Bir Ornek Dagitik Veri Tabann Dizge Tanm

q}@.‘:""

. Bora I. Kumova

A Hs Y

Aralik, 1998
S

m

System Specification for an Example Distributed

Database

A Thesis Submitted to the Graduate;School of Natural and Applied
Sciences of

Dokuz Eyliil University

In Partial Fulfilment of the Requirements for the Degree of Master of

Science in Computer Engineering, Software Engineering Programme

By

Bora I. Kumova

December, 1998
IZMIR

v

Bir Ornek Dagitik Veri Tabanm Dizge Tanim

Dokuz Eyliil Universitesi
Fen Bilimleri Enstitiisii
Yiiksek Lisans Tezi
Bilgisayag Miihendisligi B6liimii, Yazihm Anabilim Dah

Bora i. Kumova

Arahk, 1998

izmir

M.Sc. Thesis Examination Result Form

We certificate that we have read this thesis and that in our opinion it is fully adequate, in
scope and quality, as thesis for the degree of Master of Science.

Assoc. Prof. Dr. Alp Kut
(Advisor)

| ﬂQAWWQ

Assoc. Prof. Dr. M col Heywood
(Comity Member)

Asst. Prof. Dr. Reyat Yilmaz
(Comity Member)

Approved for the
Graduate School of Natural and Applied Sciences

Prof. Dr. Cahit Hel¥act
Director
Graduate School of Natural and Applied Sciences

VI

Acknowledgements

Thanks are due to my advisor, for giving me latitude for interdisciplinary research,

inside the defined scope.

Bora i. Kumova

VII

Abstract

Currently, a rapidly growing amount of structured data is becoming available over
the network. Most of them reside on workstations within relatively small databases. Users
are interested in sharing their structured data and;in having own views of that distributed
data. An attempt to combine this data in a bottom-up design and try to guarantee overall
data consistency would fail with current distributed database management systems. The
reasons are the existence of various types of heterogeneity and the dynamic behaviour of
the overall data structure. Both are caused by the fact that each owner usually insists on the

autonomy of his database.

Our approach is to provide for distributed database management on each client
separately. Each user can deal with the dynamic nature of the distributed data structures by
managing his views by himself. Furthermore, a user environment with access to shared
data can be utilised for co-operative teamwork of users. Thus, we propose view-based
distributed database management with guaranteed data integrity, until data structures
change some where in the distributed database. Further, we propose an agent-based
solution for database connectivity. Agents can be designed to handle with heterogéneity
and as object-oriented, intelligent entities are inherently suitable implementing distributed
database management in a distributed fashion, which fits the best the network

characteristics.

VIII

Ozet

Halen, biiyiik bir hiz ile gogalarak bigimlenmis veri, ag lizerinden kullamlabilir hale
geliyor. Bunlann ¢ogu is istasyonlarinda oldukga kiigiik veri tabanlarinda bulunuyor.
Kullanicilar, kendi bigimlenmis verilerini paylasn{ak ve bu dagitik veri tabanuna kendi
agilarindan bakmak istiyorlar. Bu verileri, bir alttan-yukar1 tasarimi ile birlegtime ve
kapsamli veri tutarhlifi saglama girigsimi, var olan dagitik veri tabami dizgeleri ile
basarilamaz. Nedenleri ise, degisik tiir ayricaliklarin var olmasinda ve kapsamli veri
yapilarin devingen davramgh olmasindadir. Ikisi de, kullamicilarin genelde kendi veri
tabanlarinin bagimsiz olmasinda direndiklerinden kaynaklanmaktadir.

Bizim yaklagimimiz ise, dagiik veri tabami yonetimini her istemcide ayn ayn
saglamaktir. Her kullanici, kendi gériis agilarini yoneterek dagitik veri yapilarin devingen
davranisi ile kendi ilgilenebilir. Bundan da &te, paylasilan verilere erigimi olan bir kullamci
ortami, igbirlikli takim c¢aligmasi i¢in yararlandirilabilir. Buna gére biz, goriis agisina
dayanan, veri yapilan dagitik veri tabaninda her hangi bir yerde degisinceye degin veri
tutarhilig1 giivenceli olan, dagitik veri tabani yonetimi 6neriyoruz. Ayrica, araciya dayanan
bir veri tabani baglantis1 dneriyoruz. Aracilar tiir ayricaliklar: ile baga gikabilecek nitelikte
tasarlanabilirler ve nesneye dayal, akilli varliklar olarak, ag niteliklerine en uygun gelen,
dagitik bir bigimde dagitik veri tabam yonetimini gergeklestirmek icin dogal olarak

uygundurlar.

Contents
COMLEILS ..veveeeeerrreeecrensseeressnossssossssssossesssssssnsssssessssessssasessassessassssessssnassssnsassssasssssssssssasasessasses X
LISt Of TADIES ...ceereeveerecnnceesrcnnsninsssssnsanessossnsseessessesssessiossessessasssnssnssasssssasssssnsssnsssassssssaens X
List of Figurescocovivinicicncrcnenineeieeiennenennd evererareseeessaeseraeresanassssanenssessssensseraenssnte X1V
INETOAUCHIONerereviriniiensnriernessassssniissstesssnsssusessasessueeesssnnssstesssressanssssanssssssnssasnsensssnasesssassssesans 1

Chapter One

Distributed Database Systems

1.1 Distributed Database Managementc.ccveeesreenrecnssensnisiensessssecessecsssessssnessenssnnossssssaes 4
1.2 Distributed Database System ATChiteCtUrecverueerensecsinsiessensseniaiesenssensessseseesansens 5
1.3 Distributed Database DESIgIcccccevveiiieenisuiinsinriiiensiiinieiessinisseessisseisssssesssnasssnsesens 8
1.4 Data DiStriDULION ...cccceeriesecsenssnnssnssesssesssiessuisssssssesssissssseesssssssssosssesssnessnssssassssassrassnns 9
1.5 Transaction Management.......coeireserssieissnnssnisssrescssnisssanssssessssnessssanessssesssssnssosasesssnnsase 12
1.6 Distributed Concurrency COntrol........ccocceimviinsniinisiensiecssinnienniniesssssesseessiessnseoes 13
1.7 Data SECUILY.....ccerorerrerersstrssanssasssnnesersssncsaessssossusassnsssasssnssssesssesssssssasssssassasesssnassanssnsases 15

Chapter Two

Software Agents

2.1 CONCEPLION ...ccoueruiereererserssessssssissassasssnssnsanessassassnssssessasassnsssasssssstsssessanassssssessassssessassacss 17
2.2 PIOPETLIES .coeeieriaiererarancneseesissnssssssssnssesasnssnsssessessesnsnessssnassassassasassssestssstsntsnsssesssessssses 19
2.3 ATCHILECIUIES ..uceceeeeeirarsnossesaessanssstsssenssesssssssressansosnessnsssnssssesssnssnasssesssnssssstsssasssnsssssoss 21
2.4 KNOWIEAZE BASEcorvericuisnsnnsnnsaisissessnsensensnsssssassusssesesssssssssessassssssssssssnsssssssessonsossases 24
2.5 Communication LangUaZESc.ccececeerermrrerisirsnssisssinnssinssninssessesessassessesssssssssssssisssssssessess 26

2.6
2.7

3.1
3.2
33
34
3.5

4.1
4.2
4.3
4.4
4.5
4.6

5.1
52
53
5.4
5.5

Agent ClasSifICALIONScccerreeereerererecraneressresssssssersnsessessaessssssonsesssssssssessessansonsassssassnsss 28
CO-OPETALION ..ceeureerirsiorerinnsnsssissnsssessissesstnenseresssesanssssstosanontossssranesnssssesnessssssasesssesssesnss 30

Chapter Three

Existing Agent-based Information Systems

WEBCON ...uoiiiiiinnnnisiesisssssississesssssssssssnssssssssssssssostssessassissassnsssesssssessssssessassssssssnossoses 32
MIINDciiiuinnnrenisessssnsssicsssssssessassossosasssssesessstssessnsssssessssssssssssostassessesssssassnesssssessessasss 33
RETSINAL...ociiitirinnisestessssensiesissmosssessessssssssissssssssssesssesssssessessessessesssssssssessassnsssssasness 36
InfoSleuth.......couienvinnnnnniniinnraccssnienscrosserananss Frvererrossenssnssesssssessassssssessosssnsessansosoneessnsens 38
INFOMASLETceeeeiirrireisieeenntessattessssosaesssssnosssssosassssssssssnsssssesssasssssessssassssssassssnnassssaness 40

Chapter Four

AgentTeam Framework

Distributed Database MOdElccovccreinreiinnnntinincnninniineinniieenieniomieiisesine 42
AZENt MOMEL......eeieeeecicercnnennecseeenaessesesnessensssnsentassenscsssssnsssnsssssanssnssssanssnsssssesaans 46
AGENE TYPLS ceeeireiiiicttnciicssiieiescnttestresstsstrsssatssssesisssesssanasesssessssasessssnesosaneesssntssnane 53
AZENECOM.c..ueeecrercerrreceteranesesssansssesstsssnsssasestsasassssesssnssnsossssssasssssssssesesssessansessessassonas 55
User Co-operation Model ...t 56
SECUNILY COMCEPLS c.uurerreernrncnresreniriissrnsserseiessersssrsssisssesssssssessssessasssssnsssnesssssssasssssssssssssnes 57

Chapter Five

‘ CourseMan Prototype

Distributed Database ATCRItECIIIE.v.ovcuesssresssssssssssssssssssssssssessssssssessassssssessess 59
Agent ArChItECIUTE......ccvuiimniinisinciissinsisisimiis sttt st sss s ssessasasas 61
Co-operative User Work...; ... 63
SECUTILY COMCEPLS c.uverirrrsscsarsssssesssssissesnsssosesssossssessassessassnsssssassasssssssssseassnsssassessssanssasans 64
System CONfIGUIAtIONcveerersnsrerisuisrerisnsesisesssusisnsisssssssssnssssssessesssssssssssosssssssssasnes 64

XI

CONCIUSIONS ..ccvvirvieaererisissiosiossesssestesansasssnsssrossasasssesssessisssossssssssassssssssassessassnsesssssssssonsessnssns 67
ADDICVIALIONS ..cuvieerereiiirieninrnistesiestosnorssssssessessisssssssssssoscssessessiossostossessassesssasassnessessssssssees 72
REfEIENCESueitiireiiiiriciiteensnrniessessnsssectsstisestssesstssesssestseesessassssnessesssesstnssssanssasssenns 73
Appendix
A. BNF Of AZENLCOM ...ccoueenurernnisissaerssnesessestassanssnsossesssassenossessossssassostsssnesssaassssssssssssnssssssse 82
B. Entity Relationship Diagram of the Distributed Database...........cccoeverrirseiirsensinscsseenes 84
C. Data Dictionary of Distributed Databaseccoecceerrurerrenessnsernreensesnsessssenessranssessssssnnesse 86
D.. Network ConfigUurationc..cvceiicinneseniiismennonieieimsssisessismmeisionsiossssossssces 94
E. UtliSEd TOOIS.....coniiiiiicsinsersnisssieninnsnsirssssnecnesssssisssasessssssesssssssesnssssssstsasnasssasssssssossasness 96
F. Software Design of the PTOtOLYDPEc.cverrieniernsisunseenmsisiestssaensnssssessssesnsonsssssssscsassaenens 98
G. Data Structures of the Knowledge Base.........cc.cccceererriinrerirerenseecsessseeseneseessnsesseesescnesnes 101

Table 1

X1

List of Tables

Some Characteristics of the Communication Models

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure 4.8

XIII

List of Figures
Layers Of TrANSPAIEIICYocvveeuisieresnssssuesessissesessoressessessesassassessesssessssesssonssssnsses 6
DBMS Implementation Altematives;. ... 7
A Complete Utility-based AZENtccervveirerreirerrenruesnenesenieniessessesessenssesssens 22
Structure of a Mobile ANtcccoviverenriirinininiineneneieenessnesssss s 23
A Taxonomy of Agent TeChnolOZIES.......cocevvuirirennrinineirenicseciineisaeesnenseesanes 27
WEBCON AIChItECtUIEovrveereisriniissmnsnisiissnisansnssuenssnsssessnsssaenns reeeeaeesnesane 33
MIND ATCRItECIUTE....uuiivuiernirsriisnrseisrinsaressnessnissnessanessasssssesssassssesssssssnsassessans 35
The RETSINA Distributed Agent Organisationcceeveveesnnesvensresseessesnnanne 36
InfoSleuth Dynamic and Broker-based Agent Architectureccceveseenenees 38
InfoSleuth Agent LAYerScocevvirrnieeriisniinisieseninsssnsnnsnnisenisessssensssnsesssonssnns 39
Infomaster Agent ATChiteCtUIEoovvivveiniecriniiinenrienneiininnicnrensescescnsssssisas 41
Abstraction Levels over Heterogeneous DBMSScoeiviinieniinecnivnniniieennnn. 43
Domain of the Framework AgentTeam44
Database Connectivity Model of AgentTeam.......couevvreieiierneecsnsessnnsscisensnes 46
Architecture and Environment of an AgentTeam Agent......cccocevevrrrecnsienens 48
Life-cycle Model of an AgentTeam AgENt.......ccceeiiissinninsiisiinnsiniensensananens 48
Knowledge Base Structure of an AgentTeam Agent........... pessrenssassesassessssiesss D0
Hierarchical Structure of the DBMS Templatecccveueeveerinennneniscsnccnsscnanns 50

Communication Model of an AgentTeam AZEnteevereeeiveeseensicsanseessennes 52

XIv

Figure 49 Communication Structure of the Agent Typescocevreriicriiininniiinncnsennnenne 54
Figure 4.10 Three Levels Co-operation Model of AgentTeam...........cecevveriveenriirnecnncanenns 57
Figure 5.1: Wrapping between the Data Representation FOrmsc.ccovniniiisinsninnnas 62
Figure 5.2: User Interface of CourseMan.........cocveveerinnnsnininnnnsiisinsninessesniinieninns 63
Figure 5.3 Current Network Configuration of CourseMal.........ccccerrrerenssincsnessenssanenas 65
Figure B.1 Conceptual Scheme as E/R Diagram of the University Course Enterprise 84
Figure D.1 Current Machine Configuration, Data Distribution, and Access Rights in
CourseMan........cocernersensensesuessesesanns Lo s 95
Figure E.1 Basic Tools and their Connectivity in CourseMan..........cceevrverernisvessercessaens 96
Figure F.1 Class DIiagraml.......c.ccceeviiuienuercnenscrcnnnnranssencsessnneessesssecssstnssssssssssssassonsesssssonee . 99
Figure G.1: Node Structure of a Semantic NOdec.ccccevvirivureinnecnerirnnnisrencsnseennnesiesssens 101
Figure G.2: AgentCom Syntax Represented in a Semantic Net Templatec.ccue... 102

Bora I. Kumova MSc Thesis 1998 1

Introduction

Traditionally, a distributed database is designed in a top-down or a bottom-up fashion
and the management system is designed to guaranty global data integrity. A tight
communication between the components of such a management system is necessary, in
order to hold the distributed data consistent [Ozsu 91]. However, for growing number of
involved sites, global data integrity becomes unreasonable, because of the growing

communication overhead [Stonebraker et al. 96].

Different techniques have been suggested to relax the guarantee for global data
integrity temporarily, to provide for more system flexibility [Desai 90], [Stonebraker et al.
96]. In the extreme case of distributing a database management system, the local databases
are autonomous and global database management is performed in form of co-operation
among involved database systems. An example is the current situation in the Internet,
where, caused by heterogeneity, the database management systems are not even capable to
communicate with each other. A standard protocol that could enable such a communication
should first build a homogeneous layer [Ozsu 91], [Genesereth et al. 97], and then it should

enable for distributed database management.

Since, the agent concept defines an autonomous, communicative, and problem
solving entity, that exists in a distributed environment, it promises to be a suitable approach
to implement distributed database management with agents. The agent concept is classified
as a subsidiary of artificial intelligence and discussed in the literature under distributed
artificial intelligence, in form of multiple agent systems and their properties [Green et al.
971, [Norvig 95]. The main objeétive of multi-agent systems is distributed problem solving,
whereas that of distributed database management systems is the management of distributed

data. However, for both there are some similarities, such as the heterogeneous

Bora I. Kumova MSc Thesis 1998 2

environment, in which the system entities operate, autonomy, which the system entities

posses, and co-operation, which is required for each involved entity to solve local

problems.

The idea to combine agent technology with databases have already been discussed
the literature [Kandzia et al. 97]. Agents as components of a database management system,
such as query optimiser or storage manager, can introduce more flexibility into the system
as well as for the system designer [Akker et al. 97]. Concepts for such systems are for
example, a multi database management system with components designed as agents and
where in a centralised approach global integrity is guaranteed [Dogag et al. 98]. A further
example is a multi reactive database system,’ where the rules of each database are
considered to be implemented by an agent and where the system goal is, like in the former

example, to guarantee global data integrity centralised [Babin et al. 97].

This work is an attempt to combine the computer science and engineering disciplines
distributed database management and agents in a framework that is suitable for

heterogeneous and dynamic networks.

For collecting information material, following research disciplines have been of

interest in this work:
e Distributed databases management: Distributed, heterogeneous, multi databases
e Artificial intelligence: Knowledge representation, distributed problem solving
(intelligent agents) ,
e Software éngineering: Object-oriented software design and implementation

e Distributed systems: Co-operative work, co-ordination, information retrieval,

network-centric systems

The two major goals of this work are the:

e Development of a framework for connecting multiple databases and to provide for
distributed database management

o Implementation of a prototype that can serve as a test-bed for experiments and for
further extensions in terms of distributed database management and agent

capabilities

Some requirements for the framework are:

Bora I. Kumova MSc Thesis 1998 3

e Provide a homogeneous working environment for co-operative work of a user team
based on shared distributed databases
e Enable users to create their own views on distributed databases

o Enable users to handle with dynamic data structures of the distributed database

Some requirements for the test-bed are:

The test-bed itself should be a distributed system

The scalability of the test-bed should be unlimited, with respect to involved hosts

and data sources

We assume that a heterogeneous network is ’characterised by differences in:
e Native data representation '
e Native programming languages
e Operating systems

e Network transport protocols

In this work, frequently in database terminology used term “user”, we interpret as any
kind of user of data or system functionality, such as an application, an administrator, or an

end-user.

The structure of this work is organised as follows. In chapter one, current theory of
distributed database management is reviewed, in chapter two, current theory about the
agent concept is discussed. In chapter three, a review on some existing systems is given,
which attempt to combine distributed database management with agent technology. In
chapter four, the framework AgentTeam is introduced, which is our solution model for the
thesis. In the last chapter the prototype implementation of AgentTeam, namely CourseMan,
is discussed. Finally, the work concludes with an evaluation of the work and some

suggestions for further work. Implementation-oriented details are listed in the appendix.

Bora I. Kumova MSc Thesis 1998 4

Chapter One
Distributed Database Systems

Theory, architectures, and algorithms that underlay distributed database management
systems are summarised in this chapter. The air;l at reflecting here discussions from the
related literature is to identify the design issues for our framework. However, we evaluate
these issues from the viewpoint of distributed multi database systems, since this is the

chosen implementation model for the framework.

1.1 Distributed Database Management

Though implementation models are discussed later in this chapter, we use the
acronym DDBMS hereafter, in place of distributed, heterogeneous, multi database or
database management system, even if the currently discussed system only partially satisfies

these properties.

The major functionality of distributed database management is concerned with
distributed query processing, concurrency control, distributed commitment and recovery,

deadlock detection, query optimisation, security, and heterogeneity.

Advantages

A detailed discussion of advantages and disadvantages of distributed systems and
DDBMS can be found in [Tanenbaum 92] and [Desai 90] respectively.
e Sharing: Users at a given site are able to access data stored at other sites and at the
same time retain control over the data at their own site.
» Availability and reliability: Even when a site is down, the system remains available.

With replicated data, the failure of one site still allows access to the replicated copy

Bora I. Kumova MSc Thesis 1998 5

of the data from another site. The remaining sites continue to function. The greater
accessibility enhances the reliability of the system.

o Incremental growth: As further information is needed, new sites can be added
independently from already existing sites.

e Parallel evaluation: A query involving data from several sites can be subdivided

into sub-queries and the parts evaluated in parallel.

Disadvantages

Disadvantages of DDBMSs over centralised ones are:

o Co-operation mechanisms needed: Each siie must provide connectivity mechanisms
in order to enable mutual communication. A common communication language for
involved sites is required. Dedicated control mechanisms for distributed systems are
necessary, to allow for co-ordinated work.

e Transaction time overhead: Due to time consuming message transmission,
transaction times over the network usually result in multiples of the time that would
be needed for a local transaction.

e Operation overhead: Sum of all operations is a magnitude greater than the sum of
operations in a centralised environment where no co-operation and co-ordination
procedures must be performed. .

e Synchronisation mechanisms needed. Concurrent update operations must be

synchronised, in order to guarantee data consistency.

1.2 Distributed Database System Architecture

Various architectural models have been proposed and discussed for DDBMSs [Desai
90}, [Ozkarahan 97]. Two of them are generalise frameworks that represent the major
architectural structures common to the most DDBMSs. One emphasises user’s perspective
by building several functional abstraction levels upon data. The other classifies DDBMSs
according implementation alternatives. Both are discussed in the next sub-chapters. A
further one is the standardisation effort ANSI/SPARC that, from the perspective of data

organisation, builds the functional abstraction levels internal view, conceptual view, and

Bora I. Kumova MSc Thesis 1998 6

external view. The first one deals with the physical storage and location of data. The
second level deals with relationships between the data. The highest level is devoted to
modelling the interface between system and end-user. Further discussions on architectures

can be found in [Ozkarahan 97].

Layered System Transparencies

System transparency hides lower-level details of an abstraction. Usually, an
abstraction is made according to a concept. Depending on the system domain, concepts
may vary, resulting in different abstractions over the same details. Also, a hierarchy of
abstractions is possible, by abstracting an abstraction further according another concept.
For DDBMS following layers of transparencies are being suggested [Ozsu et al. 91]
(Figure 1.1).

Data independence: Refers to the immunity of users from data structures. This means

that changes in the data structure or in its storage structures will not effect the user.

Network Transparency: This type refers to the transparency of data from locations in
the network, and that for data and other database objects unique names have to be

provided.

Replication Transparency: Here, the user should not be involved into the existence of
replicated data, the number of replicas, their locations, and how updates on replicas are

handled to avoid inconsistent DDBMS states.

Figure 1.1: Layers of Transparency [Ozsu et al. 91]

Bora I. Kumova MSc Thesis 1998 7

Fragmentation transparency: Hides the facts that data objects may be fragmented in
the DDBMS, their locations, and how the system handles with queries that were specified

on the entire data object.

Language transparency: In this abstraction, users need not to know traditional data
access languages, such as SQL or QUEL. Instead, they can access data over more flexible

and user-friendly languages, such as fourth-generation languages and natural languages.

Implementation Alternatives

A further architectural issue is the implementation of a DDBMS [Ozsu et al. 91]. A
classification of DDBMSs with respect to the autonomy of local systems, their distribution,
and their heterogeneity is depicted in (Figure 1.2). Any alternative along the three co-

ordinates and their combinations is possible.

Autonomy: Refers to the degree of control granted to participating DBMSs inside a
DDBMS. It indicates the degree to which individual DBMSs can operate independently.
The scale may vary from total isolation to tight integration of a DBMS. In the former case,

Distributionf Distributed Distributed
Homogeneous Multi DBMS
Locally Integrated DBMS
Homogeneous
Multiple DBMS
Distributed
Heterogeneous Multi DBMS
DBMS >
Autonomy
\\ Distributed
Heterogeneous
. Multi DBMS
Heterogeneity” Heterogeneous Heterogeneous (DDBMS)
Integrated Multi DBMS
DBMS

Figure 1.2: DBMS Implementation Alternatives [Ozsu et al. 91]

Bora I. Kumova MSc Thesis 1998 8

the DBMS is not aware of other DBMSs and it does not export any of its control
mechanisms to be used from outside. In the latter case, a single image of the entire database
is available to any user who wants to share the information, which may reside in multiple

databases.

Distribution: Deals with the distribution of data. Only two cases are considered, data

may be stored central on one machine or it may be distributed over more then one machine.

Heterogeneity: Heterogeneity may occur in various forms, ranging from hardware
heterogeneity, different operating systems, different network protocols to variations in data
management, such as data representation forms, query languages, transaction management

protocols.

1.3 Distributed Database Design

Three properties influence the design of DDBMSs: sharing, access pattern, and level
of knowledge about the access pattern. Sharing considers whether data and programme will
reside private on a site, or whether they will be shared in the DDBMS. Access pattern
considers whether user requests may be static or dynamic. The latter one considers the

degree of information about user access patterns in the design phase.

Two alternative strategies have been identified for designing distributed databases

[Ozsu et al. 91): top-down approach and bottom-up approach.

Top-down design: In the first design phase a new database is designed, in the second
phase its components are distributed. The result of the first phase is a global conceptual

schema. The results of the second phase are the local conceptual schemas.

Bottom-up design: This design strategy involves integrating already existing
databases into one database. Starting at the bottom, the individual local conceptual schemas
are integrated into the global conceptual schema. This type of design is suitable for

integrating heterogeneous databases.

Bora I. Kumova MSc Thesis 1998 9

1.4 Data Distribution

Criteria for data distribution are performance, reliability, and availability
considerations," which can be summarised and expressed in form of access costs. Access to
local data is usually faster than access over the network and provides for highest
availability. On the other hand, 'hetwork connections are more failure-prone. Depending on
which portion of data is needed on a site and how it will be used there, two methods are
differentiated that provide practical solutions for data distribution: fragmentation and

replication.

Fragmentation

A fragment is a portion or region of data that is frequently accessed by a user.
Fragmentation algorithms deal with finding such data fragments and with managing their
distribution and with integrating them again. Some common fragmentation strategies are
discussed below. Further details on fragmentation strategies and algorithms can be found in
[Ozsu et al. 91].

Horizontal fragmentation: Partitions a relation along its tuples. Primary horizontal
fragmentation is performed using predicates that are defined on that relation. Whereas,
derived horizontal fragmentation is the partitioning of a relation that results from predicates

being defined on other relations.

Vertical fragmentation: Partitions a table along its attributes. Vertical fragments can
be determined, based on data usage values. For example in a statistical approach, by using

a clustering algorithm [Ozsu et al. 91].

Hybrid fragmentation: In some cases, according to user requirements, it may be

necessary to fragment first horizontally, then vertically, or vice versa.

Disjoined fragmentation: In any combination of the above fragmentation types
applied onto a table, fragments may be non-disjoined or disjoined; in other words, different

data regions may overlap each other or not.

Bora . Kumova MSc Thesis 1998 10

Replication

The deciéion on whether‘t(‘) tepl%cate data or not, which data to replicate, and whether
to allow réad-only or write pefriﬁSSions, depends on the specific configuration and the
characteristics of each system, and is usually made according to expertise and rules of
thumb. In the following, based on some generalised assumptions, replication is discussed

in mathematical terms.

For below calculations we assume ideal “system conditions, characterised by
following properties:

e Serial accesses to a disk result in constant response times.

e Concurrent accesses to a disk result in exponentially growing response times.

e Remote access results in longer response times than local access.

e Remote response times are independent from network load.

e Number of concurrent clients is great.

o In case without replicas, the number of clients is great enough, so that number of
concurrent accesses to the server will result in exponentially increasing response
times.

e All data is equally worthy to all users, i.e. all data has same information content for

all users.

Read-only accesses on replicas: In case of read-only access, allowed on all replicas
of the same data, the total access costs will be smaller than the total costs for remote access

without replicas. The cost difference will increase with increasing number of accesses.
Thus, under normal conditions following holds: Cy(i) < Ci(i)

Cy(i): For the case of replicas, total cost function C for i times local read accesses on

all clients in parallel. For increasing i, this function will increase linear.

C(i): For the case without replicas, total cost function C for i times remote read
accesses from clients concurrently to the server. For increasing i, this function will increase

exponential.

For sufficient great i nCq + Ci(i) < Ci(i)

Bora I. Kumova MSc Thesis 1998 11

nCy: For the case of replicas, total costs C for transferring a replica of data d to all n

clients. nCy is independent form i, and therefore grows only with increasing n.
For very greati: nCq + C(i) = Cy(i)
And the cost difference increases dramatically: CGi() < C(1)

Write accesses on replicas: In case of one write access, made on one replica and

read-only accesses on all the other replicas, additional costs for updating all replicas niC,,

including the original data on the server, must be calculated: nCq4 + (i+1)C; + niC,
For sufficient great i: nCq4 + (i+1)C; + niC, < C(i+1)
For very great i: iC) +iCy <« C(i)

For increasing i, niC, will increase linear.

For the duration of an update on a replica, the distributed database can enter an

inconsistent state: I,. Where, I, can be determined by the longest delayed update of all
parallel updates.

In case of updates made on different clients’ replica j, additional costs for
synchronising the concurrent updates C,(j) must be considered:

nCq + (i+j)C1 + n(i+)C, + Cs(j)
Where, Cs(j), and depending on it I, will grow exponentially with increasing j.

For sufficient greati: nCy + (i+j)C; + n(i+j)Cy + Cs(j) increases exponentially, as
well as Cu(iH)

For very great i: Ci(i+) + Cu(i+) + C() and C(i+j)

In both latter cases both functions result in unacceptable high values.

In this case neither distributed synchronisation of replicas nor centralised access
without replication becomes acceptable. However, in case of a centralised synchronisation
algorithm for replicas, all update requests are resolved by a global synchronisation

mechanism, which considerably can reduce network traffic. In this case and with

replication, Cy(j), and depending on it I, will grow only linear with increasing j.

Bora I. Kumova MSc Thesis 1998 12

The final conclusion from above calculations is that, if (i > j) A (j << n) then
replication caﬁ be profitable. In any other case and with a distributed synchronisation
algorithm, replication would result in exponential increasing additional costs. However,
with a centralised synchronisation algorithm, additional costs could be reduced to a linear

increasing one.

The problem of performing an update exactly at the same time on all replicas can
only approximately be solved, since even in case of a global clock mechanism, the final
synchronisation messages sent to the replicas could be delayed in the network. A practical
conclusion from above calculations is that, update permissions should be granted only to

i

very few replicas.

An advantage of fragmentation over replication is that parallel updates on different
fragments of a table are possible without any synchronisation. Whereas, a disadvantage is
that, the query mechanism must be able to logically reconstruct a table from its fragments,

for example for further users, how may request several fragments of the same table.

1.5 Transaction Management

A transaction is a consistent and reliable computation on database data that can
change the state of the database. Since, transactions can occur concurrently on the same
data, a co-ordination mechanism must be provided to manage transactions. This
management will be responsible for secure execution of transactions and will move the
database from one consistent state to another. To achieve this, a transaction manager has to

deal with following situations.

Conditions of transactions: If a transaction was successful, then it commits and all of
its updates become permanent. If it was not successful, then it aborts and all of its updates

are undone, which is known as rollback.

Characteristics of transactions: Transaction management depends further on the
characteristics of transactions. A transaction can include actions to read write, insert, or

delete data.

Properties of transactions: The consistency and reliability aspects of transactions are

due to the property atomicity, consistency, isolation, durability, and serialisability.

Bora I. Kumova MSc Thesis 1998 13

Atomicity refers to the fact that a transaction is treated as a unit of operation. Therefore,
either all the transaction’s acﬁong are completed, or none of them are. Consistency of a
transaction is its correctness. A correct transaction maps one consistent database state to
another. Isolation requires each ‘tra‘ns‘ac‘:tion to see a consistent database at all times. In other
words, an executing transactiox‘i cannot reveal its results to other concurrent transactions
before its commitment. Durability refers to that property of transactions, which ensures that
once a transaction commits, its results are permanent and cannot be erased from the
database. Serialisability refers to the property that if several transactions are executed

concurrently, the result must be the same as if they were executed serially in some order.

Architectural components: A distributed execution monitor consists of a transaction
manager, a scheduler, and the recovery managers. The first one is responsible for co-
ordinating the execution of the database operations on behalf of an application at client
site. The scheduler is responsible for the implementation of a specific concurrency control
algorithm for synchronising access to the database. This component usually resides at
server site. Recovery managers’ functionality is to implement the local procedures by

which the local database can be recovered to a failure.

Discussions on the formalisation of the transaction concept can be found in [Ozsu et
al. 91].

1.6 Distributed Concurrency Control

Concurrency control deals with the isolation and consistency properties of
transactions. To manage concurrent access to data a special control mechanism must be
provided in a DDBMS. It has to take in account the existence of fragmentation and

replication of data that deadlocks may occur in multi-user environment of a DDBMS.

Primitive Mechanisms

Concurrency control algorithms can consist of one or a combination of the following

primitive mechanisms: pessimistic or optimistic, locking-based or timestamp-based.

Bora I. Kumova MSc Thesis 1998 14

Pessimistic. Pessimistic algorithms synchronise the concurrent execution of
transactions early in their execution life cycle. Transaction follows the sequences validate,

read, compute, and write.

Optimistic: Optimistic algorithms delay the synchronisation of transactions until their

termination. A transaction follow the sequences read, compute, validate, and write.

Locking-based: The main idea of locking-based concurrency control is to ensure that
the data shared by conflicting operations is accessed by one operation at a time. This is
accomplished by locking the related data. In locking-based systems, the scheduler is a lock
manager. Further cases are distipg‘uished accordiqg the degree of distribution of the lock
manager activities: centralised locking, primary co'py locking, and decentralised locking. In
centralised locking, one of the sites in the network is designated as the primary site where
the lock tables for the entire database are stored. In primary copy locking, one of the copies
of the lock tables is designated as the master copy. In decentralised locking, lock tables of
related local data are stored locally. Each scheduler is responsible only for the lock tables
of its site. One locking-based concurrency algorithm that easily enables resolving
concurrency, is strict two-phase locking. First, in the growing phase, locks are obtained and

data accessed. Second, in the shrinking phase, all locks are released together.

Timestamp-based: Involves organising the execution order of transactions so that
they maintain mutually consistent. This ordering is maintained by assigning timestamps to

both the transactions and the data items of the database.

Economy-based: Mariposa is a wide-area DDBMS [Stonebraker et al. 96] that does
not employ global synchronisation for distributed fragments and replicas. Instead, its
distributed DBMS architecture supports a microeconomic paradigm for query and storage
optimisation that seeks a local-optimum scheduling cost. This mechanism causes
temporarily inconsistent replicas, but allows for scalability to a large number of co-

operating sites.

Deadlock Management

Any lock-based concurrency control algorithm may result in deadlocks, since there is

mutual exclusion of access to shared data and transactions may mutually wait on locks. A

Bora I, Kumova MSc Thesis 1998 15

deadlock is a phenomenon that can not be resolved by a control mechanism alone. Three

methods are known for handling deadlocks: prevention, avoidance, and detection and

resolution.

Deadlock prevention: The transaction manager checks a transaction when it is first
initiated and does not permit it to proceed, if it may cause a deadlock. To perform this
check, it is required that all of the data that will be accessed by a transaction be pre-
declared. Since, access to certain data may depend on conditions that may not be resolved

until runtime, such a method is not practicable.

Deadlock avoidance: a simple algorithm in avoiding deadlocks is to order the
resources according to some access patterns and ‘insist that each process request access to
these resources in that order. Another alternative is to make use of transaction timestamps
to prioritise transactions and resolve deadlocks by aborting transactions with higher/lower
priorities.

Deadlock detection and resolution: A tool in analysing deadlocks is a wait-for graph.
It is a directed graph that represents the wait-for relationship among transactions. The
nodes of this graph represent the concurrent transactions in the system. An arc T1 -> T2
exists in the graph, if transaction T1 is waiting for T2 to release a lock. In distributed
systems besides the local wait-for graphs a global one is necessary, since two transactions
that participate in a deadlock condition may be running at different sites. Deadlock
detection is done, by studying the global wait-for graph for the formation of cycles.
Resolution is done by the selection of one or more arbitrary transactions that will be pre-

empted and aborted, in order to break the cycle.

1.7 Data Security

The topics of semantic data control are view management, security control, and
semantic integrity control [Ozsu et al. 91]. We will discuss only some aspects of data
security. Data security is an important function of a database that protects data against
unauthorised access. Data security includes two aspects: data protection and authorisation

control.

Bora I. Kumova MSc Thesis 1998 16

Data protection: Is required to prevent unauthorised users from understanding the
physical content of data. The main data protection approach is data encryption, which is

useful both, for information stored on disk and for information exchanged on a network.

Authentication control: Three main actors are involved in authorisation control users,
operations on database objects, and database objects. Authorisation control consists of
checking whether a given triple (user, operation, object) can be allowed to proceed. The
introduction of a user in the system is typically done by a pair (user name, password). In
DDBMSs authorisation information of the system may be replicated to all involved sites or

each site may maintain only its local authentication information.

Bora I. Kumova MSc Thesis 1998 17

Chapter Two
Software Agents

Software agents are a new technology that encompasses various branches of the
research fields artificial intelligence, co-operaltion and co-ordination, intelligent user
interfaces, information processing, object-oriented software engineering, and others. Since,
agent technology is a rapidly evolving area, there is still no consensus on a model for
software agents, like there is one for example for DDBMSs. In this chapter we summarise
the architectural properties of various agent models and present them unified in form of a

general framework for software agents.

2.1 Conception

For the designer, an agent is an abstraction and solution idea over a small problem
inside a considered domain. Similar to the fact that object-oriented programming is a

programming paradigm, agent-based software design is a design paradigm

Definitions

Various definitions for software agents can be found in the literature. Most of them
have the following two common patterns:
e Each definition is made in context of a specific domain, and in this view it
emphasises some agent properties more and some less.
e Most definitions focus on the fact that an agent is an independent object-oriented

software entity with uniform functionality.

Some of the definitions of a software agent are given below:

Bora I. Kumova MSc Thesis 1998 18

Artificial intelligence [Green et al. 97]: A computational entity, which acts on behalf
of other entities in an autonomous fashion, performs its actions with some level of
pro-activity and/or reactivity, and exhibits some level of the key attributes of

learning, co-operation, and mobility.

. Artificial intelligence [Russell et al. 95]: An intelligent agent has multiple goals,

limited resources, and a dynamic real-time task.

Robotics [Russell et al. 95]: Anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through effectors.
Information retrieval [Sycara et al. 96]: A programme that acts on behalf of its
human user in order to perform laborious information gathering tasks.

Interface agents [Caglayan et al. 97]: A personal assistant that performs tasks on
behalf of a user.

Business applications [Caglayan et al. 97]: A computing entity that performs user

delegated tasks autonomously.

WebMate [Chen et al. 97]: A stand-alone proxy that can monitor user’s actions to

provide information for learning and search refinement, and can interact with a user.

Advantages

The technical advantages will become apparent with the discussion of agent

properties in the next section. Here, some of its user-oriented qualities are mentioned.

Efficiency: It can compute any amount of dynamic and unstructured information and
transform it to the desired information.

Object-orientation: An agent is an object-oriented entity. It hides the complexity of
its tasks and data structures and presents a uniform functionality.

Acceptance: Because of its user friendly appearance and behaviour, agents usually
enjoy better user acceptance.

Dynamic adaptation: Agents have the ability to autonomously react to changes in
their environment. For example changing user behaviour or changing information

structures.

Bora I. Kumova MSc Thesis 1998 19

Disadvantages

An agent is a new software concept in which many beneficial software technologies

are being tried to combine. Until agents and developers have reached a sufficing high

maturity, following disadvarifages of agent technology can be observed:

Expensive: An agent is a synthesis of high-quality software properties. Currently, it
is more costly to develop an agent than a conventional software programme.
Insufficient behaviour: Most existing agents possess actually only a few of the
suggested software attributes.

Process time overhead: When multiple agents are involved in a task, additional time

for co-operation and co-ordination is required.

2.2 Properties

Most of the characteristics of agents are already mentioned in their definitions. In our

discussion, we separate agent properties for which a mathematical model was available

from those, which were described informally.

9].

Formal Definitions

A formal description of the following properties in Z notation is given in [Goodwin

General agent properties:
Capable: An agent is capable, if it possesses the effectors needed to accomplish the
task.
Perceptive: An agent is perceptive, if it can distinguish salient characteristics of the
world that would allow it to use its effectors to achieve the task.
Successful: An agent is successful to the extent that it accomplishes the specified
task in the given environment.
Reactive: An agent is reactive, if it is able to respond sufficiently quickly to events in
the world, to allow it to be successful.

Reflexive: An agent is reflexive, if it behaves in a stimulus-response fashion.

Bora I. Kumova MSc Thesis 1998 20

The first three are related to each other, so that successful implies perceptive, and

perceptive implies capable.

Deliberative agent properties:

Predictive: An agent is predictive, if its model of the world works is sufficiently
accurate to allow it to correctly predict how it can achieve the task.

Imperative: An agent is interpretative, if it can correctly interpret its sensor readings.
Rational: An agent is rétional, if it chooses to perform commands that it predicts
will achieve its goals.

Sound: An agent is sound, if it is predictive, interpretative, and rational.

i

Informal Definitions

The following is a brief list of most of the properties discussed in the literature

[Sycara et al. 96], [Caglayan et al. 97], Green et al. 97], [Russell et al. 95].

Delegated/taskable: The agent can perform a task on behalf of a user or another
agent.

Autonomous: The agent can operate without direct intervention to the extent of the
user’s specified delegation. Autonomy can range from simple knowledge-based
decision making to negotiation.

Monitor/perceptive: The agent is able to monitor/perceive its environment.
Actuation: The agent is able to affect its environment.

Communication: The agent is capable to communicate with users or other agents.
Active: The agent can initiate problem-solving activities.

Adaptive: The agent can learn and self-organise its knowledge structures.
Co-operative/collaborative: The agent can co-operate and/or collaborate with
humans and other agents, to exchange knowledge and to resolve conflicts and
inconsistencies in knowledge.

Persistent: The agent is capable of long periods of unattended operation.

Mobile: The agent can move itself, including its state and data, between different

environments and between different sites.

Bora I. Kumova MSc Thesis 1998 21

o Trustworthy: An agent should serve user’s needs in a reliable way, so that user will
develop trust in its performance.

e Secure: An agent should protect its task and its knowledge against unauthorised

access.

2.3 Architectures

In a functional view three functional system attributes can be identified that influence
the architecture and behaviour of agents:
e Environment, in which the agent works
* Task, assigned to the agent

e Success, the agent achieves.

Introducing any of the above properties that were discussed in the previous section
into this system, or increasing/decreasing one of them will modify its architecture and
behaviour. Usually, this is the way to design a new agent for a specific domain or to adapt

an already existing one in a new domain.

We will discuss two architectural models for agents. One model has its roots in
artificial intelligence and robotics, and emphasis the intelligent behaviour of an agent
[Russell et al. 95]. The other model has its roots in mobile agents, which is a specific

discipline inside the agent research community [Green et al. 97].

Robotics

In this view, an agent primarily as a working environment, has sensors for monitoring
the environment, has effectors for effecting the environment, and has goals (Figure 2.1).
While it tries to reach its goals, it makes actions. Its actions are caused by condition-action
rules. To model the world and to choose between actions, it maintains its internal states.
Further, the agent has utility functions that allow it to distinguish the quality of a decision.
These components are also considered as agent classification criteria, which is discussed in

the last section of this chapter.

Bora I. Kumova MSc Thesis 1998 22

How happy | will be in such a

state
;

What action | should do now

%

Agent Effector

State Sensor <
v
What the world is like now E
How the ‘ N n
world evolves v
What it will be like, if | do i
action A r
What may 0.
action do n
m
e
n
t

Figure 2.1: A Complete Utility-base Agent [Russell et al. 95]

Mobile Agents

A mobile agent is a software entity, which exists in a software environment. It
inherits some of the characteristics of an agent. A mobile agent must contain all of the
following models: an agent model, life-cycle model, a computational model, a security

model, a communication model, and a navigation model (Figure 2.2) [Green et al. 97].

Agent model: This model defines the internal structure of the intelligent agent that is
part of a mobile agent. It defines the autonomous, learning, and co-operative characteristics

of an agent. Additionally, it specifies the reactive and proactive nature of agents.

Life-cycle model: This model defines the different execution states of a mobile agent
and the events that cause the movement from one state to another. Thus, it is closely related

to the computational model, which describes how the execution occurs.

Computational model: The computational model defines how a mobile agent

executes, when it is in a running state. As part of this model a set of primitive instructions

Bora I. Kumova MSc Thesis 1998 23

communicatioy,
Securify,

Computation

Figure 2.2: Structure of a Mobile Agent [Green et al. 97]

must be specified. This defines the computational abilities of an agent. These include data

manipulation instructions and thread control instructions.

Security model: Mobile agent security can be split into two broad areas. The first
involves the protection of host nodes from destructive mobile agents, while the second
involves the protection of mobile agents from destructive hosts. The former falls into four
main categories: Leakage, which is acquisition of data by an unauthorised party.
Tampering, which is alteration of data by an unauthorised party. Resource stealing, which
is use of facilities by an unauthorised party. Vandalism, which is malicious inference with
host’s data or facilities with no clear profile to the perpetrator. Standard protection

techniques are cryptography, authentication, digital signatures, and trust hierarchies.

Communication model: This model defines the relationships of an agent with other
entities in the computing environment. These entities include users, other agents, the host
mobile agent environment, and other systems, such as CORBA based distributed systems. -
Communication is used, when accessing services outside of the mobile agent, during co-
operation and co-ordination between mobile agents and other entities, and finally to
facilitate competitive behaviour between self-interested agents. Communication protocols
can range from simple e-mail and remote procedure call to more complex ones, such as
KQML. An agent can implement multiple protocols, which is known as multilingual

behaviour. In this case the need for transaction between the protocols comes.

Bora i. Kumova MSc Thesis 1998 24

Navigation model: This model concerns itself with all aspects of agent mobility from
the discovery and resolution of destination hosts to the manner in which a mobile agent is
transported. It should include naming conventions for all entities in the system, such as
agents, hosts, services, and sources. Further, access to information regarding a mobile
agent environment. Also, the ability to move a mobile agent into a suspended life cycle

state ready for transporting to a remote host.

2.4 Knowledge Base

In order for an agent to reason logically, it must be provided with a knowledge base
and the related logical operations. A knowledgt; base is a set of representations of fact
about the world. Each individual representation is called a sentence. The sentences are
expressed in a knowledge representation language [Russell et al. 95]. This section is a brief

overview on knowledge bases and the logical operations that can be performed on it.

Representation Forms

Several representation forms are known in artificial intelligence, such as predicate

calculus, semantic nets, frames, conceptual dependencies, and scripts.

Conceptual dependencies: Are structures, which allow representing the dependencies
between the components of an action. It is a theory for the representation of the semantics

of a sentence in natural language [Rich et al. 91].

Scripts: A script is a generic event description. It is used to represent frequently

occurring event sequences.

Predicate Logic

The most popular knowledge representation form that was chosen for logical agents
is first order predicate logic. The logic assumes that the world consists of objects with
individual identities, properties that distinguish them from other objects, and relations

among the objects. A detailed discussion of predicate logic in the context of agents can be

Bora I. Kumova MSc Thesis 1998 25

found in [Russell et al. 95]. It will suffice to mention here the operations that are allowed

on a knowledge base in predicate logic and to discuss ontology briefly.

Logical operations: Primary operations on data are read and write. To read data from
a knowledge base, first some variable values must be provided to the inference mechanism.
Then the inference deduces matching properties of the knowledge base. A rule stored in the
knowledge base can be preconditioned with these properties. If the precondition of a rule
becomes true, then the rule is evéluated. The evaluation can contain any kind of actions.
Writing data into a knowledge base can be done by modifying, inserting, or deleting a
variable, a property, or a rule. Before writing data into a knowledge base, a consistency
check must be performed. Any qualitative update of the knowledge base is denoted

learning.

Onrology: ontology is a specification of a conceptualisation. The term is borrowed
from philosophy, where ontology is a systematic account of existence. When the
knowledge of a domain is represented in a declarative formalism, the set of objects that can
be represented is called the universe of discourse. This set of objects and the describable

relationships among them represents ontology [Gruber 94].

Semantic Nets

A semantic net is a labelled digraph used to describe relations, including properties of
objects, concepts, or actions. This is a more structured approach, which states collecting
together facts about particular objects and event types, and arranging the types into a large
taxonomic hierarchy analogous to a biological taxonomy. In frame systems objects are
represented as nodes in a graph and links between the nodes represent binary relations. In
frame systems links are thought of as slots in one frame, whereas in semantic nets they are
thought of as arrows between nodes. The meaning and implementation of the two types of
systems can be identical. An arrow between two nodes of a semantic net can also be
represented as a predicate. It is widely accepted that any semantic net can principally be

transferred in a representation in first order predicate logic [Schalkoff 90].

Bora I. Kumova MSc Thesis 1998 26

2.5 Communication Languages

An agent communication language is used by intelligent software agents in order to
exchange knowledge and/or to co-ordinate co-operative work. It is designed specifically to
describe and facilitate communication among two or more agents. An alternative approach
is the blackboard as a flexible common communication channel [Engelmore et al. 88],
[Cohen et al. 94], [Demirors 95]. Several agents can post information to the blackboard or
read from there concurrently. Main drawbacks of such systems are that concurrent access to
the blackboard can easily become a bottleneck. Further, a blackboard system is inherently
centralised and therefore not very suitable for distributed systems. A taxonomy for agent
technology classifying agent communication languages is depicted in (Figure 2.3).

Discussions on agent prograrnming languages can be found in [Dam 97].

Requirements

Following requirements have been identified for an agent communication language
[Mayfield et al. 95].

Form: An agent communication language should be declarative, syntactically simple,
and readable by people. It should be concise, yet easy to parse and to generate. It should be

linear or easy to translate into a linear character stream. It should be extensible.

Context: A communication language should be layered in a way that fits well with
other systems. In particular, a distinction should be made between the communication
language, which expresses communicative acts, and the content language, which expresses

facts about the domain.

Semantics: Language semantics should be unambiguous. It should exhibit canonical
form. Because a communication language is intended for interaction that extends over time
among spatially dispersed applications, location and time should be addressed by the

semantics.

Implementation: The implementation should be efficient, both in term of speed and
bandwidth utilisation. The interface should be easy to use. It should be easy to integrate or

build application programme interface for a wide variety of programming languages.

Bora I. Kumova MSc Thesis 1998 27

Software Agent Technologies

Agent Languages Co-ordination Protocols
/\ CORBA, OpenDoc,
OLE, Linda,
Agent Communi- Scripting Languages HTTP, Java RMI

cation Languages TCL/TK, Java, Telescript

T~

Theoretical Languages for Models of Human
Frameworks Software Agents Communication
KQML, ARCOL,
AgentCom

Figure 2.3: A Taxonomy of Agent Technologies [Mayfield et al. 95]

Networking: The language shouid support all of the basic connection types, point-to-

point, multi cast, and broadcast. Both synchronous and asynchronous connections should

be supported.

Environment. To provide a communication channel to the outside world, which will
be distributed, heterogeneous, and dynamic. A communication language must provide for

coping with them. It must support interoperability with other languages and protocols.

Reliability: A communication language must support reliable and secure
communication among agents. Provisions for secure and private exchanges between agents

should be supported. There should be a way to guarantee authentication of agents.

KQML

The knowledge Query and Manipulation Language (KQML) is a language and
protocol for exchanging information and knowledge [Mayfield et al. 95]. It is a language
that is designed to support interaction among intelligent agents. Communication takes

place on three layers. Interaction protocol for co-ordination purposes, communication

Bora [. Kumova MSc Thesis 1998 28

language to exchange knowledge, and the transport protocol that is the actual transport
mechanism, such as TCP, SMTP, HTTP. The message primitives are called performatives
and are based on human speech acts. The syntax of KQML is based on a balanced-
parentheses list. Each performative can have several arguments in form of keyword/value
pairs. KQML has currently more than forty performatives [Finin et al. 93]. It has been
implemented in several multi-agent systems, some of which will be discussed in the next
chapter. Each implementation of KQML resulted in different language dialects [Odubiyi et
al. 97]. In existing systems intra-system communication is reported to be successful. But,
because of different implemented language semantics, inter-system communication seams
currently to be the major problem [Nodine et al.. 98b]. But, effort is made to standardise
semantics for KQML. [Labrou et al. 97].

ARCOL

Based on the experiences with KQML, ARtimis COmmunication Language
(ARCOL) [Sadek et al. 97] has been developed that complies with the Foundation for
Intelligent Physical Agents (FIPA) standards [FIPA 97]. FIPA has developed a
requirements list containing formal descriptions for language properties. The main
objective of the FIPA engagement is to set standards for the syntax as well as for the
semantics of an agent communication language. ARCOL has many similarities with
KQML. It is based on first order ' predicate logic and its message primitives are
performatives. Unlike KQML, ARCOL utilises modal logic to realise standard language

semantics.

2.6 Agent Classifications

Agents can be grouped according some common architectural and behavioural
properties. One common classification criterion is based on the properties autonomous,

adaptive, and co-operative.

Bora i. Kumova MSc Thesis 1998 29

Single-agent systems

Agents that are not capable to co-operate with other agents are stand-alone systems.
They can be further classified according their degree of intelligence and their task

properties.

According intelligent behaviour [Russell et al. 95]: The following classes are ordered
according cumulative functionality.

e Simple reflex agent: It works by finding a rule, whose condition matches the current
situation, and then doing the action associated with that rule.

o Agent that keeps track of the world: Is a reflex agent that maintains its state, in order
to have choices for action. ‘

® Goal-based agent: Are agents that keep track of the world and that can search, plan,
and maintain a goal. |

o Utility-based agent: Is a goal-based agent that maintains utilities, in order to find the

best solutions.

According task properties [Green et al. 97]: All following agents are classified as
user or interface agents, but they differ from each other in their assigned tasks.
e Information filtering agent: Can filter information sources, which is a single directed
communication with the information sources.
* Information retrieval agent: Can communicate bi-directional with information

sources.

e Personal digital assistant agent: Can support user’s routine tasks.

Multi-Agent Systems

A multi-agent system is a loosely coupled network of problem solvers that work
together to solve problems that are beyond their individual capabilities [Green et al. 97].
An essential property of multi-agent systems is that one common communication language
exists and that principally any agent can communicate with any other agent of the system.
According agents’ willingness to co-operate with each other, two multi-agent systems are

differentiated, co-operative and antagonistic ones.

Bora i. Kumova MSc Thesis 1998 30

Co-operative multi-agent systems: A system for multiple agents is designed in a top-
down fashion. All agents are designed to behave co-operative, in order to reach their group
goals. A further essential property of such systems is the existence of a common co-

ordination protocol, in order to redirect each other through the overall search space.

Antagonistic multi-agent systems: A system in which multiple already existing agents
are involved, is designed in a bottom-up fashion. Since, each agent was designed to
independently reach its individual goals, any communication with other agents will be self-
interested. The agents do not co-operate they compete. In such systems the agents are not

aware of a team goal, if at all there exist a team goal.

Further discussions on co-ordination protocols, negotiation techniques, and on

mobile agents can be found in [Green et al. 97].

Commercial Applications

Interesting is also the following classification of commercial available software

agents [Caglayan et al. 97].
Desktop agents: Operating system agents, application agents, application suit agents.

Internet agents: Web-search agents, information-filtering agents, off-line delivery

agents, notification agents, and other service agents.

Intranet agents: Intranet-search agents, information-filtering agents, process

automation agents, database agents, mobile agents.

2.7 Co-operation

Distributed systems rarely exist in the form of isolated entities nor are they
themselves isolated against other systems. Multi-agent systems ‘are inherently
communicative systems. The overall system knowledge is distributed over the agents. In
order for an agent to proceed its tasks successfully, the agents usually share the overall
knowledge. If for some agents in a multi-agent system there exist a team goal, then

involved agents will co-operate with each other, to contribute their knowledge.

Bora I. Kumova MSc Thesis 1998 31

Collaboration: In the classification of agents, we have already mentioned the co-
operative-antagonistic spectrum. We define collaboration as a special case characterised by
both co-operation and competition, where the agent has some temporary sub-goals. Any
individual goal of a collaborative agent must be a sub-goal that is required to reach either a
team goal or an antagonistic goal. In general, an agent will always temporarily behave

collaborative with other agents.

Competition: An agent may be communicative, but only for the benefit of its
antagonistic goals. In some cases it may co-operate with other agents to contribute its
knowledge and to facilitate competitive behaviour, but it does not know about any team

goals. A competitive agent knows only its antagonistic goals.

Co-ordination: Co-ordination is the regulation of different activities to find a
harmonisation according a goal. In multi-agent systems there is a need for co-ordination,
for without it, any benefits of interaction vanish and the agent team quickly degenerates
into a collection of individuals with a chaotic behaviour. Essentially, co-ordination is a
process in which agents engage in order to ensure a community of individual agents acting
in a coherent and harmonious manner. For the implementation global control mechanisms
are designed, to co-ordinate the co-operative work of multiple agents. Subject to co-
ordination are active and passive system entities that can be accessed concurrently. An
active entity may be a service or a functionality of an agent. A passive entity may be data or
knowledge of the knowledge base. In general, co-ordination is thought to be orthogonal to
computation [Ciancarini et al. 98]. Therefore, various co-ordination languages were
developed [Papadopoulos et al. 98b]. According their co-ordination mechanisms they are

classified as control-based, event-driven, state- defined, and/or data-driven.

Bora [. Kumova MSc Thesis 1998 32

Chapter Three
Existing Agent-based Information Systems

This chapter is a review on five existing agent-based information systems. According
their initial design goals they can be separated into two groups. The focus in the design of
the first two systems was to build an information retrieval system and a DDBMS
respectively, and to provide the system with simple reflex agents. The focus in the design
of the last three was to build multi-agent systems that behave intelligently in information

retrieval tasks.

3.1 WEBCON

WEBCON is a commercial tool for connecting an SQL database to the WWW
[Zoller et al. 98]. The tool is an application generator that takes information from a
database and a user to output customised HTML pages for retrieving data form that

database.

Architecture

The connection of the database to a HTML page is realised on server side by using
the Common Gateway Interface (CGI) of the Web server (Figure 3.1). Customised
database views are created with HTML pages by mapping database types to HTML types.

The gateway uses the data dictionary of the DBMS to generate enriched HTML
templates. To generate customised standard HTML pages from enriched HTML templates.
And finally, to retrieve data from the database. Enriched HTML templates include special

commands for communicating with the DBMS. Retrieved data is temporarily stored in

Bora [. Kumova MSc Thesis 1998 33
HTML HTML HTML HTML Pages HTML
Query Resuit Details For Input
Pages Pages Pages Maintenance Pages

WWW Server
Query Gateway Maintenance Gateway
{ Query {i{ Resut || Details | |! Maintenance ! Input |
i Templates Eg Templates ! i Templates ; i Templates i Templates :
\% DBMS
Data P Maintenance E
Dictionary i | Tables

Figure 3.1: WEBCON Architecture [Zoller et al. 98]

HTML result pages. Based on the result pages, sub-queries can be performed in HTML

detailed pages.

Two different gateways are used, one for maintenance and one for customised user

queries. The maintenance gateway utilises the data dictionary of the DBMS to generate

maintenance tables. From maintenance tables and query, result, and details templates

according customised HTML pages are created.

Utilisation of the data dictionary makes the tool insensitive to changes within the

database schema. Further, this technique provides for installation flexibility against data

dictionaries of different SQL DBMSs.

Bora I. Kumova MSc Thesis 1998 34

Evaluation

WEBCON does not provide access to multiple DBMSs in one environment. Its query
pages are linked only to one DBMS at a time. But, multiple users independently can access
the same DBMS over the Internet when each user downloads the HTML pages to its client.

In this sense, each customised HTML page can be considered as a database view.

3.2 MIND

METU Interoperable DBMS (MIND) [Dogag et al. 95]. is a multi-database system
that is based on a distributed object-computing platform with CORBA (Common Object
Request Broker Architecture [Orfali et al. 96]) as ‘the communication mechanism [Dogag et
al. 98]. Global schema integration and transaction management is employed to provide for

global data integrity.

Architecture

Each local DBMS is connected to the system over a local database agent (Figure
3.2). The local database agents are responsible for maintaining export schemas provided by
the local DBMSs represented in the canonical data model, translating the queries received
in the global query language to the local query language, and providing an interface to the
local DBMSs. This layer provides a virtually homogeneous set of database objects. The
global layer of MIND, which contains a global transaction manager, a global query

processor and a schema integrator, is developed on top of this layer.

Global transaction management component is responsible for the management of
global, distributed transactions. It keeps track of sub-transactions, handles global commit
or global abort using two-phase commit protocols over local database agents and detects
global deadlocks.

Global query management component is responsible for parsing and decomposing
the queries according to the information obtained from schema integration service and for
optimisation of the global queries. After a global query is decomposed, the global queries

are sent to the involved local database agents.

Bora I. Kumova MSc Thesis 1998 35

Schema
Integration

Client Service
Munti-Database
Factory ¢ Global Administrator
Database
Agent
Query / A N \ Query
Processor Processor
Local Local Local Local
Database Database Database Database
Agent Agent Agent Agent
Local Local Local Local
DBMS DBMS DBMS DBMS

Figure 3.2: MIND Architecture [Dogag et al. 98]

MIND query optimisation addresses the optimisation of post-processing queries that
combine results returned by the local database agents. Query optimisation is performed at
run-time by query processor objects. Global query manager may use as many of query

processors running in parallel as necessary.

Schema integration service holds the global schema information. The multi-database
administrator builds the integrated schema as a view over export schemas. MIND provides

the user a common data model and a single global query language based on SQL.

Evaluation

MIND was designed according the traditional approach, where multiple DBMSs are
integrated in a bottom-up design [Ozsu et al. 98]. However, scalability of such

Bora I. Kumova MSc Thesis 1998 36

implementations are restricted, since their centralised global management would result in
unacceptable response times for a large number of users and/or a large number of

connected DBMSs. The agents in MIND are rather simple reflex agents.

3.3 RETSINA

Reusable Task Structure-based Intelligent Network Agents (RETSINA) is a
framework for distributed intelligent agents. It is a distributed adaptive collection of agents
that co-ordinate to retrieve, filter, and fuse information relevant to the user, task, and

situation as well as anticipating a user’s information needs [Sycara et al. 96].

Architecture

RETSINA has three types of agents (Figure 3.3). Interface agents interact with the

user, receiving user specifications and delivering results. The main functions of an interface

User 1 User 2 User k
Goals ana|Task Specification
InterfaceAgent 1 InterfaceAgent 2 InterfaceAgent k
Task]\

Piocess Solution

TaskAgent 1 Information Intergration TaskAgent |
Information
Request

\ ollaborative Que

InfoAgent InfoAgent InfoAgent

| InfoSource 1 l InfoSource 2 InfoSource 3 | InfoSource n I

Figure 3.3: The RETSINA Distributed Agent Organisation [Sycara et al. 96]

Bora I. Kumova MSc Thesis 1998 37

agent include: Collecting relevant information from the user to initiate a task, presenting
relevant information including results and explanations, asking the user for additional

information during problem solving, and asking for user confirmation, when necessary.

Task agents help user agents perform tasks by formulating problem solving plans and
carrying out these plans through querying and exchanging information with other agents.
Task agents have knowledge of the task domain, and which other task assistants or
information assistants are relevant to performing various barts of the task. Task assistants
have strategies for resolving conflicts and fusing information retrieval by information
agents. A task agent performs most of the autonomous problem solving. It exhibits a higher
level of sophistication and complexity than either an interface or an information agent. A
task agent receives user delegated task specifications from an interface agent. It interprets
the specifications and extracts problem solving goals, forms plans to satisfy these goals,
identifies information seeking sub-goals that are presented in its plans, decomposes the
plans and co-ordinates with. appropriate task agents or information agents for plan

execution, monitoring, and results composition.

Information agents provide access to a heterogeneous collection of information
sources. They have models of the associated information resources, and strategies for
source selection, information access, conflict resolution, and information fusion. An
information agent’s activities are initiated either top-down, by a user or task agent through
queries, or bottom-up through monitoring information sources for the occurrence of
particular information patterns. Once the monitored-for condition has been observed, the
information agent sends notification messages to agents that have registered interest in the

occurrence of particular information patterns.

The framework includes KQML for inter-agent communication. According
RETSINA for example WebMate [Chen et al. 97] was implemented, which is a personal

software agent that accompanies a user when he browses and searches on the WWW.

Evaluation

RETSINA has served as a framework for several multi-agent systems implementing

information retrieval tasks. The information agents can communicate with information

Bora I. Kumova MSc Thesis 1998 38

sources, but they do not deal with database management. Functionality of DBMSs and
DDBMS:s is not considered in RETSINA.

3.4 InfoSleuth

InfoSleuth is an architecture and toolkit for deploying agent systems. The InfoSleuth
environment focuses on information gathering and analysis over diverse and dynamic
networks of multimedia information sources. The emphasis behind InfoSleuth is to
establish a stable infrastructure and interaction machinery such that disparate groups and
organisations can independently develop agents that meet and work together in the context

of an InfoSleuth application [Nodine et al. 98a].

Architecture

The InfoSleuth model defines a framework for loosely collected agents, based on
semantic advertisements and then dynamically composing agents based on application
needs (Figure 3.4).

Services

Monitor
Agent S~

Structured

Resource

Agent Databases
User
Agent Resource Images &
User g
Agent Resource

Agent S Text

I N 5

Ontology n

Ontology 1

Figure 3.4: InfoSleuth Dynamic and Broker-based Agent Architecture [Nodine et
al. 981

Bora I. Kumova MSc Thesis 1998 39

The system consists of a layered agent shell used for rapid and consistent creation
and monitoring of agents in an InfoSleuth environment (Figure 3.5). The agent message
layer maps logical KQML requests made by the conversation layer into and out of physical
network exchanges with other agents. The conversation layer defines and enforces
conversation policies for a group of co-operating agents. The generic agent layer embodies
the services crucial to the operation of all agents that participate in an InfoSleuth
community. Within InfoSleuth, there are two such services, the first is the semantic
matchmaking service, which enables an agent that is requesting a service, and to locate
another agent that can provide that service. The second service provides information on the
knowledge accessible through the ontology defined within the community. The agent

application layer implements the functionality specific to the agent itself.

It is the intention of the layered agent shell architecture, to allow the agent developer
to focus on his effort primarily on the agent application layer, and to inherit the agent shell

capabilities and the optional services that it supports.

Agent Application
Agent
Services
Generic Agent Layer
Conversation

equests/Replies

Conversation Layer

KQML
Performatives

Message Layer

Transport
(TCP/IP, HTTP)

Figure 3.5: InfoSleuth Agent Layers [Nodine et al. 98a]

Bora I. Kumova MSc Thesis 1998 40

Evaluation

InfoSleuth is a toolkit for deploying agent applications that focus on information
gathering and analysis. The tool does not support the iniegration of database management
functionality into agents to be developed. Remarkable is the tool-based approach of scaling
an existing multi-agent system. This provides for an abstraction over the agent
communication language and guarantees that the agents are always capable for

communicating with each other.

3.5 Infomaster

Infomaster is an information integration system that provides access to multiple
distributed heterogeneous information sources on the Internet, thus giving the illusion of a
centralised, homogeneous information system. Infomaster creates a so-called virtual data

warehouse [Genesereth et al. 97].

Architecture

Infomaster handles both, structural and content translation to resolve differences
between multiple applications for the collected data. Infomaster can connect to various
databases using wrappers, such as for Z39.50, SQL databases through ODBC, EDI
transactions and other WWW sources (Figure 3.6).

The core of Infomaster is a facilitator that determines which sources contain the
information necessary to answer the query efficiently, designs a strategy for answering the
query, and performs transactions to convert source information to a common form or the

form requested by the user.

Infomaster uses rules and constraints to describe information sources and translations
among these sources. These rules and constraints are stored in a knowledge base.
Infomaster has a programmatic interface, which supports KQML, KIF, and vocabularies of

terms.

Bora I. Kumova MSc Thesis 1998 41
wWww ACL EDI
Client Client System
ODBC EDI
Wrapper Interface
Infomaster ©
Facilitator Knowledge
Base
—
OoDBC Z39.50 Custom
Wrapper Wrapper Wrapper
—— T S VD
___/
SQL Z39.50 www
Database Source Pages

Figure 3.6: Infomaster Agent Architecture [Genesereth et al. 97]

Evaluation

Infomaster is an information integration tool. The system bridges differences in
schemata and terminology between existing databases. This makes the system possible to
provide a uniform user interface to a collection of heterogeneous information sources.
Remarkable is the rule-base reference schema that translates heterogeneous information
sources into the knowledge interchange format (KIF). The tool provides rules for semantic
evaluation of information, in order to resolve possible inconsistencies in information.

Infomaster too, is not concerned with database management.

Bora i. Kumova MSc Thesis 1998 42

Chapter Four

AgentTeam Framework

AgentTeam is a framework for a multi-agent system that implements a distributed,
heterogeneous, multi DBMS. 1t is thought for interactive system supporting teamwork of
users. The framework is designed in an object-oriented view, where the objects are
identified according internally required data structures and major system functionality. In
this chapter we introduce the framework consisting of several models. First, the DDBMS
model and the agent model are discussed. Thereafter, some important aspects of the agent
model are refined within the following sections. These are the agent types, the agent
communication language AgentCom, the user co-operation model, and the security

concepts of AgentTeam.

4.1 Distributed Database Model

The distributed database consists of shared databases of heterogenecous DBMSs
possibly located on different sites. The shared databases are used to store any required data,
to store data replicas, and to store data fragments. The functionality of the local DBMSs is
utilised by schedulers for local database management on each server. Global database
management is performed by a transaction manager and byA one or more schedulers in a
distributed fashion (Figure 4.1). On each client one transaction manager exists. But

transaction managers usually do not communicate with each other.

Bora I. Kumova MSc Thesis 1998 43

Global - "
Database Ir\j‘msac ion
Manage- Homogeneous anager
ment on
Client DDBMS
ﬁna\ ODB K(D
Homogeneous\ Sceduler Sceduler Sceduler
Local DBMSs
Database
Manage- v v 3
ment on | Heterogeneous

Figure 4.1: Abstraction Levels over Heterogeneous DBMSs

Transaction Management

No global transaction manager exists in the framework. Copies of an identical
transaction manager on each involved client and copies of an identical scheduler on each

involved database server perform distributed transaction management (Figure 4.2).

To handle with failures on sites, distributed commitment is employed in form of two-
phase commit. It consists of a voting phase, where sub-transactions are requested to vote
on their readiness to commit or abort, and a decision phase, where the decision as to

whether all sub-transactions should commit or abort is made and carried out.

Concurrent access to data is resolved with Two-phase locking. First, all lock requests

of a transaction are made, than all locks are released.

Each scheduler on server site resolves serialisability of concurrent transactions.

Schedulers can communicate with each other to manage replication and fragmentation.

The transaction manager at client site handles the execution of transactions. Based on
the data required for a specific transaction, it identifies sub-transactions, delegates them to

the related schedulers, and co-ordinates their parallel incoming results.

Bora {. Kumova MSc Thesis 1998 44

Multiple Clients

Client Client Server Server
User User User User
§ $ i AgentTeam $ _) 1 o
| Transact Transact Sche- Sche- |
t | Manager Manager duler duler |:
: Network ;

Figure 4.2: Domain of the Framework AgentTeam

Deadlock Handling

There is no mechanism designed to explicitly detect global deadlocks. Instead, a
delay-driven mechanism is used to rollback and restart a transaction. This mechanism
captures three possible delays:

e Delay caused by network overloading.
e Delay caused by server overloading.

e Delay caused by a global deadlock.

The decision to such a simplified mechanism has practical reasons, which is three-
fold. Firstly, network response times are usually a magnitude higher than response times of
DBMSs. Though, network protocols themselves can be assumed to be reliable, in some
situations a server can cancel a transaction. Under these circumstances it is not worth to
implement a global deadlock detection algorithm, which in most cases would save only a
tiny amount of time compared with network delays. Thirdly, since this is an interactive
system, a user can define the maximum delay time himself, which the user will usually

calculate according the current network response times.

Bora [. Kumova MSc Thesis 1998 45

Data Distribution

Data managed by the system can be distributed over all involved DBMSs. Both,
replication and fragmentation are carried out hidden from the user automated in the
background. The objective of both is to achieve locality of reference. Consistency of local
data is guaranteed by utilising the related mechanisms of the local DBMSs. Consistency of
global data is guaranteed by additional functionality implemented in the schedulers.
Schedulers communicate with each other to distribute data and to hold the distributed
database consistent. The data distribution policy is determined principally based on data
access statistics. A user view may require gathering data from different sites. In this case
the transaction manager of this site will establish sub-transactions and will send them to the

scheduler of each involved site.

Optimisation Issues

Since, remote data transfer usually is slower than local data transfer, a practical rule
is first to reduce the data amount locally then to transfer it over the network. In this sense,

following rules of thumb will increase remote data management:
Local filtering: Data should be filtered first, before transferring to another site.

Local joining: If tables to be joined are available locally, then they should be joined

first locally using semi-join of the form E i< R, where E is an entity and R is the relation.

Attribute transfer: If E and R reside on different sites, then transfer only required
attributes, preferably only keys, to the remote site.

Moving less data amount. If E and R reside on different sites, then E should be
transferred to the site where R resides. In case of horizontal fragmentation, the fragment

with smaller cardinality should be transferred to the site with the greater cardinality.

Database Connectivity

In AgentTeam connectivity of system components conceptually consists of three
abstraction layers data, knowledge, and information (Figure 4.3). Data is exchanged via the

agent communication language AgentCom. Data is represented in AgentCom in form of

Bora [. Kumova MSc Thesis 1998 46

Information Exchange

- via the System ¢
(Abstract Data Types)

Host Host

User
Interface Interface
Homogeneous

Knowledge
Base

Knowledge Exchange
via Agents
(Semantic Nets)

Knowledge
Base

Data Exchange

via Agenthm AgentCom
(Character Strings)
v_ Heterogeneous L

l Database l

character strings. Knowledge is exchanged between agents in form of semantic nets.

Database

=
!

Figure 4.3: Database Connectivity Model of AgentTeam

Information is exchanged between users via the system in form of abstract data types.

4.2 Agent Model

proceeding delegated tasks, for reasoning logically, and the capability to communicate in

This is a model for a single software agent with some properties for successfully

an agent communication language with other agents.

Properties

An AgentTeam agent should possess following properties in order to perform

database management functionality successful and sound.

Bora I. Kumova MSc Thesis 1998 47

Capable: Can receive tasks over the communication language AgentCom.
Perceptive: Always ready to become active, since it is event-driven.

Successful: Makes the accomplishment of a transaction or sub-transaction always to

its goal.

Reactive: Can return results sufficiently quickly, since the workload of a transaction

or sub-transaction is distributed over several agents.
Reflexive: Always returns the result of a transaction or sub-transaction.

Predictive: Distributed database management and transaction processing is
distributed to different agent types each responsible for specific functionality of the
DDBMS. Results

Imperative: Agents can distinguish agent types and know each other’s capabilities, so

that they will delegate each other correct and interpretable transactions or sub-transactions.

Rational: All agents can reason logically and can optimise the execution of a

transaction or sub-transaction.

Architecture

The architecture of an AgentTeam agent consists of several abstract components,
including the environment (Figure 4.4). The environment of an agent is database
management by considering the existence of users, other agents, and various sources. The
agent interacts to the environment via communication languages, which is the user
interface, the agent communication language AgentCom, various native host languages,
and different protocols to access heterogeneous sources. Its internal structure consists of
control mechanisms for learning form sample operations, planning the optimal execution of
a transaction or sub-transaction, co-ordinating the execution of transactions and sub-
transactions, and of the knowledge base. The knowledge base contains particular database
management functionality in form of meta-knowledge and all current transactions

represented as goals.

Bora I. Kumova

MSc Thesis 1998

| Environment: Database Management
User Communication

Languages:
User Interface,

Agent AgentCom,

Native Language,
Source Access
Protocols
Source

Agent
Control:
Learning,
Planning,
Co-ordinating

Knowledge Base:
Meta-Knowledge,
Goals

Figure 4.4. Architecture and Environment of an AgentTeam Agent

Life-cycle Model

48

An agent has four major states sleep, wait, communicate, and evaluate (Figure 4.5).

The possible states and state transitions are explained briefly below.

Sleeping: An agent is sleeping, when it is currently persistent or is moving. For

example when it is currently inactive, because its state and data is stored in a database or is

moving from one machine to another machine. From sleeping an agent may transit only to

Communicating

Figure 4.5: Life-cycle Model of an AgentTeam Agent

Sleeping

Bora {. Kumova MSc Thesis 1998 49

the waiting state, for example caused by an event.

Waiting: An agent is waiting, if currently no event has activated any of its
functionality. From waiting it may transit to sleeping, if no events have occurred for a
while. It may transit to communicating, if a communication event, if it receives a

communication event.

Communicating: An agent is communicating in all types of interaction with other
agents, which can be co-operate, collaborate, or compete. AgentTeam agents are usually
always collaborative. It may change to waiting, when for example network congestion
occurs. It may change to evaluating, when a source.is requested or should be released, or

gets any other task delegated.

Evaluating: An agent is evaluating, when transforming a protocol, learning,
reasoning, filtering database data, or retrieving database data. It may transit to waiting,
when it is expecting further knowledge form other agents, in order to complete its tasks, or

if all tasks have been completed.

Knowledge Base

In order to find a general-purpose data structure that is capable for representing a
broad range of objects and that can easily be visualised, we have chosen semantic nets.
Since, a semantic net can also easily be transferred into first order predicate logic, it can be
utilised for logical reasoning. Therefore, knowledge is represented in the knowledge base

of an agent in form of semantic nets.

Semantic net: A semantic net is a connected, directed, and labelled graph, where a
node represents an object or an attribute value and an arc between two nodes represents a

relation, a property, or an operation. A semantic net is always stored as a connected graph.

Knowledge base concepts: Depending on the agent type, the knowledge base of an
agent may contain several concepts represented in form of semantic nets. These are the data
dictionaries of local databases with references to distributed data, transaction management

or transaction scheduling, the communication history of an agent for statistical evaluations,

Bora I. Kumova MSc Thesis 1998 50

Knowledge Base
Transaction
Database Management/ Template
Dictionary Scheduling
Data Agent Commu- User Data
Distribution nication History View

Figure 4.6: Knowledge Base Concepts of an AgentTeam Agent

the user defined data views, and templates for each of these concepts (Figure 4.6). Several

user defined data views may be stored at the same time in the knowledge base.

Template: A template represents the common structure of a class of concepts and is
used to traverse a sample concept of that class currently stored in the same knowledge base.
For each class of concepts there must exist exactly one template. For example, the template
of the concept RDBMS consists of the node RDBMS on top and one or more nodes for

databases, tables, attributes, and values in a hierarchy (Figure 4.7). Since, all agent shares

RDBMS

Databases

ffll;\\
Tables
. f.-". .,

P
Attributes

Values

Figure 4.7: Hierarchical Structure of the DBMS Template

Bora I. Kumova MSc Thesis 1998 51

the same knowledge base structure and inference mechanism, exchanging a template and
one or more related concepts is equivalent with exchanging knowledge between agents. In
other words, if two agents store equal templates in their knowledge base, then they will be

able to interpret each other’s concepts that belong to the class represented by that template

Inference Mechanism

The logical evaluation of the semantic nets is performed by a special mechanism that
we call inference mechanism. Nodes are interpreted as facts. A relationship between nodes,
which is graphically drawn as an arc, is interpreted as a predicate. The inference
mechanism proceeds in three phases: searching, evaluating and executing.

o Searching: According the related template, traversing a given semantic net, while
seeking for a given attribute name. The attribute name may be the name of a node.

o Evaluating: Is performed by evaluating the attributes of the found node according
the given attribute values.

e Executing: Is performed by executing the operations of the found node.

Communication Model

An AgentTeam agent may communicate principally in the fhree modes co-operate,

collaborate, or compete (Figure 4.8).

Co-operating: In this mode an agent knows only team goals, it has no antagonistic
goals. It may have individual goals, but these will be sub-goals required to reach the team
goals independently. All involved agents tightly work together to successfully terminate a

transaction. In other words, a transaction is proceeded by the agents always in co-operate.

Collaborating: In this mode an agent has two or more goals, which may be co-
opérative or antagonistic in nature. These goals always will temporarily be required as sub-
goals. In this case two or more transactions must be proceeded concurrently by the
involved agents. For example when a user has started several transactions immediately in
succession or two users have started their transactions in parallel and some involved agents

must proceed some of the sub-transactions concurrently. To achieve its team goals, an

Bora . Kumova MSc Thesis 1998 52

Communicate

Co-operate

Collaborate

Figure 4.8: Communication Model of an AgentTeam Agent

agent may have some sub-goals, which may be collaborative inside the agent team, but
competing against agents outside that team. A further example for collaboration is, if an

agent involved in a team communicates with an agent outside that group.

Competition: In this mode of communication an agent has only antagonistic goals, it
has no team goals. A competing agent may temporarily take over a sub-goal of a team goal
of other agents, if that sub-goal will contribute to its antagonistic goals. In this case it will
co-operate with other agents temporarily. AgentTeam agents will never behave competitive
to each other. But, it may be advantageous, with respect to their own goals, to enter this

mode, when communicating with agents of other domains or applications.

Co-ordination Model

Different entities, in form of functionality and data, need to be co-ordinated in
AgentTeam as agent internal and agent-external control. Since, the system is transaction-
oriented, initiated by a user transaction, control begins centrally by the user agent, flows
over its task agents in parallel, then over the resource agents in parallel, and ends with the
last related activities of the involved database agents in parallel. In particular following

entities are co-ordinated.

Collaborative work. The co-ordination of the collaborative work of AgentTeam
agents is implicit in transaction management and scheduling. For example, for each parallel

transaction of a user the user agent invokes a task agent, sub-transactions of a transaction

Bora I. Kumova MSc Thesis 1998 53

are co-ordinated by one task agent, concurrent transactions are serialised by the related

database agent.

Access rights: Access to database data is co-ordinated by the access rights of each
involved DBMS and over the above discussed functionality for distributed transaction

management.

Consistency: Data consistency of the distributed database is co-ordinated according

the discussed functionality for distributed transaction management.

With respect to these co-ordination mechanisms, the agents operate semi-

autonomous. Further global or central synchronisation is not required.

4.3 Agent Types

To reduce complexity of agents and their responsibilities, distributed database
management were divided into independent system tasks. Accordingly, we have
synthesised four types of agents, by emphasising related properties and functionality of the
general agent model. The agent types, their responsibilities, and their communication
structure are discussed below. According their location and assigned tasks, they can be

grouped in client-site and server-site agents (Figure 4.9).

User Agent: A user agent is mainly responsible for managing user transactions. Is
created from a template, which is located on each server, stays persistent and will be
invoked by user. One exists for each user, with the purpose of managing user’s data and
information links. It provides the user with an interface for adding, modifying, deleting,
and retrieving data shared by the user team members. It is responsible for subdividing a
user transaction into tasks and distributing them to task agents. Knowledge of the location
of data sources and the kind of protocol in which that data were retrieved in previous

communications is retained.

Task Agent: A task agent implements the transaction management functionality of the
DDBMS. It is specifically responsible for executing transactions, identifying sub-
transactions, and for co-ordinated execution of transactions and sub-transactions. It is

created by the user agent and exists for the duration of a transaction. A transaction may

Bora I. Kumova MSc Thesis 1998 54

Client m : Server
1 p| Database
User Agent Agent
k 1 Resource
Task Agent Kmn,p €N Agent
" Network

Figure 4.9: Communication Structure of the Agent Types

result in one or more AgentCom sessions. A task agent acts as the client site connectivity

that gains access to a remote resource agent.

Resource Agent:. A resource agent is mainly responsible for brokering of AgentCom
messages between task agents and database agents. Only one exists on a server, where it
provides the server site connectivity. It organises the persistency of database agents and is
responsible for the brokering of messages between task agents and the different database
agents that reside on the same host. Finally, it seeks for a database agent that is suitable for

sender’s domain.

Database Agent: A database agent implements the scheduling functionality of the
DDBMS. 1t is specifically responsible for scheduling concurrent transactions, managing
data distribution, and providing the actual access to the database. It is created, or if already
existing, is invoked by the resource agent. It provides an interface to data resources and
stays persistent. One exists for each resource and is responsible for translation between

AgentCom and site’s native language.

In order to implement persistency of agents, in general, a new agent is created for
each required domain and type, if it does not exist yet. Otherwise, the currently existing

agent is invoked.

Bora I. Kumova MSc Thesis 1998 55

4.4 AgentCom

AgentCom is the common communication language of the AgentTeam agents.
Following requirements influenced the design of the language:
e Network capable, serial
o Exchange data of any form
e Exchange knowledge between agents
e Co-ordinate co-operative work of agents
» Enable agents to support higher order functionality, such as to store user defined

views, or to support the co-operative work of user teams

Language Primitives

AgentCom has several message types that can be communicated syntactically
independently from each other. The syntax is based on list structures. Sent messages are
pure character strings. For a brief overview, all language primitives are grouped into
messages and keywords and listed below.
message = {sessionBegin, sessionEnd, give, take, delete,

respond}
keyword = {error, address, name, domain, topic, sessionlId,

messageld, conference, communicationMode, language,

object}
A formal description of the language in extended BNF is given in (Appendix A).

The basic semantic of the language is to deliver the communication partner some
knowledge or to receive some knowledge. It is noteworthy, that the language itself does not
provides for logical operation, in the sense of predicate calculus. However, related
combinations of the language primitives can express any more complicated communicative
- intention, such as the intention to let the partner perform some functionality, or to reason

about some facts.

Bora i. Kumova MSc Thesis 1998 56

Semantics

A session can consist of several messages. Each message can contain a variable
number of keywords. Depending on the current communication status, an agent may decide
to include a keyword or not. Furthermore, each keyword can contain a variable number of

values.

At the language level data is exchanged, whereas, knowledge can be exchanged at the
semantic level, for example by exchanging a knowledge base concept or template. Data to
be exchanged between communication partners is represented in form of attribute/value
pairs, which are named object/object-value in the language. Since, each message can
contain a variable number of attribute-value pairs, a complete semantic net can be sent

within a single AgentCom message or parts of it.

4.5 User Co-operation Model

From the perspective of a user the system consists of one AgentTeam client, which is
the local machine, and one or more AgentTeam database servers. All AgentTeam hosts
build a community consisting of several domains. Users of a domain are thought to be a
user team working temporarily togethér, until some team goals are reached. Principally, an
AgentTeam client can communicate with any AgentTeam server, independent from a

specific domain.

Working Environment

The working environment of a user provides abilities to inspect the data dictionary of
a remote database on an AgentTeam server, to view the tuples of a table, to create views by
joining tables and defining filters on selected data. A user can incrementally introduce new
information into the personal working environment by creating new views, modifying, or
deleting them. Further properties of the user environment are:
e User is aware of heterogeneity
e User is aware of distributed data, but not involved into the distribution management

e User must provide for valid data access rights, in order access remote data

Bora I. Kumova MSc Thesis 1998 57

Users can principally co-operate with each other directly, by exchanging database

views, or indirectly by updating some remote data over a view.

There are actually three types of goals in the AgentTeam framework. Goals of a user

team, individual user goals, and agent team goals inside the system (Figure 4.10).

4.6 Security Concepts

Since, the framework is designed for distributed systems, any component of the
framework must consider security and reliability for functionality as well as for data
against any possible external attack. Following system components should comply with

security standard, in order to guarantee acceptable overall system security and reliability.

Secure hosts: All involved sites, clients and servers, should be secure platforms, for

example by using proxies.

Agent Team Goal User Team Goal
User
Agent Team Subgoals User Teanl\ Subgoals Team
Abstract
Agent Goals Usergoals
Agent Subgoals User Subgoals
User Tasks User
4 ——
User stsions
User Transactions
Concrete AgentITasks
Agent
AgentCom Sessions Sys?(:?n
AgentTeam AgentCom Messages

Figure 4.10: Three Levels Co-operation Model of AgentTeam

Bora I. Kumova MSc Thesis 1998 58

Secure agents: The agents should provide for security hierarchies, including

signatures, user authentication, and syntax and semantic check for received AgentCom

messages.

Secure transactions: Transactions should be communicated based on secure message
primitives.

Secure messages: Since, an AgentCom message is a character string, it should be

encrypted, before sending over the network.

Bora I. Kumova MSc Thesis 1998 59

Chapter Five
CourseMan Prototype

This chapter covers the feasibility study for the framework AgentTeam. Because of
limited was available for the implementation and limited resources for the realisation of
some of the concepts, only some important features of the framework could be considered
in the design of the prototype. In this chapter we discuss the implementation-oriented
design concepts of CourseMan. Further implementation-oriented details are listed

separately in the appendices.

5.1 Distributed Database Architecture

The distributed database of CourseMan is designed in a top-down fashion according

the requirements of the enterprise, which is the management of university courses.

Enterprise

Detailed data concerning the courses and involved persons are required. To store
temporarily required data for the duration of a term, some further data structures are
necessary. Data related to assignments, midterms and the final of a course have to be stored

temporarily, until the overall grade of each student and each course is calculated.

Identified entities are department, lecturer, assistant, student, course, assignment,
midterm, and final. The relationships are assist, offer, teach, enrol, assign, examine
midterm, and examine final. A full description of the enterprise with the conceptual

scheme in form of an E/R diagram is given in (4ppendix B, C).

Bora I. Kumova MSc Thesis 1998 60

Data Dictionary

Data of the enterprise can be grouped in the classes master data and temporary data
(Appendix C). Master data represents the basic objects of the domain. Temporary data is
created for each course separately at the beginning of each term. It is required only for the
duration of that term. At the end of a term the results are updated against related master

data and all temporary data is deleted.

Tables Assignment, assign, Midterm, examiM, Final, and eaxmiF are created at run
time by the user agent, to hold temporarily required CourseMan data. When user creates a
new course to be taught, then required data for the related assignments, midterms, and the
final is stored in these tables. After a course is over, the user agent deletes all related

temporary data.

Data Distribution

Lecturers and assistants usually are responsible for the same students within a class.
Therefore, the same person frequently updates data of related students. Thus, fragmenting
frequently updated tables horizontally and storing them on the local machines will increase
system response time. The objective of horizontal fragmentation is to partition a relation
into tuple sets and to distribute the sets to different users. The distribution criteria are
unstructured, since users with update permission randomly select students. Always only
one user requires tuples of temporary tables. Principally, CourseMan users do not compete
for updates on temporary data. Therefore, an update on a tuple always fragments the related

table horizontally. This is in conformance with the principal of data locality.

Database Connectivity

The connectivity of CourseMan to databases is realised over the ODBC protocol. A
database agent communicates directly with the database source, which is a single file in the
operating system environment. ODBC configurations are made local on server site, were
the database resides. Clients are zero-configured, which has the advantage that any
machine can join the CourseMan system without having to configure anything on client

site. The data access language all involved databases is SQL.

Bora . Kumova MSc Thesis 1998 61

5.2 Agent Architecture

Common agent properties were implemented in form of a super class. All agent types
inherit these capabilities and add additional functionality, such as user interface

functionality, transaction management, and scheduling functionality.

Knowledge Base

Currently maintained concepts of the knowledge base are the RDBMS template and
data dictionary of the local database including attributes for fragmented tables, a template

for user data views and one user data view stored as a topic.

To exchange a semantic net, the sending agent wraps the semantic net into attribute-
value pairs to be sent in AgentCom. The receiving agent wraps the attribute-value pairs
back to its semantic net representation. The data wrapping according the communication

structure of the agent types is depicted in (Figure 5.1).

Sample AgentCom Session

The sample communication below illustrates how a connection between a task agent
and a database agent can be established. The messages are fragments of one session.
(sessionBegin (address '193.x.x.x' '193.x.x.y')
(name 'Dl1' 'D2') (domain 'Course') (sessionID '300')
(messageID '1') (communicationMode 'RO')

(language ('SQL' 'Java')))

D1 sends this message to D2. The first address is that of the sender, the second is that
of the receiver, respectively for name.
(respond (name 'D2' 'D1l') (domain 'Course')
(sessionID '300"') (messageID '1l"')
(object ('Student' 'enrol')
('"SID' 'Name' 'Address')
(*SID' 'CID' 'AssignAverage' 'MidtemAverage’
'FinalGrade' 'Grade'))

Bora I. Kumova

User Agent
Abstr. Data Typ

O

Semantic Net

I

v

MSc Thesis 1998

Database Agent
SQL Data

O

Semantic Net

i

v

62

AgentCom AgentCom

Task Agent Resource Agent

AgentCom AgentCom

)
Vvl i
A
Y

Semantic Net Semantic Net

AgentCom AgentCom

L
\

Java RMI

Figure 5.1: Wrapping between the Data Representation Forms

D2 is responding with the same session and message identifications. D2 is indicating
that it is involved in the domain mentioned. It sends the data dictionary of the local

database.
(take (messageID '2"'")
(object ('Student')

("SID' > '1998000')))

(sessionID '300')
(communicationMode 'XX')

('SID' 'Name' 'Address')

D1 is requesting D2 to resolve the indicated object-value pair.
(sessionID '300')
'Address’')

'Bostanli-Izmir')

(respond (messageID '2'")

(object ('SID

('1998076",
('1998106"',

('1998028",

"Name'
'Baris Bacaksiz',
'Aycin Bilir', 'Bornova-Izmir')

'Burcu Batmis', 'Karsiyaka-Izmir');

Bora I. Kumova MSc Thesis 1998 63

D2 has resolved the object-value pair as a table-attribute pair. Since, the attribute

names are not final, their values are retrieved and sent back to D1 as an object-value pair.

5.3 Co-operative User Work

Basically, each user can randomly view required data in the user interface. Co-
operative user work is based on shared data, which can be updated by users with update

permission and viewed by all users.

User Interface

The user agent presents the user an interface with following capabilities (Figure 5.2):
e Selection of remote servers
e Selection of remote databases

e Selection, update, or creation of tables of a database

Applet Viewer: JavaServer.UserAgent

woste [1R AgentTeam woste: [| FEEEEE

Domain A: l::l
|Table A (E]

Aftribute Fiiter Table A:

Domain B:

Attribute Filter Table B :

v el Sy i | s

METY KS

Applet started.

Figure 5.2: User Interface of CourseMan

Bora I. Kumova MSc Thesis 1998 64

e Selection, update, or insertion of tuples of a table

Sample Scenario for the Management of a Course

A sample scenario for the managemént of a course could occur as follows: A lecturer
informs its user agent about a new course. The user agent creates a task agent to get
required master data. The task agent establishes a connection to related database agents and
retrieves the master data. During the current term, the lecturer gives assignments, makes
midterms, and the final. For each of these tasks the user agent creates one or more new task
agents, who organise required data. A course usually exists for the duration of a term.
During that term, the lecturer and its assistants may update, or students may query
CourseMan data. Each authorised user will have its own user agent. At the end of a term,
the lecturer evaluates all data, calculates final course grades, and delivers the results. The
results are stored in the master database. The user agent assists nearby and finally deletes
all temporarily used data in CourseMan. A user agent will always assists the same user for

the duration of one course, as well as for all other courses of that user.

5.4 Security Concepts

In the current implementation of CourseMan the data access rights of the involved
DBMSs are utilised. On all involved database an identical user account exists, which is

used by the database agent to gain access to the local database.

5.5 System Configuration

All servers involved in CourseMan are located in the department. The current host
configuration consists of following machines (Figure 3.3):
e Web server alpha: The HTML application with all required executables, which are
downloaded to a client at run time.
o Master data server menekse: Some of the master data is stored in the tables Course,
Lecturer, teach, Assistant, assist, Department, and offer.
o Master data server bilgin: Some of the master data is stored in the tables Student

and enrol.

Bora I. Kumova

MSc Thesis 1998

Clients’ Connectivity to other Sites
Client alp’s Connectivity to Client bora’s Databases
Client bora’s Connectivity to Client alp’s Databases

65
alp: Client/ bora:Client/
Temporary Temporary
Data Server RDBMS Data Server RDBMS
HTML \ HTML N f
User Database User Database
Agent Agent Agent Agent
Task Resource Task Resource
Agent Agent Agent Agent
v v
Internet: HTTP, Java RMI
A A e Ir
| v 7 7 ~
[]]| Task Agent HTML/Java, Resource Resource
User Profile Agent Agent
‘ 0 {
alpha: Web
User Agent Server Database Database
Agent Agent
Client AD
- RDBMS RDBMS
meneks: bilgin:
..... Asynchronous Communication Ma;;erl;leDrata Ma;eretha
Synchronous Communication

Figure 5.3: Current Network Configuration of CourseMan

e (lient/temporary data serverlalp: Some of the temporary data is stored in the tables
Assignment, assign, Midterm, examiM, Final, and examiF.

Bora i. Kumova MSc Thesis 1998 66

o Client/temporary data server bora: Some of the temporary data is stored in the

tables Assignment, assign, Midterm, examiM, Final, and examiF.

Current machine configuration with the data distribution, and access rights are given

in (Appendix D).

Scalability

Currently only one database is connected to CourseMan on a host. Before a database
can be utilised by CourseMan, there must exist an SQL DBMS with the related ODBC
configuration. A further domain or database source can be introducing to a local resource
agent dynamically. The first reference to that database will cause the resource agent to
create a further database agent on the local machine. This functionality of the resource

agent results in unlimited database scalability in CourseMan.

A further CourseMan server can be introduced to the system, by invoking a resource
agent locally on the chosen machine. Thereafter, a configuration for at least one database
should be made, as described above. Another alternative is given for users with update
permission. In this case the first attempt to fragment a table will cause the system to
dynamically create a resource agent locally, if no one already exists. Then, this host will

become a CourseMan client and a CourseMan server for temporary data.

A further CourseMan client can be introduced to the system, by downloading a user
agent to the local machine, which can be any machine, since zero-configuration for clients

is assumed by CourseMan.

Implementation

Details of the utilised tools and the software design of CourseMan can be found in
(Appendix D, E, F, G). The whole prototype software is implemented in the programming
language Java [JDK 97], [Gosling et al. 96].

Bora . Kumova | MSc Thesis 1998 67

Conclusions

In this work we have reviewed current research and technology on DDBMSs, agents,
and existing systems, which attempt to combine both of them. However, all of the analysed
systems where designed with an emphasis on either multi database management or on
information retrieval. None of them were concerned with distributed database management

of shared databases in a dynamic environment.

We have addressed this problem by designing a system that can successfully work in
a dynamic environment, since itself is inherently a dynamic, distributed system. For such a
system we have presented a framework, namely AgentTeam, and tested its feasibility in the

prototype implementation CourseMan.

Comparison with Related Work

Meriposa: The idea of a DDBMS with temporarily allowed global data
inconsistencies was already realised with the wide-area DDBMS Mariposa [Stonebraket et
al. 96]. Goals of this project stated are scalability to a large number of co-operating sites,
data mobility, no global synchronisation, total local autonomy, and easy configurable
policies. A user must charge for each access on data of the DDBMS, which is entered into
a personal bank account. The main differences between Mariposa and AgentTeam are that
Mariposa resolves concurrency over an economy principle and that it does not utilise the

agent concept.

MIND: MIND is a multi DBMS [Dogag et al. 95] but does not deal with data
distribution. Database management in MIND is particularly centralised by global

transaction management, whereas in AgentTeam there is one transaction manager on each

Bora I. Kumova MSc Thesis 1998 68

client locally, which provides for more user-oriented distributed database management

capabilities.

RETSINA: The agent types and their communication structures of RETSINA [Sycara
et-al. 96] were partially adopted in AgentTeam. However, the architecture of RETSINA
does not incorporate co-operative work of user teams, and does not consider the user
requirement for information exchange at user level. The main difference between and
AgentTeam is the domain for which they were designed. RETSINA is a framework for
information retrieval, whereas AgentTeam is a framework for information exchange among

users based on shared databases.

InfoSleuth: InfoSleuth [Nodine et al. 98b] is more a software-engineering tool for
developing intelligent agents. Developed agents can be deployed into a system
environment with uniform communication capabilities. It would be of interest, if, based on
AgentTeam and KQML, a system for distributed database management could be developed

within the InfoSleuth development environment.

Infomaster: The information integration tool Infomaster [Genesereth et al. 97] is a
further example for information retrieval. Its rﬁle-based schema integration facilitator is an
approach to homogenise heterogeneous data sources as well as structured and unstructured
data. This could be a solution concept, when extending AgentTeam to encompass

unstructured data, too.

Some characteristics of AgentCom are summarised and compared to those of KQML
and distributed objects (Table I). The main differences between the languages are the
capability of representing native data in the language, interaction with native languages,
and controlling the flow of execution. Firstly, any native data can be represented in form of
attribute-value pairs in AgentCom, whereas native data must be available in logical form to
be represented in KQML. Secondly, since AgentCom not necessarily is logical, it can be
implemented in or can interact with any native language, whereas implementation of and
interaction with KQML requires logical languages. A further difference is that the flow of
execution between communicating partners is data-driven with AgentCom, but logical with
KQML.

Bora I. Kumova

MSc Thesis 1998

69

Table 1. Some Characteristics of the Communication Models

Protocol Agent Languages
Distributed
Characteristic AgentCom KQML Objects
Idea Knowledge Knowledge Remote Obiject-
Exchange Exchange link
OS Platform Any Any Any
Implementation . .
Language Any Any Object-oriented
Native data . . .
Representation Any Logical Object-oriented
Native An Logical Object-oriented
Language y gic ject-oriente
Control Flow Data-driven Logical Functional
Language Object/Method
Syntax List String List String Invocation
In Language, in In Language, in
Lsanguage Agent's Knowledge | Agent’s Knowledge Non
emantic
Base Base
Co-ordination | Any (CourseMan: An CORBA, DOOM
Protocol HTTP, RMI) y Py
Communication Synchronous/ Synchronous/
Mode Asynchronous Asynchronous Synchronous
Security Not in Language Not in Language In Protocol
Suggested Further Work

Based on some expectations in the progress of the field, following further work is

suggested.

Bora I. Kumova MSc Thesis 1998 70

Standardisation: Any further extension or improvement of AgentTeam should
closely be related the standardisation efforts in the field. For example, standardisation
efforts of the telecommunications companies for a common agent communication language

are expected to set a milestone for automated information exchange [FIPA 97].

Extending AgentTeam: Furthermore, AgentTeam can serve as an underlying model
upon which other systems can be constructed, for example workflow management or

virtual data-warehouse, or multimedia information exchange.

Data dictionary parser: Dynamic evaluation of the data dictionary of a database
implemented in WEBCON [Zoller et al. 98] provides for further system flexibility. This
functionality could be implemented in the database agent, for dynamically recognising the

data structures of a shared database.

Extending AgentCom: Evaluation of AgentCom in the domain of CourseMan or in
other domains, for example to exchange multi media data or unstructured data and

according extension of the language, and refinement of the syntax.

Extending CourseMan: Since, CourseMan will serve as a test bed and for stepwise
extensions, following further extensions are suggested:

e Transaction management and scheduling functionality to be represented as
knowledge base concepts, and to be stored in form of semantic nets in knowledge
base

¢ Replication of relations, to increase system availability and reliability

e Allowing joins of relations located at different sites

e Dynamic evaluation of data dictionaries, which will make connectivity insensitive to
changes within the database scheme

o Introducing further AgentTeam servers into the current configuration inside the
current intranet solution and/or building an internet solution, by introducing further
servers outside the intranet

e Extending the system to the UNIX platform, to test platform heterogeneity

e Introducing further DBMSs on a local server

e Introducing more intelligent behaviour for user agents, for example by increasing the

learning capabilities, and/or by designing intelligent user interfaces

Bora I. Kumova MSc Thesis 1998 71

e Refinement of the mathematical model for data fragmentation and data replication
that was presented in chapter one. We propose the design of a fuzzyfied [Kumova
92] decision support system for automated data distribution. This functionality could
be implemented in the database agents

e System interoperability: A wrapper for AgentCom and KQML is of further interest,

to enable communication with each other

Software development: For rapid prototyping, it is of further interest to utilise a
software environment that supports agent development. For example at tool-level,
InfoSleuth provides a layered shell, in which standard agent architecture is enforced
[Nodine et al. 98a]. At programming language-level, standard routine libraries can facilitate

the implementation of the designed agent properties [Bigus et al. 98].

Bora I. Kumova

ANSI
ARCOL
BNF
CGI
CORBA
DDBMS
E/R
FIPA

HTML .

HTTP
KDBMS

KQML
ODBC
ODBMS
QUEL
RDBMS
RMI
SQL
SPARC
TCP

URL

MSc Thesis 1998

Abbreviations

American National Standards Institute
ARtimis COmmunication Language
Backus-Naur Form

Common Gateway Interface

Common Object Request Broker Architecture
Distributed DataBase Management System
Entity/Relationship

Foundation for Intelligent Physical Agents
HyperText Mark-up Language

" HyperText Transport Protocol

Knowledge-based DBMS

Knowledge Interchange Format

Knowledge Query and Manipulation Language
Open DataBase Connectivity

Object-oriented DBMS

QUEry Language

Relational DBMS

Remote Method Invocation

Structured Query Language

Standards Planning and Requirements Committee

Transmission Control Protocol
Internet Protocol

Universal Resource Locator
World Wide Web

72

Bora I. Kumova MSc Thesis 1998 73

\)

References

[Akker et al. 97] Akker, Johan van den; Siebes, Armo; 1997, "Enriching Active
Databases with Agent Technology", in Kandzia, Peter; Klusch, Matthias; eds.,
Cooperative Information Agents, Springer-Verlag, Berlin, 1997

[Ambite et al. 97] Ambite, José Luis; Knoblock, Craig A., 1997, “Agents for
Information Gathering”, IEEE Expert, Vol.12 No. 5 pp.2-4

[Caglayan et al. 97] Caglayan, Alper; Harrison, Colin G., 1997, “Agent Sourcebook: A
Complete Guide to Desktop, Internet, and Intranet Agents”, John Wiley Sons Inc.,
New York

[Babin et al. 97] Babin, Gilbert; Maamar, Zakaria; Chaib-draa, Brahim; 1997,
"Metadatabase Meets Distributed AI", in Kandzia, Peter; Klusch, Matthias; eds.,
- Cooperative Information Agents, Springer-Verlag, Berlin, 1997

[Bigus et al. 98] Bigus, Joseph P.; Bigus, Jennifer, 1998, “Constructing Intelligent
Agents with Java - A Programmer's Guide to Smart Applications”, John Wiley Sons
Inc., New York

[Chavez et al. 97] Chavez, Anthony; Moukas, Alexandros; Maes, Pattie, 1997,
“Challenger: A Multi-agent System for Distributed Resource Allocation”,
Autonomous Agents’97, Marina Del Ray

[Chen et al. 97] Chen, Liren; Sycara, Katia; 1997, “WebMate:'A Personal Agent for
Browsing and Searching”, TR, Carnegie Mellon University, Pittsburgh

Bora I. Kumova MSc Thesis 1998 74

[Ciancarini et al. 98] Cﬁl}caﬂni, P.; Rossi, D.; 1998, “Coordinating Distributed Applets
with Shada/Java”, SAC'98

[Cohen et al. 94] Philip R. Cohen, Philip R. Cheyer, Michelle Wang, Soon Cheol
Baeg, 1994, “An Open Agent Architecture”, A4AI Spring Symposium, pp. 1-8, March

[Dam 97] Dam, Mads; eds., 1997, “Analysis and Verification of Multiple-Agent
Languages”, LOMAPS'96, Lecture Notes in Computer Science, Springer-Verlag,

Berlin

[Demirors 95] Demirdrs, Elif; 1995, “A Blackboard Framework for Supporting Team in
Software Development”, PhD thesis, Southern Methodist University

[Desai 90] Desai, Bipin C.; 1990, “An Introduction to Database Systems”, West
Publishing Company, St. Paul

[Dogag et al. 95] Dogag, Asuman; Dengi, Cevdet; Kilig, E.; Ozhan, G.; Ozcan, F.;
Nural, S.; Evrendilek, C.; Halici, U.; Arpinar, B.; Koksal, P.; Kesim, N.; Mancuhan,
S.; 1995, “METU Interoperable Database System”, ACM SIGMOD, Vol. 24, No. 3

[Dogag et al. 98] Dogag, Asuman; Dengi, Cevdet; Ozsu, M.Tamer; 1998, “Building
Interoperable Databases on Distributed Object Management Platforms”,
Communications of the ACM

[Duschkaet al. 97] Duschka, Oliver M.; Genesereth, Michael R.; 1997, “Infomaster-An
Information Integration Tool”, International Workshop on Intelligent Information
Integration, Freiburg

[Engelmore et al. 88] Engelmore, Robert; Morgan, Tony; 1998, “Blackboard Systems”,
Edison-Wesley Publishing Company, Wokingham

[Evans et al. 97] Evans, Eric; Rogers, Daniel; 1997, “Using Java Applets and
CORBA for Multi-User Distributed Applications”, IJEEE Internet Computing, Vol.l
No.3 pp.43-55

Bora I. Kumova MSc Thesis 1998 75

[Finin et al. 92] Finin, Tim; Fritzson, RichMcKay, Donald, 1992, “A Language and
Protocol to Sup@lntelligent Agent Interoperability”,

[Finin et al. 93] Finin, Tim; Wiederhold, Gio; Weber, Jay; Genesereth, Michael;
Fritzson, Richard; McKay, Donald; McGuire, James; Pelavin, Richard; Shapiro,
Stuart; Beck, Chris; 1993, “Specification of' the KQML Agent-Communication
Language”, draft,

[Finin et al. 94] Finin, Tim; Labrou, Yannis; Mayfield, James; 1994, “KQML as an
Agent Communication Language”, Draft, http://www.cs.umbc.edu/kgml, University
of Maryland Baltimore County, Baltimore

[FIPA 97] “Foundation for Intelligent Physical Agents”; 1997, FIPA 97 Specification,
part 2, Agent Communication Language,
http://drogo.cselt.stet.it/fipa/spec/fipa97/fipa97.htm

http://www.cs.cmu.edu/~softagents

[Genesereth et al. 97] Genesereth, Michael R.; Keller, Arthur M.; Duschka, Oliver M.;
1997, “Infomaster: An Information Integration System”, ACM SIGMOD

[Gosling et al. 96] Gosling, James; Joy, Bill; Steel, Guy; 1996, "The Java Language
Specification", Sun Microsystems Inc., Palo Alto

[Goodwin 94] Goodwin, Richerd; 1994, “Formalizing Properties of Agents”, Journal of
Logic and Computation, Vol. 5, Issue 6

[Green et al.97] Green, Shaw; Hurst, Leon; Nangle, Brenda; Cunningham, Pédraig;
Somers, Fergal; Evans, Richard; 1997, “Software Agents: A review”,

http://www.cs.tcd.ie/research groups/aig/iag/pubreview.ps.gz

[Gruber 94] Gruber, Thomas R.; 1994, “Toward Principles for the Design of Ontologies
Used for Knowledge Sharing”, in Guarino, Nicola; Poli, Roberto; Formal Ontology
in Conceptual Analysis and Knowledge Representation, Kluwer Academic
Publishers

Bora I. Kumova MSc Thesis 1998 76

[Hayes-Roth 92] Hayes-Roth, Barbara, 1992, “Opportunistic Control of Action in
Intelligent Agents”, TR, Stanford University, Palo Alto

fHuhns 97] Huhns, Michael N.; 1997, “Ontologies for Agents”, IEEE Internet
Computing, Vol.1 No.6 pp.81-83

[Huhns et al. 97] Huhns, Michael N.; Singh, Munindar P.; 1997, “Conversational
Agents”, IEEE Internet Computing, Vol.1 No.2 pp.73-75

[JDK 97] 1997, "JDK 1.1.5 Documentation", Sun Microsystems Inc., Palo Alto

[Joseph et al. 91] Joseph, W. Sullivan; Sharman, W. Tyler; 1991, “Intelligent User
Interfaces”, ACM Press, New York

[Kandziaet al. 97] Kandzia, Peter; Klusch, Matthias; eds., 1997, “Cooperative
Information Agents”, CIA'97, Lecture Notes in Artificial Intelligence, Springer-
Verlag, Berlin

[Krone et al. 98] Krone, Oliver; Chantemargue, Fabrice; Dagaeff, Thierry;
Schumacher, Michael; Hirsbrunner, Béat; 1998, “Coordinating Autonomous
Entities”, SAC'98

[Kumova 92] Kumova, Bora I.; 1992, “Untersuchung der Einsatzmélichkeiten von Fuzzy-

Logiken in einem regelbasierten Planungssystem”, BSc thesis, Fachhochschule

Furtwangen

[Kumova et al. 98a] Kumova, Bora 1i.; Kut, Alp; 1998, “A Communication Model for
Distributed Agents”, ISCIS’98, Antalya, http://www.cs.deu.edu.tr/~kumova

[Kumova et al. 98b] Kumova, Bora I.; Kut, Alp; 1998, *“Agent-based System Co-
operation”, PDP 99, Madeira, http://www.cs.deu.edu.tr/~kumova

[Kumova et al. 98c] Kumova, Bora 1.; Kut, Alp; 1998, “Agent-based Connectivity for
Distributed DBMSs”, technical report, http://www.cs.deu.edu.tr/~kumova

Bora I. Kumova MSc Thesis 1998 77

[Labrou et al. 98] Labrou, Yannis; Finin, Tim; 1998, "Semantics for an Agent
Communication Language", in Sing, Munindar P.; Rao, Anand; Wooldridge, Michael
J.; eds., Intelligent Agents IV - Agent Theories, Architectures, and Languages,
Springer-Verlag, Berlin

[Lander 96] Lander, Susan E.; 1997, “Issues in Multiagent Design Systems”, IEEE
Expert, Vol.12 No. 2 pp.18-26

[Mayfield et al. 95] Mayfield, James; Labrou, Yannis; Finin, Tim; 1995, “Evaluation of
KQML as an Agent Communication Language”, Intelligent Agents Volume II -
Proceedings of the 1995 Workshop on Agent Theories, Architectures, and
Languages, in Wooldridge, M.; Muller, J.P.; Tambe, M.; eds., Lecture Notes in
Artificial Intelligence, Springer-Verlag, Berlin, 1996

[Niemeyer et al. 96] Niemeyer, Patric; Peck, Joshua; 1996, “Exploring Java”, O’Reilly,
Cambridge

[Norvig 95] Norvig, Russell, 1995, “Artificial Intelligence - A Modern Approach”,
Prentice-Hall, New Jersey

[Nodine et al. 98a] Nodine, Marian; Perry, Brad; Unruh, Amy; 1998, “Experience with
InfoSleuth Agent Architecture”, A4A4I-98 Workshop on Software Tools for
Developing Agents

[Nodine et al. 98b] Nodine, Marian; Chandrasekara, Damith; 1998, “Agent
Communities”, technical report, MCC

[Odubiyi etal. 97] Odubiyi, Judé B.; Kocur, David J.; Weinstein, Stuart M.; Wakin,
Nagi; Srivastava, Sadanand; Gokey, Chris; Graham, JoAnna; 1997, “SAIRE - A
Scalable Agent-based Information Retrieval Engine”, Autonomous Agents’97, Marina
Del Ray

.

[Orfali 96] Orfali, Robert; Harkey, Dan; Edwards, Jari; 1996, “The Essential
Distributed Objects Survival Guide”, John Wiley Sons, New York

Bora I. Kumova MSc Thesis 1998 78

[Ozsu 91] Ozsu, M. Tamer; Valduriez, Patrick; 1991, “Principles of Distributed
Database Systems”, Prentice Hall, Englewood Cliffs

[Ozkarahan 97] Ozkarahan, Esen; 1997, “Database Mahagement — Concepts, Design,
and Practice”, Saray Medical Publication, Izmir

[Papadopoulos et al. 98a] Papadopoulos, Georg A.; Arbab, Farhad; 1998, “Modeling
Activities in Information Systems using the Coordination Language MANIFOLD”,
SAC’98

[Papadopoulos et al. 98b] Papadopoulos, Georg A.; Arbab, Farhad; 1998,
“Coordination Models and Languages”, Advances in Computers, No 46, Academic

Press

[Rich et al. 91] Rich, Elaine; Knight, Kevin; 1991, “Artificial Intelligence”,
McGraw-Hill, New York

[Russell et al. 95] Russell, Stuart J.; Norvig, Peter; 1995, “Artificial Intelligence — A
Modem Approach”, Prentice Hall, Englewood Cliffs

[Sabin 98] Sabin, Roberta Evans; Yap, Tieng K.; 1998, “Integrating Information
Retrieval Techniques with Traditional DB Methods in a Web-Based Database

Browser”,

[Sadek et al. 97] Sadek, D.; Bretier, P.; Panaget, F.; 1997, “ARCOL agent
communication language and MCP, CAP and SAP agent's cooperativeness

protocols”, proposal, France Télécom

[Schalkoff 90] Schalkoff, J. Robert; 1990, “Artificial Intelligence: An Engineering
Approach”, McGraw-Hill, New York

[Seker et al. 98] Seker, Giizin; Kut, Alp; Kumova, Bora 1.; 1998, “Security Concepts
for Accessing Distributed Databases via Java and JDBC”, BAS9S, fzmir, .

bttp://www.cs.deu.edu.tr/~kumova

Bora I. Kumova MSc Thesis 1998 79

[Sing et al. 98]Sing, Munindar P.; Rao, Anénd; Wooldridge, Michael J.; eds., 1998,
“Intelligent Agents IV - Agent Theories, Architectures, and Languages”, ATAL'97,
Springer-Verlag, Berlin

[Singh 98] Singh, Narinder; 1998, “Unifying Heterogeneous Information Models”,
Communications of the ACM, Vol.41 No.5

[Stonebraker et al. 96]Stonebraker, Michael; Aoki, Paul M.; Litwin, Witold; Pfeffer, Avi;
Sah, Adam; Sidell, Jeff; Staelin, Carl; Yu, Andrew; 1996, “Mariposa: a wide-area
distributed database system”, The VLDB Journal, Vol. 5, pp. 48-63, Springer-Verlag,

Berlin

[Sycara et al. 97] Sycara, Katia; Decker, Keith; Pannu, Anandeep; Williamson, Mike;
Zeng, Dajun; 1997, “Distributed Intelligent Agents”, IEEE Expert, Dec 96,

http://www.cs.cmu.edu/~softagents

[Tanenbaum 89] Tanenbaum, Andrew S.; 1989, “Computer Networks”, Prentice Hall,
Englewood Cliffs

[Tanenbaum 92] Tanenbaum, Andrew S.; 1992, “Modern Operating Systems”,
Prentice Hall, Englewood Cliffs

[Tanenbaum 95] Tanenbaum, Andrew S., 1995, “Distributed Operating Systems”,
Prentice-Hall, New Jersey

[Thompson et al. 97] Thompson, Dean; Watkins, Damien; 1997, “Comparison between
CORBA and DCOM: Architectures for Distributed Computing”, Tools Asia’97,
Beijing - '

[Vitek et al. 97] Vitek, Jan; Tschudin, Christian; eds., 1997, “Mobile Object Systems

— Towards the Programmable Internet”, Springer-Verlag, Berlin

[Vranes$ et al. 95] Vrane§, Sanja; Stanojevié, Mladen; 1995, "‘Integrating Multiple
Paradigms within the Blackboard Framework”, IEEE Transactions on Software
Engineering, Vol. 21, No 3, Mar 1995, IEEE Computer Society Press

Bora I. Kumova MSc Thesis 1998 80

[Zoller et al. 98] Zoller, Peter; Sommer, Ulrike; 1998, “WEBCON: A Toolkit for an
Automatic, Data Dictionary Based Connection of Databases to the WWW”, SAC '98,
Atlanta

Bora . Kumova MSc Thesis 1998

Appendix

Implementation-oriented details of the prototype are listed in this appendix.

81

Bora . Kumova MSc Thesis 1998 82

Appendix A
BNF of AgentCom

To shorten the kind of expressing iterative rules and thereby increase readability,
exponential non-terminals extend the BNF presented here. Thus, an exponential non-

terminal represents an iterative rule.

<session> ::= <message> <respond>

<message> ::= <sessionBegin> (<give > | < take > | <delete>)*
<sessionEnd>
<sessionBegin> ::= (sessionBegin <keyword>")

<sessionEnd> ::= (sessionEnd <keyword>ﬂ
<give> ::= (give <keyword>")
<take> ::= (take <keyword>")
<delete> ::= (delete <keyword>")
<respond> ::= (respond <keyword>*)
<keyword> ::= (error (eValue)) |
(address (aSource aDestination)) |
(name (nSource nDestination)) |
(domain (dvalue'*)) |
(sessionId (sIdValue;)) |
(messagelId (mIdValue)) |
(conference (agentNameValue*)) |
(communicationMode ({RW, RO, XX}) |
(language (lValue®)) |
(<object>) * ‘
<object > ::= object ((objectName™) ((objectvValue™)?*)

<condition>) ; nyy > 0

Bora I. Kumova MSc Thesis 1998 83

<condition> ::= ((A © B) ® <condition>) | ¢

sessions messages
A, B € {objectName™} ; Z }_:nijSmSmsSmKB
. i=l =l
@ :=!= | && [Il I <|I>]l=)1+}-1*1/1c¢€

i: session counter

j: message counter; restarted for each new session

nj;: number of unique objects totally exchanged between two
agents in current session

m: number of unique objects totally exchanged between two
agents-in all sessions

ms: number of unique objects of a semantic net

mgs: number of unique objects of all semantic nets in the

knowledge base of an agent

In case of synchronous communication, a response message is returned
asynchronously. In case of asynchronous communication, a response message is sent back

from server to the client explicitly.

Bora I. Kumova

MSc Thesis 1998 84

Appendix B

Entity Relationship Diagram of the Distributed Database

To represent the domain of the management of university courses from a database-

oriented view, entity relationship diagrams were employed. Accordingly, the conceptual

schema of the university course enterprise is depicted in (Figure B.I). The diagram consists

of two sub-graphs, marked by different line types. The sub-graph in solid lines represents

—— Master Data
Temporary Data

Assistant
N

assist

T
-,
-,
~a
-
-~

-
- -
aaaa
bl N

-
s

-
xxx
hal

- - - - - - -

Lecturer

Department

-
P ~—~
fffff
- -~
-
- S~

-
~——.
-
-
-

-
-
-
- -
~ -
~e

o - - - -

Figure B.1: Conceptual Scheme as E/R Diagram of the University Course Enterprise

Bora [. Kumova MSc Thesis 1998 85

the master data. The sub-graph in dashed lines represents temporary CourseMan data

required for the duration of a term.

Bora {. Kumova MSc Thesis 1998 86

Appendix C
Data Dictionary of the Distributed Database

The data dictionary of the distributed database consists of a collection of SQL
statements. They are intended for creating the required data structures and to fill them with
some initial data. Data is classified into master data and temporary data. Both are created in

two different DBMSs each.

Master Data

The database on server menekse was created inside the MS-SQL Server interactively.

Thereafter, the required tables were created with following SQL statements.

/* Default Database: CourseMan */

/* Entity: All courses */
CREATE TABLE Course (

CID VARCHAR(10) NOT NULL UNIQUE,
Title VARCHAR (50),
Description VARCHAR(100),

PRIMARY KEY (CID)

/* Relation: All offered courses of all departments */
CREATE TABLE offer (

CID VARCHAR(10) NOT NULL,

DeptID VARCHAR (10) NOT NULL,

PRIMARY KEY (CID, DeptID)

Bora I. Kumova MSc Thesis 1998 87

/* Entity: All departments */
CREATE TABLE Department (

DeptID VARCHAR (5) NOT NULL UNIQUE,
Name VARCHAR (20),
Description VARCHAR(100),

PRIMARY KEY (DeptID)

/* Relation: All courses of all lecturers */
CREATE TABLE teach (

CID VARCHAR (10) NOT NULL,

LID VARCHAR (10) NOT NULL,

PRIMARY KEY (CID, LID)

/* Entity: All lecturers */
CREATE TABLE Lecturer (
LID VARCHAR(10) NOT NULL UNIQUE,
Name VARCHAR (30),
Address VARCHAR (50),
PRIMARY KEY (LID)

/* Relation: All courses of all assistants */
CREATE TABLE assist (

CID VARCHAR (10) NOT NULL,

AID VARCHAR(10) NOT NULL,

PRIMARY KEY (CID, AID)

/* Entity: All assistants */

CREATE TABLE Assistant (
AID VARCHAR (10) NOT NULL UNIQUE,
Name VARCHAR (30),

Bora I. Kumova MSc Thesis 1998 88

Address VARCHAR (50),
PRIMARY KEY (AID)

Initial required master data is inserted into the tables on menekse with following SQL

statements.

INSERT INTO Course (CID, Title, Description)

VALUES ('CSE101', 'Algorithms and Programming I',
'Introduction to Data Structures and Algorithms')

INSERT INTO Course (CID, Title, Description)

VALUES ('CSE450', 'Distributed Databases', 'Introduction to
Distributed Databases')

INSERT INTO Course (CID, Title, Description)

VALUES ('CSE509', 'Distributed Databases', 'Introduction to

Distributed Databases')

INSERT INTO offer (CID, DeptID)
VALUES ('CSE101', 'CSE')
INSERT INTO offer (CID, DeptID)
VALUES ('CSE450', 'CSE')
INSERT INTO offer (CID, DeptID)
VALUES ('CSE509', 'CSE'")

INSERT INTO Department (DeptID, Name, Description)

VALUES ('CSE', 'Computer Science and Engineering', 'Academic
Programme: BSc, MSc, Phd')

INSERT INTO Department (DeptID, Name, Description)

VALUES ('MATH', 'Mathematics', 'Academic Programme: BSc, MSc,
Phd')

INSERT INTO Department (DeptID, Name, Description)

VALUES ('ENG', 'English', 'Academic Programme:- BSc, MSc,
Phd')

INSERT INTO teach (CID, LID)

Bora I. Kumova MSc Thesis 1998 89

VALUES ('CSE101', 'YD303')
INSERT INTO teach (CID, LID)
VALUES ('CSE450', 'YD303')
INSERT INTO teach (CID, LID)
VALUES ('CSE509', '¥YD303')

INSERT INTO Lecturer (LID, Name, Address)

VALUES ('P180', 'Esen Ozkarahan', 'Bostanli-Izmir')
INSERT INTO Lecturer (LID, Name, Address)

VALUES ('YD203', 'Alp Kut', 'Hatay-Izmir')

INSERT INTO Lecturer (LID, Name, Address)

VALUES ('0G138', 'Adil Alpkocak', 'Karsiyaka-Izmir')

INSERT INTO assist (CID, AID)
VALUES ('CSE101', 'A3175')
INSERT INTO assist (CID, AID)
VALUES ('CSE450', 'A3175')
INSERT INTO assist (CID, AID)
VALUES ('CSE509', 'A3175"')

INSERT INTO Assistant (AID, Name, Address)
VALUES ('A3175', 'Bora I. Kumova', 'Karsiyaka-Izmir')
INSERT INTO Assistant (AID, Name, Address)

VALUES ('A2936', 'Erdinc Tarniverdi', 'Bornova-Izmir')

The database and its tables were created on server bilgin inside Oracle DBMS

interactively with following SQL statements.
CREATE DATABASE "C:\CourseMan\CourseMan.gdb";

CONNECT "C:\CourseMan\CourseMan.gdb"; .
USER "CourseMan" PASSWORD "masterkey";

/* Entity: All students */

Bora I. Kumova MSc Thesis 1998 90

CREATE TABLE Student (
SID VARCHAR (10) NOT NULL UNIQUE,
Name VARCHAR (30),
Address VARCHAR (50),
PRIMARY KEY (SID)
)

/* Relation: All courses of all students */
CREATE TABLE enrol (.
SID VARCHAR (10) NOT NULL,
CID VARCHAR (10) NOT NULL,
AssignAverage FLOAT,
MidtermAverage FLOAT,
FinalGrade FLOAT,
Grade FLOAT,
PRIMARY KEY (SID, CID)
)i

COMMIT;
EXIT;

Initial required master data is inserted into the tables on bilgin with following SQL
statements.
INSERT INTO Student (SID, Name, Address)
VALUES ('1996021', 'Yilmaz Gul', 'Hatay-Izmir'):;
INSERT INTO Student (SID, Name, Address)
VALUES ('1997002', 'Ciler Ayabakan', 'Hatay-Izmir'):;
INSERT INTO Student (SID, Name, Address)
VALUES ('1997059', 'Sencan Yerebakan', 'Karsiyaka-Izmir');
INSERT INTO Student (SID, Name, Address) ’
VALUES ('1998076', 'Baris Bacaksiz', 'Bostanli-Izmir');
INSERT INTO Student (SID, Name, Address)
VALUES ('1998106', 'Aycin Bilir', 'Bornova-Izmir');

Bora I. Kumova MSc Thesis 1998 91

INSERT INTO Student (SID, Name, Address)
VALUES ('1998028', 'Burcu Batmis', 'Karsiyaka-Izmir'):;

INSERT INTO enrol (SID, CID, AssignAverage, MidtermAverage,
FinalGrade, Grade)

VALUES ('1996021', 'CSE101', NULL, NULL, NULL, NULL):;

INSERT INTO enrol (SID, CID, AssignAverage, MidtermAverage,
FinalGrade, Grade)

VALUES ('1997002', 'CSE101', NULL, NULL, NULL, NULL);

INSERT INTO enrol (SID, CID, AssignAverage, MidtermAverage,
FinalGrade, Grade)

VALUES ('1997059', 'CSE101', NULL, NULL, NULL, NULL):;

INSERT INTO enrol (SID, CID, AssignAverage, MidtermAverage,
FinalGrade, Grade)

VALUES ('1998076', 'CSE101', NULL, NULL, NULL, NULL);

INSERT INTO enrol (SID, CID, AssignAverage, MidtermAverage,
FinalGrade, Grade)

VALUES ('1998106', 'CSE101', NULL, NULL, NULL, NULL):

INSERT INTO enrol (SID, CID, AssignAverage, MidtermAverage,
FinalGrade, Grade)

VALUES ('1998028', 'CSE101', NULL, NULL, NULL, NULL);

Temporary Data

If it does not exist yet, a temporarily required table is created by the application on
client alp and/or bora by using following SQL statements. In case of horizontal
fragmentation, the related SQL statement is used anew to create a table for each further

fragment.

/* Entity: All assignments of all courses */
CREATE TABLE Assigment (
CIiID VARCHAR(10) NOT NULL UNIQUE,
ANo INTEGER NOT NULL UNIQUE,

.

Bora I. Kumova

MSc Thesis 1998

92

Assigned DATE,
Delivery DATE,
Text VARCHAR (100),

PRIMARY KEY (CID, ANo)

):

/* Relation: All assignments of
CREATE TABLE assign (

CID VARCHAR (10)
SID VARCHAR(10)
ANo INTEGER NOT
Delivered DATE,
Grade VARCHAR(2),

PRIMARY KEY (CID,
)

SID, ANo)

all courses of all students*/

NOT NULL,
NOT NULL,
NULL,

/* Entity: All midterms of all courses */

CREATE TABLE Midterm (

VARCHAR (10) NOT NULL UNIQUE,
INTEGER NOT NULL UNIQUE,

CID

MNo

Date DATE,

Text VARCHAR(100),

PRIMARY KEY (CID, MNo)

):

/* Relation: All midterms of all courses of all students*/

CREATE TABLE examiM (

CID VARCHAR(10) NOT NULL,
SID VARCHAR(10) NOT NULL,
MNo INTEGER NOT NULL,
Grade VARCHAR (2),

PRIMARY KEY (CID, SID, MNo)

)

/* Entity: All finals of all courses */

Bora I. Kumova MSc Thesis 1998 93

CREATE TABLE Final (

)i

CID VARCHAR(10) NOT NULL UNIQUE,
Date DATE,
Text VARCHAR(100),

PRIMARY KEY (CID)

/* Relation: All finals of all courses of all students*/
CREATE TABLE examiF (

CID VARCHAR (10) NOT NULL,
SID 'VARCHAR (10) NOT NULL,
Grade VARCHAR (2),

PRIMARY KEY (CID, SID)

Bora I. Kumova MSc Thesis 1998 94

Appendix D
Network Configuration

The distributed components of CourseMan, application and data, are located on
several machines of the department. All machines are connected to the Internet. User

access rights restrict the manipulation of CourseMan data.

Five machines are involved into the management of a course in CourseMan. The
HTML pages and Java executable binaries are located on the Web server alpha. Mater data
is distributed over the two machines menekse and bilgin (Figure D.I) and stored their in
the DBMSs MS-SQL Server and Oracle, respectively. Master data cannot be moved, it is
fixed to the location were it was created. Temporary data can be distributed over the
machines alp and bora and stored there in the DBMSs MS-SQL Serever and InterBase,
respectively. The location of temporary data can be changed dynamically through
fragmentation. Table fragments can be exchanged between the clients alp and bora. User
access rights on database data are organised on database level. The user on alp can update
any master data and any temporary data in any form. The user on bora can update any

temporary data in any form, but can only read master data (Figure D.I).

Machine Configuration: The operating system on all involved sites is Microsoft NT.

Bora I. Kumova MSc Thesis 1998
Client/Server alp Server menekse
Temperary Data: Master Data:
Course,
Assignment, assign > Lecturer, teach
Midterm, examiM Assistant, assist
Final, examiF Department, offer

Read,
ExchangelFragments

Temporary Data:
Master Data:
Student, enrol

Assignment, assign [«
Midterm, examiM
Final, examiF

Client/Server bora Server bilgin
+— Read
4+“—> Read, Create, Write, Delete, Insert

Figure D.1: Current Machine Configuration, Data Distribution, and Access
Rights in CourseMan

All involved DBMSs are autonomous and are not aware of each other.

95

Bora 1. Kumova

MSc Thesis 1998

Appendix E
Utilised Tools

96

The whole CourseMan system consists of four modules represented by the four agent

types. All agents are written entirely in Java scripts.

On client side, the user agent is embedded in an HTML page as an applet. At run-

time, the user agent dynamically creates one or more task agents, which establish the

network connection to resource agents at server sites. To receive messages from database

servers asynchronously, the user agent creates a server side skeleton on the client that

listens on the standard port of the RMI system. All programmes running at client site are

bound to one Java script (Figure E.1).

On server side, the resource agent is introduced to the operating system as a service

—» Client’s Request Server
—> Server's Indication
----» Server's Response RDBM
---> Client’'s Confirm N
ODBC
Client
\ A
HTML, Java AgentCom Java, JDBC
X
v v
HTTP, Java RMI

Figure E.1: Basic Tools and their Connectivity in CourseMan

Bora I. Kumova MSc Thesis 1998 97

programme to be started at boot time. The resource agent is written as Java application.
With the first client side request to a database, it creates a database agent for that database.
A database agent can access a database over a related ODBC configuration, by using Java’s
JDBC-ODBC Bridge. All programmes running at server site are bound to one Java script
(Figure E.1).

All agents implement the AgentCom language interface to communicate with each
other. Communication between agents that are compiled to one code is made

synchronously. Communication between agents over the network is done in asynchronous

mode.

Bora I. Kumova MSc Thesis 1998 98

Appendix F
Software Design of the Prototype

Class Diagram

CourseMan consists of various object-oriented classes. Their interrelationships are
depicted in (Figure F.I). Besides the utilisation of standard classes of the tool’s library

following classes where developed.

SemanticNode: Provides basic functionality to construct and modify a semantic node,

and to find its attributes.

KnowledgeBase: 1t creates and uses SemanticNode and provides the functionality to
construct, store, and modify a semantic net, and to find nodes. It maintains a list of all
stored templates, where each template represents a group of concepts, and a list of all

stored concepts.

AgentCom: Implements the agent communication language AgentCom. Uses the
KnowledgeBase to wrap between data represented in AgentCom and its semantic net

representation.

InferenceMechanism: Uses the KnowledgeBase and implements mechanisms to
evaluate the state of a topic, which is the semantic net with the current focus. It determines

firing conditions and executes them.

Agent: This is a super class that creates one instance of KnowledgeBase and one
instance of InferenceMechanism. For each AgentCom message an AgentCom instances is
created. It is further an abstract class that forces its sub-classes to implement some

methods.

Bora I. Kumova MSc Thesis 1998 99

Inference
Mechanism

Know-
’ Agent

CM User
Agent

Database
Agent

Resource
Agent

Semantic
—> Inheritance B3

O— Using (Access)
@ — Has (Create)

Figure F.1: Class Diagram of the CourseMan Software

UserAgent: 1t is a sub-class of Agent. It uses SemanticNode to retrieve the
knowledge base and to wrap between semantic net data and data that can be displayed in
the user interface. It creates one or more TaskAgents to execute user transactions and other

tasks.

CMUserAgent: This is the CourseMan User Agent. It implements a default user

interface for the CourseMan domain. It is a sub-class of UserAgent.

TaskAgent: 1t is a sub-class of Agent. It uses SemanticNode to retrieve the knowledge
base. It uses remote created ResourceAgents. Divides a user transaction into one or more

sub-transactions and establishes for each one an AgentCom session.

Bora I. Kumova MSc Thesis 1998 100

JavaServer: This class implement the client site stub and the server site skeleton. It is
a demon process that listens on a TCP/IP port for incoming AgentCom messages. When

started on server site, it creates one ResourceAgent.

ResourceAgent: It is a sub-class of Agent. It uses SemanticNode to retrieve the
knowledge base. Creates one or more DBAgents and brokers AgentCom messages between

them and TaskAgents.

DatabaseAgent: It is a sub-class of Agent. It uses SemanticNode to retrieve the
knowledge base and to wrap between semantic net data and SQL data. It implements

database access according the related data dictionary.

Bora I. Kumova MSc Thesis 1998 101

Appendix G
Data Structures of the Knowledge Base

The knowledge base of a CourseMan agent contains several concepts stored in form

of semantic nets. A semantic net is a directed graph of connected nodes with attributes.

Semantic Node

The nodes of a semantic net have a common structure (Figure G.I). Each node has a
name represented as a character string. It has an attribute list and a value list, which
represent attribute-value pairs. The relationships between the two lists can be 1:1 or 1:m,
where m is the number of values of an attribute. For example the number of values of an
attribute of a table will be equal to the cardinality of that table. A node has further a link
list and a type list for representing relationships to other semantic nodes. Their list elements

are related to each other only 1:1.

SemanticNode
Name: String
Attribute: List of String
Value: List of Object
Link: List of SemanticNode .
Type: List of String

Figure G.1: Node Structure of a Semantic Node

Bora I. Kumova MSc Thesis 1998 102

Semantic Net

A semantic net of the knowledge base consists of at least one semantic node. A
semantic net with unconnected graphs would cause a syntax error. The link semantics of a
sample net are not proved. For example whether it has a hierarchical structure, cycles, or
bi-directional connections between nodes. As an example, the semantic net representation
of the AgentCom language is depicted in (Figure G.2). The nodes in italic are placeholders
for representing equal rank of nodes in the same hierarchy level. In other words, the

syntactic correct occurrence of the language primitives is represented in hierarchical levels.

Concept 5 &
The knowledge base of an agent contains two main groups of se§afmc nets:

templates and topics. A template defines the basic structure for a group of sm@ar topics. It

is used by the inference mechanism to traverse related topics. All templates oﬁ" a&nowledgc

further list.

Template

Agen\'!/Com\RDBMS

V

Session

Mes\l;age\respond

sessionBegin give take delete ionEnd
Keyword

Figure G.2: AgentCom Syntax Represented in a Semantic Net Template

