
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF SOCIAL SCIENCES

DEPARTMENT OF BUSINESS ADMINISTRATION

BUSINESS ADMINISTRATION PROGRAM

DOCTORAL THESIS

Doctor of Philosophy (PhD)

NATURE-INSPIRED EVOLUTIONARY ALGORITHMS

AND A MODEL PROPOSAL

Gülin Zeynep ÖZTAŞ

Supervisor

Prof. Dr. Sabri ERDEM

İZMİR - 2021

ii

THESIS APPROVAL PAGE

iii

DECLARATION

I hereby declare that this doctoral thesis titled as “Nature-Inspired Evolutionary

Algorithms and A Model Proposal” has been written by myself in accordance with the

academic rules and ethical conduct. I also declare that all materials benefited in this

thesis consist of the mentioned resourses in the reference list. I verify all these with

my honour.

 Date

 16/06/2021

Gülin Zeynep ÖZTAŞ

iv

ABSTRACT

Doctoral Thesis

Doctor of Philosophy (PhD)

Nature-Inspired Evolutionary Algorithms and A Model Proposal

Gülin Zeynep ÖZTAŞ

Dokuz Eylül University

Graduate School of Social Sciences

Department of Business Administration

Business Administration Program

This study introduces a new population-based evolutionary computing model for

solving linear/nonlinear continuous unconstrained/constrained optimization

problems. The proposed model includes two optimization algorithms. The first

one is an initialization algorithm that provides adaptive initial solutions, to some

extent, reducing the diversity of randomness in the initialization of the algorithms

for problems that may have many local optimums. The prominent feature of the

algorithm is the ability to narrow the search space adaptively without falling into

local optimums and changing the nature of the problem. Unlike simple random

approaches, the proposed algorithm escapes from inadvertently removing the

global optimum in multi-modal problems. In terms of time and performance, the

initialization algorithm doesn’t add additional burden, on the contrary, it

contributes to the problem-solving procedure.

The second proposed algorithm called Repulsive Forces Optimization (REF)

depends on Newton’s General Gravity Law and Coulomb’s Law. Different from

the first algorithm, the REF algorithm aims to reach optimum-like solutions by

constraint-handling abilities. REF algorithm assumes that likely charged

particles in a bounded space are possible solution points. The forces between the

particle and its neighbors make the particle moved to a new location where a

better solution may exist. The repulsive structure of the particles could be

considered as the mimics of Coulomb's Law. Furthermore, Tabu Search

v

Algorithm and Elitism selection approach inspire the memory usage of the

proposed algorithm. The inspirations of the REF algorithm are determined to

create the best combination of features that provides better results. Besides, this

algorithm is structured on the principle of multiplicative penalty approach that

considers satisfaction rates and the total deviations of constraints as well as

objective function value for constraint handling. For this reason, it can handle

continuous constrained problems very well.

The performances of the algorithms are evaluated with unconstrained/bounded

optimization benchmarks and engineering design problems that belong to the

most commonly used cases by evolutionary optimization researchers. In addition,

an economic dispatch problem is also applied for benchmarking. It is concluded

that the initialization algorithm converges much better than random solutions

and it is applicable for further studies focusing on better initial solutions that

guide reaching an optimal solution. Experimental results of real-world problems

show that the proposed algorithms produce satisfactory results compared to the

methods published in the literature.

Keywords: Metaheuristics, Physics-based algorithms, Repulsive Forces, Random

Search, Benchmark Problems

vi

ÖZET

Doktora Tezi

Doğadan Esinlenen Evrimsel Algoritmalar ve Bir Model Önerisi

Gülin Zeynep ÖZTAŞ

Dokuz Eylül Üniversitesi

Sosyal Bilimler Enstitüsü

İngilizce İşletme Anabilim Dalı

İngilizce İşletme Yönetimi Programı

Bu çalışma, doğrusal/doğrusal olmayan sürekli kısıtsız/kısıtlı optimizasyon

problemlerini çözmek için yeni bir popülasyon tabanlı evrimsel hesaplama

modeli sunmaktadır. Önerilen model, iki optimizasyon algoritması içermektedir.

Bunlardan ilki, birçok yerel optimuma sahip problemler için algoritmaların

başlatılmasında rastgelelik çeşitliliğini bir dereceye kadar azaltan uyarlamalı

başlangıç çözümleri sağlayan bir başlatma algoritmasıdır. Algoritmanın öne

çıkan özelliği, yerel optimumlara takılmadan ve sorunun doğasını değiştirmeden

arama alanını uyarlamalı olarak daraltma yeteneğidir. Basit rastgele

yaklaşımlardan farklı olarak, önerilen algoritma çok modlu problemlerde global

optimum noktasının yanlışlıkla ortadan kaldırılmasından kaçınabilmektedir.

Başlangıç algoritması zaman ve performans açısından ek bir yük getirmek

yerine, problemin çözülmesine katkı sağlamaktadır.

İtici Kuvvetler optimizasyonu (REF) olarak adlandırılan ikinci algoritma,

Newton'un Genel Yerçekimi Yasasına ve Coulomb Yasasına dayanmaktadır.

REF algoritması, önerilen ilk algoritmadan farklı olarak, kısıtlama becerileriyle

optimum benzeri çözümlere ulaşmayı amaçlamaktadır. Önerilen algoritma,

sınırlı bir uzaydaki muhtemel yüklü parçacıkların olası çözüm noktaları

olduğunu varsaymaktadır. Parçacıklar ve komşuları arasındaki kuvvetler,

parçacığı daha iyi bir çözümün bulunabileceği yeni bir konuma hareket ettirir.

Parçacıkların itici yapısı Coulomb Yasasının taklidi olarak düşünülebilir. Ayrıca,

Tabu Arama Algoritması ve Elitizm seçim yaklaşımı önerilen algoritmanın hafıza

vii

kullanımına ilham vermektedir. Algoritmanın ilham kaynakları, daha iyi

sonuçlar sağlayan en iyi özelliklerin bir kombinasyonunu oluşturmak için

belirlenmiştir. Ayrıca, bu algoritma, amaç fonksiyonu değerinin yanısıra kısıtları

sağlama oranlarını ve kısıtlamaların toplam sapmalarını da dikkate alan

çarpımsal ceza yaklaşımı ilkesi üzerine yapılandırılmıştır. Bu nedenle sürekli

kısıtlı problemleri çok iyi bir şekilde çözme yeteneğine sahiptir.

Algoritmanın performansı, evrimsel optimizasyon araştırmacıları tarafından en

sık kullanılan kısıtsız / sınırlı optimizasyon problemleri ve mühendislik tasarım

problemleri ile test edilmiştir. Ek olarak, kıyaslama için ekonomik sevkiyat

problemi de uygulanmıştır. Başlangıç algoritmasının, rastgele çözümlerden çok

daha iyi yakınsadığı ve en uygun çözüme ulaşmayı hedefleyen algoritmalar için

de başlangıç algoritması olarak kullanılabileceği sonucuna varılmıştır. Gerçek

dünya problemlerinin deneysel sonuçları ise önerilen algoritmaların literatürde

yayınlanan yöntemlere göre tatmin edici sonuçlar verdiğini göstermektedir.

Anahtar Kelimeler: Meta-Sezgisel Algoritmalar, Fizik Temelli Algoritmalar, İtici

Kuvvetler, Rastgele Arama, Karşılaştırma Problemleri

viii

NATURE-INSPIRED EVOLUTIONARY ALGORITHMS

AND A MODEL PROPOSAL

CONTENTS

THESIS APPROVAL PAGE İİ

DECLARATION İİİ

ABSTRACT İV

ÖZET Vİ

CONTENTS Vİİİ

ABBREVIATIONS Xİİ

LIST OF TABLES XVİ

LIST OF FIGURES XVİİİ

LIST OF APPENDICES XİX

INTRODUCTION 1

CHAPTER ONE

METAHEURISTICS

1.1. OPTIMIZATION 4

1.1.1. Stochastic Optimization 6

1.2. COMPLEXITY THEORY 7

1.2.1. Complexity of Algorithms 8

1.2.2. Complexity of Problems 9

1.3. METAHEURISTICS 11

1.3.1. Historical Background 12

1.3.1.1. Early Period 12

1.3.1.2. 1900-1960 Period 13

1.3.1.3. 1960-2000 Period 14

1.3.1.4. The Recent Past Period 17

1.3.2. The Classification of Metaheuristics 19

1.4. EVOLUTIONARY COMPUTATION CONTEXT 24

ix

1.4.1. Model Specification 25

1.4.2. Model Identification 26

1.4.3. Initialization 27

1.4.4. Fitness Calculation 27

1.4.5. Neighborhood Strategies 28

1.4.6. Memory Usage 29

1.4.7. Selection 30

1.4.8. Reproduction 30

1.4.9. Stopping Condition 33

1.4.10. Model Reliability 33

1.4.11. Model Validity 34

CHAPTER TWO

LITERATURE REVIEW OF PHYSIC BASED ALGORITHMS

2.1. THE CLASSIFICATION OF PHYSICS-BASED ALGORITHMS 35

2.2. PHYSIC-BASED ALGORITHMS 36

2.2.1. Newton’s Gravitational Law 37

2.2.1.1. Central Force Optimization 37

2.2.1.2. Artificial Physics Optimization 38

2.2.1.3. Gravitational Search Algorithm 39

2.2.1.4. Gravitational Interactions Optimization 40

2.2.2. Magnetism 41

2.2.2.1. Hysteretic Optimization 41

2.2.2.2. Electromagnetism-like Mechanism 42

2.2.2.3. Magnetic Optimization Algorithm 43

2.2.2.4. Charged System Search 44

2.2.2.5. Magnetic Charged System Search 45

2.2.2.6. Electromagnetic Field Optimization 46

2.2.3. Collision 47

2.2.3.1. Particle Collision Algorithm 47

2.2.3.2. Colliding Bodies Optimization 48

x

2.2.3.3. Kinetic Energy of Gas Molecules 49

2.2.4. Quantum Mechanics 49

2.2.5. Universe Theory 51

2.2.5.1. Big Bang- Big Crunch 52

2.2.5.2. Gravitation Field Algorithm 53

2.2.5.3. Spiral Optimization Algorithm 53

2.2.5.4. Galaxy-based Search Algorithm 54

2.2.5.5. Black Hole Algorithm 55

2.2.5.6. General Relativity Search Algorithm 56

2.2.5.7. Multi-verse Optimizer 56

2.2.6. Optic 57

2.2.6.1. Light Ray Optimization 57

2.2.6.2. Ray Optimization 58

2.2.6.3. Optics Inspired Optimization 59

2.2.7. Others 59

2.2.7.1. Gases Brownian Motion Optimization 60

2.2.7.2. Ions Motion Algorithm 60

2.2.7.3. Heat Transfer Search 61

2.2.7.4. Thermal Exchange Optimization 62

2.2.7.5. Henry Gas Solubility Optimization 63

2.2.7.6. Equilibrium Optimizer 63

CHAPTER THREE

THE PROPOSED ALGORITHM

3.1. RANDOM SEARCH WITH ADAPTIVE BOUNDARIES (RSAB) 65

3.2. REPULSIVE FORCES ALGORITHM (REF) 71

3.2.1. Theoretical Background 71

3.2.2. Assumptions of REF 73

3.2.3. The Pseudocode of the Algorithm 74

3.2.4. Multiplicative Penalty based Method (MUPE) 75

3.2.5. Repulsive Forces on Particles 78

xi

3.2.6. Neighborhood 78

3.2.7. Displacement 79

3.2.8. Duplication 82

3.2.9. Stopping Condition 83

CHAPTER FOUR

EXPERIMENTAL STUDIES

4.1. MATERIALS AND MODELING ENVIRONMENT 85

4.2. BENCHMARK PROBLEMS 85

4.2.1. Unconstrained/Bounded Problems 86

4.2.2. Constrained Problems 87

4.2.3. Parameter Settings 89

4.3. EXPERIMENTS ON HYBRID REF ALGORITHM 89

4.3.1. Initialization 90

4.3.2. Hybrid REF Algorithm 92

4.3.2.1. Findings of Unconstrained Problems 92

4.3.2.2. Pressure Vessel 93

4.3.2.3. Himmelblau’s Function 95

4.3.2.4. Welded Beam 97

4.3.2.5. Tension/Compression Spring Design 99

4.3.2.6. Combined Heat and Power Economic Dispatch Problem 101

CONCLUSION 104

REFERENCES 115

APPENDICES

xii

ABBREVIATIONS

ABC Artificial Bee Colony Algorithm

APO Artificial Physics Optimization

BB-BC Big Bang- Big Crunch

BH Black Hole Algorithm

BOA Butterfly Optimization Algorithm

CBO Colliding Bodies Optimization

CCM Canonical Coordinates Method

CFO Central Force Optimization

CGO Chaos Game Optimization

CGWO Chaotic Grey Wolf Optimizer

CHPED Combined Heat and Power Economic Dispatch

C-PSO Co-evolutionary Particle Swarm Optimization

CPU Central Processing Unit

CSA Cuckoo Search Algorithm

CSS Charged System Search

EABO Enhanced adaptive butterfly optimization algorithm

EC Evolutionary Computation

EFO Electromagnetic Field Optimization

EM Electromagnetism-like Mechanism

EO Equilibrium Optimizer

ES Evolution Strategies

FA Firefly Algorithm

FES Function Evalutations

GBMO Gases Brownian Motion Optimization

GBO Gradient-Based Optimizer

GbSA Galaxy-based Search Algorithm

GeneAS Genetic Adaptive Search

GFA Gravitation Field Algorithm

GIO Gravitational Interaction Optimization

GRSA General Relativity Search Algorithm

xiii

GSA Gravitational Search Algorithm

GTO Group Teaching Optimization Algorithm

GWO Grey Wolf Optimizer

IHS Improved Harmony Search Algorithm

H-FPA Hybrid Flower Pollination Algorithm

H-GSA-GA Hybrid GSA-GA Algorithm

HGSO Henry Gas Solubility Optimization

HO Hysteretic Optimization

H-PSO-GA Hybrid PSO-GA Algorithm

HS Harmony Search Algorithm

HTS Heat Transfer Search

IGWO Improved Grey Wolf Optimizer

IMO Ions Motion Algorithm

ISA Interior Search Algorithm

KGMO Kinetic Energy of Gas Molecules

KKO Kho-Kho Optimization Algorithm

LRO Light Ray Optimization

MADS Mesh Adaptive Direct Search Algorithm

MCSS Magnetic Charged System Search

MOA Magnetic Optimization Algorithm

MOPM Modified Oracle Penalty Method

MPA Marine Predators Algorithm

MTCA Modified T-Cell Algorithm

MUPE Multiplicative Penalty based Method

MVO Multi-Verse Optimizer

NP-hard Non-deterministic Polynomial-time Hardness

N2F Nuclear Fission-Nuclear Fusion Algorithm

OIO Optics Inspired Optimization

P Polynomial

PA Pathfinder algorithm

PCA Particle Collision Algorithm

PPA Plant Propagation Algorithm

xiv

PSO Particle Swarm Optimization

PSO-GA Advanced particle swarm assisted genetic algorithm

QC Quantum Computing

Q - GSA Quantum Gravitational Search Algorithm

Q-ABC Quantum Artificial Bee Colony

Q-ACO Quantum Ant Colony Optimization

Q-AIS Quantum Artificial Immune System

Q-BFA Quantum Bacterial Foraging Algorithm

Q-BO Quantum Bat Optimization

Q-BWPA Quantum Binary Wolf Pack Algorithm

Q-CA Quantum Cultural Algorithm

Q-CSA Quantum Cuckoo Search Algorithm

Q-DE Quantum Differential Evolution

Q-DSA Quantum Dolphin Swarm Algorithm

Q-EA Quantum Evolutionary Algorithm

Q-EM Quantum EM

Q-FA Quantum Firefly Algorithm

Q-GA Quantum Genetic Algorithm

Q-GSO Quantum Glowworm Swarm Optimization

Q-HS Quantum Harmony Search

Q-ICA Quantum Immune clonal algorithm

Q-PSO Quantum Particle Swarm Optimization

Q-SWA Quantum Sperm Whale Algorithm

Q-TLBO Quantum Teaching-Learning-Based Optimization

Q-TS Quantum Tabu Search

REF Repulsive Forces Optimization

RO Ray Optimization

RSAB Random Search with Adaptive Boundaries

SA Simulated Annealing

SAP Self-Adaptive Penalty

SBO Smell Bees Optimization Algorithm

SCO Social Cognitive Optimization

xv

SMA Slime Mould Algorithm

SOA Seagull Optimization Algorithm

SpOA Spiral Optimization Algorithm

SRO Search and Rescue Optimization Algorithm

TEO Thermal Exchange Optimization

TLMPA Teaching-Learning based Marine Predator Algorithm

TS Tabu Search

xvi

LIST OF TABLES

Table 1: Covering Sets Examples p. 7

Table 2: The Time Complexity Comparisons p. 8

Table 3: Metaheuristic Algorithm Inspired by Newton’s Gravitational Law p. 37

Table 4: Metaheuristic Algorithms Inspired by Magnetism p. 41

Table 5: Metaheuristic Algorithms Inspired by Collision p. 47

Table 6: Metaheuristic Algorithms Inspired by Quantum Mechanics p. 50

Table 7: Metaheuristic Algorithms Inspired by Universe Theory p. 51

Table 8: Metaheuristic Algorithms Inspired by Optics p. 57

Table 9: Other Algorithms p. 59

Table 10: Newton’s General Gravity versus Coulomb’s Law p. 72

Table 11: The characteristics of test cases p. 86

Table 12: Information about constrained problems p. 87

Table 13: The algorithms published in the related literature p. 88

Table 14: Parameter Settings p. 89

Table 15: Updated lower and upper limits for unconstrained/bounded problems p. 90

Table 16: Updated lower and upper limits for constrained problems p. 91

Table 17: Updated lower and upper limits for constrained problems p. 92

Table 18: Best solution for Pressure Vessel p. 94

Table 19: Experimental results of Pressure Vessel p. 94

Table 20: Comparisons for Pressure Vessel (Best-so-far solution) p. 94

Table 21: Comparisons for Pressure Vessel (Descriptive Statistics) p. 95

Table 22: Best solution for Himmelblau’s Function p. 96

Table 23: Experimental results of Himmelblau’s Function p. 96

Table 24: Comparisons for Himmelblau’s Function (Best-so-far solution) p. 96

Table 25: Comparisons for Himmelblau’s Function (Descriptive Statistics) p. 97

Table 26: Best solution for Welded Beam p. 97

Table 27: Experimental results of Welded Beam p. 98

Table 28: Comparisons for Welded Beam (Best-so-far solution) p. 98

Table 29: Comparisons for Welded Beam (Descriptive Statistics) p. 99

Table 30: Best solution for Tension/Compression Spring Design p. 99

Table 31: Experimental results of Tension/Compression Spring Design p. 100

xvii

Table 32: Comparisons for Tension/Compression Spring Design (Best-so-far

solution) p. 100

Table 33: Comparisons for Tension/Compression Spring Design (Descriptive

Statistics) p. 101

Table 34: Best solution for CHPED p. 102

Table 35: Experimental results of CHPED p. 102

Table 36: Comparisons for CHPED (Best-so-far solution) p. 102

Table 37: Comparisons for CHPED (Descriptive Statistics) p. 103

xviii

LIST OF FIGURES

Figure 1: The Classification of Optimization Techniques p. 5

Figure 2: The Relationship Between Complexity Theory and Designing an

Algorithm p. 8

Figure 3: The Classification of Problems p. 9

Figure 4: Early Period p. 12

Figure 5: Twentieth Century p. 14

Figure 6: 1960-2000 Years p. 14

Figure 7: Metaheuristic Algorithms Developed in the Recent Past p. 17

Figure 8: Number of Documents Published Over the Period 2000-2020 p. 18

Figure 9: The Inspirations Adopted by Researchers p. 20

Figure 10: Classification of Metaheuristics p. 21

Figure 11: General flow of an algorithm p. 25

Figure 12: Diversification vs Intensification p. 31

Figure 13: Performance profiles of two hypothetical metaheuristic procedures p. 32

Figure 14: Classification of Physics-based Algorithms p. 36

Figure 15: Historical Perspective of Physics-based Algorithms p. 36

Figure 16: The Pseudo-code of Random Search with Adaptive Boundaries p. 66

Figure 17: The Pseudo-code of “Determine Intervals” p. 67

Figure 18: The Pseudo-code of Generating Random Numbers p. 68

Figure 19: Initial Particles (2-Dimension) p. 68

Figure 20: The Pseudo-code of Update Intervals by Using Midpoint p. 69

Figure 21: The Pseudo-code of Update Intervals by Using Holdbest p. 69

Figure 22: The Pseudo-code of REF Algorithm p. 75

Figure 23: The Pseudo-code of Heuristic Fitness Function p. 77

Figure 24: Neighborhood p. 79

Figure 25: The Pseudo-code of Displacement p. 79

Figure 26: Displacement of The Particle p. 80

Figure 27: Repulsive Forces Along One-Dimension p. 81

Figure 28: The Pseudo-code of Update Interval p. 83

Figure 29: Stopping Condition p. 84

xix

LIST OF APPENDICES

APPENDIX 1: Unconstrained/Bounded Benchmark Problems App. p.1

APPENDIX 2: Pressure Vessel Model App. p.2

APPENDIX 3: Pressure Vessel Figure App. p.2

APPENDIX 4: Himmelblau’s Function Model App. p.2

APPENDIX 5: Welded Beam Model App. p.3

APPENDIX 6: Welded Beam Figure App. p.4

APPENDIX 7: Tension/Compression Spring Design Model App. p.4

APPENDIX 8: Tension/Compression Spring Design Figure App. p.5

APPENDIX 9: Combined Heat and Power Economic Dispatch Model App. p. 5

1

INTRODUCTION

Optimization takes an important place in terms of providing solutions to the

problems encountered in business life such as business activities, engineering

problems, industrial design problems under some restrictions as time, money, resource.

In the literature, there are different algorithms that can be defined as a set of sequential

operations to solve problems. However, these algorithms vary according to the nature

of the problem. Depending on the randomness in algorithms, optimization techniques

can be classified as deterministic and stochastic algorithms. Deterministic algorithms

include algebraic methods such as the Newtonian approach, Gauss eliminations, and

gradient-based methods. Although these methods are good at solving smooth unimodal

problems, they cannot handle discontinuity in objective functions. In such cases,

gradient-free methods are preferred. However, according to the computational

complexity of the problems, more sophisticated algorithms are required. Today, in

parallel with the developments in computer technology, iterative and divide-and-

conquer-based methods have gained more importance. Especially real-world problems

which belong to NP-Hard class cannot be solved in a polynomial time and stochastic

algorithms come to exist to provide approximate solutions.

Artificial intelligence (AI) attracts optimization researchers’ attention for

developing sophisticated heuristics. In terms of this computational technology, AI

methods use local search (i.e. direct search) techniques very efficiently in a short time.

But there are still some new developments in heuristics and AI methods for global

search.

Stochastic algorithms comprise heuristic and metaheuristic algorithms.

Although the principles are similar for both sub-classes, heuristic algorithms are

defined as problem-specific algorithms whereas metaheuristic algorithms are more

general kinds of stochastic algorithms and are generally structured on various

metaphors. Especially in the last decade, the number of new metaheuristic algorithms

based on metaphors has exploded. Most of the researchers have focused on nature-

based algorithms inspired by interactions of living and non-living objects. The main

idea behind this is a belief that nature solves its problem instinctively like finding the

shortest path between foods and nests for ants and bees. In addition, non-living objects

2

also behave toward finding their better state naturally as in free-falling bodies,

repulsion of same polarized magnets, and steady-state in the cooling process of

materials from high temperature. In the state-of-the-art, many algorithms that imitate

these behaviors and interactions for solving optimization problems in applied and

social sciences such as traveling salesman, assignment, transportation, scheduling,

layout, conflict resolution, optimum policy-making, portfolio optimization, etc. All

these points of view come up with a new field of computation and optimization,

namely evolutionary algorithms.

According to Wolpert and Macready (1995) proved with the “No Free Lunch

Theorem”, there cannot be an algorithm that is appropriate for all problems. In other

words, there is always a better algorithm than the existing ones. Although many

researchers criticize that plenty of metaheuristics have similarities although they

introduce different metaphors, it would be better to develop algorithms that provide

more “optimal-like” solutions without trapping the “novelty” concept.

In line with the innovations in information technologies, the main motivation for

this thesis study is to provide a basis for the forthcoming studies that may be

breakthroughs in the field of optimization. In this thesis, we develop a hybrid algorithm

that includes two algorithms called Random Search with Adaptive Boundaries

(RSAB), Repulsive Force Optimization (REF) Algorithm. The first one is structured

as a generic method that can be applied in the initialization stage of any algorithm for

optimization problems and it depends on updating given upper and/or lower

boundaries dynamically according to parameters. The outstanding feature of the first

algorithm is the ability to reach better initial solutions by reducing the diversity of pure

randomness, to some extent, for continuous unconstrained/bounded and constrained

nonlinear optimization problems that may have many local optimums. Unlike

conventional random search algorithms, the proposed algorithm can eliminate the risk

of missing the global optimum while narrowing search space. We assert that the RSAB

algorithm has advanced competencies that relieve the workload of the global

optimization algorithms and shorten the time to find solutions. The REF algorithm

which can be defined as the main algorithm is based on physics to provide the best-

known solutions for constraint handling. This algorithm assumes that the particles that

are likely charged repel each other considering their neighbors to reach new locations

3

where better solutions may exist. The calculation of repulsive forces mimics

Coulomb’s Law and the movement is calculated according to the Momentum Law.

Furthermore, Tabu Search and Elitism selection are also inspired in terms of the

memory structure of the algorithm. This algorithm handles constraints with the help of

a multiplicative penalty approach that considers satisfaction rate and the deviations of

constraints besides objective function value.

The main purpose of this thesis is not to duplicate existing algorithms through a

new metaphor, but to provide an algorithm that reaches the best-known solution

values. However, to reach better solutions, it is very important to determine the best

combination of features inspired by the literature or metaphors. Therefore, achieving

better results in a specific problem type is the primary goal, regardless of metaphors

and similarities. It is worth mentioning that, the proposed algorithms in this thesis are

revised versions of the algorithm introduced by Erdem (2007). However, many

improvements and modifications have been implemented. In the related sections, all

details of modifications are explained about the proposed algorithms. With these

prominent features, the proposed algorithm will contribute to the literature.

The framework of this thesis study consisting of four chapters is as follows: In

the first chapter general information about optimization is provided by summarizing

the background of the metaheuristic algorithms. In the second chapter, all physics-

based algorithms in the literature are classified and their highlights are mentioned

briefly. In the third chapter, the proposed algorithms are explained in detail. Finally,

in the fourth chapter, the experimental studies including continuous

unconstrained/bounded benchmark problems, engineering design problems, and an

economic dispatch problem as a business case are reported.

4

CHAPTER ONE

METAHEURISTICS

1.1. OPTIMIZATION

Optimization is a method for maximizing or minimizing a function by choosing

the variables systematically (Kaveh, 2014: 1). Indeed, optimization aims at reaching

the best possible solution under defined circumstances. The general model structure

for optimization problems is given as follows (Astolfi, 2006: 3):

[Min or Max] 𝑓(𝑥)

 subject to the constraints (1.1)

𝑔𝑗(𝑥) ≤ 0 for j=1, 2, …, m

𝑙𝑘(𝑥) = 0 for k = 1, 2, …, p

where x = [𝑥1, 𝑥2, … , 𝑥𝑛] is a possible solution set tried to be found by

minimizing or maximizing an objective function 𝑓(𝑥). x vector that includes decision

variables can form continuous, discrete, or mixed decision space. This model also

provides 𝑔𝑗(𝑥) for inequality and 𝑙𝑘(𝑥) for equality constraints. However, if the total

number of constraints is zero, we can talk about an unconstrained optimization

problem. Moreover, according to the function design of the 𝑓(𝑥), the algorithm for the

solution of that model can change.

The optimization algorithms can be classified according to different principles.

Sahab et al. (2013) gathered various classifications in terms of the number and design

of objective functions, variables, constraints, landscape, determinacy. Astolfi (2006)

also summarized the classification ways of optimization as the existence of constraints,

the nature of equations, and admissible values of design variables. However, the

classification of the optimization algorithms is carried out in terms of solution methods

as shown in Figure 1 as well.

5

Figure 1: The Classification of Optimization Techniques

Source: Yang, 2010a: 15-20

The main difference between deterministic and stochastic algorithms lies in the

solutions obtained from different runs (Siddique and Adeli, 2015a: 707). This means

that in deterministic algorithms there is no randomness in generating new solutions.

For that reason, while exploitation ability enhances, exploration capability remains

inadequate (Yang, 2018: 5). Most conventional algorithms are deterministic and based

on mathematical programming methods like linear programming, convex

programming, integer programming, quadratic programming, dynamic programming,

branch and bound methods (Nesmachnow, 2014: 321). They provide accurate

solutions for problems in a continuous space. On the other hand, gradient-based

algorithms are good at optimizing smooth unimodal problems by using function values

and their derivatives. Newton-Raphson algorithm, steepest descent method, inexact

line search can be given as examples for gradient-based method (Hendrix and Toth,

2010: 106). However, when the objective function has a discontinuity, it is not able to

calculate the derivatives. Therefore, for these cases, it would be better to prefer

gradient-free algorithms. As an example of gradient-free methods, Hooke - Jeeves

pattern search and Nelder-Mead downhill simplex can be given (Yang, 2010a: 21).

Although the ability of deterministic algorithms is too restricted in terms of problem

types, they all provide exact optimal solutions to those problems every time. However,

they are useless and time-consuming for real-world problems (Nesmachnow, 2014:

321).

6

1.1.1. Stochastic Optimization

Stochastic optimization class covers the algorithms and techniques that include

some degree of randomness in themselves (Luke, 2011: 7). The hardest problem in the

world can be described as an NP-hard (non-deterministic polynomial-time hardness)

problem. Most real-world problems are NP-hard which cannot be solved in polynomial

time (Caserta and Voß, 2009: 1). Those types of problems can only be solved by using

stochastic algorithms. In stochastic optimization also called unconventional

optimization, an objective function is tried to be maximized or minimized by

improving possible solutions iteratively (Brownlee, 2011: 15). Stochastic algorithms

can explore wide ranges at the same time without trapping out local optimums

(Siddique and Adeli, 2015a: 707). Although they have competence in handling the

hardest problems, they can just provide nearly optimal solutions because of the

randomization. However, the randomization enables movements from local search to

global search for algorithms (Gandomi et al., 2013a: 1). Therefore, in today's world,

instead of classical optimization methods, approximate algorithms take place.

The stochastic optimization class covers heuristic and metaheuristic

algorithms. Heuristic algorithms are defined as a method to discover a near-optimal

solution for considered specific hard problems, whereas metaheuristics include an

iterative process that integrates different concepts of exploring and exploiting the

search space and they are not problem-specific algorithms (Kaveh, 2014: 2). The

algorithms under the heuristic class also known as greedy heuristics provide the best

local solutions. However, there is another chance to utilize these greedy approaches

with global search approaches which create metaheuristics (Salcedo-Sanz, 2016: 12).

For this reason, we can say that metaheuristic algorithms are more inclusive. Further

details for metaheuristic algorithms will be given in the following sections.

In the literature, scholars call evolutionary algorithms, evolutionary

computation, population-based algorithms, computational intelligence, soft

computing, machine learning, heuristics refer to stochastic optimization algorithms.

However, all the terms mentioned denote different topics (Simon, 2013: 2-3). Since

some of them have a broad scope, some of them are subclasses, it is not appropriate to

use these terms to refer to all stochastic optimization algorithms. For example;

7

evolutionary computation is a set of stochastic methods that are inspired by the

evolutionary process of species in nature and it includes evolutionary algorithms,

genetic programming, evolutionary strategies, genetic algorithm (Nesmachnow, 2014:

325). Moreover, evolutionary algorithms cover a large class of problem-solving

methodologies that are based on the Darwinian principle of natural selection

(Gendreau and Potvin, 2008: 76). On the other hand, computer intelligence represents

technologies like neural networks, fuzzy systems, artificial life that can be applied

other than optimization. As for machine learning and soft computing, evolutionary

algorithms are a subset of them (Simon, 2013: 3). For that reason, in order not to be

confused in terms, it is clear to use “metaheuristics” for the general name of the

stochastic optimization techniques (Gandomi et al., 2013a: 1). The covering clusters

are structured as given in Table 1.

Table 1: Covering Sets Examples

Evolutionary Computing ⸧ Evolutionary Algorithms

Computer Intelligence ⸧ Evolutionary Algorithms

Soft Computing ⸧ Evolutionary Algorithms

Machine Learning ⸧ Evolutionary Algorithms

Metaheuristics ⸧ Evolutionary Algorithms

Evolutionary Algorithms ⸧ Population-based Algorithms

Evolutionary Algorithms ⸧ Nature-Inspired Algorithms

Evolutionary Algorithms ⸧ Swarm Intelligence

Metaheuristics ⸧ Heuristics

 Source: Table is prepared by the Author

1.2. COMPLEXITY THEORY

Time and space are two concepts that are necessary for an algorithm to be able

to solve a problem (Talbi, 2009: 9). Complexity theory deals with the time and space

consumption of algorithms and the main classes of problems (Whitley and Watson,

2005: 317). According to Wegener (2005), “The results of complexity theory have

specific implications for the development of algorithms for practical applications.”

And they assert that complexity theory and designing an algorithm are two limitations

of what can be done and cannot with certain resources in an algorithmic way. The

relationship between complexity theory and designing an algorithm can be

8

summarized as in Figure 2. It would be better to clarify that resources are such things

as computation time and storage space.

Figure 2: The Relationship Between Complexity Theory and Designing an Algorithm

Source: Adapted from Wegener (2005: 3)

1.2.1. Complexity of Algorithms

To obtain the computational complexity of an algorithm an asymptotic bound

on the step count is used. The Big-O notation is used to compute the time or the space

complexity of an algorithm. Various algorithms have different time complexities. Let

n is the input length and p is a polynomial function, so we denote the time complexity

of polynomial algorithm as O(p(n)); whereas when the time complexity function is not

that much bounded which also includes non-polynomial time complexity, we can talk

about exponential time algorithm. The comparison of these two function types is

demonstrated in Table 2:

Table 2: The Time Complexity Comparisons

Time Complexity

function

Size (n)

10 30 50

O(n) 0.00001 second 0.00003 second 0.00005 second

O(n2) 0.001 second 0.009 second 0.0025 second

O(n5) 0.1 second 0.27 second 0.125 second

O(2n) 0.001 second 17.9 minutes 35.7 years

O(3n) 0.59 second 6.5 years 2x108 centuries

Source: Garey and Johnson, 1979: 7

9

As it is seen from Table 2, the execution times of different functions change

enormously especially in exponential functions. It seems that polynomial-time

algorithms can obtain deeper insight into the structure of a problem. For that reason,

as mentioned by Garey and Johnson (1979), “a problem has not been well-solved until

a polynomial-time algorithm is known for it.”. If there is a polynomial algorithm for a

problem, that problem is called tractable and all problems can be classified in terms of

their complexities.

1.2.2. Complexity of Problems

The most popular problem classes handled by complexity theory are P

(Polynomial) and NP (Non-deterministic Polynomial) problems. The representation of

the classes is given in Figure 3 as a set structure.

Figure 3: The Classification of Problems

Source: Wu, 2016

As seen in Figure 3, the complexity of the problems increases as you go to the

right side. Class P includes problems that are solvable in polynomial time which is a

reasonable computation time and they are easy to solve. Continuous linear

programming problems can be given as an example of class P (Talbi, 2009: 12).

Whereas NP class which also covers class P denotes the problems that can be solved

10

in polynomial time but with a nondeterministic algorithm (Hedman, 2006: 299). All

decision problems whose solution is either yes or no belong to the NP class (Garey

and Johnson, 1979: 13). According to Figure 3, for any problem in class P, there are

nondeterministic algorithms to solve because NP is a covering set. However, there is

a striking question in the literature that addresses whether P=NP or not. Goldreich

(2008) paraphrased this question as “whether or not finding solutions is harder than

checking the correctness of solutions”. Although the answer is unknown and

controversial, generally it is thought that P≠NP means that finding a solution is harder

than checking. Otherwise, P=NP means that if a problem can be solved in polynomial

time with a non-deterministic computational model, then building a deterministic

model is possible that solve the same problem in a polynomial time.

Furthermore, the NP-Complete class is also a subset of the NP class and it is

related to reduction. This situation is explained by Goldreich (2008) as if any

computational problem in NP class is reducible to another problem, that computational

problem is NP-Complete. In other words, a problem in NP is also NP-Complete if all

other problems in NP are reduced to the problem in NP class (Talbi, 2009: 14). Since

NP-Complete problems are the hardest problems in NP class, Cook (1971) proved that

the satisfiability problem belongs to NP-Complete class and then in 1972 Karp asserted

that other computational problems such as set covering, Hamilton Circuit, Knapsack,

Job sequencing are as hard as satisfiability problem by reducing satisfiability problem

to the problems given. It would be better to clarify that NP-Complete problems are

also subsets of NP-Hard class which is defined as the hardest problem class in

complexity theory (Gonzalez, 2007: 4). It is clear from Figure 3 that NP-Hard

problems do not have to be in NP class which means that there is no requirement for

being a decision problem for NP-Hard problems. Most of the real-world optimization

problems such as scheduling problems, vehicle routing problems, assignment

problems belong to that class (Talbi, 2009: 14). However, we do not know how to find

a solution to NP-Hard problems in polynomial time, algorithms that provide

approximate solutions or the best possible solutions are needed. At this point,

metaheuristics come to exist and will be handled in the following section.

11

1.3. METAHEURISTICS

The term “metaheuristics”, firstly used by Glover in 1986, is a search

framework that uses heuristic strategies (Gendreau and Potvin, 2008: 71). However,

heuristic algorithms are problem-dependent and applicable to a particular problem,

whereas metaheuristic algorithms are more general. Some of the scholars defined

“metaheuristics” as below:

“Metaheuristics are the methods of choice for solving complex, ill-defined

problems” (Gendreau and Potvin, 2008: 71).

“Metaheuristics represent ‘higher level’, heuristic-based, soft computing

algorithms that can be directed towards a variety of different optimization problems,

by instantiating the generic schema to individual problems, needing relatively few

modifications to be made in each specific case” (Nesmachnow, 2014: 320).

“Metaheuristic is a black box optimizer that can be applied to almost all

optimization problems” (Abdel-Basset et al., 2018: 185).

“A metaheuristic is an iterative generation process which guides a subordinate

heuristic by combining intelligently different concepts for exploring and exploiting the

search spaces using learning strategies to structure information in order to find

efficiently near-optimal solutions” (Osman and Kelly, 1996: 3).

“The word heuristic has its origin in the old Greek work heuriskein, which

means the art of discovering new strategies (rules) to solve problems. The suffix meta,

also is a Greek word, means “upper-level methodology” (Kaveh, 2017: 2).

“Metaheuristic algorithms are a higher-level heuristics with the use of memory,

solution history and other forms of learning strategy” (Yang, 2018: 4).

“Metaheuristics are very popular family of solution methods for optimization

problems and they are capable of finding acceptable solutions in a reasonable amount

of time” (Duarte et al., 2018: 29)

The definitions given above show us the general characteristics of

metaheuristics and they can be summarized as below (Blum and Roli, 2003: 270-271);

(Yang, 2018: 4):

 Metaheuristics are guiding the search process in order to find near-optimal

solutions.

12

 Metaheuristics are approximate and stochastic algorithms.

 Metaheuristics are not problem-specific.

 Metaheuristics range from local search to complex learning processes.

 Metaheuristics use of domain-specific knowledge in the form of heuristics

controlled by the upper-level strategy.

 Metaheuristics handle problems by treating them as a black box, thus they can

solve a wide range of problems.

Although there are lots of algorithms, they can be evaluated in terms of their

solution time, complexity, optimality, and the trade-off between diversification and

intensification ability. They all present randomness and thus provide different

solutions in different runs. The outstanding characterization of metaheuristics is that

they explore several regions in search space and have the ability to escape from local

optima (Siddique and Adeli, 2015a: 707).

1.3.1. Historical Background

The birth of metaheuristics dates back to the years in the 20th century. However,

it would be better to examine the periods separately when the foundations of

metaheuristics were laid. For that reason, the historical background can be divided into

four periods: The Early Period, 1900-1960, 1960-2000, and The Recent Past.

1.3.1.1. Early Period

 The study of optimization problems is old as science itself. To summarize the

breakthroughs in optimization, timelines are given chronologically.

Figure 4: Early Period

Source: Adapted from Yang, 2010a: 4-10

13

As shown in Figure 4, there are lots of contributors to the optimization field.

For example, Greek Mathematicians Euclid and Heron used geometric entities and

solved many optimization problems. Moreover, Kepler, Snell, Maupertuis who are

known as astronomers discovered the laws of planetary motion, the law of reflection,

and the principle of least action respectively. On the other hand, Newton solved the

problem of the body shapes minimal resistance that was finalized as the resistance law

of the body. As for Bernoulli, he made significant progress in calculus. Also, Monge

analyzed a transportation problem and Gauss was the first person that used the least-

squares analysis. Lastly, Cauchy developed an iterative method for equation systems

(Yang, 2010a: 5-6). Although each of them has provided various theories for different

subject areas, actually all of them are the milestones for optimization algorithms.

Besides, most of the theories developed in these years are the foundations of most of

the metaheuristic algorithms especially physics-based ones.

1.3.1.2. 1900-1960 Period

In the twentieth century, specific optimization topics have been revealed. At

the beginning of the century, Jensen (1906) contributed to the literature by introducing

the term called “convexity” which creates the basis of convex optimization.

Throughout the years, many applications in combinatorial optimization and global

optimization have been conducted by convex optimization (Boyd and Vandenberghe,

2004: xi). Moreover, Hancock (1917) published the first book about optimization that

covers the extremum points of a function. Thereafter, Kantorovich (1939), a famous

mathematician, and his colleague Koopmans developed a mathematical model which

is awarded Nobel Prize in Economic Sciences for the production problem (Yang,

2010a: 6). Afterward, an algorithm called “Simplex” was created by Dantzig in 1947

to solve linear programs for planning and decision-making problems. The simplex

algorithm has dominated applications in operations research for half a century (Nash,

2000: 29). Finally, in 1951 Karush-Kuhn-Tucker conditions were introduced in the

literature for nonlinear optimization problems to be solved and in 1957, Bellman

presented “Dynamic Programming” that provides solutions to multistage decision and

planning problems (Yang, 2010a: 7).

14

Figure 5: Twentieth Century

Source: Collected from Yang, 2010a: 4-10 and set on the timeline by the author

1.3.1.3. 1960-2000 Period

By the years of the 1960s, the literature on optimization broadened and the

research line for problem-solving methods completely turned into a different format

called “evolution” (Sörensen et al., 2018: 7). In Figure 6, the most commonly used and

the best-known algorithms developed in the years between 1960-2000 are

demonstrated. These algorithms can be defined as the cornerstones for the recently

developed modern algorithms.

Figure 6: 1960-2000 Years

Source: Collected from Yang (2010a: 4-10) and set on the timeline by the author

All methods given in Figure 6 are based on different principles. For that reason,

classification plays an important role. Before classifying, it would be better to discuss

the starting points of the pioneer algorithms. Among these algorithms, Simulated

15

Annealing and Tabu Search are single solution methods; whereas the others are all

population-based methods that keep around a set of candidate solutions. The

population-based algorithms given in Figure 6 are inspired by biology and nature

(Luke, 2011: 29).

Genetic Algorithm, Evolutionary Programming, Evolutionary Strategies,

Genetic Programming belong to the field of Evolutionary Computation that depends

on computational methods inspired by evolutionary processes (Brownlee, 2011: 87).

The earliest well-known evolutionary algorithm is the Genetic Algorithm (Simon,

2013: 35), and they were presented by John Holland (1962). Holland is the first scholar

that used the terms “crossover, recombination, mutation and selection” to adapt the

natural selection theory of Darwin to optimization. Briefly, the Genetic Algorithm

comprises encoding of an optimization function as character strings to denote

chromosomes, using genetic operations and selecting the best chromosomes according

to their fitness values. (Yang, 2014: 77-78).

Evolutionary Programming was developed in 1962 originally by Fogel (Erdem,

2007: 15), and it was proposed as an approach to artificial intelligence. Mutating the

solutions and selecting the next generation from mutated solutions are two major steps

(Yao et al., 1999: 82). On the other hand, Evolutionary Strategies were developed by

Rechenberg and further improved by Schwefel in the 1960s (Xiong et al., 2015: 613).

Different from other Evolutionary Algorithms, Evolution Strategies were inspired by

the process of evolution (phenotype, hereditary, variation) rather than the genetic

mechanism of evolution (genome, chromosome, genes, alleles) (Brownlee, 2011:

108). In other words, the evolutionary strategy does not use population or crossover,

it just mutates one solution, and then the best two solutions become the parent for the

next mutation round (Sörensen et al., 2018: 8). Genetic programming is based on the

idea of evolving computer programs that depends on natural selection (Langdon et al.,

2010: 185). It uses genetic operators (reproduction, crossover, and mutation).

Although Genetic Programming is similar to the Genetic Algorithm, it differentiates

in terms of the representation of individual computer programs in the population. It

has structured trees to demonstrate functions or operators (Xiong et al., 2015: 613).

In the years of 1980s, more metaphors have started to be used in algorithms.

As trajectory-based optimization algorithms, Simulated Annealing and Tabu Search

16

took their place in the past. Each of them has striking characteristics that are used as

an inspiration for the other algorithms. For example, Simulated Annealing developed

by Kirkpatrick et al. (1983) was inspired by the cooling and crystallizing behavior of

chemical substances (Simon, 2013: 223). The objective is to reach the global minimum

energy state during the process of annealing and move to any new set of design

variables that corresponds to a change of the energy state (Sahab et al., 2013: 36). The

basis of the Simulated Annealing dates back to the Metropolis Algorithm (Metropolis

et al., 1953) which provides a simulation of a collection of atoms in equilibrium at a

given temperature. Furthermore, both of them are the inspirations for most of the

physics-based algorithms which will be covered in the following sections. Tabu Search

proposed by Glover (1989; 1990) can be considered as an extension of a hill-climbing

search (Xiong et al., 2015: 610). The most remarkable feature of this algorithm is that

Tabu Search uses memory structures to store historical information in order not to visit

the same candidate solutions again (Luke, 2011: 24).

As of the 2000s, Swarm Intelligence should be covered as a general title of bio-

inspired algorithms. Swarm Intelligence mimics the evolutionary process of the

behaviors of some species like ants, bees, birds, fish (Erdem, 2007: 19). The main idea

of these kinds of algorithms is “collective intelligence”, in other words, the cooperation

of large numbers of homogeneous agents in the environment. The paradigm has two

dominant sub-fields called Ant Colony Optimization and Particle Swarm Optimization

(Brownlee, 2011: 229). Ant Colony Optimization algorithm (Dorigo et al., 1996)

reflects the behaviors of ant colony while trying to find the food source, whereas in

Particle Swarm Optimization (Eberhart and Kennedy, 1995) the location of particles

is tracking in terms of their velocities (Sahab et al., 2013: 39). The recent swarm

intelligence-based algorithms proposed in the literature are provided in the

classification of metaheuristics section.

17

1.3.1.4. The Recent Past Period

Figure 7: Metaheuristic Algorithms Developed in the Recent Past

Source: Prepared by the Author

Figure 7 shows the various kinds of metaheuristic algorithms published

between 2000 and 2020. Since 2000, researchers have focused more on developing

new algorithms based on various kinds of metaphors (Sörensen et al., 2018: 14). The

behavior of animals, laws in the field of science, facts of nature, social behaviors are

some of the inspirations used in the literature. Cat Swarm Optimization (Chu et al.,

2006), Artificial Bee Colony (Karaboga and Basturk, 2007), Bat-inspired (Yang,

2010b), Wolf Search Algorithm (Tang et al., 2012), Dolphin Echolocation (Kaveh and

Farhoudi, 2013), Shark Smell Optimization (Abedinia et al., 2014), Ant Lion

Optimizer (Mirjalili, 2015), Moth Search Algorithm (Wang, 2018), Blue Monkey

Algorithm (Mahmood and Al-Khateeb, 2019), Crow Search Algorithm (Huang and

Wu, 2019), Marine Predators Algorithm (Faramarzi et al., 2020a) are some of the

animal-inspired algorithms; Central Force Optimization (Formato, 2007),

Gravitational Search Algorithm (Rashedi et al., 2009), Charged System Search (Kaveh

and Talatahari, 2010a), Chemical Reaction Optimization (Lam and Li, 2010), Curved

Space optimization (Moghaddam et al., 2012), Heat Transfer Search (Patel and

Savsani, 2015), Henry Gas Solubility Optimization (Hashim et al., 2019), Interior

Search Algorithm (Gandomi, 2014), Weighted Vertices Optimizer (Dolatabadi, 2018),

Simulated Kalman Filter (Ibrahim et al., 2016) are science-inspired algorithms;

18

Harmony Search (Geem et al., 2001), Melody Search (Ashrafi and Dariane, 2011) are

music-inspired algorithms; Water Cycle Algorithm (Eskandar et al., 2012), Crystal

Energy Optimization (Feng et al., 2016), Slime Mould Algorithm (Li et al., 2020) are

nature-inspired algorithms; Anarchic Society Optimization (Ahmadi-Javid, 2011),

Brain storm optimization (Shi, 2011a; 2011b), Teaching-Learning based optimization

(Rao et al., 2011), Election algorithm (Emami and Derakhshan, 2015), Artificial

Memory Optimization (Huang, 2017), Ideology Algorithm (Huan et al., 2017), Human

Urbanization Algorithm (Ghasemian et al., 2020) are social-inspired algorithms.

 In Figure 8, the number of articles published in the literature for each year is given

(Scopus Database). It would be better to clarify that, “Bio-inspired”, “Nature-

inspired”, “Swarm intelligence”, “Physics-based”, “Chemistry-based” and

“Optimization” are used in Scopus Database as keywords (“(TITLE-ABS-KEY

(optimization)) AND ((((("Bio-inspired")) OR ("Nature-inspired")) OR ("Swarm

intelligence")) OR ("Physics-based")) OR ("Chemistry-based")”). The data include

both theoretical and practical studies. However, the number of studies conducted is in

an increasing trend.

Figure 8: Number of Documents Published Over the Period 2000-2020

Source: Scopus Database

19

Especially in recent years, the number of new algorithms has exploded.

Although it seems good to have new algorithms, many researchers (Fister Jr et al.,

2016; Piotrowski et al., 2014; Sörensen, 2015; Odili et al., 2018; Tovey, 2018; Lones,

2020) criticize that plenty of metaheuristics have similarities and they are not novel in

literature. However, as mentioned by Wolpert and Macready (1995) there cannot be

an algorithm that is appropriate for all problems. The possibility that there may always

be a better algorithm leads researchers to develop algorithms using new metaphors.

For this reason, new metaheuristics will continue to be introduced soon (Dokeroglu et

al., 2019: 23).

It is not possible to demonstrate all of the metaheuristic algorithms published

recently in a figure. There are lots of review articles in literature such as Blum and

Roli (2003), Fister et al. (2013), Siddique and Adeli (2015a), Yang et al. (2015),

Sotoudeh-Anvari and Hafezalkotob (2018), Abdel-Basset et al. (2018). Detailed

information about specific physics-based algorithms will be covered in the second

chapter.

1.3.2. The Classification of Metaheuristics

The term “metaheuristics” comprises a wide range of techniques. There are lots

of ways to classify metaheuristics. Fister et al. (2013) mentioned that classification of

algorithms may depend on various criteria such as main principles, sources of

inspiration, perspectives, and motivations. They classified nature-inspired algorithms

in terms of the source of inspirations (Swarm-intelligence-based, bio-inspired,

physics-based, chemistry-based). On the other hand, Blum and Roli (2003)

summarized the most important classifications as Nature-inspired vs non-nature,

population-based vs single point search, dynamic vs static objective function, one vs

various neighborhood structures, memory usage vs memory-less methods. Echevarría

et al. (2019) classified metaheuristics in terms of the number of solutions and

inspiration sources. Beheshti and Shamsuddin (2013) handled metaheuristic

algorithms in terms of inspiration sources, number of solutions, objective function,

neighborhood structure, memory usage. Sotoudeh-Anvari and Hafezalkotob (2018)

also classified the origins of inspirations as animals, physics, humans, plants, nature,

and biology. They also demonstrated that the most popular foundations of inspiration

20

are animal and physic. Also, Hussain et al. (2019) classified all metaheuristics in terms

of their metaphor disciplines, and the classification is shown in Figure 9 that biology

and physics took the first two places respectively. Molina et al. (2020) proposed two

taxonomies as the source of inspiration and the behavior of each algorithm. The source

of inspiration includes Breeding-based Evolution, Swarm Intelligence, Physic and

Chemistry based, Social Human Behavior, Plant-based and miscellaneous classes. On

the other hand, the behavior of an algorithm is handled according to its principle in

creating new solutions. The authors presented the behavior taxonomy as solution

creation and Differential Vector Movement classes.

Figure 9: The Inspirations Adopted by Researchers

Source: Hussain et al., 2019: 2216

Finally, as mentioned above, algorithms can be classified according to the

purposes of the researchers. For that reason, to include all types of algorithms, the

classification conducted by Xing and Gao (2014) has been taken by adding one more

class called Swarm Intelligence-based and given in Figure 10.

21

Figure 10: Classification of Metaheuristics

Source: Adapted from Xing and Gao, 2014

Swarm intelligence-based algorithms are the subsets of bio-inspired

algorithms. For that reason, the algorithms classified as bio-inspired do not include

swarming behavior (Fister et al., 2013: 2). On the other hand, Siddique and Adeli

(2015a) also classified biology-based algorithms as Evolutionary Algorithms, Bio-

inspired Algorithms, and Swarm Intelligence based Algorithms. Some of the studies

that present new algorithms considering swarming behaviors of species can be

summarized as Ant Colony Optimization (Dorigo and Di Caro, 1999), Cat Swarm

(Chu et al., 2006), Monkey Search (Mucherino and Seref, 2007), Artificial Bee Colony

(Karaboga and Basturk, 2007), Firefly Algorithm (Yang, 2009), Cuckoo Search (Yang

and Deb, 2009), Eagle Strategy (Yang and Deb, 2010), Bat-inspired Algorithm (Yang,

2010b), Wolf Search Algorithm (Tang et al., 2012), Swallow swarm optimization

algorithm (Neshat et al., 2013), Grey Wolf Optimizer (Mirjalili et al., 2014), Pigeon-

inspired Optimization (Duan and Qiao, 2014), Crow Search, (Askarzadeh, 2016), Blue

Monkey Algorithm, (Mahmood and Al-Khateeb, 2019), Marine Predators Algorithm

(Faramarzi et al., 2020a), Jellyfish Search Optimizer (Chou and Truong, 2021).

The remaining classes belong to nature-inspired and non-nature-inspired

algorithms. According to Kar (2016), bio-inspired algorithms can solve complex

problems, since they can learn and adapt like biological organisms. For that reason,

they are taking too much attention from the scientific community in recent years. Every

day, the number of new algorithms increases. Artificial Plant Optimization (Zhao et

al., 2011), Brain Storm Optimization (Shi, 2011a; 2011b), Flower Pollination

Algorithm (Yang, 2012), Atmosphere Clouds Model Optimization (Gao-Wei and

Zhanju, 2012), Great Salmon Run Algorithm (Mozaffari et al., 2012), Fruit Fly

Optimization Algorithm (Pan, 2012), Cuttlefish Algorithm (Eesa et al., 2013), Dolphin

Metaheuristics

Swarm
intelligence

based

Bio-
inspired

Physics
based

Chemistry
based

Mathematics
based

Others

22

Echolocation (Kaveh and Farhoudi, 2013), Ant Lion Optimizer (Mirjalili, 2015),

Laying Chicken Algorithm (Hosseini, 2017), Emperor Penguin Optimizer (Dhiman

and Kumar, 2018), Seagull Optimization Algorithm (Dhiman and Kumar, 2019) are

some of the algorithms developed in the recent years.

The physics-based class includes algorithms inspired by the theories developed

in the field of physics. Biswas et al., 2013; Siddique and Adeli, 2016; Salcedo-Sanz,

2016 published articles focusing specifically on physics-based algorithms and

provided comprehensive literature surveys. The principles, working structures, and the

classification of physics-based algorithms will be covered in the literature survey

section in detail. Some of the studies published in this field can be given as

Electromagnetism-like Algorithm (Birbil and Fang, 2003), Particle Collision (Sacco

and De Oliveira, 2005), The Big Bang- Big Crunch Algorithms (Erol and Eksin, 2006),

Central Force Optimization (Formato, 2007), Magnetic Optimization Algorithm

(Tayarani and Akbarzadeh, 2008), Gravitational Search Algorithm (Rashedi et al.,

2009), Charged System Search (Kaveh and Talatahari, 2012), Ray Optimization

(Kaveh and Khayatazad, 2012), Black Hole Search (Hatamlou, 2013), Thermal

Exchange (Kaveh and Dadras, 2017), Henry Gas Solubility Optimization (Hashim et

al., 2019).

 Chemistry-based algorithms are the ones inspired by chemical reactions such

as oxidation-reduction, combination, decomposition, displacement, gas formation, and

metathesis reactions (Xing and Gao, 2014: 8). Chemical Reaction Optimization (Lam

and Li, 2010), Gases Brownian Motion Optimization (Abdechiri et al., 2013),

Chemotherapy Science Algorithm (Salmani and Eshghi, 2017), Vapor-Liquid

Equilibrium Algorithm (Taramsco et al., 2020) are some of the examples published

in various journals.

 From now on, lots of metaheuristic algorithms have been mentioned separately.

However, these algorithms can also be used together and are called “hybrid

algorithms”. Metaheuristics can also be combined with exact methods. Boschetti et al.

(2009) defined the term “matheuristics” as using mathematical techniques in

metaheuristic frameworks. Salem (2012) proposed the Base Optimization Algorithm

which works with the combinations of arithmetic operators. Moreover, Mirjalili (2016)

developed an algorithm called Sine Cosine Algorithm which takes its name from the

23

sin and cos equations. Simulated Kalman Filter (Ibrahim et al., 2016), Golden sine

algorithm (Tanyildizi and Demir, 2017) are the other mathematics-based algorithms

published in recent years.

The remaining algorithms based on various inspirations put into the other

subclass. Imperialist Competitive Algorithm (Atashpaz-Gargari and Lucas, 2007),

Anarchic Society Optimization (Ahmadi-Javid, 2011), League Championship

Algorithm (Kashan, 2009), Melody Search (Ashrafi and Dariane, 2011), Teaching–

learning-based optimization (Rao et al., 2011), Jenga-inspired Optimization Algorithm

(Lee et al., 2013), Golden Ball (Osaba et al., 2014), Artificial Cooperative Search

Algorithm (Civicioglu, 2013), Interior Search Algorithm (Gandomi, 2014), Simulated

Kalman Filter (Ibrahim et al., 2016), Ideology Algorithm (Huan et al., 2017), Weighted

Vertices Optimizer (Dolatabadi, 2018), Human Urbanization Algorithm (Ghasemian

et al., 2020) are some of the studies included in this class.

As summarized above, there are numerous metaheuristic algorithms in the

literature. However, there is no way to determine which algorithm is the best one. As

Wolpert and Macready (1995) proved with the “No Free Lunch Theorem”, there

cannot be an algorithm that is appropriate for all problems. In other words, there is

always a better algorithm than the existing ones. According to Wolpert and Macready

(1995), when the performances of any two algorithms are evaluated across all

problems, the average performances will be equal. In simple terms, the only way to

conclude that one algorithm outperforms another is related to considering a specific

problem (Ho and Pepyne, 2002: 292). Since there is not any metaheuristic to arrive at

the best solution for every problem, scholars should focus on developing an algorithm

that can solve most types of problems. However, many researchers (Fister Jr. et al.,

2016; Piotrowski et al., 2014; Sörensen, 2015; Odili et al., 2018) criticize that plenty

of metaheuristics have similarities and they seem to be novel in literature. For that

reason, it would be better to develop algorithms that provide more “optimal-like”

solutions without trapping the “novelty”.

24

1.4. EVOLUTIONARY COMPUTATION CONTEXT

Evolutionary Computation (EC) comprises building, applying, and studying

metaphorical algorithms inspired by Darwinian principles of natural selection. The

algorithms based on evolutionary principles utilize nature’s capability to evolve living

beings well adapted to their environment (Gonzalez, 2007: 9). The background of the

current evolutionary algorithms will be handled in the historical background section.

However, Evolutionary Programming, and Genetic Algorithms pioneer the existing

metaphorical algorithms regardless of inspiration differences. While there are

metaheuristics that are inspired by different subjects, they are basically all going

through similar iterative evolutionary computation processes which include various

strategies. All of these algorithms develop a population of individuals over

generations, reproduce offspring through various operators, and select the most

suitable for survival in each generation (Du and Swamy, 2016: 2).

Model specification (representation), model identification, initialization,

fitness calculation, neighborhood strategies, memory usage, selection, reproduction,

stopping condition, model reliability, and model validity are summarized in the

following sections as components of the evolutionary computation for population-

based metaheuristics. While in some algorithms all these components are applied; in

some algorithms, these components can be used in different combinations. In this

section, the general context of evolutionary computation is explained in brief. The

schematic representation of any algorithm should follow is given in Figure 11.

25

Figure 11: General flow of an algorithm

Source: Bozorg-Haddad et al., 2017: 20

1.4.1. Model Specification

The model specification refers to the determination of the most suitable method

for the problem to be solved. It is a decision that can be made according to the nature

of the problem. As mentioned by Wolpert and Macready (1995) with the “No Free

Lunch Theorem”, there cannot be an algorithm that is appropriate for all problems.

Although metaheuristic algorithms are not problem-based, choosing the appropriate

algorithm that can be solved for specific problem groups is an important decision stage.

For this reason, the representation of solutions is the initial design question to be

answered according to the optimization problem in any iterative method.

Representations that differ according to the problem types are as follows: binary

26

coding for the knapsack problem, vector of discrete values for the assignment problem,

permutation for traveling salesman problem, and vector of real values for continuous

optimization problems (Talbi, 2009: 35). Furthermore, even qubit representation and

superposition states can be encountered in combinatorial optimization after merging

evolutionary computation and quantum computing in the literature (Layeb, 2013: 15).

Choosing the most suitable algorithm among the algorithms that will provide

solutions according to the representations (binary, discrete, permutation, continuous)

is another decision-making problem. However, deciding the “good” method and

parameter settings requires the know-how and experience of the user, rather than

tracking well-laid-down rules as in the field of statistics (Siarry, 2016: 17). As

mentioned by Yang (2014), choosing the best algorithm for a given type of problem is

harder to be questioned than choosing problems for a given algorithm. For this reason,

in many cases, we might not know the performance of the algorithm without testing.

Therefore, choosing the right algorithm depends on the expertise of the decision-

maker, available sources, and the problem types.

1.4.2. Model Identification

 Identifying the model can result in the situation that reached at the end of the

compliance between the problem and the method. This goodness-of-fit can be

interpreted by considering how close the algorithm converged to the near-optimal

point. The convergence of an algorithm may be checked by graphing or monitoring

the fitness value of the best-so-far solution against iterations, run time, or function

evaluation values (Bozorg-Haddad et al., 2017: 36). For example, the error level from

the best-known solution can be regarded as an indicator of model identification.

However, the identification of a model cannot be limited to a single iteration or trial.

Descriptive statistics as summary measures should be considered among numerous

trials. For this reason, several performance indicators can be also implemented for

model identification of algorithms. Since these indicators are also related to the model

reliability, the details about them will be given in the 1.4.10 section.

27

1.4.3. Initialization

The initialization step is related to generating a random population as a set of

potential solution points. This initial process means taking population samples from

the search space in each generation (Erdem, 2007: 12). According to McPhee and

Hopper (1999), the lack of diversity may result in premature convergence. Therefore,

especially in population-based metaheuristics, the diversity of the initial populations

plays an important role in the efficiency of the algorithms. The strategies for generating

the initial population are classified as random generation, sequential diversification,

parallel diversification, and heuristic initialization (Talbi, 2009: 194). The population

size is preferred constant in general and they are prepared to be affected by the

reproduction strategies employed in metaheuristics.

1.4.4. Fitness Calculation

The optimality of the solutions is determined according to the value of the

objective function as fitness value and it guides the algorithm to search for better

solutions. However, it is not always a single indicator for the desirability of a solution

(Bozorg-Haddad et al., 2017: 24). In some cases, if there is an expected value for the

objective function, the sum of squared error values can be used as well (Erdem, 2007:

12).

Moreover, if the optimization model includes constraints, many different

constraint handling methods are implemented to evaluate the optimality of the solution

points by considering the feasibility as well. According to the purpose of the problem,

the fitness value can be structured on the "shortest path", "lowest cost", "smallest

penalty" or “highest utility” etc.

According to Montes et al. (2005), incorporating constraints into the fitness

function in evolutionary algorithms is an open research area. For this reason, there are

many approaches developed in the literature. The simplest approach is the “rejection

strategy” which discards infeasible solutions regardless of the violation amount. The

drawback of this approach is that there is no learning strategy about discarded solutions

for further iterations (Duarte et al., 2018: 48). The most popular strategy for constraint

28

handling is the “penalty approach”. Different from rejecting directly, this approach

penalizes solutions in terms of their degree of infeasibility (Maier et al., 2019: 207).

Montes et al. (2005) summarized the most known penalty approaches as the death

penalty, static penalty, dynamic penalty, annealing penalty, adaptive penalty, co-

evolutionary penalty, Segregated genetic algorithm, and fuzzy penalty. However,

penalty approaches have also some disadvantages in the determination of the

corresponding weights via trial and error (Maier et al., 2019: 207). Another approach

for constraint handling is “repairing algorithms”. They are applied to infeasible

solutions to make them feasible and generally, they are greedy heuristics (Talbi, 2009:

53). Repair algorithms are widely applied in combinatorial optimization problems. The

problem dependency is the weakness of repair strategies (Michalewicz, 2000: 56).

“Preserving strategy” is another constraint handling approach that ensures feasibility

by using problem-specific representation and operators. Nevertheless, this approach

cannot be generalized for all optimization problems (Talbi, 2009: 53). Finally, hybrid

methods can also be combined with evolutionary algorithms that employ heuristic

rules or gradient methods to facilitate an efficient local search (Erdem, 2007: 34).

Lagrangian multipliers, fuzzy logic, immune system models, cultural algorithms, ant

colony algorithm-based methods are some of the hybrid methods used for constraint

handling as well (Kicinger et al., 2005: 1943).

1.4.5. Neighborhood Strategies

 Intelligence is another important concept that is utilized in population-based

metaheuristics. Communication is a feature of intelligence and it arises from the

neighborhood of individuals in the population. Communicating with each other leads

individuals to reach better solution points by learning from each other’s successes and

failures (Simon, 2013: 27). According to the neighborhood strategy employed for

reproduction, the closest neighbor or the best-so-far solution is considered to generate

better solutions. In some cases, different approaches can be developed. The concept of

swarm intelligence explains the behaviors of some species in nature such as ant

colonies, bird flocks, and fish schools (Erdem, 2007: 19). Proximity, quality, diverse

response, stability, adaptability principles are some of the neighborhood principles

which are employed to develop a branch of evolutionary problem-solving methods

29

(Eberhart and Shi, 1998). Particle Swarm Optimization (PSO) and Ant Colony

Optimization (ACO) algorithms are the pioneers of metaheuristics based on

cooperative behaviors of species (see Historical Background section). Cultural

Algorithm, another swarm intelligence algorithm, differentiates from PSO and ACO

in terms of knowledge types (normative knowledge, situational knowledge, domain

knowledge, history knowledge, and topographical knowledge) used in problem-

solving (Reynolds et al., 2005), and this algorithm models social evolution and

learning (Du and Swamy, 2016: 7). Furthermore, there is also the Social and

Civilization method developed by Ray and Liew (2003) that mimics the intra and

intersociety interactions among society. There are many more algorithms based on

different principles that take advantage of the communication between individuals in

the population.

1.4.6. Memory Usage

 Storing search history may provide information for future search in

optimization algorithms. Memory-less algorithms guide the current solution by

employing the Markov process to determine the next state of the solution points

(Bozorg-Haddad et al., 2017: 28). However, memory is a component that improves the

performance of the algorithms. Memory structure records information about solutions.

Tabu Search (TS) is the first non-nature metaheuristic that uses attributive memory

(Yang, 2014: 18). According to Bozorg-Haddad et al. (2017), there is an argument that

memory usage qualifies TS as a nature-inspired algorithm. Although there are various

ways to use memory, TS utilizes attributive memory which means that recording

specific solution points not only prevents cycling in the search but also performs

efficient exploration ability (Duarte et al., 2018: 94). In other words, TS holds the best

results from search history as the Tabu list and uses this information to determine the

next search strategies. Scatter Search (Glover, 1999) is the improved version of TS

which involves best and worst search results in its memory list. The artificial Immune

System is another memory-based algorithm that mimics the biological immune

systems and utilizes its characteristics for learning and memorizing (Hunt and Cooke,

30

1996: 189). Many state-of-the-art algorithms in the literature include memory in their

principles to improve their performance.

1.4.7. Selection

 The selection operator is another component that may be preferred to use in

evolutionary computation. In some of the algorithms, not all current solutions are

employed to reproduce new solutions. The selection approach may differ randomly or

deterministically (Bozorg-Haddad et al., 2017: 33). According to the Darwinian

principle, the higher the survival of the fittest, the more often it is selected to reproduce

(Petrowski and Hamida, 2016: 117). The simplest approach used in Genetic

Algorithms called Elitism is letting the best solutions pass on to the next iterations

(Yang, 2014: 30). Although not all algorithms implement selection operators,

metaheuristics differentiate from evolutionary algorithms in the way of selecting

solutions. The Boltzman selection, the Roulette wheel, the Tournament selection are

the most common selection approaches used in the literature (Bozorg-Haddad et al.,

2017: 34).

1.4.8. Reproduction

After the initialization and selection steps, new solutions should be generated

according to the strategies that the algorithm employs. Generally generating new

solutions is related to the solutions located around neighbors of the previous solution

(Bozorg-Haddad et al., 2017: 34). All metaheuristics aim at finding feasible, good

quality solutions efficiently and searching solution space without trapping into local

optima (Nesmachnow, 2014: 323).

The key point for the efficiency of metaheuristics is the tradeoff between

randomization and local search i.e. diversification and intensification. A good

combination of diversification and intensification provides better global optimality for

complex problems (Yang, 2018: 15). Exploration also called diversification means

searching for new solutions, whereas exploitation means improving solutions as

intensification (Simon, 2013: 28). The efficiency of metaheuristics depends on the

31

balance between exploration and exploitation (Sotoudeh-Anvari and Hafezalkotob,

2018: 84).

Figure 12: Diversification vs Intensification

Source: Purnomo and Wee, 2013: 386

As shown in Figure 12, exploration is expressed as diversification and it allows

the algorithm to visit diverse regions to explore the search space (Yang et al., 2014:

978). New regions within the solution space are searched with the help of

randomization. Generally, random numbers are generated by using uniform

distribution or Gaussian distribution (Yang, 2018: 14). Crossover, mutation,

recombination are the evolutionary operators for generating novel solutions in Genetic

Algorithms (Salcedo-Sanz, 2016: 15). Furthermore, various operators inspired by

different subjects may be implemented to the algorithms with the same purpose.

Exploration is a tool for increasing the probability of finding the global optimum,

however, it also decreases the ability to converge the global optimum at the same time

(Yang et al., 2015: 1988).

On the other hand, exploitation is also demonstrated in Figure 12 as

intensification which is a way for converging the possible optimum. This time instead

of searching for new regions, the algorithm concentrates on neighbors in the immediate

region to increase the quality (Nesmachnow, 2014: 323). In other words, exploitation

takes the advantage of the information that a good solution is found in this local region

(Yang et al., 2014: 978). Moreover, it utilizes gradients for local information to

32

increase the convergence rate (Yang, 2018: 14). Hill Climbing is one of the local search

methods that utilize derivative information for the search procedure (Yang, 2014: 27).

As the opposite of exploration, exploitation can increase the convergence but move

away from the possibility of finding the global optimum, which results in being stuck

to the local optimum (Yang et al., 2015: 1988).

The balance between intensification and diversification plays an important role

in the development of algorithms. The convergence rate of a metaheuristic is strongly

related to the exploration-exploitation capacity (Morales-Castañeda et al., 2020: 2). As

for Duarte et al. (2018), the opportunity for diversification depends on the length of

the optimization process including several iterations, computational time, or function

evaluations. However, these evaluations are related to the problem context.

Metaheuristics are measured according to both the quality of the optimal solution and

the computational time together. The representation of the balance for minimization

problem is shown in Figure 13.

Figure 13: Performance profiles of two hypothetical metaheuristic procedures

Source: Duarte et al., 2018: 30

According to Figure 13, one can conclude that when the optimization horizon

is short it would be better to prefer less aggressive but diversified algorithms, whereas

when the optimization horizon gets longer aggressive and less diversified algorithms

to provide better solutions for minimization problems. Although it is known that the

33

balance between intensification and diversification is very important, there is no

definite way to measure objectively the rate of exploration and exploitation (Morales-

Castañeda et al., 2020: 1).

1.4.9. Stopping Condition

In each iteration, new populations that lead the algorithm to reach an optimal-

like solution are generated until the termination condition is satisfied. Bozorg-Haddard

et al. (2017) summarized prevalent stopping criteria as the predefined number of

iterations, the threshold of improvement in the fitness function, or the run time.

Moreover, some statistics which show the diversity of the population are also utilized

for stopping criteria as well (Talbi, 2009: 199). Apart from these, many termination

conditions depending on some special feature may be implemented in algorithms.

1.4.10. Model Reliability

As mentioned in the title of Model-identification, it is not possible to interpret

by looking at the result obtained in a single experiment in algorithms that offer a near

solution. For this reason, it has made many trials and the summary statistics of these

trials give an idea about the performance of the algorithm. The number of trials

depends on statistics. This can be explained by the law of large numbers, which

guarantees stable long-term results for averages of some random events (Dekking et

al., 2005: 181). Trials such as 30, 50, and 100 are reported in the literature. However,

achieving good results with less trial can also be interpreted as good in terms of

performance. However, this must be obtained with the same trial number for each run.

Reliability shows the extent to which the algorithm can result in acceptable

results. The percentage of trials terminated by converging the best fitness value under

a predefined threshold value can be considered as a success rate for reliability (Du and

Swamy, 2016: 20). A reliable algorithm is defined as converging similar near-optimal

solutions with approximately the same function evaluation values which shows small

variances among trials (Bozorg-Haddad et al., 2017: 38). Moreover, each experimental

result can be reported by the best-so-far, the worst solutions, mean and standard

34

deviations to provide information about how the results distribute around the mean.

By considering these descriptive statistics, information about how robust solutions the

algorithm provides in each trial can be obtained.

Furthermore, the efficacy and efficiency of the algorithm should also be

considered as performance indicators. The average of the best fitness values in the last

population over all trials is used as an absolute measure for efficacy. Whereas

efficiency is calculated by the average number of function evaluations for success

which implies the speed for convergence (Du and Swamy, 2016: 20). Although a high

success rate and low mean best fitness mean that the algorithm is reliable, there is a

possibility to face bad results accidentally too. For this reason, it would be better to

obtain a small mean best fitness value with low function evaluations in almost every

trial which is challenging.

1.4.11. Model Validity

Validation which is another concept in the field of science is an indicator of the

accuracy of the model. When this concept is evaluated in terms of algorithms, it can

be considered as to whether the algorithm finds the right solution for the related

problem. Especially in multimodal problems which have several local optimums, the

algorithms may be trapped into the local optimums. Considering that this situation

occurs in almost every trial, although the performance of the algorithm is evaluated as

reliable, it is impossible to conclude that the algorithm is valid too. Since the algorithm

cannot solve the problem correctly, which means that premature convergence, the

algorithm is considered invalid. In other words, validity means “build the right model”,

whereas reliability means “build the model right”. Moreover, according to Smit and

Eiben (2010), the scope of validity is defined as the range of problems (a set of

problems, more problems of a certain type, or all problems) that the algorithm can

solve.

35

CHAPTER TWO

LITERATURE REVIEW OF PHYSIC BASED ALGORITHMS

As mentioned in the historical background section, with the theories developed

by Newton, Gauss, Lagrange, and Fermat in the early period, Kantorovich applied

linear programming to a production problem in 1939. According to Biswas et al.

(2013), every technological development has to reach optimality in terms of time and

complexity and the researchers have to propose algorithms that provide the best

possible or better solutions. For that reason, seeking a better algorithm continues and

new inspirations come to exist in literature.

Holzner (2011) defined physics as all-encompassing science and clarified that

the name of physics is derived from the Greek word “physika” which has the meaning

of “natural things”. According to Xing and Gao (2014), physics is the most

fundamental science and it focuses on the basic principles of the universe. Physics

includes various aspects of the natural world such as the objects in motion, energy,

forces, gases, heat, and temperature. All these topics are the basis of the physics-based

algorithms in the literature.

The origins of physics-based algorithms date back to the early periods. Biswas

et al. (2013) asserted that physics-inspired optimization algorithms were paved the

way by Feynman’s proposal of a quantum computing system in 1982. On the other

hand, in 1983 the Simulated Annealing algorithm inspired by the annealing process of

metal was presented. However, this chapter addresses the developed algorithms

especially in recent years and their common and distinctive features are discussed.

2.1. THE CLASSIFICATION OF PHYSICS-BASED ALGORITHMS

According to Sotoudeh-Anvari and Hafezalkotob (2018), physics-based

algorithms are the most popular themes after animal-based algorithms. The

classification of the physics-based algorithms adapted from Biswas et al. (2013) can

be conducted as shown in Figure 14.

36

Figure 14: Classification of Physics-based Algorithms

Source: Adapted from Biswas et al., 2013

Physics-based algorithms can be classified and grouped in a structured way.

The metaphors used in each algorithm can be clarified by using main subjects as

keywords. By doing so, the similarities and the differences in algorithms are put

forward. Until today, numerous physics-based algorithms have been proposed to

literature, the principles, and main subjects are given in the following section.

2.2. PHYSIC-BASED ALGORITHMS

Figure 15: Historical Perspective of Physics-based Algorithms

Source: Prepared by the author

Although the basis of physics-based algorithms dates back to Metropolis

Algorithm (Metropolis et al., 1953) and Simulated Annealing (Kirkpatrick et al.,

1983), as of 2000, algorithms with a wide range of inspiration are derived. After the

pioneering physics-based algorithms, the first modern pure physics-based algorithms

were developed in 2002 Hysteretic Optimization (Zarand et al., 2002) and

Electromagnetism-like Optimization (Birbil and Fang, 2003) in 2003. In the following

Physics based
Algorithms

Newton's
gravitational

law

Quantum
mechanics

Universe
theory

Magnetism Collision Optic Others

37

section, the principles will briefly be mentioned and then the algorithms based on that

principle will be reviewed.

2.2.1. Newton’s Gravitational Law

The algorithms inspired by Newton’s Gravitational Law are given in Table 3

in chronologic order. Each algorithm will be handled according to the common

principles and distinctive features respectively and the application studies will be

presented.

Table 3: Metaheuristic Algorithm Inspired by Newton’s Gravitational Law

Algorithm Main Subjects Author(s)

Central Force Optimization

(CFO)
Particle – Mass – Attraction Formato (2007)

Artificial Physics Optimization

(APO)

Particle – Mass – Hypothetical

– Attraction – Repulsion
Xie et al. (2009a)

Gravitational Search Algorithm

(GSA)

Particle – Mass – Attraction –

Variable Hypothetical Gravity
Rashedi et al. (2009)

Gravitational Interaction

Optimization (GIO)

Particle – Mass –

Constant Gravity – Interaction
Flores et al. (2011)

2.2.1.1. Central Force Optimization

Central Force Optimization (CFO) developed by Formato (2007) is the first

algorithm that is inspired by Newton’s Gravitational Law. It focuses on particle

kinematics in a gravitational field and utilizes particles’ masses for the attraction

between the particles in a deterministic way. In this principle, large particles attract

small particles towards it, and large particles reflect the best possible solution. In this

algorithm, each particle relocates by the masses of the other particles. However, the

acceleration also depends on two parameters (α, β) which are not represented in nature

but help the algorithm for a better exploration or exploitation. Moreover, this algorithm

uses the difference between masses of particles instead of mass which eliminates the

excessive attractions. Another important feature of CFO is that it does not let the

particles repulse each other. Although this algorithm provides new insights into

metaheuristics, the author left some questions behind the study. Thus, after publishing

that article, the remaining questions have been answered one by one. For example,

38

Formato (2010a) proposed a modified CFO algorithm that works in the principle of

parameter-free to avoid local trapping. Afterward, Formato (2011) introduced an

improved CFO algorithm that provides better sampling and periodically shrinking

decision space that is located around the best fitness. Moreover, Formato (2013)

explained the concept of pseudo-randomness in CFO. In stochastic algorithms like

PSO and ACO, their formulation is constituted true random variables, whereas in CFO

the equations are completely deterministic. However, having a pseudorandom

component in the algorithm provided better implementations although it is not

required. Antenna optimization (Formato, 2010b; Qubati et al., 2010), design of

multilayer microwave absorbers (Asi and Dib, 2010), leakage freshwater detection

(Haghighi and Ramos, 2012), optimizing the location of diffusion spots (Eltokhey et

al., 2016), water distribution network optimization (Jabbary et al., 2018), data

clustering (Srinivasa Rao et al., 2015; Javadi and Zahiri, 2018) are some of the

applications of CFO and its variants. A more detailed review of the CFO algorithm

can be found in (Siddique and Adeli, 2015b).

2.2.1.2. Artificial Physics Optimization

 Artificial Physics Optimization (APO) based on Physicomimetics is also

inspired by Newton’s Gravitational Law and it is developed by Xie et al. (2009a). In

this algorithm, virtual physical forces drive a multi-robot system and each robot

represents a physical particle. Different from the CFO algorithm, APO is structured as

both attraction and repulsion forces. However, there is a threshold for this motion

which is the radius of the particles. In addition to the distinctive feature, the power of

the distance parameter used in Newton’s Gravitational Law is flexible between -5 to 5

in the APO algorithm. Moreover, the APO algorithm allows all particles to control the

velocity of the related one until there are no forces. The masses of particles are

calculated using the best and the worst particle function values. The velocity and the

positions of particles depend on two parameters; one is a number distributed randomly

between [0, 1], the other is adaptively changing from 0 to 1 according to the maximum

iteration number. In line with the aim of science, improvements have been made in

this algorithm that provides better results. For example, Xie et al. (2009b) developed

39

an APO algorithm that provides alternatives for mass functions (convex, linear, or

concave) and concluded that an algorithm that utilizes concave mass function performs

better. Furthermore, Xie and Zeng (2010) tested the APO algorithm with three

different force laws (negative exponential, unimodal, and linear) and found out that

linear force law resulted in more effective solutions. Ates and Yeroglu (2018) modified

the APO algorithm by combining it with Base Optimization Algorithm for multi-

parameter function minimization. The authors assert that the modified APO algorithm

provides various mass-cost function combinations which results in fast convergence

and less computational costs. Lastly, Aljohani et al. (2019) published very recently a

hybrid algorithm that uses APO and Particle Swarm Optimization (PSO) together.

They concluded that the new hybrid algorithm has an excellent search capacity and by

doing so, being trapped in local optima can be overcome. Generally, engineering

problems are encountered as real-world problems for APO and its developed versions

such as hyperspectral imagery band selection (Wang and Wei, 2013), vulnerability

assessment and reconstruction of micro-grid (Xie and Ma, 2018), security-constrained

optimal power flow problem (Teeparthi and Kumar, 2018), spectrum detection

problem in cognitive Internet of Things (Li et al., 2019).

2.2.1.3. Gravitational Search Algorithm

 Gravitational Search Algorithm (GSA), the most popular algorithm with

thousands of citations in Scopus, is developed by Rashedi et al. (2009). The main

principles of this algorithm are Newton’s Gravitational Law and Law of Motion.

Differently from the other algorithms, each particle has four specifications as position

(solution), inertial mass (resistance against its position changing), active and passive

gravitational masses which represent force intensity now and previously (Zandevakili

et al., 2019). Moreover, GSA assumes that any particle can attract any other particles

in terms of their masses but inversely proportional to the Euclidean distance rather

than distance square. As in the APO algorithm, the masses of particles are calculated

using the best and the worst particle function values, but in a different form.

Additionally, the forces on each particle depend on both passive and active

gravitational masses which are assumed as equal, distance and gravitational constant

40

as well. However, in GSA gravitational constant is a function based on the total

number of iterations and time and decreases with time like temperature. With this

distinctive feature, the algorithm provides better exploitation. On the other hand, it

uses random parameters for exploration and velocity. Furthermore, the authors also

assert that GSA is a memoryless algorithm but works as effective as algorithms with

memory. The algorithm is not only in its original form, but many new versions have

been developed. For instance, Rashedi et al. (2010) modified GSA as for binary

variables, Sarafrazi et al. (2011) integrated disruption operator which is inspired by

astrophysics to GSA for a better exploitation and exploration ability, Zhang et al.

(2011) improved GSA by immune system in biology and with the help of different

inspiration falling into local optimum problem has been eliminated, Mirjalili and

Lewis (2014) ameliorate slow exploitation which causes major weakness by adding

memory to GSA and by doing so the exploitation phase is accelerated, Gao et al. (2014)

improved GSA as for exploitation ability and local optima problem by integrating

chaos which provides ergodicity and stochasticity, to eliminate trapping local optima

problem, Huang and Qin (2019) used clustering method to divide whole population,

Khan et al. (2019) modified exploitation strategy which provide adaptive velocity in

terms of the number of iterations whereas Zheng et al. (2019) proposed improved GSA

by adjusting gravitational constant. As for the recent applications of GSA and its

modified versions, Sharma and Kumar (2017) applied discrete GSA for virtual

machine placement in cloud computing, Priya et al. (2020) preferred to use GSA as a

feature selection tool for phishing datasets, Han et al. (2020) used binary GSA, Shukla

et al. (2020) integrated GSA with Teaching learning-based algorithm for cancer

classification, Mosa (2020) hybridized Particle Swarm Optimization and GSA for

mining social media data. For more application examples, Sabri et al. (2013) reviewed

GSA and its applications comprehensively.

2.2.1.4. Gravitational Interactions Optimization

Another Newton’s Gravitational Law inspired algorithm called Gravitational

Interactions Optimization is developed by Flores et al. (2011). Unlike GSA, the GIO

algorithm utilizes the Gravitational constant as a constant number because the opposite

41

of it destroys the underlying interaction metaphor. Besides, the GIO algorithm allows

each particle to interact with all others and uses particles’ masses for fitness values.

Although mass functions are similar to GSA, GIO limits fitness values with an interval.

Moreover, the authors asserted that the GIO algorithm provides all local and global

optimums for multimodal functions instead of just global optimum. Also, GIO does

not need a radius parameter or a maximum number of particles as in PSO. However,

GIO has not received enough attention and has not been applied in engineering

problems.

2.2.2. Magnetism

The algorithms inspired by magnetism are given in Table 4. Each algorithm

will be handled according to the common principles and distinctive features

respectively and application studies will be presented.

Table 4: Metaheuristic Algorithms Inspired by Magnetism

Algorithm Main Subjects Author(s)

Hysteretic optimization

(HO)

Material – Energy – Magnetic -

Glass demagnetization
Zarand et al. (2002)

Electromagnetism-like

mechanism (EM)

Particle – Charge – Distance -

Attraction
Birbil and Fang (2003)

Magnetic Optimization

Algorithm (MOA)

Magnetic field - Particles -

Distance

Tayarani and

Akbarzadeh (2008)

Charged System Search

(CSS)

Particle – Charge – Electrostatics –

Attraction – Velocity - Force

Kaveh and Talatahari

(2010a)

Magnetic Charged System

Search (MCSS)

Magnetic forces - Particles -

Attraction - Repulsion -Absorbing
Kaveh et al. (2013a)

Electromagnetic field

optimization (EFO)

Attraction - Repulsion -

Electromagnets

Abedinpourshotorban

et al. (2016)

2.2.2.1. Hysteretic Optimization

Hysteretic optimization (HO) is one of the algorithms published in the very

beginning and it is inspired by the magnetism concept in physics (Zarand et al., 2002:

1). It depends on the demagnetization of magnetic materials with changing the external

field of decreasing amplitude (Pál, 2003: 287). The principle of gradually decreasing

and reaching a steady-state reminds Simulated Annealing (SA) which is inspired by

42

the annealing processes of metals. However, this time, the focused object has a

magnetic property and it is left to a magnetic field with a decreasing amplitude for

reaching the global optimum that is the minimum level of magnetism. In this process,

not only magnetism is lowered, but also a low energy level is reached. As for Pál

(2006), the HO algorithm can be improved by repeatedly shaking up the system but

with a smaller maximum amplitude. Although HO is one of the pioneers in Physic-

based algorithms, it does not attract much attention after 2012. However, it is used for

traveling salesman problem (Pál, 2003), spin glasses application (Gonçalves and

Boettcher, 2008), capacitated vehicle routing problem (Yan and Wu, 2012), 3D protein

folding problem with lattice model (Xiong et al., 2012).

2.2.2.2. Electromagnetism-like Mechanism

Birbil and Fang (2003) developed an algorithm inspired by electromagnetism

theory and that method utilizes an attraction-repulsion mechanism as also mentioned

in Newton’s Gravitational Law section. However, in EM algorithm electrical forces

are used instead of masses. The total electrical force on a particle is calculated

vectorially according to the charges of the other particles in the population and the

distances between the particles (Yurtkuran and Emel, 2010: 3428). Therefore, it is

clear that the total electrical force determines the magnitude of attraction or repulsion

and the higher the magnitude means the better the objective function value. Although

the EM algorithm seems like other physics-based algorithms in some points, the

authors asserted that EM provides less execution time and memory usage. The

algorithm allows both attraction and repulsion of the particles moving in search space.

The overall electrical charges on a particle are calculated in terms of Coulomb’s law

(Cuevas et al., 2012: 43). The authors assert that the algorithm converged global

optimum on average 25 iterations per dimension (Birbil and Fang, 2003: 270). A year

after, Birbil et al. (2004) modified EM by considering convergence with probability

one. Although this algorithm can be used as a stand-alone approach, scholars have also

hybridized the EM algorithm with other metaheuristics. For example, EM has been

integrated with simulated annealing (Tavakkoli-Moghaddam et al., 2009; Naderi et al.,

2010; Jamili et al., 2011), particle swarm optimization (Tian et al., 2009; Lee and Lee,

43

2012), differential evolution (Muhsen et al., 2015), firefly algorithm (Le et al., 2019),

tabu search (Sels and Vanhoucke, 2014), back-propagation algorithm (Lee et al.,

2012). Moreover, the EM algorithm has also attracted attention in the literature as a

field of application. Traveling salesman problem (Javadian et al., 2008), flow shop

scheduling (Yan et al., 2014), inventory control (Tsou and Kao, 2008), array pattern

optimization (Jhang and Lee, 2009), course timetabling problem (Abdullah et al.,

2012), layout problem (Jolai et al., 2012), job shop problem (Tavakkoli-Moghaddam

et al., 2009), feature selection (Su and Lin, 2011), single machine scheduling problem

(Chang et al., 2009), capacitated vehicle routing (Yurtkuran and Emel, 2010),

automatic circle detection (Cuevas et al., 2012) are some of the most cited application

studies in the literature.

2.2.2.3. Magnetic Optimization Algorithm

Magnetic Optimization Algorithm (MOA) is an algorithm inspired by magnetic

field theory and it was firstly introduced in 2008 by Tayarani and Akbarzadeh.

Differently from the other magnetism-inspired algorithms, in MOA each particle is

located in the algorithm by its mass and magnetic field. Moreover, all particles are in

a lattice-like environment for better exploitation and the force on a particle is limited

to only a certain number of neighbors rather than all other particles to decrease the

complexity (Tayarani and Akbarzadeh, 2008: 2664). Also, unlike algorithms based on

gravity, MOA takes into account both repulsive and attractive forces. However, the

authors mentioned that the attraction works in long-range force, whereas repulsion in

short-range (Tayarani and Akbarzadeh, 2014: 83). In MOA when the distances

between the particles reach infinity, the forces disappear on a particle (Kushwaha et

al., 2018: 60). Tayarani and Akbarzadeh (2014) published a revised version of MOA

which explains the algorithm in detail and includes an extension. Aziz and Tayarani

(2016) improved MOA performance by considering the experience of the algorithm.

Thereafter, Sadiq et al. (2018) integrated MOA with Particle Swarm Optimization for

more accuracy and efficiency. Kushwaha et al. (2018) applied MOA for data

clustering. Kushwaha and Pant (2018) modified the magnetic optimization clustering

algorithm with fuzzy logic and applied it in the health care field.

44

2.2.2.4. Charged System Search

 Kaveh and Talatahari (2010a) developed a method called Charged System

Search (CSS). The principle of the method is based on physics and mechanics. The

forces between the charged particles are calculated by utilizing Coulomb’s law and

Gauss laws, whereas the behavior of the particles is determined by Newtonian laws

(Kaveh and Talatahari, 2012: 382). CSS considers a population of solutions and allows

any particle to attract others according to the self-requirements. In addition, to provide

optimal balance in intensification-diversification, the algorithm can remember the

past. The authors mentioned that CSS provides good solutions especially when the

domains are non-smooth and non-convex. Thereafter CSS became the center of

attention and many scholars developed CSS to achieve better results. Kaveh and

Talatahari (2011) improved CSS by introducing the concept of “field of forces” which

provides a general model of physics-based algorithms. Kaveh and Ahmadi (2013)

included supervisor agents in the CSS algorithm for a better exploration ability. Kaveh

et al. (2013a) integrated magnetic forces besides electrical forces for enhancing the

performance of the CSS algorithm. Chu and Tsai (2013) modified CSS by determining

a moving strategy to solve the distribution system loss minimization problem. Precup

et al. (2014) proposed an adaptive CSS that has engagement, exploration, explanation,

elaboration, and evaluation stages. Niknam et al. (2014) implemented a self-adaptive

reformation technique to achieve better performance and high speed. Prasad and Vinod

Kumar (2017) developed a rule-based fuzzy inference system to control the parameters

of CSS. In addition to being developed with the help of additional features, CSS has

been presented to the literature by hybridizing it with different algorithms as well. For

example, CSS hybridized with PSO (Talatahari et al., 2013; Kaveh and Laknejadi,

2011; Kaveh and Talatahari, 2014); Bayesian Optimization Algorithm (BOA) (Aryan

and Alizadeh, 2016); Harmony Search (HS) (Kaveh and Hosseini, 2012); Colliding

Body Optimization (CBO) (Khanzadi et al., 2016; Shirgir et al., 2020); Big Bang-Big

Crunch (Talatahari et al., 2018). After introducing CSS and its extensions to the

literature, they have been applied in many fields. Kaveh and Talatahari (2010b) applied

CSS for the optimal design of skeletal structures, Özyön et al. (2012) utilized CSS

algorithm for economic power dispatch problem with emission constrained, Kumar

45

and Sahoo (2014) found optimal cluster centers by CSS, Kaveh and Behnam (2013)

provided an optimal design of reinforced concrete cantilever retaining walls by

minimizing cost, Precup et al. (2015) used adaptive CSS for finding an optimal path

for mobile robots, Kaveh et al. (2018a) compared CSS with MCSS by applying them

to site layout planning problem, Khanzadi et al. (2016) provided a solution for resource

allocation and resource leveling problem with CSS, Kaveh and Zolghadr (2015) used

an improved version of CSS to detect damages in truss structures, Akbari et al. (2020)

applied CSS and EM for fixed-charged solid transportation problem in supply chain

network.

2.2.2.5. Magnetic Charged System Search

 MCSS is a modified version of CSS as mentioned briefly in the CSS part.

Different from CSS, MCSS considers magnetic forces as well by utilizing Biot-Savart

Law. In physics, a magnetic field occurs when a charged particle moves. Kaveh et al.

(2013a) developed the MCSS algorithm to make an algorithm closer to the nature of

the movements of charged particles. In MCSS, the magnitude of the magnetic force on

a particle is proportional to the charge and the speed of the particle. Moreover, this

algorithm assumes that each particle can move in virtual straight wires. Although only

attraction force is allowed in CSS, a repelling force is also added with a probability in

terms of electrical forces. Besides, the magnetic force includes both attraction and

repulsion forces to obtain better searchability. It would be better to clarify that, when

the objective function value of a particle increases, that particle absorbs other particles.

Furthermore, MCSS allows changes continuously within an iteration, rather than at the

end of the iteration. According to the comparison results conducted by Kaveh et al.

(2013a), the difference between CSS and MCSS becomes more obvious, when the

number of particles (the dimension of the problem) is small. On top of all these

improvements, other researchers have also worked on the MCSS and presented new

versions. Kaveh et al. (2014a) developed an improved MCSS which includes an

improved harmony search scheme for position correction and more effective

convergence parameters. Kaveh et al. (2015a) modified MCSS by hybridizing MCSS

and improved the scheme of the harmony search algorithm. D’Ambrosio et al. (2020)

46

modified MCSS by introducing a self-adaptive parameter setting and a chaotic local

search for better performance. Moreover, MCSS has been also applied in various fields

such as construction project planning (Tavakolan and Share, 2013); phase stability

analysis, and phase equilibrium calculations (Elnabawy et al., 2014); damage detection

(Kaveh and Maniat, 2015).

2.2.2.6. Electromagnetic Field Optimization

 Abedinpourshotorban et al. (2016) proposed EFO inspired by the behavior of

electromagnets. Different from the other algorithms based on magnetism, EFO takes

the advantage of the golden ratio for the attraction-repulsion ratio to converge better.

However, it would be better to clarify that, the attraction force is stronger than the

repulsion force. Moreover, this algorithm divides the whole population into three

subfields as positive, negative, and neutral which lead particles to the optimum

solution. Although EFO is relatively new, its modifications have been presented in the

literature as well. For example, Bouchekara et al. (2017) modified EFO in terms of the

distribution of the random number generation and the rule in case of crossing the

boundaries of search space. Song et al. (2019) improved EFO by implementing a fuzzy

entropy criterion and by embedding a chaotic strategy to enhance searchability.

Yurtkuran (2019) proposed two novel modifications for generating new solution

principles and adaptive control of parameters. Bouchekara (2020) presented a new

chaotic EFO algorithm that considers chaotic numbers rather than random and which

provides a new generating procedure. In addition to introducing new versions, EFO

has also found application areas. Talebi and Dehkordi (2018) utilized the EFO

algorithm for sensitive association rules hiding in the data mining field; Kushwaha et

al. (2018) enhanced the EFO algorithm for clustering; Şahin and Kellegöz (2019)

applied the EFO algorithm for multi-manned assembly line balancing problem by

modifying regeneration strategy.

47

2.2.3. Collision

Different from the algorithms inspired by Newton’s Gravitational Law, the

algorithms inspired by collision behaviors are given in Table 5. Each algorithm will

be handled according to the common principles and distinctive features, respectively.

Table 5: Metaheuristic Algorithms Inspired by Collision

2.2.3.1. Particle Collision Algorithm

PCA is a stochastic single-solution optimization algorithm developed by Sacco

and De Oliveira (2005). It is inspired by the physics of nuclear particle collision

reactions (Duderstadt and Hamilton, 1976: 3). The mechanism of PCA shows that

when the particle moves towards to nucleus which has a high fitness value, the nucleus

would absorb that particle, on the other hand when the particle hits a low fitness

nucleus, it would be scattered to another region. This information means that PCA

handles exploitation and exploration abilities with absorption and scattering.

Moreover, PCA resembles the Metropolis algorithm in terms of the ability of the

acceptance of a candidate solution with a certain probability and Simulated Annealing

(SA) in terms of its structure. Since the early version of PCA is primitive, other

modified versions have been presented in literature throughout the years. Sacco et al.

(2007) published a population-based PCA that is hybridized with the Genetic

Algorithm. Da Luz et al. (2008) proposed a multi-particle collision algorithm (M-

PCA) that is based on canonical PCA by using several parameters instead of one.

Abuhamdah and Ayob (2009) developed Multi-Neighborhood PCA which exploits

hill-climbing local search and two-staged neighborhood structure. Sacco and Rios-

Coelho (2016) introduced an enhanced PCA algorithm called Cross-Section PCA

Algorithm Main Subjects Author(s)

Particle Collision

Algorithm (PCA)
Nucleus - Absorption - Scattering

Sacco and De Oliveira

(2005)

Colliding Bodies

Optimization (CBO)

Colliding bodies – masses –

velocity

Kaveh and Mahdavi

(2014)

Kinetic Energy of Gas

Molecules (KGMO)

Gas molecules - Collision - Kinetic

Energy - Velocity

Moein and Logeswaran

(2014)

48

which uses the probability of interaction between a neutron and target nucleus. Torres

et al. (2018) hybridized Multi-Particle PCA with Rotation-Based Sampling that

provides better global search. As for application studies, Da Luz et al. (2011) applied

Multiple PCA to Radiative Transference and Pollutant Localization Inverse problems;

Abuhamdah and Ayob (2011) solved course timetabling problem with Multi

Neighborhood PCA and Adaptive Randomized Descent Algorithm; Domiciano et al.

(2018) utilized PCA for automatic digital elevation model from images.

2.2.3.2. Colliding Bodies Optimization

 Kaveh and Mahdavi (2014) proposed a single-solution CBO inspired by the

law of momentum and energy. In this algorithm, colliding bodies are considered with

their masses, besides there are no external forces on these bodies. In addition, colliding

bodies have two subgroups (stationary and moving objects) (Kaveh and Mahdavi,

2016: 14). It would be better to mention that only collisions between moving and

stationary bodies are allowed. Nevertheless, even stationary bodies move towards to

better positions through that collision (Siddique and Adeli, 2016: 616). After the

development of the algorithm, different versions of CBO have started to be introduced.

Kaveh and Ghazaan (2014) implemented a memory to CBO and added a stochastic

mechanism to escape from local optima. Bouchekara et al. (2016) proposed an

improved CBO which has the number of colliding bodies as three instead of two.

Panda and Pani (2016); Kaveh and Mahdavi (2019) modified CBO for multi-objective

problems. Cheng and Zhao (2020) proposed Chaotic Enhanced CBO by changing the

generation pattern of bodies which yields better convergence. Chen et al. (2020)

hybridized CBO with Teaching-Learning based optimization algorithm to provide

high convergence speed and to eliminate premature convergence. CBO and its

extensions have also been applied in the engineering literature, for example, cost

optimization of a concrete ribbed slab (Kaveh and Bijari, 2014); clustering model for

seismic catalog (Nanda and Panda, 2015); resource allocation (Kaveh et al., 2015b;

Khanzadi et al., 2016); optimal power flow problem (Pulluri et al., 2016); cost and

CO2 emission optimization (Kaveh, 2017); optimization of fractional order PID

controller (Asl et al., 2018); construction site layout (Kaveh et al., 2018b); designing

49

a microwave filter (Gupta et al., 2020a); structural reliability analysis (Cheng and

Zhao, 2020).

2.2.3.3. Kinetic Energy of Gas Molecules

 Moein and Logeswaran (2014) developed an algorithm inspired by the

behavior of gas molecules. In the KGMO algorithm, each gas molecule is handled with

its position, kinetic energy, velocity, and mass. The velocity and the position are

determined according to the kinetic energy of the molecule. The gas molecules are

moving until reaching the lowest temperature and kinetic energy. Besides, movements

depend on Newton’s law and molecules are allowed to move in a straight line. Unlike

algorithms based on Newton’s gravitational law and magnetism, there are no attractive

or repulsive forces between molecules, and energy is not gained or lost as a result of a

collision. When the literature studies are reviewed, an algorithm that improves KGMO

has not been encountered yet. However, there are hybrid studies made with KGMO.

Moein et al. (2016) hybridized KGMO with Neural Network (NN) for the detection of

heart disorders; Vinay Kumar et al. (2019) utilized KGMO with fuzzy c-means

clustering; Hemachandra Reddy et al. (2019) proposed a hybrid algorithm that includes

the KGMO and PSO; Asha and Gowrishankar (2020) presented an efficient clustering

and routing algorithm that covers both KGMO and Glowworm Swarm Optimization.

Moreover, scholars also applied the KGMO algorithm in various problems such as

nonconvex economic dispatch problem (Basu, 2016); allocation problem in

engineering (Panthagani and Rao, 2017); performance optimization (Reddy and

Reddy, 2019); optimal reactive power dispatch problem (Panthagani and Rao, 2020).

2.2.4. Quantum Mechanics

Different from the other physics-inspired algorithms, Quantum Mechanics

(QM) inspired algorithms have been developed as hybrid algorithms. These algorithms

are the combinations of quantum computing and metaheuristics (Karmakar et al.,

2018: 272). Quantum Computing (QC) has been one of the most interesting topics

after the studies conducted by Feynman (1982) (Dey et al., 2016: 678). Moreover, Dey

50

et al. (2016) also mentioned that because of the parallelism capability of QC that

reduces complexity, it has become popular in various fields like engineering, artificial

intelligence, and so on. It would be better to clarify that quantum metaheuristics and

quantum-inspired metaheuristics do not represent the same concepts. Quantum

metaheuristics are algorithms executed in a quantum computer, whereas quantum-

inspired metaheuristics are developed as algorithms that imitate the principle of

quantum physics for classical computers (Ross, 2020: 815).

Unlike classical computing, a quantum bit (Q-bit) can be represented by 0, 1,

or both which is called a superposition state. This state simulates the superposition of

electrons. In Quantum mechanics, electrons are moving in orbits according to their

angular momentum and energy level. A lower energy electron can jump to another

orbit that has a higher level by absorbing the energy and the visa versa is possible as

well. The orbit which includes electrons can be known with a probability and this

situation can be expressed with a superposition state. Therefore, the position of an

electron is defined as a quantum state vector with Q-bits (Biswas et al., 2013: 6).

Since the principle of QM has not been utilized as single-handed in literature,

the Quantum-inspired algorithms can be considered as semi-physics-based

metaheuristics in literature. Indeed, QC is preferred when the metaheuristics are unable

to handle some NP-Hard problems. Moore and Narayanan (1995) presented the

potential use of QC in NP-Hard problems.

Numerous studies are proposed algorithms hybridized with QM in literature.

The review studies focus on quantum-inspired metaheuristics on a specific subject that

can be found in Dey et al., 2014; Dey et al., 2016; Mozaffari et al., 2017; Karmakar et

al., 2018; Ross, 2020. In Table 6, pioneer Quantum-inspired metaheuristics are given.

Table 6: Metaheuristic Algorithms Inspired by Quantum Mechanics

Quantum-inspired Algorithm Author(s)

Q - Genetic Algorithm (GA) Narayanan and Moore (1996)

Q - Evolutionary Algorithm (EA) Han and Kim (2002)

Q - PSO Sun et al. (2004)

Q - Immune clonal algorithm (ICA) Li and Jiao (2005)

Q - Ant Colony Optimization (ACO) Wang et al. (2007)

Q - GSA Su and Yang (2008)

Q - Differential Evolution (DE) Su and Yang (2008)

Q - Artificial Immune System (AIS) Gao et al. (2010)

Q - Tabu Search (TS) Chiu et al. (2011)

51

Q - Cuckoo Search Algorithm (CSA) Layeb (2011)

Q - Firefly Algorithm (FA) Manju and Nigam (2012)

Q - EM Chou et al. (2012)

Q - Bacterial Foraging Algorithm (BFA) Huang and Zhao (2012)

Q - Harmony Search (HS) Layeb (2013)

Q - Artificial Bee Colony (ABC) Bouaziz et al. (2013)

Q - Cultural Algorithm (CA) Guo and Zhang (2015)

Q - Glowworm Swarm Optimization (GS) Gao et al. (2017)

Q - Bat Optimization (BO) Dey et al. (2019a)

Q - Dolphin Swarm Algorithm (DSA) Qiao and Yang (2019)

Q - Binary Wolf Pack Algorithm (BWPA) Gao et al. (2019a)

Q - Teaching-Learning-Based Optimization (TLO) Gao et al. (2019b)

Q - Sperm Whale Algorithm (SWA) Dey et al. (2019b)

When the list is examined, it is clear that generally animal-based algorithms

are modified by quantum mechanics and these algorithms can be considered as semi-

physics. However, there are also physics-based algorithms such as SA, GSA, EM that

are hybridized with QM for better performance.

2.2.5. Universe Theory

The algorithms inspired by the universe theory are given in Table 7. Each

algorithm will be handled according to the common principles and distinctive features

respectively and application studies will be presented.

Table 7: Metaheuristic Algorithms Inspired by Universe Theory

Algorithm Main Subjects Author(s)

Big Bang- Big Crunch (BB-BC)
Center of mass – Collapse –

Blackhole

Erol and Eksin

(2006)

Gravitation Field Algorithm

(GFA)

Solar Nebular Disk Model - Mass -

Dust - Motion - Absorption
Zheng et al. (2010)

Spiral Optimization Algorithm

(SOA)
Logarithmic Spiral

Tamura and

Yasuda (2011a;

2011b; 2011c)

Galaxy-based Search Algorithm

(GbSA)
Spiral movements - Galaxies

Shah-Hosseini

(2011a; 2011b)

Black Hole Algorithm (BH) Stars – Black Hole Hatamlou (2013)

General Relativity Search

Algorithm (GRSA)

Velocity – Curved Space –

Geodesic Trajectory

Beiranvand and

Rokrok (2015)

Multi-verse optimizer (MVO)
White hole - Black hole -

Wormhole - Colliding

Mirjalili et al.

(2016)

52

2.2.5.1. Big Bang- Big Crunch

The universe was born after the Big-Bang. However, this leads us to be curious

about the ultimate fate of the universe. According to Einstein’s Theory of Relativity,

the ultimate fate of the universe depends on the density of mass and energy in the

universe. This means that the universe continues to exist when there is enough

attraction to expand by getting colder and result in a single point called Big Crunch

(Holzner, 2011: 358). Erol and Eksin (2006) developed the BB-BC optimization

algorithm that is inspired by the theories of the evolution of the universe. The Big-

Bang phase is constructed to obtain randomness that is a result of energy dissipation.

Moreover, candidate solutions scatter to search space with uniform distribution.

Thereafter, the Big Crunch phase is constituted for intensification. In this part, the

center of mass is calculated which represents the inverse of the fitness function value.

Furthermore, the center of mass is obtained as a result of the collision of all masses

and it has gravitational force for the attraction (Siddique and Adeli, 2016: 607).

Eventually, this algorithm iterates between these two phases. Afterward, modified

versions of BB-BC have been proposed in the literature. Kripka and Luvezute Kripka

(2008) proposed Big Crunch optimization that works with a population of variables;

Kaveh and Talatahari (2010c) modified BB-BC for discrete problems; Alatas (2011)

utilized chaos for speed convergence and uniform population method; Hasançebi and

Azad (2012) modified BB-BC by utilizing exponential distribution in random number

generation; Sedighizadeh and Ghalambor (2014) presented a modified BB-BC for

reconfiguration of multi-objective distribution networks in fuzzy sets; Kumar et al.

(2018) developed multi-population version of BB-BC; Yin et al. (2018) improved BB-

BC by changing the exploding radius and generating multiple mass centers; Bijari et

al. (2018) improved BB-BC by implementing enriched memory; Yalcin and Pekcan

(2020) developed a derivative version of BB-BC called Nuclear Fission- Nuclear

Fusion. Also, applications of BB-BC and its modifications in various fields have been

published, such as the design of space trusses (Camp, 2007; Kaveh and Talatahari,

2009); economic dispatch (Labbi and Attous, 2010; Rao and Yesuratnam, 2015; Labbi

and Attous, 2017; Ieng et al., 2019); scheduling (Jaradat and Ayob, 2010; Kang et al.,

2016); data clustering (Hatamlou et al., 2011; Bijari et al., 2018); damage detection

53

(Tabrizian et al., 2013); path planning (Yılmaz and Gökaşan, 2015); cloud computing

(Mahdavi and Ghaffari, 2019); passive building design (Robic et al., 2020).

2.2.5.2. Gravitation Field Algorithm

 Zheng et al. (2010) developed GFA which is an algorithm inspired by the

famous astronomy theory of planetary formation called the Solar Nebular Disk Model.

According to that theory, everything was a cloud of dust in the beginning. Later, this

dust cloud formed the rocks by gravitational force. Throughout this process, big rocks

grabbed small rocks and finally planets took place. From this point, GFA imitates that

process by considering the dust cloud as candidate solutions and the planet as a global

optimal solution. Moreover, assembling of the dust clouds occurs by taking into

account the assigned masses and the power of attraction caused by the other clouds of

dust. In the following process, the algorithm has been improved. Zheng et al. (2012a)

modified GFA in terms of both the rule of random division and rotation factor. Rong

et al. (2013) proposed Parallel GFA that is based on the island model for better

computing ability. Hu et al. (2019) implemented dust sampling that can locate more

likely the space containing the optimal solutions and explosion operator for better

accuracy. GFA and its other versions have not been applied in various fields yet.

However, the reconstruction of gene regulatory networks problem in biology (Zheng

et al., 2012b) and the navigability analysis (Liu et al., 2019) are the published studies

that utilized GFA.

2.2.5.3. Spiral Optimization Algorithm

 The concept of spiral dynamics found in nature was firstly utilized in the

optimization algorithm by Jin and Tran (2010) and Tamura and Yasuda (2011a; 2011b

2011c). Jin and Tran (2010) proposed a nature-inspired evolutionary algorithm that

employs attraction based on spiral movements and dynamic mutation for better

convergence. A year later, Tamura and Yasuda (2011a) developed a two-dimensional

Spiral Optimization algorithm inspired by logarithmic spiral phenomena. The

logarithmic spirals can be observed in nature as whirling current, a low pressure, a

54

nautilus shell, arms of spiral galaxies. The authors asserted that these examples provide

efficient searchability in metaheuristics. Immediately after, Tamura and Yasuda,

2011b; 2011c) modified SOA for n-dimensional problems. Moreover, the novelty in

the algorithm is not only the analogy but also the structure that has no randomness and

fewer parameters. Tsai et al. (2014) proposed a novel SOA that divides the population

into subpopulations to increase the diversity for clustering performance. Kaveh and

Mahjoubi (2019) modified SOA by altering the movement operator implementing a

mechanism to escape from local optima. Cao et al. (2020a) improved SOA for multi-

objective problems which include both minimizing cost and maximizing energy

efficiency. Furthermore, Stability analysis (Tamura and Yasuda, 2013); economic and

emission dispatch (Benasla et al., 2014); clustering (Tsai et al., 2014); image

segmentation (Man et al., 2014) sizing and layout optimization problem (Kaveh and

Mahjoubi, 2019) are some of the studies utilized SOA and its modifications.

2.2.5.4. Galaxy-based Search Algorithm

 Shah-Hosseini (2011a) got inspired by the spiral arm of spiral galaxies in outer

space and proposed a novel metaheuristic called GbSA. In this algorithm, spiral

movement is enriched with chaos to eliminate trapping into local optima. The

advantage of chaos is that it prevents the algorithm move to the same point. Moreover,

GbSA also includes a mechanism that stores the best solution and utilized modified

Hill Climbing for local search (Shah-Hosseini, 2011b: 383). After the algorithm was

published, several modifications have been made. Tolabi et al. (2016); Ara et al.

(2016) modified GbSA by utilizing fuzzy sets. Sardari and Moghaddam (2016)

modified GbSA in terms of local search procedure which results in more precise

results. Apart from theoretical improvements, GbSA has been applied in different

areas. Economic and emission dispatch problem (Zerigat et al., 2013; Zerigat et al.,

2014), minimization of real power losses (Kumar et al., 2016), capacity optimization

(Recioui, 2016), symmetric traveling salesman problem (Phu-Ang, 2018) are some of

the applied studies published in the literature.

55

2.2.5.5. Black Hole Algorithm

 Hatamlou (2013) developed an algorithm inspired by the black hole

phenomenon. A black hole in space has enormous gravitational power that absorbs

everything. BH starts with a randomly generated star population and a black hole

becomes the best-so-far solution among all-stars. Later, according to the event horizon

(the threshold for the distance between the star and the black hole) and a random

number, the black hole starts to swallow up and in each iteration, a new located black

hole is aimed which denotes a better optimal solution. Additionally, when there is a

star absorbed by a black hole, a new random solution is generated until the population

size remains the same. The authors asserted that BH has advantages in terms of both

its simple structure and free-parameter tuning. However, Piotrowski et al. (2014)

criticized BH that it is not a novel metaheuristic rather it is a simplified version of PSO

and the only difference is the event horizon that limits the exploration ability; Gupta

et al. (2016) compared BH with PSO and found out that PSO outperformed than BH.

Many studies suggesting improvements have also been published, as the algorithm is

immediately criticized. Jeet et al. (2016), Yaghoobi and Mojallali (2016) hybridized

BH with Genetic Algorithm to prevent trapping into local optima; Wang et al. (2016)

implemented Euclidean distance in the initialization of star locations to provide better

exploration ability; Aslani et al. (2016) modified BH by introducing chaotic inertia

weight for enhancing global searchability; Wu et al. (2017) proposed an adaptive BH

that is less computational and has better intensification-diversification balance;

Pashaei and Aydin (2017), García et al. (2017), Qasim et al. (2020) modified BH for

binary variable problems; Gao (2017) presented a modified BH by implementing limit

equilibrium mechanism; Xie et al. (2019) improved exploration and exploitation

performance of BH by implementing Golden Sine and Levy Flight Operator

respectively. Furthermore, BH and its improved versions have been utilized in

problem-solving in various fields. For example, power flow optimization (Hasan and

El-Hawary, 2014), job scheduling (Jeet et al., 2016), set covering (García et al., 2017;

Soto et al., 2018), facility location and assignment problem (Veres et al., 2017), feature

selection (Pashaei and Aydin, 2017; Qasim et al., 2020), a traveling salesman

(Hatamlou, 2018), gene selection (Pashaei et al., 2019).

56

2.2.5.6. General Relativity Search Algorithm

 Beiranvand and Rokrok (2015) developed GRSA as for global optimization

approach inspired by Einstein’s General Relativity Theory. GRSA is handled under

the Universe class rather than Newton’s Gravitational Law class. Because Einstein’s

General Relativity Theory generalizes Newton’s Law of universal gravitation by

explaining several effects that are unexplained by Newton's law. In GRSA, it is

assumed that particles are moving in a non-gravitational space and they tend to be less

active. This algorithm allows particles to move along geodesic trajectories in curved

space and their velocities are calculated according to their energy momentums.

Moreover, the velocities and the geodesic tangent are utilized for the determination of

step length and step direction in the position-changing process. Although it presents a

different principle, it has not been widely applied in the literature. Until now, Kumar

et al. (2017) applied GRSA for Automatic Generation control; Ehsan-Maleki et al.

(2018) utilized GRSA for parameter optimization in the design of WAPPSs.

2.2.5.7. Multi-verse Optimizer

 Another metaheuristic algorithm called Multi-verse Optimization has been

developed by Mirjalili et al. (2016). MVO mimics the theory of multi-verse in physics

which says that there is more than one universe and they can interact and collide with

each other. Mirjalili et al. (2016) utilized white holes, black holes, and wormholes

concepts that have distinctive characteristics and capabilities. White holes attract

everything whereas black holes absorb and wormholes provide a connection between

white and black holes. Moreover, each universe has an inflation speed which

constitutes every component in it. Hence, these principles are employed in the

modeling of the MVO algorithm. For example, the inflation rate is assigned to each

universe (candidate solution) according to the fitness value, and when the rate is high

enough the universe may have a white hole that denotes a better solution. Also, having

white hole results in sending objects to universes that have black holes through

wormholes. This process has been achieved by utilizing a roulette wheel procedure.

Moreover, it would be better to mention that wormholes appear randomly unlike the

57

others, and ensure sudden changes in white and black holes to eliminate local optima

stagnations. As seen in other algorithms as well, improved versions of MVO have been

published. Meshkat and Parhizgar (2017) improved the performance of MVO by

implementing an updated genetic reproduction scheme; Valenzuela et al. (2017),

Abdel-Basset et al. (2019), Al-Madi et al. (2019) modified MVO for binary variables;

Mirjalili et al. (2017), Geng et al. (2019), Elaziz et al. (2019) proposed multi-objective

version of MVO; Ewees et al. (2019), Sahoo and Panda (2020) developed Chaotic

MVO to avoid local optima stagnation and slow convergence; Wang et al. (2020a)

presented a novel MVO that provides parallel sessions to avoid premature

convergence; Abasi et al. (2020) enhanced the exploitation ability of MVO by

introducing neighbor operator. Furthermore, the application fields could be

summarized as power flow optimization (Bentouati et al., 2016), classification

problem (Faris et al., 2016), feature selection (Faris et al., 2018), knapsack problem

(Abdel-Basset et al., 2019), flow-shop scheduling (Wang et al., 2019a), damage

detection (Ghannadi and Kourehli, 2020).

2.2.6. Optic

The algorithms inspired by optics are given in Table 8 in chronological order.

Each algorithm will be handled according to the common principles and distinctive

features respectively and application studies will be presented.

Table 8: Metaheuristic Algorithms Inspired by Optics

Algorithm Main Subjects Author(s)

Light Ray Optimization (LRO)
Optical phenomena - Refraction -

Reflection - Position
Shen and Li (2009)

Ray Optimization (RO)
Rays of light - Travels - Ray

tracing

Kaveh and

Khayatazad (2012)

Optics Inspired Optimization

(OIO)
Behaviors of light - mirror Kashan (2015a)

2.2.6.1. Light Ray Optimization

According to Fermat’s principle, a ray takes a path between two points in the

least time. Therefore, Shen and Li (2009) developed the Light Ray Optimization

58

algorithm based on optical principles. This algorithm mimics the behavior of rays in

an uneven transparent medium. The searching process starts with dividing the search

space into rectangular grids in which light rays go at different velocities (Shen and Li,

2010: 919). The propagation velocity of light rays is calculated as the objective

function value of the center of the related grid and that the propagation path represents

the searching path in the problem solution. Besides, refraction or reflection occurs

while trans-passing the grids for searching the global optima according to the

characteristics of the corresponding grid (Shen and Li, 2012: 435). Although LRO is

one of the first algorithms inspired by optics, it does not attract much attention in the

literature. Wang and Shen (2012) modified LRO for multi-objective problems; Shen

and Li (2012) improved the local searchability of LRO by implementing a simulated

annealing strategy are some of the studies focusing on LRO and its extensions.

2.2.6.2. Ray Optimization

 Another optic-inspired algorithm is RO developed by Kaveh and Khayatazad

(2012). Unlike LRO, RO utilized Snell's light reflection law. According to that law,

refraction of light occurs, and the direction changes when rays of light move from a

lighter medium to a darker medium. By exploiting this principle, the candidate

solutions approach the global optimum in the RO algorithm. Different from other

algorithms mentioned in this chapter, the RO algorithm handles high dimension

problems by dividing solution vectors into 2 or 3-dimensional spaces and then joining

them together. Also, RO utilizes a definite movement vector in case of being out of

the search space. After proposing the RO to the literature, its modifications have been

developed. Kaveh et al. (2013b) improved the RO algorithm for high dimensional

problems by changing the procedure for the division of search space into 2 or 3 and

the boundary violation rule; Beirami et al. (2020) modified RO for the multi-objective

problems. Moreover, RO has been also applied in designing truss structures (Kaveh et

al., 2013b), damage assessment (Kaveh et al., 2014b), optimization of the thickness of

granular layers in railway tracks (Esmaeili et al., 2015), layout and size optimization

(Kaveh and Ghazaan, 2015), economic generation scheduling (Beirami et al., 2020).

59

2.2.6.3. Optics Inspired Optimization

 OIO is another algorithm inspired by the law of reflection and it models the

behavior of light and its interactions with instruments. According to the law of

reflection, a concave surface makes the light be converged whereas, a convex surface

makes the light diverge. By utilizing these principles metaphorically, Kashan (2015a)

developed OIO which assumes that the surface of the objective function is a wavy

mirror including peaks and valleys as convex and concave mirrors. Thereafter, a

candidate solution (image) is generated based on the mirror equations adopted in

optics. Moreover, Kashan (2015a) developed two variants of OIO as well. Since OIO

has the ability to handle unconstrained optimization problems, Kashan (2015b)

developed a modified version of OIO to handle constraints. In addition, Wang et al.

(2017) proposed a Self-adaptive OIO for better convergence speed and accuracy;

Wang et al. (2020b) proposed an estimation method that integrates Support Vector

Machine and Quantum OIO. Besides the theoretical developments, some application

articles as clustering and routing in wireless sensor network (Lalwani et al., 2017),

traveling tournament (Alatas and Bingol, 2019), design of truss structures (Jalili and

Kashan, 2019), scheduling of batch processing machine (Alizadeh and Kashan, 2019)

have also been published.

2.2.7. Others

Until now, the physics-based algorithms classified in terms of their principles

have been reviewed and summarized. In Table 9, physics-based algorithms that are not

put into a class are listed. In the following, each one will be reviewed and its recent

developments will be summarized.

Table 9: Other Algorithms

Principle Algorithm Main Subjects Author(s)

Law of motion

Gases Brownian

Motion Optimization

(GBMO)

Gas molecule – Mass –

Velocity – Radius of

Turbulent

Abdechiri et al.

(2013)

Ions motion
Ions Motion Algorithm

(IMO)

Attraction - Repulsion -

Anions - Cations -

Motion – Charged

Javidy et al.

(2015)

60

Law of

Thermodynamics

Heat Transfer Search

(HTS)

Heat - Temperature -

Balance

Patel and Savsani

(2015)

Newton’s Law of

Cooling

Thermal exchange

Optimization (TEO)

Heat - Temperature -

Position

Kaveh and

Dadras (2017)

Henry’s Law
Henry gas solubility

optimization HGSO)

Gas-Liquid -

Temperature -

Hashim et al.

(2019)

Balance
Equilibrium optimizer

(EO)

Control Volume- Mass-

Balance

Faramarzi et al.

(2020b)

2.2.7.1. Gases Brownian Motion Optimization

GBMO is an algorithm inspired by the law of motion and mimics the gas

molecules according to their positions, masses, velocities, and radiuses of turbulent

(Abdechiri et al., 2013: 2934). In GBMO, the temperature has a crucial role in setting

up the balance between exploitation and exploration. Molecules in small masses

denote better candidate solutions and they can move faster which provides good

exploitation. Moreover, in the beginning, the molecules are in high-temperature space

and they have kinetic energies for exploring search space with the help of Gases

Brownian Motion. However, with a lapse of time, temperature decreases, and turbulent

rotational motion provides local searchability. Therefore, it is clear that the power of

GBMO lies under the policy of changing the roles of Gases Brownian Motion with

turbulent rotational motion. Afterward, GBMO has been improved with different

procedures. For example, Rathore and Roy (2014) applied GBMO in transmission

network expansion planning problem; Rahchamani et al. (2019) proposed an adaptive

neuro-fuzzy inference system for classification by utilizing GBMO; Zamani et al.

(2016) applied GBMO for Fractional Order PID controller; Nayak et al. (2019)

designed digital differentiator by GBMO.

2.2.7.2. Ions Motion Algorithm

 Javidy et al. (2015) developed the IMO algorithm that utilizes the behavior of

ions towards each other in terms of their charges. Although various algorithms employ

charged particles under the classification of “Newton’s Gravitational Law” and

“Magnetism”, IMO does not belong to both classes. In IMO, ions are treated as the

candidate solutions in two groups (anions: negative ions and cations: positive ions). It

61

is clear that an attraction may occur between these two groups and repulsion may occur

within the groups. Namely, anions tend to move toward the best cation, whereas

cations move toward the best anion. The magnitudes of the charges are calculated in

terms of the objective function values and the movements that occur by considering

their charges. Furthermore, for exploration and exploitation procedures two phases

(liquid and solid) of ions are employed. The process of the transition from liquid to

solid yields IMO to converge the global optimum. Afterward, modified versions have

been published in literature asserting that they provide better performances. Wang and

Ma (2018) improved the convergence speed and accuracy by implementing an

opposition-based learning strategy and changing random perturbations in the solid

phase. Wang et al. (2019b) eliminated the local optimum stagnation and premature

convergence by introducing a cloud adaptive inertia weight quantum chaotic IMO

algorithm. Buch and Trivedi (2020) modified IMO as Non-Dominated Sorting IMO

which utilizes selective crowding distance and non-dominated sorting method to

preserve the diversity of the best solutions set. Besides, IMO has also attracted

attention in engineering applications such as optimization of Least Squares Support

Vector Machine parameters for temperature compensation approach (Li et al., 2016);

optimization of the pump position in a water distribution network (Tahani et al., 2019).

2.2.7.3. Heat Transfer Search

 HTS is an algorithm inspired by the law of Thermodynamics and it is

developed by Patel and Savsani (2015). This algorithm is built on the concept of

thermal equilibrium. According to that principle, any system always tends to reduce

the thermal imbalance between the system (candidate solutions) and the surrounding

(best solution) by conducting heat transfer in the form of conduction, convection, and

radiation. HTS employs clusters of molecules that are at different temperature levels

and represent variables and the energy levels of molecules are treated as the objective

function value of a problem. HTS includes conduction, radiation, and convection

phases with equal probability to neutralize thermal imbalance, respectively. If the

updated solution has a better fitness value, it will be accepted and a greedy selection

procedure will be employed. In addition, the balance between intensification and

62

diversification is controlled for each phase with the help of the factors used. After the

algorithm is introduced to the literature, different versions have been presented as well

as in others. Savsani et al. (2017) developed multi-objective HTS which includes a

non-dominated sorting method and diversity preserving crowding distance approach.

Tejani et al. (2019a) improved HTS by incorporating the interactions between

molecules as well as with surrounding and by introducing the population regenerator

procedure. Alnahari et al. (2020) solved a dynamic optimization problem in chemical

engineering with the help of HTS which is modified in terms of simultaneous heat

transfer search, quadratic interpolation method, and population regeneration

mechanism. In addition to theoretical developments, optimization of truss structures

(Degertekin et al., 2017; Tejani et al., 2019b; Kumar et al., 2020a), optimization of

semi-active suspension system (Garg et al., 2017), economic dispatch problem (Hazra

et al., 2018; Pattanaik et al., 2020), optimum design of distribution networks

(Mohamadi et al., 2020) are some of the application studies published in the literature.

2.2.7.4. Thermal Exchange Optimization

 Kaveh and Dadras (2017) developed the TEO algorithm inspired by Newton’s

law of cooling. This law states that the rate of heat loss of a body is proportional to the

temperature difference between the body and its surroundings. Differently from SA,

TEO employs the temperature of bodies as their position and new positions are

determined by grouping the bodies with new temperatures. As a distinctive feature,

TEO has thermal memory that saves best-so-far solutions and removes the worst

objects at the same time to improve the performance. Since the algorithm has been

introduced relatively new, it has not been studied much yet. A year after, Kaveh and

Dadras (2018b) modified TEO by implementing an offline parameter-tuning method

to identify structural damage. Kaveh et al. (2018b) eliminated shortcomings of TEO

and applied it for the optimization of the design of skeletal structures. Afterward, Xing

and Jia (2020) implemented the Levy flight algorithm to TEO to obtain a better

exploration and exploitation balance for image segmentation.

63

2.2.7.5. Henry Gas Solubility Optimization

 HGSO is another physics-based algorithm inspired by Henry’s Law (Hashim

et al., 2019: 646). According to Henry’s Law, the dissolved gas amount in a liquid is

proportional to the partial pressure of that gas in equilibrium with that liquid. In HGSO,

the solubility can be affected by temperature and pressure. For example, the solubility

of gasses increases at less temperature but in a high-pressure environment. This

algorithm utilizes clustering after the initialization step. Although HGSO proposed

relatively new, it attracts attention. Saranya and Saravanan (2020) modified HGSO by

implementing langrage relaxation; Shehabeldeen et al. (2020) hybridized HGSO and

Artificial Neural Network (ANN); Hashim et al. (2020) improved HGSO by inserting

a new section for accurate detection of target motif. Besides, HGSO applied for feature

selection (Neggaz et al., 2020), shape optimization of a vehicle brake pedal (Yıldız et

al., 2020), parameter optimization of Support Vector Regression (Cao et al., 2020b).

2.2.7.6. Equilibrium Optimizer

 Faramarzi et al. (2020b) proposed EO as one of the most recently published

physic-based algorithms. It is inspired by control volume mass balance models. It is

assumed that each agent changes its position according to the equilibrium candidates

which are the best-so-far solutions. Although EO has been presented this year, it takes

too much attention and is cited more than 25 times within a couple of months. For

instance, Gupta et al. (2020b) implemented Gaussian mutation and exploratory

mechanism into EO; Wunnava et al. (2020) proposed another version of EO which

provides an adaptive position update strategy. Furthermore, modeling of a fuel cell

(Menesy et al., 2020); economic dispatch problem (Agnihotri et al., 2020); prediction

of laser cutting parameters (Elsheikh et al., 2020) are the first application studies.

64

CHAPTER THREE

THE PROPOSED ALGORITHM

In this thesis, two optimization algorithms that are adapted from the thesis

prepared by Erdem (2007) are proposed. The first one called Random Search with

Adaptive Boundaries (RSAB) is an initialization algorithm that provides adaptive

initial solutions rather than pure random. The main power of the proposed algorithm

is the ability to eliminate the local optimums by narrowing the search space. However,

the proposed algorithm is not the one that guarantees the global optimum solution.

Indeed, it is a generic methodology that can be applied in the initialization stage of any

algorithm for unimodal or multi-modal problems. In other words, it provides an

adaptive initial solution for both continuous unconstrained/bounded and constrained

nonlinear optimization problems demonstrated in Eq. (3.1) and Eq. (3.2) that may have

many local optima.

𝑀𝑖𝑛 𝑓(�⃗�)

∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢], 𝑥𝑙 ∈ ℝ, 𝑥𝑢 ∈ ℝ (3.1)

𝑤ℎ𝑒𝑟𝑒 𝑓: ℝ𝑛 ⟶ ℝ

𝑥 ∈ ℝ, �⃗� ∈ ℝ𝑛

where �⃗� is the solution vector, 𝑥𝑙 and 𝑥𝑢 are the boundaries of the related

variable, lastly 𝑓(�⃗�) is the objective function whether in a linear or non-linear form.

𝑀𝑖𝑛 𝑓(�⃗�)

Subject to

𝑔𝑖(�⃗�) ≥ 𝑏𝑖 𝑖 = 1,2, … , 𝑘

 ℎ𝑗(�⃗�) = 0 𝑗 = 1,2, … , 𝑙 (3.2)

∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢], 𝑥𝑙 ∈ ℝ, 𝑥𝑢 ∈ ℝ

𝑤ℎ𝑒𝑟𝑒 𝑓: ℝ𝑛 ⟶ ℝ, 𝑔: ℝ𝑛 ⟶ ℝ 𝑎𝑛𝑑 ℎ: ℝ𝑛 ⟶ ℝ

𝑥 ∈ ℝ, �⃗� ∈ ℝ𝑛 𝑎𝑛𝑑 𝑘, 𝑙 ∈ ℵ

where �⃗� is the solution vector, 𝑘 is the number of inequality constraints, 𝑙 is the

number of equality constraints, 𝑥𝑙 and 𝑥𝑢 are boundary constraints, and all the

functions could be linear or non-linear.

The second algorithm is called Repulsive Forces (REF). Since the main

principles depend on Newton’s General Gravity Law and Coulomb’s Law, that

65

algorithm can be regarded as a physics-based algorithm. REF model uses Coulomb’s

Law to implement the repulsive structure of the particles in that particles are like

charged. Different from the other algorithm, the REF algorithm aims to reach

optimum-like solutions by constraint-handling abilities.

In the following subsections, the details of both algorithms are explained. The

pseudo-codes and their principles are given.

3.1. RANDOM SEARCH WITH ADAPTIVE BOUNDARIES (RSAB)

In this section, we introduce an algorithm that provides an adaptive initial

(better than pure random initial) solution for continuous nonlinear optimization

problems that may have many local optima. It is structured as a generic methodology

that can be applied in the initialization stage of any algorithm for unimodal or multi-

modal problems. The stages of this algorithm were converted from the codes that

Erdem (2007) prepared in Visual Basic. However, some structural changes have been

implemented for the dynamic procedure used in the updated domains of variables in

this thesis.

The RSAB algorithm depends on updating given upper and/or lower intervals

dynamically (i.e., boundaries iteratively). The main procedure includes two steps. The

first step is called “Determine Intervals”. In this step, a search space is constituted by

using the domain of decision variables used in the problem. This step provides

determined intervals that satisfy boundaries or constraints for each variable.

Thereafter, an initial solution is obtained by evaluating constraints if any. After the

first run, a better solution is tried to be obtained in each iteration. The second step

called “Update Intervals” depends on updating the intervals in terms of best-so-far

solutions to reach a better solution. The pseudo-code of the algorithm and the detailed

codes of updating interval are given below, respectively. Figure 16 shows the general

pseudo-code and it starts with determining intervals. In Figure 17, the pseudo-code of

“Determine Intervals” is given. Although the general flow is adapted from Erdem

(2007), the approach for finding upper and lower limits is modified as explained

below.

66

Figure 16: The Pseudo-code of Random Search with Adaptive Boundaries

In the first step, the search space is determined by considering given boundaries

of variables regardless of having constraints. The lower limit and the upper limit are

found out by checking concurrently all boundaries in an iterative manner. In the case

of constrained problems, all constraints are considered for each variable. It is worth

mentioning that, since evaluating boundaries as constraints in the “Determine

Intervals” step wastes time in visual basic codes, boundaries defined in the

optimization model are excluded from evaluating loop. Instead, boundaries are

considered as initial limits directly before checking constraints.

Finding an upper limit or lower limit depends on the current boundaries of the

variables except the related one. The only rule is that constraints should not be in the

form of a numerator/denominator. The details of these two functions are given below:

Find Upper Limit:

• Replace the related variable with “x” and replace all the others with “lower limits”

• If the sign of the related variable is positive while the others are negative:

Replace the related variable with “x” and replace all the others with “upper limits”

 1: Determine intervals (Initial Limits)

 2: Create initial 1000 sized random solution vectors

 3: For each solution vector

 4: Evaluate constraints

 5: For each iteration

 6: If Improvement = FALSE

 7: Initial Limits

 8: If unconstrained problem

 9: Update intervals by using the midpoint

10: Else

11: Update intervals by using the holdbest

12: Else

13: If unconstrained problem

14: Update intervals by using the holdbest

15: Else

16: Update intervals by using the midpoint

17: For each variable

18: Create random values based on new intervals

19: For each solution vector

20: Evaluate constraints

21: Store Updated Interval

22: Loop Until maximum iteration given

23: For each variable

24: Calculate means, modes, medians of lower-upper limits

25: Updated Lower Limit = min (Mean_L, Mode_L, Median_L)

26: Updated Upper Limit = max (Mean_U, Mode_U, Median_U)

67

Find Lower Limit:

• Replace the related variable with “x” and replace all the others with “upper limits”

• If the sign of the related variable is positive while the others are negative:

Replace the related variable with “x” and replace all the others with “lower limits”

After replacing the variables, finding root operation is conducted. If the root is

in the determined intervals, the new lower or upper limit is updated before considering

the other constraint. This process continues until all constraints are reviewed. In the

end, the maximum value in a lower limit set and the minimum value in an upper limit

set will be stored as determined intervals of variables.

Figure 17: The Pseudo-code of “Determine Intervals”

 1: Create Intervals by considering boundaries

 2: If constrained problem

 3: For each variable

 4: For each constraint

 5: If sign <=

 6: If rhs >= 0

 7: If all variables are positive sign

 8: Find_upper_limit

 9: Else

10: Find_coefficient

11: If coefficient > 0

12: change = TRUE

13: Find_upper_limit

14: Else

15: If not all variables are positive sign

16: Find_coefficient

17: If coefficient < 0

18: Find_lower_limit

19: Else

20: If rhs >= 0

21: If all variables are positive sign

22: Find_lower_limit

23: Else

24: Find_coefficient

25: If coefficient > 0

26: change = TRUE

27: Find_lower_limit

28: Else

29: If not all variables are positive sign

30: Find_coefficient

31: If coefficient < 0

32: Change_negative_signs

33: Find_upper_limit

*rhs = Right-hand side value of the constraint

68

After determining intervals, firstly 1000-sized random solution vectors are

generated for once concerning equal chances according to the boundaries of variables

in the hyperspace that has dimensions as much as the number of variables in the

optimization model. To some extent, this method has been inspired by the “Scatter

Search Algorithm” by Glover (1999). The pseudocode for the initialization is given in

Figure 18.

Figure 18: The Pseudo-code of Generating Random Numbers

k = int (4 * random () + 1)

If k = 1:

 x𝑖 = ((𝛿𝑖
+ − 𝛿𝑖

−)/4) ∗ 𝑟𝑎𝑛𝑑𝑜𝑚() + 𝛿𝑖
−

Else if k = 2:

 x𝑖 = ((𝛿𝑖
+ − 𝛿𝑖

−)/4) ∗ 𝑟𝑎𝑛𝑑𝑜𝑚() + (𝛿𝑖
+ − 𝛿𝑖

−)/4 + 𝛿𝑖
−

Else if k = 3:

 x𝑖 = ((𝛿𝑖
+ − 𝛿𝑖

−)/4) ∗ 𝑟𝑎𝑛𝑑𝑜𝑚() + 2 ∗ (𝛿𝑖
+ − 𝛿𝑖

−)/4 + 𝛿𝑖
−

Else:

 x𝑖 = ((𝛿𝑖
+ − 𝛿𝑖

−)/4) ∗ 𝑟𝑎𝑛𝑑𝑜𝑚() + 3 ∗ (𝛿𝑖
+ − 𝛿𝑖

−)/4 + 𝛿𝑖
−

Where 𝛿𝑖
−, 𝛿𝑖

+: Boundaries of each variable; 𝑥𝑖: Generated random number for

ith variable; random (): A function generates random number between [0,1].

Figure 19: Initial Particles (2-Dimension)

Source: Prepared by the author

A demonstration of generated particles is shown in Figure 19. This step also

includes evaluating each particle individually in terms of their goal function values. It

means that not only objective function value is calculated but also the amount of like

charge for each particle is determined in the employer model so that repulsive forces

can be assessed. In the case of unconstrained problems, the constraint satisfied rate is

69

taken as “1” and the maximum deviation as 0 directly. However, in the case of

constrained problems, a penalty approach (explained in the REF algorithm section) is

used. Among them, the best-so-far solution is stored as “holdbest”. In the first iteration,

it is assumed that a better solution is not reached.

Subsequently, the “Update Intervals” step is ready to be implemented. This

step is designed to obtain robust and stable solutions. The underlying purpose of that

step is to eliminate unnecessary search space that does not include the global optimum

solution. The details of “Update Intervals” which includes two approaches are given

in Figure 20-21 in the following.

Figure 20: The Pseudo-code of Update Intervals by Using Midpoint

1: For each variable

2: Calculate mid_point

3: If xbestsofar < mid_point

4: δ𝑛𝑒𝑤
− = δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑

−

5: δ𝑛𝑒𝑤
+ = mid_point

6: Else

7: δ𝑛𝑒𝑤
− = mid_point

8: δ𝑛𝑒𝑤
+ = δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑

+

where mid_point is the middle point of the related variable interval, xbestsofar is

the best-so-far value of the related variable, 𝛿−, 𝛿+ are the lower-upper limits. Update

interval by using midpoint is running when there is no improvement for unconstrained

problems and when there is an improvement for constrained problems. Since there are

no restrictions in unconstrained problems, focusing on the holdbest may cause a wrong

direction in case of no improvement. Furthermore, updating intervals by using

midpoint helps unconstrained problems to converge the right area faster.

Figure 21: The Pseudo-code of Update Intervals by Using Holdbest

1: For each variable

2: 𝑑𝑢 = δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑
+ − xbestsofar

3: 𝑑𝑙 = xbestsofar - δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑
−

4: If 𝑑𝑢 > 𝑑𝑙

5: δ𝑛𝑒𝑤
− = δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑

−

6: δ𝑛𝑒𝑤
+ = xbestsofar + 𝑑𝑙

7: Else

8: δ𝑛𝑒𝑤
− = xbestsofar – 𝑑𝑢

9: δ𝑛𝑒𝑤
+ = δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑

+

70

where 𝑑𝑢 is the distance between best-so-far value and upper limit of related

variable, 𝑑𝑙 is the distance between the best-so-far value and the lower limit of the

related variable. Updating intervals by using holdbest is running when there is an

improvement for unconstrained problems and when there is no improvement for

constrained problems. Since the ability of the penalty approach is a strength, focusing

on holdbest in updating intervals improves the solution when there is no improvement

for constrained problems. On the other hand, when there is an improvement updating

intervals by considering holdbest provides better convergence for unconstrained

problems.

Consequently, the updated intervals are stored until the maximum iteration is

reached. The final updated intervals are determined by considering all generated

intervals for having robust, stable solutions. For that reason, mean-mode-median

values of lower and upper limits are calculated. In the end, the minimum of lower

limits and the maximum of upper limits will be the final updated intervals for the

related problem.

 Mean_L = The mean value of lower limits for the related variable

 Mode_L = The mode value of lower limits for the related variable

 Median_L = The median value of lower limits for the related variable

 Mean_U = The mean value of upper limits for the related variable

 Mode_U = The mode value of upper limits for the related variable

 Median_U = The median value of upper limits for the related variable

Updated Intervals = [Min (Mean_L, Mode_L, Median_L), Max (Mean_U,

Mode_U, Median_U)]

It is worth mentioning that there is a parameter using dynamically. Generally,

the algorithms use constant set size/ population in literature, however, in our random

search algorithm the set size can be changed according to the counter parameter. This

feature reveals the difference of the RSAB algorithm from other algorithms in the

literature. If there is no improvement in fitness value, the θ parameter is also increasing

as the counter. However, the increasing amount is another parameter that can be

modified. If there is an improvement, the counter remains the same as the last value,

otherwise, the set size is increased by the defined amount.

71

In this algorithm there is no stopping criterion, instead, it will continue until

the last iteration. However, for further studies, different stopping conditions can be

considered. It would be better to clarify that the RSAB algorithm is not an algorithm

that provides optimum-like solutions. It aims to narrow the search space without

trapping local optimums and provides reduced candidate solutions to the main

algorithms. In other words, the RSAB algorithm is thought of as an initialization

algorithm before reaching the optimum-like solutions.

3.2. REPULSIVE FORCES ALGORITHM (REF)

In this part, an algorithm based on repulsive forces of particles is presented and

it is called the Repulsive Forces Algorithm (REF). That method is a revised version of

the algorithm introduced by Erdem (2007). It takes into account the natural forces that

cause repulsion between bodies such as atomic and sub-atomic particles that may be

like electrical charged, polarized in that their impact may cause shifting to the new

locations and of course new minimum objective function value. These natural facts

focus especially on physical and chemical phenomena as explained in the following

section. Thereafter, the pseudo-code of the algorithm and its initialization,

neighborhood, repulsive forces, displacement, duplication principles of the REF

algorithm are given in the following sections.

3.2.1. Theoretical Background

In nature, there is much evidence for optimization that is encountered as a

minimum energy state, equilibrium point, zero compound forces. Based on these

inspirations, many physics and chemistry-based optimization algorithms have been

proposed especially after the year 2000. According to the literature of physics-based

algorithms given in the second chapter, it is seen that the motions, interactions, or

dynamics of the particles that occurred in nature are used as inspirations. However,

magnetism, quantum, and universe concepts are utilized as inspirations for physics-

based algorithms in general.

72

In the REF algorithm, Coulomb’s Law is used to implement the repulsive

structure of the particles. The question to be answered by this model is to find the value

of charged units in terms of the solution points, the distance between the particles, and

the assignment of the Coulomb’s Constant that changes whether dynamically or

statically. According to Coulomb's Law (Coulomb, 1785) between the two

identical/opposite charged units, they attract or repel each other due to their electrical

charge amount proportionally, polarity directionally, distance as inverse

proportionally. The Coulomb Constant is similar to Universal Gravity Constant which

is used in Newton’s General Gravity Law. Moreover, the impact of the distance factor

can be explained by Inverse Square Law proposed by Newton (Newton, 1999: 238).

The calculation of forces is demonstrated in Table 10.

Table 10: Newton’s General Gravity versus Coulomb’s Law

Newton’s General Gravity Law Coulomb's Law

𝐹 = 𝐺
𝑚1𝑚2

𝑑2
 𝐹 = 𝑘

𝑄1𝑄2

𝑑2

G: universal gravity constant

m1, m2: the mass of two bodies

d: the distance between two bodies

k: Coulomb’s Constant.

Q1, Q2: electrical charge of two units

d: the distance between two elementary units

REF algorithm will stop when it reaches some predefined steady state. The

question on the stopping condition is to find the level of zero or near zero combined

net force exerting to each particle. This principle can be explained with equilibrium

states in thermodynamics. The word meaning implies a state of balance which means

all elements in a system have the same value whether it is temperature or pressure.

There are various kinds of equilibrium such as thermal, mechanical, chemical, phase.

Each principle asserts a state of balance in terms of different indicators (Çengel et al.,

2019: 14). Universal gravity, atomic and molecular structure, and magnetism sing the

same song. They state something about forces and energy levels. Some particles may

be suffered all the effects and of course forces. These forces influence the particles

until a new equilibrium point in terms of combined forces by extracting some amount

of energy that can be potential, kinetic, heat, chemical, and electrical.

Moreover, in nature, nobody can control the instant location of atomic particles

uniquely because of the uncertainty of locations. This is explained by Heisenberg's

Uncertainty Principle in Quantum Mechanics (Busch et al., 2007: 155). The

73

uncertainty principle is adapted to the REF model in that initial scattering is selected

as a random process and exact locations of the particles should be calculated with some

uncertainty (i.e., probability) that should not be taken place in the model significantly.

Besides, Pauli’s Exclusion Principle is another principle utilized in REF.

According to that principle, no more than one particle can exist in the same state. This

means that none of the particles can have the same repulsive forces. REF method

ensures diversification like Tabu Search (Glover, 1989; Glover, 1990) and Scatter

Search (Glover, 1999) especially at early stages before converging to the global

optimum by giving no extra effort rather than applying repulsive forces.

All particles tend to move to a new location under the forces if it is a better

place. Displacements of each particle are calculated by considering the Law of

Momentum in that total momentum must be conserved. The unit displacement is

structured by considering Newton’s Second Law (Chandrasekhar, 2003: 18).

3.2.2. Assumptions of REF

REF algorithm is a population-based algorithm inspired by the principles

mentioned above. It is assumed that the particles represent solution vectors and the

global optimum solution is aimed to be reached by considering the interactions of

particles in terms of their charges and distances. Other assumptions considered in REF

are listed below.

 Solution points are assumed as like particles that repel each other; they are

differently charged elementary particles (i.e., magnitude of charges).

 Particles move in hyperspace through only a path but not like a wave.

 Magnitudes of particles are determined through corresponding objective

function values.

 Amount of replacements are computed by momentum law where both

magnitudes of the particles and distance between the particles are considered

as well as the direction of the particles after exerting the repulsive forces.

 No attractions and merging are allowed for particles.

 Repulsive forces occur between the solution point and its neighbors.

74

 No negative improvements are allowed, which means that if the new location

after the repulsive effects on a selected particle has a higher energy level, it is

assumed that the particle is forced to a higher energy level immediately back

to its previous stationary state by emitting the energy.

 The stopping conditions of the algorithm will not meet if the desired

improvements and number of iterations are satisfied.

 If a particle has greater ∆𝑥 than it must be, it is assumed that as if particle hits

the wall of the constrained boundaries and goes back until ∆𝑥𝑖
𝑘+1 < 𝑥𝑖

𝑘/2.

Therefore, the only remainder of ∆𝑥𝑖
𝑘+1 is available to use.

 The multiplicative penalty-based method is used for constraint handling.

 No particle can be found at the same location up to a certain degree of precision.

 The best position of each particle in the population is maintained, and with each

relocation, an attempt is made to reach a better than "best-so-far" position.

 Each particle produced in the related run, whether it is a better solution or not;

saved in a database. Thus, extra function evaluation will not be required for a

previously evaluated particle.

3.2.3. The Pseudocode of the Algorithm

Before explaining each step of the REF algorithm, the pseudo-code of the

algorithm is given in Figure 22. REF algorithm comprises Determine Intervals,

Initialization, Multiplicative Penalty based Method, Repulsive Forces, Neighborhood,

Displacement and Duplication check steps, respectively. Determine Intervals and

Initialization steps are handled in the “Random Search with Adaptive Boundaries”

algorithm section. The remaining modules will be mentioned in the following.

75

Figure 22: The Pseudo-code of REF Algorithm

REF algorithm utilizes memory for two purposes. The first one is the creation

of a database. Each particle is recorded in a memory along with the evaluation scores

(constraint satisfied rates, total deviations). This procedure is inspired by the principle

that each step in the Tabu Search algorithm is kept in a "history" mechanism and the

repetition of previous solutions is prohibited by looking at this memory (Glover, 1989).

However, in the REF algorithm, memory is used not as a banned list, but to get rid of

unnecessary repetitive function evaluations. The second one is about recording the

best-so-far positions of the particles. This approach is inspired by the elitism principle

in the literature. The Elitism principle is one of the selection techniques that saves the

best solution in the population to eliminate the risk of losing the best solution between

iterations (Simon, 2013: 188). In the REF algorithm, best-so-far solutions of every

particle are stored in order not to lose them in case of displacements. However,

differently from the original elitism principle, there is no limitation for the number of

elitist particles. Namely, the best-so-far particles are kept separately from the relocated

particle set.

3.2.4. Multiplicative Penalty based Method (MUPE)

As stated by Erdem (2007), the early study by Yokota et al. (1995); Deb (2000);

Coello (2002); Oyama et al. (2005) motivated and led as for penalty approach

developed for the REF algorithm. The traditional approach for constraint handling for

the single objective nonlinear programming is based on penalty functions where the

fitness of a design candidate is determined based on a new aggregate function F, which

 1: Determine Intervals

 2: Create Initial Particles

 3: Evaluate Constraints

 4: For Each Iteration

 5: Until stopping condition is met

 6: For Each Particle

 7: Find Neighbors

 8: For Each Neighbor

 9: Find Incremental Replacements

10: If f(x) reduces Go to New Location

11: Update New State

12: Check Duplication

76

is a weighted sum of the objective function value and the amount of design constraint

violations.

In the REF algorithm, a multiplicative penalty approach is used for handling

constraints. The multiplicative penalty-based constraint handling (MUPE) method

developed by Erdem (2007) assumes that the goal function employs a single objective

function to be minimized under the constraints to be satisfied that are joined in an

objective function as in other penalty-based methods. In the case of

unconstrained/boundary conditions, the goal function would be the objective function

itself. Herein goal function combines both objective function and all constraints if it is

a constrained nonlinear optimization. In this situation, objective function has three

goals that can be expressed as:

 Goal 1: Minimize or maximize 𝑓(�⃗�)

 Goal 2: Minimize the total deviations from all constraints

 Goal 3: Maximize the ratio of the satisfied constraints

Here Goal 2 and Goal 3 provide a benchmarking on the condition that two

infeasible solution points that have different constraint violation level in terms of both

Goal 2 and Goal 3. Goal 2 deals with the relative summary measure of constraint

violations of solution points. On the other hand, Goal 3 incorporates the ratio of

satisfied constraints among overall ones. It can be concluded that selecting the “a

solution point that has great violation on a single constraint but the others satisfied”

against “a solution point that has little violations for all the constraints” is a

benchmarking interest of this method. If all of the constraints were satisfied for the

two solution points, Goal 1 would be the only criteria for comparing these solution

points. Experimental studies will give us acceptable results on benchmarking and

trade-offs about weighting values among these three parts.

Apart from the previous studies, the MUPE method is interested in not only the

ratio of satisfied constraints but also the total amount of violations regarding

corresponding upper or lower constrained values. If the goal function acts as a heuristic

function of the model of the combined objective function to be minimized, then the

general form of the proposed heuristic fitness function will be:

 𝐻(�⃗�) = 𝐻(𝑓(�⃗�), 𝑑(�⃗�), 𝑡(�⃗�)) (3.3)

where

77

𝑓(�⃗�): objective function to be minimized/maximized

𝑑(�⃗�): the total amount of violations of the constraints

𝑡(�⃗�): the ratio of the satisfied constraints

The total amount of violation is calculated as a relative violation according to

the right-hand-side value of the related constraints. In case of less than 1.00E-11

deviation in the constraints, the candidate solution is considered feasible.

 𝑑𝑖 = {
−|𝑔𝑖(�⃗�) − 𝑏𝑖|/𝑏𝑖, 𝑏𝑖 ≠ 0

−|𝑔𝑖(�⃗�) − 𝑏𝑖|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.4)

It is worth noting that, each goal is considered according to different

importance scores, namely constants (c1, c2, c3). Additionally, the sign of the objective

function value is added to this heuristic function as multiplication as well. The pseudo-

code for the calculation of the heuristic fitness function is given in Figure 23.

Figure 23: The Pseudo-code of Heuristic Fitness Function

 1: If 𝑓(�⃗�) > 0
 2: goalSign = 1

 3: Else

 4: goalSign = -1

 5: Goal1 = |𝑓(�⃗�)|(𝑐1)

 6: If |𝑑(�⃗�)| < η

 7: Goal2 =
1

e(c2d(x⃗⃗⃗))

 8: Else

 9: Goal2 = λ

10: If goalSign =1

11: Goal3 =
1

𝑡(𝑥)(𝑐3)

12: Else

13: Goal3 = 𝑡(�⃗�)(𝑐3)

14: fitness = goalSign * Goal1 * Goal2 * Goal3

*For maximization problems; Goal1, Goal2, and Goal3 should be considered inverse.

where η is a defined total amount of deviations from constraints, λ (1.0E+100)

is the penalty score for deviation in case of the total amount of deviation is bigger than

η.

78

3.2.5. Repulsive Forces on Particles

When the particles take their places in hyperspace by their randomly assigned

values in the initialization part, they start to repulse each other according to their

forces. Repulsive forces are exerted on each particle employing Equation 3.5 where

𝑓(𝑥𝑖⃗⃗⃗⃗) corresponds to the amount of charge as similar to Coulomb’s 𝑄𝑖.

𝐹 = 𝐶
𝑓(𝑥𝑖⃗⃗ ⃗⃗)𝑓(𝑥𝑙⃗⃗ ⃗⃗)

𝑑𝑖𝑙
2 (3.5)

where F is a repulsive force between i and l particle; C is a repulsive force constant;

𝑓(𝑥𝑖⃗⃗⃗⃗), 𝑓(𝑥𝑙⃗⃗⃗⃗) are the fitness values of particle i and l respectively; dil is the Euclidean

distance between particle i and particle l and the calculation is demonstrated below.

𝑑𝑖𝑙 = √∑ (𝑥𝑖𝑛 − 𝑥𝑙𝑛)2𝑛
1 = √ (𝑥𝑖1 − 𝑥𝑙1)2 + (𝑥𝑖2 − 𝑥𝑙2)2 + ⋯ + (𝑥𝑖𝑛 − 𝑥𝑙𝑛)2 (3.6)

3.2.6. Neighborhood

After calculating the fitness values of each particle, neighbor sets are

constructing for each solution set. However, the determination of the number of

neighbors is also another issue to be addressed. According to Pareto’s Principle,

roughly 80% of the effects come from 20% of the causes (Sanders, 1987: 37). Namely,

when neighborhood vectors are sorted in descending order, the magnitudes of forces

decrease sharply after 2nd-5th vectors. For that reason, we prefer to ignore the rest of

them. Moreover, when the number of variables is large finding neighbors for each

particle becomes very time-consuming. Therefore, the number of neighbors must be

limited. In the REF algorithm, the best (the closest) two neighbors for each particle are

stored for the next steps. The positions of particles visualizing the process of choosing

neighbors are given in Figure 24. This means that the most three closest particles are

determined as neighbors of the corresponding particle. Thereafter, these neighbors are

utilized for the displacement procedure of the particle.

79

Figure 24: Neighborhood

Source: Prepared by the author

3.2.7. Displacement

After identifying neighbors, new locations of each particle must be calculated

by considering the Impulse-Momentum Law in that total momentum must be

conserved. Particles are assumed as the same charge not as magnitude but as a pole

that is why all the interactions between neighbors are repulsive as demonstrated along

one dimension.

Figure 25: The Pseudo-code of Displacement

 1: For each particle

 2: Find Neighbor

 3: For each Neighbor

 4: Do

 5: For each dimension

 6: Calculate the unified net force

 7: If improvement=True

 8: Update New State

 9: Update amount of displacement

10: While improvement=True

After all the repulsive forces exerted on the selected particle 𝑥𝑖⃗⃗⃗⃗ , the unified (or

compound) net force is calculated, and the new location of the selected particle is

demonstrated as shown in Figure 26. Therefore, the distance between 𝑥𝑖⃗⃗⃗⃗ and �⃗�𝑖
′ is equal

to the net displacement for the selected particle.

80

Figure 26: Displacement of The Particle

Source: Prepared by the author

REF algorithm employs Pauli’s Exclusion Principle as a diversification

procedure on the principle that two particles cannot occupy the same state in a closed

system. Thus, particles can explore hyperspace without sticking to one point. Indeed,

REF guarantees the dissimilarity not only for different charges 𝑓(�⃗�) in similar

locations but also similar charges in different locations. This situation can be satisfied

by controlling and finding new iterative locations for particles via repulsive forces.

In line with the net force, the particles are exposed, they can go to their new

location in case it is a better position. If the possible location of the particle has a worse

fitness value; the particle retains its current position. It would be better to clarify that

particles can move within the allowed space which is determined by the boundary

constraints of variables.

Once each particle decides its neighbors, displacements for each particle must

be calculated by considering the impulse-momentum theorem in that total momentum

must be conserved. Particles are assumed as the same charge not as magnitude but as

a pole that is why all the interactions between neighbors are repulsive as demonstrated

along one dimension. This means that any attraction between particles is not allowed.

In Figure 27, a demonstration is given for the repulsive forces along one dimension.

81

Figure 27: Repulsive Forces Along One-Dimension

Source: Erdem, 2007: 60

∑ 𝑚𝑣 = 0, ∑ 𝑚
Δ𝑣

Δ𝑡
= 0 (3.7)

According to the formulation given in Equation 3.6 (Holzner, 2011: 190),

fitness values and relocation can also be used as m and velocity change respectively.

However, in our approach time is omitted and revised as shown below:

∑ 𝑓𝑖Δ�⃗�𝑖 = 0 (3.8)

Since it is known by Newton’s Third Law (Newton, 1999), two repulsive forces

𝐹𝑥1
 and 𝐹𝑥2

 are equal to each other, the displacement depends on the current value of

the particles. After having done the computations for all the displacements, for all

neighbors in all dimensions in the hyperspace, each particle has a new state in both

magnitude and direction.

 𝑥𝑖
𝑘 = 𝑥𝑖

𝑘−1 + [Δ𝑥𝑖
𝑘−1𝛼 + 𝑥𝑏

𝑘−1(1 − 𝛼)], 𝑖 = 1, 2, . . , 𝑛 (3.9)

where n is the number of dimensions and k is the iteration number,

As mentioned above, relocation runs when the new possible location has a

lower fitness value for each particle which is given below:

𝑓(𝑥𝑖
𝑘) < 𝑓(𝑥𝑖

𝑘−1) (3.10)

All particles have the intention to lower energy levels by changing their

locations but that is not to say global minimum-level, it may be saddle point, as in the

quantum state in the natural processes.

The first iteration is completed after all the repulsions are considered for each

particle in hyperspace. After the effect of the compound/net forces exerting on a

particle, the unit displacement may be found by the momentum law. The amount of

displacement for a given particle that is forced by compound forces (i.e., net forces)

would be proportional to related dimensional force and its mass (i.e., objective

function value) as shown below.

82

∆𝑥𝑖
′ =

𝐹
∆𝑥𝑖

2

𝑟2

𝑓(𝑥𝑖)
=

𝐹

𝑓(𝑥𝑖)

∆𝑥𝑖

2

𝑟2
 (3.11)

After all final locations are determined for each particle in hyperspace, the first

iteration is completed. These process chains are repeated until no remarkable

movements and displacements occur. However, if a particle on the new location is

under the effect of repulsive forces still, it changes its location as a small increased

amount of displacement as shown in Eq. (3.12).

𝛥𝑥𝑖
𝑘 = 𝛹𝛥𝑥𝑖

𝑘−1 (3.12)

where Ψ ∈ [1.01,1.1] and a subjective parameter. In case of improvements

𝛥𝑥𝑖
𝑘−1 continues to be multiplied by Ψ. After considering the forces caused by the

neighbors, the unified net force is checked lastly and in case of remarkable change,

new locations for particles are determined.

3.2.8. Duplication

As a diversification procedure, the REF algorithm employs Pauli’s Exclusion

Principle that two particles cannot occupy the same state in a closed system. Thus,

particles can explore hyperspace without trapping into a single point. Indeed, REF

guarantees the dissimilarity not only for different charges 𝑓(�⃗�) in similar locations but

also similar charges in a different location. This situation can be satisfied by

controlling and finding new iterative locations for particles via repulsive forces.

After each particle in the population moves to a new location as a result of the

effect of its neighbors, duplication control is made in the population to meet Pauli’s

Exclusion principle. However, a degree of precision is important to determine if the

particles are in the same location. In our experiments, locations are assumed as

duplication in case of first three digits are the same. In such cases, the following

procedures are applied to determine the new position of the same particle heuristically.

The new location is determined within the updated domain by considering the best-so-

far particle. At this point, the updated range is used instead of the originally defined

range because of the balance between diversification and intensification. While

duplication check provides diversification, repositioning in a wide range can create too

much diversity which disrupts the balance. For this reason, making the repositioning

83

around the best-known solution has an intensification purpose to balance the

exploration-exploitation ability of the REF algorithm. The updated domain for each

variable is calculated as below:

Figure 28: The Pseudo-code of Update Interval

 1: For each variable

 2: randInterval = (0.21*log(random()+0.009)+1)* xbestsofar

 3: If 𝛿−<(xbestsofar – randInterval) < 𝛿+

 4: δ𝑛𝑒𝑤
− = xbestsofar – randInterval

 5: Else

 6: δ𝑛𝑒𝑤
− = 𝛿−

 7: If 𝛿−<(xbestsofar + randInterval) < 𝛿+

 8: δ𝑛𝑒𝑤
+ = xbestsofar + randInterval

 9: Else

10: δ𝑛𝑒𝑤
+ = δ+

 where 𝛿− and δ+ are the determined lower-upper limits in the beginning;

𝛿𝑛𝑒𝑤
− and 𝛿𝑛𝑒𝑤

+ are the updated lower and upper limits; randInterval is a random

number and xbestsofar is the variable value in the best solution so far. It is worth

mentioning that, duplication is checked for each new location found. This procedure

continues until there is no more than one particle left from the same location.

3.2.9. Stopping Condition

The stopping condition is related to the number of function evaluations (FES).

The pseudocode for the stopping condition is given in Figure 29. Although there is a

limit for the number of function evaluations, the algorithm will stop in most of the

cases where the main stopping condition is met.

84

Figure 29: Stopping Condition

 1: For each trial

 2: Set Improvement = FALSE

 3: Set Counter = 0

 4: Set φ = 100000

 5: Do

 6: Apply REF

 7: If Improvement = FALSE

 8: Counter += 1

 9: If Counter = 1 // In case of first no-improvement

10: φ = FES

11: Else

12: Counter = 0 // In case of finding an improvement

13: φ = 100000

14: While FES < (1+β)*φ OR FES < Max_FES

85

CHAPTER FOUR

EXPERIMENTAL STUDIES

4.1. MATERIALS AND MODELING ENVIRONMENT

 In the evolutionary optimization software literature, various kinds of

frameworks have been developed. These frameworks have various advantages and

disadvantages and are written in different languages. A comprehensive study reviewed

32 numbers of platforms for optimization problems (Oztas and Erdem, 2021: 3832).

According to that study, there is no overwhelming superiority between Java and C-like

(C++, C#, and MATLAB) languages and the Python language attracts attention

because of its popularity in the field of optimization. Moreover, the authors also

reported that management scientists in social sciences tend to prefer easy-to-use

platforms which are approximate to human language. In light of this information, we

preferred to code the RSAB and REF algorithms in Python language, and PyCharm

developed by the Czech company JetBrains was utilized as IDE. Besides, the general

structure of Visual Basic codes prepared by Erdem (2007) has been converted into a

Python coding environment by utilizing Python libraries and they have been created

by using the class structure and object-oriented programming. The experiments are

executed on an Intel Core i7 computer with a 2.60GHz CPU and 12 GB RAM under

the windows operating system. RSAB-REF algorithm uses approximately 20% CPU

and 1GB memory.

4.2. BENCHMARK PROBLEMS

There are standard benchmark optimization problems (i.e. unconstrained,

single-objective, multi-objective, combinatorial) in the literature to validate the

performance of the algorithms (Jamil and Yang, 2013: 1). As mentioned by Collins

and Eaton (1997), test functions can be classified as continuous-discontinuous,

convex-non-convex, unimodal-multimodal, quadratic-non-quadratic, low

dimensionality-high dimensionality, deterministic-stochastic. According to Talbi

(2009), the problems that are high dimension, multimodal and non-differentiable

https://en.wikipedia.org/wiki/Czech_Republic
https://en.wikipedia.org/wiki/JetBrains

86

cannot be solved by deterministic optimization algorithms. However, test functions are

generally preferred according to the needs of the algorithms. For that reason,

measuring the performance of stochastic optimization algorithms with appropriate test

functions has an important place.

In this thesis study, the performance of the proposed algorithm is tested with

unconstrained/bounded benchmark problems, engineering design problems, and

economic dispatch problem, respectively. The main reason to choose these benchmark

problems is that they are the most commonly used test functions and have broad

characteristics. The details of the benchmarks are given in the following sub-sections.

4.2.1. Unconstrained/Bounded Problems

 The list of the 22 benchmark functions used in this study is given in Appendix

1 with the information of the input domain and the optimal-like solutions. Moreover,

we provide the characteristics (dimension, continuity, convexity, multimodality,

differentiability, separability) of the benchmarks as below in Table 11. General

profiles of the preferred test cases have been tried to be kept quite diverse.

Table 11: The characteristics of test cases

Name
N-

dimensional
Continuous Multimodal Convexity Differentiable Separable

De JongF1 + + + + + +

AckleyF1 + + + - + -

Rastrigin + + + + + +

Cosine Mixture + - + - - +

Exponential + + + + + -

Cb3 - + + - + -

Bohachevsky2 - + + - + -

Griewank + + - - + -

Alpine 1 + + + - + -

Egg Crate - + + - + -

3-D Paraboloid - + - + + -

Price 2 + + + - + -

Schaffer 1 - + - - + -

Schwefel 1.2 + + - - + -

Xin-She Yang F2 + - + - - -

Bird - + + - + -

Beale - + + - + -

McCormick - + + + + -

Giunta + + + - + +

Himmelblau - + + - + -

Branin - + + - + -

Adjiman - + + - + -

87

4.2.2. Constrained Problems

In the real world, especially in engineering design, optimization problems may

have complex constraints. The highlight of the REF algorithm is its ability to deal with

constraints very well. Constrained problems are much more important to show the

effect of the multiplicative penalty method used in the REF algorithm. Therefore, the

algorithm will be tested with the most common real engineering design application

benchmarks (Pressure Vessel, Himmelblau’s Function, Welded Beam,

Tension/Compression Spring Design). In addition, although these benchmarks are

referred to as engineering design problems in the literature, problems that are

essentially aimed at "cost minimization" can also be regarded as a possible operational

problem. Also, Combined Heat and Power Economic Dispatch (CHPED) problem

which is an allocation problem in the production sector is applied. The numbers of

variables and constraints for each problem are given in Table 12. Their models are

provided in Appendix 2-9.

Table 12: Information about constrained problems

Problems Variables Constraints

Pressure Vessel 4 4

Himmelblau’s Function 5 6

Welded Beam 4 6

Tension/Compression Spring Design 3 4

Combined Heat and Power Economic Dispatch 6 10*

* There are two equality constraints. We consider them as ≤ and ≥ which become 4 constraints.

In general, the algorithms to which the developed algorithm will be compared

are randomly selected and re-run, and reported independently from the scholars who

developed the algorithm. However, this situation may cause manipulation by using

different parameters, different software hardware, or even different programming

languages which give rise to biased results. For this reason, it will be better to compare

the developed algorithm with the results of other algorithms as reported in the

literature. At this point (if specified), population size, number of iterations, or function

evaluation value will be sufficient indicators for comparison. Unfortunately, in some

studies in the literature, even these parameters are not shared when making these

comparisons.

88

While choosing the algorithms to be compared, care has been taken to ensure

that they are up-to-date and published in high-quality journals. Similar physics-based

algorithms are also included if any are executing the same benchmarks. The algorithms

are listed in Table 13.

Table 13: The algorithms published in the related literature

Algorithm Population
Max

Iteration
Trial FES

Genetic Adaptive Search (Deb, 1997) (GeneAS) 100 NA NA NA

Self-adaptive Penalty Approach (Coello, 2000) (SPA) NA NA 11 NA

Co-evolutionary Particle Swarm Optimization (He and Wang, (2007)

(C-PSO)
NA NA 30 200000

Improved Harmony Search Algorithm (Mahdavi et al., 2007) (IHS) NA NA NA 200000

Harmony Search Algorithm (Vasebi et al., 2007) (HS) NA 40000 30 25000

Evolution Strategies (Mezura-Montes and Coello, 2008) (ES) 200 NA 30 350000

Modified T-Cell Algorithm (Aragon et al., 2010) (MTCA) 20 30-50 50
320000

⸙

Charged System Search (Kaveh and Talatahari, 2010b) (CSS) NA NA 30 NA

Firefly Algorithm (Gandomi et al., 2011) (FA) 25 1000 NA 50000ψ

Mesh Adaptive Direct Search Algorithm (Hosseini et al., 2011) (MADS) NA NA 50 1000

Ray Optimization (Kaveh and Khayatazad, 2012) (RO) 40 NA 50 NA

Magnetic Charged System Search (Kaveh et al., 2013a) (MCSS) NA NA 30 NA

Cuckoo search algorithm (Gandomi et al., 2013b) (CSA) 25 NA NA 5000

Firefly Algorithm for CHPED (Yazdani et al., 2013) (FA) 40 200 100 NA

Particle Swarm Optimization (Mohammadi-Ivatloo et al., 2013) (PSO) 500 300 NA NA

Advanced particle swarm assisted genetic algorithm (Dhadwal et al., 2014)

(PSO-GA)
NA NA 30 5000

Artificial Bee Colony Algorithm (Garg, 2014) (ABC) 20*D 500 30 NA

Plant Propagation Algorithm (Sulaiman et al., 2014) (PPA) 40 25 100 30000

Hybrid Flower Pollination Algorithm (Abdel-Raoufi et al., 2014) (H-FPA) 50 1000 30 NA

Modified Oracle Penalty Method (Dong et al., 2014) (MOPM) 30 NA 100 90000

Interior Search Algorithm (Gandomi, 2014) (ISA) NA NA 30 30000*

Grey Wolf Optimizer (Mirjalili et al., 2014) (GWO) NA NA NA NA
Colliding Bodies Optimization (Kaveh and Mahdavi, 2014) (CBO) 20 200 30 4000

Canonical Coordinates Method (Chang and Lin, 2014) (CCM) NA 400 NA NA

Optics Inspired Optimization (Kashan, 2015b) (OIO) 19 NA 30 5000

Cuckoo search algorithm for CHPED (Nguyen et al., 2016) (CSA) 25 2000 100 NA

Hybrid PSO-GA Algorithm (Garg, 2016) (H-PSO-GA) 20*D NA 30 NA

Thermal Exchange Optimization (Kaveh and Dadras, 2017) (TEO) 30 10000 30 NA

Social Cognitive Optimization (Sun and Li, 2018) (SCO) 100 100 20 NA

Seagull Optimization Algorithm (Dhiman & Kumar, 2019) (SOA) 100 1000 30 NA

Pathfinder algorithm (Yapici and Cetinkaya, 2019) (PA) 60 100 NA NA

Hybrid GSA-GA Algorithm (Garg, 2019) (H-GSA-GA) 20*D 200 30 NA

Butterfly Optimization Algorithm (Arora and Singh, 2019) (BOA) 50 NA 30 NA

Kho-Kho Optimization (Srivastava and Das, 2020) (KKO) 200 500 15 NA

Nuclear Fission-Nuclear Fusion Algorithm (Yalcin and Pekcan, 2020)

(N2F)
40 NA 30 30000

Marine Predators Algorithm (Faramarzi et al., 2020a) (MPA) NA 500 30 25000

Equilibrium Optimizer (Faramarzi et al., 2020b) (EO) 30 500 NA 15000

Search and Rescue Optimization Algorithm (Shabani et al., 2020) (SRO) 20 NA 50 30000‡

Chaotic Grey Wolf Optimizer (Lu et al., 2020) (CGWO) 100 NA 30 40000

Slime mould Algorithm (Li et al., 2020) (SMA) NA NA NA NA
Chaos Game Optimization (Talatahari & Azizi, 2020) (CGO) NA NA 25 NA
Group Teaching Optimization Algorithm (Zhang & Jin, 2020) (GTO) 50 NA 30 10000

Teaching-learning based Marine Predator Algorithm (Zhong et al., 2020)
(TLMPA)

NA NA 30 NA

Improved Grey Wolf Optimizer (Nadimi-Shahraki et al., 2021) (IGWO) 20
(D*104)/

20⸙
10 NA

*5000 for Pressure/8900 for Tension; ‡15000 for Welded Beam/25000 for Spring Design; ⸹13000 for Spring Design and Welded
Beam; †30 for Welded Beam; ⸙D is the number of variables; ψ25000 for Pressure Vessel; ⸙36000 for Tension and 80000 for

Pressure Vessel

89

4.2.3. Parameter Settings

The parameters used in the RSAB-REF algorithms are determined as a result

of trial and error test and presented in Table 14.

Table 14: Parameter Settings

The number of trials 30

The importance constants (c1, c2, c3) (MUPE) (2.05, 11, 11)

The number of the particles (population size) (n) 20

The incremental parameter (𝛹) 1.02

The stopping parameter (β) 0.5

The neighborhood size (κ) 2

The precision number (ρ) 3

Maximum number of Function Evaluations (Max FES) 30000

The parameters shown in Table 14 are utilized for all benchmarks except some

special cases. For example, the importance constants used in MUPE are (2.05, 8, 3),

population size is 50 and stopping parameter is 2.5 for CHPED problem; Max FES

differs for high dimensional benchmarks in unconstrained/bounded problems (10000

for unconstrained problems with 2-3 dimensions and 100000 for 30 dimensions) and

the number of particles is structured as (Dimension*10) for 10&30 dimensional

problems.

4.3. EXPERIMENTS ON HYBRID REF ALGORITHM

 The main purpose of the RSAB-REF algorithm is to reach the best-known

solution in the related literature. The total working time required for this varies

according to the complexity of the problem, the number of constraints, and the number

of variables. Since the total running time is directly proportional to the number of

iterations and the number of FES, this information is presented in detail for each

problem, respectively.

90

4.3.1. Initialization

It is worth mentioning that the RSAB algorithm is repeated with 50 iterations

for each trial. Moreover, θ, the initial set size is defined as constant 20. Furthermore,

η is taken as 200 in the MUPE approach. In case of fitness value reaches 1.00E-30 in

the initialization algorithm (in unconstrained problems), the REF algorithm will be

bypassed.

Different from the other studies published in the literature, we report the

averages of the variables’ updated lower and upper limits as an output of the RSAB

algorithm. These limits show narrowed domains as an initialization step before

reaching the optimum-like solution.

The initially defined domains and the updated lower and upper limits for each

unconstrained/bounded problem after the RSAB algorithm are presented in Table 15.

The updated domains are the averages of 30 trials. The main reason to apply RSAB

has been achieved when the global optimum values of variables are within the updated

ranges. According to Table 15, it is seen that the RSAB algorithm reduced the search

space by approximately half.

Table 15: Updated lower and upper limits for unconstrained/bounded problems

 Problem Domain Dimension
Updated Domains

(Averages of 30 trials for each variable)

1
De JongF1/

Sphere
[-100,100]

3 𝑥𝑖 ∈ [-43.819476, 35.991105]*

10 𝑥𝑖 ∈ [-40.186921, 41.304585]*

30 𝑥𝑖 ∈ [-38.259419, 36.537807]*

2 AckleyF1 [-32,32]

2 𝑥𝑖 ∈ [-13.359408, 13.284727]*

10 𝑥𝑖 ∈ [-15.004468, 14.105291]*

30 𝑥𝑖 ∈ [-16.73248, 15.463085]*

3 Rastrigin [-5.12,5.12]

2 𝑥𝑖 ∈ [-1.942695, 2.239764]*

10 𝑥𝑖 ∈ [-2.749607, 2.418027]*

30 𝑥𝑖 ∈ [-2.456009, 2.53529]*

4 Cosine Mixture [-1,1] 10 𝑥𝑖 ∈ [-0.466412, 0.460306]*

5 Exponential [-1,1]
2 𝑥𝑖 ∈ [-0.443979, 0.349052]*

10 𝑥𝑖 ∈ [-0.373108, 0.493297]*

6 Cb3 [-5,5] 2 𝑥𝑖 ∈ [-2.331631, 1.557997]*

7 Bohachevsky2 [-50,50] 2 𝑥𝑖 ∈ [-17.106277, 25.187521]*

8 Griewank [-100,100]

2 𝑥𝑖 ∈ [-47.614122, 54.182451]*

10 𝑥𝑖 ∈ [-41.601211, 51.415394]*

30 𝑥𝑖 ∈ [-32.454793, 38.934842]*

9 Alpine 1 [-10,10]

2 𝑥𝑖 ∈ [-6.833573, 2.643768]*

10 𝑥𝑖 ∈ [-5.044324, 4.540503]*

30 𝑥𝑖 ∈ [-5.029153, 5.028612]*

10 Egg Crate [-5,5]

2 𝑥𝑖 ∈ [-1.740414, 2.05632]*

10 𝑥𝑖 ∈ [-2.306609, 2.588454]*

30 𝑥𝑖 ∈ [-2.572602, 2.340737]*

11 3-D Paraboloid [-10,10] 3
𝑥1 ∈ [-2.092071, 7.723993] ;𝑥2 ∈ [-3.117435,

6.751627]; 𝑥3 ∈ [-5.095768, 4.768861]

12 Price 2 [-10, 10] 2 𝑥𝑖 ∈ [-4.523815, 4.186838]*

91

13 Schaffer 1 [-100, 100] 2 𝑥𝑖 ∈ [-53.175061, 40.762511]*

14 Schwefel 1.2 [-100, 100]
2 𝑥𝑖 ∈ [-32.507195, 45.576833]*

10 𝑥𝑖 ∈ [-49.695003, 44.56004]*

15 Xin-She Yang [-2π, 2π] 2 𝑥𝑖 ∈ [-2.593346, 2.516497]*

16 Himmelblau [-5, 5] 2 𝑥1 ∈ [-2.16667, 2.833333]; 𝑥2 ∈ [-2.00693, 3.005908]

17 Giunta [-1,1] 2 𝑥1 ∈ [-0.001405, 1]; 𝑥2 ∈ [-0.001544, 1]

18 Adjiman 𝑥1 ∈ [-1,2]; 𝑥2 ∈ [-1,1] 2 𝑥1 ∈ [0.538884, 2]; 𝑥2 ∈ [-0.036695, 0.97748]

19 Branin 𝑥1 ∈ [-5,10]; 𝑥2 ∈ [0,15] 2 𝑥1 ∈ [-0.516649, 7]; 𝑥2 ∈ [3, 10.5]

20 Beale [-4.5,4.5] 2 𝑥1 ∈ [0, 4.5]; 𝑥2 ∈ [-0.070877, 4.5]

21 Bird [-2π,2π] 2 𝑥1 ∈ [-3.560472, 2.760253] ;𝑥2 ∈ [-3.56138, 2.7235]

22 McCormick 𝑥1 ∈[-1.5,4]; 𝑥2 ∈ [-3, 3] 2 𝑥1 ∈ [1.5, 1.25]; 𝑥2 ∈ [-3, 4.53E-05]

* The averages of variables (xi)

The same procedure is also conducted for constrained problems. It is more

difficult to handle RSAB for constrained problems because of the possibility of losing

global optimum or violating constraints. However, according to Table 16, the RSAB

algorithm reduced search space successfully in case of constraints as well.

Table 16: Updated lower and upper limits for constrained problems

Problem Domains
Updated Domains

(Averages of 30 trials for each variable)

Pressure Vessel

𝑥1 ∈ [0.0625, 10]

𝑥2 ∈ [0.0625, 10]

𝑥3 ∈ [0, 100]

𝑥4 ∈ [0, 240]

𝑥1 ∈ [0.0625, 2.090642]

𝑥2 ∈ [0.0625, 1.244526]

𝑥3 ∈ [37.866315, 59.989319]

𝑥4 ∈ [88.292303, 196.400645]

Himmelblau’s Function

𝑥1 ∈ [78, 102]

𝑥2 ∈ [33, 45]

 𝑥3 ∈ [27, 45]

 𝑥4 ∈ [27, 45]

 𝑥5 ∈ [27, 45]

𝑥1 ∈ [78.013988, 79.141126]

𝑥2 ∈ [33, 33.861337]

𝑥3 ∈ [27.019917, 28.188766]

 𝑥4 ∈ [43.607864, 44.8915]

𝑥5 ∈ [42.857521, 44.971922]

Welded Beam

𝑥1 ∈ [0.125, 5]

𝑥2 ∈ [0.1, 10]

𝑥3 ∈ [0.1, 10]

𝑥4 ∈ [0.1, 5]

𝑥1 ∈ [0.128382, 0.30487]

𝑥2 ∈ [1.107596, 7.629883]

𝑥3 ∈ [8.048392, 9.967568]

 𝑥4 ∈ [0.202204, 0.33574]

Tension/Compression Spring

Design

𝑥1 ∈ [0.05, 1]

 𝑥2 ∈ [0.25, 1.3]

 𝑥3 ∈ [2, 15]

𝑥1 ∈ [0.05, 0.062052]

 𝑥2 ∈ [0.25, 0.655427]

𝑥3 ∈ [5.765613, 12.91294]

CHPED

𝑥1 ∈ [0, 150]

𝑥2 ∈ [81, 274]

𝑥3 ∈ [40, 125.8]

𝑥4 ∈ [0, 180]

𝑥5 ∈ [0, 135.6]

 𝑥6 ∈ [0, 2695.2]

𝑥1 ∈ [0.099725, 16.743839]

 𝑥2 ∈ [115.028577, 157.065205]

𝑥3 ∈ [40.253933, 69.307731]

 𝑥4 ∈ [10.848522, 84.045112]

𝑥5 ∈ [15.303951, 99.741783]

𝑥6 ∈ [0, 22.829386]

RSAB algorithm is not an algorithm that guarantees the optimum solution.

Indeed, it provides an adaptive initial (better than pure random initial) solution for

continuous unconstrained/bounded or constrained nonlinear optimization problems

that may have many local optima. For that reason, it is not proper to compare the results

of the global optimization algorithms. Rather, after hybridizing RSAB with REF the

best and the worst solutions among 30 trials will be compared with many other

algorithms. According to the updated domains presented in Tables 15 and 16, the

92

RSAB algorithm reduced the search space by adaptively narrowing the boundaries. It

is worth mentioning that, this procedure provides a contribution to problem-solving in

terms of time and efficiency rather than adding burden to the REF algorithm.

Mathematically speaking, the RSAB algorithm consumes approximately 10% of the

total function evaluations.

4.3.2. Hybrid REF Algorithm

Since RSAB and REF algorithms are structured as successive procedures, after

initializing RSAB, the REF algorithm is ready to be implemented. The experimental

study of the Hybrid REF (RSAB-REF) algorithm is conducted for 22 unconstrained,

5 constrained benchmark problems. The findings for each problem are documented in

the following sections. The results will be discussed in the Conclusion section.

4.3.2.1. Findings of Unconstrained Problems

The experimental results for 22 unconstrained/bounded benchmarks are given

in Table 17. Different dimensions have been applied for these benchmarks to see the

capability of RSAB-REF. 13 of them can be regarded as small-sized (2-3 dimension),

whereas the rest of them are 10&30 dimensions.

Table 17: Updated lower and upper limits for constrained problems

 Problem Dimension
Global

Min

Best

Objective

Value

MEAN Worst

Objective

Value

Average

FES Objective

Value

Standard

Deviation

Standard

Error

1
De

JongF1/Sphere

3*

0.0E+00

0.0E+00 1.54E-09 6.05E-09 1.1E-09 2.97E-08 6753.77

10 0.0E+00 7.47E+01 2.09E+02 3.82E+01 1.05E+03 28380.1

30 1.74E-05 4.44E+03 6.95E+03 1.27E+03 2.69E+04 96355.7

2 AckleyF1

2*

0.0E+00

0.0E+00 9.84E-11 5.39E-10 9.85E-11 2.95E-09 3571.1

10 3.11E-15 1.07E+00 2.65E+00 4.83E-01 1.03E+01 30385.73

30 7.13E-04 1.14E+00 1.4E+00 2.56E-01 4.34E+00 101381.6

3 Rastrigin

2*

0.0E+00

0.0E+00 9.96E-02 3.04E-01 5.55E-02 9.96E-01 4078.77

10 0.0E+00 7.79E-01 1.94E+00 3.54E-01 8.96E+00 29697.27

30 2.84E-03 2.08E+01 3.54E+01 6.46E+00 1.76E+02 101404.2

4 Cosine Mixture 10 -1.0E+00 -1.0E+00 -9.72E-01 1.05E-01 1.91E-02 -5.45E-01 30361.63

5 Exponential
2

-1.0E+00
-1.0E+00 -1.0E+00 0.0E+00 0.0E+00 -1.0E+00 5338.73

10 -1.0E+00 -9.93E-01 1.58E-02 2.88E-03 -9.33E-01 26431.63

6 Cb3 2* 0.0E+00 0.0E+00 1.95E-15 1.02E-14 1.87E-15 5.61E-14 3634

7 Bohachevsky2 2* 0.0E+00 0.0E+00 4.37E-02 8.89E-02 1.62E-02 2.18E-01 6097.63

8 Griewank

2*

0.0E+00

0.0E+00 1.42E-02 1.81E-02 3.3E-03 6.66E-02 8215.1

10 3.33E-16 8.92E-02 1.67E-01 3.05E-02 6.41E-01 29819.83

30 5.16E-08 9.26E-01 1.68E+00 3.08E-01 6.28E+00 98399

9 Alpine 1
2*

0.0E+00
0.0E+00 6.68E-09 3.22E-08 5.88E-09 1.76E-07 6204.3

10 1.26E-07 1.38E-02 4.41E-02 8.06E-03 1.96E-01 30431.33

93

30 3.61E-04 9.17E-01 1.64E+00 2.99E-01 7.51E+00 101561.3

10 Egg Crate

2*

0.0E+00

0.0E+00 1.6E-21 8.75E-21 1.6E-21 4.9E-20 2736.47

10 4.82E-19 6.48E-01 3.55E+00 6.48E-01 1.94E+01 26419.97

30 6.41E-08 1.75E+01 3.64E+01 6.64E+01 1.75E+02 101321.6

11 3-D Paraboloid 3 0.0E+00 3.2E-09 1.73E-01 3.14E-01 5.74E-02 8.39E-01 9354.73

12 Price 2 2 9.0E-01 9.0E-01 9.0E-01 7.23E-06 1.32E-06 9.0004E-01 5291.27

13 Schaffer 2* 0.0E+00 0.0E+00 2.95E-05 1.62E-04 2.95E-05 8.85E-04 6684.47

14 Schwefel 1.2
2*

0.0E+00
0.0E+00 1.71E-10 7.89E-10 1.44E-10 4.26E-09 4777.37

10 9.88E-18 1.9E+02 5.53E+03 1.01E+02 2.93E+03 30383.53

15 Xin-She Yang 2* 0.0E+00 0.0E+00 2.04E-09 1.12E-08 2.04E-09 6.11E-08 3672.63

16 Himmelblau 2 0.0E+00 7.81E-18 4.59E-10 1.52E-09 4.59E-10 1.38E-08 7419.7

17 Giunta 2 6.04E-02 6.04E-02 6.04E-02 4.23E-17 7.73E-18 6.04E-02 9271.5

18 Adjiman 2 -2.02E+00 -2.02E+00 -2.02E+00 1.49E-11 2.71E-12 -2.02E+00 5164.47

19 Branin 2 3.98E-01 3.98E-01 3.98E-01 4.25E-11 7.75E-12 3.98E-01 9096

20 Beale 2 0.0E+00 1.92E-16 8.98E-11 2.99E-10 5.48E-11 1.5E-09 9619.73

21 Bird 2 -1.07E+02 -1.07E+02 -1.07E+02 2.16E-10 3.94E-11 -1.07E+02 9133.57

22 McCormick 2 -1.91E+00 -1.91E+00 -1.91E+00 1.69E-09 3.08E-10 -1.91E+00 9428.13

In some test cases (*), the global optimum solution is achieved by the RSAB

algorithm before starting REF in some of the 30 trials (fitness value reaches 1.00E-30

in RSAB). For this reason, the REF algorithm is bypassed in these trials.

According to the results in Table 17, especially benchmarks with 2-3

dimensions and even 10 dimensions achieved global minimum solutions successfully.

For 30 dimensional problems with wide ranges, it can be said that it approaches the

global minimum solution value to a certain degree. The standard deviations are

noteworthy in problems with 30 dimensions and also large search spaces. However, it

can be said that at least one out of 30 trials reached the global solution even in problems

with 30 dimensions. Nevertheless, the problems with high dimensions can yield better

results with more function evaluation values or stretching the stopping condition.

4.3.2.2. Pressure Vessel

The design of a Pressure Vessel is one of the most commonly used cost

optimization problems. This problem has four variables where x3 and x4 are continuous

while x1 and x2 are integer multiplies of 0.0625 inch which are the available thickness

of the material (Sandgren, 1990: 227). The model and the figure of the problem are

given in Appendix 2-3. The solution for the Pressure Vessel obtained by the RSAB-

REF algorithm is given in Table 18. The left-hand side values of each constraint are

also provided which show the feasibility of the solution. Only the first constraint value

is obtained as 9.94393E-12 which can be ignored.

94

Table 18: Best solution for Pressure Vessel

Objective Value x1 x2 x3 x4

5850.38306 0.75 0.375 38.860104 221.365471

Constraints
g1(x) g2(x) g3(x)

9.94393E-12 -0.004275 -1.26292E-05

The descriptive statistics of the 30 trials are given in Table 19. Although

maximum FES is limited to 30000, the minimum, maximum, and average FES values

are reported as well.

Table 19: Experimental results of Pressure Vessel

Best 5850.38306 Average Iteration 145.5

Mean 6344.250094 Minimum FES 5681

Worst 7962.557339 Average FES 22288.47

Standard Deviation 652.4 Maximum FES 30124

Standard Error 119.11

The Pressure Vessel problem has been handled with many other metaheuristic

algorithms previously. Since there are too many algorithms in the literature, only the

recently published in high-quality journals are presented chronologically in Table 20.

Most of the solutions could not be able to satisfy “having 𝑥1 and 𝑥2 as integer

multiplies of 0.0625”. The best-known solution for Pressure Vessel seems obtained

firstly by Mahdavi et al. (2007) and then by Gandomi et al. (2011). However,

according to the reported values of variables, the true objective value should be

5850.384 in IHS and FA presents 0.27 total deviation from constraints. RSAB-REF

algorithm has provided the best-known solution with a smaller set size, fewer function

evaluations, and no violation compared to FA and IHS.

Table 20: Comparisons for Pressure Vessel (Best-so-far solution)

Reference x1 x2 x3 x4 Objective

GeneAS 0.9375 0.5 48.329 112.679 6410.3811

SAP 0.8125 0.4375 40.3239 200 6288.7445

C-PSO 0.8125 0.4375 42.091266 176.7465 6061.0777

IHS 0.75 0.375 38.8601 221.36553 5849.76169

ES 0.8125 0.4375 42.098087 176.640518 6059.745605

MTCA 0.8125 0.4375 42.098429 190.787695 6390.554

CSS 0.8125 0.4375 42.103624 176.572656 6059.09

FA 0.75 0.375 38.8601 221.36547 5850.38306 (0.27)

MCSS 0.8125 0.4375 42.10455 176.560967 6058.97

ISA 0.8125 0.4375 42.09845 176.6366 6059.7143

GWO 0.8125 0.4345 42.089181 176.758731 6051.5639

CBO 0.779946 0.38556 40.49065 198.76232 5889.911 (0.001)

TEO 0.779151 0.385296 40.369858 199.301899 5887.511073

SOA 0.77808 0.383247 40.31512 200 5879.5241 (319.82)

95

PA 0.778168 0.3846489 40.31964 199.9999 5885.3351 (1e-06)

N2F 1.125 0.625 58.290155 43.6926562 7197.72893

MPA 0.8125 0.4375 42.098445 176.636607 6059.7144

EO 0.8125 0.4375 42.098446 176.636596 6059.7143

SRO 0.8125 0.4375 42.098446 176.636596 6059.714335

SMA 0.7931 0.3932 40.6711 196.2178 5994.1857

CGO 0.778169 0.51 40.319619 200 6247.672819

GTO 0.778169 0.38465 40.3196 200 5885.333 (1.33)

TLMPA 0.778169 0.384649 40.319618 200 5885.332774 (0.05)

IGWO 0.779031 0.385501 40.36313 199.4017 5888.34

Proposed Algorithm 0.75 0.375 38.860104 221.365471 5850.38306

The descriptive statistics of the experiments are shown in Table 21. As it is

seen, the performance of the RSAB-REF algorithm is better than the solutions reached

by other algorithms. Although the worst and the standard deviation are relatively

higher than the others, the feasible best-known solution is obtained by the proposed

algorithm.

Table 21: Comparisons for Pressure Vessel (Descriptive Statistics)

Reference Best Mean Worst Std dev

GeneAS 6410.3811 N/A N/A N/A

SAP 6288.7445 6293.843232 6308.149652 7.413285

C-PSO 6061.0777 6147.1332 6363.8041 86.4545

IHS 5849.76169 N/A N/A N/A

ES 6059.745605 6850.004948 7332.879883 4.26E+02

MTCA 6390.554 6737.065147 7694.066881 3.57E+02

CSS 6059.09 6,067.91 6085.48 10.2564

FA 5850.38306 (0.27) N/A N/A N/A

MCSS 6058.97 6063.18 6074.74 9.73494

ISA 6059.714 6410.087 7332.846 384.6

GWO 6051.5639 N/A N/A N/A

CBO 5889.911 (0.002) 5934.201 6213.006 63.5417

TEO 5887.511073 5942.565917 6134.187981 62.2212

SOA 5879.5241 (319.82) 5883.0052 5893.4521 256.415

PA 5885.3351 (1e-06) N/A N/A N/A

N2F 7197.72893 7197.72905 7197.72924 7.90E-05

MPA 6059.7144 6102.8271 6410.0929 106.61

EO 6059.7143 6668.114 7544.4925 566.24

SRO 6059.714335 6091.32594 6410.0868 8.03E+01

SMA 5994.1857 N/A N/A N/A

CGO 6247.672819 6250.957354 6330.958685 10.759156

GTO 5885.333 (1.33) N/A N/A N/A

TLMPA 5885.332774 (0.05) N/A N/A N/A

IGWO 5888.34 N/A N/A N/A

Proposed Algorithm 5850.38306 6344.25 7962.557 652.4

4.3.2.3. Himmelblau’s Function

Himmelblau proposed a non-linear constrained optimization problem in 1972

and it is regarded as a mechanical engineering problem (Kumar et al., 2020b: 25). This

well-known problem has five variables and six constraints. The model of the problem

is given in Appendix 4. The solution for Himmelblau’s Function obtained by the

96

RSAB-REF algorithm is given in Table 22. As it is seen, all constraints are within the

defined range which means that there are no violations.

Table 22: Best solution for Himmelblau’s Function

Objective x1 x2 x3 x4 x5

-31025.55751 78.000017 33.000008 27.071017 45 44.969175

Constraints
g1(x)* g2(x)* g3(x)*

91.999991 100.404777 20

*0 ≤ 𝑔1(𝑥) ≤ 92; 90 ≤ 𝑔2(𝑥) ≤ 110; 20 ≤ 𝑔3(𝑥) ≤ 25

The experimental results for Himmelblau’s Function are given in Table 23 as

descriptive statistics. Maximum FES is limited to 30000, the minimum and the average

FES values are reported as well.

Table 23:Experimental results of Himmelblau’s Function

Best -31025.55751 Average Iteration 69.83

Mean -31017.015168 Minimum FES 5583

Worst -30904.583815 Average FES 10841.87
Standard Deviation 25.89 Maximum FES 18655

Standard Error 4.73

In Table 24, the feasible best-known solutions obtained for Himmelblau’s

Function are given. It is clear that the best-known solution is reached by H-GSA-GA

with -31027.64076 which was published in 2019. However, the H-GSA-GA utilizes

20*Dimension as population size which becomes 100. Besides, other algorithms

reached the -31025.5 objective value in general. ABC and H-PSO-GA have negligible

violations in some constraints shown in brackets.

Table 24: Comparisons for Himmelblau’s Function (Best-so-far solution)

Reference x1 x2 x3 x4 x5 Objective

CSA 78 33 29.99616 45 36.77605 -30665.233

PSO-GA 78 33 29.99525 45 36.77582 -30665.5389

ABC 78 33 27.070979 45 44.969024 -31025.57569 (3.5e-05)

PPA 78 33 29.9952 45 36.7758 -30665.54

H-FPA N/A N/A N/A N/A N/A -31025.5654

OIO N/A N/A N/A N/A N/A -31025.50178

H-PSO-GA 78 33 27.070951 45 44.969167 -31025.57471 (2.8e-05)

H-GSA-GA 77.961 32.99948 27.072836 45 44.973943 -31027.64076

Proposed Algorithm 78.000017 33.000008 27.071017 45 44.969175 -31025.55751

97

The descriptive statistics for Himmelblau’s Function are listed in Table 25. As

it is seen, the performance of the REF algorithm for Himmelblau's Function is

considerably good.

Table 25: Comparisons for Himmelblau’s Function (Descriptive Statistics)

Reference Best Mean Worst Std dev

CSA -30665.233 N/A N/A 11.6231

PSO-GA -30665.5389 -30665.53697 -30665.48996 8.76E-03

ABC -31025.57569 (3.5e-05) -31025.55841 -31025.49205 0.0153528

PPA -30665.54 N/A N/A N/A

H-FPA -31025.5654 NA NA NA

OIO -31025.50178 -31024.5348 -31020.60517 1.2092

H-PSO-GA -31025.57471 (2.8e-05) -31025.55782 -31025.49205 0.01526

H-GSA-GA -31027.64076 -31026.07246 -31025.38705 0.01803

Proposed Algorithm -31025.6 -31017 -30904.6 25.89

4.3.2.4. Welded Beam

The welded beam is a structural optimization problem that is generally

preferred as a benchmark (Ragsdell and Phillips, 1976: 1021). This cost optimization

problem consists of four design variables and six constraints. The model and its figure

are given in Appendix 5-6. The solution for Welded Beam obtained by the RSAB-REF

algorithm is given in Table 26. Furthermore, to show the feasibility of the solution the

left-hand side values of each constraint are also provided. As it is seen from the

constraint values, the solution is feasible as well.

Table 26: Best solution for Welded Beam

Objective x1 x2 x3 x4

1.724867 0.205734 3.470438 9.036532 0.205734

Constraints

g1(x) g2(x) g3(x)

-1.52501E-05 -0.000243 -1.72409E-07

g4(x) g5(x) g6(x)

-3.390645 -0.23554 -0.327636

The experimental results for Welded Beam are given in Table 27 as descriptive

statistics. Although maximum FES is limited with 30000 and actual FES values are

also reported.

98

Table 27: Experimental results of Welded Beam

Best 1.724867 Average Iteration 162.53

Mean 1.79025 Minimum FES 9163

Worst 2.078897 Average FES 25511.57

Standard Deviation 0.08 Maximum FES 30129

Standard Error 0.02

The feasible best-known solution for Welded Beam has been obtained as

1.724852 in the literature. Most of the algorithms have reached the feasible best-known

solution, however, the solution values obtained differ after the 5th decimals as shown

in Table 28.

Table 28: Comparisons for Welded Beam (Best-so-far solution)

References x1 x2 x3 x4 Objective

GeneAS 0.2489 6.173 8.1789 0.2533 2.433116

SAP 0.2088 3.4205 8.9975 0.21 1.748309

C-PSO 0.202369 3.544214 9.04821 0.205723 1.728024

IHS 0.20573 3.047049 9.03662 0.20573 1.7248 (1505.76)

ES 0.19972 3.61206 9.0375 0.206082 1.7373

MTCA 0.244369 6.218613 8.291474 0.244369 2.38113

CSS 0.20582 3.468109 9.038024 0.205723 1.724866

RO 0.203687 3.528467 9.004233 0.207241 1.735344

MCSS 0.20573 3.470489 9.036624 0.20573 1.724855

ISA 0.2443303 6.219931 8.291521 0.244369 2.3812

GWO 0.205676 3.478377 9.03681 0.205778 1.72624

CBO 0.205722 3.47041 9.037276 0.205735 1.724663

TEO 0.205681 3.472305 9.035133 0.205796 1.725284

SOA 0.205408 3.472316 9.035208 0.201141 1.723485 (1104.85)

PA 0.0205795 3.470495 9.036624 0.20573 1.724853 (124635.3)

N2F 0.20573 3.470489 9.036624 0.20573 1.724852

MPA 0.205728 3.470509 9.036624 0.20573 1.724853 (0.05)

EO 0.2057 3.4705 9.03664 0.2057 1.7549

SRO 0.20573 3.470489 9.036624 0.20573 1.724852

CGWO 0.20573 3.470499 9.036637 0.20573 1.724854

SMA 0.2054 3.2589 9.0384 0.2058 1.69604 (725.21)

CGO 0.198856 3.337244 9.191454 0.198858 1.670336 (1252.9)

GTO 0.20573 3.470489 9.036624 0.20573 1.724852

TMPA 0.20573 3.470489 9.036624 0.20573 1.724852

IGWO 0.20573 3.47049 9.036624 0.20573 1.724853

Proposed Algorithm 0.205734 3.470438 9.036532 0.205734 1.724867

Different from Pressure Vessel and Himmelblau’s function, there are some

infeasible solutions reported in the literature as can be seen in Table 28. According to

the table, IHS, SOA, PA, MPA, SMA, and CGO reached infeasible solutions and their

total deviations are given in brackets. Furthermore, CBO documented its best solution

as 1.724663 which is wrong. According to the variables, its best reached objective

value is 1.724983 which is not a rounding error.

99

In Table 29, the descriptive statistics for Welded Beam are reported. Table 29

indicates that the RSAB-REF algorithm achieves the best-known solution nearly (with

a 2.3E-05 deviation from the best-known solution which is negligible).

Table 29: Comparisons for Welded Beam (Descriptive Statistics)

Reference Best Mean Worst Std dev

GeneAS 2.433116 N/A N/A N/A

SAP 1.748309 1.771973 1.785835 0.011223

C-PSO 1.728024 1.748831 1.782143 0.012926

IHS 1.7248 (1505.76) N/A N/A N/A

ES 1.7373 1.81329 1.994651 7.05E-02

MTCA 2.38113 2.439811 2.710406 0.093146

CSS 1.724866 1.739654 1.759479 0.008064

RO 1.735344 1.9083 N/A 0.173744

MCSS 1.724855 1.735374 1.750127 0.007571

ISA 2.3812 2.4973 2.67 1.02E-01

GWO 1.72624 N/A N/A N/A

CBO 1.724662 1.725707 1.725059 0.000244

TEO 1.725284 1.76804 1.931161 0.058166

SOA 1.723485 (1104.85) 1.724251 1.727102 1.724007

PA 1.724853(124635.3) N/A N/A N/A

N2F 1.724852 1.725 1.726147 3.39E-04

MPA 1.724853 (0.05) 1.724861 1.724873 6.41E-06

EO 1.724853 1.726482 1.736725 0.003257

SRO 1.724852 1.724852 1.724852 2.22E-11

CGWO 1.724854 1.724854 1.724854 3.36E-16

SMA 1.69604 (725.21) N/A N/A N/A

CGO 1.670336 (1252.9) 1.670378 1.670903 9.30E-05

GTO 1.724852 N/A N/A N/A

TLMPA 1.724852 N/A N/A N/A

IGWO 1.724853 N/A N/A N/A

Proposed Algorithm 1.724875 1.7708 1.949681 0.05

4.3.2.5. Tension/Compression Spring Design

Tension/ Compression spring design problem is an optimization benchmark

that aims to minimize the weight of the spring by satisfying requirements (Arora, 2017:

47). There are three variables and four constraints. Its model and figure are given in

Appendix 7-8. The best solution for Tension/Compression Spring Design obtained by

the RSAB-REF algorithm is given in Table 30. As it is seen from Table 30, all

constraints are satisfied.

Table 30: Best solution for Tension/Compression Spring Design

Objective x1 x2 x3

0.012665 0.05183 0.360125 11.091955

Constraints
g1(x) g2(x) g3(x) g4(x)

6.07936E-12 -2.54827E-12 -4.060463 -0.725363

100

The experimental results for Tension/Compression Spring Design are given in

Table 31 as descriptive statistics. Maximum FES is limited to 30000, the minimum

and the average FES values are also reported.

Table 31: Experimental results of Tension/Compression Spring Design

Best 0.012665 Average Iteration 180.93

Mean 0.012858 Minimum FES 6917

Worst 0.013368 Average FES 27053.13

Standard Deviation 0.0002 Maximum FES 30122

Standard Error 4.27E-05

According to Table 32, the feasible best-known solution is 0.012665 reported

in the literature. The RSAB-REF algorithm also reached the value of the best-known

solution. It is worth noting that, the solutions less than 0.012665 (CSS, MCSS, and

SOA) violated some constraints and their total deviations which are relatively small

are given in brackets.

Table 32: Comparisons for Tension/Compression Spring Design (Best-so-far solution)

Reference x1 x2 x3 Objective

GeneAS 0.5148 0.351661 11.632201 0.012705

SAP 0.051728 0.357644 11.244543 0.012675

IHS 0.051154 0.349871 12.076432 0.012671

ES 0.051643 0.35536 11.397926 0.012698

MTCA 0.051622 0.355105 11.384534 0.012665

CSS 0.051744 0.358532 11.165704 0.012638 (0.01)

RO 0.05137 0.349096 11.7679 0.012679

MCSS 0.051627 0.35629 11.275456 0.012607 (0.02)

ISA N/A N/A N/A 0.012665

GWO 0.05169 0.356737 11.28885 0.012666

CBO 0.051894 0.361674 11.007846 0.01267

TEO 0.051775 0.358792 11.16839 0.012665

SOA 0.051065 0.342897 12.0885 0.012645 (0.04)

PA 0.051727 0.35763 11.235724 0.012665

MPA 0.051725 0.35757 11.239196 0.012665

IGWO 0.05162 0.355055 11.387968 0.012666

SRO 0.051689 0.356723 11.288648 0.012665

GBO 0.05203 0.36509 10.81456 0.012667

CGO 0.051663 0.356078 11.326575 0.012665

TLMPA 0.051681 0.356533 11.299823 0.012665

Proposed Algorithm 0.05183 0.360125 11.091955 0.012665

The descriptive statistics for Tension/Compression Spring Design are listed in

Table 33. As it is seen, the performance of the RSAB-REF algorithm is better than the

solutions reached by other algorithms.

101

Table 33: Comparisons for Tension/Compression Spring Design (Descriptive Statistics)

Reference Best Mean Worst Std dev

GeneAS 0.012705 0.012769 0.012822 3.94E-05

SAP 0.012675 0.01273 0.012924 5.20E-05

IHS 0.012671 N/A N/A N/A

ES 0.012698 0.013461 0.016485 9.66E-04

MTCA 0.012665 0.012732 0.013309 9.40E-05

CSS 0.012638 (0.01) 0.012852 0.013626 8.3564e−5

RO 0.012679 0.013547 N/A 0.001159

MCSS 0.012607 (0.02) 0.012712 0.012982 4.7831e−5

ISA 0.012665 0.013165 0.012799 1.59E-02

GWO 0.012666 N/A N/A N/A

CBO 0.01267 0.01273 0.0128808 5.00E-05

TEO 0.012665 0.012685 0.012715 4.41E-06

SOA 0.012645 (0.04) 0.012666 0.012666 0.001108

PA 0.012665 N/A N/A N/A

MPA 0.012665 0.012665 0.012665 5.55E-08

IGWO 0.012666 0.013017 0.013997 3.91E-04

SRO 0.012665 0.012665 0.012668 1.26E-07

GBO 0.012667 0.012696 N/A 3.36E-05

CGO 0.012665 0.01267 0.012719 1.09E-05

TLMPA 0.012665 N/A N/A N/A

Proposed Algorithm 0.012665 0.012858 0.013368 0.0002

4.3.2.6. Combined Heat and Power Economic Dispatch Problem

The combined heat and power economic dispatch problem (CHPED) is a

minimization problem that includes two sub-problems as heat dispatch and power

dispatch. This problem aims to calculate the unit heat and power production while

minimizing total cost and satisfying power and heat demands (Guo et al., 1996: 1779).

This benchmark problem has six decision variables (P1, P2, P3, H2, H3, H4) and twelve

constraints (Sun and Li, 2018: 8), and its model is given in Appendix 9. However,

since the proposed algorithm is structured on inequality constraints, the heat and power

demand constraints are regarded as both " ≤ " and " ≥ ".

 Since this problem has many constraints and includes demand equations which

mean four inequalities, finding a stable solution is a challenging problem for the

RSAB-REF algorithm. The best solution and constraints values obtained by the

RSAB-REF algorithm are given in Table 34.

102

Table 34: Best solution for CHPED

Objective P1 P2 P3

9257.075

0 160 40

H2 H3 H4

40 75 0

Constraints

g1(x) g2(x) g3(x) g4(x)

0 0 0 0

g5(x) g6(x) g7(x) g8(x)

-79.888889 -67.993893 -194.468083 -79.360456

g9(x) g10(x)

-1.25E-07 -3.0E-08

It is an expected result that the variables are integers due to the nature of the

CHPED problem. Therefore, even if it is not defined as an integer at the beginning,

the best-known solution (0, 160, 40, 40, 75, 0) has integer variables. The experimental

results for the CHPED problem are presented in Table 35.

Table 35: Experimental results of CHPED

Best 9257.075 Average Iteration 85.97

Mean 9625.02155 Minimum FES 9922

Worst 10241.75 Average FES 27442.4

Standard Deviation 274.69 Maximum FES 30305

Standard Error 50.15

In the literature, the best-known solution for the CHPED problem is also

obtained as 9257.075. Moreover, as it is seen from Table 36, there are also violated

solutions such as CCM and KKO. Their total deviations from constraints are given in

brackets. According to Table 13, the algorithms that reach the best solution in the

literature were performed with particles between 25 and 500. Accordingly, the

performance of RSAB-REF with 50 particles can be evaluated as relatively good.

Table 36: Comparisons for CHPED (Best solution)

Reference P1 P2 P3 H2 H3 H4 Objective

HS 0 160 40 40 75 0 9257.07

MADS 0 160 40 40 75 0 9257.07

FA 0.0014 159.9986 40 40 75 0 9257.1

PSO 0 160 40 40 75 0 9257.07

CCM 0 200 0 0 115 0 8606.07 (123.63)

CSA N/A N/A N/A N/A N/A N/A 9257.075

SCO 0 160 40 40 75 0 9257.07

KKO 0.0282 155.015 44.9568 18.1301 96.8699 0 9217.03 (20.38)

Proposed Algorithm 0 160 40 40 75 0 9257.075

103

The descriptive statistics for CHPED are listed in Table 37. As can be seen

from the table, the solution of this problem has reached the best-known solution with

the RSAB-REF algorithm.

Table 37: Comparisons for CHPED (Descriptive Statistics)

Reference Best Mean Worst Std dev

HS 9257.07 NA NA NA

MADS 9257.07 9257.515 9260.432 1.0743

FA 9257.1 N/A N/A N/A

PSO 9257.07 N/A N/A N/A

CCM 8606.07 (123.63) N/A N/A N/A

CSA 9257.075 9259.165 9327.972 9.886

SCO 9257.07 9263.34 9276.23 NA

KKO 9217.03 (20.38) N/A N/A N/A

Proposed Algorithm 9257.075 9625.022 10241.75 274.69

104

CONCLUSION

Optimization comprises many techniques to provide optimal solutions for

problems including scheduling, allocation, designing in a wide range of fields.

Regardless of the complexity of problems, optimization is a process for minimizing or

maximizing a function under given conditions. However, as the complexity of the

problems is getting higher, advanced optimization techniques are required. A problem

can be defined as tractable in case of solving it in a reasonable computation time. This

kind of problem belongs to Class P which means they can be solved by traditional

optimization techniques in a polynomial time. Most of the real-world optimization

problems are classified in NP-Hard where the problems have nonlinear characteristics

and cannot be solved in polynomial time. Nevertheless, there are no efficient

deterministic algorithms for the problems denoted as NP-Hard. Therefore, stochastic

algorithms which are constructed on randomization somehow in their principles are

needed. Especially with the developments of artificial intelligence and computation

technology, modern optimization techniques become metaheuristic algorithms that

provide approximate solutions to NP-Hard problems.

The breaking point in problem-solving literature dates back to the early 1960s

with the “evolution” concept. Genetic Algorithm, Evolutionary Programming,

Evolutionary Strategies, Genetic Programming are pioneers for computational

methods inspired by evolutionary processes. In the years of 1980s, with the

developments of Simulated Annealing and Tabu Search, more metaphors have started

to be used in algorithms. After 2000, the behaviors of living organisms, facts in nature,

laws in the field of science have encouraged researchers to mimic these mechanisms

for developing algorithms. In the state-of-the-art, many algorithms imitate these

behaviors and interactions for solving real-world optimization problems. The number

of new metaheuristic algorithms based on metaphors has exploded especially in the

last decade. Although this topic attracts attention in the literature, some researchers

asserted that the newly introduced metaheuristics have similarities regardless of

different metaphors.

However, according to the “No Free Lunch Theorem”, there cannot be an

algorithm that is appropriate for all problems. For this reason, as real-world

105

optimization problems exist, scholars will continue to focus on developing novel

algorithms that can solve most types of problems.

Discussion about Findings

The performance of the RSAB-REF algorithm has been tested with the most

common unconstrained/bounded benchmark problems, engineering design problems,

and economic dispatch problem respectively. Although these benchmarks are referred

to as engineering design problems in the literature, problems that are essentially aimed

at "cost minimization" can also be regarded as a business problem. The updated

domains as the output of the RSAB algorithm and the best solutions obtained as a

result of the RSAB-REF algorithm have been presented in Table 15-37.

According to the findings of the RSAB algorithm, it is clear that the search

space was reduced by approximately half for each unconstrained problem. For the

RSAB algorithm, the initial set size was used as 20 regardless of the dimension size of

the problems, and the amount of increase in case of no improvement was used as 0

since RSAB is hybridized with the REF algorithm. It is recommended that the initial

set size can be increased when the RSAB algorithm is applied only. For this reason,

there is no radical difference between dimensions in test cases in terms of narrowing

the search space. However, since 30 trials were run for each test function, the reporting

of narrowed areas was only made as to the average of all trials and variables. As for

constrained problems, it is more difficult to handle the RSAB algorithm because of the

possibility of losing the global optimum or violating constraints. However, according

to the findings, the RSAB algorithm reduced search space successfully in case of

constraints as well. It is worth noting that, the reported domains succeed in between

60%-90% approximately among 30 trials for constrained problems. The reason for the

updated range to miss the global minimum is thought to be since the constraints do not

contain the relevant variable. However, this situation does not prevent the REF

algorithm from reaching the global minimum. This procedure provides a contribution

to problem-solving in terms of time and efficiency rather than adding a burden to the

REF algorithm. Mathematically speaking, the RSAB algorithm consumes

approximately 10% of the total function evaluations.

106

According to the findings of Hybrid RSAB-REF for unconstrained problems,

especially benchmarks with 2-3 sizes and even 10 sizes achieved global minimum

solutions successfully. In addition to achieving a global minimum, standard deviations

and errors indicate that the findings are consistent among 30 trials. As for 30-

dimensional problems, it can be said that at least one out of 30 trials reached the global

solution to a certain degree. However, the standard deviations are noteworthy in

problems with 30 dimensions and large search spaces. Therefore, the problems with

high dimensions can yield better results with more function evaluation values or when

stretching the stopping condition.

It is very important to test constrained benchmark problems to show the

capability of the MUPE approach employed in the REF algorithm. Although the

maximum FES value is limited to 30000 for all constrained problems, in some cases

the algorithm terminated with lower FES values because of the stopping condition.

This helps the REF algorithm to quickly complete that trial in case the global solution

is missed in the RSAB algorithm.

According to the experimental results for the Pressure Vessel problem, the best

feasible solution was reached as 5850.38306 by satisfying all constraints with the

RSAB-REF algorithm. The result compared with many algorithms published in high-

quality journals. According to the solutions published in the literature, it seems that

HIS and FA have obtained the best-known solution so far. However, after a detailed

examination, it was recognized that the reported values for IHS and FA did not reflect

the truth as explained in the previous section. Besides, most of the studies could not

be able to satisfy “having x1 and x2 as integer multiplies of 0.0625”. Although the

worst and the standard deviation are relatively higher than the others, the feasible best-

known solution in the literature is obtained by the proposed algorithm. Moreover, the

RSAB-REF algorithm has provided the best-known solution with a smaller set size,

fewer function evaluations, and no violation compared to FA and IHS.

According to the findings for Himmelblau’s function, the best-known solution

is reached by H-GSA-GA with -31027.64076 which is published in 2019. However,

the H-GSA-GA utilizes 20*Dimension as population size which becomes 100.

Besides, other algorithms reached the objective value of -31025.5 in general. Besides,

there are also infeasible solutions reached by other algorithms in Table 24-25. The

107

performance of the RSAB-REF algorithm for Himmelblau's Function is considerably

good since -31025.5 was obtained and all constraints were satisfied.

According to the experimental results for Welded Beam, 1.724867 was

obtained by the RSAB-REF algorithm which is feasible. The feasible best-known

solution for Welded Beam has been obtained as 1.724852 in the literature. Most of the

algorithms have reached the feasible best-known solution, however, the solution

values obtained differ after the 5th decimals. The RSAB-REF algorithm achieved the

best-known solution with a 2.3E-05 deviation from the best-known solution which is

negligible. According to the comparison table, IHS, SOA, PA, MPA, SMA, and CGO

reached infeasible solutions. Although CBO documented its best solution as 1.724663

which seems the best-known solution in the literature, its adjusted objective value is

1.724983 which cannot be a rounding error. As a result, it can be concluded that the

RSAB-REF algorithm performed quite well for the Welded Beam problem.

Another unconstrained benchmark problem is Tension/Compression Spring

Design problem. The RSAB-REF algorithm was reached 0.012665 by satisfying all

constraints which is the best-known solution in the literature as well. However,

according to the comparison table, the solutions violated some constraints less than

0.012665 (CSS, MCSS, and SOA) with relatively smaller deviations. Therefore, it is

clear that the RSAB-REF algorithm also performed well for this problem too.

 Except for engineering design problems, CHPED was preferred to be tested as

a different business problem. This problem aims to calculate the unit heat and power

production. Although it is not defined as integer programming, the best-known

solution in the literature has integer values. However, this result is not surprising

because of the nature of the allocation problem. Finding a stable solution for the

CHPED problem is challenging for the RSAB-REF algorithm since this problem has

many constraints and includes demand equalities. Since some deviation of constraints

is allowed in MUPE, constraints should be treated as inequalities in the RSAB-REF

algorithm. For this reason, considering equality constraints as two inequalities (≤, ≥)

makes CHPED a more challenging problem. According to the findings for the CHPED

problem, the RSAB-REF algorithm was reached the best-known solution (9257.075)

without any violation. However, it would be better to mention that variables were

restricted to integers. According to the solutions published in the literature, CCM and

108

KKO violated some constraints. When the population sizes (changing between 25-

500) used by the algorithms obtained 9257.075 are examined, it can be concluded that

the performance of RSAB-REF with 50 particles is relatively good. However, it is

worth mentioning that the RSAB-REF algorithm is open to improvement to obtain

more stable results with fewer particles for problems like CHPED.

Discussion about Similar Algorithms

As an overall assessment, it is obvious that the REF algorithm is similar to

algorithms in both the magnetism class and Newton's gravitational law class since it

employs Coulomb’s Law, Pareto’s Principle, Pauli’s Exclusion Principle, Newton’s

Third Law, Momentum Law. Considering the physics-based algorithms introduced in

Section 2, it is seen that the REF algorithm belongs to both the magnetism class and

Newton's gravitational law class.

The most prominent feature of REF is the “repulsive forces between particles”.

No algorithm relies solely on repulsive forces, as in the REF algorithm. GSA, CFO,

CSS allow particles only to attract each other, whereas EM, MOA, MCSS, EFO, APO,

GIO are the algorithms that allow particles to attract and repulse each other. Among

them, MOA, MCSS, and EFO consider attraction between particles strongly than

repulsion.

Another prominent principle in the REF algorithm is Coulomb's Law. EM and

CSS, which belong to the magnetism class, are also based on Coulomb's Law as well.

However, EM differentiates in terms of allowing attraction whereas CSS also utilizes

Gauss Law additionally.

Moreover, REF employs memory. Thus, in each iteration of the algorithm, it is

aimed to beat the previous best. In this way, it is easier to reach the global optimum.

As for the others, EM and CSS also use memory in their principle. On the other hand,

although memory usage provides better convergence, Rashedi et al. (2009) asserted

that GSA is a memoryless algorithm but works as effectively as algorithms with

memory.

Furthermore, REF calculates repulsive force by considering a Gravity Constant

as a function that depends on the logarithm of the distance between particles. GSA

109

also incorporates Gravitational Constant as a function based on the total number of

iterations and the time and it decreases dynamically through the iterations. Unlike REF

and GSA, GIO algorithm employs a constant number for Gravitational Constant.

As for the neighborhood principle, REF takes into account a defined number

of neighbors which are the most-closest ones and this means that a particle can be

affected only by its neighbors. Furthermore, REF employs Euclidean distance between

particles as in GSA. Among the similar algorithms, MOA considers repulsion and

attraction until the distance approaches infinity between particles. Besides, the power

of the distance parameter used in Newton’s Gravitational Law is flexible between -5

to 5 in the APO algorithm rather than square which is used generally.

 The highly dissociative property is whether the mass or energy of the particles

is taken into account in algorithms. Since the REF algorithm is inspired by Coulomb’s

Law, the particles get involved in force calculation as electrical charges. However, the

algorithms belong to Newton’s Gravitational Law and MOA utilizes particle mass. On

the other hand, HO, EM, CSS, MCSS consider charges of particles.

Furthermore, the REF algorithm assumes that particles can move in hyperspace

through only a path but not like a wave. A similar principle is also employed by the

MCSS algorithm by allowing only straight-line movements.

Although the REF algorithm and the algorithms mentioned above have both

common and distinctive features, it should be noted that the main purpose of this study

is not to duplicate existing algorithms through a new metaphor, but to provide an

algorithm that converges the best-known solution values. To reach better solutions it

is very important to determine the best combination of features inspired from the

literature or metaphors. Therefore, achieving better results in a specific problem type

is the primary goal, regardless of metaphors and similarities. It is also worth noting

that physics-based algorithms, which have common features with REF, have been

generally applied for unconstrained problems. Those developed for constrained real-

world problems have been included in the comparison list within the scope of this

thesis.

110

Theoretical Implications

In this thesis study, an evolutionary computation model for

unconstrained/bounded and constrained continuous optimization problems has been

developed. This model is constituted as a hybrid algorithm that includes RSAB as an

initialization algorithm and REF as the main algorithm. These two algorithms

presented in this thesis study are adapted from the thesis study conducted by Erdem

(2007). However, certain structural modifications have been implemented. A

comprehensive preliminary study has been carried out to decide on which framework

and which programming language will be used for coding the proposed algorithm (see

Oztas and Erdem, 2021). According to the findings of this study, management

scientists in social sciences tend to prefer easy-to-use platforms which are approximate

to human language. For this reason, we preferred to code the RSAB and REF

algorithms in Python language on the PyCharm framework. The developed algorithms

have been coded by the author under object-oriented programming and class structure

to provide more readable and systematic codes. Moreover, code optimization has been

applied numerous times to the code prepared within the scope of the study and

improvements have been achieved by getting rid of the existing bottlenecks.

RSAB algorithm can be thought of as a procedure for banning regions in the

search space where there is no global solution. It has been developed to provide

adaptive initial solutions by reducing the diversity of randomness in the initialization

procedure. The outstanding feature of this algorithm is the ability to escape from

eliminating accidentally global optimum in multi-modal problems unlike in

straightforward methods. Moreover, this initialization procedure does not add

additional burden to existing solution methods, and on the contrary, it provides a

contribution to problem-solving in terms of time and efficiency. For this initialization

algorithm, the “Update Intervals” procedure has been newly developed as a

modification to obtain robust narrowed intervals. This module includes two sub-

modules that are running in case of the improvements in solutions for

unconstrained/bounded and constrained problems. This algorithm runs for the defined

number of iterations. The final updated intervals are determined by considering all

generated intervals for having robust, stable solutions. For that reason, mean-mode-

111

median values of lower and upper limits are calculated. In the end, the minimum of

lower limits and the maximum of upper limits will be the final updated intervals for

the related problem. In this way, the updated domains as the output of RSAB will be

the search space as input in the REF algorithm.

REF Algorithm has been structured on the principle that the forces between a

particle and its neighbors make the particle moved to a new location where a better

solution may exist. The repulsive structure of the particles and the movements can be

considered as the mimics of Coulomb's Law and Momentum Law respectively.

Furthermore, Tabu Search Algorithm and Elitism selection approach have inspired the

memory usage of the main algorithm. Moreover, the REF algorithm includes the

MUPE approach which is developed for constraint handling by considering

satisfaction rates, the total deviations of constraints, and objective function in a

multiplicative manner.

REF algorithm comprises “Determine Intervals”, “Initialization”,

“Neighborhood”, “Displacement”, and “Duplication” steps. Modifications have been

applied to each step except the "Neighborhood". “Determine Intervals” and

“Initialization” are the common steps with RSAB which are executed only once

when operating as a hybrid algorithm. Modifications have been applied to each

procedure within the scope of this thesis study except the neighborhood procedure.

Some modifications have been applied to increase the efficiency of the

algorithm by considering unified (net) forces. Another prominent change in the

proposed algorithms is the duplication module. The duplication has been newly

developed in this thesis as a control mechanism for duplications in population to meet

Pauli’s Exclusion principle. However, a degree of precision is important to determine

if the particles are in the same location. In our experiments, locations are assumed as

duplication in case of first three digits are the same. In such cases, different

displacement procedures are applied to determine the new position of the same particle

heuristically. While duplication check provides diversification, repositioning in a wide

range can create too much diversity which disrupts the balance. For this reason,

making the repositioning around the best-known solution has an intensification

purpose to balance the exploration-exploitation ability of the REF algorithm.

112

Furthermore, a database structure has been created to reduce the function

evaluation load in the algorithm. Memory capacity has been implemented to the REF

algorithm for two purposes. This database can be thought of as a memory capability.

The first one is the creation of a database. Each particle is recorded in a memory along

with the evaluation scores (constraint satisfied rates, total deviations). It is worth

mentioning that, in the REF algorithm, memory is used not as a banned list as in Tabu

Search, but to get rid of unnecessary repetitive function evaluations. The second one

is about recording the best-so-far positions of the particles. In the REF algorithm, best-

so-far solutions of every particle are stored in order not to lose them in case of

displacements. However, differently from the original elitism principle, there is no

certain ratio for the elitist particles. Namely, the best-so-far particles are kept

separately from the relocated particle set.

 Limitations

Some limitations of this thesis study should be noted. Although numerous code

optimization was conducted, the latest version of the algorithm consists of operations

that contain several for loops which is time-consuming because of its working

principles and the nature of object-oriented programming. The performance of the

developed algorithms is limited by the tested benchmarks. Moreover, the performance

of the RSAB-REF is limited for large-dimensional problems, since the objective

function value is the single control mechanism in unconstrained problems. In addition,

since MUPE, which is the prominent capability of the algorithm, developed for

constraint handling, is a penalty-based approach, determining importance scores by

trial and error can be considered as a disadvantage. Apart from this, hardware

qualifications such as central processing unit (CPU), computer data storage, the

motherboard can also be considered as the constraints of this thesis.

Further Studies

Suggestions for future studies can be examined based on the proposed

algorithm, programming language, and alternative computing approaches. There may

113

be structural changes that can be implemented to the algorithm. The problem range

solved by the algorithm can be expanded. Modifications can be made to increase the

performances for large-dimensional unconstrained problems and to achieve the desired

result with fewer function evaluation values. Also, the developed approaches provided

in the modules can be integrated with different algorithms and performance

comparison can be achieved. Moreover, it can be integrated with various algorithms

as a different hybrid algorithm. Within the scope of this thesis, the python codes of the

algorithm will be made available to those concerned from platforms such as GitHub

as open source. Thereafter, it is also planned to develop a user interface for the

proposed algorithms. Consequently, researchers will be provided with an optimization

tool that can apply the RSAB-REF algorithm easily.

Improvements can be applied to the programming language. It is always

addressed that NP-Hard problems cannot be solved in polynomial time. However,

another issue that needs to be addressed is that iterative methods should be developed

with fewer loops and provide solutions in polynomial time. For this reason, it will be

beneficial to develop programming languages suitable for functional programming

using matrix-based associated memory.

Challenges in the field of optimization facing today comprise solving NP-Hard

problems, which entails finding the best solution out of an enormous number of trials

regardless of algorithms and even programming languages. Therefore, technologies

may be inadequate in increasing the size of the problems that can be handled and in

reducing the amount of time required to find a solution at the same time. Although

parallel programming offers multiple solutions simultaneously which achieve results

much faster by dividing the required transaction volume and time by the processors,

even supercomputers may become impractical because of the complexity. With the

latest technology of quantum computing, tools are being developed for researchers to

work beyond classical capabilities. IBM Quantum, Google Quantum AI are the main

examples of the technology which leads the world in quantum computing to solve

complex problems the world's most powerful supercomputers cannot solve.

Furthermore, specially designed Ising machines using a mathematical model have

been developed for cases where even supercomputers cannot handle. The latest

example of this technology is the Simulated Bifurcation machine developed by

114

Toshiba for large-scale, complex combinatorial optimization problems in a short time

(Toshiba Corporation, 2019). According to Tatsumura et al. (2019), Simulated

Bifurcation provides an opportunity to solve complex combinatorial problems very

fast by massively parallel processing. According to Toshiba, this speed is 1000 times

faster than when using standard optimized simulated annealing software. Moreover,

Toshiba also considers developing general-purpose – to handle other problem types-

Simulated Bifurcation Ising Machines as well. (Boyd, 2020). Therefore, these recent

developments show us that there will be breakthroughs for optimization problems in

the near future.

115

REFERENCES

Abasi, A. K., Khader, A. T., Al-Betar, M. A., Naim, S., Makhadmeh, S. N. and

Alyasseri, Z. A. A. (2020). Link-Based Multi-Verse Optimizer for Text Documents

Clustering. Applied Soft Computing Journal. 87, 106002. 1-24.

Abdechiri, M., Meybodi, M. R. and Bahrami, H. (2013). Gases Brownian Motion

Optimization: an Algorithm for Optimization (GBMO). Applied Soft Computing.

13(5): 2932–2946.

Abdel-Basset, M., Abdel-Fatah, L. and Sangaiah, A. K. (2018). Metaheuristic

Algorithms: A Comprehensive Review. Computational Intelligence for Multimedia

Big Data on the Cloud with Engineering Applications (pp. 185–231). Elsevier.

Abdel-Basset, M., El-Shahat, D., Faris, H. and Mirjalili, S. (2019). A Binary Multi-

Verse Optimizer for 0-1 Multidimensional Knapsack Problems with Application in

Interactive Multimedia Systems. Computers and Industrial Engineering. 132: 187–

206.

Abdel-Raoufi, O., Abdel-Baset, M. and El-henawy, I. (2014). A New Hybrid Flower

Pollination Algorithm for Solving Constrained Global Optimization Problems.

International Journal of Applied Operational Research. 4(2): 1–13.

Abdullah, S., Turabieh, H., Mccollum, B. and Mcmullan, P. (2012). A hybrid

metaheuristic approach to the university course timetabling problem. Journal of

Heuristics. 18: 1–23.

Abedinia, O., Amjady, N. and Ghasemi, A. (2014). A New Metaheuristic Algorithm

Based on Shark Smell Optimization. Complexity. 21(5): 97–116.

Abedinpourshotorban, H., Mariyam Shamsuddin, S., Beheshti, Z. and Jawawi, D. N.

A. (2016). Electromagnetic Field Optimization: A Physics-Inspired Metaheuristic

116

Optimization Algorithm. Swarm and Evolutionary Computation. 26: 8–22.

Abuhamdah, A. and Ayob, M. (2009). Multi-Neighbourhood Particle Collision

Algorithm for Solving Course Timetabling Problems. 2009 2nd Conference on Data

Mining and Optimization, (pp. 21–27). IEEE.

Abuhamdah, A. and Ayob, M. (2011). MPCA-ARDA For Solving Course Timetabling

Problems. Conference on Data Mining and Optimization (pp. 171–177). IEEE.

Agnihotri, S., Atre, A. and Verma, H. K. (2020). Equilibrium Optimizer for Solving

Economic Dispatch Problem. PIICON 2020 - 9th IEEE Power India International

Conference (pp. 1-5). IEEE.

Ahmadi-Javid, A. (2011). Anarchic Society Optimization: A Human-Inspired Method.

2011 IEEE Congress of Evolutionary Computation (CEC) (pp. 2586–2592). IEEE.

Akbari, M., Molla-Alizadeh-Zavardehi, S. and Niroomand, S. (2020). Meta-Heuristic

Approaches for Fixed-Charge Solid Transportation Problem in Two-Stage Supply

Chain Network. Operational Research. 20(1): 447–471.

Al-Madi, N., Faris, H., and Mirjalili, S. (2019). Binary Multi-Verse Optimization

Algorithm for Global Optimization And Discrete Problems. International Journal of

Machine Learning and Cybernetics. 10(12): 3445–3465.

Alatas, B., and Bingol, H. (2019). A Physics-Based Novel Approach for Travelling

Tournament Problem: Optics Inspired Optimization. Information Technology and

Control. 48(3): 373–388.

Alatas, B. (2011). Uniform Big Bang–Chaotic Big Crunch Optimization.

Communications in Nonlinear Science and Numerical Simulation, 16(9): 3696–3703.

Alizadeh, N., and Kashan, A. H. (2019). Enhanced Grouping League Championship

117

And Optics Inspired Optimization Algorithms for Scheduling A Batch Processing

Machine with Job Conflicts and Non-Identical Job Sizes. Applied Soft Computing

Journal. 83: 105657.

Aljohani, T. M., Ebrahim, A. F. and Mohammad, O. (2019). Single and Multiobjective

Optimal Reactive Power Dispatch Based on Hybrid Artificial Physics – Particle

Swarm Optimization. Energies. 12(2333): 1–24.

Alnahari, E., Shi, H. and Alkebsi, K. (2020). Quadratic Interpolation Based

Simultaneous Heat Transfer Search Algorithm and Its Application to Chemical

Dynamic System Optimization. Processes: 8(4): 478.

Ara, A. L., Tolabi, H. B. and Hosseini, R. (2016). Dynamic Modeling and Controller

Design of Distribution Static Compensator in A Microgrid Based On Combination Of

Fuzzy Set and Galaxy-Based Search Algorithm. International Journal of Engineering-

Transactions A: Basics. 29(10): 1392-1400.

Aragon, V. S., Esquivel, S. C. and Coello, C. A. C. (2010). A Modified Version of a

T-Cell Algorithm for Constrained Optimization Problems. International Journal For

Numerical Methods In Engineering. 84: 351–378.

Arora, J. (2017). Introduction to Optimum Design. Elsevier.

Arora, S. and Singh, S. (2019). Butterfly Optimization Algorithm: A Novel Approach

for Global Optimization. Soft Computing. 23(3): 715–734.

Aryan, M. and Alizadeh, B. A. M. (2016). Bayesian Charged System Search: A Hybrid

Method for Multi-Modal Optimization Problems. 2016 IEEE Congress on

Evolutionary Computation (pp. 1501–1508).

Asha, G.R. (2020). An Efficient Clustering and Routing Algorithm for Wireless

Sensor Networks Using GSO and KGMO Techniques. In Smart Computing

118

Paradigms: New Progresses and Challenges (pp. 75-85). Singapore: Springer.

Ashrafi, S. M. and Dariane, A. B. (2011). A Novel and Effective Algorithm for

Numerical Optimization: Melody Search (MS). 2011 11th International Conference

on Hybrid Intelligent Systems (HIS) (pp. 109–114). IEEE.

Asi, M. J. and Dib, N. I. (2010). Design of Multilayer Microwave Broadband

Absorbers Using Central Force Optimization. Progress In Electromagnetics Research

B. 26: 101–113.

Askarzadeh, A. (2016). A Novel Metaheuristic Method for Solving Constrained

Engineering Optimization Problems: Crow Search Algorithm. Computers &

Structures. 169: 1–12.

Asl, R. M., Pourabdollah, E. and Salmani, M. (2018). Optimal Fractional Order PID

for A Robotic Manipulator Using Colliding Bodies Design. Soft Computing. 22(14):

4647–4659.

Aslani, H., Yaghoobi, M. and Akbarzadeh-T, M.R. (2016). Chaotic inertia weight in

black hole algorithm for function optimization. 2nd International Congress on

Technology, Communication and Knowledge, ICTCK 2015 (pp. 123–129). IEEE.

Astolfi, A. (2006). Optimization: An Introduction.

https://pdf4pro.com/view/optimization-an-introduction-imperial-college-

2d633c.html, (18.02.2019).

Atashpaz-Gargari, E. and Lucas, C. (2007). Imperialist Competitive Algorithm: An

Algorithm For Optimization Inspired by Imperialistic Competition. 2007 IEEE

Congress on Evolutionary Computation (pp. 4661–4667). IEEE.

Ates, A. and Yeroglu, C. (2018). Modified Artificial Physics Optimization for Multi-

parameter Functions. Iranian Journal of Science and Technology - Transactions of

119

Electrical Engineering. 42(4): 465–478.

Aziz, M. and Tayarani-N, M.-H. (2016). Opposition-Based Magnetic Optimization

Algorithm with Parameter Adaptation Strategy. Swarm and Evolutionary

Computation. 26: 97–119.

Basu, M. (2016). Kinetic Gas Molecule Optimization for Nonconvex Economic

Dispatch Problem. International Journal of Electrical Power and Energy Systems, 80:

325–332.

Beheshti, Z. and Shamsuddin, S. M. H. (2013). A Review of Population-Based Meta-

Heuristic Algorithm. International Journal of Advances in Soft Computing and Its

Applications. 5(1): 1-35.

Beirami, A., Vahidinasab, V., Shafie-khah, M. and Catalão, J.P.S. (2020).

Multiobjective Ray Optimization Algorithm as a Solution Strategy for Solving Non-

Convex Problems: A Power Generation Scheduling Case Study. International Journal

of Electrical Power and Energy Systems. 119: 105967.

Beiranvand, H. and Rokrok, E. (2015). General Relativity Search Algorithm: A Global

Optimization Approach. International Journal of Computational Intelligence and

Applications. 14(3): 1550017.

Benasla, L., Belmadani, A. and Rahli, M. (2014). Spiral Optimization Algorithm for

solving Combined Economic and Emission Dispatch. International Journal of

Electrical Power and Energy Systems. 62: 163–174.

Bentouati, B., Chettih, S., Jangir, P. and Trivedi, I. N. (2016). A Solution to The

Optimal Power Flow Using Multi-Verse Optimizer. Journal of Electrical Systems.

12(4): 716–733.

Bijari, K., Zare, H., Veisi, H., and Bobarshad, H. (2018). Memory-Enriched Big Bang–

120

Big Crunch Optimization Algorithm for Data Clustering. Neural Computing and

Applications. 29: 111–121.

Birbil, Ş. I. and Fang, S. C. (2003). An Electromagnetism-Like Mechanism for Global

Optimization. Journal of Global Optimization. 25: 263–282.

Birbil, Ş. I., Fang, S. C. and Sheu, R.-L. (2004). On the Convergence of a Population-

Based Global Optimization Algorithm. Journal of Global Optimization. 301–318.

Biswas, A., Mishra, K.K., Tiwari, S. and Misra, A.K. (2013). Physics-Inspired

Optimization Algorithms: A Survey. Journal Of Optimization. 2013: 438152.

Blum, C. and Roli, A. (2003). Metaheuristics in Combinatorial Optimization:

Overview And Conceptual Comparison. ACM Computing Surveys (CSUR). 35(3):

268–308.

Boschetti, M. A., Maniezzo, V., Roffilli, M. and Bolufé Röhler, A. (2009).

Matheuristics: Optimization, Simulation and Control. Hybrid Metaheuristics (pp. 171–

177). Editors M.J. Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sampels and A. Schaerf,

Berlin, Heidelberg: Springer.

Bouaziz, A., Draa, A. and Chikhi, S. (2013). A Quantum-Inspired Artificial Bee

Colony Algorithm for Numerical Optimisation. 11th International Symposium on

Programming and Systems (ISPS) (pp. 81–88). IEEE.

Bouchekara, H. (2020). Solution of The Optimal Power Flow Problem Considering

Security Constraints Using An Improved Chaotic Electromagnetic Field Optimization

Algorithm. Neural Computing and Applications. 32(7): 2683–2703.

Bouchekara, H. R. E. H., Chaib, A. E., Abido, M. A. and El-Sehiemy, R. A. (2016).

Optimal power flow using an Improved Colliding Bodies Optimization algorithm.

Applied Soft Computing Journal. 42: 119–131.

121

Bouchekara, H. R. E. H., Zellagui, M. and Abido, M. A. (2017). Optimal Coordination

of Directional Overcurrent Relays Using a Modified Electromagnetic Field

Optimization Algorithm. Applied Soft Computing Journal. 54: 267–283.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University

Press.

Boyd J. (2020). Toshiba's Optimization Algorithm Sets Speed Record for Solving

Combinatorial Problems, https://spectrum.ieee.org/tech-

talk/computing/software/toshiba--optimization-algorithm-speed-record-

combinatorial-problems?s=08, (25.04.2021).

Bozorg-Haddad, O., Solgi, M. and Loáiciga, H. A. (2017). Meta-Heuristic and

Evolutionary Algorithms for Engineering Optimization. John Wiley & Sons.

Brownlee, J. (2011). Clever Algorithms: Nature-Inspired Programming Recipes.

Australia: Jason Brownlee.

Buch, H. and Trivedi, I.N. (2020). A New Non-Dominated Sorting Ions Motion

Algorithm: Development and Applications. Decision Science Letters. 9(1): 59–76.

Busch, P., Heinonen, T. and Lahti, P. (2007). Heisenberg’s Uncertainty Principle.

Physics Reports. 452(6): 155–176.

Cagnina, L. C., Esquivel, S. C., Nacional, U., Luis, D. S., Luis, S. and Coello, C. A.

C. (2008). Solving Engineering Optimization Problems with the Simple Constrained

Particle Swarm Optimizer. Informatica. 32: 319–326.

Camp, C. V. (2007). Design of Space Trusses Using Big Bang – Big Crunch

Optimization. Journal of Structural Engineering. 133(7): 999–1008.

Cao, Y., Nikafshan Rad, H., Hamedi Jamali, D., Hashemian, N. and Ghasemi, A.

122

(2020a). A Novel Multi-Objective Spiral Optimization Algorithm for An Innovative

Solar/Biomass-Based Multi-Generation Energy System: 3e Analyses, and

Optimization Algorithms Comparison. Energy Conversion and Management, 219:

112961.

Cao, W., Liu, X. and Ni, J. (2020b). Parameter Optimization of Support Vector

Regression Using Henry Gas Solubility Optimization Algorithm. IEEE Access. 8:

88633–88642.

Caserta, M. and Voß, S. (2009). Matheuristics. Matheuristics: Hybridizing

Metaheuristics and Mathematical Programming (pp. 1–32). Editors V. Maniezzo, T.

Stützle, and S. Voß, New York: Springer.

Çengel, Y. A., Boles, M. A. and Kanoğlu, M. (2019). Thermodynamics An

Engineerıng Approach (Ninth). New York: McGraw Hill.

Chandrasekhar, S. (2003). Newton’s Principia for the Common Reader. Oxford

University Press.

Chang, H. C. and Lin, P. C. (2014). A Demonstration of The Improved Efficiency of

The Canonical Coordinates Method Using Nonlinear Combined Heat and Power

Economic Dispatch Problems. Engineering Optimization. 46(2): 261–269.

Chang, P.-C., Chen, S.-H. and Fan, C.-Y. (2009). A Hybrid Electromagnetism-Like

Algorithm for Single Machine Scheduling Problem. Expert Systems With Applications.

36(2): 1259–1267.

Chen, D., Lu, R., Li, S., Zou, F. and Liu, Y. (2020). An Enhanced Colliding Bodies

Optimization and Its Application. Artificial Intelligence Review. 53(2): 1127-1186.

Cheng, J., and Zhao, W. (2020). Chaotic Enhanced Colliding Bodies Optimization

Algorithm for Structural Reliability Analysis. Advances in Structural Engineering.

123

23(3): 438-453.

Chiu, C., Yang, Y. and Chou, Y. (2011). Quantum-Inspired Tabu Search Algorithm

for Solving 0 / 1 Knapsack Problems, In Proceedings of the 13th annual conference

companion on Genetic and evolutionary computation (pp. 55-56).

Chou, J. S. and Truong, D. N. (2021). A Novel Metaheuristic Optimizer Inspired by

Behavior of Jellyfish in Ocean. Applied Mathematics and Computation. 389: 125535.

Chou, Y. H., Chen, C. Y., Chiu, C. H. and Chao, H. C. (2012). Classical and Quantum-

Inspired Electromagnetism-Like Mechanism And Its Applications. IET Control

Theory and Applications. 6(10): 1424–1433.

Chu, C. C. and Tsai, M.S. (2013). Application of Novel Charged System Search with

Real Number String for Distribution System Loss Minimization. IEEE Transactions

on Power Systems. 28(4): 3600–3609.

Chu, S.-C., Tsai, P. and Pan, J.-S. (2006). Cat Swarm Optimization. Trends in Artificial

Intelligence (pp. 854–858). Editors Q. Yang and G. Webb. Berlin, Heidelberg:

Springer.

Civicioglu, P. (2013). Artificial Cooperative Search Algorithm for Numerical

Optimization Problems. Information Sciences. 229: 58–76.

Coello, C. A. C. (2000). Use of A Self-Adaptive Penalty Approach for Engineering

Optimization Problems. Computers in Industry. 41(2): 113–127.

Coello, C. A. C. (2002). Theoretical and Numerical Constraint Handling Techniques

used with Evolutionary Algorithms: A Survey of the State of the Art. Computer

Methods in Applied Mechanics and Engineering, 191(11-12):1245-1287.

Collins, J. J. and Eaton, M. (1997). Genocodes for Genetic Algorithms.

124

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.2349&rep=rep1&type=

pdf, (21.09.2019)

Cook, S. A. (1971). The Complexity of Theorem-Proving Procedures. Proceedings of

the third annual ACM symposium on Theory of computing (pp. 151–158).

Coulomb, C.A. (1785). Premier Mémoire Sur L'électricité Et Le Magnétisme. Histoire

de l'Académie Royale des Sciences. (pp. 569–577) Imprimerie Royale, Paris.

Cuevas, E., Oliva, D., Zaldivar, D., Pérez-Cisneros, M. and Sossa, H. (2012). Circle

Detection Using Electro-Magnetism Optimization. Information Sciences. 182(1): 40–

55.

D’Ambrosio, A., Spiller, D. and Curti, F. (2020). Improved Magnetic Charged System

Search Optimization Algorithm with Application to Satellite Formation Flying.

Engineering Applications of Artificial Intelligence, 89: 103473.

Da Luz, E. F. P., Becceneri, J. C. and De Campos Velho, H. F. (2011). Multiple

Particle Collision Algorithm Applied to Radiative Transference and Pollutant

Localization Inverse Problems. In IEEE International Symposium on Parallel and

Distributed Processing (pp. 347–351).

Da Luz, E. F. P., Becceneri, J. C. and Velho, H. F. de C. (2008). A New Multi-Particle

Collision Algorithm For Optimization in A High Performance Environment. Journal

of Computational Interdicriplinary Sciences. 1(1): 3–10.

Deb, K. (1997). GeneAS: A Robust Optimal Design Technique for Mechanical

Component Design. Evolutionary Algorithms in Engineering Applications. 497–514.

Deb, K. (2000). An Efficient Constraint-handling Method for Genetic Algorithms.

Computer Methods in Applied Mechanics and Engineering. 186(2-4): 311-338.

125

Degertekin, S.O., Lamberti, L. and Hayalioglu, M.S. (2017). Heat Transfer Search

Algorithm for Sizing Optimization of Truss Structures. Latin American Journal of

Solids and Structures. 14(3): 373–397.

Dekking, F.M., Kraaikamp, C., Lopuhaä, H. P. and Meester, L. E. (2005). A Modern

Introduction to Probability And Statistics: Understanding Why and How. Springer

Science & Business Media.

Dey, S., Bhattacharyya, S. and Maulik, U. (2016). New Quantum Inspired Meta-

Heuristic Techniques for Multi-Level Colour Image Thresholding. Applied Soft

Computing Journal. 46: 677–702.

Dey, A., Bhattacharyya, S., Dey, S., Platos, J. and Snasel, V. (2019a). Quantum-

Inspired Bat Optimization Algorithm for Automatic Clustering of Grayscale Images.

Recent Trends in Signal and Image Processing. Advances in Intelligent Systems and

Computing (pp. 23–30). Editors S. Bhattacharyya, S. Pál, I. Pan, and A. Das, Springer

Singapore.

Dey, S., De, S., Ghosh, D., Konar, D., Bhattacharyya, S. and Platos, J. (2019b). A

Novel Quantum Inspired Sperm Whale Meta-Heuristic for Image Thresholding. 2019

2nd International Conference on Advanced Computational and Communication

Paradigms, ICACCP 2019. IEEE.

Dey, S., Saha, I., Bhattacharyya, S. and Maulik, U. (2014). Multi-Level Thresholding

Using Quantum Inspired Meta-Heuristics. Knowledge-Based Systems. 67: 373–400.

Dhadwal, M. K., Jung, S. N. and Kim, C. J. (2014). Advanced Particle Swarm Assisted

Genetic Algorithm for Constrained Optimization Problems. Computational

Optimization and Applications. 58(3): 781–806.

Dhiman, G. and Kumar, V. (2018). Emperor Penguin Optimizer: A Bio-Inspired

Algorithm for Engineering Problems. Knowledge-Based Systems. 159: 20–50.

126

Dhiman, G. and Kumar, V. (2019). Seagull optimization algorithm: Theory and its

applications for large-scale industrial engineering problems. Knowledge-Based

Systems. 165: 169–196.

Du, K. L. and Swamy, M. N. S. (2016). Search and optimization by metaheuristics.

Techniques and Algorithms Inspired by Nature. Birkauser.

Dokeroglu, T., Sevinc, E., Kucukyilmaz, T. and Cosar, A. (2019). A Survey on New

Generation Metaheuristic Algorithms. Computers and Industrial Engineering, 137:

106040.

Dolatabadi, S. (2018). Weighted vertices optimizer (WVO): A Novel Metaheuristic

Optimization Algorithm. Numerical Algebra, Control and Optimization. 8(4): 461–

479.

Domiciano, M. A. P., Shiguemori, E. H., Vieira Dias, L. A. and da Cunha, A. M.

(2018). Particle Collision Algorithm Applied to Automatic Estimation of Digital

Elevation Model from Images Captured by UAV. IEEE Geoscience and Remote

Sensing Letters, 15(10), 1630–1634.

Dong, M., Wang, N., Cheng, X. and Jiang, C. (2014). Composite Differential

Evolution with Modified Oracle Penalty Method for Constrained Optimization

Problems. Mathematical Problems in Engineering. 2014: 617905.

Dorigo, M. and Di Caro, G. (1999). Ant Colony Optimization: A New Meta-Heuristic.

Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.

99TH8406) (pp. 1470–1477). IEEE.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). The Ant System: Optimization by

a Colony of Cooperating Agents IEEE Transaction on Systems. IEEE Transactions on

Systems, Man and Cybernetics-Part B. 26(1): 1–13.

127

Duan, H. and Qiao, P. (2014). Pigeon-Inspired Optimization: A New Swarm

İntelligence Optimizer for Air Robot Path Planning. International Journal of

Intelligent Computing and Cybernetics. 7(1): 24–37.

Duarte, A., Laguna, M. and Marti, R. (2018). Metaheuristics for Business Analytics.

Springer.

Duderstadt, J. J. and Hamilton, L. J. (1976). Nuclear-Reactor Analysis. Nuclear

Technology. Wiley.

Eberhart, R. and Kennedy, J. (1995). A New Optimizer Using Particle Swarm Theory.

Proceedings of the Sixth International Symposium on Micro Machine and Human

Science (pp. 39–43). IEEE.

Eberhart, R.C. and Shi, Y. (1998). Introduction to Computational Intelligence. WCCI

Conference, Alaska: Anchorage.

Echevarría, L. C., Santiago, O. L., Antônio, H. F. de C. V. and Neto, A. J. da S. (2019).

Fault Diagnosis Inverse Problems: Solution with Metaheuristics. Springer.

Eesa, A. S., Brifcani, A. A. M. and Orman, Z. (2013). Cuttlefish Algorithm – A Novel

Bio-Inspired Optimization Algorithm. International Journal of Scientific &

Engineering Research. 4(9): 1978–1986.

Ehsan-Maleki, B., Naderi, P. and Beiranvand, H. (2018). A Novel 2-Stage WAPSS

Design Method to Improve Inter-Area Mode Damping in Power Systems.

International Transactions on Electrical Energy Systems. 28(3): 1–17.

Elaziz, M. A., Oliva, D., Ewees, A. A. and Xiong, S. (2019). Multi-Level

Thresholding-Based Grey Scale İmage Segmentation Using Multi-Objective Multi-

Verse Optimizer. Expert Systems with Applications. 125: 112–129.

128

Elnabawy, A.O., Fateen, S.E.K. and Bonilla-Petriciolet, A. (2014). Phase Stability

Analysis and Phase Equilibrium Calculations in Reactive and Nonreactive Systems

Using Charged System Search Algorithms. Industrial and Engineering Chemistry

Research. 53(6): 2382–2395.

Elsheikh, A. H., Shehabeldeen, T. A., Zhou, J., Showaib, E. and Abd Elaziz, M.

(2020). Prediction of laser cutting parameters for polymethylmethacrylate sheets using

random vector functional link network integrated with equilibrium optimizer. Journal

of Intelligent Manufacturing. 1-12.

Eltokhey, M. W., Mahmoud, K. R. and Obayya, S. S. A. (2016). Optimised Diffusion

Spots ’ Locations for Simultaneous Improvement in SNR and Delay Spread. Photonic

Network Communications. 31: 172–182.

Emami, H. and Derakhshan, F. (2015). Election Algorithm: A New Socio-Politically

Inspired Strategy. AI Communications. 28(3): 591–603.

Erdem, S. (2007). Evolutionary Algorithms for the Nonlinear Optimization.

(Unpublished PhD Thesis). İzmir: Dokuz Eylul University Graduate School of Natural

and Applied Sciences.

Erol, O. K. and Eksin, I. (2006). A New Optimization Method: Big Bang-Big Crunch.

Advances in Engineering Software. 37(2): 106–111.

Eskandar, H., Sadollah, A., Bahreininejad, A. and Hamdi, M. (2012). Water Cycle

Algorithm - A Novel Metaheuristic Optimization Method for Solving Constrained

Engineering Optimization Problems. Computers and Structures. 110–111: 151–166.

Esmaeili, M., Zakeri, J. A., Kaveh, A., Bakhtiary, A. and Khayatazad, M. (2015).

Designing Granular Layers for Railway Tracks Using Ray Optimization Algorithm.

Scientia Iranica. 22: 47–58.

129

Ewees, A. A., El Aziz, M. A. and Hassanien, A. E. (2019). Chaotic Multi-Verse

Optimizer-Based Feature Selection. Neural Computing and Applications. 31(4): 991–

1006.

Faramarzi, A., Heidarinejad, M., Mirjalili, S. and Gandomi, A. H. (2020a). Marine

Predators Algorithm: A Nature-Inspired Metaheuristic. Expert Systems with

Applications. 152: 113377.

Faramarzi, A., Heidarinejad, M., Stephens, B. and Mirjalili, S. (2020b). Equilibrium

Optimizer: A Novel Optimization Algorithm. Knowledge-Based Systems. 191:

105190.

Faris, H., Aljarah, I. and Mirjalili, S. (2016). Training Feedforward Neural Networks

Using Multi-Verse Optimizer for Binary Classification Problems. Applied

Intelligence. 45(2): 322–332.

Faris, H., Hassonah, M. A., Al-Zoubi, A. M., Mirjalili, S. and Aljarah, I. (2018). A

Multi-Verse Optimizer Approach for Feature Selection and Optimizing Svm

Parameters Based on A Robust System Architecture. Neural Computing and

Applications. 30(8): 2355–2369.

Feng, X., Ma, M. and Yu, H. (2016). Crystal Energy Optimization Algorithm.

Computational Intelligence. 32(2): 284–322.

Feynman, R. P. (1982). Simulating Physics with Computers. International Journal of

Theoretical Physics. 21(6/7): 467–488.

Fister, I., Yang, X. S., Brest, J. and Fister, D. (2013). A Brief Review of Nature-

Inspired Algorithms for Optimization. Elektrotehniski Vestnik/Electrotechnical

Review. 80(3): 116–122.

Fister Jr, I., Mlakar, U., Brest, J. and Fister, I. (2016). A new population-based nature-

130

inspired algorithm every month : Is the current era coming to the end ? Proceedings of

the 3rd Student Computer Science Research Conference (pp. 33–37).

Flores, J. J., López, R. and Barrera, J. (2011). Gravitational Interactions Optimization.

Learning and Intelligent Optimization (pp. 226–237). Editors C. A. C. Coello. Berlin,

Heidelberg: Springer.

Formato, R. A. (2007). Central Force Optimization: A New Metaheuristic with

Applications in Applied Electromagnetics. Progress in Electromagnetics Research.

77: 425–491.

Formato, R. A. (2010a). Improved CFO Algorithm for Antenna. Progress In

Electromagnetics Research B. 19: 405–425.

Formato, R. A. (2010b). Parameter-Free Deterministic Global Search with Simplified

Central Force Optimization. Advanced Intelligent Computing Theories and

Applications (pp. 309–318). Berlin, Heidelberg: Springer.

Formato, R. A. (2011). Central Force Optimization with Variable Initial Probes and

Adaptive Decision Space. Applied Mathematics and Computation. 217(21): 8866–

8872.

Formato, R. A. (2013). Pseudorandomness in Central Force Optimization. British

Journal of Mathematics & Computer Science. 3(3): 241–264.

Gandomi, A.H. (2014). Interior Search Algorithm (Isa): A Novel Approach for Global

Optimization. ISA Transactions. 53(4): 1168–1183.

Gandomi, A. H., Yang, X. S., Talatahari, S. and Alavi, A. H. (2013a). Metaheuristic

Algorithms in Modeling and Optimization, Metaheuristic Applications in Structures

and Infrastructures (pp. 1-24). Elsevier.

131

Gandomi, A. H., Yang, X. S. and Alavi, A. H. (2013b). Cuckoo Search Algorithm: A

Metaheuristic Approach to Solve Structural Optimization Problems. Engineering with

Computers. 29(1): 17–35.

Gandomi, A. H., Yang, X. S. and Alavi, A. H. (2011). Mixed Variable Structural

Optimization Using Firefly Algorithm. Computers and Structures. 89(23–24): 2325–

2336.

Gao-Wei, Y. and Zhanju, H. (2012). A Novel Atmosphere Clouds Model Optimization

Algorithm. In 2012 International Conference on Computing, Measurement, Control

and Sensor Network (pp. 217–220). IEEE.

Gao, H., Du, Y. and Diao, M. (2017). Quantum-Inspired Glowworm Swarm

Optimisation and Its Application. International Journal of Computing Science and

Mathematics. 922: 91–100.

Gao, Y. J., Zhang, F. M., Zhao, Y. and Li, C. (2019a). A Novel Quantum-Inspired

Binary Wolf Pack Algorithm for Difficult Knapsack Problem. International Journal

of Wireless and Mobile Computing. 16(3): 222–232.

Gao, H. Y., Zhang, X. T., Du, Y. N. and Diao, M. (2019b). Quantum-Inspired

Teaching-Learning-Based Optimization for Linear Array Pattern Synthesis.

Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in

Electrical Engineering (pp. 2106–2115). Editors Q. Liang, J. Mu, M. Jia, W. Wang,

X. Feng, and B. Zhang, Singapore: Springer.

Gao, J., Fang, L. and He, G. (2010). A Quantum-Inspired Artificial Immune System

for Multiobjective 0-1 Knapsack Problems. Lecture Notes in Computer Science (Vol.

6063, pp. 161–168). Editors L. Zhang, B. L. Lu, and J. Kwok. Berlin, Heidelberg:

Springer.

Gao, S., Vairappan, C., Wang, Y., Cao, Q. and Tang, Z. (2014). Gravitational Search

132

Algorithm Combined with Chaos for Unconstrained Numerical Optimization. Applied

Mathematics And Computation. 231: 48–62.

Gao, W. (2017). Investigating The Critical Slip Surface of Soil Slope Based on an

Improved Black Hole Algorithm. Soils and Foundations. 57(6): 988–1001.

García, J., Crawford, B., Soto, R. and García, P. (2017). A Multi Dynamic Binary

Black Hole Algorithm Applied to Set Covering Problem. Harmony Search Algorithm

(Vol. 2) (pp. 42-51). Editor J. Del Ser. Singapore: Springer.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability A Guide to the

Theory of NP-Completeness. Bell Telephone Laboratories, Incorporated.

Garg, A., Arvind, A. and Gadhvi, B. (2017). Optimum Control for the Vehicle Semi-

active Suspension System. Mechatronics and Robotics Engineering for Advanced and

Intelligent Manufacturing. Lecture Notes in Mechanical Engineering (pp. 421–430).

Editors D. Zhang and B. Wei. Cham: Springer.

Garg, H. (2014). Solving Structural Engineering Design Optimization Problems Using

an Artificial Bee Colony Algorithm. Journal of Industrial and Management

Optimization. 10(3): 777–794.

Garg, H. (2016). A Hybrid PSO-GA Algorithm for Constrained Optimization

Problems. Applied Mathematics and Computation. 274: 292–305.

Garg, H. (2019). A Hybrid GSA-GA Algorithm for Constrained Optimization

Problems. Information Sciences. 478: 499–523.

Geem, Z. W., Kim, J. H. and Loganathan, G. V. (2001). A New Heuristic Optimization

Algorithm: Harmony Search. Simulation. 76(2): 60–68.

Gendreau, M. and Potvin, J.-Y. (2008). Metaheuristics: A Canadian Perspective.

133

INFOR: Information Systems and Operational Research. 46(1): 71–80.

Geng, K., Ye, C., Cao, L. and Liu, L. (2019). Multi-Objective Reentrant Hybrid

Flowshop Scheduling with Machines Turning on and off Control Strategy Using

Improved Multi-Verse Optimizer Algorithm. Mathematical Problems in Engineering.

Ghannadi, P. and Kourehli, S.S. (2020). Multiverse Optimizer for Structural Damage

Detection: Numerical Study and Experimental Validation. Structural Design of Tall

and Special Buildings. 29(13): 1–27.

Ghasemian, H., Ghasemian, F. and Vahdat-Nejad, H. (2020). Human Urbanization

Algorithm: A Novel Metaheuristic Approach. Mathematics and Computers in

Simulation. 178: 1–15.

Glover, F. (1989). Tabu Search -Part I. ORSA Journal on Computing. 1(3): 190–206.

Glover, Fred. (1990). Tabu Search- Part II. ORSA Journal on Computing. 2(1): 4–32.

Glover, Fred. (1999). Scatter Search and Path Relinking. New Ideas in Optimization

(pp. 297–316). Editors D. Corne, M. Dorigo, and F. Glover. McGraw Hill.

Goldreich, O. (2008). Computatinal Complexity A Conceptual Perspective.

Cambridge University Press.

Gonçalves, B. and Boettcher, S. (2008). Hysteretic Optimization for Spin Glasses.

Journal of Statistical Mechanics: Theory and Experiment.

Gonzalez, T.F. (Ed.). (2007). Introduction, Overview, and Notation, Handbook of

Approximation Algorithms and Metaheuristics (pp. 1-17). Chapman & Hall/CRC.

Google Quantum AI, https://quantumai.google, (3.05.2021).

134

Guo, T., Henwood, M. I. and Van Ooijen, M. (1996). An Algorithm for Combined

Heat and Power Economic Dispatch. IEEE Transactions on Power Systems. 11(4):

1778–1784.

Guo, Y. N. and Zhang, P. (2015). Multi-objective Quantum-Inspired Cultural

Algorithm. In Proceedings - 2015 2nd International Conference on Soft Computing

and Machine Intelligence, ISCMI 2015 (pp. 25–29). IEEE.

Gupta, H., Gupta, A., Gupta, S. K., Nayak, P. and Shrivastava, T. (2016). How

effective is Black Hole Algorithm? Proceedings of the 2016 2nd International

Conference on Contemporary Computing and Informatics, IC3I 2016 (pp. 474–478).

IEEE.

Gupta, M., Kansal, M., Thyagarajan, S., Chauhan, P. S. and Upadhyay, D. K. (2020a).

Design of an Optimal Microstrip Butterworth Low-Pass Filter Using Colliding Bodies

Optimization. Advances in VLSI, Communication, and Signal Processing (pp. 125–

131). Editors D. Dutta, H. Kar, C. Kumar, and V. Bhadauria. Singapore: Springer.

Gupta, S., Deep, K. and Mirjalili, S. (2020b). An Efficient Equilibrium Optimizer with

Mutation Strategy for Numerical Optimization. Applied Soft Computing Journal. 96:

106542.

Haghighi, A. and Ramos, H. M. (2012). Detection of Leakage Freshwater and Friction

Factor Calibration in Drinking Networks Using Central Force Optimization. Water

Resources Management. 26(8): 2347–2363.

Han, K. H. and Kim, J. H. (2002). Quantum-Inspired Evolutionary Algorithm for a

Class of Combinatorial Optimization. IEEE Transactions on Evolutionary

Computation. 6(6): 580–593.

Han, X., Li, D., Liu, P. and Wang, L. (2020). Feature Selection by Recursive Binary

Gravitational Search Algorithm Optimization for Cancer Classification. Soft

135

Computing. 24(6): 4407–4425.

Hancock, H. (1917). Theory of maxima and minima. Boston: Ginn.

Hasan, Z. and El-Hawary, M. E. (2014). Optimal power flow by black hole

optimization algorithm. Proceedings - 2014 Electrical Power and Energy Conference,

EPEC 2014 (pp. 134–141). IEEE.

Hasançebi, O. and Azad, S. K. (2012). An exponential big bang-big crunch algorithm

for discrete design optimization of steel frames. Computers and Structures. 111: 167–

179.

Hashim, F. A., Houssein, E. H., Hussain, K., Mabrouk, M. S. and Al-Atabany, W.

(2020). A Modified Henry Gas Solubility Optimization for Solving Motif Discovery

Problem. Neural Computing and Applications. 32(14): 10759–10771.

Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W. and Mirjalili, S.

(2019). Henry Gas Solubility Optimization: A Novel Physics-Based Algorithm.

Future Generation Computer Systems. 101: 646–667.

Hatamlou, A. (2013). Black Hole: A New Heuristic Optimization Approach for Data

Clustering. Information Sciences. 222: 175–184.

Hatamlou, A. (2018). Solving Travelling Salesman Problem Using Black Hole

Algorithm. Soft Computing. 22(24): 8167–8175.

Hatamlou, A., Abdullah, S. and Hatamlou, M. (2011). Data Clustering Using Big

Bang–Big Crunch Algorithm. Communications in Computer and Information Science

(pp. 383–388). Editors P. Pichappan, H. Ahmadi, and E. Ariwa. Berlin, Heidelberg:

Springer.

Hazra, A., Das, S. and Basu, M. (2018). Heat Transfer Search Algorithm for Non-

136

convex Economic Dispatch Problems. Journal of The Institution of Engineers (India):

Series B. 99(3): 273–280.

He, Q. and Wang, L. (2007). An Effective Co-Evolutionary Particle Swarm

Optimization for Constrained Engineering Design Problems. Engineering

Applications of Artificial Intelligence. 20(1): 89–99.

Hedman, S. (2006). A First Course in Logic An introduction to model theory, proof

theory, computability, and complexity. Oxford University Press.

Hemachandra Reddy, K., Ram Kishore Kumar Reddy, P. and Ganesh, V. (2019).

Optimal Allocation of Multiple Facts Devices with Hybrid Techniques for Improving

Voltage Stability. International Journal on Emerging Technologies. 10(4): 76–84.

Hendrix, E.M.T. and G.-Toth, B. (2010). Introduction to Nonlinear and Global

Optimization. Springer.

Ho, Y.-C. and Pepyne, D. L. (2002). Simple Explanation of The No Free Lunch

Theorem of Optimization. Cybernetics and Systems Analysis. 38(2): 4409–4414.

Holland, J.H. (1962). Outline for a Logical Theory of Adaptive Systems. Journal of

the ACM.

Holzner, S. (2011). Physics I For Dummies (Second). Wiley.

Hosseini, E. (2017). Laying Chicken Algorithm: A New Meta-Heuristic Approach to

Solve Continuous Programming Problems. Journal of Applied & Computational

Mathematics. 06(1): 1–8.

Hosseini, S. S. S., Jafarnejad, A., Behrooz, A. H. and Gandomi, A. H. (2011).

Combined heat and power economic dispatch by mesh adaptive direct search

algorithm. Expert Systems with Applications. 38(6): 6556–6564.

137

Hu, X., Huang, L., Wang, Y. and Pang, W. (2019). Explosion Gravitation Field

Algorithm with Dust Sampling for Unconstrained Optimization. Applied Soft

Computing Journal. 81: 105500.

Huan, T.T., Kulkarni, A.J., Kanesan, J., Huang, C.J. and Abraham, A. (2017). Ideology

Algorithm: A Socio-Inspired Optimization Methodology. Neural Computing and

Applications. 28(1): 845-876.

Huang, G.Q. (2017). Artificial Memory Optimization. Applied Soft Computing

Journal. 61: 497–526.

Huang, K. W. and Wu, Z. X. (2019). CPO: A Crow Particle Optimization Algorithm.

International Journal of Computational Intelligence Systems. 12(1): 426–435.

Huang, L. and Qin, C. (2019). A Novel Modified Gravitational Search Algorithm for

The Real World Optimization Problem. International Journal of Machine Learning

and Cybernetics. 10(11): 2993–3002.

Huang, S. and Zhao, G. (2012). A Comparison Between Quantum Inspired Bacterial

Foraging Algorithm and GA-Like Algorithm for Global Optimization. International

Journal of Computational Intelligence and Applications. 11(3): 1–20.

Hunt, J. E. and Cooke, D. E. (1996). Learning using an artificial immune system.

Journal of network and computer applications, 19(2), 189-212.

Hussain, K., Najib, M., Salleh, M., Cheng, S. and Shi, Y. (2019). Metaheuristic

Research : A Comprehensive Survey. Artificial Intelligence Review. 52(4): 2191–

2233.

IBM Quantum Computing, https://www.ibm.com/quantum-computing/quantum-

computing-at-ibm, (3.05.2021).

138

Ibrahim, Z., Aziz, N.H.A., Aziz, N.A.A., Razali, S. and Mohamad, M. S. (2016).

Simulated Kalman Filter: A Novel Estimation-Based Metaheuristic Optimization

Algorithm. Advanced Science Letters. 22(10): 2941–2946.

Ieng, S., Akil, Y. S. and Gunadin, I. C. (2019). Hydrothermal Economic Dispatch

Using Hybrid Big Bang-Big Crunch Algorithm. Journal of Physics: Conference

Series. 8–14.

Jabbary, A., Podeh, H. T., Younesi, H. and Haghiabi, A. H. (2018). Water Distribution

Network Optimisation Using a Modified Central Force Optimisation Method.

Proceedings of the Institution of Civil Engineers - Water Management (pp. 136–12).

Thomas Telford Ltd.

Jalili, S. and Kashan, A.H. (2019). An Optics Inspired Optimization Method for

Optimal Design of Truss Structures. Structural Design of Tall and Special Buildings.

28(6): 1–23.

Jamil, M. and Yang, X. S. (2013). A Literature Survey of Benchmark Functions for

Global Optimisation Problems. International Journal of Mathematical Modelling and

Numerical Optimisation. 4(2): 150–194.

Jamili, A., Shafia, M.A. and Tavakkoli-Moghaddam, R. (2011). A Hybridization of

Simulated Annealing and Electromagnetism-Like Mechanism for A Periodic Job Shop

Scheduling Problem. Expert Systems with Applications. 38(5): 5895-5901.

Jaradat, G. M. and Ayob, M. (2010). Big Bang-Big Crunch Optimization Algorithm

to Solve the Course Timetabling Problem. Proceedings of the 2010 10th International

Conference on Intelligent Systems Design and Applications (pp. 1448–1452). IEEE.

Javadi, S. H. and Zahiri, S. H. (2018). A Central Force Optimization Approach for

Data Clustering. IETE Journal of Research. 1-9.

139

Javadian, N., Alikhani, M. G. and Tavakkoli-moghaddam, R. (2008). A Discrete

Binary Version of the Electromagnetism-Like Heuristic for Solving Traveling

Salesman Problem, International Conference on Intelligent Computing (pp. 123-130).

Springer, Berlin, Heidelberg.

Javidy, B., Hatamlou, A. and Mirjalili, S. (2015). Ions Motion Algorithm for Solving

Optimization Problems. Applied Soft Computing Journal. 32: 72–79.

Jeet, K., Dhir, R. and Singh, P. (2016). Hybrid Black Hole Algorithm for Bi-Criteria

Job Scheduling on Parallel Machines. International Journal of Intelligent Systems and

Applications. 8(4): 1–17.

Jensen, J. L.W.V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs

moyennes. Acta Mathematica. 30: 175–193.

Jhang, J.-Y. and Lee, K.-C. (2009). Array Pattern Optimization Using

Electromagnetism-Like Algorithm. International Journal of Electronics and

Communications. 63: 491–496.

Jin, G. G. and Tran, T. Do. (2010). A Nature-Inspired Evolutionary Algorithm Based

on Spiral Movements. Proceedings of the SICE Annual Conference (pp. 1643–1647).

IEEE.

Jolai, F., Tavakkoli-Moghaddam, R., Golmohammadi, A. and Javadi, B. (2012). An

Electromagnetism-Like Algorithm for Cell Formation and Layout Problem. Expert

Systems With Applications. 39(2): 2172–2182.

Kang, Y., Wang, C., Li, H. and Dai, L. (2016). A Job Shop Scheduling Algorithm

Using Big Bang-Big Crunch Strategy. 2016 12th International Conference on

Computational Intelligence and Security (pp. 411–414). IEEE.

Kantorovich, L.V. (1939). Mathematical Methods of Organizing and Planning

140

Production. Management Science. 6(4): 366–422.

Kar, A. K. (2016). Bio Inspired Computing - A Review Of Algorithms and Scope of

Applications. Expert Systems with Applications. 59: 20–32.

Karaboga, D. and Basturk, B. (2007). A Powerful and Efficient Algorithm for

Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm. Journal

of Global Optimization. 39: 459–471.

Karmakar, S., Dey, A. and Saha, I. (2018). Use of Quantum-Inspired Metaheuristics

During Last Two Decades. Proceedings - 7th International Conference on

Communication Systems and Network Technologies, CSNT 2017 (pp. 272–278). IEEE.

Karp, R. M. (1972). Complexity of Computer Computations. Complexity of Computer

Computations (pp. 85–103). Editors R. E. Miller and J. W. Thatcher, Plenum Press.

Kashan, A. H. (2009). League Championship Algorithm: A New Algorithm for

Numerical Function Optimization. In 2009 International Conference of Soft

Computing and Pattern Recognition (pp. 43–48). IEEE.

Kashan, A. H. (2015a). A New Metaheuristic For Optimization : Optics Inspired

Optimization. Computers & Operations Research. 55: 99–125.

Kashan, A. H. (2015b). An Effective Algorithm for Constrained Optimization Based

On Optics Inspired Optimization. Computer-Aided Design. 63: 52–71.

Kaveh, A. (2017). Applications of metaheuristic optimization algorithms in civil

engineering. Switzerland: Springer International Publishing.

Kaveh, A. and Ahmadi, B. (2013). Simultaneous Analysis, Design and Optimization

of Structures Using The Force Method and Supervised Charged System Search

Algorithm. Scientia Iranica. 20(1): 65–76.

141

Kaveh, A. and Behnam, A. F. (2013). Charged System Search Algorithm for the

Optimum Cost Design of Reinforced Concrete Cantilever Retaining Walls. Arabian

Journal for Science and Engineering. 38(3): 563–570.

Kaveh, A. and Bijari, S. (2014). Optimum Cost Design of Reinforced Concrete One-

Way Ribbed Slabs Using CBO, PSO and Democratic PSO Algorithms. Asian Journal

of Civil Engineering. 15(6): 788–802.

Kaveh, A. and Dadras, A. (2017). A Novel Meta-Heuristic Optimization Algorithm:

Thermal Exchange Optimization. Advances in Engineering Software. 110: 69–84.

Kaveh, A. and Dadras, A. (2018a). Structural Damage Identification Using an

Enhanced Thermal Exchange Optimization Algorithm. Engineering Optimization.

50(3): 430–451.

Kaveh, A., Dadras, A., and Bakhshpoori, T. (2018b). Improved Thermal Exchange

Optimization Algorithm for Optimal Design of Skeletal Structures. Smart Structures

and Systems. 21(3): 263-278.

Kaveh, A. and Farhoudi, N. (2013). A New Optimization Method: Dolphin

Echolocation. Advances in Engineering Software. 59: 53–70.

Kaveh, A. and Ghazaan, M. I. (2015). Layout and Size Optimization of Trusses with

Natural Frequency Constraints Using İmproved Ray Optimization Algorithm. Iranian

Journal of Science and Technology - Transactions of Civil Engineering. 39(C2+):

395–408.

Kaveh, A. and Ghazaan, M.I. (2014). Enhanced Colliding Bodies Optimization for

Design Problems with Continuous and Discrete Variables. Advances in Engineering

Software, 77, 66–75.

Kaveh, A., Javadi, S. M. and Maniat, M. (2014b). Damage Assessment via Modal Data

142

with a Mixed Particle Swarm Strategy, Ray Optimizer, and Harmony Search. Asian

Journal of Civil Engineering. 15(1): 95–106.

Kaveh, A. and Khayatazad, M. (2012). A New Meta-Heuristic Method: Ray

Optimization. Computers and Structures. 112–113: 283–294.

Kaveh, A. and Laknejadi, K. (2011). A Novel Hybrid Charge System Search and

Particle Swarm Optimization Method for Multi-Objective Optimization. Expert

Systems with Applications. 38(12): 15475–15488.

Kaveh, A. and Mahdavi, V.R. (2014). Colliding Bodies Optimization: A Novel Meta-

Heuristic Method. Computers and Structures. 139: 18–27.

Kaveh, A. and Mahdavi, V.R. (2016). Colliding Bodies Optimization Extensions and

Applications. Advances in Metaheuristic Algorithms for Optimal Design of Structures

(pp. 11-38). Springer.

Kaveh, A. and Mahjoubi, S. (2019). Hypotrochoid Spiral Optimization Approach for

Sizing and Layout Optimization of Truss Structures with Multiple Frequency

Constraints. Engineering with Computers. 35(4): 1443–1462.

Kaveh, A., Mirzaei, B. and Jafarvand, A. (2015). An Improved Magnetic Charged

System Search for Optimization of Truss Structures with Continuous and Discrete

Variables. Applied Soft Computing Journal. 28: 400–410.

Kaveh, A., Mizaei, B. and Javarvand, A. (2014a). Optimal Design of Double Layer

Barrel Vaults Using İmproved Magnetic Charged System Search. Asian Journal of

Civil Engineering. 15(1): 135–154.

Kaveh, A., Motie Share, M.A. and Moslehi, M. (2013a). Magnetic Charged System

Search: A New Meta-Heuristic Algorithm for Optimization. Acta Mechanica. 224(1):

85–107.

143

Kaveh, A., Rastegar Moghaddam, M. and Khanzadi, M. (2018b). Efficient Multi-

Objective Optimization Algorithms For Construction Site Layout Problem. Scientia

Iranica. 25: 2051–2062.

Kaveh, A. and Talatahari, S. (2010). A Novel Heuristic Optimization Method: Charged

System Search. Acta Mechanica. 213(3–4): 267–289.

Kaveh, A. and Talatahari, S. (2011). A General Model for Meta-Heuristic Algorithms

Using The Concept of Fields of Forces. Acta Mechanica. 221(1–2): 99–118.

Kaveh, A. and Talatahari, S. (2012). Charged System Search for Optimal Design of

Frame Structures. Applied Soft Computing. 12(1): 382–393.

Kaveh, A. and Talatahari, S. (2014). Hybrid Charged System Search and Particle

Swarm Optimization for Engineering Design Problems. International Journal for

Computer-Aided Engineering and Software. 28(4): 423–440.

Kaveh, A. and Zolghadr, A. (2015). An Improved CSS for Damage Detection of Truss

Structures Using Changes in Natural Frequencies and Mode Shapes. Advances in

Engineering Software. 80(C): 93–100.

Kaveh, A. and Talatahari, S. (2009). Size Optimization of Space Trusses Using Big

Bang – Big Crunch Algorithm. Computers and Structures. 87(17–18): 1129–1140.

Kaveh, A. and Talatahari, S. (2010). A Discrete Big Bang - Big Crunch Algorithm for

Optimal Design of Skeletal Structures. Asian Journal of Civil Engineering. 11(1):

103–122.

Kaveh, A. (2014). Advances in Metaheuristic Algorithms for Optimal Design of

Structures. Switzerland: Springer International Publishing.

Kaveh, A. and Hosseini, O.K. (2012). A Hybrid HS-CSS Algorithm for Simultaneous

144

Analysis, Design and Optimization of Trusses via Force Method. Periodica

Polytechnica Civil Engineering. 56(2): 197–212.

Kaveh, A., Ghazaan, M.I. and Bakhshpoori, T. (2013b). An improved ray optimization

algorithm for design of truss structures. Periodica Polytechnica Civil Engineering.

57(2): 97–112.

Kaveh, A., Khanzadi, M., Alipour, M. and Naraky, M. R. (2015). CBO and CSS

Algorithms for Resource Allocation and Time-Cost Trade-Off. Periodica

Polytechnica Civil Engineering. 59(3): 361–371.

Kaveh, A., Khanzadi, M., Moghaddam, M. R. and Rezazadeh, M. (2018a). Charged

System Search and Magnetic Charged System Search Algorithms for Construction

Site Layout Planning Optimization. Periodica Polytechnica Civil Engineering. 62(4):

841–850.

Kaveh, A. and Mahdavi, V.R. (2019). Multi-Objective Colliding Bodies Optimization

Algorithm For Design Of Trusses. Journal of Computational Design and Engineering.

6(1): 49–59.

Kaveh, A. and Maniat, M. (2015). Damage Detection Based on MCSS and PSO Using

Modal Data. Smart Structures and Systems. 15(5): 1253–1270.

Kaveh, A. and Talatahari, S. (2010). Optimal Design of Skeletal Structures via The

Charged System Search Algorithm. Structural and Multidisciplinary Optimization.

41(6): 893–911.

Khan, T.A., Ling, S.H. and Mohan, A.S. (2019). Advanced Gravitational Search

Algorithm with Modified Exploitation Strategy. In IEEE International Conference on

Systems, Man and Cybernetics (pp. 1056–1061). IEEE.

Khanzadi, M., Kaveh, A., Alipour, M. and Aghmiuni, H. K. (2016). Application of

145

CBO and CSS for Resource Allocation and Resource Leveling Problem. Iranian

Journal of Science and Technology - Transactions of Civil Engineering. 40(1): 1–10.

Kicinger, R., Arciszewski, T., De Jong, K. (2005). Evolutionary computation and

structural design: A survey of the state-of-the-art. Journal of Computers and

Structures, 83: 1943-1978.

Kirkpatrick, C.D., Gelatt, M. and Vecchi, S. (1983). Optimization by Simulated

Annealing. Science. 220(4598): 671–680.

Kripka, M. and Kripka, R.M.L. (2008). Big Crunch Optimization Method. In

International Conference on Engineering Optimization (pp. 1-5). Brazil.

Kumar, A., Wu, G., Ali, M. Z., Mallipeddi, R., Suganthan, P. N. and Das, S. (2020b).

A Test-Suite of Non-Convex Constrained Optimization Problems from The Real-

World and Some Baseline Results. Swarm and Evolutionary Computation. 56:

100693.

Kumar, A., Srungavarapu, G., Beiranvand, H. and Rokrok, E. (2017). A novel

approach for automatic generation control of multi area power systems with

nonlinearity using general relativity search algorithm. 2016 IEEE Annual India

Conference. (pp. 1-6). IEEE.

Kumar, B.S., Suryakalavathi, M. and Kumar, G. V. N. (2016). Optimal Power Flow

with Static VAR Compensator Using Galaxy Based Search Algorithm to Minimize

Real Power Losses. Procedia Computer Science (pp. 42–47).

Kumar, S., Singh, A. and Walia, S. (2018). Parallel Big Bang – Big Crunch Global

Optimization Algorithm : Performance and its Applications to routing in WMNs.

Wireless Personal Communications. 100(4): 1601–1618.

Kumar, S., Tejani, G.G., Pholdee, N. and Bureerat, S. (2020a). Multi-Objective

146

Modified Heat Transfer Search for Truss Optimization. Engineering with Computers.

1-16.

Kumar, Y. and Sahoo, G. (2014). A Charged System Search Approach for Data

Clustering. Progress in Artificial Intelligence. 2: 249–261.

Kushwaha, N. and Pant, M. (2018). Fuzzy Magnetic Optimization Clustering

Algorithm with Its Application to Health Care. Journal of Ambient Intelligence and

Humanized Computing. 1-10.

Kushwaha, N., Pant, M., Kant, S. and Jain, V. K. (2018). Magnetic Optimization

Algorithm for Data Clustering. Pattern Recognition Letters. 115: 59–65.

Labbi, Y. and Attous, D. (2010). Big Bang-Big Crunch Optimization Algorithm for

Economic Dispatch with Valve-Point Effect. Journal of Theoretical and Applied

Information Technology. 16.

Labbi, Y. and Attous, D.B. (2017). A Hybrid Big Bang–Big Crunch Optimization

Algorithm for Solving The Different Economic Load Dispatch Problems.

International Journal of System Assurance Engineering and Management. 8(2): 275–

286.

Lalwani, P., Banka, H. and Kumar, C. (2017). CRWO: Clustering and Routing in

Wireless Sensor Networks Using Optics Inspired Optimization. Peer-to-Peer

Networking and Applications. 10(3): 453–471.

Lam, A.Y.S. and Li, V.O.K. (2010). Chemical-Reaction-Inspired Metaheuristic for

Optimization. IEEE Transactions on Evolutionary Computation. 14(3): 381–399.

Langdon W.B., McKay R.I. and Spector L. (2010) Genetic Programming. Handbook

of Metaheuristics. International Series in Operations Research & Management

Science, vol 146. Editors Gendreau M., Potvin JY. Boston, MA: Springer.

147

Layeb, A. (2011). A Novel Quantum Inspired Cuckoo Search for Knapsack Problems.

International Journal of Bio-Inspired Computation. 3(5): 297–305.

Layeb, A. (2013). A Hybrid Quantum Inspired Harmony Search Algorithm for 0-1

Optimization Problems. Journal of Computational and Applied Mathematics. 253: 14–

25.

Le, D. T., Bui, D., Ngo, T. D., Nguyen, Q. and Nguyen-Xuan, H. (2019). A Novel

Hybrid Method Combining Electromagnetism-Like Mechanism and Firefly

Algorithms for Constrained Design Optimization of Discrete Truss Structures.

Computers and Structures. 212: 20–42.

Lee, C.-H., Chang, F.-K., Kuo, C.-T. and Chang, H.-H. (2012). A Hybrid of

Electromagnetism-Like Mechanism and Back-Propagation Algorithms for Recurrent

Neural Fuzzy Systems Design. International Journal of Systems Science. 43(2): 231–

247.

Lee, C.-H. and Lee, Y.-C. (2012). Nonlinear Systems Design by a Novel Fuzzy Neural

System via Hybridization Of Electromagnetism-Like Mechanism and Particle Swarm

Optimisation Algorithms. Information Sciences. 186: 59–72.

Lee, J.-W., Lee, J.-Y. and Lee, J.-J. (2013). Jenga-Inspired Optimization Algorithm

for Energy-Efficient Coverage of Unstructured WSNs. IEEE Wireless

Communications Letters. 2(1): 34–37.

Li, J., Hu, G., Zhou, Y., Zou, C., Peng, W. and Jahangir Alam, S. M. (2016). A

Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing

Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM. Sensors

(Switzerland). 16(10): 1707.

Li, S., Chen, H., Wang, M., Heidari, A. A. and Mirjalili, S. (2020). Slime Mould

Algorithm: A New Method for Stochastic Optimization. Future Generation Computer

148

Systems. 111: 300–323.

Li, Y., Wang, H. and Chai, Z. (2019). Multi-Objective Optimization of Spectrum

Detection in Cognitive IoT Using Artificial Physics Physics. Journal of the Chinese

Institute of Engineers. 42(3): 219–224.

Li, Y.Y. and Jiao, L. C. (2005). Quantum-Inspired Immune Clonal Algorithm.

Artificial Immune Systems ICARIS 2005. Lecture Notes in Computer Science (pp. 304–

317). Editors C. Jacob, M. L. Pilat, P. J. Bentley, and J.I. Timmis. Berlin, Heidelberg:

Springer.

Liu, F., Li, F. and Jing, X. (2019). Navigability Analysis of Local Gravity Map with

Projection Pursuit-Based Selection Method by Using Gravitation Field Algorithm.

IEEE Access. 7: 75873–75889.

Lones, M.A. (2020). Mitigating Metaphors: A Comprehensible Guide to Recent

Nature-Inspired Algorithms. SN Computer Science. 1(1): 1–12.

Lu, C., Gao, L., Li, X., Hu, C., Yan, X. and Gong, W. (2020). Chaotic-Based Grey

Wolf Optimizer for Numerical and Engineering Optimization Problems. Memetic

Computing. 12(4): 371–398.

Luke, S. (2011). Essentials of Metaheuristics: A Set of Undergraduate Lecture Notes.

Optimization. http://cs.gmu.edu/~sean/book/metaheuristics/, (04.05.2020).

Maier, H. R., Razavi, S., Kapelan, Z., Matott, L. S., Kasprzyk, J. and Tolson, B. A.

(2019). Introductory Overview: Optimization Using Evolutionary Algorithms and

Other Metaheuristics. Environmental modelling & software, 114, 195-213.

Mahdavi, A. and Ghaffari, A. (2019). Embedding Virtual Machines in Cloud

Computing Based on Big Bang-Big Crunch Algorithm. Journal of Information

Systems and Telecommunication. 7(4): 305–315.

149

Mahdavi, M., Fesanghary, M. and Damangir, E. (2007). An Improved Harmony

Search Algorithm for Solving Optimization Problems. Applied Mathematics and

Computation. 188(2): 1567–1579.

Mahmood, M. and Al-Khateeb, B. (2019). The Blue Monkey: A New Nature Inspired

Metaheuristic Optimization Algorithm. Periodicals of Engineering and Natural

Sciences. 7(3): 1054–1066.

Man, L., Li, S., Wang, X., Yu, Y. and Lu, S. (2014). A Novel Method of Image

Segmentation Based On PCNN with Spiral Optimization. International Conference on

Signal Processing Proceedings (pp. 703–708).

Manju, A. and Nigam, M. J. (2012). Firefly Algorithm with Fireflies Having Quantum

Behavior. 2012 International Conference on Radar, Communication and Computing,

ICRCC 2012 (pp. 117–119). IEEE.

McPhee, N. F. and Hopper, N. J. (1999). Analysis of genetic diversity through

population history. Proceedings of the genetic and evolutionary computation

conference (pp. 1112-1120).

Menesy, A. S., Sultan, H. M. and Kamel, S. (2020). Extracting Model Parameters of

Proton Exchange Membrane Fuel Cell Using Equilibrium Optimizer Algorithm.

Proceedings of the 2nd 2020 International Youth Conference on Radio Electronics,

Electrical and Power Engineering, REEPE 2020. IEEE.

Meshkat, M. and Parhizgar, M. (2017). Stud Multi-Verse Algorithm. 2nd Conference

on Swarm Intelligence and Evolutionary Computation (pp. 42–47). IEEE.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E.

(1953). Equation of state calculations by fast computing machines. The Journal of

Chemical Physics. 21(6): 1087–1092.

150

Mezura-Montes, E. and Coello, C.A.C. (2008). An Empirical Study About The

Usefulness Of Evolution Strategies to Solve Constrained Optimization Problems.

International Journal of General Systems. 37(4): 443–473.

Michalewicz, Z., (2000). Repair Algorithms. Evolutionary Computation Advanced

Algorithms and Operators 2, (pp. 56-61). Editors T. Bäck, D. B. Fogel, Z.

Michalewicz. U.K.: IOP Publishing.

Mirjalili, S. (2015). The Ant Lion Optimizer. Advances in Engineering Software. 83:

80–98.

Mirjalili, S. (2016). SCA: A Sine Cosine Algorithm for solving optimization problems.

Knowledge-Based Systems. 96: 120–133.

Mirjalili, S., Jangir, P., Mirjalili, S. Z., Saremi, S. and Trivedi, I. N. (2017).

Optimization of Problems with Multiple Objectives Using The Multi-Verse

Optimization Algorithm. Knowledge-Based Systems. 134: 50–71.

Mirjalili, S. and Lewis, A. (2014). Adaptive Gbest-Guided Gravitational Search

Algorithm. Neural Computing and Applications. 25(7–8): 1569–1584.

Mirjalili, S., Mirjalili, S. M. and Hatamlou, A. (2016). Multi-Verse Optimizer: A

Nature-Inspired Algorithm for Global Optimization. Neural Computing and

Applications. 27(2): 495–513.

Mirjalili, S., Mirjalili, S. M. and Lewis, A. (2014). Grey Wolf Optimizer. Advances in

Engineering Software. 69: 46–61.

Moein, S. and Logeswaran, R. (2014). KGMO: A Swarm Optimization Algorithm

Based On The Kinetic Energy of Gas Molecules. Information Sciences. 275: 127–144.

Moein, S., Logeswaran, R. and Faizal bin Ahmad Fauzi, M. (2016). Detection of Heart

151

Disorders Using an Advanced Intelligent Swarm Algorithm. Intelligent Automation

and Soft Computing. 23(3): 419–424.

Moghaddam, F.F., Moghaddam, R.F. and Cheriet, M. (2012). Curved Space

Optimization: A Random Search based on General Relativity Theory.

https://arxiv.org/abs/1208.2214, (15.01.2020).

Mohamadi, M.R., Abedini, M. and Rashidi, B. (2020). An Adaptive Multi-Objective

Optimization Method for Optimum Design of Distribution Networks. Engineering

Optimization. 194-217.

Mohammadi-Ivatloo, B., Moradi-Dalvand, M. and Rabiee, A. (2013). Combined Heat

and Power Economic Dispatch Problem Solution Using Particle Swarm Optimization

with Time Varying Acceleration Coefficients. Electric Power Systems Research. 95:

9–18.

Molina, D., Poyatos, J., Ser, J. Del, García, S., Hussain, A. and Herrera, F. (2020).

Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration

Versus Algorithmic Behavior, Critical Analysis Recommendations. Cognitive

Computation. 1–76.

Montes, E.M., Aguirre A.H., Coello C.A.C., (2005). Using Evolutionary Strategies to

Solve Constrained Optimization Problems. Evolutionary Algorithms and Intelligent

Tools in Engineering Optimization. (pp. 1-25) Editors W. Annicchiarico, J. Périaux,

M. Cerrolaza and G. Winter. Barcelona: CIMNE.

Moore, M.P. and Narayanan, A. (1995). Quantum-Inspired Computing,

https://www.researchgate.net/profile/Ajit-Narayanan/publication/2274710_Quantum-

Inspired_Computing/links/5a36e4cf0f7e9b10d8484a98/Quantum-Inspired-

Computing.pdf, (10.05.2019).

Morales-Castañeda, B., Zaldívar, D., Cuevas, E., Fausto, F. and Rodríguez, A. (2020).

152

A Better Balance in Metaheuristic Algorithms: Does it Exist?. Swarm and

Evolutionary Computation. 54: 100671.

Mosa, M.A. (2020). A Novel Hybrid Particle Swarm Optimization and Gravitational

Search Algorithm for Multi-Objective Optimization of Text Mining. Applied Soft

Computing Journal. 90: 106189.

Mozaffari, A., Emami, M., Azad, N.L. and Fathi, A. (2017). Comparisons of Several

Variants of Continuous Quantum-İnspired Evolutionary Algorithms. Journal of

Experimental and Theoretical Artificial Intelligence. 29(4): 869–909.

Mozaffari, A., Fathi, A. and Behzadipour, S. (2012). The Great Salmon Run: A Novel

Bio-Inspired Algorithm for Artificial System Design and Optimisation. International

Journal of Bio-Inspired Computation. 4(5): 286.

Mucherino, A. and Seref, O. (2007). Monkey search: A novel metaheuristic search for

global optimization. In AIP Conference Proceedings (pp. 162–173). American

Institute of Physics.

Muhsen, D. H., Ghazali, A. B., Khatib, T. and Abed, I. A. (2015). Extraction of

Photovoltaic Module Model’s Parameters Using an Improved Hybrid Differential

Evolution/ Electromagnetism-Like Algorithm. Solar Energy. 119: 286–297.

Naderi, B., Tavakkoli-Moghaddam, R. and Khalili, M. (2010). Knowledge-Based

Systems Electromagnetism-like Mechanism and Simulated Annealing Algorithms for

Flowshop Scheduling Problems Minimizing The Total Weighted Tardiness and

Makespan. Knowledge-Based Systems. 23(2): 77–85.

Nadimi-Shahraki, M. H., Taghian, S. and Mirjalili, S. (2021). An Improved Grey Wolf

Optimizer for Solving Engineering Problems. Expert Systems with Applications. 166:

113917.

153

Nanda, S.J. and Panda, G. (2015). A Clustering Model Based on Colliding Bodies

Optimization for Analysis of Seismic Catalog. 2015 International Conference on

Microwave, Optical and Communication Engineering, ICMOCE 2015 (pp. 68–71).

IEEE.

Narayanan, A. and Moore, M. (1996). Quantum-Inspired Genetic Algorithms.

Proceedings of the IEEE Conference on Evolutionary Computation (pp. 61–66). IEEE.

Nash, J. C. (2000). The (Dantzig) Simplex Method for Linear Programming.

Computing in Science & Engineering. 2(1): 29–31.

Nayak, C., Saha, S. K., Kar, R. and Mandal, D. (2019). An Efficient QRS Complex

Detection Using Optimally Designed Digital Differentiator. Circuits, Systems, and

Signal Processing. 38(2): 716–749.

Neggaz, N., Houssein, E. H. and Hussain, K. (2020). An Efficient Henry Gas

Solubility Optimization for Feature Selection. Expert Systems with Applications. 152:

113364.

Neshat, M., Sepidnam, G. and Sargolzaei, M. (2013). Swallow Swarm Optimization

Algorithm: A New Method to Optimization. Neural Computing and Applications.

23(2): 429–454.

Nesmachnow, S. (2014). An Overview of Metaheuristics: Accurate and Efficient

Methods for Optimisation. International Journal of Metaheuristics. 3(4): 320-347.

Newton, I. (1999). The principia: Mathematical Principles of Natural Philosophy.

University of California Press.

Nguyen, T.T., Vo, D.N. and Dinh, B. H. (2016). Cuckoo Search Algorithm for

Combined Heat and Power Economic Dispatch. International Journal of Electrical

Power and Energy Systems. 81: 204–214.

154

Niknam, T., Bavafa, F. and Jabbari, M. (2014). A Novel Self-Adaptive Learning

Charged System Search Algorithm for Unit Commitment Problem. Journal of

Intelligent and Fuzzy Systems. 26(1): 439–449.

Odili, J. B., Noraziah, A., Ambar, R., and Wahab, M. H. A. (2018). A Critical Review

of Major Nature-Inspired Optimization Algorithms. The Eurasia Proceedings of

Science, Technology, Engineering & Mathematics. 2: 376-394.

Osaba, E., Diaz, F. and Onieva, E. (2014). Golden Ball: A Novel Meta-Heuristic to

Solve Combinatorial Optimization Problems Based on Soccer Concepts. Applied

Intelligence. 41(1): 145–166.

Osman, I. H. and Kelly, J. P. (1996). Meta-Heuristics: An Overview. Meta-Heuristics

(pp. 1–21). Editors Osman I.H., Kelly J.P. Boston, MA: Springer US.

Oyama, A., Shimoyama, K. and Fujii, K. (2005). New Constraint-Handling Method

for Multi-Objective Multi-Constraint Evolutionary Optimization and Its Application

to Space Plane Design. Evolutionary and Deterministic Methods for Design,

Optimization and Control with Applications to Industrial and Societal Problems

(EUROGEN 2005), Editors Schilling, R., Haase, W., Periaux, J., Baier, H., Bugeda,

G. Munich, Germany: FLM.

Oztas, G. Z. and Erdem, S. (2021). Framework Selection for Developing Optimization

Algorithms: Assessing Preferences by Conjoint Analysis and Best–Worst Method.

Soft Computing. 25: 3831–3848.

Özyön, S., Temurtaş, H., Durmuş, B. and Kuvat, G. (2012). Charged System Search

Algorithm for Emission Constrained Economic Power Dispatch Problem. Energy.

46(1): 420–430.

Pál, K.F. (2003). Hysteretic Optimization for The Traveling Salesman Problem.

Physica A: Statistical Mechanics and Its Applications. 329(1–2): 287–297.

155

Pál, K.F. (2006). Hysteretic Optimization, Faster and Simpler. Physica A: Statistical

Mechanics and Its Applications, 360(2), 525–533.

Pan, W.-T. (2012). A new Fruit Fly Optimization Algorithm: Taking the Financial

Distress Model as an Example. Knowledge-Based Systems. 26: 69–74.

Panda, A. and Pani, S. (2016). Multi-Objective Colliding Bodies Optimization.

Proceedings of Fifth International Conference on Soft Computing for Problem Solving

(pp. 651-664). Springer: Singapore.

Panthagani, P. and Rao, R. S. (2020). Pareto-Based Allocations of Multi-Type Flexible

AC Transmission System Devices for Optimal Reactive Power Dispatch Using Kinetic

Gas Molecule Optimization Algorithm. Measurement and Control. 53(1–2): 239–249.

Panthagani, P. and Rao, R.S. (2017). KGMO for Multi-Objective Optimal Allocation

of SVC and Reactive Power Dispatch. International Conference on Power and

Embedded Drive Control, ICPEDC 2017 (pp. 365–369). IEEE.

Pashaei, E. and Aydin, N. (2017). Binary Black Hole Algorithm for Feature Selection

and Classification on Biological Data. Applied Soft Computing Journal. 56: 94–106.

Pashaei, E., Pashaei, E. and Aydin, N. (2019). Gene Selection Using Hybrid Binary

Black Hole Algorithm and Modified Binary Particle Swarm Optimization. Genomics.

111(4): 669–686.

Patel, V. K. and Savsani, V. J. (2015). Heat Transfer Search (HTS): A Novel

Optimization Algorithm. Information Sciences. 324: 217–246.

Pattanaik, J. K., Basu, M. and Dash, D. P. (2020). Heat Transfer Search Algorithm for

Combined Heat and Power Economic Dispatch. Iranian Journal of Science and

Technology - Transactions of Electrical Engineering. 44(2): 963–978.

156

Petrowski, A. and Hamida, S. B. (2016). Evolutionary algorithms. Metaheuristics (pp.

115-178) Editor P. Siarry. Springer, Cham.

Phu-Ang, A. (2018). The New Technique Based On The Galaxy Based Search

Algorithm for Solving The Symmetric Travelling Salesman Problem. 1st International

ECTI Northern Section Conference on Electrical, Electronics, Computer and

Telecommunications Engineering, ECTI-NCON 2018 (pp. 131–134). IEEE.

Piotrowski, A. P., Napiorkowski, J. J. and Rowinski, P. M. (2014). How Novel Is The

“Novel” Black Hole Optimization Approach? Information Sciences. 267: 191–200.

Purnomo H. D. and Wee H. M. (2013). Soccer Game Optimization: An Innovative

Integration Of Evolutionary Algorithm and Swarm Intelligence Algorithm.

Metaheuristics Optimization Algorithms in Engineering, Business, Economics, and

Finance (pp.386–420). Editor P.Vasant. IGI Global.

Prasad, S. and Vinod Kumar, D. M. (2017). Hybrid Fuzzy Charged System Search

Algorithm Based State Estimation in Distribution Networks. Engineering Science and

Technology, an International Journal. 20(3): 922–933.

Precup, R.E., David, R.C., Petriu, E.M., Preitl, S. and Rǎdac, M.B. (2014). Novel

Adaptive Charged System Search Algorithm for Optimal Tuning of Fuzzy Controllers.

Expert Systems with Applications. 41: 1168–1175.

Precup, R. E., Petriu, E. M., Radac, M. B., Voisan, E. I. and Dragan, F. (2015).

Adaptive Charged System Search Approach to Path Planning for Multiple Mobile

Robots. In IFAC-PapersOnLine (pp. 294–299).

Priya, S., Selvakumar, S. and Leela Velusamy, R. (2020). Gravitational Search Based

Feature Selection for Enhanced Phishing Websites Detection. Proceedings of the

Second International Conference on Innovative Mechanisms for Industry Applications

(ICIMIA (pp. 453–458).

157

Pulluri, H., Naresh, R., Sharma, V. and Preeti. (2016). A New Colliding Bodies

Optimization for Solving Optimal Power Flow Problem in Power System. 2016 IEEE

6th International Conference on Power Systems, ICPS 2016. IEEE.

PyCharm, “The Python IDE”, https://www.jetbrains.com/pycharm/, (12.04.2018)

Qasim, O. S., Al-Thanoon, N. A. and Algamal, Z. Y. (2020). Feature Selection Based

On Chaotic Binary Black Hole Algorithm for Data Classification. Chemometrics and

Intelligent Laboratory Systems. 204: 104104.

Qiao, W. and Yang, Z. (2019). Solving Large-Scale Function OptimizationProblem by

Using a New Metaheuristic Algorithm Based on Quantum DolphinSwarm Algorithm.

IEEE Access. 7: 138972–138989.

Qubati, G. M., Formato, R. A. and Dib, N. I. (2010). Antenna Benchmark Performance

and Array Synthesis Using Central Force Optimisation. IET Microwaves, Antennas &

Propagation. 4(5): 583–592.

Ragsdell, K. M. and Phillips, D. T. (1976). Optimal Design of a Class of Welded

Structures Using Geometric Programming. Journal of Manufacturing Science and

Engineering, Transactions of the ASME. 98(3): 1021–1025.

Rahchamani, G., Movahedifar, S. M. and Honarbakhsh, A. (2019). A Hybrid

Optimized Learning-Based Compressive Performance of Concrete Prediction Using

GBMO-ANFIS classifier and genetic algorithm reduction. Structural Concrete. 1–21.

Rao, C. V. G. K. and Yesuratnam, G. (2015). Multi-Objective Optimization Using

BigBang Big-Crunch based Optimization: Application to Optimal Economic

Environmental Dispatch. Journal of Electrical Systems. 11(4): 476–492.

Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011). Teaching–Learning-Based

Optimization: A Novel Method for Constrained Mechanical Design Optimization

Problems. Computer-Aided Design. 43(3): 303–315.

158

Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S. (2009). GSA: A Gravitational

Search Algorithm. Information Sciences. 179(13): 2232–2248.

Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S. (2010). BGSA: Binary

Gravitational Search Algorithm. Natural Computing. 9(3): 727–745.

Rathore, C. and Roy, R. (2014). A Novel Modified GBMO Algorithm Based Static

Transmission Network Expansion Planning. International Journal of Electrical Power

and Energy Systems. 62: 519–531.

Ray, T. and Liew, K. M. (2003). Society and civilization: an optimization algorithm

based on the simulation of social behavior. IEEE Transactions on Evolutionary

Computation, 7(4), 386-396.

Recioui, A. (2016). Application of a Galaxy-Based Search Algorithm to MIMO

System Capacity Optimization. Arabian Journal for Science and Engineering. 41(9):

3407–3414.

Reddy, T. S. and Reddy, T. V. S. (2019). Optimization of Shell and Tube Heat

Exchanger Design in Organic Rankine Cycle System Using Kinetic Gas Molecule

Optimization. International Journal of Intelligent Engineering and Systems. 12(2):

297–304.

Reynolds, R. G., Peng, B. and Whallon, R. (2005). Emergent social structures in

cultural algorithms. Annual Conference of the North American Association for

Computational Social and Organizational Science (NAACSOS 2005) (pp. 26-28).

Robic, F., Micallef, D., Paul, S. and Ellul, B. (2020). Implementation and Fine-Tuning

of The Big Bang-Big Crunch Optimisation Method for Use in Passive Building

Design. Building and Environment. 173.

Rong, G., Liu, G., Zheng, M., Sun, A., Tian, Y., and Wang, H. (2013). Parallel

159

Gravitation Field Algorithm Based on The CUDA Platform. Journal of Information

and Computational Science, 10(12): 3635-3644.

Ross, O.H.M. (2020). A Review of Quantum-Inspired Metaheuristics: Going from

Classical Computers to Real Quantum Computers. IEEE Access. 8: 814–838.

Sabri, N. M., Puteh, M. and Mahmood, M. R. (2013). A Review of Gravitational

Search Algorithm. International Journal of Advances in Soft Computing and Its

Applications. 5(3): 1–39.

Sacco, W.F. and De Oliveira, C. (2005). A new stochastic optimization algorithm

based on a particle collision metaheuristic. Proceedings of the 6th World Congress of

Structural and Multidisciplinary Optimization, WCSMO, Rio de Janeiro,

papers://b6c7d293-c492-48a4-91d5-

8fae456be1fa/Paper/p1889%5Cnfile:///C:/Users/Serguei/OneDrive/Documents/Paper

s/A new stochastic optimization algorithm.pdf, (04.03.2019).

Sacco, W.F. and Rios-Coelho, A.C. (2016). A New Metropolis Optimisation Method,

The Cross-Section Particle Collision Algorithm: Some Preliminary Results.

International Journal of Nuclear Energy Science and Technology, 10(1), 59–71.

Sacco, W.F., Filho, H.A. and De Oliveira, C.R. (2007). A Populational Particle

Collision Algorithm Applied to A Nuclear Reactor Core Design Optimization. Joint

International Topical Meeting on Mathematics and Computations for Supercomputing

in Nuclear Applications. (pp. 15-19). California: American Nuclear Society.

Sadiq, A.S., Alkazemi, B., Mirjalili, S., Ahmed, N., Khan, S., Ali, I., … Ghafoor, Z.

K. (2018). An Efficient IDS Using Hybrid Magnetic Swarm Optimization in

WANETs. IEEE Access. 6: 29041–29053.

Sahab, M.G., Toropov, V.V. and Gandomi, A.H. (2013). A Review on Traditional and

Modern Structural Optimization: Problems and Techniques. Metaheuristic

160

Applications in Structures and Infrastructures (pp. 25–47).

Şahin, M. and Kellegöz, T. (2019). Balancing Multi-Manned Assembly Lines with

Walking Workers: Problem Definition, Mathematical Formulation, and an

Electromagnetic Field Optimisation Algorithm. International Journal of Production

Research. 57(20): 6487–6505.

Sahoo, B. P. and Panda, S. (2020). Chaotic Multi Verse Optimizer Based Fuzzy Logic

Controller for Frequency Control Of Microgrids. Evolutionary Intelligence, 1-22.

Salcedo-Sanz, S. (2016). Modern Meta-Heuristics Based On Nonlinear Physics

Processes: A Review Of Models and Design Procedures. Physics Reports. 655: 1–70.

Salem, S.A. (2012). BOA: A Novel Optimization Algorithm. 2012 International

Conference on Engineering and Technology (ICET) (pp. 1–5). IEEE.

Salmani, M.H. and Eshghi, K. (2017). A Metaheuristic Algorithm Based on

Chemotherapy Science: CSA. Journal of Optimization. 1–13.

Sanders, R. (1987). The Pareto Principle: Its Use And Abuse. Journal of Services

Marketing. 1(2): 37–40.

Sandgren, E. (1990). Nonlinear integer and discrete programming in mechanical

design optimization. Journal of Mechanical Design. 112(2): 223–229.

Sarafrazi, S., Nezamabadi-Pour, H. and Saryazdi, S. (2011). Disruption : A New

Operator in Gravitational Search Algorithm. Scientia Iranica. 18(3): 539–548.

Saranya, S. and Saravanan, B. (2020). Effect of Emission in SMES Based Unit

Commitment Using Modified Henry Gas Solubility Optimization. Journal of Energy

Storage. 29: 101380.

161

Sardari, F. and Moghaddam, M. E. (2016). An Object Tracking Method Using

Modified Galaxy-Based Search Algorithm. Swarm and Evolutionary Computation.

30: 27–38.

Savsani, V., Patel, V., Gadhvi, B. and Tawhid, M. (2017). Pareto Optimization of a

Half Car Passive Suspension Model Using a Novel Multiobjective Heat Transfer

Search Algorithm. Modelling and Simulation in Engineering. 2017: 2034907.

Scopus Database. Analyze Search Results,

https://www.scopus.com/term/analyzer.uri?sid=5c482f4076a97e037c834eddb5130f3

b&origin=resultslist&src=s&s=%28TITLE-ABS-

KEY%28Optimization%29%29+AND+%28%28%28%28%28%22Bio-

inspired%22%29%29+OR+%28%22Nature-

inspired%22%29%29+OR+%28%22Swarm+intelligence%22%29%29+OR%28%22

Physics-based%22%29%29+OR%28%22Chemistry-based%22%29&sort=plf-

f&sdt=a&sot=a&sl=149&count=61913&analyzeResults=Analyze+results&txGid=9

008ae79476449b0091855f4848b91d4, (01.04.2021).

Sedighizadeh, M. and Ghalambor, M. (2014). Reconfiguration of Radial Distribution

Systems with Fuzzy Multi-Objective Approach Using Modified Big Bang-Big Crunch

Algorithm. Arabian Journal for Science and Engineering. 6287–6296.

Sels, V. and Vanhoucke, M. (2014). A hybrid Electromagnetism-like Mechanism /

Tabu Search Procedure for The Single Machine Scheduling Problem with a Maximum

Lateness Objective. Computers & Industrial Engineering. 67: 44–55.

Shabani, A., Asgarian, B., Salido, M. and Asil Gharebaghi, S. (2020). Search and

Rescue Optimization Algorithm: A New Optimization Method For Solving

Constrained Engineering Optimization Problems. Expert Systems with Applications.

161: 113698.

Shah-Hosseini, H. (2011a). Otsu’s Criterion-Based Multilevel Thresholding by a

162

Nature-Inspired Metaheuristic Called Galaxy-Based Search Algorithm. Proceedings

of the 2011 3rd World Congress on Nature and Biologically Inspired Computing,

NaBIC 2011 (pp. 383–388). IEEE.

Shah-Hosseini, H. (2011b). Principal Components Analysis by The Galaxy-Based

Search Algorithm: A Novel Metaheuristic for Continuous Optimisation. International

Journal of Computational Science and Engineering. 6(1/2): 132.

Sharma, S. and Kumar, S. (2017). Discrete Gravitational Search Algorithm for Virtual

Machine Placement in Cloud Computing. International Journal of Pure and Applied

Mathematics. 117(19): 337–342.

Shehabeldeen, T. A., Elaziz, M. A., Elsheikh, A. H., Hassan, O. F., Yin, Y., Ji, X., …

Zhou, J. (2020). A Novel Method for Predicting Tensile Strength of Friction Stir

Welded AA6061 Aluminium Alloy Joints Based on Hybrid Random Vector

Functional Link and Henry Gas Solubility Optimization. IEEE Access. 8: 79896–

79907.

Shen, J. and Li, J. (2010). The Principle Analysis of Light Ray Optimization

Algorithm. In 2010 Second International Conference on Computational Intelligence

and Natural Computing (CINC) The (pp. 154–157). IEEE.

Shen, J. and Li, J. (2012). Light Ray Optimization Algorithm Based on Annealing

Strategy. Advanced Materials Research. 461: 435–439.

Shen, J. and Li, Y. (2009). Light Ray Optimization and Its Parameter Analysis.

Proceedings of the 2009 International Joint Conference on Computational Sciences

and Optimization, (pp. 918–922). IEEE.

Shi, Y. (2011a). Brain Storm Optimization Algorithm. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 6728 LNCS(PART 1), (pp. 303–309). Berlin, Heidelberg: Springer.

163

Shi, Y. (2011b). Brain Storm Optimization Algorithm. Advances in Swarm

Intelligence (pp. 303–309). Editors Y. Tan, Y. Shi, Y. Chai, and G. Wang. Berlin,

Heidelberg: Springer.

Shirgir, S., Azar, B. F. and Hadidi, A. (2020). Reliability-Based Simplification of

Bouc-Wen Model and Parameter Identification Using a New Hybrid Algorithm.

Structures. 27: 297–308.

Shukla, A. K., Singh, P. and Vardhan, M. (2020). Gene Selection for Cancer Types

Classification Using Novel Hybrid Metaheuristics Approach. Swarm and Evolutionary

Computation. 54: 100661.

Siarry, P. (2016). Introduction, Metaheuristics, (pp. 1-18) Editor P. Siarry. Springer,

Cham.

Siddique, N. and Adeli, H. (2015b). Central Force Metaheuristic Optimisation.

Scientia Iranica. 22(6): 1941–1953.

Siddique, N. and Adeli, H. (2015a). Nature Inspired Computing: An Overview and

Some Future Directions. Cognitive Computation. 7(6): 706–714.

Siddique, N. and Adeli, H. (2016). Physics-Based Search and Optimization:

Inspirations From Nature. Expert Systems. 33(6): 607–623.

Smit, S. K. and Eiben, A. E. (2010). Using entropy for parameter analysis of

evolutionary algorithms. Experimental Methods for the Analysis of Optimization

Algorithms (pp. 287-310). Editors Bartz-Beielstein, Thomas Chiarandini, Marco

Paquete, Luís Preuss, Mike. Springer, Berlin, Heidelberg.

Simon, D. (2013). Evolutionary Optimization Algorithms. USA: John Wiley & Sons.

Song, S., Jia, H. and Ma, J. (2019). A Chaotic Electromagnetic Field Optimization

Algorithm Based on Fuzzy Entropy for Multilevel Thresholding Color Image

164

Segmentation. Entropy. 21(4): 398.

Sörensen. K. (2015). Metaheuristics—The Metaphor Exposed. International

Transactions in Operational Research. 22(1): 3-18.

Sörensen, K., Sevaux, M. and Glover, F. (2018). A History of Metaheuristics.

Handbook of Heuristics (pp. 2–16). Editors R. Martí, P. Pardalos, and M. Resende.

http://arxiv.org/abs/1704.00853, (6.07.2020).

Soto, R., Crawford, B., Olivares, R., Taramasco, C., Figueroa, I., Gómez, Á., …

Paredes, F. (2018). Adaptive Black Hole Algorithm for Solving The Set Covering

Problem. Mathematical Problems in Engineering. 2018: 2183214.

Sotoudeh-Anvari, A. and Hafezalkotob, A. (2018). A Bibliography of Metaheuristics-

Review from 2009 to 2015. International Journal of Knowledge-Based and Intelligent

Engineering Systems. 22(1): 83–95.

Srinivasa Rao, G., Vijaya Kumar, V. and Suresh Varma, P. (2015). A New Optimized

Data Clustering Technique using Cellular Automata and Adaptive Central Force

Optimization. Research Journal of Applied Sciences, Engineering and Technology.

10(5): 522–531.

Srivastava, A. and Das, D. K. (2020). A New Kho-Kho Optimization Algorithm: An

Application To Solve Combined Emission Economic Dispatch and Combined Heat

and Power Economic Dispatch Problem. Engineering Applications of Artificial

Intelligence. 94: 103763.

Su, H. and Yang, Y. (2008). Quantum-Inspired Differential Evolution for Binary

Optimization. Proceedings - 4th International Conference on Natural Computation,

ICNC 2008 (pp. 341–346). IEEE.

Su, C. and Lin, H. (2011). Applying Electromagnetism-Like Mechanism for Feature

165

Selection. Information Sciences. 181(5): 972–986.

Sulaiman, M., Salhi, A., Selamoglu, B. I. and Kirikchi, O. B. (2014). A Plant

Propagation Algorithm for Constrained Engineering Optimisation Problems.

Mathematical Problems in Engineering. 2014: 627416.

Sun, J. and Li, Y. (2018). Social Cognitive Optimization with Tent Map for Combined

Heat and Power Economic Dispatch. International Transactions on Electrical Energy

Systems. 29(1): 1–15.

Sun, J., Feng, B. and Xu, W. (2004). Particle Swarm Optimization with Particles

Having Quantum Behavior. Proceedings of the 2004 Congress on Evolutionary

Computation, CEC2004 (pp. 325–331). IEEE.

Tabrizian, Z., Afshari, E., Ghodrati, G., Hossein, M. and Beigy, A. (2013). A New

Damage Detection Method: Big Bang-Big Crunch Algorithm. Shock and Vibration.

20: 633–648.

Tahani, M., Yousefi, H., Noorollahi, Y. and Fahimi, R. (2019). Application of Nature

İnspired Optimization Algorithms in Optimum Positioning of Pump-As-Turbines in

Water Distribution Networks. Neural Computing and Applications. 31(11): 7489–

7499.

Talatahari, S., Sheikholeslami, R., Farahmand Azar, B. and Daneshpajouh, H. (2013).

Optimal Parameter Estimation for Muskingum Model Using a CSS-PSO Method.

Advances in Mechanical Engineering. 5: 480954.

Talatahari, S., Aalami, M. T., and Parsiavash, R. (2018). Risk-Based Arch Dam

Optimization Using Hybrid Charged System Search. ASCE-ASME Journal of Risk and

Uncertainty in Engineering Systems, Part A: Civil Engineering. 4(2): 04018008.

Talatahari, S. and Azizi, M. (2020). Optimization of Constrained Mathematical and

166

Engineering Design Problems Using Chaos Game Optimization. Computers and

Industrial Engineering. 145: 106560.

Talbi, E.-G. (2009). Metaheuristıcs from Design to Implementation. John Wiley &

Sons.

Talebi, B. and Dehkordi, M. N. (2018). Sensitive Association Rules Hiding Using

Electromagnetic Field Optimization Algorithm. Expert Systems with Applications.

114: 155–172.

Tamura, K. and Yasuda, K. (2011a). Primary Study of Spiral Dynamics İnspired

Optimization. IEEJ Transactions on Electrical and Electronic Engineering. 6(S1):

S98-S100.

Tamura, K. and Yasuda, K. (2011b). Spiral Multipoint Search for Global

Optimization. Proceedings - 10th International Conference on Machine Learning and

Applications, ICMLA 2011 (pp. 470–475). IEEE.

Tamura, K. and Yasuda, K. (2011c). Spiral Optimization. IEEE International

Conference on Systems Man and Cybernetics (pp. 1759–1764). IEEE.

Tamura, K. and Yasuda, K. (2013). A Stability Analysis Based Parameter Setting

Method for Spiral Optimization. Proceedings - 2013 IEEE International Conference

on Systems, Man, and Cybernetics, SMC 2013 (pp. 3909–3914). IEEE.

Tang, R., Fong, S., Yang, X.S. and Deb, S. (2012). Wolf Search Algorithm with

Ephemeral Memory. 7th International Conference on Digital Information

Management, ICDIM 2012 (pp. 165–172).

Tanyildizi, E. and Demir, G. (2017). Golden sine algorithm: a novel math-inspired

algorithm. Advances in Electrical and Computer Engineering. 17(2): 71–79.

Taramsco, C., Crawford, B., Soto, R., Cortés-Toro, E. M. and Olivares, R. (2020). A

167

New Metaheuristic Based on Vapor-Liquid Equilibrium for Solving a New Patient Bed

Assignment Problem. Expert Systems With Applications. 158: 113506.

Tatsumura, K., Dixon, A. R. and Goto, H. (2019). FPGA-based simulated bifurcation

machine. 2019 29th International Conference on Field Programmable Logic and

Applications (FPL) (pp. 59-66). IEEE.

Tavakkoli-Moghaddam, R., Khalili, M. and Naderi, B. (2009). A Hybridization of

Simulated Annealing and Electromagnetic-Like Mechanism for Job Shop Problems

with Machine Availability and Sequence-Dependent Setup Times to Minimize Total

Weighted Tardiness. Soft Computing. 13: 995–1006.

Tavakolan, M. and Share, M. A. M. (2013). Applying Magnetic Charged System

Search Algorithm to Construction Project Planning Problems. Computing in Civil

Engineering - Proceedings of the 2013 ASCE International Workshop on Computing

in Civil Engineering (pp. 733–740) Editors L. Angeles, I. Technology, I. Brilakis, S.

Lee, & B. Becerik-gerber. Los Angeles, California: ASCE.

Tayarani-N., M. H. and Akbarzadeh-T., M. R. (2014). Magnetic-Inspired

Optimization Algorithms: Operators and Structures. Swarm and Evolutionary

Computation, 19, 82–101.

Tayarani, M. H. and Akbarzadeh. T., N. M. R. (2008). Magnetic Optimization

Algorithms A New Synthesis. 2008 IEEE Congress on Evolutionary Computation,

CEC 2008, (pp. 2659–2664). IEEE.

Teeparthi, K. and Kumar, D.M.V. (2018). Security-Constrained Optimal Power Flow

with Wind and Thermal Power Generators Using Fuzzy Adaptive Artificial Physics

Optimization Algorithm. Neural Computing and Applications. 29(3): 855–871.

Tejani, G. G., Kumar, S. and Gandomi, A. H. (2019b). Multi-Objective Heat Transfer

Search Algorithm for Truss Optimization. Engineering with Computers. 1-22.

168

Tejani, G. G., Savsani, V. J., Patel, V. K. and Mirjalili, S. (2019a). An Improved Heat

Transfer Search Algorithm for Unconstrained Optimization Problems. Journal of

Computational Design and Engineering. 6(1): 13–32.

Tian, Y., Liu, D., Ma, X. and Zhang, C. (2009). A Hybrid PSO with EM for Global

Optimisation. Internnational Journal of Modelling, Identification and Control. 8(4):

327–334.

Tolabi, H. B., Shakarami, M. R., Hosseini, R. and Ayob, S. B. M. (2016). Novel

FGbSA: Fuzzy-Galaxy-Based Search Algorithm for Multi-Objective Reconfiguration

of Distribution Systems. Russian Electrical Engineering. 87(10): 588–595.

Torres, R. H., Velho, H. F. de C. and Chiwiacowsky, L. D. (2018). Rotation-Based

Multi-Particle Collision Algorithm with Hooke–Jeeves Approach Applied to the

Structural Damage Identification. Computational Intelligence, Optimization and

Inverse Problems with Applications in Engineering (pp. 87–110). Editors G. M. Platt,

X. S. Yang, and A. J. Silva Neto. Cham: Springer.

Toshiba Corporation (2019). Corporate Research & Development Center,

https://www.global.toshiba/ww/technology/corporate/rdc/rd/topics/19/1910-02.html,

(25.04.2021).

Tovey, C. A. (2018). Nature-Inspired Heuristics : Overview and Critique. Recent

Advances in Optimization and Modeling of Contemporary Problems. 158-192.

Tsai, C. W., Huang, B. C. and Chiang, M. C. (2014). A Novel Spiral Optimization for

Clustering. Mobile, Ubiquitous, and Intelligent Computing Lecture Notes in Electrical

Engineering (pp. 529–534). Editors J. Park, H. Adeli, N. Park, and I. Woungang.

Berlin, Heidelberg: Springer.

Tsou, C.-S. and Kao, C.-H. (2008). Multi-Objective İnventory Control Using

Electromagnetism-Like Meta-Heuristic. International Journal of Production

169

Research. 46(14): 3859–3874.

Valenzuela, M., Pena, A., Lopez, L. and Pinto, H. (2017). A Binary Multi-Verse

Optimizer Algorithm Applied to The Set Covering Problem. 2017 4th International

Conference on Systems and Informatics, ICSAI 2017 (pp. 513–518).

Vasebi, A., Fesanghary, M. and Bathaee, S. M. T. (2007). Combined Heat and Power

Economic Dispatch by Harmony Search Algorithm. International Journal of

Electrical Power and Energy Systems. 29(10): 713–719.

Veres, P., Bányai, T. and Illés, B. (2017). Optimization of In-Plant Production Supply

with Black Hole Algorithm. Solid State Phenomena. 261(1): 503–508.

Vinay Kumar, V., Kusumavathi, S. and Sharma, K. S. (2019). Kinetic Gas Molecule

Optimization for MRI Brain Segmentation Using The Fuzzy C-Means Clustering.

International Journal of Recent Technology and Engineering. 8(2 Special Issue 8):

900–907.

Wang, T., Liu, W. F., and Liu, C. F. (2016). Optimization Algorithm of Black-Hole

Based on Euclidean Distance. Journal of Shenyang University of Technology, 38(2):

201-205.

Wang, B., Wang, C., Wang, L. U., Xie, N. and Wei, W. E. I. (2019b). Recognition of

Semg Hand Actions Based on Cloud Adaptive Quantum Chaos Ions Motion Algorithm

Optimized SVM. Journal of Mechanics in Medicine and Biology. 19(6): 1950047.

Wang, G. G. (2018). Moth Search Algorithm: A Bio-Inspired Metaheuristic Algorithm

for Global Optimization Problems. Memetic Computing. 10(2): 151–164.

Wang Y.-J, and Ma C.-L (2018) Opposition-Based Learning Differential Ion Motion

Algorithm, Journal of Information Hiding and Multimedia Signal Processing, 9(4):

987-996.

170

Wang, H., Huang, M. and Wang, J. (2019a). An Effective Metaheuristic Algorithm for

Flowshop Scheduling with Deteriorating Jobs. Journal of Intelligent Manufacturing.

30(7): 2733–2742.

Wang, K. and Shen, J. H. (2012). Multi-Objective Light Ray Optimization.

Proceedings of the 2012 5th International Joint Conference on Computational

Sciences and Optimization, (pp. 822–825). IEEE.

Wang, L., Niu, Q. and Fei, M. (2007). A Novel Quantum Ant Colony Optimization

Algorithm. Bio-Inspired Computational Intelligence and Applications. LSMS 2007.

Lecture Notes in Computer Science (pp. 277–286). Editors K. Li, M. Fei, G. W. Irwin,

and S. Ma. Berlin, Heidelberg: Springer.

Wang, X., Pan, J. S. and Chu, S. C. (2020a). A Parallel Multi-Verse Optimizer for

Application in Multilevel Image Segmentation. IEEE Access. 8: 32018–32030.

Wang, H., Zhang, C. and Zeng, J. (2020b). Precipitation Estimation by Multi-Time

Scale Support Vector Machine with Quantum Optics İnspired Optimization

Algorithm. Second Target Recognition and Artificial Intelligence Summit Forum (pp.

822-825). International Society for Optics and Photonics.

Wang J., Ma L., Liu Y., and Yang W. (2017). Self-Adaptive Optics Inspired

Optimization for Real-Time Pricing of Smart Grid. Power System Protection and

Control, 45(24), 29-35.

Wang, L. G., and Wei, F. J. (2013). Artificial Physics Optimization Algorithm

Combined Band Selection for Hyperspectral İmagery. Journal of Harbin Institute of

Technology. 45(9): 100-106.

Wegener, I. (2005). Complexity Theory, Exploring the Limits of Efficient Algorithms.

Springer.

171

Whitley, D. and Watson, J.P. (2005). Complexity Theory And The No Free Lunch

Theorem. Search Methodologies (pp. 317–339). Editors E. K. Burke & G. Kendall.

Boston, MA: Springer.

Wolpert, D.H. and Macready, W.G. (1995). No free lunch theorems for search.

https://www.researchgate.net/profile/David-

Wolpert/publication/221997149_No_Free_Lunch_Theorems_for_Search/links/0c960

529e2b49c4dce000000/No-Free-Lunch-Theorems-for-Search.pdf, (05.04.2019).

Wu W. (2016). [Algorithm] P, NP, NPC, NPH,

https://williamswu.wordpress.com/2016/04/17/algorithm-np-p-nph-npc/,

(10.05.2019)

Wu, C., Wu, T., Fu, K., Zhu, Y., Li, Y., He, W. and Tang, S. (2017). AMOBH:

Adaptive Multiobjective Black Hole Algorithm. Computational Intelligence and

Neuroscience. 2017: 6153951.

Wunnava, A., Naik, M. K., Panda, R., Jena, B. and Abraham, A. (2020). A Novel

İnterdependence Based Multilevel Thresholding Technique Using Adaptive

Equilibrium Optimizer. Engineering Applications of Artificial Intelligence. 94:

103836.

Xie, J. and Ma, H. (2018). Application of Improved APO Algorithm in Vulnerability

Assessment and Reconstruction of Microgrid. IOP Conference Series: Earth and

Environmental Science. 108: 1–9.

Xie, L. and Zeng, J. (2010). The Performance Analysis of Artificial Physics

Optimization Algorithm Driven by Different Virtual Forces. ICIC Express Letters.

4(1): 239–244.

Xie, L., Zeng, J. and Cui, Z. (2009a). General Framework of Artificial Physics

Optimization Algorithm. 2009 World Congress on Nature and Biologically Inspired

172

Computing, NABIC 2009 - Proceedings (pp. 1321–1326). IEEE.

Xie, L., Zeng, J. and Cui, Z. (2009b). On Mass Effects to Artificial Physics

Optimisation Algorithm for Global Optimisation Problems. International Journal of

Innovative Computing and Applications. 2(2): 69–76.

Xie, W., Wang, J. S. and Tao, Y. (2019). Improved Black Hole Algorithm Based on

Golden Sine Operator and Levy Flight Operator. IEEE Access. 7: 161459–161486.

Xing, B. and Gao, W.-J. (2014). Innovative Computational Intelligence: A Rough

Guide to 134 Clever Algorithms. Cham: Springer International Publishing.

Xing, Z. and Jia, H. (2020). Modified Thermal Exchange Optimization Based

Multilevel Thresholding for Color Image Segmentation. Multimedia Tools and

Applications. 79(1–2): 1137–1168.

Xiong, N., Molina, D., Ortiz, M. L. and Herrera, F. (2015). A Walk into Metaheuristics

for Engineering Optimization: Principles, Methods and Recent Trends. International

Journal of Computational Intelligence Systems. 8(4): 606–636.

Xiong, R., Lu, Y.-Z., Zhou, X. and Xu, W. (2012). Hysteretic Optimization for the 3D

Protein Folding Based on the Lattice Model. Applied Mechanics and Materials. 198–

199: 40–47.

Yaghoobi, S. and Mojallali, H. (2016). Modified Black Hole Algorithm with Genetic

Operators. International Journal of Computational Intelligence Systems. 9(4): 652–

665.

Yalcin, Y. and Pekcan, O. (2020). Nuclear Fission–Nuclear Fusion Algorithm for

Global Optimization: A Modified Big Bang–Big Crunch Algorithm. Neural

Computing and Applications. 32(7): 2751-2783.

173

Yan, H.-S., Wan, X.-Q. and Xiong, F.-L. (2014). A Hybrid Electromagnetism-Like

Algorithm for Two-Stage Assembly Flow Shop Scheduling Problem. International

Journal of Production Research. 52(19): 5627–5640.

Yan, X. and Wu, W. (2012). Hysteretic Optimization for the Capacitated Vehicle

Routing Problem. In Proceedings of 2012 9th IEEE International Conference on

Networking, Sensing and Control (pp. 18–21). IEEE.

Yang, X.S. (2018). Mathematical Analysis of Nature-Inspired Algorithms. Nature-

Inspired Algorithms and Applied Optimization (pp. 1–25). Editor X.S. Yang. Cham:

Springer.

Yang, X.S. (2014). Nature-Inspired Optimization Algorithms. Academic Press.

Yang, X.S. and Deb, S. (2010). Eagle strategy using Lévy walk and firefly algorithms

for stochastic optimization. Nature Inspired Cooperative Strategies for Optimization

(pp. 101–111). Editors J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, and N.

Krasnogor. Berlin, Heidelberg: Springer.

Yang, X.S., Deb, S. and Fong, S. (2014). Metaheuristic Algorithms: Optimal Balance

of Intensification and Diversification. Applied Mathematics and Information Sciences.

8(3): 977–983.

Yang, X.S., Deb, S., Hanne, T. and He, X. (2015). Attraction and Diffusion in Nature-

Inspired Optimization Algorithms. Neural Computing and Applications. 31(7): 1987-

1994.

Yang, X.S.. (2009). Firefly Algorithms for Multimodal Optimization. Stochastic

Algorithms: Foundations and Applications (pp. 169–178). Editors O. Watanabe and

T. Zeugmann. Berlin, Heidelberg: Springer.

Yang, X.S.. (2010a). Engineering Optimization: An Introduction with Metaheuristic

174

Applications. John Wiley & Sons.

Yang, X.S.. (2010b). A New Metaheuristic Bat-Inspired Algorithm. Nature Inspired

Cooperative Strategies for Optimization (pp. 65–74). Editors J. R. González, D. A.

Pelta, C. Cruz, G. Terrazas, and N. Krasnogor. Berlin, Heidelberg: Springer.

Yang, X.S. (2012). Flower Pollination Algorithm for Global Optimization.

Unconventional Computation and Natural Computation (pp. 240–249). Editors J.

Durand-Lose and N. Jonoska. Berlin, Heidelberg: Springer.

Yang, X.S., and Deb, S. (2009). Cuckoo Search via Lévy Flights. 2009 World

Congress on Nature & Biologically Inspired Computing (NaBIC) (pp. 210–214).

IEEE.

Yapici, H. and Cetinkaya, N. (2019). A New Meta-Heuristic Optimizer: Pathfinder

algorithm. Applied Soft Computing Journal. 78: 545–568.

Yao X., Liu, Y. and Lin. G. (1999). Evolutionary Programming Made Faster. IEEE

Transactions on Evolutionary Computation. 3(2): 82–102.

Yazdani, A., Jayabarathi, T., Ramesh, V. and Raghunathan, T. (2013). Combined Heat

and Power Economic Dispatch Problem Using Firefly Algorithm. Frontiers in Energy.

7(2): 133–139.

Yin, Z., Liu, J., Luo, W., and Lu, Z. (2018). An Improved Big Bang-Big Crunch

Algorithm for Structural Damage Detection. Structural Engineering and Mechanics.

68(6): 735-745.

Yıldız, B. S., Yıldız, A. R., Pholdee, N., Bureerat, S., Sait, S. M., and Patel, V. (2020).

The Henry Gas Solubility Optimization Algorithm for Optimum Structural Design of

Automobile Brake Components. Materials Testing. 62(3): 261-264.

175

Yılmaz, S. and Gökaşan, M. (2015). Optimization Based Path Planning via Big Bang-

Big Crunch with Local Search. In 2015 IEEE International Conference on Control

System, Computing and Engineering (pp. 27–29).

Yokota, T., Gen, M., Ida, K. and Taguchi, T. (1995). Optimal Design of System

Reliability by an Improved Genetic Algorithm. Transactions of Institute of

Electronics, Information and Computer Engineering. J78-A(6): 702-709.

Yurtkuran, A. (2019). An Improved Electromagnetic Field Optimization for The

Global Optimization Problems. Computational Intelligence and Neuroscience. 2019:

6759106.

Yurtkuran, A. and Emel, E. (2010). Expert Systems with Applications A New Hybrid

Electromagnetism-like Algorithm for Capacitated Vehicle Routing Problems. Expert

Systems With Applications. 37(4): 3427–3433.

Zamani, A., Barakati, S. M. and Yousofi-Darmian, S. (2016). Design of a Fractional

Order PID Controller Using GBMO Algorithm for Load–Frequency Control with

Governor Saturation Consideration. ISA Transactions. 64: 56–66.

Zandevakili, H., Rashedi, E. and Mahani, A. (2019). Gravitational Search Algorithm

with Both Attractive and Repulsive Forces. Soft Computing. 23(3): 783–825.

Zarand, G., Pazmandi, F., Pál, K.F. and Zimanyi, G.T. (2002). Hysteretic

Optimization. Physical Review Letters. 89(15): 1–4.

Zerigat, H., Benasla, L., Belmadani, A. and Rahli, M. (2013). Solution of Combined

Economic and Emission Dispatch Problems Using Galaxy-Based Search Algorithm.

Journal of Electrical Systems. 9(4): 468–480.

Zerigat, D. H., Benasla, L., Belmadani, A. and Rahli, M. (2014). Galaxy-Based Search

Algorithm to Solve Combined Economic and Emission Dispatch. UPB Scientific

176

Bulletin, Series C: Electrical Engineering. 76(1): 209–220.

Zhang, Y. and Jin, Z. (2020). Group Teaching Optimization Algorithm: A Novel

Metaheuristic Method for Solving Global Optimization Problems. Expert Systems with

Applications. 148: 113246.

Zhang, Yu, Wu, L., Zhang, Y. and Wang, J. (2011). Immune Gravitation Inspired

Optimization Algorithm. Advanced Intelligent Computing (pp. 178–185). Editors D.-

S. Huang, Y. Gan, V. Bevilacqua, and J. C. Figueroa. Berlin, Heidelberg: Springer-

Verlag.

Zhao, Z., Cui, Z., Zeng, J. and Yue, X. (2011). Artificial Plant Optimization Algorithm

for Constrained Optimization Problems. In 2011 Second International Conference on

Innovations in Bio-inspired Computing and Applications (pp. 120–123). IEEE.

Zheng, M., Liu, G. X., Zhou, C. G., Liang, Y. C. and Wang, Y. (2010). Gravitation

Field Algorithm and Its Application in Gene Cluster. Algorithms for Molecular

Biology. 5(1): 1–11.

Zheng, M., Sun, Y., Liu, G.X., Zhou, Y. and Zhou, C.G. (2012a). Improved

Gravitation Field Algorithm and Its Application in Hierarchical Clustering. PLoS One.

7(11).

Zheng, M., Wu, J.N, Huang, Y.X, Liu, G.X, Zhou, Y. and Zhou, C.G. (2012b).

Inferring Gene Regulatory Networks by Singular Value Decomposition and

Gravitation Field Algorithm. PLoS One. 7(12): 1–6.

Zheng, C., Li, H., and Wang, L. (2019). An Improvement of Gravitational Search

Algorithm. Proceedings of 2019 Chinese Intelligent Systems Conference. CISC 2019.

Lecture Notes in Electrical Engineering, (pp. 490-503). Editors Jia Y., Du J., Zhang

W. Singapore: Springer.

177

Zhong, K., Luo, Q., Zhou, Y. and Jiang, M. (2020). TLMPA: Teaching-Learning-

Based Marine Predators Algorithm. AIMS Mathematics. 6(2): 1395–1442.

APPENDICES

App. p.1

APPENDIX 1: Unconstrained/Bounded Benchmark Problems

Name Test Function Range Objective

De JongF1

/Sphere
 ∑ 𝑥𝑖

2

𝑛

𝑖=1

 [-100,100] Min: 0 at (0, 0, …,0)

AckleyF1 20 + 𝑒 − 20exp (−0.20√
1

5
∑ 𝑥𝑖

2

𝑛

𝑖=1

) − exp (
1

𝑛
∑ cos (2𝜋𝑥𝑖))

𝑛

𝑖=1

 [-32,32] Min: 0 at (0, 0…, 0)

Rastrigin 100𝑥 + ∑(𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖)

𝑛

𝑖=1

 [-5.12,5.12] Min: 0 at (0, 0…, 0)

Cosine
Mixture

∑ 𝑥𝑖
2

𝑛

𝑖=1

−
1

10
∑ 𝑐𝑜𝑠(5𝜋𝑥𝑖)

𝑛

𝑖=1

 [-1,1]
Min -0.1*n at

(0,0,..,0)

Exponential −𝑒𝑥𝑝(−0.5 ∑ 𝑥𝑖
2

𝑛

𝑖=1

) [-1,1] Min: -1 at (0, 0,…,0)

Cb3 (Three
Hump Camel)

2𝑥1
2 − 1.05𝑥1

4 +
1

6
𝑥1

6 + 𝑥1𝑥2 + 𝑥2
2 [-5,5] Min: 0 at (0, 0)

Bohachevsky

2
𝑥1

2 + 2𝑥2
2 − 0.3 cos(3𝜋𝑥1) 0.4 cos(4𝜋𝑥2) + 0.3 [-50,50] Min: 0 at (0, 0)

Griewank
1

4000
∑ 𝑥𝑖

2 − ∏
𝑥𝑖

√𝑖

𝑛

𝑖=1

𝑛

𝑖=1

+ 1 [-100,100] Min: 0 at (0,…,0)

Alpine 1 ∑|𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|

𝑛

𝑖=1

 [-10,10] Min: 0 at (0,…,0)

Egg Crate ∑ 𝑥𝑖
2 + 25𝑠𝑖𝑛2(𝑥𝑖)

𝑛

𝑖=1

 [-5,5] Min: 0 at (0,…,0)

3-D

Paraboloid
 2𝑥2 + 10𝑦2 + 5𝑧2 + 6𝑥𝑦 − 2𝑥𝑧 + 4𝑦𝑧 − 6𝑥 − 14𝑦 − 2𝑧 + 6 [-10,10]

Min: 0 at (1.4, 0.2,

0.4)

Price 2 1 + ∑ 𝑠𝑖𝑛2(𝑥𝑖) − 0.1𝑒− ∑ 𝑥𝑖
2𝑛

𝑖=1

𝑛

𝑖=1

 [-10,10] Min: 0.9 at (0,…,0)

Schaffer 1 0.5 +
𝑠𝑖𝑛2(∑ 𝑥𝑛

𝑖=1 𝑖

2
)2 − 0.5

1 + 0.001(∑ 𝑥𝑖
2𝑛

𝑖=1)2
 [-100,100] Min: 0 at (0,…,0)

Schwefel 1.2 ∑(∑ 𝑥𝑗

𝑖

𝑗=1

)2

𝑛

𝑖=1

 [-100,100] Min: 0 at (0,…,0)

Xin-She Yang

Function 2
∑|𝑥𝑖|𝑒(− ∑ sin (𝑥𝑖

2)𝑛
𝑖=1)

𝑛

𝑖=1

 [-2π,2π] Min: 0 at (0,…,0)

Himmelblau (𝑥1
2 + 𝑥2 − 11)2 + (𝑥1 + 𝑥2

2 − 7)2 [-5,5] Min: 0 at (3, 2)

Guinta
0.6 + ∑[sin (

16

15
𝑥𝑖 − 1) + 𝑠𝑖𝑛2(

16

15

2

𝑖=1

𝑥𝑖 − 1) +
1

50
sin (4(

16

15
𝑥𝑖

− 1))]

[-1,1]

Min: 0.060447 at

(0.45834282,
0.45834282)

Adjiman cos(𝑥1) sin(𝑥2) −
𝑥1

(𝑥2
2 + 1)

[-1,2]

[-1,1]

Min:
-2.02181 at (2,

0.10578)

Branin

1

51.95
(𝑥2 −

5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)2 + 10 (1 −

1

8𝜋
) cos(𝑥1)

− 44.81

[-5,10]

[0,15]

Min:

0.397887 at (-𝜋,

12.275;𝜋, 2.275;9.424
78,2.475)

Beale
(1.5 − 𝑥1 − 𝑥1𝑥2)2 + (2.25 − 𝑥1 + 𝑥1𝑥2

2)2

+ (2.625 − 𝑥1 + 𝑥1𝑥2
3)2

[-4.5,4.5] Min: 0 at (3, 0.5)

Bird sin(𝑥1) 𝑒(1−cos(𝑥2))2
+ cos(𝑥2) 𝑒(1−sin(𝑥1))2

+ (𝑥1 − 𝑥2)2 [-2π,2π]

Min:

-106.764537 at
(4.70104, 3.15294; -

1.58214, -3.13024)

McCormick sin(𝑥1 + 𝑥2) + (𝑥1 − 𝑥2)2 − (
3

2
) 𝑥1 + (

5

2
) 𝑥2 + 1

[-1.5,4]

[-3,3]

Min:

-1.9133 at (-0.547,
-1.547)

App. p.2

APPENDIX 2: Pressure Vessel Model

Minimize 𝑓(�⃗�) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3

Subject to

−𝑥1 + 0.0193𝑥3 ≤ 0

−𝑥2 + 0.00954𝑥3 ≤ 0

−𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0

𝑥4 − 240 ≤ 0

𝑥1, 𝑥2 ∈ [0.0625, 10]; 𝑥3 ∈ [0, 100]; 𝑥4 ∈ [0, 240]

APPENDIX 3: Pressure Vessel Figure

Source: (Cagnina et al., 2008: 323)

APPENDIX 4: Himmelblau’s Function Model

Minimize 𝑓(�⃗�) = 5.3578547𝑥3
2 + 0.8356891𝑥1𝑥5 + 37.293239𝑥1 − 40792.141

Subject to

𝑔1(�⃗�) = 85.334407 + 0.0056858𝑥2𝑥5 + 0.00026𝑥1𝑥4 − 0.0022053𝑥3𝑥5

𝑔2(�⃗�) = 80.51249 + 0.0071317𝑥2𝑥5 + 0.0029955𝑥1𝑥2 + 0.0021813𝑥3
2

𝑔3(�⃗�) = 9.300961 + 00.0047026𝑥3𝑥5 + 0.0012547𝑥1𝑥3 + 0.0019085𝑥3𝑥4

0 ≤ 𝑔1(�⃗�) ≤ 92

90 ≤ 𝑔2(�⃗�) ≤ 110

20 ≤ 𝑔3(�⃗�) ≤ 25

𝑥1 ∈ [78,102]; 𝑥2 ∈ [33,45]; 𝑥3, 𝑥4, 𝑥5 ∈ [27,45]

App. p.3

APPENDIX 5: Welded Beam Model

Minimize 𝑓(�⃗�) = (1 + 𝑐1)𝑥1
2𝑥2 + 𝑐2𝑥3𝑥4(𝐿 + 𝑥2)

Subject to

𝑔1(�⃗�) = 𝜏(�⃗�) − 𝜏𝑚𝑎𝑥 ≤ 0

𝑔2(�⃗�) = 𝜎(�⃗�) − 𝜎𝑚𝑎𝑥 ≤ 0

𝑔3(�⃗�) = 𝑥1 − 𝑥4 ≤ 0

𝑔4(�⃗�) = 𝑐1𝑥1
2 + 𝑐2𝑥3𝑥4(𝐿 + 𝑥2) − 5 ≤ 0

𝑔5(�⃗�) = 𝛿(�⃗�) − 𝛿𝑚𝑎𝑥 ≤ 0

𝑔6(�⃗�) = 𝑃 − 𝑃𝑐(�⃗�) ≤ 0

𝜏(�⃗�) = √(𝜏′)2 + 2𝜏′𝜏′′
𝑥2

2𝑅
+ (𝜏′′)2

𝜏′ =
𝑃

√2𝑥1𝑥2
; 𝜏′′ =

𝑀𝑅

𝐽
; 𝑀 = 𝑃(𝐿 +

𝑋2

2
); 𝑅 = √𝑥2

2

4
+ (

𝑥1+𝑥3

2
)2

𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2

2

12
+ (

𝑥1 + 𝑥3

2
)2]}

𝜎(�⃗�) =
6𝑃𝐿

𝑥4𝑥3
2; 𝛿(�⃗�) =

4𝑃𝐿3

𝐸𝑥3
3𝑥4

𝑃𝑐(�⃗�) =
4.013𝐸√𝑥3

2𝑥4
6

36
𝐿2

(1 −
𝑥3

2𝐿
√

𝐸

4𝐺
)

𝑥1 ∈ [0.125, 5]; 𝑥2, 𝑥3 ∈ [0.1, 10]; 𝑥4 ∈ [0.1, 5]

c1 = 0.10471; c2 = 0.04811; P = 6000; L = 14; E = 30000000; G = 12000000

𝛿𝑚𝑎𝑥 = 0.25; 𝜏𝑚𝑎𝑥 = 13600; 𝜎𝑚𝑎𝑥 = 30000

App. p.4

APPENDIX 6: Welded Beam Figure

Source: (Cagnina et al., 2008: 323)

APPENDIX 7: Tension/Compression Spring Design Model

Minimize 𝑓(�⃗�) = (𝑥3 + 2)𝑥2𝑥1
2

Subject to

𝑔1(�⃗�) = 1 −
𝑥2

3𝑥3

71785𝑥1
4 ≤ 0

𝑔2(�⃗�) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0

𝑔3(�⃗�) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0

𝑔4(�⃗�) =
𝑥1 + 𝑥2

1.5
− 1 ≤ 0

𝑥1 ∈ [0.05, 1]; 𝑥2 ∈ [0.25, 1.3]; 𝑥3 ∈ [2, 15]

App. p.5

APPENDIX 8: Tension/Compression Spring Design Figure

Source: (Cagnina et al., 2008: 323)

APPENDIX 9: Combined Heat and Power Economic Dispatch Model

𝑀𝑖𝑛 𝑐1(𝑃1) + ∑ 𝑐𝑗(𝐻𝑗 , 𝑃𝑗) + 𝑐4(𝐻4)

3

𝑗=2

𝑔1(�⃗�) = 𝑃1 + 𝑃2 + 𝑃3 ≤ 200

𝑔2(�⃗�) = 𝑃1 + 𝑃2 + 𝑃3 ≥ 200

𝑔3(�⃗�) = 𝐻2 + 𝐻3 + 𝐻4 ≤ 115

𝑔4(�⃗�) = 𝐻2 + 𝐻3 + 𝐻4 ≥ 115

𝑔5(�⃗�) = 𝑃2 + 0.177778𝐻2 ≤ 247

𝑔6(�⃗�) = 𝑃2 + 0.16985𝐻2 ≥ 98.8

𝑔7(�⃗�) = −𝑃2 + 1.781915𝐻2 ≤ 105.74468

𝑔8(�⃗�) = 𝑃3 + 0.151163𝐻3 ≤ 130.697

𝑔9(�⃗�) = 𝑃3 + 0.067682𝐻3 ≥ 45.076142

𝑔10(�⃗�) = −𝑃3 + 1.1584𝐻3 ≤ 46.8812

𝑃1 ∈ [0,150], 𝑃2 ∈ [81,274], 𝑃3 ∈ [40,125.8]

𝐻2 ∈ [0,180], 𝐻3 ∈ [0,135.6], 𝐻4 ∈ [0,2695.2]

𝑐1(𝑃1) = 50𝑃1

𝑐2(𝐻2, 𝑃2) = 2650 + 14.5𝑃2 + 0.0345𝑃2
2 + 4.2𝐻2 + 0.03𝐻2

2 + 0.031𝑃2𝐻2

𝑐3(𝐻3, 𝑃3) = 1250 + 36𝑃3 + 0.0435𝑃3
2 + 0.6𝐻3 + 0.027𝐻3

2 + 0.011𝑃3𝐻3

𝑐4(𝑃4) = 23.4𝐻4

