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ABSTRACT

Among biometric approaches, automatic speaker verification is becoming more
and more popular, for being probably the most natural and economical method of
restricting the problems like unauthorized use of computers and communication
systems, and multi-level access control. In order to give the right accept/reject
decision, it is crucial to generate an efficient model and to implement an accurate

decision making algorithm.

In this thesis, first, a baseline system is formed using mel-frequency cepstral
coefficients (MFCC) as features, and for speaker modeling a radial basis function
(RBF) neural network is used. Then, investigations and experiments have been
realized for optimizing the training set, and also, a two-stage decision making
algorithm is proposed, which has the aim to eliminate the qualified impostors in the

second stage.

Keywords: speaker verification, speaker recognition, radial basis function (RBF)
neural networks, mel-scale, training set optimization, cohort model, two-stage

decision making algorithm
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OZET

Biyometrik uygulamalar igersinde ses ile kimlik dogrulama, bilgisayar ve
haberlesme sistemlerinin yetkisiz kisiler tarafindan kullanim1 ve gok-seviyeli erisim
kontrolii gibi problemlerin Snlenmesinde kullanilabilecek en dogal ve ekonomik
metodlardan biri olmasindan dolay1, giderek popiilerlik kazanmaktadir. Bu sistemle
dogru kabul/red karar1 verebilmek icin, verimli bir model olusturulmasi ve karar

verme algoritmasinin kusursuzlugu biiyiik 6nem tagimaktadir.

Bu tezde, ilk olarak, konugmacinin ses zelliklerinin temsil edildigi mel-
frekansli sepstral katsayilar ve model olarak da radial taban fonksiyonlu yapay sinir
aglan kullanilarak bir iskelet sistem olugturulmustur. Daha sonra, yapay sinir agmin
egitim kiimesi i¢in optimizasyon incelemesi yapilmig ve ilk kismi gegen taklitgilerin
ikinci kisimda elenmesi amacina dayanan ¢ift seviyeli bir karar verme algoritmasi

ortaya konulmustur.

Anahtar Sozciikler: ses ile kimlik dogrulama, konusmaci tanmima, MFCC,
radyal taban fonksiyonlu yapay sinir aglari (RBF-YSA), egitim kiimesi
optimizasyonu, konusmaci sesine yakin seslerin modellenmesi, iki asamali karar

verme algoritmasi
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CHAPTER ONE
INTRODUCTION

Speech, being the most natural form of human communication, has been one of
the most exciting areas of signal processing. The speech signal carries information
related to not only the linguistic message to be conveyed, but also the identity of the
speaker, language, emotional status of the speaker, environment and so on. Thinking
of a life without the ability of identifying people from their voices, it would be
impossible to know whom we are talking on the phone, or who is calling out to us
from a distance. Since human brain is still the most advanced and accurate language
identification system today, far exceeding the data storage and processing power of a
supercomputer, the identification ability seems so simple for us, but computer based
implementations are still far from human abilities and any speaker identification
system on a computer can not be designed as an optimum solution. However, recent
developments in digital signal processors and speech technology have made it

possible to design fast, cost effective, high performance speaker recognition systems.

Speech processing is a diverse field with many applications. A few of these areas

and how speaker recognition relates to the rest of the field is shown in Figurel.l.

Speaker recognition is concerned with the problems of identification and
verification, each of which may in turn be fext-dependent or text-independent. In
speaker identification, the aim is to determine which of the registered speakers a
given utterance comes from. The test utterance is scored against all possible speaker
models, with the best score determining the speaker identity. In speaker verification,

which will be focused on in this work, the aim is to give acceptance or rejection



decision for the identity claim of a speaker. The claimant speaks the phrase into a
microphone and this signal is analyzed by a verification system that makes the binary
decision to accept or reject the user’s identity claim or possibly to report insufficient
confidence and request additional input before making the decision. Some common
examples of speaker verification applications are voice-activated locks, access to
restricted computer data, forensic applications, electronic commerce, telephone

banking and ATM transactions.

Signal Processing
Digital Signal Analoy Signal
/ Processing \ Processing
Spesch Processing Other Signals
Analysis / \ \ A Starage !
Speach Speaker Language
Recognition Recognition Identification
Speaker Speaker Speaker
ldentification Detection Varification

Figure 1.1 Speaker Recognition in Signal Processing

By text-dependent speaker recognition, the same or known text is used for
training and test. In contrast, any text is allowed to be uttered in the process of either
training or test in the text-independent recognition. By comparison, a text-dependent
system is conceptually simple but inflexible, while a text-independent system seems
complicated but flexible (Chen, 2002). Moreover, the performance of a text-
dependent system is often reasonably better than that of a text-independent system
while the text-independent system can perform in a more secure way if the user is
al]lowed to speak any random phrase. No matter what the operating mode is, speaker
recognition theoretically belongs to non-verbal speech classification since the
information of speaker’s characteristics conveyed in speech waves plays a crucial

role in this process rather than those verbal contents carried by speech waves.
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Figure 1.2 Schematic Diagram of a Typical Speaker Verification System

1.1 Motivation

Biometric systems automatically recognize a person by using distinguishing traits.
Speaker recognition is a performance biometric, i.e., you perform a task to be
recognized. Voice, like other biometrics, cannot be forgotten or misplaced, unlike
knowledge-based (e.g. password) or possession-based (e.g. key) access control
methods. Speaker recognition systems can be made somewhat robust against noise
and channel variations (Mammone et al., 1996), ordinary human changes (e.g. time-
of-day voice changes and minor head colds), and mimicry by humans and tape
recorders (Higgins et al., 1991). Among biometric approaches, automatic speaker
verification (ASV) is probably the most natural and economical method for solving
the problems of unauthorized use of computer and communications systems and
multilevel access control. Unlike iris and retina recognition applications, voice
verification systems are non-intrusive and not considered threatening by users since
most people are comfortable with using telephone or microphone (Lucey, 2002),

(Altun & Kocer, 2003). With the ubiquitous telephone network and microphones



bundled with computers, the cost of a speaker recognition system might only be for

software (Rabiner, 1989).

1.2 Problem Definition

Speaker recognition is a difficult task and is still an active research area. ASV
(automatic speaker verification) works based on the premise that a person’s speech
exhibits characteristics that are unique to the speaker. However, this task has been
challenged by high variance of input speech signals (Minh, 2000). The source of
variance comes mostly from the speakers themselves. Speech signals in training and
testing sessions can be greatly different due to many facts such as people voice
change with time, health conditions, speaking rates, etc. There are also other factors,
beyond speaker variability, that present a challenge to speaker recognition such as

acoustical noise and variations in recording environments.

Desired properties of a speaker recognition system can be listed as follows (Wolf,
1972), (Cohen & Zigel, 2003):

e Occur naturally and frequently in normal speech

e Be easily measurable

e Vary as much as possible among speakers

e Operate consistently for each speaker

¢ Maintain same performance level over time

e Be insensitive to speakers’ health or mood

e Be insensitive to background noise and transmission characteristics

e Be insensitive to mimicry and falsification attempts

In this work, a security system will be the case, therefore acceptance of an
impostor to the system is completely intolerable. On the other hand frequent rejection
of genuine speakers may be disturbing. So the system should be able to clearly
differentiate voice characteristics among different people while compensating in-

person differences.



1.3 Thesis Goals

The overall goals of this thesis are:

e Perform background search on feature selection, pattern matching and
decision making algorithms used in ASV systems,

¢ Develop a speaker verification system using artificial neural networks, that
will serve as a security system,

e Develop new methods to accurately make accept/reject decisions and
modify the system to minimize the false acceptance rate (FAR) and keep false

rejection rate (FRR) at an agreeable level.

1.4 Thesis Organization

In Chapter 2, the fundamentals of voice recognition by humans are given,
describing in details the dynamics of speech production and speech perception
systems that human beings possess. Also, the history and development of voice

recognition technology is mentioned.

In Chapter 3, the steps of speaker verification systems are described in details,
including acquisition of speech as a digital signal, extraction of the features
efficiently, types of features used in speaker verification systems, modeling of

speakers, scoring, and the decision making concept.

In Chapter 4, a baseline speaker verification system, utilising mel-frequency
cepstral coefficients (MFCC) as features and radial basis function (RBF) network as
the verification model, is proposed and described in details. Also, investigations are
made in the same chapter to optimize the speaker ratios in the training set, and the

resulting ratios formed the baseline of the system proposed in Chapter 5.



A new two-stage decision making algorithm is proposed in Chapter 5 and
described in details. The results for this proposed algorithm are reported.

The conclusions of the thesis are reported in Chapter 6.



CHAPTER TWO
VOICE RECOGNITION TECHNOLOGY

Speech processing by computer is a major field of endeavor. It is
multidisciplinary, encompassing electrical engineering, computer science, linguistics,
speech communication, telecommunications, among others (Rodman, 1998). Speaker
recognition is a complementary research area to speech recognition. Both techniques
use similar methods of speech signal processing up to a point, but speech recognition,
if it is to be speaker independent, must purposefully ignore any unique speech
characteristics of the speaker, and focus on those aspects of the speech signal richest
in linguistic information. Conversely, speaker recognition must amplify those unique

speech characteristics that individuate a person.

This chapter first gives a brief explanation about voice production and perception

theory of human beings. Then, history of voice recognition technology follows.

2.1. What Makes Each Human Voice Distinct

2.1.1 Speech Production, Human Articulary System

Every person has vocal characteristics which are sufficiently unique so that one
can recognize an individual by their voice alone. This leads one to believe that there
is a significant amount of phonetic information in the acoustic speech signal which is
independent from the message to be conveyed. These characteristics are directly

related to the physiology of the speaker. Figure 2.1 displays a schematic of the



human vocal apparatus (Xafopoulos, 2001). The physical features shown are crucial
components in the formation of distinct sounds, or phonemes, which are used to
construct words. The process of generating speech begins in the lungs. Muscle
concentration forces air out of the lungs, into the bronchi and through the trachea.
The air is then forced through the larynx, which contains the vocal cords and the
glottis. The glottis is the opening between the vocal cords through which air can be
forced. Above the larynx is the epiglottis, which permits food to enter the esophagus,

while covering and protecting the respiratory path.

By definition, the vocal tract begins at the vocal cords and énds at the lips, while
the nasal tract begins at the velum and ends at the nostrils. The velum regulates the
opening to the nasal cavity, and when lowered, acoustically couples the nasal tract to
the vocal tract. The final, and the often most critical components of the vocal tract
are the lips, teeth, and tongue, contained in the oral cavity (Morgan & Scofield,
1991).

To understand how speakers are distinguished by their voices, it is important to
first understand how the acoustic signal is produced. A widely used model of speech

production system, the source-filter model, is shown in Figure 2.2.

The source-filter model patterns the vocal tract as a (usually linear) time varying
filter. The source energy for this filter is the excitation signal. The different ways of
coding this excitation signal are generally what separates these source-filter speech
coders from one another. The source-filter model results from considering the
excitation and vocal tract as separable components in the production of speech. The
excitation is produced at some point in the vocal tract, and then the excitation is

spectrally shaped (or filtered) by the rest of the vocal tract.
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The Vocal Tract: The throat, nose, tongue, and mouth form a resonating air-
filled cavity that predominantly dictates the sound produced by the human vocal
system. The resonant frequencies of this tube are called formant frequencies.
Different configurations of the vocal tract result in different formant frequencies. The
formant frequencies are one of the two major factors that dictate which phoneme will
be produced by the vocal tract. The other major factor is the excitation of the vocal

tract.

Excitation: For voiced speech, a periodic waveform provides the excitation to the
vocal tract. The periodic waveform results from the glottal pulses created by the
rapid opening and closing of the vocal cords. A simple and widely used model for
unvoiced speech is shaped white noise. White noise is random and has a flat spectral
shape where all frequencies have equal power. The white noise is assumed to be
generated when air passes through a constriction. Some sounds such as /z/ are
produced by both exciting the vocal tract with a periodic excitation and by forcing air
through a constriction in the vocal tract. This is called mixed excitation. One of the
challenges in speech coding is to be able to accurately represent sounds that are

voiced, unvoiced, or mixed.

2.1.2 Speech Perception, Human Auditory System

The basilar membrane is a key component of the inner ear. Oversimplified, sound
vibrations cause movement of the basilar membrane by transduction through the
middle ear. Movement of the basilar membrane stimulates hair cells, which in turn

produce impulses in the auditory nerve fibers.

Ohm and Von Helmholtz (Helmholtz, 1954) were the first to present the notion
that the basilar membrane acts as a spectrum analyzer. Von Békésy expounded upon
this theory and demonstrated that the basilar membrane vibrates locally, and the
point of vibration is related monotonically to the frequency of the acoustic stimulus
(Békeésy, 1953; 1960). Von Békésy proved that the basilar membrane was a spectrum

analyzer, not an array of tuned resonators, but a nonuniform (almost logarithmically



11

scaled) transmission line with limited but distinct spectral resolution. Further
experimentation showed that this limited spectral resolution was characterized by
critical bands (Beranek, 1986), which can be thought of as a frequency span, or
frequency “bin,” into which sounds are lumped perceptually. It is also adequate to
say that the critical band is a frequency range, defined by its band edges (specific

frequencies), outside of which subjective responses change abruptly.

Figure 2.3 shows the results of these experiments for single ear listening. As can
be seen from this figure, at center frequencies greater than 500 Hz, critical bandwidth

increases approximately linearly as center frequency increases logarithmically.
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Figure 2.3 Frequency width of critical bands as a function of band

center frequency

Figure 2.3 is the basis for the Bark domain and the Mel domain, which are used
for representing human ear’s response to sounds. Both the Bark and the Mel domains

were created to have a constant number of each unit (Barks or Mels) in each critical
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band. The Bark domain was normalized to have 1 Bark per critical band. Barks and
Mels are perceptually based frequency units that increase, almost logarithmically,

with frequency.

Table 2.1 (Beranek, 1986) illustrates the relationship between the frequency units
of Barks, Mels, and Hertz. The table shows that each critical band contains a
logarithmically increasing frequency bandwidth in the linear scale of Hertz.
Approximately 150-200 Mels span each critical band. By definition, there is 1 Bark

per critical band.

Table 2.1 The relationship between the frequency units:

Barks, Hertz, and Mels.
Frequency Critical Band No.
(Hz) (Barks) Mels
20-100 1 0-150
100-200 2 150-300
200-300 3 300-400
300-400 4 400-500
400-510 5 500-600
510-630 6 600-700
630-770 7 700-800
770-920 8 800-950
920-1080 9 950-1050
1080-1270 10 1050-1150
1270-1480 11 1150-1300
1480-1720 12 1300-1400
1720-2000 13 1400-1550
2000-2320 14 1550-1700
2320-2700 15 1700-1850
2700-3150 16 1850-2000
3150-3700 17 2000-2150
3700-4400 18 2150-2300
4400-5300 19 2300-2500
5300-6400 20 2500-2700
6400-7200 21 2700-2850
7200-9500 22 2850-3050
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Figure 2.4 shows a graph of Barks versus Mels. Although the line is somewhat
linear, it is not exactly linear. This is because all of the information known about
critical bands is a result of experimental tests, which are far from exact. The fact that
both units are so close to being linearly related even though they are formed on the

basis of separate experimental tests, supports the validity of these frequency scalings.

1500+

1000+

o -] wgiis -] 25

Figure 2.4 Comparing the experimentally derived frequency scales of

Barks versus Mels
2.2. History

Research on speaker recognition began in the 1960's when scientists attempted to
use the speech spectrogram as a tool for speaker recognition (Bolt et al., 1969),
(Kersta, 1962), (Stevens et al., 1968), (Tosi et al., 1972). Even with human experts
interpreting the spectrograms, the results were limited. At the time computer

technology was not sufficiently advanced to aid the process.

In late 1960°s, Atal and Itakura independently developed a spectral analysis
method, now known as linear prediction (Chen, 1998). While motivations were

different, they made an identical assumption, that the speech signal at time ¢ could be
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approximately predicted by a linear combination of its past values. The linear

prediction was used to model the frequency response of the vocal tract.

Advances in computer technology in the post-1960s triggered a series of research
projects on speaker recognition. Although progress was made in the area of text-
dependent speaker recognition, text-independent systems that could deal with

channel and speaker variability were not as successful.

It took a number of years for the research to achieve commercialization. The
earliest of those commercial systems applied speaker verification to door-access
control (Markowitz, 2002). Most of those systems were designed to accept text-
dependent input via microphone and they generally used dynamic time warping with
filter banks. Later systems incorporated normalization and adaptation techniques.
The most successful of the early algorithms was developed by Texas Instruments

(Doddington, 1976). The “TI algorithm” is still used in some commercial products.

The mel-cepstrum was introduced in 1980, which was a result of a study of
human auditory perception. In 1983, statistical language models began to be used.

The spectral dynamics were to be included as additional features in late 1980’s.

The 1990°s and 2000°s have witnessed the flowering of commercial speaker
recognition. Algorithms diversified to include Hidden Markov Models (HMM),
Vector Quantization (VQ), Gaussian Mixture Models (GMM), various types of
Neural Networks, and performance enhancement techniques, such as channel
compensation, background noise cancellation and anti-speaker modeling. Recent
projects have reported very low error rates, and that, speaker verification is ready to

compete with other more mature biometrics in real world deployments.
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CHAPTER THREE
THEORY OF SPEAKER VERIFICATION

The general approach to ASV consists of five steps: digital speech data
acquisition, feature extraction, pattern matching, making an accept/reject decision,
and enrollment to generate speaker reference models. A block diagram of this
procedure is shown in Figure 3.1. These steps of speaker verification will be detailed

in this chapter.

Speaker [ dentity
Inform ation

)

Digital Speech Feature MModel
““nl'.l‘ww"“‘"_" — > Extraction [~

Agquisition Creation
Channel N
GF exists) Threshold
| |
¥
.l EREEEEEEEN I. D
Digitd Speech Feature = Opeaker = ecision
~¢*hWM‘hi«~—+ Aqiston |~ | Eximction |~"% Model 3| Making
Channel "pauusansan®
(if exists) T l
Speaker I dentily OUTPUT
Claim (&ccept/ Reject)

Figure 3.1 Block Diagram of Generic Speaker Verification System

The upper part of the diagram represents the enrollment phase while the lower

part represents the verification (or test) phase.
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3.1 Digital Speech Acquisition

Initially, the acoustic sound pressure wave is transformed into a digital signal
suitable for voice processing. A microphone or telephone handset can be used to
convert the acoustic wave into an analog signal. This analog signal is conditioned
with antialiasing filtering (and possibly additional filtering to compensate for any
channel impairments). The antialiasing filter limits the bandwidth of the signal to
approximately the Nyquist rate (half the sampling rate) before sampling. The
conditioned analog signal is then sampled to form a digital signal by an analog-to-
digital (A/D) converter. Today’s A/D converters for speech applications typically
sample with 12—-16 bits of resolution at 8000-20000 samples per second. Higher
sampling rate is commonly used to allow a simpler analog antialiasing filter and to

control the fidelity of the sampled signal precisely (e.g., sigma—delta converters).

Speech Pressure

Wave
l Analog Conditioned
Voltage Analog
Signal Anti-aliasing Signal Sampling &
Microphone Low-pass >|  Quantisation
Filter (A/D Converter)
Digital Signal

Figure 3.2 Acquisition of Digital Speech

In local speaker-verification applications, the analog channel is simply the
microphone, its cable, and analog signal conditioning. Thus, the resulting digital
signal can be very high quality, lacking distortions produced by transmission of
analog signals over long-distance telephone lines (Rabiner, 1989).
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3.2 Feature Extraction

Feature extraction, by definition, is the estimation of variables called feature
vector from another set of variables, at a considerably lower information rate.
Feature selection is the transformation of these observation vectors to feature vectors.
Thus, in the process of ASV, the goal of feature selection is to find a transformation
that yields relatively a lower dimensional feature space, that would preserve
information pertinent to the application and would enable meaningful comparisons to
be performed between the feature vectors and the speaker models using simple

means of similarity.

As more features are used, the feature dimensions increase, which imposes severe
requirements on computation and storage in both training and testing. The demand
for a large amount of training data to represent a speaker’s voice characteristics
grows exponentially with the dimension of the feature space (Figure 3.3). This
severely restricts the usefulness of nonparametric procedures and higher order
transforms (Rabiner, 1989), (Cohen, 2003), (Premakanthan & Mikhael, 2001). The
principal component analysis (PCA) and the factor analysis (FA) have been used as
statistical methods to reduce the dimensionality. The PCA is used to find a lower
dimensional representation that accounts for the variance of the speakers while the
Factorial analysis (FA) seeks a lower dimensional representation that accounts for
correlation among the features. To make the ASV problem more mathematically
tractable, techniques that use analysis of the variance methods have been used. These
methods involve the calculation of Fisher’s F ratio tests. The discrimination of
speakers increases if the statistical distributions of different speakers are
concentrated at widely different locations in the parameter space (Orman, 2000). In a
one dimensional parameter space, the ratio of interspeaker to intraspeaker variance,
which is called as F-ratio, gives a good measure of the discriminative performance
for the evaluated feature. A high value of F ratio tests is desirable for speaker

verification. The F ratio is given by,

3.1
Variance of the Speaker Means )

ratio

- Average of the Intraspeaker Variances
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Figure 3.3 “Curse of Dimensionality” in Feature Selection
3.2.1 Pre-processing

Pre-processing is an essential part of feature extraction and as the name implies,
preprocessing involves the conditioning of digital speech signal prior to extracting
the speaker-specific features from the speech signal. Figure 3.4 displays the steps of

preprocessing.

Digital Speech
Signal

l

] F Remove
Preemphasis | —| A€ || gjlence |——>| Windowing
Blocking Frames

|

Windowed
Speech
Frames

Figure 3.4 Block Diagram of Pre-processing
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3.2.1.1 Pre-emphasis

The reasons for employing a preemphasis filter are twofold. First, it has been
argued (Ehab et al., 2000) that minimum phase component of the glottal signal can
be modeled by a simple two-real-pole filter whose poles are near z=1. Further, the lip
radiation characteristic, with its zero near z=1, tends to cancel the spectral effects of
one of the glottal poles. By introducing a second zero near z=I, the spectral
contributions of the larynx and lips have been effectively eliminated and the analysis
can be asserted to be seeking parameters corresponding to the vocal tract only. It is
clear that the pre-emphasis will give the higher formants in the vocal tract a better
chance to influence the outcome. Since the pre-emphasis suppresses the low
frequencies, it is useful to eliminate the 50 Hz power supply noise eventually

generated by the sound card.

y(n)=x(n)—-ax(n—-1), 1< n< M (3.2)

The FIR filter can be implemented as in Equation (3.2), where M is the number of
samples in the speech signal x(n), and y(n) is the pre-emphasized signal. The
constant “a” is generally selected between 0.95 and 0.98.

3.2.1.2 Frame Blocking

The speech signal can be considered a quasi-stationary signal. An example of
speech signal is shown in Figure 3.5. When examined over a sufficiently short period
of time (between 5 and 100 msec), its characteristics are fairly stationary. However,
over long periods of time (on the order of 1/5 seconds or more) the signal
characteristic change to reflect the different speech sounds being spoken. Therefore,
short-time spectral analysis is the most common way to characterize the speech
signal. Most of the state-of-the-art systems today use a frame duration between 10

and 30 miliseconds.
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Figure 3.5 Example Speech Frame of 32 msec.

3.2.1.3 Removing Silence Frames

Next step in preprocessing is to remove the silence frames which can occur before,
during, or after the utterance. Since silence frames contain no speaker-specific
information, these frames should be eliminated not to degrade the recognition
performance. There are several methods for removing silence frames, one of them is
the Rabiner and Sambur method (1975), which first finds a threshold value from the
minimum and maximum frame energies, then compares each individual frame with

this threshold and eliminates the frames below threshold.

¢ =min(100e_;_, 0.75¢,, +0.25¢,;,) (3.3)

Where “{” is the silence removing threshold, e, is the energy of the minimum-

energy frame, e, is the energy of the maximum-energy frame.

3.2.1.4 Windowing

The last step in pre-processing is to window each individual frame so as to
minimize the signal discontinuities at the beginning and end of each frame. The
concept here is to minimize the spectral distortion by using the window to taper the

signal to zero at the beginning and end of each frame. If we define the window as
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w(n), 0 <n < N-I, where N is the number of samples in each frame, then the result of

windowing the signal is given as:

yim=x,m)*wn), 0<n<N-1 (3.4)

Different window shapes are realized by applying a weighting function. Most

typical is the Hamming window with &;,=0.54,

a,—(-a,)cos@2nn/(N, -1))
B

3.5)

w(n) =

The B, parameter is chosen for normalization so that the energy of the signal will
be unchanged through the operation. The Hamming window’s shape provides
spectral analysis with a flatter pass band and significantly less stop band ripple, both

properties are important for obtaining smoothly varying parametric estimates.

3.2.2 Types of Features Used in ASR

Most frequently used features in ASR systems can be listed as below:

Vocal Tract model features

* Autocorrelation Coefficients (COR)

» Linear Prediction Coefficients (LPC)

» Partial Correlation Coefficients (PARCOR)
* Log Area Ratio Coefficients (LAR)

* Perceptional Linear Prediction (PLP)

Spectral and Cepstral features

* Line Spectrum Pairs (L.SP)

» Linear Prediction Cepstral Coefficients (LPCC)
* Bank of filters (linear)

* Bank of filters (Mel)

» Mel-Frequency Cepstral Coefficients (MFCC)
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Linear prediction cepstral coefficients (LPC) and mel-frequency cepstral
coefficients (MFCC) are the most popular type of features used in ASR systems, and

therefore they will be described in the following section.
3.2.3 Linear Prediction Cepstral Coefficients (LPCC)

As the name implies the linear predictor predicts the current sample of the speech
signal from a linear combination of past samples. LPC is a very important spectral
estimation technique because it provides an estimate of the poles (hence the formants)
of the vocal tract transfer function (Wbo, 2000). The LPC algorithm is an #™ order
predictor which attempts to predict the value of any point in a time-varying linear
system based on the values of previous » samples. The representation of the vocal

tract transfer function, H(z), can be given by the following equation:

G
P
1-Y a@)z” 3.6)

i=1

H(z) =

The values a(i) are called the prediction coefficients, while G represents the
amplitude, or gain, associated with the vocal tract excitation. The notation 7! in the
domain of z-transform represents a system function and corresponds to a unit delay
in the time domain. For discrete-time signals, the z-transforms can be considered a
generalization of the Fourier transform. The poles of the transfer function in
Equation (3.6) are determined from the roots of the polynomial in the denominator.
The LPC can only derive the resonant frequencies, or the formants, but not the zeros.
The LPC does not adequately estimate signals that have no poles, such as some
unvoiced speech noise. The non-linear signal components adversely affect the LPC

estimates.

For the speech signal s(n), the predicted speech sample §(#) is a function of a(i)

and prior speech samples according to:
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P
S() = a()stn i) (3.7
i=1

LPC analysis involves solving for the a(i) terms according to least squared error

criteria. If the error is defined as:

e(n) =s(n)—5(n)
P
=s(n)- Y a(i)s(n-1) 3-8)
i=1

Then taking the derivative of the squared error with respect to the coefficients a(j),

and setting it equal to zero gives:

af: - [s(n)- Y a@)s(n—i)]* =0
: y - (3.9)
[s(n)- Y a()s(n-D)]s(n—-j)=0 for1<j<P
Thus,
P
s(n)s(n—j) =Y a()s(n—i)s(n—j) forl<j<P (3.10)

i=1

A possible method for solving the matrix is called the autocorrelation method,
which assumes that the signal is stationary within the analysis windows. The

autocorrelation solution (3.5) can be expressed as:

P
R(G) =D a@R(i-j}) forl<j<P (3.11)

i=1

Where R(j) is an even function (R(j) = R(~j)) and is computed from:
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N-1-j
R() = st(m)s(m+ j) forl1<j<P (3.12)

m=0

Once the autocorrelation terms R(j) have been calculated, a recursive algorithm,
called Durbin’s recursion, is used to determine the values of a(i). The initial state of
the recursion begins with an energy term, which contains the summed, squared

energy in the windowed signal,
E°? =R(0) (3.13)

At each step in the recursion the following calculations are performed:

i-1
k()= RO- Y a"' (RGE-))/E™ forl<j<P
=l

a' (i) = k() (3.14)
al(=a"'()-k@a""(-j) forl<j<i-1
E' = (1-k@)*)E™

The final solution for a(j) is given by @”(j) for 1 <j < P. Given that the vocal tract
does not produce a “purely” linear speech signal, the solution for a(j) is optimal, but
not exact. The most difficult predictable part of the speech signal is the glottal pulse,
since it contains a large amount of energy which “instantaneously” appears in the

signal.

One can calculate the cepstrum in two ways, one is by using simple recursion and

the other is with the Fourier transform.

Using the Fourier Method: Speech wave x(n) can be expressed as the convolution

of glottal pulses g(n) and vocal tract impulse response v(#). In other words,

x(n) = g(n)*v(n) (3.15)
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Letting the logarithmic operation for the discrete Fourier transformation be D,
D{x(n)} = D{g(n) *v(n)} = D{g(n)}+ D{(n)} (3.16)

The inverse discrete Fourier transform for D{x(n)} is called a cepstrum. In other

words,

2n
o(n) = —— jlog | X(0) | ™ do,
2n (3.17)

X(@) = X@)|__jo

The cepstrum for x(n) turns out to be the sum of the cepstrum for g(n) and the
cepstrum for v(n). The independent variable of the cepstrum has a time dimension
(frequency). In the case of a voiced sound, D{g(n)} appears as a component in the
neighborhood of I/Fy (F) is the fundamental frequency) on the time axis, and D{v(n)}
as a component of the short time domain. Thus, a window is opened in the cepstrum
and the short time range components are extracted (this is accomplished by removing
g(m)), and if a discrete Fourier transformation is performed in this, the spectral

envelope is obtained.

Using the Linear Prediction Coefficients: The L.PC-derived cepstral coefficients

are defined as follows, where ¢; is the i cepstral coefficient and ay are the prediction

coefficients :

1=

i-1
ci =a;+ Y (- (k/D)ayc;iy), 1<isN (3.18)

k=1
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Unlike LPC coefficients, cepstral coefficients are independent and the distance
between cepstral coefficients vectors can be calculated with a Euclidean-type

distance measure.

3.2.4 Mel-Frequency Cepstral Coefficients (MFCC)

The "Mel" is a unit of measure of perceived pitch or frequency of a tone (Kamm
et al., 1998). This approach uses a bank of highly overlapped band-pass filters that
roughly approximates the frequency response of basilar membrane in human ear to
cover the frequency range of interest in a speech signal. The measurement from the
outputs of those band-pass filters can be essentially treated as a short-time spectral

envelope.

A mel-scale filter bank (Xin et al., 2001) consists of a sequence of overlapping
triangular filters with center frequencies and bandwidths determined by the Mel
frequency scale (see Figure 3.6). The mel frequency scale is based on results from
psychophysical studies on humans. Each interval on the mel-scale corresponds to the
perceived relative pitch of a reference tone. First, a reference tone of 1000 Hz is
defined to be 1000 mels, then the reference tone is changed until the subject indicates
that the pitch has doubled, this frequency corresponds to 2000 mels. This process is
repeated to define the entire mel scale. Experiments by Stevens and Volkmann
showed that subjective pitch in mels increases less and less rapidly as a test

frequency is increased linearly.

freq

Energy in
m n; m >
L™ ?] Each Band

Figure 3.6 Mel-Scale Filter Bank
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The relation between the Mel scale and the standard frequency scale is formulated

as follows:
mel(f) = 2595 log (1 t ) (3 19)
10 700 )

First step in calculation of MFCC features is segmentation of voice active regions
of utterances to the overlapping frames and windowing with a function that is
generally a Hamming or a Hanning type. In the second step, the magnitude spectrum
of each frame is calculated via discrete Fourier transform. At the third step, the
logarithm of magnitude spectrum is calculated and passed through a mel scale filter
bank. The last step is to calculate the cosine transform of coefficients, which gives us

the mel-frequency cepstral coefficients (Equation 3.20).

N q
MFCC; = \/% Z m; cos(% (G- 0.5)) - (320)

Fl

Where N is the number of bandpass filters, m; is the log bandpass filter output
amplitudes.

3.3 Creation of Speaker Models

Creating a speaker model from extracted features is another crucial step in speaker
verification systems. The type of speaker recognition system, i.e. text dependence,
directly effects modeling technique. There are different approaches proposed and

tested in the literature.

For text independent systems, vector quantization (VQ) based methods, Hidden
Markov Model (HMM) based methods, phoneme based methods and artificial neural
network (ANN) based methods can be addressed as the main categories for speaker

verification systems.
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In VQ, codebooks consisting of a small number of representative feature vectors
are used for characterizing speaker specific features. In this method, a speaker-
specific codebook is created from training data. In test stage, the likelihood score is
calculated to be used in decision-making stage as illustrated in Figure 3.7. Multi-state
HMM based methods are also especially important in text dependent and vocabulary

dependent systems. In text independent systems they are utilized, as well.

Feature | Likelihcod Drecision
vectors calculation making

v
Codebook
or HMM

Figure 3.7 Representation of VQ and HMM based systems

It was shown (Matsui & Furui, 1992) that, although speaker recognition perfor-
mance is strongly correlated with the number of mixtures, number of states of the
model is not very effective. This suggests that information of state transitions is not
significant for speaker recognition purposes. Therefore, using single state continuous
or semi-continuous ergodic HMM is the most appropriate choice for building such
systems. A single state HMM corresponds to the Gaussian mixture model (GMM)

representation.

In VQ or HMM, phoneme information in speech frames is handled implicitly. On
the other hand, in phoneme-based systems, phonemes or phoneme classes are
explicitly recognized and modeled separately. Then, in authentication session, each
speech frame is assigned to a phoneme model and likelihood score is extracted taking
its phoneme class into account. Also, large vocabulary speech recognition systems
are used for more exact phoneme models. But such systems are reported not to
outperform GMM based systems. Difficulties in exact phoneme segmentation and

request for increasing amount of enrollment and test data are possible causes.
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GMM, as a simple but efficient method, is still the most popular modeling method
for today’s speaker verification and identification systems. In GMM, each speaker is

modeled as a weighted sum of K multidimensional (L-dimensional) Gaussian

probability density functions. If 4; is the model for i™ speaker,

A; = ploul.si) 1=k<K 321)
where,

k= |kl el | (3.22)

[ G Ll ]

) Gi(,z 0 0
si = (3.23)
0 o {c,L—l
I kL

In these equations, P,f, Uy, and S,’; are mixture coefficient, mean vector and

covariance matrix for the ky; Gaussian component of the model. In speech
recognition applications that use MFCC as the feature vector, covariance matrix is
assumed to be diagonal. This is because elements of MFCC are more or less

uncorrelated.

Setting of K mean vectors is a crucial step in this process. This can be achieved by
a vector quantization algorithm or Expectation Maximization (EM) algorithm. There

are lots of methods proposed in the literature for this purpose.
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3.4 Scoring and Decision Making

In decision making phase, the aim is to create a likelihood score using the speaker
model and the features extracted from the incoming authentication utterance (Naci,
2003). In speaker identification systems, the speaker model which gives the highest
similarity score can be referred to as the owner of the spoken utterance. But if a
verification system is the case, decision making phase is more painful. Setting an
acceptance-rejection threshold is a complex issue since likelihood score range
changes from one speaker’s model to another’s. Having computed a match score
between the input speech-feature vector and a model of the claimed speaker’s voice,
a verification decision is made whether to accept or reject the speaker or to request

another utterance (Bhattacharyya et al., 2001).

Two kinds of errors can occur in this decision-making:

o error : Rejecting a true speaker also called False Rejection Rate (FR),

B error : Accepting an imposter also called False Acceptance Rate (FA).

The speaker verification system performance and robustness are measured in

terms of False Acceptance (FA) and False Rejection (FR) rates.

The FR rate for iy speaker is measured as:

_ Number of Rejects (3.24)
Number of Utterances

i
The average FR rate for set of speakers is measured as:

1 m
T =— > (3.25)

i=1

The FA rate for ith speaker is measured as:
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_ Number of Impostor Accepts

. 3.26
b Number of Utterances (3-26)
The average FA rate for set of speakers is measured as:
- 1 &
B=—2 B (3:27)
mig

The FA and FR rates in the above formulas are measured for a specific threshold
and change as thresholds are changed. As threshold increases, FR increases at the
expense of FA. Conversely, if threshold decreases, FR decreases while FA increases.
Hence a single threshold dependent FA-FR figure gives a very limited description of
the system. The goal of dynamic evaluation is to provide a description of the system
performance, which is as independent as possible of the threshold values. Receiver
Operating Characteristic (ROC) is such a method for representing the dynamic
characteristic (Figure 3.8). It is a plot of FR vs. FA for a varying threshold.
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Figure 3.8 Receiver Operating Characteristics (ROC) Curve

Keeping the whole ROC curve lacks conciseness, and it is classically felt
desirable to condense system performance into a single figure. Traditionally Equal
Error Rate (EER), which is the point on the curve where o = f, is chosen for this
purpose. The EER in the above figure is 0.2. As ROC curves move towards the

origin the EER decreases and the system performance improves (figure 3. 9).
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The ROC curves can be speaker dependent or independent. If o and £ are used to
plot the ROC we get a speaker independent ROC. Whereas if we plot ¢; and £ we
get the ROC for speaker i. There is no simple way of calculating an average ROC
from individual speaker ROCs. Current practice consists in characterizing each
individual ROC curve by its EER and summarizing the performance of the system by
the average EER.
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Figure 3.9 ROC Curve — Improved Performance

Proper setting of the thresholds is very critical to performance of speaker
verification systems. Thresholds can be of 2 types namely, speaker dependent
thresholds where every speaker has his individual threshold calculated from his
individual FA-FR characteristics or speaker independent thresholds where a common
threshold is used for all speakers based on the average FA-FR characteristics of the

system.

The exact choice of the threshold value is determined by the operating constraints,
such as, a required FR rate oy or a required FA rate ) or by evaluating the costs and

benefits of marginal improvements in FA and FR and choosing a threshold that
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optimizes the benefits (see figure 3.10). With cautious constraints, the threshold

value can be made speaker specific, speaker adaptive, and/or risk adaptive (e.g.,

break-ins may be more likely at night) (Rabiner, 1989).
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Figure 3.10 Detection Error Tradeoff (DET) Curve

The thresholds can be set a priori or a posteriori. In a priori threshold setting the

threshold is estimated from tuning data, which can be the training data or a new set

of unseen data. There is no intersection of the tuning data and test data. In a

posteriori threshold setting the thresholds are set using the test data. Performance

measures using a priori thresholds are more realistic than a posteriori thresholds.
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CHAPTER FOUR
SYSTEM DESIGN AND IMPLEMENTATION

The aim of this work is to form a high performance speaker verification system
that can be used especially for security purposes. For this, a baseline verification
system is proposed and, several experiments and investigations are made to improve
the verification performance of the proposed system. For the experiments, we used
the IViE corpus (WEB_1, 2002) which is formed by 116 speakers (equal percentage
of male and female speakers), each uttering 20 sentences in various lengths, which
equals to 2320 utterances in total. The recordings were made in sampling rate of
16kHz.

Tests are performed using MATLAB software. First, the experiments are done for
the baseline speaker verification system which is described below together with
detailed results. In the second part, balancing of the training data is investigated for
obtaining optimum performance. Then, by generating a cohort model, a new scoring
technique is proposed, and results are reported as well. Finally, feature extraction

algorithm is tuned to further decrease the verification error to a minimum value.
4.1 Implementation of the Baseline Speaker Verification System
The implemented baseline system consists of; pre-processing, MFCC features

extraction, radial basis function (RBF) neural network implementation, and

performance evaluation. Each individual has his’her own model, created in the
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training phase. The experiments are done using these models and verification scores

are obtained.

4.1.1 Pre-processing

In this part, the speech signal sampled in 16kHz in digital format is taken and
passed from a pre-emphasis filter of the form “y(n) = x(n) — 0.95 x(n-1)” to suppress
low frequency components. Then, the pre-emphasized speech utterance is divided
into 256 sample frames, overlapping by 128 samples (16 msec. frame size, 8 msec.
overlapping). Next step is to remove the silence frames according to Rabiner and
Sambur method (see part 3.2.1.3), since the silence frames contain no speaker-
specific information. Then, the non-silence frames are windowed by a Hamming
window to minimize the signal discontinuities at the beginning and end of each

frame.

4.1.2 MFCC Features Extraction

Next process is to convert the pre-emphasized, framed and windowed non silence
speech frames into a spectral-domain representation. For verification purpose, we use
MFCC (Mel Frequency Cepstral Coefficients) as the feature vector. These features
are based on the known variation of the human ear’s critical bandwidth. Frequency
filters spaced linearly at low frequencies and logarithmically at high frequencies have
been used to capture the phonetically important characteristics of speech. This is
expressed in the mel-frequency scales, which are the linear frequency spacing below
1000 Hz and a logarithmic spacing above 1000 Hz (Rabiner & Huang, 1993).
Feature extraction based on Mel Frequency Cepstral Coefficients (MFCC) utilizes
the filter bank of which center frequency and bandwidth are scaled by subjective
measure, Mel. As a reference point, the pitch of a 1kHz tone, 40 dB above the
perceptual hearing threshold, is defined as 1000 mels. It is common knowledge that
perceptually motivated feature sets (MFCC is an example of these type of feature
sets) give better speaker recognition performance when compared with other
methods, such as liner prediction cepstrum coefficients (LPCC) (Song & Rosenberg,
1988) and log-cepstrum coefficients (1ogCC) (Rabiner & Schafer, 1978).
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The procedure of MFCC feature extraction is as shown in Figure 4.1.
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Figure 4.1 Schematic Representation of MFCC Feature Extraction

In this stage, pre-emphasized and windowed non-silence speech frames are taken
and, the MFCC features are extracted. In our baseline system, 12 mel-filters are used
and 11 mel-frequency cepstral coefficients are extracted as feature vector for each
frame. The first coefficient component, Cy, is excluded since it carries little speaker

specific information.
4.1.3 Radial Basis Function Network for Speaker Modelling

As the speaker model, we used radial basis function (RBF) network since
Gaussian approximation is reported to give good results with spectral features such
as MFCC’s. To give a brief information, an RBF is a multidimensional function that
depends on the distance between the input vector and a center vector. Figure 4.2

shows the basic structure of the RBF network. The input layer has neurons with a
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linear function that simply feeds the input signals to the hidden layer. Moreover, the
connection between the input layer and the hidden layer are not weighted, that is,
each hidden neuron receives each corresponding input value unaltered. The hidden
neurons are processing units that perform the radial basis function. In contrast to the
MLP network, the RBF networks usually has only one hidden layer. Examples for
the transfer function of the hidden neurons in RBF network are: Gaussian,
Multiquadratic, Inverse multiquadratic, Thin-plate-spline, Piece-wise linear, and

Cubic approximation function.

In our system, we will use the Gaussian function as the transfer function of the
hidden neurons, since it is common knowledge that Gaussian approximation provides
good results in modeling the natural signals such as speech signals. The Gaussian

function has the form:

2

o 4.1)

Where, o is a real parameter (called a scaling parameter) and » is the distance

between the input vector and the center vector. The distance is measured by the

Euclidean norm.
Radial Basis
Units
Inputs Outputs
xi1m) viln)
Xo(? n) Vo(n)
x:(n) Vi(n)
xnln) vi(n)

Figure 4.2 Schematic Representation of an RBF Network
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The output of each neuron in hidden layer is:
hm=f;01Xm-C;m|), i=12,....H 4.2)

Where, X{(n) is the input vector at time n, C; is the center vector of the i" hidden
neuron, H is the number of neurons in the hidden layer and, f; is the transfer function

of the i/ hidden neuron.

The connection between the hidden layer and the output layer are weighted. Each
neuron of the output layer has a linear input-output relationship so that they perform

simple summations; that is, the output of the i neuron in the output layer at time # is:

H H
yit) =Y Wiihi(m) =Y W f;(|X(m)-C; |, 4.3)
1

1

Where, (i = 1,2,...,L), L is the neuron number of the output layer and W;; is the
connection weight between the j” neuron in the hidden layer and i neuron in the

output layer.

It has been shown experimentally that if a sufficient number of hidden neurons is
used and the center vectors are suitably distributed in the input domain, then the RBF
network is able to approximate a wide class of nonlinear multidimensional functions.
The approximation performance of an RBF network critically depends on the choice
of the centers (Luo & Unbehaugen, 1997), (Chen et al., 1991).

From Figure 4.2 and Equations (4.2) and (4.3), we know that RBF network is
specified by two set of parameters: the connection weights and the center vectors.
These parameters can be determined from the available sample vectors (training data)

by solving the optimization problem:
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M
E=) ||¥(n)-¥Ym)|] 4.4)

n=1

Where, M is the number of available sample vectors, ¥(n) is the computed output

and ¥ (n) is the desired output from the network.

For the center vectors the simplest technique involves choosing these vectors
randomly from a subset of the available sample vectors. However, in such a case the
number of hidden neurons needs to be relatively large to cover the entire input
domain. An improved approach is to apply the so-called k-means clustering
algorithm (Moody & Darken, 1989). This algorithm finds a set of cluster centers and
partitions the training samples into subsets. Each cluster center is associated with one
of the H hidden neurons in the RBF network. The data are partitioned in such a way
that the training points are assigned to the cluster with the nearest center (Luo &
Unbehaugen, 1997).

For the connection weights determination, the following recursive procedure can

be used:
1) Initialize randomly all connection weights.

2) Compute the output vector ¥(#) by the Equation (4.3).

3) Compute the error term e,(n) of each output neuron
e;(n) = y;(n)~ J;(n) 4.5)

4) Adjust the connection weights according to

W;jm+)=W;;(n)+ye;(n) f;(1IX(n)-C; |) 4.6)
Where yis the learning rate parameter.

5) Compute the total error
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e(n) =¥ () - ¥ ()| 4.7)

and iterate the computation y returning to Step(2) until this error is less than the

specified one.
4.1.4 Performance of the Baseline System

In our baseline system described above, each speaker model is trained using RBF
network, with a world set of 27 non-speakers. The output layer of the RBF network
had 2 neurons, where the first output neuron represents the probability of being a true
speaker feature, the second output neuron represents the probability of being a non-

speaker feature (Figure 4.3).

xi1(n) Vi(n)
X>(n) V,(n)
Xa(n)
xn(n)

Figure 4.3 The Proposed RBF Network

The RBF network was trained to give the outputs as in the table 4.1.
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Table 4.1 The Proposed RBF Network Outputs

X(n) yi(n) | y2(n)
True Speaker Feature 1 0
Non-Speaker Feature 0 1

The score of each test utterance was evaluated as;
1 M
S= M Y yim) =y, (@) (4.8)
n=1 -

Where, M is the number of feature vectors in the test utterance.

Training phase takes for about 20 minutes by a Pentium-4, 1.7GHz PC with
256MB RAM, including MFCC features extraction. Tests are done with 288 non-
speaker utterances and 26 true speaker utterances. In this stage, the performance was
evaluated in terms of equal error rate (EER), since the speaker acceptance/rejection
threshold greatly affects the false acceptance (FA) and false rejection (FR) error
values (see Figure 4.4 and 4.5).

Models are created for 4 male speakers and 4 female speakers (The abbreviations
of the speaker names are given in Table 4.2). The amount of true speaker features
was chosen to be equal to the amount of non-speaker features in the training set. Also,
the amount of male non-speaker features were equal to the amount of female non-
speaker features in the world set. The test scores for the baseline system are as stated

below:

Table 4.2 Test scores in terms of EER for the baseline system

Male Speakers
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As seen in Table 4.2, the average equal error rate of these eight speaker test
models for the baseline system is 6.6 %. The next investigation will be made in
order to decrease the equal error rate (in part 4.2) by optimizing the training set in

terms of

1) The ratio of same gender speakers/opposite gender speakers in non-speaker set,

2) The ratio of speaker features/non-speaker features in the training set.

Figures 4.4 and 4.5 are the FAR-FRR graphs for two different speakers which are
trained and tested according to the baseline model. The equal error rate, as a

performance value, is the point where FAR equals to FRR.

FARFRR (%)

2 EER=9.7%

U 1 ¥ 1 — — d | — — . .
4 08 06 04 02 0 02 04 08 o8 1 ooesld

Figure 4.4 Performance of Speaker “wsc” for Varying Thresholds
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FARFRR (%)

8
r—f1 F 1 T 7

=]

Threshold

-1 08 0.6 04

Figure 4.5 Performance of Speaker “wlh” for Varying Thresholds

4.2 Optimizing the Training Set

In the baseline system, the feature vectors in the training set were composed of

two types of features:

1) True speaker features (also denoted as “speaker features™ only).

Amount: 12 different utterances, total 540 feature vectors .

2) Non-speaker features (also denoted as “world set”).

Amount: 27 non-speakers, 20 feature vectors from each, total 540 feature vectors.

Parts 4.2.1 and 4.2.2 investigate the optimization of the training set.

4.2.1 Ratio of Same-Gender/Opposite-Gender Features in the Training Set

The concept in the title of this part can be explained as:
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If the verification model belongs to a male speaker, the male non-speakers are the
same-gender non-speakers, the female non-speakers are the opposite-gender non-

speakers.

We made experiments to determine the optimum ratio of speaker genders in the

non-speaker set. The results are shown in Table 4.3.

Table 4.3 EER Performances for Different Percentages of Same-Gender

Non-Speakers in Training Set

EER(%) peaker Name
33% |10.1]116] 7.6 | 89 | 45 | 72 | 63 | 103 8.3
"?: g, E 50% | 9.7 93| 64 | 69 | 32 | 55 | 49 | 67 6.6
880/ 67% 71|69 | 60 | 59 | 18 | 41 | 43 | 64 5.4
E, 0% 80% |66 | 62| 49 | 57 | 13 | 45 | 43 | 56 4.9
PBR290% |69 |64 | 46 | 45 | 12 | 33 | 3.2 | 46 4.3
100%| 77 (82| 69 | 74 | 24 | 62 | 58 | 74 4.5

It can be seen from Table 4.3 that, lower equal error rate (EER) value is achieved
by increasing the percentage of same-gender non-speaker features in the training set,
up to 90 percent. Then, the EER slightly increases when the network is trained with
100 percent of same-gender non-speakers. This means that, we will continue our
tests with the percentage of 90%. (e.g. if the verification model belongs to a male
speaker, then the network will be trained with 90% male-non-speakers and 10%
female-non-speakers. If the verification model belongs to a female speaker, this is

the direct contrary).

Figures 4.6 and 4.7 are the FAR-FRR graphs for the situation when there is 90%
same-gender non-speakers and 10% opposite-gender non-speakers. When Figures
4.6 and 4.7 are compared with Figures 4.4 and 4.5, the improvement in performance

can easily be observed.
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|
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Figure 4.6 Performance of Speaker “wsc” when trained with 90% same-gender

8

and 10% opposite-gender non-speakers

EER-12%

: 1' Threshold

Figure 4.7 Performance of Speaker “wlh” when trained with 90% same-gender

and 10% opposite-gender non-speakers
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4.2.2 Ratio of True Speaker / Non-Speaker Features in the Training Set

As we know, the RBF Network should be trained with both true-speaker and non-
speaker features in order to discriminate the speaker’s specific vocal properties from
the other speakers. The ratio of these true speaker features to non-speaker features is

also an important point that affects the verification performance.

The results from experiments for different true-speaker percentages in the training
set is as shown in Table 4.4 (non-speaker features set is composed of 90% same-

gender non-speakers, and 10% opposite-gender non-speakers).

Table 4.4 EER Performances for Different Percentages of True Speaker

Features in Training Set

EER(%)
= | 33%
o e w | 409
35 8| 40%
25 2| 50%
TR
% S| 60%
o My

EER '

| oS I~ S = Y B = = S s |

33 40 50 60 BY

Figure 4.8 Effect of True Speaker Features Percentage in the Training Set
(%S = Speaker features / Total features in training set)
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As seen from Table 4.4 and Figure 4.8, minimum equal error rate value (EER) is
achieved when the number of speaker features in the training set becomes equal to
the number of non-speaker features (when %S = 50%). Also, it is obvious from
Table 4.4 that when the percentage of speaker features in the training set is increased,

the error rate is considerably increased.

Evaluating the test results, in Part 4.2.1 and Part 4.2.2 for optimizing the training
set, we are going into Chapter 5 with the knowledge such that, we will train our main
RBF network with equal amount of speaker and non-speaker features, where the non-
speaker features are composed of 90% same-gender non-speakers and 10% opposite-

gender non-speakers.
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CHAPTER FIVE
A NEW TWO-STAGE DECISION MAKING

ALGORITHM

In a speaker verification system, a decision should be made such that; either the
claimant is accepted or the claimant is rejected. Also, in some systems there may be a
doubtful region and within this, the claimant may be asked to repeat his/her utterance
one more time. The acceptance, rejection or unsure decisions are made according to
the predefined threshold(s) of the speaker model. So, determination of threshold(s) is

an important process in forming a speaker verification model.

In this chapter, we will propose a two-stage decision making algorithm. First stage
is to test the claimant utterance with the “world model” which is an RBF network
formed by a training set according to the results obtained in Section 4.2. In the first
stage, the claimant is directly rejected if his/her score is below the rejection threshold
“Cw1“, or directly accepted if his/her score is greater than the acceptance threshold
“Cwn”. Therefore, we say that the claimant with a score below the threshold {;, or
above the threshold {wy does not pass into the second stage. If the claimant’s score is
between these thresholds, the utterance is fed into the “cohort model” which is the
second stage of decision making. Cohort means the group of speakers who are
acoustically close to the genuine speaker. The reason behind cohort selection is that a
speaker verification system trained with cohort speakers can deal with impostor
attacks more precisely. However, the disadvantage of a cohort model is that it may
not discriminate well the genuine speaker features from the world set of non-

speakers.
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The procedure of world model creation, selection of cohort features and training

the cohort model is shown in Figure 5.1.

World Set

Train

v _ Select e
Test Group#1 2 m- : Cohort Set IE

o | -

4

@Group#z + Thresholds
i Cwis Cwn

Train

 Cohort Model

A

Thresholds
CCLa CCH

Figure 5.1 Generation of World Model, Cohort Model
And Acceptance/Rejection Thresholds

5.1 Determination of Thresholds

Determination of the acceptance/rejection thresholds is an important task for

generating an efficient speaker verification system.
In Figure 5.2, the blue curve is Gaussian assumption of impostor test features,
while the red curve is Gaussian assumption of genuine speaker test features (Results

for the Test Group #2 in Figure 5.1).

We determined the speaker rejection threshold as:
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CwL =W k03 (.1)
and the speaker acceptance threshold as:

Ewn =H2 —k,0, (5.2)

Where, u; is the mean of impostor scores from the network, i is the mean of
genuine speaker scores from the network, oy is standard deviation of impostor scores,
and o; is standard deviation of genuine speaker scores. The constants k; and %, are
used to shift the thresholds according to the type of the verification system, e.g., if a

high- security system is the case, then the value of k; should be kept small.

B Lo, Dot #2

Figure 5.2 Acceptance/Rejection Thresholds for the World Model

5.2 Generation of the Cohort Model

Cohort means the group of speakers who are acoustically close to the genuine
speaker. The reason for using a cohort model here is to eliminate the impostors as
much as possible when they manage to pass from the first stage (from the world

model) without being eliminated.

To generate the cohort model, we used a separate test group of 50 non-speakers
(Test Group #1 in Figure 5.1), and we extracted 18 non-speakers who are most close
to the genuine speaker. Then, these 18 non-speaker features were used to train the

RBF network to form the cohort model. The acceptance/rejection thresholds were
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determined by using Test Group #2, and with respect to the genuine-speaker

features’ mean and standard deviation such that:

The speaker rejection threshold of the cohort model:

CcL =M4 —k304 (5.3)

The speaker acceptance threshold of the cohort model:

Ccn =h4 — k404 (54)

Where, uy is the mean of genuine speaker features, oy is the standard deviation of
genuine speaker features when tested with the cohort model, k3 and %, are constants

such that k3> k4 (see Figure 5.3).

' 'Sc*‘i;cn
 REIECT

H3 fen t.;cx‘u"'l

Figure 5.3 Acceptance/Rejection Thresholds for the Cohort Model

It can be seen from Equations (5.3) and (5.4) that, both the acceptance and
rejection thresholds were arranged according to the genuine speaker’s statistics. This
is for controlling the width of the unsure area, where claimants are asked to re-utter
to the verification system. In this way, the number of false acceptance and false

rejections can be reduced at the expense of more some time loss.
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5.3 The Proposed Speaker Verification Algorithm

UTTERANCE

World

%_J

; Cohort Model

Sar < Sc¢ > 4en

/'/ /\“ «\\

Figure 5.4 The Proposed Speaker Verification Algorithm
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The algorithm of our proposed verification system is represented in block diagram
in Figure 5.4. The output of the system, as seen in the figure, may be one of three
possibilities: Accept, Reject or Retry. If a genuine speaker is rejected, this will be a
false rejection (FR) error. If an impostor is accepted, this will be a false acceptance

(FA) error.

Test results for the proposed decision-making system is given in Section 5.4.

5.4 Test Results for the Proposed System

After the world model features and the test group features #1 and #2 (see Figure
5.1) were collected as database, generation of the proposed verification system for a
speaker, including the training phase of the world and cohort models, lasts for about
30 minutes. We selected the threshold determination constants &y, ks, k3, and k4 (see
Equations 5.1 to 5.4) as follows:

k=1,

k=02,
k3=0.5,
k=02,

These values were selected according to the best test results that keep the false

acceptance error at a considerably low value.

Tests were done with 288 non-speaker utterances and 26 true speaker utterances.
The results for the proposed two-stage automatic speaker verification system are

given in Table 5.1.
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Table 5.1 Test Results for the Proposed Verification System

Speaker | 2700 | simpostor | 5F8%e |t soeaker
Error : ~ Error o
0.0 7.2 7.7 15.4
2.1 9.3 3.8 11.5
0.0 10.4 7.7 11.5
14 8.0 11.5 7.7
0.0 3.1 0.0 3.8
1.7 7.2 3.8 7.7
0.0 2.8 38 11.5
0.0 3.5 7.7 7.7
0.65 6.44 5.75 9.6

As seen in Table 5.1, for most of the speakers the false acceptance error is zero,
and the average false acceptance error is 0.65%, while the false rejection error and

the percentage of retried speakers are kept at a non-disturbing value.
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CHAPTER SIX
CONCLUSIONS

6.1 Discussion

The recent researches on automatic speaker verification (ASV) studies are focused
mainly on feature selection and pattern matching problems. For the experiments of
this thesis mel-frequency cepstral coefficients (MFCC) are selected as features, and
radial basis function (RBF) neural networks are selected as the pattern-matching
model, which are very popular and are proven to give high performance in ASV

applications.

The experiments in this thesis were first focused on optimising the training set in
terms of the speaker genders and the ratios of speakers and non-speakers. These
investigations gave the result that; the maximum performance is achieved when the
system is trained with equal amount of true speakers and non-speakers, while the
90% of the non-speaker set was composed of same gender speakers as the true
speaker (e.g. if the model belongs to a male speaker, then %90 percent of the non-
speakers will be composed of male speakers in the training set; if the model belongs
to a female speaker, then %90 percent of the non-speakers will be composed of

female speakers in the training set ).

In the last part of the thesis a two-stage decision making algorithm which involves
determination of accept/reject thresholds and generation of cohort set (see Figure 5.4)
is introduced. The aim of this two-stage decision making algorithm is to eliminate

the impostors in the second stage by means of the cohort model. The final output
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from the system is either accept, or reject, or retry. The proposed system indeed
decreased the average false acceptance error to 0.65 percent while the false rejection

error average is 5.75 percent.

6.2 Future Works

In this thesis, we focused on optimizing the training set and generating an efficient
decision making algorithm. The first future work would be utilization of the
proposed decision-making model as a real system and secondly would be focusing
on modulating the features (we used only 11 MFCC features in this thesis), such as
adding delta and delta-delta MFCC features, or linear prediction cepstral coefficients
(LPCC’s). Moreover, a vowel-locating algorithm can be used to implement a text-

dependent speaker verification system.
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APPENDIX B
MATLAB CODES USED IN THE THESIS

B.1 Code For MFCC Features Extraction

The function “MFCC” and its subfunctions, which do the pre-processing, are

created for extraction of MFCC features from a digitized speech signal. The main

function “MFCC” is inspired from the “Voicebox™ Speech Processing Toolbox for
Matlab (WEB_2, June 2000).

function c=mfcc(s,fs,w,nc,p,n,inc,fl,th)

%MELCEPST Calculate the mel cepstrum of a signal c.

%

% Inputs:

% s: speech signal

% fs: sample rate in Hz (default 11025)

% nc: number of cepstral coefficients excluding 0'th coefficient (default 12)
% n: length of frame (default power of 2 <30 ms))

% p: number of filters in filterbank (default floor(3*log(fs)) )

% inc: frame increment (default n/2)

% fl: low end of the lowest filter as a fraction of fs (default = 0)

%  fh: high end of highest filter as a fraction of fs (default = .5)

%

% w any sensible combination of the following:

%

% R' rectangular window in time domain

% N'  Hanning window in time domain

% '™M'  Hamming window in time domain (default)
%

% 't'" triangular shaped filters in mel domain (default)

% 'n' hanning shaped filters in mel domain



%
%
%
Y%
%
%
%
%
%
%
%
%
%
%
%
%

% Outputs:
mel cepstrum output (one frame per row).

%
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'm' hamming shaped filters in mel domain

P’ filters act in the power domain
'a’ filters act in the absolute magnitude domain (default)

'0" include 0'th order cepstral coefficient

‘e’ include log energy

'd’ include delta coefficients (dc/dt)

D’ include delta-delta coefficients (d"2¢/dt"2)

'z' highest and lowest filters taper down to zero (default)
'y' lowest filter remains at 1 down to 0 frequency and

highest filter remains at 1 up to nyquist frequency

If 'ty' or 'ny’ is specified, the total power in the fit is preserved.

% ----Preemphasis to boost high frequency components-----
% ---- y(n)= x(n)-0.95x(n-1)

s=filter([1 -0.95],1,s);
s=s/max(abs(s));
s=s-mean(s);

%

if nargin<2 fs=11025; end

if nargin<3 w="M'"; end

if nargin<4 nc=12; end

if nargin<5 p=floor(3*log(fs)); end

if nargin<6 n=pow2(floor(log2(0.03*fs))); end

if nargin<9
th=0.5;
if nargin<8

end
end

if any(w=="R")
z=enframe(s,n,inc);
elseif any (w==N")

if nargin<7
inc=floor(n/2);

z=enframe(s,hanning(n),inc);



else
z=enframe(s,hamming(n),inc);
end

f=rfft(z.");
[m,a,b]=melbankm(p,n,fs,fl,th,w);
pw=f(a:b,:).*conj(f(a:b,:));
pth=max(pw(:))* 1E-6;
if any(w==p')
y=log(max(m*pw,pth));
else
ath=sqrt(pth);
y=log(max(m*abs(f(a:b,:)),ath));
end
c=rdct(y).";
nf=size(c,1);
nc=nc+1;
if p>nc
c(:,nct1:end)=[];
elseif p<nc
c=[c zeros(nf,nc-p)};
end
if ~any(w=='0")
c(:,1)=[l;
end
if any(w=="¢")
c=[log(sum(pw)).' cl;
end

if any(w=='D")
vi=(4:-1:-4)/60;
af=(1:-1:-1)/2;
ww=ones(5,1);
cx=[c(ww,:); c; c(nf*ww,:)];
vx=reshape(filter(vf,1,cx(:)),nf+10,nc);
vx(1:8,:)=[];
ax=reshape(filter(af,1,vx(:)),nf+2,nc);
ax(1:2,:)=1;
vx([1 nf+2],:)=];
if any(w=—="d")
c=[c vx ax];
else
c=[c ax];
end
elseif any(w=='d")
vi=(4:-1:-4)/60;
ww=ones(4,1);
cx=[c(ww,:); ¢; c(nf*ww,:)];



vx=reshape(filter(vf,1,cx(:)),nf+8,nc);
vx(1:8,2=[1;
c=[c vx];

end

if nargout<1
[nf,nc]=size(c);
t=((0:nf-1)*inc+(n-1)/2)/fs;
ci=(1:nc)-any(w=="0"-any(w=='¢");
imh = imagesc(t,ci,c.");
axis('xy");
xlabel('Time (s)");
ylabel('Mel-cepstrum coefficient');
map = (0:63)'/63;
colormap([map map map]);
colorbar;
end

%o

function f=enframe(x,win,inc)

nx=length(x);
nwin=length(win);
if (nwin =1)

len = win;
else
len = nwin;
end
if (nargin < 3)
inc = len;
end
nf = fix((nx-len+inc)/inc);
f=zeros(nf,len);
indf= inc*(0:(nf-1)).";

inds = (1:len);

f(:) = x(indf(:,ones(1,len))+inds(ones(nf, 1),:));

f=slcremove(f);
if (nwin > 1)
w =win(:);
nf = size(f,1);
f=f.* w(ones(nf,1),:);
end
return

%
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function y=rfft(x,n)

if nargin <2
y=tft(x);
else
y=tft(x,n);
end
if size(y,1)=1
m=length(y);
y(floor((m+4)/2):m)=[];
else
m=size(y,1);
y(floor((m+4)/2):m,:)=[];
end
return

%

function y=rdct(x,n)

fl=size(x,1)==1;

if fl x=x(:); end

[mk]=size(x);

if nargin<2 n=m;

elseif n>m x=[x; zeros(n-m,k)];
elseif n<m x(n+1:m,:)=[];

end

x=[x(1:2:n,:); x(2*fix(n/2):-2:2,:)];
z=[sqrt(2) 2*exp((-0.5i1*pi/n)*(1:n-1))].";
y=real(fft(x).*z(:,ones(1,k)));

if fl y=y."; end
return

%

function [x,mn,mx]=melbankm(p,n,fs,fl,fh,w)

if nargin <6
w='tz";
if nargin <5
th=0.5;
if nargin <4
f1=0;
end
end
end
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f0=700/fs;

fn2=floor(n/2);

Ir=log((f0+th)/(fO+{1))/(p+1);

% convert to fft bin numbers with 0 for DC term
bl=n*((f0+{1)*exp([0 1 p p+1]*Ir)-f0);
b2=ceil(bl(2));

b3=floor(bl(3));

if any(w=="y")
pf=log((f0+(b2:b3)/n)/(f0+{1))/Ir;
fp=tloor(pf);
r=[ones(1,b2) fp fp+1 p*ones(1,fn2-b3)];
c=[1:b3+1 b2+1:fn2+1];
v=2*[0.5 ones(1,b2-1) 1-pf+fp pf-fp ones(1,fn2-b3-1) 0.5];
mn=1;
mx=fn2+1;

else
bl=floor(bl(1))+1;
b4=min(fn2,ceil(bl(4)))-1;
pf=log((f0+(b1:b4)/n)/(f0+{1))/Ir;
fp=floor(pf);
pm=pf-fp;
k2=b2-b1+1;
k3=b3-bl+1;
k4=b4-b1+1;
r={fp(k2:k4) 1+fp(1:k3)];
c=[k2:k4 1:k3];
v=2*[1-pm(k2:k4) pm(1:k3)];
mn=bl+1;
mx=b4+1;

end

if any(w=='n")
v=1-cos(v¥*pi/2);

elseif any(w=—='m")
v=1-0.92/1.08*cos(v*pi/2);

end

if nargout > 1
x=sparse(r,c,v);
else
=sparse(r,ctmn-1,v,p,1+fn2);
end
return

%
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function [fr,thr,e]=slcremove(frames)

[nf,len]=size(frames);
emax=0;
emin=0;
e=sum(frames."2,2);
emax=max(e);
emin=min(e);
11=0.03*(emax-emin)+emin;
12=4*emin;
thr=25*min(11,12);
k=0,
for i=1:nf
if e(i)>thr
k=k+1;
fr(k,:)=frames(i,:);
end
end
return

B.2 Code For World Model Training
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This code is for training the RBF Network to form a world model for the speaker

“wsc”. The feature matrice “fem90perc” is the non-speaker set, which is composed

of 90% female speakers and 10% male speakers, containing 540 feature vectors in

total.

% input of the RBF Network

P =[clwsc(31:60,:)
ilwsc(31:60,:)
qlwsc(31:60,:)
slwsc(31:60,:)
wlwsc(31:60,:)
plwsc1(501:600,:)
p2wsc2(501:600,:)
r2wsc2(501:600,:)
réwsc2(501:590,:)
fem90perc.'].";

% target of the RBF Network

T=[ones(1,540) zeros(1,540) ; zeros(1,540) ones(1,540)];

net=newrb(P,T,2,4,850,50);
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% NEWRB(P,T,GOAL,SPREAD.MN,DF) takes these arguments,

% P -RxQ matrix of Q input vectors.

% T -SxQ matrix of Q target class vectors.

%  GOAL - Mean squared error goal, default = 0.0.

%  SPREAD - Spread of radial basis functions, default = 1.0.

% MN - Maximum number of neurons, default is Q.

% DF - Number of neurons to add between displays, default = 25.
% and returns a new radial basis network.

B.3 Code For Determination of the Cohort Selection Threshold

This code and its sub-functions are created for determination of the cohort

selection constant for the speaker “wsc”.

% speaker scores

perf_wsc=[perform(c4wsc,net) perform(c3wsc,net) perform(cSwsc,net)
perform(i2wsc,net) perform(plwsc3,net) perform(s2wsc,net)
perform(s3wsc,net) perform(s4wsc,net) perform(séwsc,net)
perform(s7wsc,net)perform(w3wsc,net) perform(plwsc4,net)
perform(plwsc5,net) perform(rlwsc1,net) perform(r2wsc1,net)
perform(r2wsc3,net) perform(r3wsc1,net) perform(r3wsc2,net)
perform(r3wsc3,net) perform(r4wsc2,net) perform(rSwscl,net)
perform(r2wsc5,net) perform(r2wsc6,net) perform(p2wsc3,net)
perform(p2wsc4,net) perform(réwsc3,net)];

% non-speaker scores
impfl=[perform9(c_wibdh,c_wlbec,c_wibjx,c wlbrc,c wlclh,c_wlclp,c_wlwer,
c_wlcsm,c_wljkj,net)]

impf2=[perform9(c_wijmd,c_wljte,c_wllml,c wllnb,c wllrl,c wlmec,c wlmkg,
¢_wlmkm,c wlnlc,net)]

impf3=[perform9(c_wlnrp,c_wlnsb,c wlnvw,c wlpki,c wlpra,c wlprr,c wlpsm,
c_wlpsn,c_wlslm,net)]

impf4=[perform9(c_wlslp,c_wlsnt,c wlsrb,c wlstr,c wlwkt,c wiwkv,c wlwnc,
c_wlcemf,c_wlbdh,net)]

impm1=[perform9(c_wlbjm,c_wlbrg,c wlbro,c wlbts,c wlcma,c wlcmc,
¢ _wlept,c_c3ctg,c wljmo,net)]

impm2=[perform9(c_wljra,c_wljws,c wlmdk,c wlmdo,c_wlmmp,c wlmpm,
¢_wlnmc,c_ wlnml,c wlnrf,net)]
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impm3=[perform9(c_wlnse,c wlpjk,c wlprh,c wlpta,c wlpwa,c wlpzm,
c_wlsph,c_wlspx,c_ wlssb,net)]

impm4={perform9(c_wlmmm,c_wlwlh,c_ wlwmk,c wlwxt,c wllmd,c_wllrp,
c_wllst,c_wllsu,c_wlbjm,net)]

impf5=[perform9(c_wlbdh,c_ilbec,c_ilbjx,c ilbrc,c ilclh,c ilclp,c ilwer,
c_ilesm,c_iljkj,net)]

impf6=[perform9(c_iljmd,c_iljte,c_illml,c illnb,c illrl,c_ilmec,c ilmkg,
c_ilmkm,c_ilnlc,net)]

impf7=[perform9(c_ilnrp,c_ilnsb,c_ilnvw,c ilpki,c ilpra,c_ilprr,c_ilpsm,
c_ilpsn,c_ilslm,net)]

impf8=[perform9(c_ilslp,c_ilsnt,c_ilsrb,c_ilstr,c_ilwkt,c ilwkv,c ilwnc,c ilcmf,
c_ilbdh,net)]

impmS5=[perform9(c_ilbjm,c_ilbrg,c_ilbro,c_ilbts,c ilcma,c ilecmc,c ilcpt,
c_c3ctg,c_iljmo,net)]

impmé6=[perform9(c_iljra,c_iljws,c_ilmdk,c ilmdo,c_ilmmp,c ilmpm,c ilnmc,
c_ilnml,c_ilnrf,net)]

impm7=[perform9(c_ilnse,c_ilpjk,c_ilprh,c_ilpta,c ilpwa,c_ilpzm,c ilsph,
c_ilspx,c_ilssb,net)]

impm8=[perform9(c_ilmmm,c_ilwlh,c_ilwmk,c ilwxt,c illmd,c illrp,c illst,
c_illsu,c_ilbjm,net)]

impf9=[perform9(c_qlbdh,c_qlbec,c_qlbjx,c_qlbrc,c_qlclh,c_qlclp,c_qlwer,
c_qlesm,c_qljkj,net)]

impf10=[perform9(c_qljmd,c_qljte,c_qllmlc_qllnb,c_qlirl,c qlmec,c glmkg,
¢_qlmkm,c_qlnlc,net)]

impfl 1=[perform9(c_qlnrp,c_qlnsb,c_glnvw,c_qlpki,c _qlpra,c_qlprr,c_qlpsm,
c_qlpsn,c_qlsim,net)]

impfl12=[perform9(c_qlslp,c _qlsnt,c _qlsrb,c_qlstr,c_g2wkt,c qlwkv,c qlwnc,
¢_qlemf,c_qlbdh,net)]

impm9=[perform9(c_qlbjm,c_qlbrg,c_qlbro,c_qlbts,c_qlcma,c qlecmc,c _qlcpt,
c_c3ctg,c_qljmo,net)]

impm10=[perform9(c_qljra,c_qljws,c_qlmdk,c qlmdo,c_qlmmp,c qlmpm,
c_qlnme,c_qlnml,c_qlnrf,net)]
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impml 1=[perform9(c_qglnse,c_qlpjk,c_qlprh,c_qlpta,c_qlpwa,c_qlpzm,c_qlsph,
c_qlspx,c_qlssb,net)]

impm12=[perform9(c_qlmmm,c_qlwlh,c_qlwmk,c glwxt,c qlimd,c qllrp,
c_qllst,c_qllsu,c_qlbjm,net)]

impf13=[perform9(c_slbdh,c_slbec,c_slbjx,c_slbrc,c slclh,c slclp,c slwer,
c_slesm,c_sljkj,net)]

impfl4=[perform9(c_sljmd,c_sljte,c_sllml,c_sllnb,c sllrl,c_sImec,c slmkg,
¢_slmkm,c_slnlc,net)]

impf15=[perform9(c_slnrp,c_slnsb,c_slnvw,c_slpki,c_slpra,c_slprr,c_slpsm,
¢_slpsn,c_slslm,net)]

impfl6=[perform9(c_slslp,c_slsnt,c_slsrb,c slstr,c s2wkt,c_slwkv,c_slwnc,
c_slemf,c_slbdh,net)]

impm13=[perform9(c_slbjm,c_slbrg,c slbro,c_slbts,c slcma,c slemc,c slcpt,
c_c3ctg,c_sljmo,net)]

impm14=[perform9(c_sljra,c_sljws,c_slmdk,c slmdo,c_slmmp,c slmpm,
c_slnme,c_slnmlc slnrfnet)]

impm15=[perform9(c_slnse,c_slpjk.c_slprh,c slpta,c_slpwa,c_slpzm.c slsph,
c_slspx,c_slssb,net)]

impm16=[perform9(c_sImmm,c slwlh,c slwmk,c slwxt,c sllmd,c sllrp,c sllst,
c_sllsu,c_slbjm,net)]

perf_imp=[impfl impf2 impf3 impf4 impf5 impf6 impf7 impf8 impfY impf10
impf11 impf12 impf13 impfl14 impfl5 impf16 impm! impm2 impm3
impm4 impm5 impm6 impm?7 impm8 impm9 impm10 impm11 impm12
impm13 impm14 impm15 impm16];

speaker_mean=mean(perf wsc)
speaker_stdev=std(perf wsc)

imp_mean=mean(perf_imp)
imp_stdev=std(perf_imp)
¢_coh=imp_mean+1*imp_stdev

far=];
frr={];

for t=-1:0.01:1
el=sum(perf_imp>t)/length(perf imp);



far=[far el1];
e2=sum(perf wsc<t)/length(perf wsc);
frr=[frr e2];

end

plot(far,frr)

cfar=1.2*far;
cfrr=0.8*frr;

eer=0;

dif=frr-far;
minn=min(abs(dif));

for k=1:length(far)
if abs(dif(k))==minn
eer=(far(k)+frr(k))/2;
end
end
eer=cer*100

w=-1:0.01:1;
figure
plot(w,100*frr)
hold on
plot(w,100*far)

%

function perf = perform(x,net);
y = sim(net,x.");

f s=mean(y(1,:));

f w=mean(y(2,));
perf=f s-f w;

%

function prf9 = perform9(x1,x2,x3,x4,x5,x6,x7,%x8,x9,net);

prl=perform(x1,net);
pr2=perform(x2,net);
pr3=perform(x3,net);
pré4=perform(x4,net);
pr5=perform(x5,net);
pré=perform(x6,net);



74

pr7=perform(x7,net);
pr8=perform(x8,net);
pr9=perform(x9,net);

prf9=[prl pr2 pr3 pr4 pr5 pr6 pr7 pr8 pr9];

B.4 Code for Selection of Cohort Set Speakers & Determination of the
Speaker Acceptance/Rejection Thresholds

This code first selects the non-speakers who are most close to the genuine
speaker’s vocal properties, and forms the cohort set for the genuine speaker “wsc”.
Then, the speaker acceptance/rejection thresholds of the world model are

determined for the speaker “wsc”.

% —-mmmmmeme Determine speaker acception threshold
%o ~==mmmmmmm Determine the cohort set

%6 —=mmmmmmmm- Determine speaker rejection threshold
coh=[];

al=[perform(p1wsc2,net) perform(p2wsc1,net) perform(q3wsc,net)
perform(rSwsc2,net) perform(r6wscl,net)]

a2=[perform(c2wsc,net) perform(q2wsc,net) perform(s8wsc,net)
perform(i3wsc,net) perform(w2wsc,net) perform(s5wsc,net)]

a3=[perform(riwsc2,net) perform(r2wsc4,net) perform(r4dwscl,net)]

mean_sp=mean([al a2 a3]);
std_sp=std([al a2 a3]);

k1=0.6; %speaker acception constant
thr_high =mean_sp-k1*std_sp % speaker acception threshold

c_coh=mean_sp-3*std sp % cohort selection constant

[f1,coh]=per9(c_clbdh,c_ilbec,c_qlibjx,c_slbrc,c wiclh,c clclp,c_ilemf,c glesm,
c_sljkj,net,coh,c_coh); f1

[f2,coh]=per9(c_cljmd,c_wljte,c_illml,c_qllnb,c sllrl,c wimec,c_climkg,
c_ilmkm,c_qlnlc,net,coh,c_coh); £2
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[£3,coh]=per9(c_clnrp,c_slnsb,c_wlnvw,c ilpki,c slpra,c_qlprr,c wlpsm,
c_clpsn,c_ilslm,net,coh,c_coh); f3

[f4,coh]=per9(c_qlslp,c_slsnt,c wlsrb,c clstr,c_ilwkt,c slwkv,c qlwnc,
c¢_wlwlh,c_clbec,net,coh,c_coh); f4

[m1,coh]=per9(c_ilbjm,c_qlbrg,c_slbro,c_wlbts,c_clcma,c_ileme,c_qlcpt,
c_slctg,c wljmo,net,coh,c_coh); ml

[m2,coh]=per9(c_cljra,c_iljws,c_qlmdk,c_slmdo,c_wlmmp,c_clmpm,c_ilnme,
¢ _qlnml,c slnrfnet,coh,c_coh); m2

[m3,coh]=per9(c_clnse,c_wlpjk,c_ilprh,c_qlpta,c_slpwa,c_wlpzm,c_clsph,
c_ilspx,c_qlssb,net,coh,c_coh); m3

[m4,coh]=per%(c_sImmm,c_wlwlh,c_qlwmk,c_ilwxt,c cllmd,c_sllrp,c wllst,
c_illsu,c_clbjm,net,coh,c_coh); m4

mean_imp=mean([fl f2 f3 f4 m1 m2 m3 m4]);
std_imp=std([f1 {2 f3 f4 m1 m2 m3 m4]);

k2=0.8; %speaker rejection constant
thr_low = mean_imp+k2*std imp % speaker rejection threshold

B.5 Code For Cohort Model Training

This code is for training the RBF Network of the cohort model of the speaker
“wsc”. The feature matrice “coh” is the cohort set which is formed by the previous

m-file given above.

% input of the Cohort Network

P = [clwsc(31:60,:)
ilwsc(31:60,:)
qlwsc(31:60,:)
slwsc(31:60,:)
wlwsc(31:60,:)
plwscl(531:585,:)
p2wsc2(531:585,:)
r2wsc2(531:585,:)
rowsc2(531:575,:)
coh].’;
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% target of the Cohort Network
T=[ones(1,360) zeros(1,360) ; zeros(1,360) ones(1,360)];

netc=newrb(P,T,1,4,650,50);

% NEWRB(P,T,GOAL,SPREAD,MN,DF) takes these arguments,

% P - RxQ matrix of Q input vectors.

% T -SxQ matrix of Q target class vectors.

% GOAL - Mean squared error goal, default = 0.0.

%  SPREAD - Spread of radial basis functions, default = 1.0.

% MN - Maximum number of neurons, default is Q.

% DF - Number of neurons to add between displays, default =25.
% and returns a new radial basis network.

B.6 Code For Determination of the Acceptance/Rejection Thresholds of the
Cohort Model

By this code, the speaker acceptance/rejection thresholds of the cohort model are

determined for the speaker “wsc”.

b1=[perform(c1wsc,netc) perform(ilwsc,netc) perform(ql wsc,netc)
perform(s1wsc,netc) perform(w1wsc,netc) perform(r6wsc2,netc)
perform(r2wsc2,netc)]

b2=[perform(plwscl,netc) perform(p2wsc2,netc) perform(c4wsc,net)
perform(c3wsc,net) perform(cSwsc,net) perform(i2wsc,net)]

mean_c_s=mean([bl b2]);
std_c_s=std([bl b2]);
coh_high=mean_c_s-0.2*std_c s; %speaker acception threshold

bil=[perform9(c_wlmmm,c_wlcmf,c_wlwmk,c wlwxt,c wllmd,c_wllrp,c_wllst,
c_wllsu,c_wlbjm,netc)]

bi2=[perform9(c_w1bdh,c_ilbec,c_ilbjx,c ilbrc,c ilclh,c ilclp,c ilwer,c ilcsm,
c_iljkj,netc)]

bi3=[perform9(c_clbcc,c_clbgm,c_clbdo,c_clcer,c_clchb,c clcje,c clcji,c cljah,
c_cljcr,netc)]

bi4=[perform9(c_qlbdh,c_qlbec,c_qlbjx,c qlbre,c qlclh,c qlclp,c qlwer,
¢_glesm,c_qljkj,netc)]
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biS=[perform9(c_sljra,c_sljws,c_slmdk,c sImdo,c_slmmp,c sIlmpm,c sInmc,
¢_slnml,c_slnrfnetc)]

bi6=[perform9(c_slnrp,c_slnsb,c_slnvw,c_slpki,c_slpra,c slprr,c slpsm,c_slpsn,
c_slslm,netc)]

bi7=[perform9(c_qlnse,c_qlpjk.c_qlprh,c_qlpta,c_qlpwa,c_qlpzm,c_qlsph,
c_qglspx,c_qlssb,netc)]

mean_c_i=mean([bil bi2 bi3 bi4 bi5 bi6 bi7]);
std_c¢_i=std([bil bi2 bi3 bi4 biS bi6 bi7]);
coh_low=mean c_i+1*std ¢ i;  Yspeaker reject threshold

B.7 Code For Testing the Generated Speaker Verification Model

By this code, the two-stage speaker verification model of the speaker “wsc”,
which is generated by the above m-files, is tested and the results are supplied in
terms of false acceptance rate (FAR), false rejection rate (FRR), retried speakers,

and retried impostors.

% TEST

% speaker scores

perf_wsc=[perform(c4wsc,net) perform(c3wsc,net) perform(cSwsc,net)
perform(i2wsc,net) perform(p1wsc3,net) perform(s2wsc,net)
perform(s3wsc,net) perform(s4wsc,net) perform(s6wsc,net)
perform(s7wsc,net) perform(w3wsc,net) perform(p1wsc4,net)
perform(plwsc5,net) perform(rlwscl,net) perform(r2wsc1,net)
perform(r2wsc3,net) perform(r3wsc1,net) perform(r3wsc2,net)
perform(r3wsc3,net) perform(r4wsc2,net) perform(rSwscl,net)
perform(r2wsc5,net) perform(r2wsc6,net) perform(p2wsc3,net)
perform(p2wsc4,net) perform(réwsc3,net)]

% impostor scores
impfl=[perform9(c_wlbdh,c wlbec,c wlbjx,c wlbrc,c_wlclh,c wlclp,c wlwer,
¢ wlesm,e wljkj,net)]

impf2=[perform9(c_wljmd,c_wljte,c_wllml,c wllnb,c wllrl,c_ wimec,c_wlmkg,
¢ wlmkm,c_winlc,net)]
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impf3=[perform9(c_wlnrp,c wlnsb,c wlnvw,c wlpki,c wlpra,c_ wlprr,c wlpsm,
c_wlpsn,c_wlslm,net)]

impf4=[perform9(c_w1slp,c wlsnt,c wlsrb,c wlstr,c wlwkt,c wliwkv,c wlwnc,
c_wlwlh,c_wlbec,net)]

impmI=[perform9(c_w1bjm,c_wlbrg,c wlbro,c_wlbts,c_ wlcma,c wlcme,
¢ wlept,c c3ctg,c wljmo,net)]

impm2=[perform9(c_wljra,c_wljws,c wimdk,c_wlmdo,c wlmmp,c wlmpm,
¢ wlnmec,c winml,c_wlnrf,net)]

impm3=[perform9(c_wlnse,c_wlpjk,c wlprh,c_wlpta,c wlpwa,c_wlpzm,
c_wlsph,c_wlspx,c_wlssb,net)]

impm4=[perform9(c_wlmmm,c_wlcmf,c_wlwmk,c wlwxt,c wllmd,c wllrp,
c_wllst,c wllsu,c_wlbjm,net)]

impf5=[perform9(c_wlbdh,c_ilbec,c_ilbjx,c _ilbrc,c ilclh,c ilclp,c ilwer,
c_ilesm,c_iljkj,net)]

impf6=[perform9(c_iljmd,c _iljte,c illml,c illnb,c illrl,c ilmec,c_ilmkg,
¢_ilmkm,c ilnlec,net)]

impf7=[perform9(c_ilnrp,c_ilnsb,c ilnvw,c ilpki,c ilpra,c ilprr,c_ilpsm,
¢ _ilpsn,c_ilslm,net)]

impf8=[perform9(c_ilslp,c ilsnt,c ilsrb,c_ilstr,c_ilwkt,c ilwkv,c ilwnc,c_ilwih,
c_ilbdh,net)]

impm5=[perform9(c_ilbjm,c_ilbrg,c ilbro,c_ilbts,c ilema,c ilcmc,c ilcpt,
c_c3ctg,c_iljmo,net)]

impmé6=[perform9(c_iljra,c_iljws,c_ilmdk.,c ilmdo,c_ilmmp,c ilmpm,c ilnmc,
c_ilnml,c_ilnrf,net)]

impm7=[perform9(c_ilnse,c_ilpjk,c ilprh,c ilpta,c ilpwa,c_ilpzm,c ilsph,
¢ _ilspx,c_ilssb,net)]

impm8=[perform9(c_ilmmm,c_ilemf,c_ilwmk,c ilwxt,c illmd,c_illrp,c_illst,
c_illsu,c_ilbjm,net)]

impf9=[perform9(c_qlbdh,c_qlbec,c_qlbjx,c_qlbrc,c_qlclh,c_qlclp,c _qlwer,
¢_qlesm,c_qljkj,net)]

impf10=[perform9(c_qljmd,c_qljte,c_qllmlc_gllnb,c_qllrl,c qlmec.c qlmkg,
¢_gqlmkm,c glnic,net)]
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impfl1=[perform9(c_qlnrp,c_qlnsb,c_qlnvw,c_qlpki,c_qlpra,c_qlprr,c qlpsm,
¢_qlpsn,c_qlsim,net)]

impf12=[perform9(c_qlslp,c_qlsnt,c_qlsrb,c_qlstr,c_q2wkt,c_qlwkv,c_qlwnc,
c_qlwlh,c_qlbdh,net)]

impm9=[perform9(c_qlbjm,c_qlbrg,c qlbro,c_qlbts,c_qlcma,c_qlcme,c_qlcpt,
c_c3ctg,c_qljmo,net)]

impm10=[perform9(c_qljra,c_qljws,c_qlmdk,c _qlmdo,c_qlmmp,c_qlmpm,
¢ _gqlnme,c_qlnml,c_qlnrf,net)]

impm1 1=[perform9(c_qlnse,c_qlpjk,c_qlprh,c_qlpta,c_qlpwa,c_qlpzm,c_qlsph,
c_qlspx,c_qlssb,net)]

impm12=[perform9(c_qlmmm,c_qlcmf,c qlwmk,c qlwxt,c qllmd,c qllrp,
c_qllst,ec qllsu,c_qlbjm,net)]

impf13=[perform9(c_slbdh,c_slbec,c_slbjx,c_slbrc,c_slclh,c slclp,c_slwer,
c_slesm,c_sljkj,net)]

impfl4=[perform9(c_sljmd,c_sljte,c sllml,c sllnb,c_sllrl,c_slmec,c_slmkg,
c_slmkm,c_slnlc,net)]

impf15=[perform9(c_slnrp,c_slnsb,c_slnvw, slpki,c slpra,c_slprr,c_slpsm,
c_slpsn,c_slslm,net)]

impfl6=[perform9(c_slslp,c_slsnt,c_slsrb,c_slstr,c_s2wkt,c_slwkv,c_slwnc,
c_slwlh,c_slbdh,net)]

impm13=[perform9(c_slbjm,c_slbrg,c slbro,c_slbts,c_slcma,c_slcmc,c slcpt,
c_c3ctg,c_sljmo,net)]

impm14=[perform9(c_sljra,c_sljws,c_slmdk,c slmdo,c_slmmp,c slmpm,
c_slnme,c_slnml,c_slnrf,net)]

impm15=[perform9(c_slnse,c_slpjk,c_slprh,c slpta,c_slpwa,c_slpzm.,c slsph,
c_slspx,c_slssb,net)]

impm16=[perform9(c_sIlmmm,c_slcmf,c_slwmk,c slwxt,c sllmd,c_sllrp,c_sllst,
c_sllsu,c_slbjm,net)]

perf_imp=[impfl impf2 impf3 impf4 impf5 impf6 impf7 impf8 impfY impf10
impf11 impf12 impfl3 impf14 impfl5 impfl6 impm1 impm2 impm3 impm4
impm35 impm6 impm7 impm8 impm9 impm10 impm11 impm12 impm13
impm14 impm15 impm16];



R false rejection
nl=length(perf wsc);
sp_retry=0;

sp_doubt=0;

rej1=0;
rej2=0;

for x=1:nl
if perf_wsc(x)<thr_high & perf_wsc(x)>thr_low
sp_doubt=sp_doubt+1;
if perf_wsc(x)<coh_high & perf_wsc(x)>coh_low
sp_retry=sp_retry+1;
end
if perf_wsc(x)<coh_low
rej2=rej2+1;
end
end
if perf_wsc(x)<thr_low
rejl=rejl+1;
end
end

Yo mmmmmmmmemmn false acception rate
n2=length(perf_imp);
imp_retry=0;

imp_doubt=0;

accl=0;

acc2=0;

for y=1:n2
if perf_imp(y)<thr_high & perf_imp(y)>thr_low
imp_doubt=imp_doubt+1;
if perf_imp(y)<coh_high & perf imp(y)>coh_low
imp_retry=imp_retry+1;
end
if perf_imp(y)>coh_high
acc2=acc2+1;
end
end
if perf_imp(y)>thr_high
accl=accl+1;
end
end
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% FalseAccept = accl+acc2
% FalseReject = rejl+rej2

accl=100*acc1/n2
imp_doubt = 100*imp_doubt/n2
acc2=100*acc2/n2
ReImpostor = 100*imp_retry/n2

rej1=100%rej1/nl
sp_doubt = 100*sp_doubt/nl
rej2=100*rej2/nl
ReSpeaker = 100*sp_retry/nl
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