wheel codes, where the underlying graph of a wheel code is constructed by the 

wheel construction. They present some results from the beginning of an indepth 

study of the wheel codes. In particular, they discuss in detail the wheel construction 

used to generate the underlying graphs for these wheel codes. Especially, they focus 

on cubic Hamiltonian graphs generated by the wheel construction. After that they 

discuss the codes that they generate using these graphs, and in doing so show why 

the wheel construction is an especially useful construction. Factor graphs provide an 

excellent framework on which to run iterative decoding algorithms and have 

therefore been used extensively in the area of Turbo codes and the factor graph 
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representation of a wheel code is given directly by the underlying cubic Hamiltonian 

graph (Blahut, 2003). A cubic Hamiltonian graph obtained from the wheel 

construction readily provides a simple labeling of the information bits, so they give a 

procedure to label the bits. Then, they discuss the implementation of an encoder and 

decoder for the wheel codes. Since wheel codes behave like Turbo codes for a certain 

window of time, they decode a wheel code using a sliding window version of a 

forward-backward algorithm such as the MAP algorithm. 

 

In summary, they discuss a class of codes on graphs called wheel codes, which 

they construct using the wheel construction. With this construction, they produce 

graphs with girths of 6 to 14, allowing a sliding window of length at most 13. They 

give some examples of generalized spoke vectors, several of which are based on   

Exoos cubic cage constructions, that allow for a wide range of possible wheel code 

lengths. Implementations of the wheel codes and a corresponding sliding window 

decoder are discussed. Finally, they note that as more capacity-approaching codes are 

presented, one naturally becomes interested in code implementations. The flexibility 

and simple implementation that the wheel codes offer make them attractive, in spite 

of their distance from the Shannon channel capacity. 

 

Reggiani, Tartara, & Maggio (2001) propose a state partitioning for reducing the 

complexity of SISO (Soft Input Soft Output) detectors in their paper “A Reduced-

State Soft Input Soft Output Algorithm Based on State Partitioning”. This procedure 

consists of partitioning the set of original states in order to generate a new set of 

super-states. This new version of the SISO algorithm, called Scaled SISO (SC-

SISO), does not require determination of path survivors or feedback operations. This 

approach finds its justification in the theory of symbolic dynamics. Namely, the 

dynamical evolution of the code or channel can be seen through a reduced degree of 

complexity, a sort of coarse description of the original Markov process. The simplest 

application of this technique consists of merging the states which have the most 

recent n bits in common, with n smaller than the total memory of the original trellis. 

Consequently, the scaled trellis will contain    states. They observe that in this case 

the partition preserves the one-to-one correspondence between the new transitions 
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and the input labels. The key concept behind a scaled SISO is quite simple: merging 

two or more states produces a new super-state and a standard SISO algorithm can 

follow the system evolution in terms of this new description. After partitioning the 

original states of the trellis, the complete graph G reduces to a less complex graph 

GR. They observe that, although a reduced graph GR is still a topological Markov 

chain, the outputs associated with each transition depend also on past input values. 

This follows from observing the original Markov process with reduced memory and 

is a clear sign of the SC-SISO suboptimality. In the modified SISO, scaled graph 

performance is related to the reduced Euclidean distances involved in the new trellis. 

A problem observed in some codes and channels concerns catastrophic behaviors of 

scaled trellises: merging two states could produce a couple of branches with one 

output label in common between 0 and 1 input, reducing the minimum Euclidean 

distance even to zero. This means that the scaling procedure turns out to be effective 

until the reduced trellis exhibits catastrophic behavior.  

 

Consequently, they present a reduced version of a Soft Input Soft Output 

algorithm based on state merging. The simulation results for the examples considered 

confirm that the approach is effective in reducing the computations without 

dramatically affecting the performance. The main advantages are a good flexibility 

due to the state partitioning technique and the absence of path survivors and 

modifications to the standard SISO algorithm. On the other hand, this 

implementation requires a pre-computation of the probabilities of the sets of outputs 

that are originated by state merging. This operation is an average of the probabilities 

of the single outputs, possibly weighted in the selfiteration process. 

 

Cancellieri, Ferro, & Mazzone (1996) introduce a novel kind of state diagram in 

their paper “State Diagram for Cyclic Block Codes”, based on the so called de Bruijn 

graphs, for the description of cyclic block codes. A state diagram for any cyclic 

block code is a compact method for listing in proper order all its    codewords, 

being q the dimension of the symbol alphabet (Wolf, 1978).  
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From a state diagram which can be designed with general rules and whose 

complexity is low, it is then trivial to obtain a trellis diagram, like that necessary to 

perform soft-decision decoding and it is also possible to define a new algebraic 

decoding procedure using some properties strictly linked to this state diagram.  

 

Given the number r of control symbols, they show that the state diagram topology, 

which appears as a de Bruijn graph (a regular strongly-connected graph, with    

nodes representing as many states, and      arcs representing transitions among 

them), is, unique, even in node labelling, for the original cyclic code and for all the 

possible shortened and lengthened codes obtained from it. They also introduce a new 

algebraic decoding procedure. The decoding operation is based on the property that 

all codewords generate closed paths in the state diagram, which start from state 0 and 

come back to state 0 after n steps, being n the code length. In this way, if the path 

produced by the received sequence ends in a state X different from 0, an error has 

occured and the arrival state X is univocally linked to the occurred error. 

 

Consequently, they propose the use of a properly defined state diagram for the 

description of cyclic block codes, and of all the shortened and lengthened codes 

obtained from them. They also introduce a new algebraic decoding procedure for 

correcting random errors. The features of this new approach can be employed for the 

search of new codes and decoding procedures. In particular, some expedients are 

dedicated expressly for facing error bursts and patterns of phased errors. 

 

Another paper is “Graph-Theoretic Construction of Low-Density Parity-Check 

Codes” where Djurdjevic, Lin, & Abdel-Ghaffar (2003) present a novel graph 

theoretic method for constructing low-density parity check (LDPC) codes from 

connected graphs without the requirement of large girth. The method is based on 

finding a set of paths in a connected graph, which satisfies the constraint that any two 

paths in the set are either disjoint or cross each other at one and only one vertex.  

 

Let G = (V, E) be an undirected, connected graph with vertex set V of size q and 

edge set E. For 1 ≤ L < q, let P be a set of n paths of length L, which satisfies the 
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constraint that any two paths in P are either disjoint (i.e., have no vertex in common), 

or singularly crossing (ie, have exactly one vertex in common). This constraint is 

called the disjoint-crossing (DC) constraint. Let matrix H over GF(2) display the 

incidence relationship between the paths in P and the vertices in G. It follows from 

the constraints on the paths in P that no two columns (or two rows) in H can have 

more than one 1-component in common. This ensures that the Tanner graph of H 

does not contain cycles of length 4. If L is chosen to be much smaller than the 

number of vertices in G, then H is a sparse matrix. Given a graph G, its paths of 

length L can be represented by a trellis    of L sections with L + 1 levels of nodes. 

Each level consists of q nodes which are the vertices of G. For 0 ≤ k <L, a node    at 

the kth level and a node    at the (k + 1)th level are connected by a branch if and only 

if (  ,   ) is an edge in E. To find a set P of paths of length L in G that satisfies the 

DC constraint, an extend-select-eliminate (ESE) algorithm is devised to parse the 

path trellis TL of G. The algorithm consists of L steps. At the end of each step i, 1 ≤ i 

≤ L, a set of paths of length i that satisfies the DC constraint is obtained. For a large 

connected graph G, it may be prohibitively complex to process its path trellis by the 

ESE algorithm. To overcome this problem, they take a divide-and-conquer approach. 

To find two paths in the set that are either disjoint or cross each other at one and only 

one vertex, two trellis-based algorithms for finding these paths are devised. Good 

LDPC codes of practical lengths are constructed and they perform well with iterative 

decoding.  

 

Esmaeili & Khandani (2000) discuss the maximum likelihood decoding of linear 

block codes by Wagner rule decoding in the paper called “Acyclic Tanner graphs and 

maximum-likelihood decoding of linear block codes”. 

 

The well known graphical models presented for linear codes are trellis diagram, 

Tanner graph (TG), and Tanner-Wiberg-Loeliger graph (Blahut, 2003). A TG of a 

linear code C is a bipartite graph obtained from a set of parity check equations 

representing C. The two sets of vertices are called variable nodes and check nodes. 

Projection of linear block codes on maximal acyclic Tanner graphs provides the basis 

for the application of the Wagner rule to develop an efficient soft decision decoding 
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algorithm. Using this projection, a given linear block code is represented by a 

combination of a trellis and a Tanner graph, where the efficiency of the decoding 

algorithm lies in the ability to exploit the structure of the underlying trellis diagram. 

It has been shown that the best maximum likelihood techniques known so far for the 

decoding of many important codes such as Hamming codes, Reed-Muller codes, 

hexacode, the extended Golay codes, and the QR code are in fact based on this kind 

of projection (Richard, 2003). The application of this approach on an arbitrary linear 

block code depends on the identification of relatively uniform acyclic subcodes of 

the code.  

 

The paper “State Diagram Connectivity and its Effects on the Decoding of Shift-

Register-Based Codes” (Collins, 1995) determines lower limits on the amount of 

information which must flow in the Viterbi decoding of codes based on shift-register 

encoders, e.g., trellis codes or convolutional codes. The challenge of building a 

graph-partition based (fixed state) decoder is to divide a de Bruijn graph into regions 

(sets of nodes having no members in common) such that the number of lines crossing 

region boundaries is as small as possible. If the partition size is fixed (e.g., by 

available VLSI technology), then, no matter how large the total graph is, only a 

constant number of partitions can have nonunique paths from their input to their 

outputs.  

 

This paper does not only obtain the scaling laws which prescribe the size of the 

decoding engines that are now being built but also establishes the extent of the 

potential for improving the combination of shift-register-based codes and Viterbi 

decoding. For the construction of efficient decoding hardware, this paper provides 

the practical guidance that the graph partition approach is a good solution, at least for 

the current generation of convolutional and trellis codes. The reason follows from the 

efficiency of the inner mechanism of the processing modules. At all scales of 

division the communications efficiency of the graph partition design is always within 

a factor of three of the absolute limit. This paper has dealt only with communication 

between modules, but keeping the modules small is important as well. The hardware 

savings which the graph partition approach makes possible are sufficient to offset its 
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slight communications disadvantage. Certain choices of timevarying code could, 

however, allow these same methods to be applied to a state variable decoder. If a 

general-purpose parallel processor whose elements are much faster than their 

connecting switch is to be programmed to become a decoder, then the state variable 

approach is also likely to be superior. 

 

Obviously, a time-invariant (state fixed) mapping, from the large network to the 

smaller number of physical processors, is superior to a time-varying assignment, 

because it greatly eases the difficulty of context switching, as each physical 

processor is time-shared among the nodes of the network which it is simulating. The 

technique of time-varying graph rearrangement used in this paper, although not as 

useful for the parallel-processing problem, is more easily transportable to other types 

of large interconnection networks than are the graph-partitioning techniques. This 

paper answers the partitioning question for parallel computers based on the de Bruijn 

graph and provided tools which may be useful for deriving similar bounds for other 

interconnection topologies. 

 

In summary, in this chapter we make a review of applications of graph theory in 

the literature and we classify them based on the 7 layers of OSI. We see applications 

mostly belong to MAC and transport layer, network layer and physical layer. 

Examples of transport layer applications are congestion prevention, flow control; 

network layer applications are data routing, topology control; applications on MAC 

layer generally include channel allocation and coloring problems and physical layer 

applications are mostly related to interference reduction, trellis, state diagrams and 

graph representation of codes. 
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CHAPTER THREE 

SPECTRUM ALLOCATION AND INTERFERENCE MANAGEMENT 

ISSUES IN COGNITIVE RADIO NETWORKS 

 

3.1 Cognitive Radio Networks 

 

In recent years, the development of intelligent, adaptive wireless devices called 

cognitive radios, together with the introduction of secondary spectrum licensing, has 

led to a new paradigm in communications: cognitive networks. Cognitive networks 

are wireless networks that consist of several types of users: often a primary user (the 

primary licenseholder of a spectrum band) and secondary users (cognitive radios). 

These cognitive users employ their cognitive abilities to communicate without 

harming the primary users. 

 

3.1.1 Motivation and Definition of a Cognitive Radio Network  

 

Cognitive networks are initiated by the apparent lack of spectrum under the 

current spectrum management policies. The right to use the wireless spectrum in the 

United States is controlled by the Federal Communications Commission (FCC). 

Most of the frequency bands useful to wireless communication have already been 

licensed by the FCC. However, the FCC has designated a few unlicensed bands, 

most notably the industrial scientific and medical (ISM) bands, over which the 

immensely popular WiFi devices transmit. These bands are filling up fast, and, 

despite their popularity, the vast majority of the wireless spectrum is in fact licensed. 

Currently, the primary license holders obtain from the FCC the exclusive right to 

transmit over their spectral bands. Since most of the bands have been licensed, and 

the unlicensed bands are also rapidly filling up, it would appear that a spectral crisis 

is approaching. This, however, is far from the case. Recent measurements have 

shown that for as much as 90% of the time, large portions of the licensed bands 

remain unused. As licensed bands are difficult to reclaim and release, the FCC is 

considering dynamic and secondary spectrum licensing as an alternative to reduce 

the amount of unused spectrum. Bands licensed to primary users could, under certain 
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negotiable conditions, be shared with nonprimary users without having the primary 

license release its own license. Whether the primary users would be willing to share 

their spectrum would depend on a number of factors, including the impact on their 

own communication. 

 

The limited available spectrum and the inefficiency in the spectrum usage 

necessitate a new communication paradigm to exploit the existing wireless spectrum 

opportunistically. Dynamic spectrum access is proposed to solve these current 

spectrum inefficiency problems. DARPA‟ s approach on Dynamic Spectrum Access 

network, the so-called NeXt Generation (xG) program aims to implement the policy 

based intelligent radios known as cognitive radios (Lassila, & Penttinen, 2008). 

 

NeXt Generation (xG) communication networks, also known as Dynamic 

Spectrum Access Networks (DSANs) as well as cognitive radio networks, will 

provide high bandwidth to mobile users via heterogeneous wireless architectures and 

dynamic spectrum access techniques. The inefficient usage of the existing spectrum 

can be improved through opportunistic access to the licensed bands without 

interfering with the existing users. xG networks, however, impose several research 

challenges due to the broad range of available spectrum as well as diverse Quality-

of-Service (QoS) requirements of applications. These heterogeneities must be 

captured and handled dynamically as mobile terminals roam between wireless 

architectures and along the available spectrum pool. The key enabling technology of 

xG networks is the cognitive radio. Cognitive radio techniques provide the capability 

to use or share the spectrum in an opportunistic manner. Dynamic spectrum access 

techniques allow the cognitive radio to operate in the best available channel.  

 

Once a cognitive radio supports the capability to select the best available channel, 

the next challenge is to make the network protocols adaptive to the available 

spectrum. Hence, new functionalities are required in an xG network to support this 

adaptivity. In summary, the main functions for cognitive radios in xG networks can 

be summarized as follows (Lassila, & Penttinen, 2008): 
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 Spectrum sensing: Detecting unused spectrum and sharing the spectrum 

without harmful interference with other users. It is an important requirement of 

the Cognitive Radio network to sense spectrum holes. Detecting primary users 

is the most efficient way to detect spectrum holes. 

 Spectrum management: Capturing the best available spectrum to meet user      

communication requirements. Cognitive radios should decide on the best 

spectrum band to meet the Quality of service requirements over all available 

spectrum bands, therefore spectrum management functions are required for 

Cognitive radios. These management functions are spectrum analysis and 

spectrum decision. 

 Spectrum mobility: It is defined as the process when a cognitive radio user 

exchanges its frequency of operation. Cognitive radio networks target to use 

the spectrum in a dynamic manner by allowing the radio terminals to operate in 

the best available frequency band, maintaining seamless communication 

requirements during the transition to better spectrum. 

 Spectrum sharing: Providing the fair spectrum scheduling method among 

coexisting xG users. One of the major challenges in open spectrum usage is the 

spectrum sharing. It can be regarded to be similar to generic media access 

control MAC problems in existing systems. 

 

The application of cognitive networks, however, is not limited to just fixing the 

current spectrum licensing. Other applications abound in shared spectra, such as the 

ISM band (where different devices need to coexist without inhibiting each other), 

sensor networks (where the sensors may need to operate in a spectrum with higher 

power devices), and current services such as the cellular network (where the operator 

may want to offer different levels of services to different types of users). 

 

Cognitive radio technology is the key technology that enables an xG network to 

use spectrum in a dynamic manner. The term, cognitive radio, can formally be 

defined as follows: A „„Cognitive Radio‟‟ is a radio that can change its transmitter 

parameters based on interaction with the environment in which it operates (Lassila, 

& Penttinen, 2008) 

http://en.wikipedia.org/wiki/Quality_of_service
http://en.wikipedia.org/wiki/Media_access_control
http://en.wikipedia.org/wiki/Media_access_control
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From this definition, two main characteristics of the cognitive radio can be 

defined:  

 

 Cognitive capability: Cognitive capability refers to the ability of the radio 

technology to capture or sense the information from its radio environment. This 

capability cannot simply be realized by monitoring the power in some 

frequency band of interest, but more sophisticated techniques are required in 

order to capture the temporal and spatial variations in the radio environment 

and avoid interference to other users. Through this capability, the portions of 

the spectrum that are unused at a specific time or location can be identified. 

Consequently, the best spectrum and appropriate operating parameters can be 

selected. 

 Reconfigurability: The cognitive capability provides spectrum awareness 

whereas reconfigurability enables the radio to be dynamically programmed 

according to the radio environment. More specifically, the cognitive radio can 

be programmed to transmit and receive on a variety of frequencies and to use 

different transmission access technologies supported by its hardware design.  

 

The ultimate objective of the cognitive radio is to obtain the best available 

spectrum through cognitive capability and reconfigurability as described before. 

Since most of the spectrum is already assigned, the most important challenge is to 

share the licensed spectrum without interfering with the transmission of other 

licensed users as illustrated in figure 3.1. 
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                           Figure 3.1 Dynamic spectrum usage 

 

The cognitive radio enables the usage of temporally unused spectrum, which is 

referred to as spectrum hole or white space. If this band is further used by a licensed 

user, the cognitive radio moves to another spectrum hole or stays in the same band, 

altering its transmission power level or modulation scheme to avoid interference as 

shown in figure 3.1. 

 

Reconfigurability is the capability of adjusting operating parameters for the 

transmission on the fly without any modifications on the hardware components. This 

capability enables the cognitive radio to adapt easily to the dynamic radio 

environment. There are several reconfigurable parameters that can be incorporated 

into the cognitive radio as explained below: 

 

 Operating frequency: A cognitive radio is capable of changing the operating 

frequency. Based on the information about the radio environment, the most 

suitable operating frequency can be determined and the communication can be 

dynamically performed on this appropriate operating frequency. 

 Modulation: A cognitive radio should reconfigure the modulation scheme 

adaptive to the user requirements and channel conditions. For example, in the 

case of delay sensitive applications, the data rate is more important than the 

error rate. Thus, the modulation scheme that enables the higher spectral 
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efficiency should be selected. Conversely, the loss-sensitive applications focus 

on the error rate, which necessitate modulation schemes with low bit error rate. 

 Transmission power: Transmission power can be reconfigured within the 

power constraints. Power control enables dynamic transmission power 

configuration within the permissible power limit. If higher power operation is 

not necessary, the cognitive radio reduces the transmitter power to a lower 

level to allow more users to share the spectrum and to decrease the 

interference. 

 Communication technology: A cognitive radio can also be used to provide 

interoperability among different communication systems. 

 

The transmission parameters of a cognitive radio can be reconfigured not only at 

the beginning of a transmission but also during the transmission. According to the 

spectrum characteristics, these parameters can be reconfigured such that the 

cognitive radio is switched to a different spectrum band, the transmitter and receiver 

parameters are reconfigured and the appropriate communication protocol parameters 

and modulation schemes are used. 

 

3.1.1.1 The XG Network Architecture 

 

Existing wireless network architectures employ heterogeneity in terms of both 

spectrum policies and communication technologies. Moreover, some portion of the 

wireless spectrum is already licensed to different purposes while some bands remain 

unlicensed. For the development of communication protocols, a clear description of 

the xG network architecture is essential. In this section, the xG network architecture 

is presented such that all possible scenarios are considered. 

 

The components of the xG network architecture can be classified in two groups as 

the primary network and the xG network. The elements of the primary and the xG 

network are defined as follows: 
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 Primary network: An existing network infrastructure is generally referred to as 

the primary network, which has an exclusive right to a certain spectrum band. 

Examples include the common cellular and TV broadcast networks. The 

components of the primary network are as follows: 

 Primary user: Primary user (or licensed user) has a license to operate in a 

certain spectrum band. This access can only be controlled by the primary 

base-station and should not be affected by the operations of any other 

unlicensed users. Primary users do not need any modification or 

additional functions for coexistence with xG base-stations and xG users. 

 Primary base-station: Primary base-station (or licensed base-station) is a 

fixed infrastructure network component which has a spectrum license 

such as base-station transceiver system (BTS) in a cellular system. In 

principle, the primary base-station does not have any xG capability for 

sharing spectrum with xG users. However, the primary base-station may 

be requested to have both legacy and xG protocols for the primary 

network access of xG users, which is explained below. 

 xG network: xG network (or cognitive radio network, Dynamic Spectrum 

Access network, secondary network, unlicensed network) does not have license 

to operate in a desired band. Hence, the spectrum access is allowed only in an 

opportunistic manner. xG networks can be deployed both as an infrastructure 

network and an ad-hoc network. The components of an xG network are as 

follows:  

 xG user: xG user (or unlicensed user – xG user: xG user (or unlicensed 

user, cognitive radio user, secondary user) has no spectrum license. 

Hence, additional functionalities are required to share the licensed 

spectrum band. 

 xG base-station: xG base-station (or unlicensed base-station, secondary 

base-station) is a fixed infrastructure component with xG capabilities. xG 

base-station provides single hop connection to xG users without 

spectrum access license. Through this connection, an xG user can access 

other networks.   
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 Spectrum broker: Spectrum broker (or scheduling server) is a central 

network entity that plays a role in sharing the spectrum resources among 

different xG networks. Spectrum broker can be connected to each 

network and can serve as a spectrum information manager to enable 

coexistence of multiple xG Networks. 

 

The reference xG network architecture is shown in figure 3.2, which consists of 

different types of networks: a primary network, an infrastructure based xG network, 

and an ad-hoc xG network. xG Networks are operated under the mixed spectrum 

environment that consists of both licensed and unlicensed bands. Also, xG users can 

either communicate with each other in a multihop manner or access the base-station. 

Thus, in xG networks, there are three different access types as explained next: 

 

 xG network access: xG users can access their own xG base-station both on 

licensed and unlicensed spectrum bands. 

 xG ad-hoc access: xG users can communicate with other xG users through 

ad-hoc connection on both licensed and unlicensed spectrum bands. 

 Primary network access: The xG users can also access the primary base-

station through the licensed band. 

 

                    Figure 3.2 Cognitive radio network example 
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3.2 Cognitive Networks: Models and Design Issues 

 

3.2.1 Interference Management 

 

Cognitive radios have recently been studied intensively as they provide strategies 

to use the transmission spectrum more efficiently by enabling the cognitive 

secondary users (SUs) to use the transmission bands allocated to the licensed primary 

users (PUs) while causing no or only limited (or tolerable) interference to them. 

Interference is controlled by having the cognitive SUs be aware of the environment 

(e.g., through channel sensing) and adapt their transmission strategies accordingly. 

 

The central challenge for the cognitive SUs is to control their interference levels. 

In general, interference management needs to be performed under uncertainty as 

channel sensing done by the SUs may result in false alarms and miss-detections. In 

such an interference limited scenario, cognitive SUs should also satisfy their own 

quality of service (QoS) requirements by transmitting at high rates and limiting the 

delay experienced by the data in the buffers. This, too, has to be achieved under 

channel uncertainty since wireless channel conditions, which vary over time 

randomly due to mobility and changing environment, can only be estimated 

imperfectly through training techniques. Note also that providing QoS guarantees is 

especially more challenging for SUs as they have to take into account both the 

changing channel conditions and varying primary user activity. These considerations 

are critical for the successful deployment of cognitive radio systems in practice.  

 

Managing the interference is one of the most significant parts in cognitive radio 

networks since secondary user can reuse the spectrum of the primary user only under 

the condition that the primary services are not harmfully interrupted. There is a 

question how much is the harmful interference that ultimately depends on the 

application. There are two approaches to avoid harmful interference below: 
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 Overlay Approach (Interference-Free Approach) In this approach, the 

secondary users access the portion of the spectrum that is not used by primary 

users. As a result, there is virtually no interference to the primary users. 

 

 Underlay Approach (Interference-Tolerant Approach) In this approach, the 

secondary users access the network by spreading their signals over a wide 

frequency band. The underlay approach imposes severe constraints on the 

transmission power of secondary users. Operating below the noise floor of  

primary users, the secondary users are allowed to interfere with primary users 

up to a certain tolerable level. 

 

The former approach is not very practical if we take into account cognitive radio 

technique‟s inherent need to increase the spectrum utilization. So the latter allowing 

the second user to use the spectrum band while the primary user is operating on the 

spectrum is more appropriate. 

 

Interference analysis has been studied by a number of authors (Gastpar (2007), 

Marthur, Haleem, Chandramouli, & Subbalakshmi (2007), Ghasemi & Sousa (2008), 

Digham (2008), Chen, Iellamo, Coupechoux, & Godlewski (2010), Weng, Peng, & 

Wang (2010), Vu, Ghassemzadeh, & Tarokh (2008)). The interference depends on 

the locations of the cognitive users, which are random, and on the random channel 

fading. Hence this interference is random. 

 

As an example case, we assume that all nodes in figure 3.3 experience Rayleigh 

fading which are independent from node to node. The received signal y can be 

expressed as 

 

y = γ     x +                                            (3.2.1)   

 

where x denotes the transmitted signal.    denotes the channel fading coefficient, γ
 
 is 

the average channel gain and    is additive white Gaussian noise. 
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            Figure 3.3 A  simple  cognitive  scenario  with  one  primary  link  and one  

               cognitive link using one transmission antenna 

 

Here stands “P” for the primary link, “  ” for the channel between the antenna of 

the cognitive transmitter and the cognitive receiver, “   ” for the channel between 

the antenna of the cognitive transmitter and the primary receiver, and “  ” for the 

channel between the primary transmitter and the cognitive receiver. 

 

Because of channel fading, the cognitive user may make mistake in detecting the 

primary user, which will cause interference to the primary user‟s transmission 

(Huang, Zhang, Cheng, Yu, & Qiu, 2007). We use false alarm probability        and 

missed detection probability       to show the performance of the detector. Let    be 

the transmission power of the primary transmitter, and    denote the transmission 

power allocated to the antenna of the cognitive transmitter respectively. For 

simplicity, we assume these parameters are fixed given the detection method used by 

the cognitive user. Moreover, we assume that the secondery user can learn the 

statistics of the channels (fading parameters) and the system parameters (     ,       , 

 
 
,  

 
) by scanning the environment and listening to the primary link‟ s signal during 

a long period. Here,  
 
 and  

 
 show instantaneous received signal to interference and 

noise ratio (SINR) thresholds at primary and cognitive receivers respectively, over 
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which the transmitted packet will be successfully received. Using these parameters, it 

can select the optimum transmission power (  ) to maximize its own stable 

throughput under the following constraints: 

 

1) the queue of the primary user remains stable when the cognitive link is active, 

2) the total power allocated to the two transmission antennas should not exceed 

the maximum transmission power. 

 

3.2.1.1 Ideal System 

 

In an ideal system, the cognitive user can detect the activity of the primary user 

without any error. It transmits its own packets only when the slot is idle. Therefore, 

the cognitive link and the primary link transmit in different time slots, and will not 

cause any interference to each other. Under this situation, the maximum stable 

throughput of the link equals the average departure rate μi, and the packet queue is 

stable if the average arrival rate    is less than   . 

 

We assume that there is a given threshold    at each receiver, and the transmitted 

packet will be successfully received if the instantaneous received signal to 

interference and noise ratio (SINR) is above this threshold. This threshold depends 

on the link‟s transmission mode. Therefore the outage (unsuccessful packet 

reception) probability on the primary link reads 

 

       = Prob[      <   ]                                              (3.2.2) 

 

where the subscript i can be either “P” or “C”. 

 

The power decreases exponentially with increasing distance from transmitter, so 

at the point of receiver it is defined as  

 

   /       
 

                                                (3.2.3) 
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where        represents distance between transmitter and receiver and   is path loss 

coefficient which is generally between 2 and 4. So,       becomes, 

 

       
           

 

  
                                         (3.2.4) 

 

As the primary link and the cognitive link are active in different time slot, both of 

them can communicate using the maximum transmission power        and       . 

This results in that no power constraint is imposed on the cognitive transmitter.  

 

3.2.1.2 Real System 

 

In real system, there may be errors in the detection process as mentioned above. 

So the cognitive user may transmit in slots already occupied by the primary user. The 

packets transmitted in these slots by both the primary user and the cognitive user will 

be successfully received with lower probability, which in turns reduces the actual 

throughput. 

 

If the cognitive user successfully detects that the channel is occupied, the primary 

link can communicate without interference from the cognitive link. If the detection is 

unsuccessful, the cognitive link transmits in the same slot as the primary link with 

possibility      . In this case, the received signals of the primary receiver contains 

not only signals from the primary transmitter and the noise, but also interference 

from the cognitive transmitter. Therefore, the instantaneous received SINR of the 

primary receiver is: 

 

       
           

 

               
                                              (3.2.5) 

 

where        represents distance between primary transmitter and primary receiver 

and        represents distance between cognitive transmitter and primary receiver. 

So, if this       value is under the outage SINR threshold   , packets will not be 

successfully delivered to the primary receiver. 
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       = Prob[      <   ]                                          (3.2.6) 

 

This means, a power constraint is imposed on the cognitive user so that the SINR 

of the incumbent primary receiver does not drop below its minimal SINR 

requirement denoted by    that is determined by the QoS requirement of the primary 

user on channel. 

 

Generally, the CR network consists of an access point (AP) controlling different 

CRs (users), as illustrated in figure 3.4. 

 

              Figure 3.4 Access point with its cognitive  

                                               users 

 

Here, figure 3.4 shows a CR configuration wherein an AP controls the 

transmission of SUs lying within its range of coverage and also collects reports about 

the activities of primary users (PUs) that SUs may interfere with. The following 

knowledge is available at the AP: 

 

 the set of vacant channels that are not currently utilized by PUs and are free for 

SUs to use (this set is the outcome of the scanning and sensing process which 

is not addressed here) and 

 the power gains of this channel set corresponding to each of the contending 

users. 
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Channels are assumed to be independent and identically distributed (IID). 

 

3.2.2 Spectrum Allocation among Cognitive Users 

 

After detection of vacant channels, another important problem is spectrum 

allocation between secondery users (cognitive users). As hosts in a wireless network, 

if secondery users in a cognitive network use a single shared channel, transmission 

from one secondery user will interfere with other users within its propagation range. 

Collisions can be avoided by partitioning the given radio spectrum into a set of 

disjointed channels and assigning channels to transmitters appropriately. This is 

called the channel assignment problem or the frequency assignment problem. Here, 

we assume interchannel interference is small, so only cochannel interference is 

considered. Since radio transmission has a limited propagation range, two hosts can 

use the same channel provided that the two hosts are spaced sufficiently apart. There 

is a one-to-one correspondence between the channel assignment problem and the 

vertex colouring problem in graph theory. Formally, the channel assignment problem 

can be modelled as an appropriate colouring problem on an undirected graph 

representing the network topology, where vertices correspond to hosts and edges 

correspond to pairs of hosts that cannot use the same channel. The purpose of 

channel assignment algorithms is to assign channels to transmitting hosts such that 

cochannel interference is avoided. Besides this, either the total number of channels 

used or total interference for a given set of channels is minimised.  

 

Channel allocation not only depends on spectrum availability, but it is also 

determined based on internal (and possibly external) policies. Hence, the design of a 

spectrum allocation policy to improve the performance of a node is an important 

research topic. Here, we study on auction-based allocation of channels in cognitive 

radio networks for throughput maximization of both primary and secondery users 

when interference constraints are also satisfied. These include two adjacent cognitive 

users should not use the same channel and also interference constraint on the primary 

receivers so that transmitted packets are successfully received.  
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The demand for wireless spectrum has been growing rapidly with the dramatic 

development of the mobile telecommunication industry in the last decades. Recently, 

regulatory bodies like the Federal Communications Commissions (FCC) in the 

United States are recognizing that traditional fixed spectrum allocation can be very 

inefficient, considering that bandwidth demands may vary highly along the time or 

space dimension (Ileri, Samardzija, & Mandayam, 2005). In order to fully utilize the 

scarce spectrum resources, with the development of cognitive radio technologies, 

dynamic spectrum allocation especially distributed spectrum allocation becomes a 

promising approach to increase the efficiency of spectrum usage. This new wireless 

networking paradigm, dynamic spectrum access, is also referred to as Next 

Generation wireless networks (Akyildiz, Lee, Vuran, & Mohanty, 2006). 

 

Traditionally, network-wide spectrum assignment is carried out by a central 

server, namely, spectrum broker (Buddhikot, 2005). Recently, distributed spectrum 

allocation approaches have been studied to enable efficient spectrum sharing only 

based on local observations (Etkin, Parekh, & Tse, 2005). Peng, Zheng, & Zhao 

(2006) reduced the allocation problem to a variant of the graph coloring problem, 

and provided a general approximation methodology through vertex labeling. 

Moreover, researchers have already started to study distributed spectrum allocation 

via graph coloring and auction theories (Ileri, Samardzija, & Mandayam, 2005, Peng, 

Zheng, & Zhao, 2006, Xin, Xie, & Shen, 2005). Ileri, Samardzija, & Mandayam 

(2005) proposed a demand responsive pricing framework to maximize the profits of 

legacy spectrum operators while considering the users‟ response model to the 

operators‟ pricing strategy. 

 

Nowadays, more and more researchers have already started to study dynamic 

spectrum allocation via bidding/asking and auction mechanisms. Xuezhi, Yutao, & 

Guisen (2009) focus on the study of the secondary users who purchase some 

channels for their own communication services. They proposed a novel distributed 

collusion mechanism to al-locate channels in the spectrum pool with graph coloring 

and bidding theory. Distinguishing to the previous mechanisms, through the 

proposed algorithm they also obtain the utility of primary users. Dynamic channel 
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allocation performance of auctions with collusion and cooperation was analyzed and 

it was shown that through user cooperation a much better performance is obtained. 

Huang, Berry, & Honig (2006) proposed an auction-based mechanism to efficiently 

share spectrum among the users in interference-limited systems. 

 

The above studies all concern only dynamic spectrum allocation without 

considering interference constraints on primary users because of secondery user 

activities. Following studies investigate interference management issue on cognitive 

networks, however, they do not consider total gain maximization during channel 

allocation. Digham (2008) proposed a near optimal scheme for jointly allocating 

channels and power levels among different users contending for a channel access in a 

CR network. A conservative design was considered wherein a constraint on the SINR 

at the primary users is imposed, by controlling power levels of cognitive users. 

Ghasemi & Sousa (2008) developed a statistical model of interference aggregation in 

spectrum-sensing cognitive radio networks by taking into account the random 

variations in the number, location and transmitted power of the cognitive radios. 

They also studied the effect of cooperative sensing on the distribution of the 

aggregate interference under i.i.d. fading channels and highlighted the tradeoff 

between local signal processing (i.e., individual sensitivity) and cooperation. In the 

scheme investigated by Vu, Ghassemzadeh, & Tarokh (2008), they studied a network 

consisting of a primary user and multiple cognitive users. They investigated the case 

the primary user sends a beacon prior to each transmission to silence the cognitive 

users and claim the spectrum and they formulate this interference power as a function 

of the beacon threshold, the number of cognitive users, the primary and cognitive 

transmit powers, the distance between the primary transmitter and receiver, and the 

receiver protected radius. On the other hand, sending a beacon signal and silencing 

secondery users can be thought of being contrary to the idea of cognitive networks 

that primary users do nothing and are not affected by secondery users. 

 

A collaborative scheme for secondary nodes was developed to compute the 

approximate maximum interference-free transmit power (MIFTP) in the presence of 

a primary transmitter with unknown location and transmit power (Mark & Nasif, 
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2009). Ma & Tsang (2010) considered a multihop multi-channel CR network and 

they present a cross-layer optimization framework by jointly designing the spectrum 

sharing and routing with the SINR constraints. Distinguished from the previous 

studies, they adopt a more realistic SINR model to capture the conflict relationships 

among the links, rather than using the Protocol Model, with the objective to 

maximize the minimum end-to-end flow throughput. However, they did not consider 

again utilities of primary and secondery users during spectrum sharing. 

 

Although the existing distributed spectrum allocation schemes have achieved 

some success on enhancing the spectrum efficiency through coloring algorithm 

design and market mechanisms, there has been very few people adopt both graph 

coloring and bidding theory at the same time to solve the spectrum allocation 

problem in cognitive radio networks and, to the best of our knowledge, there is no 

work involving both coloring, auction and bidding theory and interference 

management on primary users without controlling power levels. Existing allocation 

schemes generally consider either power and channel allocation without considering 

total gain or only total gain of primary and secondery users without taking SINR 

threshold into consideration. 

 

In this thesis work, we focus on the study of both of the gain of primary users who 

own licensed spectrum and secondary users who purchase some channels for their 

own communication services, in terms of both total gain and interference 

management. Here, secondary users refer to cognitive users who are not owner of the 

spectrum and bidding for some channels from the primary users. Through greedy 

algorithm with interference graph, we can easily gain the spectrum allocation list and 

the total utility of the cognitive users, but the primary users‟ utility is difficult to 

obtain if more than one spectrum holder exist. Furthermore, if detection of the vacant 

channels by secondery users cannot be carried out correctly, packets may not be 

delivered to the primary receiver because of total interference effect on it. Our work 

is unique in the sense of both auction-based channel allocation, total gain 

maximization and interference management to satisy related SINR threshold (quality 

of service (QoS) requirement of primary receiver), without controlling secondery 
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user power levels. Our novel algorithm allocates channels in the spectrum pool, 

through which it tries to maximize utilities of both the primary users and cognitive 

users and also manage interference so that packets from primary transmitters are 

successfully delivered to related primary receivers. 

 

To summarize, in chapter 3 firstly we explain the need for cognitive radio 

networks and give background information. Next, we investigate model and issues in 

design of cognitive radio networks which include channel allocation and interference 

management problems. Then, we continue with related work and open areas in 

literature and we conclude the chapter by giving some preliminary information about 

our work. 
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CHAPTER FOUR 

AUTION-BASED THROUGHPUT MAXIMIZATION IN COGNITIVE 

RADIO NETWORKS UNDER INTERFERENCE CONSTRAINT 

 

4.1 System Model and Utility Functions 

 

A cognitive radio network can consist of many primary (spectrum holders) and 

secondery users simultaneously. In this thesis, we consider a wireless system with a 

few primary users and multiple secondary users, these users operate simultaneously. 

Our model considers the case that primary users are fixed and their positions are 

known a priori and they consist of one primary transmitter and one primary receiver. 

Secondery users are randomly distributed according to the model parameters and 

fixed, and get the list of current available channels according to the working states, 

position distributions, and power covering ranges of primary users, so it is much 

more suitable for the actual demand of cognitive radio systems. 

 

We have the following assumptions, 

 

 Primary system and secondary cell apply the same multicarrier modulation 

scheme (OFDM or FBMC) 

 Error occurrs during the detection process of vacant channels, so the 

cognitive users transmit in slots already occupied by the primary user. 

 

In our system model, we assume all users are selfish and rational, that is, their 

objectives are to maximize their own utility, and not to cause damage to other users. 

Generally speaking, in order to have the rewards of achieving certain communication 

goals, the secondary users want to utilize more spectrum resources.  

 

In figure 4.1, an example primary network together with secondery network 

consisting of an access point and its cognitive users around is given. 
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                  Figure 4.1 System model with coexistence of  primary  and  cognitive  

                  radio network 

   

We consider the collection of the available spectrums from all primary users as a 

spectrum pool, which totally consists of N non-overlapping channels where N < K. 

Assume there are J primary users and K secondary users, indicated by the set 

{  ,   ,…,   } and {  ,   ,…,   } respectively. So, 

 

N =    
 
                                                             (4.1.1) 

 

The channels belonging to primary user    can be represented by a vector 

  =   
 
            

, where   
 
 represents the channel index in the spectrum pool and    

is the total number of channels belonging to user   . Moreover, denote the payoff of 

primary user    when leases its jth channel as   
 
, with i = {1, 2, . . . , J}, j = {1, 2, ..., 

  }.  

 

A mathematic description of the model has been given by graph theory, and the 

channel allocation model has been abstracted as a coloring problem. Then, it can be 

expressed as an undirected graph G = (V, E), where the vertices represent the 

secondary users. V = {  , i = 1, 2, . . . , K} represents the set of all secondery users 

which want to obtain channels. |V| =K represents the total number, and    represents 

each one of secondery users. E is the edge set. So,     shows an edge between 
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vertices (secondery users)    and    which means distance between them is shorter 

than a defined value and those nodes interfere. So, they cannot use the same channel 

at the same time. We also refer to the graph G as the interference graph. We use 

channel and color interchangeably. An example interference graph with few primary 

users and multiple secondery users is given in figure 4.2, where nodes interfering 

with each other are shown connected by blue lines. 

 

 

 Figure 4.2 Sample interference graph with few primary users and multiple secondery users 

     

We define the revenue vector of user    as   =   
 
           , where the jth element 

is the revenue if this user successfully leases the jth channel in the spectrum pool. 

Similarly, denote the bid vector of user    as   =   
 
           , where   

 
 means this 

user‟s bid of the jth channel in the spectrum pool. 

 

We assume user    has the same utility for all the channels in the spectrum pool,    

 S, and it needs at most   
  channels, so, the utility function of this user can be 

modelled as follows. 
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(  ,   

 ) =     
 
 –   

 
  

    *   
 
 ,        

 
    

     
                   (4.1.2) 

 

where    =    
 
           ,   

  =    
 
           . Here,   

 
{0,1} and shows if 

secondary user    successfully leases the jth channel in the spectrum pool or not. 

When the secondary users‟ performance achieve the best, the primary user   ‟ s 

payoff can be written as 

 

   
 =     

   
  

   
 ,                                        (4.1.3) 

 

where    
    means the optimal bidding of secondary user   . 

 

The objective of the channel allocation is to maximize the spectrum utilization, 

including both primary users and secondary users while satisfying necessary 

interference condition on the primary receivers. This problem can be formally 

represented as the following non-linear programming problem. 

 

maximize {     
      

    
   +     

     
   } 

 

Subject to {  
   

       
  

 
    ≤     

 }                               (4.1.4) 

 

where B is the set of bids for all the secondary users and     
 is tolerable interference 

threshold at the primary receiver   . 

 

SINR = 

   
       

  
 

     
   

       
  

 
    

  ≥     
                                (4.1.5) 

 

where    
 is tolerable signal to interference plus noise ratio (SINR) threshold at 

                                              
  so that corresponding primary 

receiver can receive primary transmitter packets successfully and    is additive 
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white Gaussian noise for the receiver, with zero mean. This is equivalent to 

guaranteeing a minimum rate for primary receiver. Because there are more than one 

secondery transmitter, total interference is sum of all interferences at the point of 

receiver. In order for the SINR value to be greater than    
, total interference should 

satisfy, 

 

 
   

        
 

 
      ≤      

                                             (4.1.6) 

 

By monitoring the activity of the primary user, the cognitive link (base stations in 

our model) can communicate when it senses an idle slot. However, as mentioned in 

chapter (3.2.1), due to impairments on the wireless fading channel, the detection 

process may incur in errors in real system, and interference thereby will be generated 

from the cognitive link to the primary link. After assumption of false detection, our 

channel allocation algorithm assigns channels to cognitive users so that no adjacent 

nodes will be assigned the same channel and also total amount of interference on the 

primary receiver stays under the outage threshold, as stated in equation (4.1.6), so 

that the QoS requirement of the primary user on channel is satisfied. 

 

Our proposed algorithm does channel allocation with the goal of maximizing total 

gain throughput and also satisfying interference constraint on primary receivers. 

Moreover, we modify the algorithm so that it does allocation without and with 

auction. Auction is carried out such that from two nodes competing for a channel the 

one which has higher revenue has higher priority and gets the channel. 

 

Interference constraint is supplied by dynamically checking interference level 

before assigning a channel to all users in a maximum independent set. If it is not 

satisfied, first, interference is decreased by discarding assigning channel to the user 

which has lowest revenue and interference ratio, that means node satisfying 

condition 

Min  {    
 / 

   

        
 , i=1,…, K }                                (4.1.7) 
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If this does not suffice, it goes on by discarding node(s) with lowest revenue from 

nodes who already obtained maximum number of channels so far. Then, if still 

insufficient, it excludes node(s) with lowest revenue from nodes who already 

obtained one channel less then maximum number of channels obtained so far and 

goes on like this, till interference condition is satisfied.  

 

We assume node locations are static. We also assume the set of available channels 

at each secondary user is static. This corresponds to the applications with a slow 

varying spectrum environment (e.g., TV broadcast bands). We assume that there 

exists a centralized server in the CR network. Each secondary user reports its 

location and the set of available channels to the spectrum server. The spectrum 

management and flow routing, therefore, is simple and coordinated. During the 

channel allocation process, secondery users need to interact with control center 

(centralized server), and the center has to feed back the allocation results to users.  

 

Here, we assume that links using different channels do not interfere with each 

other. Interference only occurs among the links sharing the same channel. 

 

Our model consists of one primary receiver located in the center of a square area 

with side 1km and primary transmitter 141,4m away from its primary receiver, so 

J=2. Their positions are fixed and known, (500m,500m) and (600m,600m) 

respectively. There are K secondery users (we vary K in the range [10, 30] for 

different test cases) random uniformly distributed in a 1000m × 1000m area (figure 

4.3), similar to the work of Cuiran & Chengshu (2008). Each secondary user 

represents an access point (base station), so each of them may need more than one 

channel (cognitive users around it) which are all random uniformly distributed 

around primary users in the square area and they are assumed to be fixed. The 

unused spectrum from primary users form a spectrum pool with 5 orthogonal 

frequency channels (N=5), for our test cases. The revenues of cognitive users and 

primary users are scores which are assumed to be i.i.d. random variables uniformly 

distributed in the ranges [10, 30] and [5, 7] respectively. Each secondery users‟ 

channel need varies randomly in the range [1, 3]. 



 

 

89 

 

    Figure  4.3 Our simulation model 

 

In our model, we assume primary transmitter power is 1W (30 dBm). Power level 

at receiver d(m) away from its transmitter decreases exponentially with distance, as 

we already mentioned. So, the power at the primary receiver is, 

 

            

       
   

 
    

                         
  =          mW (-56 dBm) 

 

Total interference on the primary receiver depends on the secondery user 

positions and their power levels. We assume    
 =            for all secondery users. 

 

∑Interference =  
   

       
  

 
    =            ×  

 

        
 

 
                 (4.1.8) 

 

When secondery transmitter coincides with the primary receiver,       
 gets its 

minimum value which is 0 and in this case interference goes to infinity.  

 

Since secondery users are random uniformly distributed, the total interference 

power at the point of the primary receiver is actually random as well. We can 

calculate mean value of the total interference power. For this purpose, we can use the 

model given in figure 4.4. 

  

    

     

: Primary Transmiter 

: Primary Receiver 

: Cognitive Transmitter 
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R 
 

 

 

 

         

       R 

                                                Figure  4.4  Model   for  calculation  of  

                                                interference mean value 

 

For uniformly distributed cognitive users, r has cumulative distribution function 

(CDF)  

 

F(r) =    /                                                  (4.1.9) 

 

So, probability density function of r is 

 

f(r) = 2 r /    ,        0 ≤ r ≤ R/                                         (4.1.10) 

 

Therefore, the mean value of the total interference on the primary receiver is 

 

E[I] =    
   

  
     

    

 
 
   dr                                     (4.1.11) 

 

where    
 = P because we assume all cognitive users transmit with the same power. 

Therefore, 

 

E[I] =  2KP        
    

 
                                     (4.1.12) 

 

If we assume K is 15, P is 100 mW and   is 4, then 

 

E[I] = 2KP × 1/2 × ( 
 

 
   -  

 

    
  ) = ∞                              (4.1.13) 

 

 

 

r 

  : Primary Receiver 

: Cognitive Transmitter 

R/   
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As it is seen, mean value of the total interference is infinity since cognitive users can 

coincide with the primary receiver. 

 

Therefore, to limit the interference from each cognitive transmitter, it is 

sometimes assumed that the cognitive transmitters must be at least a distance  from 

the primary receiver, for some  > 0. This practical constraint basically disallows the 

interfering transmitter to be at the same point as the interfered receiver. This region is 

called as primary-exclusive region (PER). In our simulations, we do not make such 

an assumption. However, we can recalculate mean value of the total interference 

according to this assumption. If we assume that, cognitive users cannot be in a square 

area with one side of  m around the primary receiver, the lower boundary of the 

integral in (4.1.11) becomes /2 instead of 0. 

 

E[I] =     
   

  
     

    

  
 
    dr                                 (4.1.14) 

 

For   = 4, 

 

E[I] = 2KP × 1/2 × ( 
 

  
   -  

 

    
  )                          (4.1.15) 

 

In our model R is 1000m, P is 100 mW (in one of simulation scenarios) and if we 

assume  to be 25 m,  

 

E[I] = 15 × 100 × ( 
 

    
   -  

 

       
  ) = 9,597  9,82 dBm 

 

      
 is maximum when secondery transmitters lie exactly at the corners of the 

area, meaning resulting interference is minimum (since all transmitters coincide, this 

is practically impossible case, but gives lower bound of total interference). In this 

case, distance between secondery transmitters and primary receiver is 

 

             = 
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0 <       
 ≤ 

 

  
                                             (4.1.16) 

 

Therefore, total interference value when all secondery transmitters lie at 
 

  
 

distance is 

  

                =           × L × 
 

 
 

  
  

                         (4.1.17) 

 

where L shows at most how many nodes use simultaneously the same channel. 

 

As an example case, let us consider,          = 30 dBm,            = 20 dBm, K =  

15, R = 1000m,    = -100 dBm and     (values we used in one of our 

experiments). According to simulation results of our model with 15 secondery users, 

mostly 9 nodes transmit simultaneously using the same channel (L = 9), so 

interference becomes 

 

                  = 100 × 9 × 
 

 
    

  
  

 =         mW  - 86,44 dBm. 

 

and the corresponding SINR value gets, 

 

SINR= 

  
       

  

     
   

       
  

 
    

 = 
        

               
  675,67  28,3 dB 

 

(This value corresponds to a QAM-64 Coding rate=3/4 Wimax system SINR need.) 

 

As secondery users lie nearer to the primary receiver, interference increases and 

finally when they reach it, it goes to infinity (upper bound of total interference when 

no primary-exclusive region around primary receiver is used) which means certain 

outage of primary receiver (as we already calculated in equation (4.1.13), mean value 

of total inteference is infinity in case without PER). 
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4.2 Proposed Spectrum Allocation Mechanism for Cognitive Radio Networks 

Under Interference Constraint 

 

Flow diagram of proposed algorithm for auction based spectrum allocation in 

cognitive radio networks under interference constraint is given in figure 4.5 (a). We 

call it as ABSA-UNIC, consisting of initials of the name of the algorithm. The 

version without auction is given in figure 4.5 (b) which we call as NASA-UNIC (no 

auction). 

 

Both ABSA-UNIC and NASA-UNIC first create an interference graph 

corresponding to the cognitive network and copy of it. Then, they calculate 

maximum independent set of the copy graph using linear programming. After that, 

they find least used channel and try to assign it to the members of MIS. When doing 

this, it checks whether total interference exceeds interference threshold 

(corresponding SINR threshold of primary receiver). When threshold is exceeded, it 

tries to satisfy threshold by decreasing interference level by several ways. On ABSA-

UNIC, first, interference is decreased by discarding assigning channel to the user 

which has lowest revenue and interference ratio (given in equation (4.1.7)). If this 

does not suffice, it goes on by discarding node(s) with lowest revenue from nodes 

who already obtained maximum number of channels so far. Then, if still insufficient, 

it excludes node(s) with lowest revenue from nodes who already obtained one 

channel less then maximum number of channels obtained so far and goes on like this, 

till interference condition is satisfied. NASA-UNIC decreases interference by 

discarding channel to the nodes creating highest interference till threshold is 

satisfied. Nodes which did not get any channel so far have more priority than nodes 

obtained some channels.  

 

After assigning channel to the members, total revenue and primary users‟ 

revenues are updated accordingly. Nodes obtained all channels they need are 

removed from the copy and main interference graph. If number of nodes in the copy 

graph is greater than 1, channel assignment procedure is repeated until number of 

nodes decreases to 1. After that, new copy graph is generated, maximum independent  
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           Figure 4.5 (a) Flow diagram of proposed auction-based spectrum allocation algorithm in  

           cognitive radio networks under interference constraint (ABSA-UNIC) 
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              Figure 4.5 (b) Flow diagram of proposed spectrum allocation algorithm in cognitive  

              radio networks under interference constraint (NASA-UNIC) 
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nodes, delete nodes whose all 

channel need fulfilled from 

the main interference graph, 

update total revenues of 

primary and secondery users 

Exclude the node from MIS 

who already gained 2 

channels and has highest 

interference and recalculate 

interference 

 

Is it bigger than the 

interference level 

which satisfies outage 

threshold? 

Are there any more 

nodes who have 2 

channels? 

Yes 

No 

Exclude the node from 

MIS who already 

gained 1 channel and 

has highest 

interference and 

recalculate 

interference 

 

Is it bigger than the 

interference level which 

satisfies outage 

threshold? 
 

Yes 

Are there any more 

nodes who have 1 

channel? 

 

No 

Is it bigger than the 

interference level 

which satisfies 

outage threshold? 
 

Yes 

Yes 

Are there any 

more nodes left 

in MIS? 

 

No 

No 

Select a new less used 

channel from the 

channel list, repeat the 

same procedure for 

whole of MIS 
Number of 

nodes in Copy 

Int Graph  > 1 ? 

No 

Yes 

No 

Number of 

nodes in main 

int graph > 1? 

Yes 

No 

Yes 

 Find the node of 

MIS with highest 

interference, 

exclude it from 

MIS and 

recalculate 

interference 

 

Yes 

  No 
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set is found and assignment procedure is repeated until number of nodes in the main 

graph decreases to 1. As a result, total sytem throughput gain and total gain of 

primary users is obtained and channel distribution metric is calculated. 

 

To compare results of our algorithm, we use a greedy algorithm which produces 

good coloring results. However, it does not take into account interference 

management (SINR threshold). On greedy allocation algorithm, first, interference 

graph is created and nodes are sorted based on their degrees. Least used channel is 

assigned to the lowest degree node. From two nodes with the same degree, the node 

with higher revenue has higher priority to get channel. Nodes not creating 

interference with this node (not being neighbor of that node) are assigned the same 

channel as well. Moreover, each time when channel to be assigned, neighbor nodes 

are checked whether already having same channel or not. If yes, that channel is not 

assigned. Nodes obtaining all channels they need are deleted from the interference 

graph. After that, nodes are sorted and channels are assigned the same way until all 

channels are assigned or no more channel can be assigned. At every channel 

assignment, primary and secondery payoffs are added and finally total system 

throughput and throughput of primary users are calculated separately. Figure 4.6 

shows flow diagram of greedy allocation algorithm. 

 

Since interference constraint is not considered in greedy algorithm, depending on 

SINR threshold value, primary receiver goes under outage in a portion of all iteration 

runs. Therefore, in order to compare results of proposed algorithm with results of 

greedy algorithm, we should take into account outage probability during the 

calculation of greedy throughputs. For this purpose, we propose the following net 

throughput definition. 

 

NetThroughput (       ) = TotalThroughput   (1 -        (        )            (4.1.18) 

 

Here,         represents ratio of number of outages to number of iterations of 

greedy algoritm. Since proposed algorithms (ABSA-UNIC and NASA-UNIC) 
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consider interference constraint, we should compare results of proposed algorithms 

with results of greedy algorithm taking this into consideration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  

 

    

                                    Figure 4.6 Greedy spectrum allocation 

                                           algorithm 

 

In order to show channel distribution fairness of each experiment, we propose the 

following metric: 

 

ChDistFairness =            –                                                    (4.1.19) 

Create Interference 

graph 

 

 
Sort nodes according to their 

increasing degrees 

Choose the node with the lowest 

degree. Find least used channel 

from channel usage list 

(different from previous tried 

channels). When a tie exists, the 

node with the highest revenue 

has a higher priority 

Is this channel already 

assigned to the selected node 

or to one of the neighbor 

nodes of the selected node? 

Yes 

Yes 

Assign this channel to the selected node and to 

the nodes not being neighbor of the selected 

node, update channel usage list, list of channels 

gained by nodes, list of channel numbers gained 

by nodes, delete nodes whose all channel need 

fulfilled from the interference graph, update total 

revenues of primary and secondery users 

 

No 

All the channels were 

assigned or no more 

channels can be 

assigned? 

Finished 

No 
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where K= (Number of Cognitive Users) and ChDistFairness,        and       show 

channel distribution fairness, series of number of channels needed and series of 

number of channels obtained. 

 

Similar to definition given in equation (4.1.18), we have to take into account 

interference effect on calculation of channel distribution fairness of greedy algorithm 

as well. So, we propose the following equation for channel distribution fairness as 

well. 

 

                            = 

           –                           (1 -        (        ) + 1/K          (                                                    

(4.1.20) 

 

Here,                   shows channel distribution fairness of greedy algorithm, 

Clearly, since         = 0 for proposed algorithms NASA-UNIC and ABSA-UNIC, 

the first term remains. If all nodes get all channels they need and         = 0, metric 

becomes 0. If none of the nodes gets channel and         = 0, metric becomes 1/K 

which is upper limit of the metric for our proposed algorithms. For         > 0, the 

second term increases directly proportionally to it which is true for greedy algorithm. 

 

4.3 Simulation Parameters and Simulation Results 

 

Table 4.1 System model parameters 

Node Index Position 

Cognitive Users: 1-K Random in [0-1000,0-1000] 

Primary Receiver (500,500) 

Primary Transmitter (600,600) 

Average AWGN Power -100 dBm 

path Loss coefficient 4   

 
 

We examined total throughput by changing SINR threshold and also coverage 

area of cognitive transmitters, which means changing transmitting power. 

Simulations were carried out using matlab 7.7.0 (R2008b). 
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Table 4.2 Simulation parameters 

Primary User 

Transmit Power 
Secondery User 

Transmit Power 

SINR 

Threshold   

(Interference 

Susceptibility) 

30 dBm 20 dBm -30 dB 

 
23 dBm -3.01 dB 

 
27 dBm 0 dB 

  
6,99 dB 

  
10 dB 

  
13,01 dB 

  
14,77 dB 

  

16,99 dB 

  

18.75 dB 

  

20 dB 

  

23,01 dB 

  

26,99 dB 

  

30 dB 

 

4.3.1 Test Cases 

 

For every test case, we use an interference graph like in figure 4.7 to abstract the 

cognitive network where the vertices represent the secondary users, and edges 

represent interferences so that no channels can be assigned simultaneously to any 

adjacent nodes. Moreover, throughput gain calculated in test cases shows total score 

calculated at the end of iterations, that means, throughput has unit of score. 

 

In all cases, primary and secondery users lie in an open area of R (m) × R (m), as 

shown in figure 4.3. (For comparison of our simulation parameters to values in 

practive, in 802.22, to achieve a coverage area of 33 km, the transmission power 

level considered is around 4 watts. Here, we consider lower transmit power levels 

resulting in smaller coverage areas). 
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                Figure 4.7 Interference graph with 15 secondery users and 2 primary users. Triangle and 

                diamond represent  primary  transmitter and  receiver  respectively  and  stars  represent 

                secondery users.  Edges represent  interferences  between  secondery  users. 

 

1. Effect of SINR threshold on total gain of primary + secondery users, no 

auction (algorithm NASA-UNIC): Primary transmitter is a base station with transmit 

power of 30dBm (1000mW) and each secondery user is a base station station with 

transmit power of 20dBm (100mW). Secondery user has coverage of around 200m, 

which means that any two SUs interfere with each other when distance between them 

is less than 400m (shown in test case no 1 of table 4.3). We investigate total gain 

throughputs for every value of SINR threshold (outage threshold) from -3.01dB to 

30db. We run 1000 simulations for each value of SINR threshold and get mean of 

total gain throughputs of both primary and secondery users. Furthermore, we also 

check throughput limit of greedy algorithm which indicates results without 

considering interference effect and results obtained applying equation (4.1.18) in 

order to see interference effect on greedy results. All results are given in figure 4.8. 

We give utility of primary user only (figure 4.9) and channel distribution versus 

SINR threshold value (figure 4.10) as well. 
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Table 4.3 Test Cases 

Test 
Case No 

Transmitter 
Type 

Power Unit Coverage Area 

Number 
of 

Primary 
Users 

(J) 

Number of 
Seconder
y Users 

(K) 

Auction 

Based 

Allocation 

1 

Primary 
Transmitter 

30 dBm 373m ( 0.373R ) 2 15 
NO 

  

Cognitive 
Transmitter 

20 dBm 200m ( 0.2R )   
 

2 

Primary 
Transmitter 

30 dBm 373m ( 0.373R ) 2 15 
NO 

 

Cognitive 
Transmitter 

23 dBm 250m ( 0.25R )   
 

3 

Primary 
Transmitter 

30 dBm 373m ( 0.373R ) 2 10-30 
NO 

 

Cognitive 
Transmitter 

20 dBm 200m ( 0.2R )   
 

4 

Primary 
Transmitter 

30 dBm 373m ( 0.373R ) 2 15 
YES 

 

Cognitive 
Transmitter 

20 dBm 200m ( 0.2R )   
 

5 

Primary 
Transmitter 

30 dBm 373m ( 0.373R ) 2 15 
YES 

 

Cognitive 
Transmitter 

23 dBm 250m ( 0.25R )   
 

6 

Primary 
Transmitter 

30 dBm 373m ( 0.373R ) 2 10-30 
YES 

 
Cognitive 

Transmitter 
20 dBm 200m ( 0.2R ) 

  
 

7 
Primary 

Transmitter 
30 dBm 373m ( 0.373R )   

 

 

Cognitive 
Transmitter 

20 dBm 200m ( 0.2R ) 2 15 
YES 

Cognitive 
Transmitter 

23 dBm 250m ( 0.25R ) 
  

  

Cognitive 
Transmitter 

27 dBm 300m ( 0.3R ) 
    

 

2. Effect of secondery transmitter power increase (coverage area) on total gain 

of primary + secondery users versus SINR threshold, no auction (algorithm NASA-

UNIC): Primary transmitter is a base station which has transmit power of 30dBm 

(1000mW) and each secondery user is a base station station with transmit power of 

23dBm (200mW). Secondery user has coverage of around 250m, which means that 

any two SUs interfere with each other when distance between them is less than 500m 

(shown in test case no 2 of table 4.3). Like test case 1, we investigate total 

throughputs for every value of SINR threshold (outage threshold) from -3.01dB to 

30dB. Again, we run 1000 simulations for each value of SINR threshold and get 

mean total gain throughputs of both primary and secondery users. We give these 
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results with greedy results applied interference effect in figure 4.11. As in test case 1, 

we give gain of primary user only (figure 4.12) and channel distribution success 

versus SINR threshold value (figure 4.13). Furthermore, figure 4.14 gives 

comparison of total gain throughputs of NASA-UNIC for secondery users‟ transmit 

powers of 100 mW and 200 mW (figure 4.14). 

 

3. Effect of number of secondery users on total gain of primary + secondery 

users, no auction (algorithm NASA-UNIC): Primary transmitter is a base station with 

transmit power of 30dBm (1000mW) while each secondery user is a base station 

station with transmit power of 20dBm (100mW). We increase number of secondery 

users (K) from 10 to 30 and investigate total gain throughput variation. Results are 

shown in figure 4.15. 

 

4. Effect of SINR threshold on total gain of primary + secondery users 

(algorithm ABSA-UNIC): This case is the same as the first one, except allocation is 

carried out based on auction theory. Total and primary users‟ gain versus SINR 

threshold are given in figures 4.16 and figure 4.17 and channel distribution versus 

SINR threshold is given in figure 4.18.  

 

5. Effect of secondery transmitter power increase (coverage area) on total gain 

of primary + secondery users versus SINR threshold (algorithm ABSA-UNIC): This 

case is the same as the second one, however, here again, allocation is implemented 

based on auction. Results are given in figure 4.19, figure 4.20 and figure 4.21. 

Comparison of total gain throughput of our algorithm for secondery users‟ transmit 

powers of 100 mW and 200 mW is given in figure 4.22. Moreover, to show 

significant advantage of applying auction, we present comparison of total gain 

throughputs with and without auction for SINR threshold value of 100 in figure 4.23. 

 

6. Effect of number of secondery users on total gain of primary + secondery 

users (algorithm ABSA-UNIC): This is the same as the third case, except, auction-

based allocation is used. Results are shown in figure 4.24. 
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7. Effect of increasing coverage area on total gain throughput (algorithm ABSA-

UNIC): In this case, we investigate how total gain throughput is affected by setting 

secondery user transmit power to 20dBm, 23dBm and 27dBm which means changing 

coverage area in [200, 250, 300]m, respectively. Figure 4.25 depicts corresponding 

results. 

 

4.3.2 Simulation Results 

 

In the first experiment, we investigate effect of increasing SINR threshold on total 

gain throughput and primary user gain, without applying auction (NASA-UNIC). As 

seen in figures 4.8 and 4.9, total gain throughput always decreases with increasing 

SINR threshold as expected. As SINR threshold increases, primary receivers will be 

more susceptible to interference and this results in there will be less number of 

secondery users accessing the same channel at the same time. Therefore, channel 

distribution performance gets worse and total throughput decreases. We give 

throughput limit (without interference) of greedy algorithm and greedy net 

throughput results calculated by using equation (4.8.11). It is noticed throughput 

value of NASA-UNIC is much lower than throughput value of greedy algorithm 

when SINR threshold value is 0. This is because user bidding higher revenue has 

higher priority for acquiring a channel in greedy algorithm as well (auction). Another 

noticeable point seen is results of NASA-UNIC and greedy algorithm crossover at  

SINR threshold value of approximately 2-3 dB. After this point (which fairly match 

to practical SINR threshold values given in figure 4.32), net throughputs of NASA-

UNIC are higher than those of greedy mechanism because outages occurring during 

a portion of iterations result in a negative effect on net throughout. Obviously, this 

effect becomes more dominant as SINR threshold increases. For instance, greedy net 

throughput decreases to 0 at around 20 dB of SINR threshold level, however, NASA-

UNIC has total gain throughputs of about 450 and 500 respectively at that level. 

Consequently, this clearly shows superiority of proposed algorithm. Moreover, figure 

4.10 depicts channel distribution fairness from which we can notice channel 

distribution performance worsens with increasing SINR threshold. Besides this, we 

again see there is a crossover of results in accordance with previous results.  
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              Figure 4.8 Total gain throughput versus increasing SINR threshold (with secondery 

              transmit power = 100 mW) 

 

In the second case, we compare again NASA-UNIC with greedy algorithm. 

However, we increase secondery users‟ transmit power from 100 to 200 mW which 

means increasing coverage area from 200 to around 250 meter. Since neighbor nodes 

more interfere with each other, there will be fewer users who can access to the same 

channel, consequently channel distribution performance decreases and so total and 

primary user throughputs decrease as well, as depicted in figures 4.11 and 4.12. 

Similar to the first test case, net throughputs of NASA-UNIC and greedy mechanism 

have a crossover point after which results of NASA-UNIC are clearly much better. 

Figure 4.13 shows channel distribution fairness which is expected to be worse than 

the first case. Besides this, figure 4.14 gives comparison of total gain throughputs of 

the first and second experiments from which it is seen total utilities drop with 

increasing coverage area, as expected. 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 20 dBm 
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             Figure 4.9  Gain  throughput of  primary user versus increasing  SINR  threshold 

 

 
 

            Figure  4.10 Channel distribution fairness versus increasing SINR threshold 
 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 20 dBm 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 20 dBm 
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             Figure  4.11  Total gain throughput   versus   increasing  SINR   threshold  (with 

           secondery transmit power = 200 mW) 

 

 

            Figure 4.12 Gain throughput of  primary user versus increasing SINR threshold 

 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 23 dBm 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 23 dBm 
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            Figure 4.13 Channel distribution fairness versus increasing SINR threshold 

 

 

            Figure 4.14 Comparison  of  total  gain  throughput  of  proposed  algorithm  with   

            with increasing secondery user transmit power (coverage area)  

 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 23 dBm 

 

 



 

 

108 

In the third experiment, we change number of secondery users and observe how 

gain throughputs vary. Figure 4.15 shows total utilities of proposed (NASA-UNIC) 

and greedy algorithms versus number of cognitive users, from which we can notice 

throughput increases almost directly proportional to the number of secondery users 

since number of users obtaining channel increases. We also see that for SINR 

theshold value of 0, NASA-UNIC has lower performance than the greedy one. 

However, for higher values of SINR threshold, it is obvious that NASA-UNIC will 

exceed and then have higher level net throughput curves. 

 

 
           Figure 4.15   Total   gain   throughput   versus   number  of  secondery  users 

 

The fourth scenario is the same as the first one, except for allocation is carried out 

on auction (ABSA-UNIC). Figures 4.16 and 4.17 show total and primary user 

utilities versus SINR threshold where significant advantage of auction can be seen. 

Total and primary user utilities almost approximate to greedy values for SINR 

threshold value of 0. As expected, utilities decrease with increasing SINR threshold, 

whereas they are still much higher than those without auction. Moreover, again 

throughputs of proposed algorithm and greedy intersect and this time, because of 

auction, intersection occurs at very low SINR threshold values which means ABSA-
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UNIC shows great performance even at low SINR threshold values. Figure 4.18 

shows channel distribution versus SINR threshold with auction based allocation, 

where again results are much better than the case without auction (NASA-UNIC). 

 

  
            Figure 4.16 Total  gain  throughput  versus  increasing  SINR  threshold, case with 

            auction 

 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 20 dBm 
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             Figure 4.17 Gain  throughput  of  primary  user  versus  increasing SINR threshold, 

             case with auction 

 

 
          Figure 4.18 Channel distribution fairness versus  increasing  SINR  threshold,  case  

            with auction 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 20 dBm 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 20 dBm 
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Fifth experiment is again the auction version of the second experiment (ABSA-

UNIC). Figures 4.19, 4.20 and 4.21 depict corresponding results, from which 

significant advantage of auction can be seen again. Similar to previous results, net 

throughputs intersect at low SINR threshold values. Figure 4.22 compares total 

utilities of the third and fourth experiments. Different from the case without auction, 

outstanding point of this case is utilities are almost the same till values of SINR 

threshold 10 (10dB), after which the difference increases slowly. In figure 4.23, we 

notice total utility with auction is clearly higher, especially under values of 25 dB of 

SINR threshold. 

 

 

            Figure 4.19 Total gain throughput versus increasing  SINR  threshold,  case  with 

            auction (with secondery transmit power = 200 mW) 

 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 23 dBm 
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             Figure 4.20 Gain throughput of primary  user  versus increasing  SINR threshold,  

             case with auction (with secondery transmit power = 200 mW) 

 

 

            Figure 4.21  Channel  distribution  versus  increasing  SINR  threshold, case with 

            auction allocation (with secondery transmit power = 200 mW) 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 23 dBm 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 23 dBm 
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            Figure 4.22 Comparison of total gain throughput of proposed allocation algorithm  

            with increasing secondery user transmit power (coverage area), case with auction  

 

 

            Figure 4.23 Comparison of total gain throughputs versus SINR threshold with and 

       without auction 

Primary Transmitter Power = 30 dBm 
Secondery Transmitter Power = 20 dBm 
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In the sixth test case, similar to the third experiment, total throughput with auction 

(ABSA-UNIC) versus number of secondery users are investigated which is given in 

figure 4.24. Still, total throughput increases with number of secondery users, 

furthermore, results are seen to be too close to the results of greedy algorithm. We 

also notice that for SINR threshold value of 0, ABSA-UNIC has very close 

performance to the greedy one and for higher values of SINR threshold, it is obvious 

that ABSA-UNIC will exceed and then have higher level net throughput curves. 

 

 

           Figure 4.24  Total gain throughput versus number of secondery users, with auction 

 

In the last experiment, we investigate effect of changing secondery user transmit 

power (therefore coverage area) on the total utility, in case with auction (ABSA-

UNIC). Figure 4.25 shows results from which we see setting transmit power to 

20dBm, 23dBm and 27dBm decreases throughput especially at higher values of 

SINR threshold since number of interfering users (therefore conflict between them) 

increase and SINR threshold constraint becomes more dominant at higher values. 
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             Figure 4.25 Total gain throughput versus SINR threshold with increasing coverage 

             area (ABSA-UNIC) 

                      

In order to do comparison of channel distribution fairness versus secondery user 

transmit power, we fix primary user transmit power to 30 dBm while changing 

secondery user transmit power in [20, 23, 27]dBm, meaning coverage radius change 

in [200,250,300]m, respectively. We fix number of secondery users to 15 as well. 

Figure 4.26 shows results from which we see, with increasing of the coverage radius, 

channel distribution results worsens, because there will be fewer users who can 

access to the same channel. Also we can see that the proposed mechanism has similar 

performance to the greedy one for SINR threshold value of 0. On the other hand, we 

can imagine that channel distribution fairness of greedy algorithm will be worse for 

higher SINR threshold values, that means, the blue bars will exceed the red bars after 

a SINR threshold level and then the higher the SINR threshold value, the higher the 

blue bars than the red bars. 
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                 Figure 4.26 Channel distribution  fairness  versus  coverage area,  with primary  

                 user transmit power fixed to 30 dBm,  secondery user  transmit power  change  

                 in [20, 23, 27] dBm and SINR threshold = 0 

 

In order to obtain heuristic maximum throughputs (scores) of ABSA-UNIC 

algorithm for every SINR threshold value, first we listed all possible independent 

sets of an interference graph with 15 secondery users, not only the maximum one, for 

primary user transmit power of 30 dBm and secondery user transmit power of 20 

dBm. Next, we ran ABSA-UNIC starting with each of them one by one and noted 

final total throughput gains. At the end, we obtained the maximum value of all 

throughputs as heuristic maximum. At the same time, we ran our algorithm starting 

with the maximum independent set as well and finally compared the results which is 

given in figure 4.27. We notice heuristic maximum throughput scores are higher than 

all other throughput levels because it shows the best scores of all iterations over all 

SINR threshold values. Furthermore, as expected, it falls under the greedy limit level 

after around 20 dB, since greedy limit does not include SINR effect as we already 

explained. 
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           Figure 4.27 Heuristic and proposed algorithm maximum throughputs versus SINR 

           threshold 

  

To compare maximum throughput values (scores) of Brute Force, greedy 

algorithm and our algorithm ABSA-UNIC, we compare maximum values reached by 

running greedy and ABSA-UNIC for 1000 times, for SINR threshold values of 0 and 

100.  

 

During these simulations, we fixed primary and secondery user biddings to 

following scores in order for comparison to give more meaningful results: 

 

          = [22, 24, 20, 23, 11, 20, 15, 18, 21, 20, 12, 11, 11, 16, 24]   

         = [5, 5, 6, 7, 5, 6, 5, 5, 5, 6, 7, 7, 5, 6, 7] 

 

 

Table 4.4 presents results for SINR threshold value of 0. As seen on the table, 

maximum total throughput of Brute Force is 784, it is 768 with greedy and 784 with 

ABSA-UNIC.  
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Figures 4.28 and 4.29 show distributions of all throughput values of ABSA-UNIC 

and greedy algorithm respectively, at the end of 1000 iterations. 

 

Table 4.4 Maximum throughput values (scores) for SINR threshold = 0 

SINR threshold = 0 
 

Brute 

Force 

Greedy 

Algorithm 

ABSA-

UNIC 

Greedy 

(Primary 

User) 

ABSA-

UNIC 

(Primary 

User) 

Over 1000 Iterations 

Maximum Gain 

Throughput 

Value (score) 

784 768 784 183 188 

Secondery User Payoff 

fixed to 30 

Primary User Payoff 

fixed to 7 

Maximum Gain 

Throughput 

Percentage 
 

2,5% 0,7% 0,5% 0,7% 

 

Outage 

Percentage  
0% 0% 

  

 

Channel 

Distribution 

Metric 

(minimum) 

 
0 0 

  

 

Total Gain 

Throughput > 

750 
 

55,5% 24,5% 
  

 
 

 

          Figure 4.28  Distributions   of   total   gain   throughputs  for  SINR threshold = 0 

          (ABSA-UNIC) 

 

In table 4.5, results are given for SINR threshold value of 100. Again, it is seen 

maximum total gain throughputs of Brute Force and greedy are 784 and 768, 
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respectively. It is 768 with ABSA-UNIC, as well. Moreover, maximum primary user 

gains of greedy algorithm and ABSA-UNIC are 183 and 182 respectively. Because 

of interference outage threshold, on 99,7% of 1000 iterations of greedy algorithm, 

primary receiver got outage whereas never outage occurred with ABSA-UNIC which 

shows our algorithm‟ s advantage. 

 

 

          Figure 4.29 Distributions of total gain throughputs for SINR threshold = 0 (greedy 

          algorithm) 

 

Table 4.5 Maximum throughput values (scores) for SINR threshold = 100 (20dB) 

SINR threshold = 100 
 

Brute 

Force 

Greedy 

Algorithm 

ABSA-

UNIC 

Greedy 

(Primary 

User) 

ABSA-

UNIC 

(Primary 

User) 

Over 1000 Iterations 

Maximum Gain 

Throughput 

Value (score) 

784 768 768 183 182 

Secondery User Payoff 

fixed to 30 

Primary User Payoff 

fixed to 7 

Maximum Gain 

Throughput 

Percentage 
 

0,24% 0,01% 0,07% 0,01% 

 

Outage 

Percentage  
99 ,7% 0% 

  

 

Channel 

Distribution 

Metric 

(minimum) 

 
0,0009 0,0018 

  

 

Total Gain 

Throughput > 

750 
 

55,9% 0,2% 
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Figures 4.30 and 4.31 show distributions of all throughput values of ABSA-UNIC 

and greedy algorithm respectively, at the end of 1000 iterations. 

 

 

               Figure 4.30 Distributions  of  total  gain  throughputs  for  SINR  threshold = 100  

               (ABSA-UNIC) 

 

 

             Figure 4. 31 Distributions of  total  gain  throughputs  for  SINR  threshold = 100 

              (greedy algorithm with interference effect) 
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In order to compare SINR thresholds we used in our experiments with practical 

values, we can check values in figure 4.32. It compares the performance of various 

wireless access technologies and puts them in contrast to the shannon physical 

limitation. 

 

 

    Figure 4.32 Shannon Limits of various wireless access technologies 

 

Following table shows some SINR limits for WIMAX system: 

 

Table 4.6 

System Coding Rate SINR Value 

WIMAX BPSK (Coding rate=1/2) 6.4 dB 

 
QPSK (Coding rate=1/2) 9.4 dB 

 
QPSK (Coding rate=3/4) 11.2 dB 

 
QAM-16 (Coding rate=1/2) 16.4 dB 

 
QAM-16 (Coding rate=3/4) 18.2 dB 

 
QAM-64 (Coding rate=1/2) 22.7 dB 

 
QAM-64 (Coding rate=3/4) 24.4 dB 

 

 

In this chapter, first we give our model and utility functions. Then, we represent 

the problem as a non-linear programming problem. After that, we explain our 
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proposed algorithm (version with auction called as ABSA-UNIC and version with no 

auction called as NASA-UNIC) and a greedy algorithm for channel allocation which 

we use for comparison. Then, we give our simulation model, parameters and test 

cases. Finally, we present simulation results graphically and comment about them. 
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CHAPTER FIVE 

CONCLUSIONS 

 

In this thesis work, we study graph theory and its various applications in the field 

of computer networks. In mathematics and computer science, graph theory is the 

study of graphs which are mathematical structures used to model pairwise relations 

between objects from a certain collection. A graph in this context refers to a 

collection of vertices or nodes and a collection of edges that connect pairs of vertices. 

Graphs are represented graphically by drawing a dot for every vertex, and drawing 

an arc between two vertices if they are connected by an edge.  

 

Networks have many uses in the practical side of graph theory (for example, to 

model and analyze traffic networks). Within network analysis, the definition of the 

term network varies, and may often refer to a simple graph. Applications of graph 

theory in the form of network analysis split broadly into three categories. Firstly, 

analysis to determine structural properties of a network, such as the distribution of 

vertex degrees and the diameter of the graph. A vast number of graph measures exist, 

and the production of useful ones for various domains remains an active area of 

research. Secondly, analysis to find a measurable quantity within the network, for 

example, for a transportation network, the level of vehicular flow within any portion 

of it. Thirdly, analysis of dynamical properties of networks. 

 

In the literature, various applications of graph theory for wireless networks exist. 

Arbitrary graphs have the advantage of being able to represent all possible network 

configurations. Certain restricted graphs could give an accurate representation for 

certain radio network or network scenario. They may illuminate some aspects of the 

problem structure, which might help in solving the problem, and finding the optimal 

solution, such as finding a chromatic number. On the other hand, most of the 

applications of graph theory are to solve the problem of channel assignment. 

Especially automatic channel assignment in multi-channel multi-radio wireless mesh 

networks is a key technique to minimize signal interference and increase network 

capacity. Tree and planar graphs are most famous restricted arbitrary graphs used in 
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modeling radio networks. Tree is the simplest graphical representation and problems 

such as message routing and propagation can be well addressed using tree models. 

 

After studying graph theory in the introduction part of the thesis, we investigate 

its various applications in the field of networks and classify them based on 7 layers 

of OSI. Most of the applications are seen regarding MAC, transport, network and 

physical Layers. 

 

Applications on MAC layer are mostly related to channel assignment, coloring 

and scheduling problems. Furthermore, new graph models are introduced for 

interference minimization and better spectrum utilization. Especially, unit disk and 

double disk graph models are widely used and researchers propose many algorithms 

based on these models. On the other hand, examples of transport layer applications 

are congestion prevention and flow control algorithms. 

 

On network layer, most of applications are related to routing problems. Routing 

algorithms generally aim to transmit messages from a source to a destination on a 

graph with minimum number of hops and in a faster way. Also, there are applications 

related to topology control and flooding issues. 

 

 Physical layer applications are mostly regarding trellis and state diagrams. Those 

diagrams are generally used for graph representation of codes in time and frequency 

domain. Applications for interference management based on SINR models exist as 

well. 

 

After having a detailed look at graph theory applications, we see spectrum 

allocation is an important open area in wireless networks because of scarcity of 

available frequency spectrum. The demand for wireless spectrum has been growing 

rapidly with the dramatic development of the mobile telecommunication industry in 

the last decades. In order to fully utilize the scarce spectrum resources, with the 

development of cognitive radio technologies, dynamic spectrum allocation becomes 

a promising approach to increase the efficiency of spectrum usage. Cognitive radio 
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techniques provide the capability to use or share the spectrum in an opportunistic 

manner. Dynamic spectrum access techniques allow the cognitive radio to operate in 

the best available channel. 

 

The ultimate objective of the cognitive radio is to obtain the best available 

spectrum through cognitive capability and reconfigurability. Since most of the 

spectrum is already assigned, the most important challenge is to share the licensed 

spectrum without interfering with the transmission of other licensed users. 

 

The coloring model based on graph theory is an important model to research on 

channel allocation for cognitive radios, which models the network topology 

including cognitive users and primary users as an interference graph so that the 

channel allocation problem is formulated as a graph-coloring problem. 

 

Another important issue in cognitive radio networks is that spectrum owners 

should not be affected by usage of spectrum holes by secondery users. In literature 

there are many studies concerning only dynamic spectrum allocation without 

considering interference constraints, whereas some of them only consider 

interference and power management issues without taking into account throughput 

maximization during channel allocation. 

 

As a result of these observations, we see there is no work on cross-layer 

applications of graph theory and cognitive radio is a good field for this purpose. We 

study on a MAC-physical cross layer application of graph theory which includes 

both spectrum allocation and SINR management in cognitive radio networks. We 

consider sum of revenues of both primary and secondery users as throughput of 

channel allocation mechanism and we investigate primary users‟ total revenue 

separately as well. We not only aim to maximize throughput but also satisfying SINR 

limit on primary receivers so that their operation is not affected. We also investigate 

effect of auction theory on total throughput. For this purpose, we propose a novel 

algorithm to allocate channels in the spectrum pool with graph coloring and bidding 

theory, which compares total interference on primary receiver with outage 



 

 

126 

interference threshold and takes actions accordingly. Distinguishing from related 

works, both auction-based throughput maximization and interference management 

are handled together, without controlling secondery user power levels. We call the 

auction version of our algorithm as ABSA-UNIC and the no-auction version as 

NASA-UNIC. For comparison, we also use a greedy algorithm for channel allocation 

which does not take interference effect into consideration. Therefore, primary 

receiver goes under outage in a portion of iterations depending on SINR threshold 

value whereas never outage occurs with proposed algorithm. Because of this, in 

order to compare results, we define net throughput by taking into account outage 

probability together with throughput obtained at the end of simulations. 

 

In our simulations, we consider a model with one primary transmitter and its 

corresponding receiver with variable number of secondery users. Moreover, we use 

transmission power levels and SINR threshold values in accordance with realistic 

systems. We investigate how total throughput is affected by modifying several 

parameters. These include number of secondery users, transmission power levels 

(which means changing coverage area) and also SINR threshold level. We also 

simulate channel allocation without and with auction. On the other hand, we check 

channel distribution success of proposed algorithm by defining a distribution fairness 

metric as well. 

 

At the end of simulations, we investigate total gain throughput versus SINR 

threshold level, coverage area and number of secondery users. Simulation results 

show that exposing higher SINR (outage) threshold always decreases total gain and 

primary users‟ utilities. The higher the SINR threshold, the more susceptible to 

interference the primary receivers will be and this results in there will be less number 

of secondery users accessing the same channel at the same time. Consequently, 

channel distribution performance gets worse and total throughput decreases. On the 

other hand, adding auction significantly increases total gain throughput and primary 

user‟ s utility. Especially till SINR threshold values of 20 dBs, auction provides 

outstanding performance and ABSA-UNIC has total throughput results close to those 

of the greedy one even though no interference constraint is applied to the greedy 
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algorithm. Consequently, since users bidding higher have higher priority to get 

channel, auction-based allocation mechanism significanlty increases total gain 

throughput. Another noticeable point seen in simulation results is crossover of net 

throughputs of proposed and greedy algorithms at a SINR threshold value. After this 

point, results of NASA-UNIC and ABSA-UNIC are better than those of greedy 

mechanism because outages occurring during a portion of iterations result in a 

negative effect on net throughout. Obviously, this effect gets more dominant as SINR 

threshold increases. In summary, this result clearly shows advantage of proposed 

algorithm. 

 

5.1 Summary of Contributions 

 

In this thesis, our study mainly concerns applications of graph theory in wireless 

networks. Our original work is a MAC-physical cross-layer application 

implementation which is related to spectrum allocation problem in cognitive radio 

networks. 

 

In this work, we study on allocation of vacant channels which are not used by 

primary users (spectrum holders) to secondery users who pay money for those 

channels. Cognitive radio is modelled as an undirected graph for this purpose where 

vertices represent secondery users and edges represent interferences so that no 

channels can be assigned simultaneously to any adjacent nodes.  The objective of 

allocation is to maximize spectrum utilization for both primary and secondery users. 

That means maximizing total revenue of both primary and secondery users. It is 

important to allocate channel to a user who bid more than the other users for the 

same channel. So, auction-based allocation improves total throughput. Considering 

this, for throughput maximization, we propose an allocation algorithm based on 

auction. On the other hand, it is important channels occupied by cognitive users are 

not used by primary users at the same time. Otherwise, primary receivers are affected 

because of co-channel interference resulting from secondery users. If interference 

level goes above a threshold value, primary users go under outage. Based on this, we 

handle interference management in our allocation algorithm as well and improve it 
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so that primary receivers do not go under outage when maximizing total throughout 

during auction-based allocation. Consequently, the algorithm we propose in this 

thesis is unique which is based on graph coloring, bidding and auction theory at the 

same time and it not only tries to maximize total throughput which is sum of 

revenues of all users but also satisfies SINR condition on primary receivers. 

Moreover, proposed algorithm gives much better net throughputs than greedy 

algorithm because of outages occurring with greedy mechanism. 
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