

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

REAL-TIME VEHICLE MONITORING AND ON-

BOARD DIAGNOSTIC SYSTEM

by

Emin VİLGENOĞLU

November, 2019

İZMİR

REAL-TIME VEHICLE MONITORING AND ON-

BOARD DIAGNOSTIC SYSTEM

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Electrical and Electronics Engineering

by

Emin VİLGENOĞLU

November, 2019

İZMİR

iii

ACKNOWLEDGEMENT

 I would first like to express my gratitude to my supervisor of this project, Asst.

Prof. Dr. Reyat Yılmaz for his valuable guidance and advice. It would not have been

possible to write this thesis without his support. He inspired me greatly to work in this

project and encouraged me to overcome the problems I encountered during this period.

 I would also like to thank my fiancée Simge Dizdar for her assistance and patience.

She encouraged me all the time and helped me whenever she thought I needed it. And

an honorable mention goes to my best friends Vural Avşar and Fatih Mehmet Dağ for

their understanding and contribution in completing this thesis.

 Above all, I would like to thank Dokuz Eylül University for providing me with a

good environment and facilities to complete this thesis.

 Finally, an honorable mention goes to my parents and siblings for their support

during this period as though it were my whole life.

Emin VİLGENOĞLU

iv

REAL-TIME VEHICLE MONITORING AND ON-BOARD DIAGNOSTIC

SYSTEM

ABSTRACT

 Despite the existence of the vehicles’ communication standards and protocols with

the external world, the importance of the data exchange in vehicles is having a lot of

meaning in recent years with the digitalization of the world and getting connected of

the things and people. Besides, with the evolution of Long Term Evolution (LTE) and

5G mobile communication systems, Internet of Things (IoT) concept and cloud

technologies have been growing increasingly since the data exchange and connectivity

require reliable and fast communication systems. All those consequences and

developing vehicle technologies have inspired to do work of this thesis.

In this paper, vehicles’ On-Board Diagnostics (OBD) system has been researched

and a new concept developed to obtain and use the data from the vehicles basically as

for the security, controllability, and energy consumption topics. Within the scope, the

following subjects are studied: (i) regardless of the communication protocol of the

vehicles a generic embedded system is designed to communicate and adapt to the

vehicles OBD interface, (ii) a cloud-based platform is used to store and analyze the

vehicle data so as to make it reachable and connected from anywhere, (iii) an IoT

concept is implemented by connecting the users and drivers to the cloud through

services and Application Interfaces (API). The mentioned End-to-End (E2E) system

allows us to analyze the obtained data and serve it to the end-user applications.

Consequently, a solution, which covers all the mentioned concepts and

technologies, is designed and developed. The solution includes vehicle data exchange

module, location and communication module, and cloud system applications module.

It’s observed that the developed system provides the drivers and end-users to monitor

the vehicle’s energy consumption rates and let them conclude efficient driving

behavior, to be notified about diagnostic issues in advance, and to monitor the location.

Keywords: OBD-II, Vehicle Diagnostic, Vehicle/Car Monitoring System, Cloud, IoT

v

GERÇEK ZAMANLI ARAÇ İZLEME VE ARIZA TESPİT SİSTEMİ

ÖZ

 Araçlardaki iletişim standart ve protokollerinin varlığına rağmen, araçlarda veri

alışverişinin önemi son yıllarda dünyanın dijitalleşmesi, nesnelerin ve insanların

birbirlerine bağlanmasıyla birlikte daha da anlam kazanıyor. Ayrıca LTE ve 5G mobil

iletişim sistemlerinin gelişmesiyle beraber, Nesnelerin İnterneti (IoT) ve bulut

teknolojileri hızlı bir şekilde büyümektedir çünkü veri alışverişi ve bağlantı güvenilir

ve hızlı iletişim sistemlerine ihtiyaç duymaktadır. Tüm bu sebepler ve gelişen araç

teknolojisi bu tez çalışmasını yapmak için ilham kaynağı oldu.

Bu çalışmada araçların OBD sistemi araştırıldı ve temel olarak güvenlik, kontrol

edilebilirlik ve enerji tüketim konuları için araçlardan veri toplama ve kullanma

konsepti geliştirildi. Bu kapsamda şu konular çalışıldı: (i) araçların iletişim

protokollerine bağlı olmaksızın, OBD ara yüzüyle uyumlu ve haberleşebilecek genel

bir gömülü sistem tasarlandı, (ii) her yerden erişilebilirlik ve bağlantı adına araç

verilerinin saklanması ve analizi için bulut tabanlı bir platform kullanıldı, (iii) kullanıcı

ve sürücüleri servisler ve uygulama ara yüzleri ile bulut sistemine bağlayarak bir

nesnelerin interneti konsepti uygulandı. Bahsi geçen uçtan uca sistem elde edilen

verileri analiz etmeye ve son kullanıcı uygulamalarına sunmaya yardımcı olmaktadır.

Sonuç olarak bahsedilen tüm kavram ve teknolojileri kapsayan bir çözüm tasarlandı

ve geliştirildi. Bu çözüm araç veri alışverişi, konum, haberleşme ve bulut sistemi

uygulamaları modüllerini içermektedir. Geliştirilen sistemin sürücü ve son

kullanıcılara aracın enerji tüketim oranlarını sunduğu ve verimli sürüş davranışlarını

tespit etmelerini sağladığı, arızalarla ilgili önceden bilgilendirilmelerine ve aracın

konumunu izlemelerine olanak sağladığı gözlemlenmiştir.

Anahtar Kelimeler: OBD-II, Araç Arıza Tespiti, Araç İzleme ve Takip Sistemi,

Bulut, Nesnelerin İnterneti

vi

CONTENTS Page

M.Sc THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGEMENT .. iii

ABSTRACT .. iv

ÖZ .. v

LIST OF FIGURES ..viii

LIST OF TABLES..ix

CHAPTER ONE - INTRODUCTION ... 1

1.1 Objectives .. 2

1.2 Thesis Organization ... 3

CHAPTER TWO - LITERATURE REVIEW .. 4

2.1 On-Board Diagnostic Background .. 4

2.2 Mobile Communication Systems Background .. 6

2.3 IoT and Cloud Systems Background ... 7

CHAPTER THREE - METHODOLOGY AND DESIGN 10

3.1 System Specification .. 12

3.2 On-Board Embedded System Design ... 13

3.2.1 OBD-II UART Module .. 14

3.2.2 SIM808 Module ... 18

3.2.3 Embedded System Software Architecture ... 19

3.3 Back-End Connected Services Design ... 20

3.3.1 GPS Location Service .. 21

3.3.2 Vehicle Information Service .. 22

3.3.3 Trend Data Service .. 23

3.3.4 DTC Service .. 25

3.4 Cloud System Design ... 27

vii

3.4.1 Elastic Cloud Computing Architecture .. 28

3.4.2 Database Design .. 32

3.5 End-User Application Design... 34

CHAPTER FOUR - RESULTS .. 36

CHAPTER FIVE - CONCLUSION ... 42

REFERENCES ... 43

viii

LIST OF FIGURES Page

Figure 1.1 End-to-End (E2E) system design representation .. 2

Figure 3.1 Block diagram of End-to-End (E2E) system .. 13

Figure 3.2 Circuit diagram of the system ... 14

Figure 3.3 OBD Type-A connector pinout representation ... 15

Figure 3.4 Embedded system flow diagram ... 19

Figure 3.5 Vehicle identification number representation ... 23

Figure 3.6 DTC character representation ... 26

Figure 3.7 EC2 AMI properties ... 29

Figure 3.8 EC2 general instance properties ... 30

Figure 3.9 EC2 volume representation... 31

Figure 3.10 EC2 inbound security group ... 32

Figure 3.11 MongoDB context and cluster .. 33

Figure 3.12 Vehicle DB collections ... 34

Figure 3.13 User application login page .. 35

Figure 3.14 User application main dashboard.. 35

Figure 4.1 OBD port connection ... 36

Figure 4.2 In-car embedded circuit connection ... 37

Figure 4.3 GPS location dashboard .. 39

Figure 4.4 Trend data dashboard ……………………………………………………39

Figure 4.5 DTC dashboard ………………………………………………………….40

Figure 4.6 VIN dashboard …………………………………………………………..41

ix

LIST OF TABLES Page

Table 3.1 OBD Type-A connector pinout description ... 15

Table 3.2 OBD-II services ... 16

Table 3.3 Bitwise encoding representation .. 17

Table 3.4 Response data bytes representation ... 17

Table 3.5 SIM808 AT command definition ... 18

Table 4.1 Back-End services endpoint URLs .. 38

1

CHAPTER ONE

INTRODUCTION

 Road transportation has evolved rapidly immediately after the invention of the

Internal Combustion Engine (ICE). The first commercial ICE was developed by

Etienne Lenoir around the year 1859 and Nikolaus Otto has created the first modern

ICE in 1876 (Internal Combustion Engine, 2019).

In years, with the developing electronic and computer technologies, the vehicle and

the car industry has adapted to the technology and made use of electronic devices in

the vehicle systems. In this sense, Engine Control Unit (ECU), which is also called

Engine Control Module (ECM), was first used by BMW in 1939 for its 801 14-cylinder

aviation radial engine (Engine Control Unit, 2019).

Today, particularly the car industry is improving with the developing chip and

sensor technology especially in terms of fuel efficiency, vehicle safety, and vehicle’s

electronic systems. As well as the improving interior radio, navigation, and

entertainment systems, the adaptive cruise control and adaptive steering control

systems are also some of the hot topics in the vehicle industry.

In the near future, the vehicle industry is going to be adapted to the IoT concept by

means of connected vehicle terminology. In other words, it’s expected to get all the

vehicles connected and communicate with each other. Besides, smart parking (Hans et

al., 2015) and adaptive traffic signal controlling (Jing et al., 2017) are also new topics

in the connected vehicle area.

The proposed work in this thesis is aimed to provide real-time vehicle connectivity

to the drivers in the aspects of monitoring and controlling the vehicle’s location,

trouble codes, service maintenance due, general vehicle information, and so on. Also,

the proposed solution will provide to check and interpret vehicle’s basic trend

parameters such as speed, rpm, fuel tank level, oil temperature, energy consumption,

and Malfunction Indicator Light (MIL) from remote.

2

1.1 Objectives

Advancing technology is leading to systems getting smart and therefore helping

human life to get easier. In this sense, the development of vehicle systems is inevitable

and day by day vehicles are getting smarter. Electric Vehicles (EV) and autonomous

vehicles are the destination of today’s automotive world.

The concept of this work has arisen from the idea of connecting the vehicles to

cloud systems and creating an IoT based infrastructure in order to reach out vehicle’s

information remotely and monitor it from anywhere. As depicted in the following

figure 1.1, the vehicles are aimed to connect to the cloud systems with the help of GSM

technology. Hereby, the drivers will be able to reach out their vehicle information and

to monitor its location and to know in advance about the diagnostic issues.

In this design, data connectivity has been achieved via GPRS feature of GSM

mobile communication as a prototype, however, advanced mobile communication

systems like 3G/4G/5G would be used so as to take advantage of wide bandwidth.

Figure 1.1 End-to-End (E2E) system design representation

3

1.2 Thesis Organization

 This thesis consists of five chapters:

- Chapter One, Introduction: In the first chapter, the motivation behind this

thesis is discussed and thesis objectives are defined.

- Chapter Two, Literature Review: In the second chapter, brief information is

given about the project components as well as the background of the

components is clarified based on the literature review.

- Chapter Three, Methodology and Design: In the third chapter, way of

working and methodology is defined. Based on the specified solution, design

and implementation are detailed.

- Chapter Four, Results: In the fourth chapter, results are evaluated and

compared with similar designs.

- Chapter Five, Conclusion: In the fifth chapter, the design is summarized

Also, possible future enhancement is discussed.

- References: All applied resources including books, journals, digital files, etc.

are cited in the references section.

4

CHAPTER TWO

LITERATURE REVIEW

In this section, the literature review of the used systems and main components will

be discussed. The E2E system will be reviewed in the means of already proposed

background studies until now.

2.1 On-Board Diagnostic Background

Modern vehicles today have an Engine Control Unit (ECU) that controls and

manages the vehicles’ subsystems. The vehicle manufacturers, in fact, develop the

ECU in order to optimize the engine performance by collecting data from various

subsystems (sensors) in the vehicle. The mentioned optimizations would be like fuel

efficiency, reduced CO2 emissions, ease of diagnostics, and so on (Sim et al., 2014).

On the other hand, the most known and reliable communication protocol in-vehicle

technology is Controller Area Network (CAN) bus protocol. The CAN Bus protocol

allows the ECU and subsystems to communicate with each other without having a

computer system.

The CAN Bus protocol was designed and developed by Robert Bosch in 1986

especially for automotive, however, it’s used even in some industrial applications

nowadays (Khorsravinia et al., 2017). In addition, the CAN Bus protocol, which has a

very high level of security, was first commercially used as a bus system in 1991. The

CAN Bus protocol is defined by 3 relevant standards that are ISO 11898 (CAN), ISO

15756 (Diagnostic on CAN), and ISO 15031 (Legislated OBD on CAN) (Khorsravinia

et al., 2017).

Besides the existing electronic control system and communication protocol in the

vehicles, there is a need for communicating with the vehicles from external computer

systems. For the very purpose, the On-Boar Diagnostic (OBD) standard has been

defined and developed basically to get the state of health information from the vehicle

5

subsystems. The OBD standard was first introduced in the 1980s and the amount of

provided information has varied since then (Yun et al., 2011).

Throughout history, the OBD standard has been developed gradually and there have

been several versions of it. The vehicle companies and manufacturers have contributed

to the standard as well. For example, General Motors designed its own standard as

Assembly Line Diagnostic Link (ALDL) in the late 1970s and early 1980s, as well as

Toyota, has developed Multiplex OBD (M-OBD) as an alternative protocol that

complies with OBD-II (On-board diagnostics, 2019).

In the United States the OBD standard has become a mandatory requirement for the

light-duty vehicles that are 1996 model and newer (OBD-II PIDs, 2019). Basically,

the standard can be analyzed in as the version and types of OBD-I, OBD-1.5, OBD-II,

EOBD, and JOBD.

The OBD-I standard was regulated to encourage the vehicle manufacturers to

control emission systems and it’s known as 1991 and later California standard, not a

USA Federal standard. On the other hand, OBD-1.5 corresponds to a pre and partial

implementation of OBD-II (On-board diagnostics, 2019).

The OBD-II is an enhanced version of previous OBD standards and improved in

terms of capability. The standard’s connector pinout is defined by the Society of

Automotive Engineers (SAE) J1962 (Yun et al., 2011). Also, the EOBD and JOBD

refer to the equivalent OBD-II standard in Europe and Japan, respectively.

According to the regulations and standards, there are 3 mandated rules of OBD-II

(Sim et al., 2014)

- Communication standard with the ECU

- The standard inquiry commands (Parameter Ids)

- The standard error codes (DTC)

6

There are 5 communication protocols for the OBD-II to communicate with vehicles’

ECU that are listed as follows and all vehicle manufacturers should comply with at

least one of them (Sim et al., 2014)

1. J1850 PWM

2. J1850 VPW

3. ISO 9141-2

4. ISO 14230 (KWP 2000)

5. ISO 15765-4-CAN

In this proposed work, an OBD-II Universal Asynchronous Receiver-Transmitter

(UART) module is used to communicate with the vehicle’s ECU system. Also, the

module is capable of communicating with all these 5 types of communication

protocols.

2.2 Mobile Communication Systems Background

Mobile communication has started with the first generation (1G) and followed by

2G, 3G, 4G, and 5G technologies. While 1G is an analog system that used for public

voice service, a digital technology network infrastructure that also supports text

messaging, is used in 2G. On the other hand, depending on the increasing demand for

information via the internet data connectivity has provided and bandwidth expanded

with 3G, 4G, and 5G mobile communication systems (Li et al., 2009).

In addition, the Global System for Mobile (GSM) network is a digital mobile

network used by mobile phones in the world. In 2G GSM network, it’s already possible

to reach to the internet with General Packet Radio Services (GPRS). With this

technology data packets can be transmitted and received over Transmission Control

Protocol/Internet Protocol (TCP/IP) (El-Ata, 200).

As well as the mobile communication systems are used for mobile phones to let

people communicate, the technology also is widely used for electronic devices to get

7

connectivity over the internet. For this purpose, the GSM modules are used in systems

and the data connectivity is achieved by a Subscriber Identity Module (SIM) over

operators GSM network.

2.3 IoT and Cloud Systems Background

The designed system is basically based on IoT and Cloud Systems infrastructure

that makes the connectivity and provide the vehicle information observation from

remote applications. In this sense, cloud computing and IoT background systems are

studied as follows.

Cloud computing basically corresponds to the availability of remote computer

resources by means of data storage and computing power without having to manage

the resources directly (Cloud computing, 2019). The word of “Cloud Computing” was

firstly born in 1996 in a document released by Compaq Inc. However, it got

popularized by Amazon.com in 2006 with the release of Elastic Compute Cloud

(Cloud computing, 2019).

In the consequent years, cloud computing has developed and the organizations

started to adopt the system and transform their (Information Technology) IT

infrastructures. Therefore, the organizations could simply purchase the resources like

server, data storage systems online and instantiating a virtual image on the cloud, it

has become more preferable and popular (Kirda, 2012).

Despite, there are a few big Cloud Computing service providers in the market,

Amazon is one of the most popular and trusted provider because of the various aspects

like computing power, security, prices, warranty of system uptime, redundancy, and

so on (Kotas et al., 2018).

Amazon Web Services (AWS) is affiliated of Amazon that serves on-demand cloud

computing platforms for the organizations, companies, individuals, etc. through the

internet. The AWS technology can be thought as an implementation of server farms

8

all around the world and fees are charged based on the usage of

hardware/OS/software/networking options chosen by the subscriber. Also, AWS

operates from many global geographical regions including America, Europe, and Asia

(Amazon Web Services, 2019).

In addition, the Cloud Computing Systems are scalable on-demand and therefore

are cost-effective. Besides, it’s classified as Public, Private, and Hybrid Cloud. This

classification is also known as deployment models. The Cloud Computing is called

Public Cloud when the services are shared over the network among the organizations,

on the contrary, it’s called Private Cloud if the infrastructure separated for a single

organization. On the other hand, Hybrid Cloud is a combination of Public and Private

Clouds and it is more cost-effective and scalable (Narula et al., 2015).

Apart from the Cloud Computing System classification, it is divided into types of

service model. The Cloud Computing Providers offer 3 standard models that are

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS). In the IaaS model, the principles of Cloud Computing is used. The

provided services are related to the offered hardware including virtual servers and

storage services as well. In the PaaS model, a development environment on the cloud

is provided by the Cloud Computing Providers to the application developers. The

provided computing platform basically involves operating system, database, program

execution environment based on programming-language, and the webserver. In the

SaaS model, the cloud providers manage the infrastructure and platforms. The

developers or users get access to software and database (Cloud computing, 2019).

Furthermore, the AWS provides many services that all correspond to a specific

requirement like IoT, Machine Learning, Data Analytics. Elastic Cloud Computing

(EC2) is one of those services and EC2 is used in this work in order to meet the

requirement of running back-end and front-end applications and store the data on the

cloud. EC2 service is based on the IaaS model, and as per the definition of the IaaS

model, a virtual machine is provided with an operating system. The hardware resources

of the instances are chosen while creating the instances with EC2 service, however,

9

it’s very flexible and scalable that means increasing and decreasing can be applied later

on.

Since the internet has been invented and started to be used by people, it has made

human life more comfortable and easier year by year. The first internet has begun in

the 1960s as a link between a few computers (International Telecommunication Union

Internet Reports, 2005). Then the internet usage was dominated with e-mail and file

transfer operations. In the preceding years with the development of web and web

browsing, the internet network has improved and the number of users has increased

accordingly. Furthermore, with the invention of smart mobile phones and developed

GSM, 3G, and LTE mobile network the internet usage has changed in a different way

and there has been a dramatic increase in the number of internet users. All these

processes are ended up with the concept of ubiquity (International Telecommunication

Union Internet Reports, 2005).

In addition to connecting people to the internet, the thought of connecting things to

the internet on behalf of people has resulted in the idea of Internet of Things (IoT). In

other words, if this idea happened, the number of connections on the internet would be

around hundreds of billion.

In this sense, regarding the idea of connecting the vehicles to the internet in this

prototype work, the IoT concept is achieved. According to the definition of the IoT

concept defined in different sources; it manages intelligently to identify, track, and

monitor the components of the vehicles and manages the network by connecting things

to the others based on the agreed protocol (Zhu et al., 2011).

To sum up, briefly, the AWS EC2 instances are used to run back-end services and

front-end applications and to store obtained data as well. Also, the cloud connection

of the vehicles is achieved through GPRS mobile communication and accordingly the

IoT concept is implemented as a result.

10

CHAPTER THREE

METHODOLOGY AND DESIGN

 Design of Real-Time Vehicle Monitoring and On-Board Diagnostic System can be

divided into 4 main sections:

- On-Board Embedded System Design

- Back-end Connected Services Design

- Cloud Computing System Design

- End-User Application Design

 Embedded System Design consists of OBD-II UART communication module, GPS

location module, and GSM/GPRS communication module. In the OBD-II

communication module vehicle’s On-Board Diagnostic port is used to have a

connection to the vehicles as specified in the introduction chapter. The OBD port may

have different communication protocols such as CAN Bus, SAE J1850 PWM, ISO

9141-2, etc.

The communication protocol that a vehicle exposes to external systems varies based

on the vehicle model, manufacturing year, and brand. The OBD-II UART module

allows communicating with all the OBD protocols regardless of which one the vehicle

supports. The OBD-II UART device is connected to the port in the vehicle with an

OBD Diagnostic Connector (DLC). Therefore, it enables us to interpret the ECU by

Attention (AT) commands and the supported communication protocol of the vehicle

can be detected in this way. Then, regarding the protocol type, the communication is

started and relevant PIDs are requested from the OBD port. The OBD Parameter IDs

will be explained in detail in the methodology and design section. Besides, the OBD-

II UART module lets us make communication (send command and receive data) over

serial communication with a Recommended Standard 232 (RS232) interface.

11

On the other hand, for the GPS and GSM/GPRS part of the embedded design, a

SIM808 module is used. The module contains GPS, GSM, and GPRS engines that all

are AT command compatible. While the GPS engine is used to obtain the location info,

the GPRS engine is used to send the location and OBD data to the cloud over

Transmission Control Protocol / Internet Protocol (TCP/IP). The TCP/IP protocol

protocols provide the internet connectivity through the GSM base station, however,

the data sending operation is achieved by using Hyper Text Transfer Protocol (HTTP)

POST technology.

 Among all parts of the system, one of the main objectives is to connect the vehicles

to cloud systems in order to obtain real-time data and have real-time connectivity.

Therefore, the connectivity is done by designing and developing back-end services

which work on a server in the cloud. Based on the available data obtained from the

vehicles OBD port, a classification should be done in order for the system to make it

useful and meaningful. In this sense, a number of back-end services have been

designed depending on the data classification in terms of abstraction of each data

model. Basically, the data abstraction has been thought in 4 main titles. The first one

is the GPS Location data model that is handled in GPS service. The second, third, and

fourth ones are Vehicle Information, Diagnostics Trouble Code, and Trend data

models.

There are several cloud systems nowadays provided by Google, Microsoft, IBM,

and Amazon, etc. All are serving similar cloud services but in different scalability and

prices. In this project, Amazon Web Services (AWS) cloud system is used by

Amazon.com Inc. Because it’s one of the most popular and secure cloud systems and

provides free of charge usage for a limited disk and memory size for educational

purpose and non-profit organization or end-users. The designed cloud system is

divided into three sections; one is the application server for the back-end services, the

second one is the Next Generation Database system which is known as NoSQL

database, and the third one is the application server for the front-end web application

that is designed for the purpose of monitoring the vehicle and knowing the vehicle

specific information, trouble codes, and trend data.

12

Although the designed embedded circuit that operates in the vehicle and interprets

the vehicle ECU, the GPS module which provides the location info, the GSM/GPRS

module which makes the connectivity with the TCP/IP protocol, the back-end system

which handles the orchestration between the vehicle, and the cloud system are the main

components of the design; serving the obtained data in a meaningful and readable

format to the users and drivers with the help of a user interface application is inevitable.

Thus, there will be a chance to render the interpreted data to show and take necessary

actions accordingly.

The end-user applications would be various depending on the requirement and

design specification such as desktop, mobile, and web applications, etc. After all, in

this work, a web application has been designed to serve for the purpose of the end-user

and driver usage. The web application consists of the following menus; general vehicle

information menu, GPS location on a live map, vehicle trouble codes menu, and trend

data menu.

3.1 System Specification

 Before designing the real-time onboard diagnostics and monitoring system,

defining specification of vehicle OBD, back-end services, cloud system, and end-user

application is critical and an important step of the development. Specifications define

how the vehicle computer will be interpreted and how it will work with all the

components properly. Also, defining the constraints of the research and design process

is needed in order to understand how much the system is comprehensive. Based on the

vehicle specification, hardware and software systems are developed accordingly.

In this work, a Real-Time Vehicle Monitoring and On-Board Diagnostic System

are aimed to be designed and implemented. Due to the thesis goals, the design will be

limited to build a prototype in order to highlight project objectives. The following

figure represents the block diagram of the entire system.

13

Figure 3.1 Block diagram of End-to-End (E2E) system

3.2 On-Board Embedded System Design

 As specified in the introduction of the methodology section, the on-board

embedded system consists of OBD-II UART, GPS, and GSM/GPRS modules. All

these components are programmed and controlled by an Arduino Mega board which

is built on ATmega 2560 microcontroller. The Arduino Mega board operates at

16MHz clock speed and has 8Kb Static Random Access Memory (SRAM) and 4Kb

Electrically Erasable Programmable Read-Only Memory (EEPROM). The

microcontroller board communicates with both the OBD-II UART and the SIM808

modules over serial communication pins on it. The following figure represents the

circuit diagram of the embedded system.

14

Figure 3.2 Circuit diagram of the system

3.2.1 OBD-II UART Module

 OBD-II UART module is a board that is designed to connect and interpret the

vehicle ECU. The module provides an OBD-to-DB9 connector. While the OBD end

corresponds to Type-A socket as a connection type of OBD-II standard, the DB9 end

corresponds to the RS232 connection. In terms of the available OBD connectors, there

are two types as A and B. Whilst, Type A connector is used for the four-wheel vehicles

and cars that use 12V supply voltage, whereas Type B connector is used for the

vehicles that use 24V supply voltage. In this design, Type A connector has been used

since the system has been tested in a 4-wheel passenger car. The Type-A connector’s

pinout schematic diagram is shown in the following figure.

15

Figure 3.3 OBD Type-A connector pinout representation

The connector provides power supply pins as well as communication pins for the

mentioned ECU communication protocols such as CAN Bus and SAE J1850 PWM.

According to SAE J1962 standard, Type-A connector’s pinout representation should

be as given in the following table.

Table 3.1 OBD Type-A connector pinout description

1 Manufacturer discretion 9 Manufacturer discretion

2
Bus Positive Line of SAE J1850
PWM and VPW

10
Bus Negative Line of SAE J1850
PWM (not only VPW)

3 Manufacturer discretion 11 Manufacturer discretion

4 Chassis ground 12 Manufacturer discretion

5 Signal ground 13 Manufacturer discretion

6
CAN-High (ISO 15765-4 and SAE
J2284)

14
CAN-Low (ISO 15765-4 and SAE
J2284)

7
K-Line of ISO 9141-2 and ISO
14230-4

15
L-Line of ISO 9141-2 and ISO
14230-4

8 Manufacturer discretion 16 Battery voltage

On the OBD-II UART board, both the STN1110 and the MCP2551 chips populated.

The MCP2551 provides to access only CAN protocol, whereas the STN1110 chip

interprets any other protocols including CAN, ISO, J1850 Transceivers, and so on

(OBD Solutions, 2018). Also, the STN1110 chip is compatible with ELM327

command set. The ELM327 is another popular OBD to RS232 Interpreter chip that

owns a set of AT commands available for serial communication (Elm Electronics Inc.,

2010).

16

3.2.1.1 OBD Parameter IDs (PID)

OBD protocols provide vehicle data such as Malfunction Indicator Light (MIL),

Diagnostic Trouble Code (DTC), Inspection and Maintenance (I/M), Freeze Frames

(FF), Vehicle Identification Number (VIN), and hundreds of real-time parameters by

tapping into the OBD bus.

The requested data from vehicles are classified into 10 modes. These modes are

called service modes and each contains its PIDs available. In the following table, the

list of OBD services with its definition is represented.

Table 3.2 OBD-II services

Mode Definition

0x01 Show current data

0x02 Show freeze frame data

0x03 Show stored Diagnostic Trouble Codes

0x04 Clear DTC and stored values

0x05 Test results and oxygen sensor monitoring (no CAN only)

0x06 Test results and other components/system monitoring (CAN only)

0x07 Show pending DTC (detected during current or last driving cycle)

0x08 Control operation of on-board component/system

0x09 Request vehicle information

0x0A Permanent DTC (Cleared DTC)

Each service has its own PID codes defined according to the OBD protocol. The

PID codes might vary based on the vehicle model and each manufacturer might have

its own additional PIDs, whereas most of them are standard PIDs. As specified in the

introduction and methodology sections, standard PIDs are defined by SAE J1979

(SAE International J1979_201202).

17

In addition, a request of 0x00 (PID 00) returns 4 bytes of data for each service. The

response provides the information of which PIDs are supported in that service. In the

following bitwise encoding table, an example response analyzed and the supported

PIDs of a specific service obtained as an example representation (OBD-II PIDs, 2019).

Table 3.3 Bitwise encoding representation

3.2.1.2 OBD-II Response Data Structure

The ECU module of the vehicles process the incoming request, fetch the requested

data and send it in the response. The response data byte could be in different lengths

based on the request and the length of data, however, the first 2 bytes of the returned

response have in common structure that the 1st byte combines the requested service

with the response header, whereas the 2nd byte corresponds to the requested PID

number. The following table shows the general request and response of the OBD.

Request: 0100  Service 01 and PID 0x00 (for the supported PIDs in Service 01)

Table 3.4 Response data bytes representation

Response 41 00 BE 7F B8 13

Meaning 0x40 + 0x01

0x40: default response header

0x01: Service 01

PID 00 Returned data byte

On the other hand, some vehicles might have more than one ECU depending on the

manufacturer’s design. In that case one of the available ECUs processes the incoming

request and returns the response. In such a situation, the first 2 bytes of the response

Data Byte (HEX)

Binary 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1

PID number 1 2 3 4 5 6 7 8 9 0A 0B 0C 0D 0E 0F 10

Data Byte (HEX)

Binary 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1

PID number 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

B E 7 F

B 8 1 3

18

corresponds to the ECU name if the header bit of the ECU is set to true. Otherwise,

the ECU name cannot be returned in the response.

3.2.2 SIM808 Module

 SIM808 board is basically a GSM module that is designed in order for electronic

and software applications to be used. The board is preferred to be used in this design

since it has GPRS service availability and as well as a GPS and Bluetooth (BT) antenna

mounted on it. BT module has not required to be used in this design but the GPS is

required. The GSM/GPRS engine of the SIM808 board is quad-band and allows to

work on 850MHz, Enhanced GSM (EGSM) 900MHz, Digital Cellular System (DCS)

1800MHz, and Personal Communication Service (PCS) 1900MHz (SIMCom, 2014).

On the other hand, the module requires a SIM card in order to have connectivity

through operators’ base station as well as Internal Mobile Equipment Identity (IMEI)

number is required to be defined to get connected on the GSM network. The GPS

engine of the SIM808 board cannot be run by itself, whereas it’s controlled by the

GSM engine. Therefore, the GSM shouldn’t be in SLEEP mode in order to reach out

GPS. The GSM modes and operations are controlled by AT commands through serial

port so as the same is applied for GPS modes and operations. A number of GSM/GPS

AT commands are shown in the following table as an example.

Table 3.5 SIM808 AT command definition

Command Description

AT+CGPSPWR GPS power control

AT+CGPSRST GPS mode reset

AT+CGPSSTATUS Get current GPS status

AT+CGPSINF Get current GPS location info

AT+CGATT Attach or detach from GPRS service

AT+CIPSTART Startup TCP connection

AT+CIPSEND Send data through TCP connection

AT+CIPCLOSE Close TCP connection

19

3.2.3 Embedded System Software Architecture

The Arduino Mega 2560 board is preferred in this design because its programming

language is C/C++ based and it provides to implement data exchange communication

protocols and handle byte data as for the communication as well as the availability of

serial com port makes the testing much easier than most of the other boards. All the

GPS, GSM/GPRS, and OBD-II UART modules are controlled by the Arduino

microcontroller. The Arduino board has 4 TX/RX serial communication interface that

allows up to 4 devices to be controlled and operated. In this sense, the microcontroller

was programmed to handle the devices simultaneously. The flow diagram of the

software design is shown in the figure below.

Figure 3.4 Embedded system flow diagram

As illustrated in the flow diagram, the program starts with opening the serial

communication ports for both the SIM808 and OBD-II UART modules and in the

20

meanwhile communication baud rates are set to 9600bps. On the other hand, the

Vehicle Identification Number (VIN) is requested from the OBD port in order to

identify the vehicle. The vehicle identification should be done for each vehicle once

the program is started. The vehicle identification number contains the information of

vehicles such as model, year, and engine specification. That information is shown in

the user application as the vehicle general information and specifies the vehicle

uniqueness.

In the loop method of the program, first the SIM808 board initialized and GPS

module is opened to capture the location. As soon as the location data is gathered, the

GPRS mode is opened to send the location data. The data sending is done based on

internet HTTP POST method over TCP/IP. The internet connection is achieved via

mounted SIM card on the SIM808 module. The vehicle-specific data is also gathered

from the OBD port and sent to the cloud as the same approach used for GPS data

gathering and sending method.

3.3 Back-End Connected Services Design

In the programming world, web programming has been developed to connect

devices and integrate applications on the internet. At this very purpose, web services

and web applications (APIs) are used to meet those requirements. Most of the Object-

Oriented Programming (OOP) languages support to develop web APIs and services.

Java and C# are one of the most known OOP languages nowadays. On the other hand,

JavaScript, which is a front-end script language for web programming, is used for web

applications and pages are very popular because of its strength and capabilities.

Despite the fact that the JavaScript was born for the need for client-side applications,

server-side JavaScript frameworks are being developed recently. NodeJS has been

created in order to be used in server-side application development.

The NodeJS framework has been built upon Google Chrome’s V8 engine that

actually consists of C++ libraries and classes. On the other hand, as well as NodeJS is

an OOP language it works perfectly with JavaScript Object Notation (JSON) format.

21

JSON is a light-weight data exchange format contrary to Simple Object Access

Protocol (SOAP). The SOAP protocol is based on Extensible Markup Language

(XML) which is also designed for storing and transporting data.

In the back-end services design of this implementation, each data type has been

classified and built in a specific JSON format that will be shown in detail in the next

sections. Applying this concept provides to send and receive data in object form rather

than building and parsing XML data which is a legacy and traditional system. In the

XML data exchange systems generally, a relational database (DB) is used and each

XML element corresponds to an attribute of an entity. Therefore, to build an XML

data from a DB requires to collect each attribute and put in XML format and in the

same way, to store XML data requires to pars each XML element and save it in the

entity. However, in JSON format things are not like in XML, moreover, NoSQL

database systems are designed to store JSON data in object form. In this way, sending

and receiving JSON data doesn’t require to build it up or parse it. These properties

make JSON and JavaScript easier to implement and provide faster data exchange

applications.

3.3.1 GPS Location Service

The GPS Location Service is designed to meet the requirement of receiving GPS

location data in JSON format. In this sense, a GPS entity has been created in the

MongoDB that stores the GPS location data. The location data is gathered from the

GPS module in the embedded system and sent to this services in JSON format. The

service is obliged to receive the GPS location data and save it in the GPS entity in

JSON format. Following is an example data format of the collected GPS location data.

Latitude, longitude, heading, and speed are the parameters that correspond to the

GPS location data gathered from the GPS module.

User id corresponds to the identification number of the data from which car it’s

sent. Vehicles’ license plate is used as an identifier in the GPS data service.

22

Transaction id and date-time parameters are used to specify each transaction and

the time when the data is received, respectively. On the other hand, the id parameter

itself is generated by MongoDB for each record.

As seen the gathered GPS location data has a form of JSON.

{

 "latitude": {

 "lat": 38.23921,

 "deg": 38,

 "min": 14,

 "sec": 21.1496

 },

 "longitude": {

 "lon": 27.04872,

 "deg": 27,

 "min": 2,

 "sec": 55.40359

 },

 "_id": "5d0f61785d9d270a95d14e60",

 "user_id": "35DD1961",

 "transaction_id": "201962311233087",

 "date_time": "2019-6-23T11:23:30",

 "heading": 49.58,

 "speed": 1.852

}

3.3.2 Vehicle Information Service

The Vehicle Information service is basically designed to identify each vehicle in

the cloud applications since the OBD provides a vehicle identification number (VIN),

which is also known as chassis number, is unique for all the manufactured vehicles.

VIN is a 17 character length identifier and it complies with two standards. One is the

United States (US) standard Federal Motor Vehicle Safet Standard (FMVSS) 115

(NHTSA, 2011) and the other one is ISO 3779:2009 (ISO, 2019).

In the vehicle identification number, the following information could be found

engine specification, sequential serial number, World Manufacturer Identifier (WMI),

where the vehicle was produced, safety equipment, model year, some technical

23

specification, and features. An example VIN given below in the figure shows the

meaning of each character based on the specified standards.

Figure 3.5 Vehicle identification number representation

The VIN is an entry point of the embedded software program as it’s already shown

in the flow diagram. In the setup method of the program, VIN is read from the OBD

and sent to the cloud in the Vehicle Information Service in order to have identification

of each vehicle in the back-end system. As well as VIN is a parameter of the Vehicle

Information Service, fuel type is another key parameter. An example Vehicle

Information Service JSON data form is shown as follows.

{

 "_id": "5d6af72b9ae8692f70b5eb1e",

 "user_id": "35DD1961",

 "transaction_id": "201908158000000",

 "date_time": "2019-7-01T11:12:20",

 "vin": "W0LBF6EC7HG051915",

 "fuel_type": "gasoline"

}

3.3.3 Trend Data Service

The Trend Data Service has been designed to obtain a vehicle’s sensor data such

as vehicle speed, engine rpm, fuel tank level, and so on. All the data are captured from

24

the OBD port and sent to the cloud via this service. Following is a representation of

the service JSON data as an example.

{

 "_id": "5d6d65d5cb100f1cd0f8f291",

 "user_id": "35DD1961",

 "transaction_id": "201908158000000",

 "v_speed": 5,

 "e_rpm": 900,

 "e_oil_temp": 90,

 "e_fuel_rate": 5,

 "f_tank_lvl": 75,

 "f_pressure": 1.6,

 "rt_s_estrt": 3600,

}

As seen, the service has 7 OBD parameters read from the vehicle. The responses

from the OBD are always in hexadecimal format. The integer correspondence of the

hex bytes is calculated to obtain the desired values. All the parameters and their

calculation are explained in detail as follows;

- Vehicle speed: it’s a real-time obtained data and the OBD service 1 provides

the PID “0D” to request it. The OBD returns 1-byte data (A) in return and it

gives the vehicle speed in km/h.

𝑣_𝑠𝑝𝑒𝑒𝑑 = 𝐴 (𝑘𝑚/ℎ) (2.1)

- Engine revolutions per minute (rpm): it’s also a real-time obtained data within

the OBD service 1 PID “0C”. The response is 2-byte data (A and B) and the

bytes gives the engine rpm with the following formula.

𝑒_𝑟𝑝𝑚 =
256𝐴 + 𝐵

4
(𝑟𝑝𝑚)

(2.2)

- Engine oil temperature: The oil temperature is provided by OBD service 1 PID

“5C”. In response, 1-byte data (A) is returned and the result is calculated with

the below formula.

𝑒_𝑜𝑖𝑙_𝑡𝑒𝑚𝑝 = 𝐴 − 40 (ºC) (2.3)

25

- Engine fuel rate (L/h): Engine fuel rate is a data that shows the engine fuel

efficiency in liter per hour. This data can be obtained from both the OBD

service 1 and 2 with PID “5E”. The response is 2-byte data as A and B the

calculation is shown in the following formula.

𝑒_𝑓𝑢𝑒𝑙_𝑟𝑎𝑡𝑒 =
256𝐴 + 𝐵

20
(𝐿/ℎ)

(2.4)

- Fuel tank level (%): the fuel tank level shows the percentage of the remaining

fuel in the tank. It’s provided by OBD service 1 PID “2F”. The response is 1-

byte data (A) and calculated as below.

𝑓_𝑡𝑎𝑛𝑘_𝑙𝑣𝑙 =
100𝐴

255
(%)

(2.5)

- Fuel pressure (kPa): Fuel pressure is the value that shows the flowing fuel’s

pressure through the system. Its calculation is shown below based on the

returned 1-byte data (A) in response.

𝑓_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 3𝐴 (kPa) (2.6)

- Run time since engine start (seconds): This is a parameter shows the engine

run time in seconds. The ECU also provides to get the run time since engine

start with the following formula.

𝑟𝑡_𝑠_𝑒𝑠𝑡𝑎𝑟𝑡 = 256𝐴 + 𝐵 (sec) (2.7)

3.3.4 DTC Service

The Diagnostic Trouble Codes (DTC) service has been developed in order to

receive and save the vehicle trouble codes in the cloud. Thus, there will be a chance to

keep the backlog of the trouble codes as well as the drivers or end-users will be notified

with the existing issues about their vehicle.

The OBD in the vehicles is capable of providing almost all troubles with a specified

code. However, it’s known that all the trouble codes are not standard and there might

26

be manufacturer based trouble codes. Having this truth at hand makes us manufacturer

dependent, however, the standard trouble codes are accessible according to SAEJ2012

standard (SAE International J2012_200204, 2019). In this sense, based on the

specified structure trouble codes is divided into 4 modes which are Body (B), Chassis

(C), Power Train (P), and Network (U). In terms of this separation, vehicles provide

the trouble codes specifying in which part the problem exists.

On the other hand, the trouble codes are made of 5 characters. The first character

specifies that where the problem exists like in the Body, Chassis, Power Train, or

Network. The second character defines whether it is a generic OBD fault code or

manufacturer specific fault code (0 – Generic OBD fault code, 1 – Manufacturer-

specific fault code). Finally, the last 3 characters define the specific problem. The

DTC 5 digit fault code representation and the meanings are shown in the following

figure in depth.

Figure 3.6 DTC character representation

27

The designed DTC service has a form of these trouble codes accordingly.

Following is an example data format of the collected DTC data. As seen the gathered

DTC data has a form of JSON as well.

{

 "_id": "5d6ac1bb8da80d3fb4e4d577",

 "user_id": "35DD1961",

 "transaction_id": "201908157000000",

 "date_time": "2019-7-12T09:13:38",

 "body": "B1200",

 "chassis": "C1091",

 "power_train": "P1100",

 "newtwork": "U1000",

}

Body, Chassis, Power Train, and Network parameters in the JSON form

correspond to the fault codes of 4 different types. For each transaction, the service is

capable of receiving the 4 trouble codes if exists. Besides, the id parameter is generated

by MongoDB as a primary key, the user_id parameter is the identifier of the vehicle,

and the transaction id and date-time parameters are combined to discriminate the

transaction itself and the time of the receiving the data respectively.

3.4 Cloud System Design

Cloud systems, which are indeed virtual computer systems, are being used

nowadays especially for data storage and computation purposes. One of the main

advantages of using cloud systems is to avoid the burden of hardware management

and operation. In addition to computing and data storage options, the provided cloud

systems are already capable of serving the networking, database, analytics, media,

mobile, machine learning, IoT, AR & VR, blockchain, and so on.

Cloud computing systems can be classification under two subjects that are the basis

of location and basis of services. On the basis of location, Private, Public, and Hybrid

Clouds are classified. The Private Cloud is allocated to particular organizations with

higher security and higher cost as well. In the Public Cloud, computing foundation is

shared between organizations and companies as well as it’s located at the vendor’s

premises. On the other hand, Hybrid Cloud is cost-effective and more scalable and it

28

is a combination of Public and Private clouds. On the basis of provided services, the

classification is divided into 3 types that are Infrastructure as a Service (IaaS), Platform

as a Service (PaaS), and Software as a Service (SaaS). In the concept of IaaS principles

of computing and services are used related to offered hardware. Besides, while the

Paas is a development platform on the cloud, the SaaS is a complete offered software

service on the cloud (Narula et al., 2015).

As specified in the previous sections, AWS has preferred to be used in this design.

To meet the requirement of the design, EC2 and Atlas MongoDB services are designed

to be used. While EC2 allows hosting the NodeJS back-end services and end-user

application, Atlas MongoDB is used for data storage.

3.4.1 Elastic Cloud Computing Architecture

Elastic cloud computing can be thought of as a number of virtual computers hosted

in the AWS cloud. The meaning of elastic refers to the flexibility and scalability of the

virtual machine. In addition, based on the requirement and the complexity of the

system that is going to be designed, as many instances as can be instantiated in EC2

virtual machines. Also, AWS sets cost per instance use, so if an instance is stopped

you stop paying for it. On the other hand, hardware optimization can be adjusted on-

demand. For example, if high performance is required, resources such as CPU,

memory, storage can be increased. Moreover, AWS EC2 provides instances optimized

CPU, memory, storage, and GPU processing to enable right price-performance

combination for the workload of the system.

As security is one of the most considered concerns of the cloud systems, AWS

EC2 provides a Virtual Private Cloud (VPC) that has a logically isolated network can

be controlled. In this design, VPC has been preferred so as to meet the security

requirement of vehicle data.

In order to create an EC2 virtual machine, an AWS account should be created then

the following few steps should be configured to get a running instance. The first step

29

is to select an Amazon Machine Image (AMI) for EC2. The AMI is basically a

template for creating a new instance and it contains software information, operating

system information, volume information, and so on. In this design, Amazon Linux

AMI has been selected, since the back-end service developed in NodeJS and it can

easily be hosted and maintained in a Linux machine. A screenshot of the AMI is shown

in the figure.

Figure 3.7 EC2 AMI properties

The second step is choosing an instance type that is actually a hardware

specification. There are 5 instance types that are fixed and their configuration cannot

be changed. The instance types are classified as computing optimize, memory-

optimized, Graphical Process Unit (GPU) optimized, storage optimized, and general-

purpose (Kotas et al., 2018). Compute-optimized instance type is preferred for the

applications that require more resources for computing, however, memory-optimized

instances are used for the applications that need cache memory. On the other hand,

while the GPU optimized instance type is preferred for gaming, the storage optimized

instance is used mostly for the size and storage critical applications. Lastly, general-

purpose instance type can be used for all generic applications. In this design, a general-

purpose instance of AWS has chosen and its specification summarized in the following

snapshot.

30

Figure 3.8 EC2 general instance properties

The third step of the configuration is to add storage for the instance. There are

storage types like Ephemeral Storage which is temporary and free, Amazon Elastic

Block Store (EBS) which is permanent and paid, and Amazon S3, etc. (Amazon Elastic

Compute Cloud, 2019). In the design architecture, Amazon’s General Purpose SSD

(gp2) volume type has been used with 8Gb size. The EC2 instance volume

specification is shown in the below figure.

31

Figure 3.9 EC2 volume representation

The fourth and last step of the instance configuration is creating a security group

and generating a key pair for the private connection as part of VPC. The generated key

pair is used on remote connection to the instance. On the other hand, the security group

should be defined to allow which inbound and outbound connection protocols. For the

Vehicle Instance in this architecture, the TCP protocol is chosen as a security group

with Secure Shell (SSH), HTTP, and HTTPS types. The inbound security group is

shown in the figure below. As seen from the defined inbound rules, the port “5000”

has been set in order for the embedded system to connect and make HTTP POST

operation to send the obtained data.

32

Figure 3.10 EC2 inbound security group

3.4.2 Database Design

Relational database management systems (RDBMS) are in tabular format and

Script Query Language (SQL) is used to query data. Contrary to RDBMS, NoSQL

database is not tabular based and it provides storage and retrieval mechanism for the

purpose (NoSQL, 2019). In addition to this, the NoSQL database system has an

advantage over RDBMS in scalability and availability. The data structure in the

NoSQL database is key-value paired and because of its horizontal scaling and object-

oriented aspects, it’s more flexible and easy to manage.

There are several NoSQL database systems available in the market and some are

open source. MongoDB is one of them among all and provided by MongoDB Inc.

(MongoDB, 2019). There are many products and services provided by MongoDB and

MongoDB Atlas is one of them and it’s used in this context as for the database design.

Because the MongoDB Atlas is available on AWS regions, it’s been preferred.

In MongoDB Atlas, a context with the name of “vehicle” and inside the vehicle

context a cluster with the name of ClusterVehicle have been created. The context and

cluster are shown in the following figure.

33

Figure 3.11 MongoDB context and cluster

In addition, the ClusterVehicle contains a database named “vehicleDB”. In the

vehicleDB there are 4 collections named dtcs, gps, trends, and vins corresponds to the

DTC service, GPS location service, Trend data service, and Vehicle Information

service, respectively. The database collections are used both the back-end services and

end-user application in order to store the obtained data and manipulate it in the

application interface. The representation of the vehicleDB and collections are as

follows.

34

Figure 3.12 Vehicle DB collections

3.5 End-User Application Design

An End-User Application has been required to be designed because of the need for

presenting the obtained data and to let the users monitor the vehicle’s related

information and location. The designed application is actually a front-end web page

that has a login page and the main dashboard. The dashboard contains 4 pages that are

Location, VIN, DTC, Trend. Each of these 4 pages corresponds to a back-end service

so that each gathered data is shown in the proper section.

In legacy web pages, web form application frameworks were being used, however,

Model-View-Control (MVC) structure has been developed in recent years and is being

used in modern web applications. In this design, an MVC based responsive web

application has been developed in Vue.js which is a JavaScript framework for single-

page User Interfaces (UI). Vue.js is open-source and because of its responsive

structure, it runs on any device that has a web browser. Therefore, Vue.js is preferred

to be used in this prototype in order not to develop mobile and web application

separately.

35

The web page has a login page as shown in the following figure and the users

signup to the system with their vehicle’s plate id and create a password.

Figure 3.13 User application login page

When the users' login to the page they are directed to the main dashboard as shown

in the following figure. The dashboard contains 4 pages that each presents particular

information.

Figure 3.14 User application main dashboard

36

CHAPTER FOUR

RESULTS

The designed prototype has been applied and tested in an Opel Astra K 2016 model

vehicle. The test car has ISO 15765-4 (CAN Bus 11 bit ID 500 Kbaud) OBD protocol.

The OBD-II UART module is connected to the OBD port in the car and all the test has

been realized during the development and design period of the system.

The OBD port in almost all the vehicles is placed under the steering wheel as

shown in the following picture. The DB9-to-RS232 cable connection from OBD port

to the embedded circuit is done as shown in the picture.

Figure 4.1 OBD port connection (Personal archive, 2019)

37

Figure 4.2 In-car embedded circuit connection (Personal archive, 2019)

Based on the Embedded System Software Architecture, OBD data read starts by

requesting the vehicle identification number and vehicle fuel type. As soon as the

software is installed and the embedded board connected to the vehicle, these two

information are requested and it helps to identify the vehicle and receive its basic

information. Then the GPS location, DTC, and trend data are retrieved continuously

from the system and sent to the cloud in order to let provide real-time connectivity.

The afore-mentioned back-end services are ready to receive the incoming post

requests and handle the provided data keep it in the database. The designed back-end

services not only handle the post requests, but they also handle the get requests. This

means that the services are bi-directional and the stored data can be requested by

sending HTTP GET requests. Table 4.1 contains the list of post and get request URLs

38

of the services. The IP address and port number are seen in the URLs have been

configured while the EC2 instance was created in the AWS.

Table 4.1 Back-End services endpoint URLs

Service End-point URL

GPS
http://18.184.26.197:5000/vehicle/getGpsData

http://18.184.26.197:5000/vehicle/postGpsData

VIN
http://18.184.26.197:5000/vehicle/getVIN

http://18.184.26.197:5000/vehicle/postVIN

Trend Data
http://18.184.26.197:5000/vehicle/getTrend

http://18.184.26.197:5000/vehicle/postTrend

DTC
http://18.184.26.197:5000/vehicle/getDTC

http://18.184.26.197:5000/vehicle/postDTC

Since the services have been designed depending on the RESTful API structure,

the data can be requested by concatenating the plate ID in the URL.

In the user application interface, there are 4 main pages as already described in

chapter three. Each page corresponds to the related end-point service and represents

the related vehicle information. On the one hand, both the vehicle’s real-time and last

location can be seen from the Location page. The page not only provides the location

coordinates but also shows it in an embedded map. On the other hand, the system also

provides the ability to draw a driving-route on the map as shown in the Figure 4.3.

In addition, the other 3 pages represent the vehicle information, diagnostic codes,

and some trend data respectively. The handy and user-friendly GUI makes to monitor

that information easily, in this sense some results are represented as in the following

Figure 4.4 Trend data dasboard, Figure 4.5 DTC dashboard, and Figure 4.6 VIN

dashbord respectively.

http://18.184.26.197:5000/vehicle/getGpsData
http://18.184.26.197:5000/vehicle/postGpsData
http://18.184.26.197:5000/vehicle/getVIN
http://18.184.26.197:5000/vehicle/postVIN
http://18.184.26.197:5000/vehicle/getTrend
http://18.184.26.197:5000/vehicle/postTrend
http://18.184.26.197:5000/vehicle/getDTC
http://18.184.26.197:5000/vehicle/postDTC

39

Figure 4.3 GPS location dashboard

Figure 4.4 Trend data dashboard

40

Figure 4.5 DTC dashboard

41

Figure 4.6 VIN dashboard

42

CHAPTER FIVE

CONCLUSION

In this thesis, a Real-Time Vehicle Monitoring and On-Board Diagnostic System

have been designed in order to present the vehicle diagnostic and location information

to drivers/users. Thus, the drivers/users will be able to monitor their vehicle’s real-

time location for the security aspect and knowing the vehicle’s engine and electronic

units troubles in advance as well. Besides, in the proposed web application they will

have a chance to interpret their driving behavior, fuel consumption rates, driving

ranges per week/month/ year, etc. based on the obtained trend data log.

The context of the thesis started by asking a research question other components

how would the drivers know about their vehicle information remotely and be notified

for the troubles exist in the vehicle. In this aspect, vehicles’ On-Board Diagnostic port

has been researched and studied for several 4-wheel vehicle manufacturers and the

know-how of vehicle data exchange standards has been carried out during the period.

According to the ISO standards and already accomplished literature, there are 5

protocols that all the vehicle manufacturers should comply with at least one of them.

However, the main problem was to design a system that can communicate with all the

vehicles having one of these 5 protocols. For this purpose, and OBD board that

contains the STN1110 chip has been used to differentiate the types of protocols

regardless of vehicle model, and already existing ELM327 chip’s command set has

been made of use in the design.

43

REFERENCES

Amazon Elastic Compute Cloud. (2019). Amazon elastic compute cloud user guide

for Linux instances. Retrieved September 05 2019, from

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-ug.pdf

Amazon Web Services (2019). In Wikipedia. Retrieved September 10 2019, from

https://en.wikipedia.org/wiki/Amazon_Web_Services

Cloud computing (2019). In Wikipedia. Retrieved September 12 2019, from

https://en.wikipedia.org/wiki/Cloud_computing

El-Ata, M. A. (2000). Evolution of mobile cellular communication systems. The

journey to UMTS. In Proceedings of the Seventeenth National Radio Science

Conference 1-17.

Elm Electronics Inc. (2010). ELM327 AT Commands. Retrieved August 22, 2019,

from

https://www.sparkfun.com/datasheets/Widgets/ELM327_AT_Commands.pdf

Engine Control Unit (2019). In Wikipedia. Retrieved September 08, 2019, from

https://en.wikipedia.org/wiki/Engine_control_unit

Hans, J., Sethi, P. S., & Kinra, J. (2015) An approach to IoT based car parking and

reservation system on cloud. In 2015 International Conference on Green

Computing and Internet of Things (ICGCIoT), 352-354.

International Telecommunication Union Internet Reports. (20005). ITU internet

reports 2005: The internet of things. Retrieved September 03, 2019, from

https://www.itu.int/pub/S-POL-IR.IT-2005/e

44

Internal Combustion Engine (2019). In Wikipedia. Retrieved September 07, 2019,

from https://en.wikipedia.org/wiki/Internal_combustion_engine

ISO. (2019). ISO 3779:2009 Road vehicles – vehicle identification number (VIN) –

content and structure. Retrieved September 16, 2019, from

https://www.iso.org/standard/52200.html

Jing, P., Huang, H., & Chen, L. (2017). An adaptive traffic signal control in a

connected vehicle environment: A Systematic Review. In Information 2017, 8, 101

Khorsravinia, K., Hassan, M. K., & Rahman, R. Z. A., & Al-Haddad, S., A., R.,

(2017, October) Integrated OBD-II and mobile application for electric vehicle (EV)

monitoring system. In 2017 IEEE and 2nd International Conference on

Automatic Control and Intelligent Systems (I2CACIS), 202-206.

Kirda, E. (2012, June). A security analysis of Amazon's Elastic Compute Cloud

service. In IEEE/IFIP International Conference on Dependable Systems and

Networks Workshops (DSN 2012) 1-1.

Kotas, C., Naughton, T., & Imam, N. (2018). A comparison of Amazon Web Services

and Microsoft Azure cloud platforms for high performance computing. In 2018

IEEE International Conference on Consumer Electronics (ICCE) 1-4.

Li, X., Gani, A., Salleh, R., & Zakaria, O. (2009). The future of mobile wireless

communication networks. In 2009 International Conference on Communication

Software and Networks, 554-557.

MongoDB (2019). In Wikipedia. Retrieved September 01, 2019, from

https://en.wikipedia.org/wiki/MongoDB

NoSQL (2019). In Wikipedia. Retrieved September 01, 2019, from

https://en.wikipedia.org/wiki/NoSQL

45

Narula, S., & Jain, A. (2015). Cloud computing security: Amazon web service. In 2015

Fifth International Conference on Advanced Computing & Communication

Technologies, 501-505.

NHTSA. (2011). Quick Reference Guide (2010 Version) to Federal Motor Vehicle

Safety Standards and Regulations. Retrieved September 09, 2019, from

https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/fmvss-quickrefguide-

hs811439.pdf

OBD Solutions. (2018). Multiprotocol OBD to UART Interpreter Datasheet. Retrieved

August 21, 2019, from https://www.scantool.net/downloads/updates/stn1110/

On Board Diagnostics (2019). In Wikipedia. Retrieved September 17, 2019, from

https://en.wikipedia.org/wiki/On-board_diagnostics

OBD-II PIDs (2019). In Wikipedia. Retrieved September 17, 2019, from

https://en.wikipedia.org/wiki/OBD-II_PIDs

SAE International J2012_200204. (2019). Diagnostic Trouble Code definitions

equivalent to ISO/DIS 15031-6: April 30, 2002 J2012_200204. Retrieved

September 07, 2019, from https://www.sae.org/standards/content/j2012_200204/

SAE International J1979_201202. (2019). E/E Diagnostic Test Modes J1979_201202.

Retrieved September 07, 2019, from

https://www.sae.org/standards/content/j1979_201202/

Sim, A. X. A., & Sitohang, B. (2014, November). OBD-II standard car engine

diagnostic software development. In 2014 International Conference on Data and

Software Engineering (ICODSE) ,1-5.

46

SIMCom. (2014). SIM808_Hardware Design_V1.00. Retrieved August 08, 2019,

from https://cdn-

shop.adafruit.com/datasheets/SIM808_Hardware+Design_V1.00.pdf

Yun, H. J., Lee, S. K., & Kwon, O. C. (2011). Vehicle-generated data exchange

protocol for remote OBD inspection and maintenance. In 2011 6th International

Conference on Computer Sciences and Convergence Information Technology

(ICCIT), 81-84.

Zhu, X., & Zhang, Y. (2011). An IOT based Car-bus for the 4WIDIS EV. In 2011

International Conference on Electrical and Control Engineering, 3343-3345.

