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ABSTRACT 

Doctoral Thesis 

Doctor of Philosophy (PhD) 

Nature-Inspired Evolutionary Algorithms and A Model Proposal 

Gülin Zeynep ÖZTAŞ 

 

Dokuz Eylül University 

Graduate School of Social Sciences 

Department of Business Administration 

Business Administration Program 

 

This study introduces a new population-based evolutionary computing model for 

solving linear/nonlinear continuous unconstrained/constrained optimization 

problems. The proposed model includes two optimization algorithms. The first 

one is an initialization algorithm that provides adaptive initial solutions, to some 

extent, reducing the diversity of randomness in the initialization of the algorithms 

for problems that may have many local optimums. The prominent feature of the 

algorithm is the ability to narrow the search space adaptively without falling into 

local optimums and changing the nature of the problem. Unlike simple random 

approaches, the proposed algorithm escapes from inadvertently removing the 

global optimum in multi-modal problems. In terms of time and performance, the 

initialization algorithm doesn’t add additional burden, on the contrary, it 

contributes to the problem-solving procedure. 

The second proposed algorithm called Repulsive Forces Optimization (REF) 

depends on Newton’s General Gravity Law and Coulomb’s Law. Different from 

the first algorithm, the REF algorithm aims to reach optimum-like solutions by 

constraint-handling abilities. REF algorithm assumes that likely charged 

particles in a bounded space are possible solution points. The forces between the 

particle and its neighbors make the particle moved to a new location where a 

better solution may exist. The repulsive structure of the particles could be 

considered as the mimics of Coulomb's Law. Furthermore, Tabu Search 
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Algorithm and Elitism selection approach inspire the memory usage of the 

proposed algorithm. The inspirations of the REF algorithm are determined to 

create the best combination of features that provides better results. Besides, this 

algorithm is structured on the principle of multiplicative penalty approach that 

considers satisfaction rates and the total deviations of constraints as well as 

objective function value for constraint handling. For this reason, it can handle 

continuous constrained problems very well.  

The performances of the algorithms are evaluated with unconstrained/bounded 

optimization benchmarks and engineering design problems that belong to the 

most commonly used cases by evolutionary optimization researchers. In addition, 

an economic dispatch problem is also applied for benchmarking. It is concluded 

that the initialization algorithm converges much better than random solutions 

and it is applicable for further studies focusing on better initial solutions that 

guide reaching an optimal solution. Experimental results of real-world problems 

show that the proposed algorithms produce satisfactory results compared to the 

methods published in the literature. 

 

Keywords: Metaheuristics, Physics-based algorithms, Repulsive Forces, Random 

Search, Benchmark Problems 
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ÖZET 

Doktora Tezi 

Doğadan Esinlenen Evrimsel Algoritmalar ve Bir Model Önerisi 

Gülin Zeynep ÖZTAŞ 

 

Dokuz Eylül Üniversitesi 

Sosyal Bilimler Enstitüsü 

İngilizce İşletme Anabilim Dalı 

İngilizce İşletme Yönetimi Programı 

 

Bu çalışma, doğrusal/doğrusal olmayan sürekli kısıtsız/kısıtlı optimizasyon 

problemlerini çözmek için yeni bir popülasyon tabanlı evrimsel hesaplama 

modeli sunmaktadır. Önerilen model, iki optimizasyon algoritması içermektedir. 

Bunlardan ilki, birçok yerel optimuma sahip problemler için algoritmaların 

başlatılmasında rastgelelik çeşitliliğini bir dereceye kadar azaltan uyarlamalı 

başlangıç çözümleri sağlayan bir başlatma algoritmasıdır. Algoritmanın öne 

çıkan özelliği, yerel optimumlara takılmadan ve sorunun doğasını değiştirmeden 

arama alanını uyarlamalı olarak daraltma yeteneğidir. Basit rastgele 

yaklaşımlardan farklı olarak, önerilen algoritma çok modlu problemlerde global 

optimum noktasının yanlışlıkla ortadan kaldırılmasından kaçınabilmektedir. 

Başlangıç algoritması zaman ve performans açısından ek bir yük getirmek 

yerine, problemin çözülmesine katkı sağlamaktadır. 

İtici Kuvvetler optimizasyonu (REF) olarak adlandırılan ikinci algoritma, 

Newton'un Genel Yerçekimi Yasasına ve Coulomb Yasasına dayanmaktadır. 

REF algoritması, önerilen ilk algoritmadan farklı olarak, kısıtlama becerileriyle 

optimum benzeri çözümlere ulaşmayı amaçlamaktadır. Önerilen algoritma, 

sınırlı bir uzaydaki muhtemel yüklü parçacıkların olası çözüm noktaları 

olduğunu varsaymaktadır. Parçacıklar ve komşuları arasındaki kuvvetler, 

parçacığı daha iyi bir çözümün bulunabileceği yeni bir konuma hareket ettirir. 

Parçacıkların itici yapısı Coulomb Yasasının taklidi olarak düşünülebilir. Ayrıca, 

Tabu Arama Algoritması ve Elitizm seçim yaklaşımı önerilen algoritmanın hafıza 
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kullanımına ilham vermektedir. Algoritmanın ilham kaynakları, daha iyi 

sonuçlar sağlayan en iyi özelliklerin bir kombinasyonunu oluşturmak için 

belirlenmiştir. Ayrıca, bu algoritma, amaç fonksiyonu değerinin yanısıra kısıtları 

sağlama oranlarını ve kısıtlamaların toplam sapmalarını da dikkate alan 

çarpımsal ceza yaklaşımı ilkesi üzerine yapılandırılmıştır. Bu nedenle sürekli 

kısıtlı problemleri çok iyi bir şekilde çözme yeteneğine sahiptir. 

Algoritmanın performansı, evrimsel optimizasyon araştırmacıları tarafından en 

sık kullanılan kısıtsız / sınırlı optimizasyon problemleri ve mühendislik tasarım 

problemleri ile test edilmiştir. Ek olarak, kıyaslama için ekonomik sevkiyat 

problemi de uygulanmıştır. Başlangıç algoritmasının, rastgele çözümlerden çok 

daha iyi yakınsadığı ve en uygun çözüme ulaşmayı hedefleyen algoritmalar için 

de başlangıç algoritması olarak kullanılabileceği sonucuna varılmıştır. Gerçek 

dünya problemlerinin deneysel sonuçları ise önerilen algoritmaların literatürde 

yayınlanan yöntemlere göre tatmin edici sonuçlar verdiğini göstermektedir.   

Anahtar Kelimeler: Meta-Sezgisel Algoritmalar, Fizik Temelli Algoritmalar, İtici 

Kuvvetler, Rastgele Arama, Karşılaştırma Problemleri 
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INTRODUCTION 

 

Optimization takes an important place in terms of providing solutions to the 

problems encountered in business life such as business activities, engineering 

problems, industrial design problems under some restrictions as time, money, resource. 

In the literature, there are different algorithms that can be defined as a set of sequential 

operations to solve problems. However, these algorithms vary according to the nature 

of the problem. Depending on the randomness in algorithms, optimization techniques 

can be classified as deterministic and stochastic algorithms. Deterministic algorithms 

include algebraic methods such as the Newtonian approach, Gauss eliminations, and 

gradient-based methods. Although these methods are good at solving smooth unimodal 

problems, they cannot handle discontinuity in objective functions. In such cases, 

gradient-free methods are preferred. However, according to the computational 

complexity of the problems, more sophisticated algorithms are required. Today, in 

parallel with the developments in computer technology, iterative and divide-and-

conquer-based methods have gained more importance. Especially real-world problems 

which belong to NP-Hard class cannot be solved in a polynomial time and stochastic 

algorithms come to exist to provide approximate solutions.  

Artificial intelligence (AI) attracts optimization researchers’ attention for 

developing sophisticated heuristics. In terms of this computational technology, AI 

methods use local search (i.e. direct search) techniques very efficiently in a short time. 

But there are still some new developments in heuristics and AI methods for global 

search. 

Stochastic algorithms comprise heuristic and metaheuristic algorithms. 

Although the principles are similar for both sub-classes, heuristic algorithms are 

defined as problem-specific algorithms whereas metaheuristic algorithms are more 

general kinds of stochastic algorithms and are generally structured on various 

metaphors. Especially in the last decade, the number of new metaheuristic algorithms 

based on metaphors has exploded. Most of the researchers have focused on nature-

based algorithms inspired by interactions of living and non-living objects. The main 

idea behind this is a belief that nature solves its problem instinctively like finding the 

shortest path between foods and nests for ants and bees. In addition, non-living objects 
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also behave toward finding their better state naturally as in free-falling bodies, 

repulsion of same polarized magnets, and steady-state in the cooling process of 

materials from high temperature. In the state-of-the-art, many algorithms that imitate 

these behaviors and interactions for solving optimization problems in applied and 

social sciences such as traveling salesman, assignment, transportation, scheduling, 

layout, conflict resolution, optimum policy-making, portfolio optimization, etc. All 

these points of view come up with a new field of computation and optimization, 

namely evolutionary algorithms. 

According to Wolpert and Macready (1995) proved with the “No Free Lunch 

Theorem”, there cannot be an algorithm that is appropriate for all problems. In other 

words, there is always a better algorithm than the existing ones. Although many 

researchers criticize that plenty of metaheuristics have similarities although they 

introduce different metaphors, it would be better to develop algorithms that provide 

more “optimal-like” solutions without trapping the “novelty” concept. 

In line with the innovations in information technologies, the main motivation for 

this thesis study is to provide a basis for the forthcoming studies that may be 

breakthroughs in the field of optimization. In this thesis, we develop a hybrid algorithm 

that includes two algorithms called Random Search with Adaptive Boundaries 

(RSAB), Repulsive Force Optimization (REF) Algorithm. The first one is structured 

as a generic method that can be applied in the initialization stage of any algorithm for 

optimization problems and it depends on updating given upper and/or lower 

boundaries dynamically according to parameters. The outstanding feature of the first 

algorithm is the ability to reach better initial solutions by reducing the diversity of pure 

randomness, to some extent, for continuous unconstrained/bounded and constrained 

nonlinear optimization problems that may have many local optimums. Unlike 

conventional random search algorithms, the proposed algorithm can eliminate the risk 

of missing the global optimum while narrowing search space. We assert that the RSAB 

algorithm has advanced competencies that relieve the workload of the global 

optimization algorithms and shorten the time to find solutions. The REF algorithm 

which can be defined as the main algorithm is based on physics to provide the best-

known solutions for constraint handling.  This algorithm assumes that the particles that 

are likely charged repel each other considering their neighbors to reach new locations 
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where better solutions may exist. The calculation of repulsive forces mimics 

Coulomb’s Law and the movement is calculated according to the Momentum Law. 

Furthermore, Tabu Search and Elitism selection are also inspired in terms of the 

memory structure of the algorithm. This algorithm handles constraints with the help of 

a multiplicative penalty approach that considers satisfaction rate and the deviations of 

constraints besides objective function value.  

The main purpose of this thesis is not to duplicate existing algorithms through a 

new metaphor, but to provide an algorithm that reaches the best-known solution 

values. However, to reach better solutions, it is very important to determine the best 

combination of features inspired by the literature or metaphors. Therefore, achieving 

better results in a specific problem type is the primary goal, regardless of metaphors 

and similarities. It is worth mentioning that, the proposed algorithms in this thesis are 

revised versions of the algorithm introduced by Erdem (2007). However, many 

improvements and modifications have been implemented. In the related sections, all 

details of modifications are explained about the proposed algorithms. With these 

prominent features, the proposed algorithm will contribute to the literature. 

The framework of this thesis study consisting of four chapters is as follows: In 

the first chapter general information about optimization is provided by summarizing 

the background of the metaheuristic algorithms. In the second chapter, all physics-

based algorithms in the literature are classified and their highlights are mentioned 

briefly. In the third chapter, the proposed algorithms are explained in detail. Finally, 

in the fourth chapter, the experimental studies including continuous 

unconstrained/bounded benchmark problems, engineering design problems, and an 

economic dispatch problem as a business case are reported.  
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CHAPTER ONE 

METAHEURISTICS 

 

1.1. OPTIMIZATION 

 

Optimization is a method for maximizing or minimizing a function by choosing 

the variables systematically (Kaveh, 2014: 1). Indeed, optimization aims at reaching 

the best possible solution under defined circumstances. The general model structure 

for optimization problems is given as follows (Astolfi, 2006: 3): 

[Min or Max] 𝑓(𝑥) 

 subject to the constraints    (1.1) 

𝑔𝑗(𝑥) ≤ 0 for j=1, 2, …, m 

𝑙𝑘(𝑥) = 0 for k = 1, 2, …, p 

where x = [𝑥1, 𝑥2, … , 𝑥𝑛] is a possible solution set tried to be found by 

minimizing or maximizing an objective function 𝑓(𝑥). x vector that includes decision 

variables can form continuous, discrete, or mixed decision space. This model also 

provides 𝑔𝑗(𝑥) for inequality and 𝑙𝑘(𝑥) for equality constraints. However, if the total 

number of constraints is zero, we can talk about an unconstrained optimization 

problem. Moreover, according to the function design of the 𝑓(𝑥), the algorithm for the 

solution of that model can change.  

The optimization algorithms can be classified according to different principles.  

Sahab et al. (2013) gathered various classifications in terms of the number and design 

of objective functions, variables, constraints, landscape, determinacy. Astolfi (2006) 

also summarized the classification ways of optimization as the existence of constraints, 

the nature of equations, and admissible values of design variables. However, the 

classification of the optimization algorithms is carried out in terms of solution methods 

as shown in Figure 1 as well.  
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Figure 1: The Classification of Optimization Techniques 

 

Source: Yang, 2010a: 15-20 

 

The main difference between deterministic and stochastic algorithms lies in the 

solutions obtained from different runs (Siddique and Adeli, 2015a: 707). This means 

that in deterministic algorithms there is no randomness in generating new solutions. 

For that reason, while exploitation ability enhances, exploration capability remains 

inadequate (Yang, 2018: 5). Most conventional algorithms are deterministic and based 

on mathematical programming methods like linear programming, convex 

programming, integer programming, quadratic programming, dynamic programming, 

branch and bound methods (Nesmachnow, 2014: 321). They provide accurate 

solutions for problems in a continuous space. On the other hand, gradient-based 

algorithms are good at optimizing smooth unimodal problems by using function values 

and their derivatives. Newton-Raphson algorithm, steepest descent method, inexact 

line search can be given as examples for gradient-based method (Hendrix and Toth, 

2010: 106). However, when the objective function has a discontinuity, it is not able to 

calculate the derivatives. Therefore, for these cases, it would be better to prefer 

gradient-free algorithms. As an example of gradient-free methods, Hooke - Jeeves 

pattern search and Nelder-Mead downhill simplex can be given (Yang, 2010a: 21). 

Although the ability of deterministic algorithms is too restricted in terms of problem 

types, they all provide exact optimal solutions to those problems every time. However, 

they are useless and time-consuming for real-world problems (Nesmachnow, 2014: 

321). 
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1.1.1. Stochastic Optimization 

 

Stochastic optimization class covers the algorithms and techniques that include 

some degree of randomness in themselves (Luke, 2011: 7). The hardest problem in the 

world can be described as an NP-hard (non-deterministic polynomial-time hardness) 

problem. Most real-world problems are NP-hard which cannot be solved in polynomial 

time (Caserta and Voß, 2009: 1). Those types of problems can only be solved by using 

stochastic algorithms. In stochastic optimization also called unconventional 

optimization, an objective function is tried to be maximized or minimized by 

improving possible solutions iteratively (Brownlee, 2011: 15). Stochastic algorithms 

can explore wide ranges at the same time without trapping out local optimums 

(Siddique and Adeli, 2015a: 707). Although they have competence in handling the 

hardest problems, they can just provide nearly optimal solutions because of the 

randomization. However, the randomization enables movements from local search to 

global search for algorithms (Gandomi et al., 2013a: 1). Therefore, in today's world, 

instead of classical optimization methods, approximate algorithms take place.  

The stochastic optimization class covers heuristic and metaheuristic 

algorithms. Heuristic algorithms are defined as a method to discover a near-optimal 

solution for considered specific hard problems, whereas metaheuristics include an 

iterative process that integrates different concepts of exploring and exploiting the 

search space and they are not problem-specific algorithms (Kaveh, 2014: 2). The 

algorithms under the heuristic class also known as greedy heuristics provide the best 

local solutions. However, there is another chance to utilize these greedy approaches 

with global search approaches which create metaheuristics (Salcedo-Sanz, 2016: 12). 

For this reason, we can say that metaheuristic algorithms are more inclusive. Further 

details for metaheuristic algorithms will be given in the following sections. 

In the literature, scholars call evolutionary algorithms, evolutionary 

computation, population-based algorithms, computational intelligence, soft 

computing, machine learning, heuristics refer to stochastic optimization algorithms. 

However, all the terms mentioned denote different topics (Simon, 2013: 2-3). Since 

some of them have a broad scope, some of them are subclasses, it is not appropriate to 

use these terms to refer to all stochastic optimization algorithms. For example; 
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evolutionary computation is a set of stochastic methods that are inspired by the 

evolutionary process of species in nature and it includes evolutionary algorithms, 

genetic programming, evolutionary strategies, genetic algorithm (Nesmachnow, 2014: 

325). Moreover, evolutionary algorithms cover a large class of problem-solving 

methodologies that are based on the Darwinian principle of natural selection 

(Gendreau and Potvin, 2008: 76). On the other hand, computer intelligence represents 

technologies like neural networks, fuzzy systems, artificial life that can be applied 

other than optimization. As for machine learning and soft computing, evolutionary 

algorithms are a subset of them (Simon, 2013: 3). For that reason, in order not to be 

confused in terms, it is clear to use “metaheuristics” for the general name of the 

stochastic optimization techniques (Gandomi et al., 2013a: 1). The covering clusters 

are structured as given in Table 1. 

 

Table 1: Covering Sets Examples 

Evolutionary Computing ⸧ Evolutionary Algorithms 

Computer Intelligence ⸧ Evolutionary Algorithms 

Soft Computing ⸧ Evolutionary Algorithms 

Machine Learning ⸧ Evolutionary Algorithms 

Metaheuristics ⸧ Evolutionary Algorithms 

Evolutionary Algorithms ⸧ Population-based Algorithms 

Evolutionary Algorithms ⸧ Nature-Inspired Algorithms 

Evolutionary Algorithms ⸧ Swarm Intelligence 

Metaheuristics ⸧ Heuristics 

 Source: Table is prepared by the Author 

 

1.2. COMPLEXITY THEORY 

 

Time and space are two concepts that are necessary for an algorithm to be able 

to solve a problem (Talbi, 2009: 9). Complexity theory deals with the time and space 

consumption of algorithms and the main classes of problems (Whitley and Watson, 

2005: 317). According to Wegener (2005), “The results of complexity theory have 

specific implications for the development of algorithms for practical applications.” 

And they assert that complexity theory and designing an algorithm are two limitations 

of what can be done and cannot with certain resources in an algorithmic way. The 

relationship between complexity theory and designing an algorithm can be 
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summarized as in Figure 2. It would be better to clarify that resources are such things 

as computation time and storage space. 

 

Figure 2: The Relationship Between Complexity Theory and Designing an Algorithm 

 

Source: Adapted from Wegener (2005: 3) 

 

1.2.1. Complexity of Algorithms 

 

To obtain the computational complexity of an algorithm an asymptotic bound 

on the step count is used. The Big-O notation is used to compute the time or the space 

complexity of an algorithm. Various algorithms have different time complexities. Let 

n is the input length and p is a polynomial function, so we denote the time complexity 

of polynomial algorithm as O(p(n)); whereas when the time complexity function is not 

that much bounded which also includes non-polynomial time complexity, we can talk 

about exponential time algorithm. The comparison of these two function types is 

demonstrated in Table 2: 

 

Table 2: The Time Complexity Comparisons  

Time Complexity 

function 

Size (n) 

10 30 50 

O(n) 0.00001 second 0.00003 second 0.00005 second 

O(n2) 0.001 second 0.009 second 0.0025 second 

O(n5) 0.1 second 0.27 second 0.125 second 

O(2n) 0.001 second 17.9 minutes 35.7 years 

O(3n) 0.59 second 6.5 years 2x108 centuries 

Source: Garey and Johnson, 1979: 7 
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As it is seen from Table 2, the execution times of different functions change 

enormously especially in exponential functions. It seems that polynomial-time 

algorithms can obtain deeper insight into the structure of a problem. For that reason, 

as mentioned by Garey and Johnson (1979), “a problem has not been well-solved until 

a polynomial-time algorithm is known for it.”. If there is a polynomial algorithm for a 

problem, that problem is called tractable and all problems can be classified in terms of 

their complexities.  

 

1.2.2. Complexity of Problems 

 

The most popular problem classes handled by complexity theory are P 

(Polynomial) and NP (Non-deterministic Polynomial) problems. The representation of 

the classes is given in Figure 3 as a set structure. 

 

Figure 3: The Classification of Problems 

 

Source: Wu, 2016  

 

As seen in Figure 3, the complexity of the problems increases as you go to the 

right side. Class P includes problems that are solvable in polynomial time which is a 

reasonable computation time and they are easy to solve. Continuous linear 

programming problems can be given as an example of class P (Talbi, 2009: 12). 

Whereas NP class which also covers class P denotes the problems that can be solved 
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in polynomial time but with a nondeterministic algorithm (Hedman, 2006: 299). All 

decision problems whose solution is either yes or no belong to the NP class (Garey 

and Johnson, 1979: 13). According to Figure 3, for any problem in class P, there are 

nondeterministic algorithms to solve because NP is a covering set. However, there is 

a striking question in the literature that addresses whether P=NP or not. Goldreich 

(2008) paraphrased this question as “whether or not finding solutions is harder than 

checking the correctness of solutions”. Although the answer is unknown and 

controversial, generally it is thought that P≠NP means that finding a solution is harder 

than checking. Otherwise, P=NP means that if a problem can be solved in polynomial 

time with a non-deterministic computational model, then building a deterministic 

model is possible that solve the same problem in a polynomial time. 

Furthermore, the NP-Complete class is also a subset of the NP class and it is 

related to reduction. This situation is explained by Goldreich (2008) as if any 

computational problem in NP class is reducible to another problem, that computational 

problem is NP-Complete. In other words, a problem in NP is also NP-Complete if all 

other problems in NP are reduced to the problem in NP class (Talbi, 2009: 14). Since 

NP-Complete problems are the hardest problems in NP class, Cook (1971) proved that 

the satisfiability problem belongs to NP-Complete class and then in 1972 Karp asserted 

that other computational problems such as set covering, Hamilton Circuit, Knapsack, 

Job sequencing are as hard as satisfiability problem by reducing satisfiability problem 

to the problems given. It would be better to clarify that NP-Complete problems are 

also subsets of NP-Hard class which is defined as the hardest problem class in 

complexity theory (Gonzalez, 2007: 4). It is clear from Figure 3 that NP-Hard 

problems do not have to be in NP class which means that there is no requirement for 

being a decision problem for NP-Hard problems. Most of the real-world optimization 

problems such as scheduling problems, vehicle routing problems, assignment 

problems belong to that class (Talbi, 2009: 14). However, we do not know how to find 

a solution to NP-Hard problems in polynomial time, algorithms that provide 

approximate solutions or the best possible solutions are needed. At this point, 

metaheuristics come to exist and will be handled in the following section. 
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1.3. METAHEURISTICS 

 

The term “metaheuristics”, firstly used by Glover in 1986, is a search 

framework that uses heuristic strategies (Gendreau and Potvin, 2008: 71). However, 

heuristic algorithms are problem-dependent and applicable to a particular problem, 

whereas metaheuristic algorithms are more general. Some of the scholars defined 

“metaheuristics” as below: 

“Metaheuristics are the methods of choice for solving complex, ill-defined 

problems” (Gendreau and Potvin, 2008: 71). 

“Metaheuristics represent ‘higher level’, heuristic-based, soft computing 

algorithms that can be directed towards a variety of different optimization problems, 

by instantiating the generic schema to individual problems, needing relatively few 

modifications to be made in each specific case” (Nesmachnow, 2014: 320). 

“Metaheuristic is a black box optimizer that can be applied to almost all 

optimization problems” (Abdel-Basset et al., 2018: 185). 

“A metaheuristic is an iterative generation process which guides a subordinate 

heuristic by combining intelligently different concepts for exploring and exploiting the 

search spaces using learning strategies to structure information in order to find 

efficiently near-optimal solutions” (Osman and Kelly, 1996: 3). 

“The word heuristic has its origin in the old Greek work heuriskein, which 

means the art of discovering new strategies (rules) to solve problems. The suffix meta, 

also is a Greek word, means “upper-level methodology” (Kaveh, 2017: 2). 

“Metaheuristic algorithms are a higher-level heuristics with the use of memory, 

solution history and other forms of learning strategy” (Yang, 2018: 4). 

“Metaheuristics are very popular family of solution methods for optimization 

problems and they are capable of finding acceptable solutions in a reasonable amount 

of time” (Duarte et al., 2018: 29) 

The definitions given above show us the general characteristics of 

metaheuristics and they can be summarized as below (Blum and Roli, 2003: 270-271); 

(Yang, 2018: 4): 

 Metaheuristics are guiding the search process in order to find near-optimal 

solutions. 
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 Metaheuristics are approximate and stochastic algorithms. 

 Metaheuristics are not problem-specific. 

 Metaheuristics range from local search to complex learning processes. 

 Metaheuristics use of domain-specific knowledge in the form of heuristics 

controlled by the upper-level strategy. 

 Metaheuristics handle problems by treating them as a black box, thus they can 

solve a wide range of problems. 

Although there are lots of algorithms, they can be evaluated in terms of their 

solution time, complexity, optimality, and the trade-off between diversification and 

intensification ability. They all present randomness and thus provide different 

solutions in different runs. The outstanding characterization of metaheuristics is that 

they explore several regions in search space and have the ability to escape from local 

optima (Siddique and Adeli, 2015a: 707).  

 

1.3.1. Historical Background 

 

The birth of metaheuristics dates back to the years in the 20th century. However, 

it would be better to examine the periods separately when the foundations of 

metaheuristics were laid. For that reason, the historical background can be divided into 

four periods: The Early Period, 1900-1960, 1960-2000, and The Recent Past.  

 

1.3.1.1. Early Period 

 

 The study of optimization problems is old as science itself. To summarize the 

breakthroughs in optimization, timelines are given chronologically. 

 

Figure 4: Early Period 

 

Source: Adapted from Yang, 2010a: 4-10  
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As shown in Figure 4, there are lots of contributors to the optimization field. 

For example, Greek Mathematicians Euclid and Heron used geometric entities and 

solved many optimization problems. Moreover, Kepler, Snell, Maupertuis who are 

known as astronomers discovered the laws of planetary motion, the law of reflection, 

and the principle of least action respectively. On the other hand, Newton solved the 

problem of the body shapes minimal resistance that was finalized as the resistance law 

of the body. As for Bernoulli, he made significant progress in calculus. Also, Monge 

analyzed a transportation problem and Gauss was the first person that used the least-

squares analysis. Lastly, Cauchy developed an iterative method for equation systems 

(Yang, 2010a: 5-6).  Although each of them has provided various theories for different 

subject areas, actually all of them are the milestones for optimization algorithms. 

Besides, most of the theories developed in these years are the foundations of most of 

the metaheuristic algorithms especially physics-based ones.  

 

1.3.1.2. 1900-1960 Period 

 

In the twentieth century, specific optimization topics have been revealed. At 

the beginning of the century, Jensen (1906) contributed to the literature by introducing 

the term called “convexity” which creates the basis of convex optimization. 

Throughout the years, many applications in combinatorial optimization and global 

optimization have been conducted by convex optimization (Boyd and Vandenberghe, 

2004: xi). Moreover, Hancock (1917) published the first book about optimization that 

covers the extremum points of a function. Thereafter, Kantorovich (1939), a famous 

mathematician, and his colleague Koopmans developed a mathematical model which 

is awarded Nobel Prize in Economic Sciences for the production problem (Yang, 

2010a: 6). Afterward, an algorithm called “Simplex” was created by Dantzig in 1947 

to solve linear programs for planning and decision-making problems. The simplex 

algorithm has dominated applications in operations research for half a century (Nash, 

2000: 29). Finally, in 1951 Karush-Kuhn-Tucker conditions were introduced in the 

literature for nonlinear optimization problems to be solved and in 1957, Bellman 

presented “Dynamic Programming” that provides solutions to multistage decision and 

planning problems (Yang, 2010a: 7). 
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Figure 5: Twentieth Century 

 

Source: Collected from Yang, 2010a: 4-10 and set on the timeline by the author 

 

1.3.1.3. 1960-2000 Period 

 

By the years of the 1960s, the literature on optimization broadened and the 

research line for problem-solving methods completely turned into a different format 

called “evolution” (Sörensen et al., 2018: 7). In Figure 6, the most commonly used and 

the best-known algorithms developed in the years between 1960-2000 are 

demonstrated. These algorithms can be defined as the cornerstones for the recently 

developed modern algorithms.  

 

Figure 6: 1960-2000 Years 

 

Source: Collected from Yang (2010a: 4-10) and set on the timeline by the author 

 

All methods given in Figure 6 are based on different principles. For that reason, 

classification plays an important role. Before classifying, it would be better to discuss 

the starting points of the pioneer algorithms. Among these algorithms, Simulated 
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Annealing and Tabu Search are single solution methods; whereas the others are all 

population-based methods that keep around a set of candidate solutions. The 

population-based algorithms given in Figure 6 are inspired by biology and nature 

(Luke, 2011: 29).  

Genetic Algorithm, Evolutionary Programming, Evolutionary Strategies, 

Genetic Programming belong to the field of Evolutionary Computation that depends 

on computational methods inspired by evolutionary processes (Brownlee, 2011: 87). 

The earliest well-known evolutionary algorithm is the Genetic Algorithm (Simon, 

2013: 35), and they were presented by John Holland (1962). Holland is the first scholar 

that used the terms “crossover, recombination, mutation and selection” to adapt the 

natural selection theory of Darwin to optimization. Briefly, the Genetic Algorithm 

comprises encoding of an optimization function as character strings to denote 

chromosomes, using genetic operations and selecting the best chromosomes according 

to their fitness values. (Yang, 2014: 77-78).   

Evolutionary Programming was developed in 1962 originally by Fogel (Erdem, 

2007: 15), and it was proposed as an approach to artificial intelligence. Mutating the 

solutions and selecting the next generation from mutated solutions are two major steps 

(Yao et al., 1999: 82). On the other hand, Evolutionary Strategies were developed by 

Rechenberg and further improved by Schwefel in the 1960s (Xiong et al., 2015: 613). 

Different from other Evolutionary Algorithms, Evolution Strategies were inspired by 

the process of evolution (phenotype, hereditary, variation) rather than the genetic 

mechanism of evolution (genome, chromosome, genes, alleles) (Brownlee, 2011: 

108). In other words, the evolutionary strategy does not use population or crossover, 

it just mutates one solution, and then the best two solutions become the parent for the 

next mutation round (Sörensen et al., 2018: 8). Genetic programming is based on the 

idea of evolving computer programs that depends on natural selection  (Langdon et al., 

2010: 185). It uses genetic operators (reproduction, crossover, and mutation). 

Although Genetic Programming is similar to the Genetic Algorithm, it differentiates 

in terms of the representation of individual computer programs in the population. It 

has structured trees to demonstrate functions or operators (Xiong et al., 2015: 613). 

In the years of 1980s, more metaphors have started to be used in algorithms. 

As trajectory-based optimization algorithms, Simulated Annealing and Tabu Search 
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took their place in the past. Each of them has striking characteristics that are used as 

an inspiration for the other algorithms. For example, Simulated Annealing developed 

by Kirkpatrick et al. (1983) was inspired by the cooling and crystallizing behavior of 

chemical substances (Simon, 2013: 223). The objective is to reach the global minimum 

energy state during the process of annealing and move to any new set of design 

variables that corresponds to a change of the energy state (Sahab et al., 2013: 36). The 

basis of the Simulated Annealing dates back to the Metropolis Algorithm (Metropolis 

et al., 1953) which provides a simulation of a collection of atoms in equilibrium at a 

given temperature. Furthermore, both of them are the inspirations for most of the 

physics-based algorithms which will be covered in the following sections. Tabu Search 

proposed by Glover (1989; 1990) can be considered as an extension of a hill-climbing 

search (Xiong et al., 2015: 610). The most remarkable feature of this algorithm is that 

Tabu Search uses memory structures to store historical information in order not to visit 

the same candidate solutions again (Luke, 2011: 24).  

As of the 2000s, Swarm Intelligence should be covered as a general title of bio-

inspired algorithms. Swarm Intelligence mimics the evolutionary process of the 

behaviors of some species like ants, bees, birds, fish (Erdem, 2007: 19). The main idea 

of these kinds of algorithms is “collective intelligence”, in other words, the cooperation 

of large numbers of homogeneous agents in the environment. The paradigm has two 

dominant sub-fields called Ant Colony Optimization and Particle Swarm Optimization 

(Brownlee, 2011: 229). Ant Colony Optimization algorithm (Dorigo et al., 1996) 

reflects the behaviors of ant colony while trying to find the food source, whereas in 

Particle Swarm Optimization (Eberhart and Kennedy, 1995) the location of particles 

is tracking in terms of their velocities (Sahab et al., 2013: 39). The recent swarm 

intelligence-based algorithms proposed in the literature are provided in the 

classification of metaheuristics section.  
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1.3.1.4. The Recent Past Period 

 

Figure 7: Metaheuristic Algorithms Developed in the Recent Past 

 

Source: Prepared by the Author 

 

Figure 7 shows the various kinds of metaheuristic algorithms published 

between 2000 and 2020. Since 2000, researchers have focused more on developing 

new algorithms based on various kinds of metaphors (Sörensen et al., 2018: 14). The 

behavior of animals, laws in the field of science, facts of nature, social behaviors are 

some of the inspirations used in the literature. Cat Swarm Optimization (Chu et al., 

2006), Artificial Bee Colony (Karaboga and Basturk, 2007), Bat-inspired (Yang, 

2010b), Wolf Search Algorithm (Tang et al., 2012), Dolphin Echolocation (Kaveh and 

Farhoudi, 2013), Shark Smell Optimization (Abedinia et al., 2014), Ant Lion 

Optimizer (Mirjalili, 2015), Moth Search Algorithm (Wang, 2018), Blue Monkey 

Algorithm (Mahmood and Al-Khateeb, 2019), Crow Search Algorithm (Huang and 

Wu, 2019), Marine Predators Algorithm (Faramarzi et al., 2020a) are some of the 

animal-inspired algorithms; Central Force Optimization (Formato, 2007), 

Gravitational Search Algorithm (Rashedi et al., 2009), Charged System Search (Kaveh 

and Talatahari, 2010a), Chemical Reaction Optimization (Lam and Li, 2010), Curved 

Space optimization (Moghaddam et al., 2012), Heat Transfer Search (Patel and 

Savsani, 2015), Henry Gas Solubility Optimization (Hashim et al., 2019), Interior 

Search Algorithm (Gandomi, 2014), Weighted Vertices Optimizer (Dolatabadi, 2018), 

Simulated Kalman Filter (Ibrahim et al., 2016) are science-inspired algorithms; 
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Harmony Search (Geem et al., 2001), Melody Search (Ashrafi and Dariane, 2011) are 

music-inspired algorithms; Water Cycle Algorithm (Eskandar et al., 2012), Crystal 

Energy Optimization (Feng et al., 2016), Slime Mould Algorithm (Li et al., 2020) are 

nature-inspired algorithms; Anarchic Society Optimization (Ahmadi-Javid, 2011), 

Brain storm optimization (Shi, 2011a; 2011b), Teaching-Learning based optimization 

(Rao et al., 2011), Election algorithm (Emami and Derakhshan, 2015), Artificial 

Memory Optimization (Huang, 2017), Ideology Algorithm (Huan et al., 2017), Human 

Urbanization Algorithm (Ghasemian et al., 2020) are social-inspired algorithms.  

       In Figure 8, the number of articles published in the literature for each year is given 

(Scopus Database). It would be better to clarify that, “Bio-inspired”, “Nature-

inspired”, “Swarm intelligence”, “Physics-based”, “Chemistry-based” and 

“Optimization” are used in Scopus Database as keywords (“(TITLE-ABS-KEY 

(optimization)) AND ((((("Bio-inspired")) OR ("Nature-inspired")) OR ("Swarm 

intelligence")) OR ("Physics-based")) OR ("Chemistry-based")”). The data include 

both theoretical and practical studies. However, the number of studies conducted is in 

an increasing trend. 

 

Figure 8: Number of Documents Published Over the Period 2000-2020 

 

Source: Scopus Database 
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Especially in recent years, the number of new algorithms has exploded. 

Although it seems good to have new algorithms, many researchers (Fister Jr et al., 

2016; Piotrowski et al., 2014; Sörensen, 2015; Odili et al., 2018; Tovey, 2018; Lones, 

2020) criticize that plenty of metaheuristics have similarities and they are not novel in 

literature. However, as mentioned by Wolpert and Macready (1995) there cannot be 

an algorithm that is appropriate for all problems. The possibility that there may always 

be a better algorithm leads researchers to develop algorithms using new metaphors. 

For this reason, new metaheuristics will continue to be introduced soon (Dokeroglu et 

al., 2019: 23). 

It is not possible to demonstrate all of the metaheuristic algorithms published 

recently in a figure. There are lots of review articles in literature such as  Blum and 

Roli (2003), Fister et al. (2013), Siddique and Adeli (2015a), Yang et al. (2015), 

Sotoudeh-Anvari and Hafezalkotob (2018), Abdel-Basset et al. (2018). Detailed 

information about specific physics-based algorithms will be covered in the second 

chapter. 

 

1.3.2. The Classification of Metaheuristics 

 

The term “metaheuristics” comprises a wide range of techniques. There are lots 

of ways to classify metaheuristics. Fister et al. (2013) mentioned that classification of 

algorithms may depend on various criteria such as main principles, sources of 

inspiration, perspectives, and motivations. They classified nature-inspired algorithms 

in terms of the source of inspirations (Swarm-intelligence-based, bio-inspired, 

physics-based, chemistry-based). On the other hand, Blum and Roli (2003) 

summarized the most important classifications as Nature-inspired vs non-nature, 

population-based vs single point search, dynamic vs static objective function, one vs 

various neighborhood structures, memory usage vs memory-less methods. Echevarría 

et al. (2019) classified metaheuristics in terms of the number of solutions and 

inspiration sources. Beheshti and Shamsuddin (2013) handled metaheuristic 

algorithms in terms of inspiration sources, number of solutions, objective function, 

neighborhood structure, memory usage. Sotoudeh-Anvari and Hafezalkotob (2018) 

also classified the origins of inspirations as animals, physics, humans, plants, nature, 

and biology. They also demonstrated that the most popular foundations of inspiration 
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are animal and physic. Also, Hussain et al. (2019) classified all metaheuristics in terms 

of their metaphor disciplines, and the classification is shown in Figure 9 that biology 

and physics took the first two places respectively. Molina et al. (2020) proposed two 

taxonomies as the source of inspiration and the behavior of each algorithm. The source 

of inspiration includes Breeding-based Evolution, Swarm Intelligence, Physic and 

Chemistry based, Social Human Behavior, Plant-based and miscellaneous classes. On 

the other hand, the behavior of an algorithm is handled according to its principle in 

creating new solutions. The authors presented the behavior taxonomy as solution 

creation and Differential Vector Movement classes.  

 

Figure 9: The Inspirations Adopted by Researchers 

 

Source: Hussain et al., 2019: 2216 

 

Finally, as mentioned above, algorithms can be classified according to the 

purposes of the researchers. For that reason, to include all types of algorithms, the 

classification conducted by Xing and Gao (2014) has been taken by adding one more 

class called Swarm Intelligence-based and given in Figure 10.  
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Figure 10: Classification of Metaheuristics 

 

Source: Adapted from Xing and Gao, 2014 

 

Swarm intelligence-based algorithms are the subsets of bio-inspired 

algorithms. For that reason, the algorithms classified as bio-inspired do not include 

swarming behavior (Fister et al., 2013: 2).  On the other hand, Siddique and Adeli 

(2015a) also classified biology-based algorithms as Evolutionary Algorithms, Bio-

inspired Algorithms, and Swarm Intelligence based Algorithms. Some of the studies 

that present new algorithms considering swarming behaviors of species can be 

summarized as Ant Colony Optimization (Dorigo and Di Caro, 1999), Cat Swarm 

(Chu et al., 2006), Monkey Search (Mucherino and Seref, 2007), Artificial Bee Colony 

(Karaboga and Basturk, 2007), Firefly Algorithm (Yang, 2009), Cuckoo Search (Yang 

and Deb, 2009), Eagle Strategy (Yang and Deb, 2010), Bat-inspired Algorithm (Yang, 

2010b), Wolf Search Algorithm (Tang et al., 2012), Swallow swarm optimization 

algorithm (Neshat et al., 2013), Grey Wolf Optimizer (Mirjalili et al., 2014), Pigeon-

inspired Optimization (Duan and Qiao, 2014), Crow Search, (Askarzadeh, 2016), Blue 

Monkey Algorithm, (Mahmood and Al-Khateeb, 2019), Marine Predators Algorithm 

(Faramarzi et al., 2020a), Jellyfish Search Optimizer (Chou and Truong, 2021). 

The remaining classes belong to nature-inspired and non-nature-inspired 

algorithms. According to Kar (2016), bio-inspired algorithms can solve complex 

problems, since they can learn and adapt like biological organisms. For that reason, 

they are taking too much attention from the scientific community in recent years. Every 

day, the number of new algorithms increases. Artificial Plant Optimization (Zhao et 

al., 2011), Brain Storm Optimization (Shi, 2011a; 2011b), Flower Pollination 

Algorithm (Yang, 2012), Atmosphere Clouds Model Optimization (Gao-Wei and 

Zhanju, 2012), Great Salmon Run Algorithm (Mozaffari et al., 2012), Fruit Fly 

Optimization Algorithm (Pan, 2012), Cuttlefish Algorithm (Eesa et al., 2013), Dolphin 
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Echolocation (Kaveh and Farhoudi, 2013), Ant Lion Optimizer (Mirjalili, 2015), 

Laying Chicken Algorithm (Hosseini, 2017), Emperor Penguin Optimizer (Dhiman 

and Kumar, 2018), Seagull Optimization Algorithm (Dhiman and Kumar, 2019) are 

some of the algorithms developed in the recent years.  

The physics-based class includes algorithms inspired by the theories developed 

in the field of physics. Biswas et al., 2013; Siddique and Adeli, 2016; Salcedo-Sanz, 

2016 published articles focusing specifically on physics-based algorithms and 

provided comprehensive literature surveys. The principles, working structures, and the 

classification of physics-based algorithms will be covered in the literature survey 

section in detail. Some of the studies published in this field can be given as 

Electromagnetism-like Algorithm (Birbil and Fang, 2003), Particle Collision (Sacco 

and De Oliveira, 2005), The Big Bang- Big Crunch Algorithms (Erol and Eksin, 2006), 

Central Force Optimization (Formato, 2007), Magnetic Optimization Algorithm 

(Tayarani and Akbarzadeh, 2008), Gravitational Search Algorithm (Rashedi et al., 

2009), Charged System Search (Kaveh and Talatahari, 2012), Ray Optimization 

(Kaveh and Khayatazad, 2012), Black Hole Search (Hatamlou, 2013), Thermal 

Exchange (Kaveh and Dadras, 2017), Henry Gas Solubility Optimization (Hashim et 

al., 2019).  

 Chemistry-based algorithms are the ones inspired by chemical reactions such 

as oxidation-reduction, combination, decomposition, displacement, gas formation, and 

metathesis reactions (Xing and Gao, 2014: 8). Chemical Reaction Optimization (Lam 

and Li, 2010), Gases Brownian Motion Optimization (Abdechiri et al., 2013), 

Chemotherapy Science Algorithm (Salmani and Eshghi, 2017), Vapor-Liquid 

Equilibrium Algorithm (Taramsco et al., 2020)  are some of the examples published 

in various journals.   

  From now on, lots of metaheuristic algorithms have been mentioned separately. 

However, these algorithms can also be used together and are called “hybrid 

algorithms”. Metaheuristics can also be combined with exact methods. Boschetti et al. 

(2009) defined the term “matheuristics” as using mathematical techniques in 

metaheuristic frameworks. Salem (2012) proposed the Base Optimization Algorithm 

which works with the combinations of arithmetic operators. Moreover, Mirjalili (2016) 

developed an algorithm called Sine Cosine Algorithm which takes its name from the 
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sin and cos equations. Simulated Kalman Filter (Ibrahim et al., 2016), Golden sine 

algorithm (Tanyildizi and Demir, 2017) are the other mathematics-based algorithms 

published in recent years.  

The remaining algorithms based on various inspirations put into the other 

subclass. Imperialist Competitive Algorithm (Atashpaz-Gargari and Lucas, 2007), 

Anarchic Society Optimization (Ahmadi-Javid, 2011), League Championship 

Algorithm (Kashan, 2009), Melody Search (Ashrafi and Dariane, 2011), Teaching–

learning-based optimization (Rao et al., 2011), Jenga-inspired Optimization Algorithm 

(Lee et al., 2013), Golden Ball (Osaba et al., 2014), Artificial Cooperative Search 

Algorithm (Civicioglu, 2013), Interior Search Algorithm (Gandomi, 2014), Simulated 

Kalman Filter (Ibrahim et al., 2016), Ideology Algorithm (Huan et al., 2017), Weighted 

Vertices Optimizer (Dolatabadi, 2018), Human Urbanization Algorithm (Ghasemian 

et al., 2020) are some of the studies included in this class. 

As summarized above, there are numerous metaheuristic algorithms in the 

literature. However, there is no way to determine which algorithm is the best one. As 

Wolpert and Macready (1995) proved with the “No Free Lunch Theorem”, there 

cannot be an algorithm that is appropriate for all problems. In other words, there is 

always a better algorithm than the existing ones. According to Wolpert and Macready 

(1995), when the performances of any two algorithms are evaluated across all 

problems, the average performances will be equal. In simple terms, the only way to 

conclude that one algorithm outperforms another is related to considering a specific 

problem (Ho and Pepyne, 2002: 292). Since there is not any metaheuristic to arrive at 

the best solution for every problem, scholars should focus on developing an algorithm 

that can solve most types of problems. However, many researchers (Fister Jr. et al., 

2016; Piotrowski et al., 2014;  Sörensen, 2015; Odili et al., 2018) criticize that plenty 

of metaheuristics have similarities and they seem to be novel in literature. For that 

reason, it would be better to develop algorithms that provide more “optimal-like” 

solutions without trapping the “novelty”.  
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1.4. EVOLUTIONARY COMPUTATION CONTEXT 

 

Evolutionary Computation (EC) comprises building, applying, and studying 

metaphorical algorithms inspired by Darwinian principles of natural selection. The 

algorithms based on evolutionary principles utilize nature’s capability to evolve living 

beings well adapted to their environment (Gonzalez, 2007: 9). The background of the 

current evolutionary algorithms will be handled in the historical background section. 

However, Evolutionary Programming, and Genetic Algorithms pioneer the existing 

metaphorical algorithms regardless of inspiration differences. While there are 

metaheuristics that are inspired by different subjects, they are basically all going 

through similar iterative evolutionary computation processes which include various 

strategies. All of these algorithms develop a population of individuals over 

generations, reproduce offspring through various operators, and select the most 

suitable for survival in each generation (Du and Swamy, 2016: 2).  

Model specification (representation), model identification, initialization, 

fitness calculation, neighborhood strategies, memory usage, selection, reproduction, 

stopping condition, model reliability, and model validity are summarized in the 

following sections as components of the evolutionary computation for population-

based metaheuristics. While in some algorithms all these components are applied; in 

some algorithms, these components can be used in different combinations. In this 

section, the general context of evolutionary computation is explained in brief. The 

schematic representation of any algorithm should follow is given in Figure 11. 
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Figure 11: General flow of an algorithm 

 

Source: Bozorg-Haddad et al., 2017: 20 

 

1.4.1. Model Specification 

 

The model specification refers to the determination of the most suitable method 

for the problem to be solved. It is a decision that can be made according to the nature 

of the problem. As mentioned by Wolpert and Macready (1995) with the “No Free 

Lunch Theorem”, there cannot be an algorithm that is appropriate for all problems. 

Although metaheuristic algorithms are not problem-based, choosing the appropriate 

algorithm that can be solved for specific problem groups is an important decision stage. 

For this reason, the representation of solutions is the initial design question to be 

answered according to the optimization problem in any iterative method. 

Representations that differ according to the problem types are as follows: binary 
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coding for the knapsack problem, vector of discrete values for the assignment problem, 

permutation for traveling salesman problem, and vector of real values for continuous 

optimization problems (Talbi, 2009: 35). Furthermore, even qubit representation and 

superposition states can be encountered in combinatorial optimization after merging 

evolutionary computation and quantum computing in the literature (Layeb, 2013: 15).  

Choosing the most suitable algorithm among the algorithms that will provide 

solutions according to the representations (binary, discrete, permutation, continuous) 

is another decision-making problem. However, deciding the “good” method and 

parameter settings requires the know-how and experience of the user, rather than 

tracking well-laid-down rules as in the field of statistics (Siarry, 2016: 17). As 

mentioned by Yang (2014), choosing the best algorithm for a given type of problem is 

harder to be questioned than choosing problems for a given algorithm. For this reason, 

in many cases, we might not know the performance of the algorithm without testing. 

Therefore, choosing the right algorithm depends on the expertise of the decision-

maker, available sources, and the problem types.  

 

1.4.2. Model Identification 

  

 Identifying the model can result in the situation that reached at the end of the 

compliance between the problem and the method. This goodness-of-fit can be 

interpreted by considering how close the algorithm converged to the near-optimal 

point. The convergence of an algorithm may be checked by graphing or monitoring 

the fitness value of the best-so-far solution against iterations, run time, or function 

evaluation values (Bozorg-Haddad et al., 2017: 36). For example, the error level from 

the best-known solution can be regarded as an indicator of model identification. 

However, the identification of a model cannot be limited to a single iteration or trial. 

Descriptive statistics as summary measures should be considered among numerous 

trials. For this reason, several performance indicators can be also implemented for 

model identification of algorithms. Since these indicators are also related to the model 

reliability, the details about them will be given in the 1.4.10 section.  
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1.4.3. Initialization 

 

The initialization step is related to generating a random population as a set of 

potential solution points. This initial process means taking population samples from 

the search space in each generation (Erdem, 2007: 12). According to McPhee and 

Hopper (1999), the lack of diversity may result in premature convergence. Therefore, 

especially in population-based metaheuristics, the diversity of the initial populations 

plays an important role in the efficiency of the algorithms. The strategies for generating 

the initial population are classified as random generation, sequential diversification, 

parallel diversification, and heuristic initialization (Talbi, 2009: 194). The population 

size is preferred constant in general and they are prepared to be affected by the 

reproduction strategies employed in metaheuristics.  

 

1.4.4. Fitness Calculation 

 

The optimality of the solutions is determined according to the value of the 

objective function as fitness value and it guides the algorithm to search for better 

solutions. However, it is not always a single indicator for the desirability of a solution 

(Bozorg-Haddad et al., 2017: 24). In some cases, if there is an expected value for the 

objective function, the sum of squared error values can be used as well (Erdem, 2007: 

12).  

Moreover, if the optimization model includes constraints, many different 

constraint handling methods are implemented to evaluate the optimality of the solution 

points by considering the feasibility as well. According to the purpose of the problem, 

the fitness value can be structured on the "shortest path", "lowest cost", "smallest 

penalty" or “highest utility” etc.  

According to Montes et al. (2005), incorporating constraints into the fitness 

function in evolutionary algorithms is an open research area. For this reason, there are 

many approaches developed in the literature. The simplest approach is the “rejection 

strategy” which discards infeasible solutions regardless of the violation amount. The 

drawback of this approach is that there is no learning strategy about discarded solutions 

for further iterations (Duarte et al., 2018: 48). The most popular strategy for constraint 
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handling is the “penalty approach”. Different from rejecting directly, this approach 

penalizes solutions in terms of their degree of infeasibility (Maier et al., 2019: 207). 

Montes et al. (2005) summarized the most known penalty approaches as the death 

penalty, static penalty, dynamic penalty, annealing penalty, adaptive penalty, co-

evolutionary penalty, Segregated genetic algorithm, and fuzzy penalty. However, 

penalty approaches have also some disadvantages in the determination of the 

corresponding weights via trial and error (Maier et al., 2019: 207). Another approach 

for constraint handling is “repairing algorithms”. They are applied to infeasible 

solutions to make them feasible and generally, they are greedy heuristics (Talbi, 2009: 

53). Repair algorithms are widely applied in combinatorial optimization problems. The 

problem dependency is the weakness of repair strategies (Michalewicz, 2000: 56). 

“Preserving strategy” is another constraint handling approach that ensures feasibility 

by using problem-specific representation and operators. Nevertheless, this approach 

cannot be generalized for all optimization problems (Talbi, 2009: 53). Finally, hybrid 

methods can also be combined with evolutionary algorithms that employ heuristic 

rules or gradient methods to facilitate an efficient local search (Erdem, 2007: 34). 

Lagrangian multipliers, fuzzy logic, immune system models, cultural algorithms, ant 

colony algorithm-based methods are some of the hybrid methods used for constraint 

handling as well (Kicinger et al., 2005: 1943).  

 

1.4.5. Neighborhood Strategies  

  

 Intelligence is another important concept that is utilized in population-based 

metaheuristics. Communication is a feature of intelligence and it arises from the 

neighborhood of individuals in the population. Communicating with each other leads 

individuals to reach better solution points by learning from each other’s successes and 

failures (Simon, 2013: 27). According to the neighborhood strategy employed for 

reproduction, the closest neighbor or the best-so-far solution is considered to generate 

better solutions. In some cases, different approaches can be developed. The concept of 

swarm intelligence explains the behaviors of some species in nature such as ant 

colonies, bird flocks, and fish schools (Erdem, 2007: 19). Proximity, quality, diverse 

response, stability, adaptability principles are some of the neighborhood principles 

which are employed to develop a branch of evolutionary problem-solving methods 
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(Eberhart and Shi, 1998). Particle Swarm Optimization (PSO) and Ant Colony 

Optimization (ACO) algorithms are the pioneers of metaheuristics based on 

cooperative behaviors of species (see Historical Background section). Cultural 

Algorithm, another swarm intelligence algorithm, differentiates from PSO and ACO 

in terms of knowledge types (normative knowledge, situational knowledge, domain 

knowledge, history knowledge, and topographical knowledge) used in problem-

solving (Reynolds et al., 2005), and this algorithm models social evolution and 

learning (Du and Swamy, 2016: 7). Furthermore, there is also the Social and 

Civilization method developed by Ray and Liew (2003) that mimics the intra and 

intersociety interactions among society. There are many more algorithms based on 

different principles that take advantage of the communication between individuals in 

the population. 

 

1.4.6. Memory Usage 

  

 Storing search history may provide information for future search in 

optimization algorithms. Memory-less algorithms guide the current solution by 

employing the Markov process to determine the next state of the solution points 

(Bozorg-Haddad et al., 2017: 28). However, memory is a component that improves the 

performance of the algorithms. Memory structure records information about solutions. 

Tabu Search (TS) is the first non-nature metaheuristic that uses attributive memory 

(Yang, 2014: 18). According to Bozorg-Haddad et al. (2017), there is an argument that 

memory usage qualifies TS as a nature-inspired algorithm. Although there are various 

ways to use memory, TS utilizes attributive memory which means that recording 

specific solution points not only prevents cycling in the search but also performs 

efficient exploration ability (Duarte et al., 2018: 94). In other words, TS holds the best 

results from search history as the Tabu list and uses this information to determine the 

next search strategies. Scatter Search (Glover, 1999) is the improved version of TS 

which involves best and worst search results in its memory list. The artificial Immune 

System is another memory-based algorithm that mimics the biological immune 

systems and utilizes its characteristics for learning and memorizing (Hunt and Cooke, 
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1996: 189). Many state-of-the-art algorithms in the literature include memory in their 

principles to improve their performance.  

 

1.4.7. Selection 

 

 The selection operator is another component that may be preferred to use in 

evolutionary computation. In some of the algorithms, not all current solutions are 

employed to reproduce new solutions. The selection approach may differ randomly or 

deterministically (Bozorg-Haddad et al., 2017: 33). According to the Darwinian 

principle, the higher the survival of the fittest, the more often it is selected to reproduce 

(Petrowski and Hamida, 2016: 117). The simplest approach used in Genetic 

Algorithms called Elitism is letting the best solutions pass on to the next iterations 

(Yang, 2014: 30). Although not all algorithms implement selection operators, 

metaheuristics differentiate from evolutionary algorithms in the way of selecting 

solutions. The Boltzman selection, the Roulette wheel, the Tournament selection are 

the most common selection approaches used in the literature (Bozorg-Haddad et al., 

2017: 34).  

 

1.4.8. Reproduction 

 

After the initialization and selection steps, new solutions should be generated 

according to the strategies that the algorithm employs. Generally generating new 

solutions is related to the solutions located around neighbors of the previous solution 

(Bozorg-Haddad et al., 2017: 34). All metaheuristics aim at finding feasible, good 

quality solutions efficiently and searching solution space without trapping into local 

optima (Nesmachnow, 2014: 323).  

The key point for the efficiency of metaheuristics is the tradeoff between 

randomization and local search i.e. diversification and intensification. A good 

combination of diversification and intensification provides better global optimality for 

complex problems (Yang, 2018: 15). Exploration also called diversification means 

searching for new solutions, whereas exploitation means improving solutions as 

intensification (Simon, 2013: 28). The efficiency of metaheuristics depends on the 
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balance between exploration and exploitation (Sotoudeh-Anvari and Hafezalkotob, 

2018: 84).  

 

Figure 12: Diversification vs Intensification 

 

Source: Purnomo and Wee, 2013: 386 

 

As shown in Figure 12, exploration is expressed as diversification and it allows 

the algorithm to visit diverse regions to explore the search space (Yang et al., 2014: 

978). New regions within the solution space are searched with the help of 

randomization. Generally, random numbers are generated by using uniform 

distribution or Gaussian distribution (Yang, 2018: 14). Crossover, mutation, 

recombination are the evolutionary operators for generating novel solutions in Genetic 

Algorithms (Salcedo-Sanz, 2016: 15). Furthermore, various operators inspired by 

different subjects may be implemented to the algorithms with the same purpose. 

Exploration is a tool for increasing the probability of finding the global optimum, 

however, it also decreases the ability to converge the global optimum at the same time 

(Yang et al., 2015: 1988).  

On the other hand, exploitation is also demonstrated in Figure 12 as 

intensification which is a way for converging the possible optimum. This time instead 

of searching for new regions, the algorithm concentrates on neighbors in the immediate 

region to increase the quality (Nesmachnow, 2014: 323). In other words, exploitation 

takes the advantage of the information that a good solution is found in this local region 

(Yang et al., 2014: 978). Moreover, it utilizes gradients for local information to 
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increase the convergence rate (Yang, 2018: 14). Hill Climbing is one of the local search 

methods that utilize derivative information for the search procedure (Yang, 2014: 27). 

As the opposite of exploration, exploitation can increase the convergence but move 

away from the possibility of finding the global optimum, which results in being stuck 

to the local optimum (Yang et al., 2015: 1988).  

The balance between intensification and diversification plays an important role 

in the development of algorithms. The convergence rate of a metaheuristic is strongly 

related to the exploration-exploitation capacity (Morales-Castañeda et al., 2020: 2). As 

for Duarte et al. (2018), the opportunity for diversification depends on the length of 

the optimization process including several iterations, computational time, or function 

evaluations. However, these evaluations are related to the problem context. 

Metaheuristics are measured according to both the quality of the optimal solution and 

the computational time together. The representation of the balance for minimization 

problem is shown in Figure 13. 

 

Figure 13: Performance profiles of two hypothetical metaheuristic procedures 

 

Source: Duarte et al., 2018: 30 

 

According to Figure 13, one can conclude that when the optimization horizon 

is short it would be better to prefer less aggressive but diversified algorithms, whereas 

when the optimization horizon gets longer aggressive and less diversified algorithms 

to provide better solutions for minimization problems. Although it is known that the 
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balance between intensification and diversification is very important, there is no 

definite way to measure objectively the rate of exploration and exploitation (Morales-

Castañeda et al., 2020: 1).  

 

1.4.9. Stopping Condition 

 

In each iteration, new populations that lead the algorithm to reach an optimal-

like solution are generated until the termination condition is satisfied. Bozorg-Haddard 

et al. (2017) summarized prevalent stopping criteria as the predefined number of 

iterations, the threshold of improvement in the fitness function, or the run time. 

Moreover, some statistics which show the diversity of the population are also utilized 

for stopping criteria as well (Talbi, 2009: 199). Apart from these, many termination 

conditions depending on some special feature may be implemented in algorithms. 

 

1.4.10. Model Reliability 

 

As mentioned in the title of Model-identification, it is not possible to interpret 

by looking at the result obtained in a single experiment in algorithms that offer a near 

solution. For this reason, it has made many trials and the summary statistics of these 

trials give an idea about the performance of the algorithm. The number of trials 

depends on statistics. This can be explained by the law of large numbers, which 

guarantees stable long-term results for averages of some random events (Dekking et 

al., 2005: 181). Trials such as 30, 50, and 100 are reported in the literature. However, 

achieving good results with less trial can also be interpreted as good in terms of 

performance. However, this must be obtained with the same trial number for each run.  

Reliability shows the extent to which the algorithm can result in acceptable 

results. The percentage of trials terminated by converging the best fitness value under 

a predefined threshold value can be considered as a success rate for reliability (Du and 

Swamy, 2016: 20). A reliable algorithm is defined as converging similar near-optimal 

solutions with approximately the same function evaluation values which shows small 

variances among trials (Bozorg-Haddad et al., 2017: 38). Moreover, each experimental 

result can be reported by the best-so-far, the worst solutions, mean and standard 
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deviations to provide information about how the results distribute around the mean. 

By considering these descriptive statistics, information about how robust solutions the 

algorithm provides in each trial can be obtained.  

Furthermore, the efficacy and efficiency of the algorithm should also be 

considered as performance indicators. The average of the best fitness values in the last 

population over all trials is used as an absolute measure for efficacy. Whereas 

efficiency is calculated by the average number of function evaluations for success 

which implies the speed for convergence (Du and Swamy, 2016: 20). Although a high 

success rate and low mean best fitness mean that the algorithm is reliable, there is a 

possibility to face bad results accidentally too. For this reason, it would be better to 

obtain a small mean best fitness value with low function evaluations in almost every 

trial which is challenging.  

 

1.4.11. Model Validity 

 

Validation which is another concept in the field of science is an indicator of the 

accuracy of the model. When this concept is evaluated in terms of algorithms, it can 

be considered as to whether the algorithm finds the right solution for the related 

problem. Especially in multimodal problems which have several local optimums, the 

algorithms may be trapped into the local optimums. Considering that this situation 

occurs in almost every trial, although the performance of the algorithm is evaluated as 

reliable, it is impossible to conclude that the algorithm is valid too. Since the algorithm 

cannot solve the problem correctly, which means that premature convergence, the 

algorithm is considered invalid. In other words, validity means “build the right model”, 

whereas reliability means “build the model right”. Moreover, according to Smit and 

Eiben (2010), the scope of validity is defined as the range of problems (a set of 

problems, more problems of a certain type, or all problems) that the algorithm can 

solve.  
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CHAPTER TWO 

LITERATURE REVIEW OF PHYSIC BASED ALGORITHMS 

 

As mentioned in the historical background section, with the theories developed 

by Newton, Gauss, Lagrange, and Fermat in the early period, Kantorovich applied 

linear programming to a production problem in 1939. According to Biswas et al. 

(2013), every technological development has to reach optimality in terms of time and 

complexity and the researchers have to propose algorithms that provide the best 

possible or better solutions. For that reason, seeking a better algorithm continues and 

new inspirations come to exist in literature.  

Holzner (2011) defined physics as all-encompassing science and clarified that 

the name of physics is derived from the Greek word “physika” which has the meaning 

of “natural things”. According to Xing and Gao (2014), physics is the most 

fundamental science and it focuses on the basic principles of the universe. Physics 

includes various aspects of the natural world such as the objects in motion, energy, 

forces, gases, heat, and temperature. All these topics are the basis of the physics-based 

algorithms in the literature.  

The origins of physics-based algorithms date back to the early periods. Biswas 

et al. (2013) asserted that physics-inspired optimization algorithms were paved the 

way by Feynman’s proposal of a quantum computing system in 1982. On the other 

hand, in 1983 the Simulated Annealing algorithm inspired by the annealing process of 

metal was presented. However, this chapter addresses the developed algorithms 

especially in recent years and their common and distinctive features are discussed. 

 

2.1. THE CLASSIFICATION OF PHYSICS-BASED ALGORITHMS 

  

According to Sotoudeh-Anvari and Hafezalkotob (2018), physics-based 

algorithms are the most popular themes after animal-based algorithms. The 

classification of the physics-based algorithms adapted from Biswas et al. (2013) can 

be conducted as shown in Figure 14. 
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Figure 14: Classification of Physics-based Algorithms 

 

Source: Adapted from Biswas et al., 2013  

 

Physics-based algorithms can be classified and grouped in a structured way. 

The metaphors used in each algorithm can be clarified by using main subjects as 

keywords. By doing so, the similarities and the differences in algorithms are put 

forward. Until today, numerous physics-based algorithms have been proposed to 

literature, the principles, and main subjects are given in the following section.  

 

2.2. PHYSIC-BASED ALGORITHMS  

 

Figure 15: Historical Perspective of Physics-based Algorithms 

 

Source: Prepared by the author 

 

Although the basis of physics-based algorithms dates back to Metropolis 

Algorithm (Metropolis et al., 1953) and Simulated Annealing (Kirkpatrick et al., 

1983), as of 2000, algorithms with a wide range of inspiration are derived. After the 

pioneering physics-based algorithms, the first modern pure physics-based algorithms 

were developed in 2002 Hysteretic Optimization (Zarand et al., 2002) and 

Electromagnetism-like Optimization (Birbil and Fang, 2003) in 2003. In the following 
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section, the principles will briefly be mentioned and then the algorithms based on that 

principle will be reviewed.  

 

2.2.1. Newton’s Gravitational Law 

 

The algorithms inspired by Newton’s Gravitational Law are given in Table 3 

in chronologic order. Each algorithm will be handled according to the common 

principles and distinctive features respectively and the application studies will be 

presented.  

 

Table 3: Metaheuristic Algorithm Inspired by Newton’s Gravitational Law 

Algorithm Main Subjects Author(s) 

Central Force Optimization 

(CFO) 
Particle – Mass – Attraction  Formato (2007) 

Artificial Physics Optimization 

(APO) 

Particle – Mass – Hypothetical 

– Attraction – Repulsion   
Xie et al. (2009a) 

Gravitational Search Algorithm 

(GSA) 

Particle – Mass – Attraction – 

Variable Hypothetical Gravity 
Rashedi et al. (2009) 

Gravitational Interaction 

Optimization (GIO) 

Particle – Mass –  

Constant Gravity – Interaction  
Flores et al. (2011) 

 

2.2.1.1. Central Force Optimization 

 

Central Force Optimization (CFO) developed by Formato (2007) is the first 

algorithm that is inspired by Newton’s Gravitational Law. It focuses on particle 

kinematics in a gravitational field and utilizes particles’ masses for the attraction 

between the particles in a deterministic way. In this principle, large particles attract 

small particles towards it, and large particles reflect the best possible solution. In this 

algorithm, each particle relocates by the masses of the other particles. However, the 

acceleration also depends on two parameters (α, β) which are not represented in nature 

but help the algorithm for a better exploration or exploitation. Moreover, this algorithm 

uses the difference between masses of particles instead of mass which eliminates the 

excessive attractions. Another important feature of CFO is that it does not let the 

particles repulse each other. Although this algorithm provides new insights into 

metaheuristics, the author left some questions behind the study. Thus, after publishing 

that article, the remaining questions have been answered one by one. For example, 
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Formato (2010a) proposed a modified CFO algorithm that works in the principle of 

parameter-free to avoid local trapping. Afterward, Formato (2011) introduced an 

improved CFO algorithm that provides better sampling and periodically shrinking 

decision space that is located around the best fitness. Moreover, Formato (2013) 

explained the concept of pseudo-randomness in CFO. In stochastic algorithms like 

PSO and ACO, their formulation is constituted true random variables, whereas in CFO 

the equations are completely deterministic. However, having a pseudorandom 

component in the algorithm provided better implementations although it is not 

required. Antenna optimization (Formato, 2010b; Qubati et al., 2010), design of 

multilayer microwave absorbers (Asi and Dib, 2010), leakage freshwater detection 

(Haghighi and Ramos, 2012), optimizing the location of diffusion spots (Eltokhey et 

al., 2016), water distribution network optimization (Jabbary et al., 2018), data 

clustering (Srinivasa Rao et al., 2015; Javadi and Zahiri, 2018) are some of the 

applications of CFO and its variants. A more detailed review of the CFO algorithm 

can be found in (Siddique and Adeli, 2015b). 

 

2.2.1.2. Artificial Physics Optimization 

 

 Artificial Physics Optimization (APO) based on Physicomimetics is also 

inspired by Newton’s Gravitational Law and it is developed by Xie et al. (2009a). In 

this algorithm, virtual physical forces drive a multi-robot system and each robot 

represents a physical particle. Different from the CFO algorithm, APO is structured as 

both attraction and repulsion forces. However, there is a threshold for this motion 

which is the radius of the particles. In addition to the distinctive feature, the power of 

the distance parameter used in Newton’s Gravitational Law is flexible between -5 to 5 

in the APO algorithm. Moreover, the APO algorithm allows all particles to control the 

velocity of the related one until there are no forces. The masses of particles are 

calculated using the best and the worst particle function values. The velocity and the 

positions of particles depend on two parameters; one is a number distributed randomly 

between [0, 1], the other is adaptively changing from 0 to 1 according to the maximum 

iteration number. In line with the aim of science, improvements have been made in 

this algorithm that provides better results. For example, Xie et al. (2009b) developed 
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an APO algorithm that provides alternatives for mass functions (convex, linear, or 

concave) and concluded that an algorithm that utilizes concave mass function performs 

better. Furthermore, Xie and Zeng (2010) tested the APO algorithm with three 

different force laws (negative exponential, unimodal, and linear) and found out that 

linear force law resulted in more effective solutions. Ates and Yeroglu (2018) modified 

the APO algorithm by combining it with Base Optimization Algorithm for multi-

parameter function minimization. The authors assert that the modified APO algorithm 

provides various mass-cost function combinations which results in fast convergence 

and less computational costs. Lastly, Aljohani et al. (2019) published very recently a 

hybrid algorithm that uses APO and Particle Swarm Optimization (PSO) together. 

They concluded that the new hybrid algorithm has an excellent search capacity and by 

doing so, being trapped in local optima can be overcome. Generally, engineering 

problems are encountered as real-world problems for APO and its developed versions 

such as hyperspectral imagery band selection (Wang and Wei, 2013), vulnerability 

assessment and reconstruction of micro-grid (Xie and Ma, 2018), security-constrained 

optimal power flow problem (Teeparthi and Kumar, 2018), spectrum detection 

problem in cognitive Internet of Things (Li et al., 2019).  

 

2.2.1.3. Gravitational Search Algorithm 

 

 Gravitational Search Algorithm (GSA), the most popular algorithm with 

thousands of citations in Scopus, is developed by Rashedi et al. (2009). The main 

principles of this algorithm are Newton’s Gravitational Law and Law of Motion. 

Differently from the other algorithms, each particle has four specifications as position 

(solution), inertial mass (resistance against its position changing), active and passive 

gravitational masses which represent force intensity now and previously (Zandevakili 

et al., 2019). Moreover, GSA assumes that any particle can attract any other particles 

in terms of their masses but inversely proportional to the Euclidean distance rather 

than distance square. As in the APO algorithm, the masses of particles are calculated 

using the best and the worst particle function values, but in a different form. 

Additionally, the forces on each particle depend on both passive and active 

gravitational masses which are assumed as equal, distance and gravitational constant 
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as well. However, in GSA gravitational constant is a function based on the total 

number of iterations and time and decreases with time like temperature. With this 

distinctive feature, the algorithm provides better exploitation. On the other hand, it 

uses random parameters for exploration and velocity. Furthermore, the authors also 

assert that GSA is a memoryless algorithm but works as effective as algorithms with 

memory. The algorithm is not only in its original form, but many new versions have 

been developed. For instance, Rashedi et al. (2010) modified GSA as for binary 

variables, Sarafrazi et al. (2011) integrated disruption operator which is inspired by 

astrophysics to GSA for a better exploitation and exploration ability, Zhang et al. 

(2011) improved GSA by immune system in biology and with the help of different 

inspiration falling into local optimum problem has been eliminated, Mirjalili and 

Lewis (2014) ameliorate slow exploitation which causes major weakness by adding 

memory to GSA and by doing so the exploitation phase is accelerated, Gao et al. (2014) 

improved GSA as for exploitation ability and local optima problem by integrating 

chaos which provides ergodicity and stochasticity, to eliminate trapping local optima 

problem, Huang and Qin (2019) used clustering method to divide whole population, 

Khan et al. (2019) modified exploitation strategy which provide adaptive velocity in 

terms of the number of iterations whereas Zheng et al. (2019) proposed improved GSA 

by adjusting gravitational constant. As for the recent applications of GSA and its 

modified versions, Sharma and Kumar (2017) applied discrete GSA for virtual 

machine placement in cloud computing, Priya et al. (2020) preferred to use GSA as a 

feature selection tool for phishing datasets, Han et al. (2020) used binary GSA, Shukla 

et al. (2020) integrated GSA with Teaching learning-based algorithm for cancer 

classification, Mosa (2020) hybridized Particle Swarm Optimization and GSA for 

mining social media data. For more application examples, Sabri et al. (2013) reviewed 

GSA and its applications comprehensively.  

 

2.2.1.4. Gravitational Interactions Optimization 

 

Another Newton’s Gravitational Law inspired algorithm called Gravitational 

Interactions Optimization is developed by Flores et al. (2011). Unlike GSA, the GIO 

algorithm utilizes the Gravitational constant as a constant number because the opposite 
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of it destroys the underlying interaction metaphor. Besides, the GIO algorithm allows 

each particle to interact with all others and uses particles’ masses for fitness values. 

Although mass functions are similar to GSA, GIO limits fitness values with an interval. 

Moreover, the authors asserted that the GIO algorithm provides all local and global 

optimums for multimodal functions instead of just global optimum. Also, GIO does 

not need a radius parameter or a maximum number of particles as in PSO. However, 

GIO has not received enough attention and has not been applied in engineering 

problems.  

 

2.2.2. Magnetism 

 

The algorithms inspired by magnetism are given in Table 4. Each algorithm 

will be handled according to the common principles and distinctive features 

respectively and application studies will be presented.  

 

Table 4: Metaheuristic Algorithms Inspired by Magnetism 

Algorithm Main Subjects Author(s) 

Hysteretic optimization 

(HO) 

Material – Energy – Magnetic -   

Glass demagnetization 
Zarand et al. (2002) 

Electromagnetism-like 

mechanism (EM) 

Particle – Charge – Distance - 

Attraction 
Birbil and Fang (2003) 

Magnetic Optimization 

Algorithm (MOA) 

Magnetic field - Particles - 

Distance 

Tayarani and 

Akbarzadeh (2008) 

Charged System Search 

(CSS) 

Particle – Charge – Electrostatics – 

Attraction – Velocity - Force 

Kaveh and Talatahari 

(2010a) 

Magnetic Charged System 

Search (MCSS) 

Magnetic forces - Particles - 

Attraction - Repulsion -Absorbing 
Kaveh et al. (2013a) 

Electromagnetic field 

optimization (EFO) 

Attraction  - Repulsion - 

Electromagnets 

Abedinpourshotorban 

et al. (2016) 

 

2.2.2.1. Hysteretic Optimization 

 

Hysteretic optimization (HO) is one of the algorithms published in the very 

beginning and it is inspired by the magnetism concept in physics (Zarand et al., 2002: 

1). It depends on the demagnetization of magnetic materials with changing the external 

field of decreasing amplitude (Pál, 2003: 287). The principle of gradually decreasing 

and reaching a steady-state reminds Simulated Annealing (SA) which is inspired by 
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the annealing processes of metals. However, this time, the focused object has a 

magnetic property and it is left to a magnetic field with a decreasing amplitude for 

reaching the global optimum that is the minimum level of magnetism. In this process, 

not only magnetism is lowered, but also a low energy level is reached. As for Pál 

(2006), the HO algorithm can be improved by repeatedly shaking up the system but 

with a smaller maximum amplitude. Although HO is one of the pioneers in Physic-

based algorithms, it does not attract much attention after 2012. However, it is used for 

traveling salesman problem (Pál, 2003), spin glasses application (Gonçalves and 

Boettcher, 2008), capacitated vehicle routing problem (Yan and Wu, 2012), 3D protein 

folding problem with lattice model (Xiong et al., 2012).  

 

2.2.2.2. Electromagnetism-like Mechanism 

 

Birbil and Fang (2003) developed an algorithm inspired by electromagnetism 

theory and that method utilizes an attraction-repulsion mechanism as also mentioned 

in Newton’s Gravitational Law section. However, in EM algorithm electrical forces 

are used instead of masses. The total electrical force on a particle is calculated 

vectorially according to the charges of the other particles in the population and the 

distances between the particles (Yurtkuran and Emel, 2010: 3428).  Therefore, it is 

clear that the total electrical force determines the magnitude of attraction or repulsion 

and the higher the magnitude means the better the objective function value. Although 

the EM algorithm seems like other physics-based algorithms in some points, the 

authors asserted that EM provides less execution time and memory usage. The 

algorithm allows both attraction and repulsion of the particles moving in search space. 

The overall electrical charges on a particle are calculated in terms of Coulomb’s law 

(Cuevas et al., 2012: 43). The authors assert that the algorithm converged global 

optimum on average 25 iterations per dimension (Birbil and Fang, 2003: 270). A year 

after, Birbil et al. (2004) modified EM by considering convergence with probability 

one. Although this algorithm can be used as a stand-alone approach, scholars have also 

hybridized the EM algorithm with other metaheuristics. For example, EM has been 

integrated with simulated annealing (Tavakkoli-Moghaddam et al., 2009; Naderi et al., 

2010; Jamili et al., 2011), particle swarm optimization (Tian et al., 2009; Lee and Lee, 
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2012), differential evolution (Muhsen et al., 2015), firefly algorithm (Le et al., 2019), 

tabu search (Sels and Vanhoucke, 2014), back-propagation algorithm (Lee et al., 

2012). Moreover, the EM algorithm has also attracted attention in the literature as a 

field of application. Traveling salesman problem (Javadian et al., 2008), flow shop 

scheduling (Yan et al., 2014), inventory control (Tsou and Kao, 2008), array pattern 

optimization (Jhang and Lee, 2009), course timetabling problem (Abdullah et al., 

2012), layout problem (Jolai et al., 2012), job shop problem (Tavakkoli-Moghaddam 

et al., 2009), feature selection (Su and Lin, 2011), single machine scheduling problem 

(Chang et al., 2009), capacitated vehicle routing (Yurtkuran and Emel, 2010), 

automatic circle detection (Cuevas et al., 2012) are some of the most cited application 

studies in the literature.  

 

2.2.2.3. Magnetic Optimization Algorithm 

 

Magnetic Optimization Algorithm (MOA) is an algorithm inspired by magnetic 

field theory and it was firstly introduced in 2008 by Tayarani and Akbarzadeh. 

Differently from the other magnetism-inspired algorithms, in MOA each particle is 

located in the algorithm by its mass and magnetic field. Moreover, all particles are in 

a lattice-like environment for better exploitation and the force on a particle is limited 

to only a certain number of neighbors rather than all other particles to decrease the 

complexity (Tayarani and Akbarzadeh, 2008: 2664). Also, unlike algorithms based on 

gravity, MOA takes into account both repulsive and attractive forces. However, the 

authors mentioned that the attraction works in long-range force, whereas repulsion in 

short-range (Tayarani and Akbarzadeh, 2014: 83). In MOA when the distances 

between the particles reach infinity, the forces disappear on a particle (Kushwaha et 

al., 2018: 60). Tayarani and Akbarzadeh (2014) published a revised version of MOA 

which explains the algorithm in detail and includes an extension. Aziz and Tayarani 

(2016) improved MOA performance by considering the experience of the algorithm. 

Thereafter, Sadiq et al. (2018) integrated MOA with Particle Swarm Optimization for 

more accuracy and efficiency. Kushwaha et al. (2018) applied MOA for data 

clustering. Kushwaha and Pant (2018) modified the magnetic optimization clustering 

algorithm with fuzzy logic and applied it in the health care field.  
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2.2.2.4. Charged System Search 

 

 Kaveh and Talatahari (2010a) developed a method called Charged System 

Search (CSS). The principle of the method is based on physics and mechanics. The 

forces between the charged particles are calculated by utilizing Coulomb’s law and 

Gauss laws, whereas the behavior of the particles is determined by Newtonian laws 

(Kaveh and Talatahari, 2012: 382). CSS considers a population of solutions and allows 

any particle to attract others according to the self-requirements. In addition, to provide 

optimal balance in intensification-diversification, the algorithm can remember the 

past. The authors mentioned that CSS provides good solutions especially when the 

domains are non-smooth and non-convex. Thereafter CSS became the center of 

attention and many scholars developed CSS to achieve better results. Kaveh and 

Talatahari (2011) improved CSS by introducing the concept of “field of forces” which 

provides a general model of physics-based algorithms. Kaveh and Ahmadi (2013) 

included supervisor agents in the CSS algorithm for a better exploration ability. Kaveh 

et al. (2013a) integrated magnetic forces besides electrical forces for enhancing the 

performance of the CSS algorithm. Chu and Tsai (2013) modified CSS by determining 

a moving strategy to solve the distribution system loss minimization problem. Precup 

et al. (2014) proposed an adaptive CSS that has engagement, exploration, explanation, 

elaboration, and evaluation stages. Niknam et al. (2014) implemented a self-adaptive 

reformation technique to achieve better performance and high speed. Prasad and Vinod 

Kumar (2017) developed a rule-based fuzzy inference system to control the parameters 

of CSS. In addition to being developed with the help of additional features, CSS has 

been presented to the literature by hybridizing it with different algorithms as well. For 

example, CSS hybridized with PSO (Talatahari et al., 2013; Kaveh and Laknejadi, 

2011; Kaveh and Talatahari, 2014); Bayesian Optimization Algorithm (BOA) (Aryan 

and Alizadeh, 2016); Harmony Search (HS) (Kaveh and Hosseini, 2012); Colliding 

Body Optimization (CBO) (Khanzadi et al., 2016; Shirgir et al., 2020); Big Bang-Big 

Crunch (Talatahari et al., 2018). After introducing CSS and its extensions to the 

literature, they have been applied in many fields. Kaveh and Talatahari (2010b) applied 

CSS for the optimal design of skeletal structures, Özyön et al. (2012) utilized CSS 

algorithm for economic power dispatch problem with emission constrained, Kumar 
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and Sahoo (2014) found optimal cluster centers by CSS, Kaveh and Behnam (2013) 

provided an optimal design of reinforced concrete cantilever retaining walls by 

minimizing cost, Precup et al. (2015) used adaptive CSS for finding an optimal path 

for mobile robots, Kaveh et al. (2018a) compared CSS with MCSS by applying them 

to site layout planning problem, Khanzadi et al. (2016) provided a solution for resource 

allocation and resource leveling problem with CSS, Kaveh and Zolghadr (2015) used 

an improved version of CSS to detect damages in truss structures, Akbari et al. (2020) 

applied CSS and EM for fixed-charged solid transportation problem in supply chain 

network. 

 

2.2.2.5. Magnetic Charged System Search 

 

 MCSS is a modified version of CSS as mentioned briefly in the CSS part. 

Different from CSS, MCSS considers magnetic forces as well by utilizing Biot-Savart 

Law. In physics, a magnetic field occurs when a charged particle moves.  Kaveh et al. 

(2013a) developed the MCSS algorithm to make an algorithm closer to the nature of 

the movements of charged particles. In MCSS, the magnitude of the magnetic force on 

a particle is proportional to the charge and the speed of the particle. Moreover, this 

algorithm assumes that each particle can move in virtual straight wires. Although only 

attraction force is allowed in CSS, a repelling force is also added with a probability in 

terms of electrical forces. Besides, the magnetic force includes both attraction and 

repulsion forces to obtain better searchability. It would be better to clarify that, when 

the objective function value of a particle increases, that particle absorbs other particles. 

Furthermore, MCSS allows changes continuously within an iteration, rather than at the 

end of the iteration. According to the comparison results conducted by Kaveh et al. 

(2013a), the difference between CSS and MCSS becomes more obvious, when the 

number of particles (the dimension of the problem) is small. On top of all these 

improvements, other researchers have also worked on the MCSS and presented new 

versions. Kaveh et al. (2014a) developed an improved MCSS which includes an 

improved harmony search scheme for position correction and more effective 

convergence parameters. Kaveh et al. (2015a) modified MCSS by hybridizing MCSS 

and improved the scheme of the harmony search algorithm. D’Ambrosio et al. (2020) 
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modified MCSS by introducing a self-adaptive parameter setting and a chaotic local 

search for better performance. Moreover, MCSS has been also applied in various fields 

such as construction project planning (Tavakolan and Share, 2013); phase stability 

analysis, and phase equilibrium calculations (Elnabawy et al., 2014); damage detection 

(Kaveh and Maniat, 2015). 

 

2.2.2.6. Electromagnetic Field Optimization 

 

 Abedinpourshotorban et al. (2016) proposed EFO inspired by the behavior of 

electromagnets. Different from the other algorithms based on magnetism, EFO takes 

the advantage of the golden ratio for the attraction-repulsion ratio to converge better. 

However, it would be better to clarify that, the attraction force is stronger than the 

repulsion force. Moreover, this algorithm divides the whole population into three 

subfields as positive, negative, and neutral which lead particles to the optimum 

solution. Although EFO is relatively new, its modifications have been presented in the 

literature as well. For example, Bouchekara et al. (2017) modified EFO in terms of the 

distribution of the random number generation and the rule in case of crossing the 

boundaries of search space. Song et al. (2019) improved EFO by implementing a fuzzy 

entropy criterion and by embedding a chaotic strategy to enhance searchability. 

Yurtkuran (2019) proposed two novel modifications for generating new solution 

principles and adaptive control of parameters. Bouchekara (2020) presented a new 

chaotic EFO algorithm that considers chaotic numbers rather than random and which 

provides a new generating procedure. In addition to introducing new versions, EFO 

has also found application areas. Talebi and Dehkordi (2018) utilized the EFO 

algorithm for sensitive association rules hiding in the data mining field; Kushwaha et 

al. (2018) enhanced the EFO algorithm for clustering; Şahin and Kellegöz (2019) 

applied the EFO algorithm for multi-manned assembly line balancing problem by 

modifying regeneration strategy. 
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2.2.3. Collision 

 

Different from the algorithms inspired by Newton’s Gravitational Law, the 

algorithms inspired by collision behaviors are given in Table 5. Each algorithm will 

be handled according to the common principles and distinctive features, respectively.  

 

Table 5: Metaheuristic Algorithms Inspired by Collision 

 

2.2.3.1. Particle Collision Algorithm 

 

PCA is a stochastic single-solution optimization algorithm developed by Sacco 

and De Oliveira (2005). It is inspired by the physics of nuclear particle collision 

reactions (Duderstadt and Hamilton, 1976: 3). The mechanism of PCA shows that 

when the particle moves towards to nucleus which has a high fitness value, the nucleus 

would absorb that particle, on the other hand when the particle hits a low fitness 

nucleus, it would be scattered to another region. This information means that PCA 

handles exploitation and exploration abilities with absorption and scattering. 

Moreover, PCA resembles the Metropolis algorithm in terms of the ability of the 

acceptance of a candidate solution with a certain probability and Simulated Annealing 

(SA) in terms of its structure. Since the early version of PCA is primitive, other 

modified versions have been presented in literature throughout the years. Sacco et al. 

(2007) published a population-based PCA that is hybridized with the Genetic 

Algorithm. Da Luz et al. (2008) proposed a multi-particle collision algorithm (M-

PCA) that is based on canonical PCA by using several parameters instead of one. 

Abuhamdah and Ayob (2009) developed Multi-Neighborhood PCA which exploits 

hill-climbing local search and two-staged neighborhood structure.  Sacco and Rios-

Coelho (2016) introduced an enhanced PCA algorithm called Cross-Section PCA 

Algorithm Main Subjects Author(s) 

Particle Collision 

Algorithm (PCA) 
Nucleus - Absorption - Scattering 

Sacco and De Oliveira 

(2005) 

Colliding Bodies 

Optimization (CBO) 

Colliding bodies – masses – 

velocity  

Kaveh and Mahdavi 

(2014) 

Kinetic Energy of Gas 

Molecules (KGMO) 

Gas molecules - Collision - Kinetic 

Energy - Velocity 

Moein and Logeswaran 

(2014) 
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which uses the probability of interaction between a neutron and target nucleus. Torres 

et al. (2018) hybridized Multi-Particle PCA with Rotation-Based Sampling that 

provides better global search. As for application studies, Da Luz et al. (2011) applied 

Multiple PCA to Radiative Transference and Pollutant Localization Inverse problems; 

Abuhamdah and Ayob (2011) solved course timetabling problem with Multi 

Neighborhood PCA and Adaptive Randomized Descent Algorithm; Domiciano et al. 

(2018) utilized PCA for automatic digital elevation model from images. 

 

2.2.3.2. Colliding Bodies Optimization  

 

 Kaveh and Mahdavi (2014) proposed a single-solution CBO inspired by the 

law of momentum and energy. In this algorithm, colliding bodies are considered with 

their masses, besides there are no external forces on these bodies. In addition, colliding 

bodies have two subgroups (stationary and moving objects) (Kaveh and Mahdavi, 

2016: 14). It would be better to mention that only collisions between moving and 

stationary bodies are allowed. Nevertheless, even stationary bodies move towards to 

better positions through that collision (Siddique and Adeli, 2016: 616). After the 

development of the algorithm, different versions of CBO have started to be introduced. 

Kaveh and Ghazaan (2014) implemented a memory to CBO and added a stochastic 

mechanism to escape from local optima. Bouchekara et al. (2016) proposed an 

improved CBO which has the number of colliding bodies as three instead of two. 

Panda and Pani (2016); Kaveh and Mahdavi (2019) modified CBO for multi-objective 

problems. Cheng and Zhao (2020) proposed Chaotic Enhanced CBO by changing the 

generation pattern of bodies which yields better convergence. Chen et al. (2020) 

hybridized CBO with Teaching-Learning based optimization algorithm to provide 

high convergence speed and to eliminate premature convergence. CBO and its 

extensions have also been applied in the engineering literature, for example, cost 

optimization of a concrete ribbed slab (Kaveh and Bijari, 2014); clustering model for 

seismic catalog (Nanda and Panda, 2015); resource allocation (Kaveh et al., 2015b; 

Khanzadi et al., 2016); optimal power flow problem (Pulluri et al., 2016); cost and 

CO2 emission optimization (Kaveh, 2017); optimization of fractional order PID 

controller (Asl et al., 2018); construction site layout (Kaveh et al., 2018b); designing 
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a microwave filter (Gupta et al., 2020a); structural reliability analysis (Cheng and 

Zhao, 2020). 

 

2.2.3.3. Kinetic Energy of Gas Molecules 

 

 Moein and Logeswaran (2014) developed an algorithm inspired by the 

behavior of gas molecules. In the KGMO algorithm, each gas molecule is handled with 

its position, kinetic energy, velocity, and mass. The velocity and the position are 

determined according to the kinetic energy of the molecule. The gas molecules are 

moving until reaching the lowest temperature and kinetic energy. Besides, movements 

depend on Newton’s law and molecules are allowed to move in a straight line. Unlike 

algorithms based on Newton’s gravitational law and magnetism, there are no attractive 

or repulsive forces between molecules, and energy is not gained or lost as a result of a 

collision. When the literature studies are reviewed, an algorithm that improves KGMO 

has not been encountered yet. However, there are hybrid studies made with KGMO. 

Moein et al. (2016) hybridized KGMO with Neural Network (NN) for the detection of 

heart disorders; Vinay Kumar et al. (2019) utilized KGMO with fuzzy c-means 

clustering; Hemachandra Reddy et al. (2019) proposed a hybrid algorithm that includes 

the KGMO and PSO; Asha and Gowrishankar (2020) presented an efficient clustering 

and routing algorithm that covers both KGMO and Glowworm Swarm Optimization. 

Moreover, scholars also applied the KGMO algorithm in various problems such as 

nonconvex economic dispatch problem (Basu, 2016); allocation problem in 

engineering (Panthagani and Rao, 2017); performance optimization (Reddy and 

Reddy, 2019); optimal reactive power dispatch problem (Panthagani and Rao, 2020).  

 

2.2.4. Quantum Mechanics 

 

Different from the other physics-inspired algorithms, Quantum Mechanics 

(QM) inspired algorithms have been developed as hybrid algorithms. These algorithms 

are the combinations of quantum computing and metaheuristics (Karmakar et al., 

2018: 272). Quantum Computing (QC) has been one of the most interesting topics 

after the studies conducted by Feynman (1982) (Dey et al., 2016: 678). Moreover, Dey 
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et al. (2016) also mentioned that because of the parallelism capability of QC that 

reduces complexity, it has become popular in various fields like engineering, artificial 

intelligence, and so on. It would be better to clarify that quantum metaheuristics and 

quantum-inspired metaheuristics do not represent the same concepts. Quantum 

metaheuristics are algorithms executed in a quantum computer, whereas quantum-

inspired metaheuristics are developed as algorithms that imitate the principle of 

quantum physics for classical computers (Ross, 2020: 815). 

Unlike classical computing, a quantum bit (Q-bit) can be represented by 0, 1, 

or both which is called a superposition state. This state simulates the superposition of 

electrons. In Quantum mechanics, electrons are moving in orbits according to their 

angular momentum and energy level. A lower energy electron can jump to another 

orbit that has a higher level by absorbing the energy and the visa versa is possible as 

well. The orbit which includes electrons can be known with a probability and this 

situation can be expressed with a superposition state. Therefore, the position of an 

electron is defined as a quantum state vector with Q-bits (Biswas et al., 2013: 6). 

Since the principle of QM has not been utilized as single-handed in literature, 

the Quantum-inspired algorithms can be considered as semi-physics-based 

metaheuristics in literature. Indeed, QC is preferred when the metaheuristics are unable 

to handle some NP-Hard problems. Moore and Narayanan (1995) presented the 

potential use of QC in NP-Hard problems.  

Numerous studies are proposed algorithms hybridized with QM in literature. 

The review studies focus on quantum-inspired metaheuristics on a specific subject that 

can be found in Dey et al., 2014; Dey et al., 2016; Mozaffari et al., 2017; Karmakar et 

al., 2018; Ross, 2020. In Table 6, pioneer Quantum-inspired metaheuristics are given.  

 

Table 6: Metaheuristic Algorithms Inspired by Quantum Mechanics 

Quantum-inspired Algorithm Author(s) 

Q - Genetic Algorithm (GA) Narayanan and Moore (1996) 

Q - Evolutionary Algorithm (EA) Han and Kim (2002) 

Q - PSO Sun et al. (2004) 

Q -  Immune clonal algorithm (ICA) Li and Jiao (2005) 

Q - Ant Colony Optimization (ACO) Wang et al. (2007) 

Q - GSA Su and Yang (2008) 

Q - Differential Evolution (DE)  Su and Yang (2008) 

Q - Artificial Immune System (AIS) Gao et al. (2010) 

Q - Tabu Search (TS) Chiu et al. (2011) 
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Q - Cuckoo Search Algorithm (CSA) Layeb (2011) 

Q - Firefly Algorithm (FA) Manju and Nigam (2012) 

Q - EM Chou et al. (2012) 

Q - Bacterial Foraging Algorithm (BFA) Huang and Zhao (2012) 

Q - Harmony Search (HS) Layeb (2013) 

Q - Artificial Bee Colony (ABC) Bouaziz et al. (2013) 

Q - Cultural Algorithm (CA) Guo and Zhang (2015) 

Q - Glowworm Swarm Optimization (GS) Gao et al. (2017) 

Q - Bat Optimization (BO) Dey et al. (2019a) 

Q - Dolphin Swarm Algorithm (DSA) Qiao and Yang (2019) 

Q -  Binary Wolf Pack Algorithm (BWPA) Gao et al. (2019a) 

Q - Teaching-Learning-Based Optimization (TLO) Gao et al. (2019b) 

Q - Sperm Whale Algorithm (SWA) Dey et al. (2019b) 

  

When the list is examined, it is clear that generally animal-based algorithms 

are modified by quantum mechanics and these algorithms can be considered as semi-

physics. However, there are also physics-based algorithms such as SA, GSA, EM that 

are hybridized with QM for better performance.  

 

2.2.5. Universe Theory  

 

The algorithms inspired by the universe theory are given in Table 7. Each 

algorithm will be handled according to the common principles and distinctive features 

respectively and application studies will be presented.  

 

Table 7: Metaheuristic Algorithms Inspired by Universe Theory 

Algorithm Main Subjects Author(s) 

Big Bang- Big Crunch (BB-BC) 
Center of mass – Collapse – 

Blackhole 

Erol and Eksin 

(2006) 

Gravitation Field Algorithm 

(GFA) 

Solar Nebular Disk Model - Mass - 

Dust - Motion - Absorption 
Zheng et al. (2010) 

Spiral Optimization Algorithm 

(SOA) 
Logarithmic Spiral  

Tamura and 

Yasuda (2011a; 

2011b; 2011c) 

Galaxy-based Search Algorithm 

(GbSA) 
Spiral movements - Galaxies 

Shah-Hosseini 

(2011a; 2011b) 

Black Hole Algorithm (BH) Stars – Black Hole Hatamlou (2013) 

General Relativity Search 

Algorithm (GRSA) 

Velocity – Curved Space – 

Geodesic Trajectory 

Beiranvand and 

Rokrok (2015) 

Multi-verse optimizer (MVO) 
White hole - Black hole - 

Wormhole - Colliding 

Mirjalili et al. 

(2016) 
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2.2.5.1. Big Bang- Big Crunch 

 

The universe was born after the Big-Bang. However, this leads us to be curious 

about the ultimate fate of the universe. According to Einstein’s Theory of Relativity, 

the ultimate fate of the universe depends on the density of mass and energy in the 

universe. This means that the universe continues to exist when there is enough 

attraction to expand by getting colder and result in a single point called Big Crunch 

(Holzner, 2011: 358). Erol and Eksin (2006) developed the BB-BC optimization 

algorithm that is inspired by the theories of the evolution of the universe. The Big-

Bang phase is constructed to obtain randomness that is a result of energy dissipation. 

Moreover, candidate solutions scatter to search space with uniform distribution. 

Thereafter, the Big Crunch phase is constituted for intensification. In this part, the 

center of mass is calculated which represents the inverse of the fitness function value. 

Furthermore, the center of mass is obtained as a result of the collision of all masses 

and it has gravitational force for the attraction (Siddique and Adeli, 2016: 607). 

Eventually, this algorithm iterates between these two phases. Afterward, modified 

versions of BB-BC have been proposed in the literature. Kripka and Luvezute Kripka 

(2008) proposed Big Crunch optimization that works with a population of variables; 

Kaveh and Talatahari (2010c) modified BB-BC for discrete problems; Alatas (2011) 

utilized chaos for speed convergence and uniform population method; Hasançebi and 

Azad (2012) modified BB-BC by utilizing exponential distribution in random number 

generation; Sedighizadeh and Ghalambor (2014) presented a modified BB-BC for 

reconfiguration of multi-objective distribution networks in fuzzy sets; Kumar et al. 

(2018) developed multi-population version of BB-BC; Yin et al. (2018) improved BB-

BC by changing the exploding radius and generating multiple mass centers; Bijari et 

al. (2018) improved BB-BC by implementing enriched memory; Yalcin and Pekcan 

(2020) developed a derivative version of BB-BC called Nuclear Fission- Nuclear 

Fusion. Also, applications of BB-BC and its modifications in various fields have been 

published, such as the design of space trusses (Camp, 2007; Kaveh and Talatahari, 

2009); economic dispatch (Labbi and Attous, 2010;  Rao and Yesuratnam, 2015; Labbi 

and Attous, 2017; Ieng et al., 2019); scheduling (Jaradat and Ayob, 2010; Kang et al., 

2016); data clustering (Hatamlou et al., 2011; Bijari et al., 2018); damage detection 
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(Tabrizian et al., 2013); path planning (Yılmaz and Gökaşan, 2015); cloud computing 

(Mahdavi and Ghaffari, 2019); passive building design (Robic et al., 2020). 

 

2.2.5.2. Gravitation Field Algorithm 

 

 Zheng et al. (2010) developed GFA which is an algorithm inspired by the 

famous astronomy theory of planetary formation called the Solar Nebular Disk Model. 

According to that theory, everything was a cloud of dust in the beginning. Later, this 

dust cloud formed the rocks by gravitational force. Throughout this process, big rocks 

grabbed small rocks and finally planets took place. From this point, GFA imitates that 

process by considering the dust cloud as candidate solutions and the planet as a global 

optimal solution. Moreover, assembling of the dust clouds occurs by taking into 

account the assigned masses and the power of attraction caused by the other clouds of 

dust. In the following process, the algorithm has been improved. Zheng et al. (2012a) 

modified GFA in terms of both the rule of random division and rotation factor. Rong 

et al. (2013) proposed Parallel GFA that is based on the island model for better 

computing ability. Hu et al. (2019) implemented dust sampling that can locate more 

likely the space containing the optimal solutions and explosion operator for better 

accuracy. GFA and its other versions have not been applied in various fields yet. 

However, the reconstruction of gene regulatory networks problem in biology (Zheng 

et al., 2012b) and the navigability analysis (Liu et al., 2019) are the published studies 

that utilized GFA.  

 

2.2.5.3. Spiral Optimization Algorithm 

 

 The concept of spiral dynamics found in nature was firstly utilized in the 

optimization algorithm by Jin and Tran (2010) and Tamura and Yasuda (2011a; 2011b  

2011c). Jin and Tran (2010) proposed a nature-inspired evolutionary algorithm that 

employs attraction based on spiral movements and dynamic mutation for better 

convergence.  A year later, Tamura and Yasuda (2011a) developed a two-dimensional 

Spiral Optimization algorithm inspired by logarithmic spiral phenomena. The 

logarithmic spirals can be observed in nature as whirling current, a low pressure, a 
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nautilus shell, arms of spiral galaxies. The authors asserted that these examples provide 

efficient searchability in metaheuristics. Immediately after, Tamura and Yasuda, 

2011b; 2011c) modified SOA for n-dimensional problems. Moreover, the novelty in 

the algorithm is not only the analogy but also the structure that has no randomness and 

fewer parameters. Tsai et al. (2014) proposed a novel SOA that divides the population 

into subpopulations to increase the diversity for clustering performance. Kaveh and 

Mahjoubi (2019) modified SOA by altering the movement operator implementing a 

mechanism to escape from local optima. Cao et al. (2020a) improved SOA for multi-

objective problems which include both minimizing cost and maximizing energy 

efficiency. Furthermore, Stability analysis (Tamura and Yasuda, 2013); economic and 

emission dispatch (Benasla et al., 2014); clustering (Tsai et al., 2014); image 

segmentation (Man et al., 2014) sizing and layout optimization problem (Kaveh and 

Mahjoubi, 2019) are some of the studies utilized SOA and its modifications.  

 

2.2.5.4. Galaxy-based Search Algorithm 

 

 Shah-Hosseini (2011a) got inspired by the spiral arm of spiral galaxies in outer 

space and proposed a novel metaheuristic called GbSA. In this algorithm, spiral 

movement is enriched with chaos to eliminate trapping into local optima. The 

advantage of chaos is that it prevents the algorithm move to the same point. Moreover, 

GbSA also includes a mechanism that stores the best solution and utilized modified 

Hill Climbing for local search (Shah-Hosseini, 2011b: 383). After the algorithm was 

published, several modifications have been made. Tolabi et al. (2016);  Ara et al. 

(2016) modified GbSA by utilizing fuzzy sets. Sardari and Moghaddam (2016) 

modified GbSA in terms of local search procedure which results in more precise 

results. Apart from theoretical improvements, GbSA has been applied in different 

areas. Economic and emission dispatch problem (Zerigat et al., 2013; Zerigat et al., 

2014), minimization of real power losses (Kumar et al., 2016), capacity optimization 

(Recioui, 2016), symmetric traveling salesman problem (Phu-Ang, 2018) are some of 

the applied studies published in the literature.  
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2.2.5.5. Black Hole Algorithm 

 

 Hatamlou (2013) developed an algorithm inspired by the black hole 

phenomenon. A black hole in space has enormous gravitational power that absorbs 

everything. BH starts with a randomly generated star population and a black hole 

becomes the best-so-far solution among all-stars. Later, according to the event horizon 

(the threshold for the distance between the star and the black hole) and a random 

number, the black hole starts to swallow up and in each iteration, a new located black 

hole is aimed which denotes a better optimal solution. Additionally, when there is a 

star absorbed by a black hole, a new random solution is generated until the population 

size remains the same. The authors asserted that BH has advantages in terms of both 

its simple structure and free-parameter tuning. However, Piotrowski et al. (2014) 

criticized BH that it is not a novel metaheuristic rather it is a simplified version of PSO 

and the only difference is the event horizon that limits the exploration ability; Gupta 

et al. (2016) compared BH with PSO and found out that PSO outperformed than BH. 

Many studies suggesting improvements have also been published, as the algorithm is 

immediately criticized. Jeet et al. (2016), Yaghoobi and Mojallali (2016) hybridized 

BH with Genetic Algorithm to prevent trapping into local optima; Wang et al. (2016) 

implemented Euclidean distance in the initialization of star locations to provide better 

exploration ability; Aslani et al. (2016) modified BH by introducing chaotic inertia 

weight for enhancing global searchability; Wu et al. (2017) proposed an adaptive BH 

that is less computational and has better intensification-diversification balance; 

Pashaei and Aydin (2017), García et al. (2017), Qasim et al. (2020) modified BH for 

binary variable problems; Gao (2017) presented a modified BH by implementing limit 

equilibrium mechanism; Xie et al. (2019) improved exploration and exploitation 

performance of BH by implementing Golden Sine and Levy Flight Operator 

respectively. Furthermore, BH and its improved versions have been utilized in 

problem-solving in various fields. For example, power flow optimization (Hasan and 

El-Hawary, 2014), job scheduling (Jeet et al., 2016), set covering (García et al., 2017; 

Soto et al., 2018), facility location and assignment problem (Veres et al., 2017), feature 

selection (Pashaei and Aydin, 2017; Qasim et al., 2020), a traveling salesman 

(Hatamlou, 2018), gene selection (Pashaei et al., 2019). 
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2.2.5.6. General Relativity Search Algorithm 

 

 Beiranvand and Rokrok (2015) developed GRSA as for global optimization 

approach inspired by Einstein’s General Relativity Theory. GRSA is handled under 

the Universe class rather than Newton’s Gravitational Law class. Because Einstein’s 

General Relativity Theory generalizes Newton’s Law of universal gravitation by 

explaining several effects that are unexplained by Newton's law. In GRSA, it is 

assumed that particles are moving in a non-gravitational space and they tend to be less 

active. This algorithm allows particles to move along geodesic trajectories in curved 

space and their velocities are calculated according to their energy momentums. 

Moreover, the velocities and the geodesic tangent are utilized for the determination of 

step length and step direction in the position-changing process. Although it presents a 

different principle, it has not been widely applied in the literature. Until now, Kumar 

et al. (2017) applied GRSA for Automatic Generation control; Ehsan-Maleki et al. 

(2018) utilized GRSA for parameter optimization in the design of WAPPSs.  

 

2.2.5.7. Multi-verse Optimizer 

 

 Another metaheuristic algorithm called Multi-verse Optimization has been 

developed by Mirjalili et al. (2016). MVO mimics the theory of multi-verse in physics 

which says that there is more than one universe and they can interact and collide with 

each other. Mirjalili et al. (2016) utilized white holes, black holes, and wormholes 

concepts that have distinctive characteristics and capabilities. White holes attract 

everything whereas black holes absorb and wormholes provide a connection between 

white and black holes. Moreover, each universe has an inflation speed which 

constitutes every component in it. Hence, these principles are employed in the 

modeling of the MVO algorithm. For example, the inflation rate is assigned to each 

universe (candidate solution) according to the fitness value, and when the rate is high 

enough the universe may have a white hole that denotes a better solution. Also, having 

white hole results in sending objects to universes that have black holes through 

wormholes. This process has been achieved by utilizing a roulette wheel procedure. 

Moreover, it would be better to mention that wormholes appear randomly unlike the 
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others, and ensure sudden changes in white and black holes to eliminate local optima 

stagnations. As seen in other algorithms as well, improved versions of MVO have been 

published. Meshkat and Parhizgar (2017) improved the performance of MVO by 

implementing an updated genetic reproduction scheme; Valenzuela et al. (2017), 

Abdel-Basset et al. (2019), Al-Madi et al. (2019) modified MVO for binary variables; 

Mirjalili et al. (2017), Geng et al. (2019), Elaziz et al. (2019) proposed multi-objective 

version of MVO; Ewees et al. (2019), Sahoo and Panda (2020) developed Chaotic 

MVO to avoid local optima stagnation and slow convergence; Wang et al. (2020a) 

presented a novel MVO that provides parallel sessions to avoid premature 

convergence; Abasi et al. (2020) enhanced the exploitation ability of MVO by 

introducing neighbor operator. Furthermore, the application fields could be 

summarized as power flow optimization (Bentouati et al., 2016), classification 

problem (Faris et al., 2016), feature selection (Faris et al., 2018), knapsack problem 

(Abdel-Basset et al., 2019), flow-shop scheduling (Wang et al., 2019a), damage 

detection (Ghannadi and Kourehli, 2020). 

 

2.2.6. Optic 

 

The algorithms inspired by optics are given in Table 8 in chronological order. 

Each algorithm will be handled according to the common principles and distinctive 

features respectively and application studies will be presented.  

 

Table 8: Metaheuristic Algorithms Inspired by Optics 

Algorithm Main Subjects Author(s) 

Light Ray Optimization (LRO) 
Optical phenomena - Refraction - 

Reflection - Position 
Shen and Li (2009) 

Ray Optimization (RO) 
Rays of light - Travels - Ray 

tracing 

Kaveh and 

Khayatazad (2012) 

Optics Inspired Optimization 

(OIO) 
Behaviors of light - mirror Kashan (2015a) 

 

2.2.6.1. Light Ray Optimization 

 

According to Fermat’s principle, a ray takes a path between two points in the 

least time. Therefore, Shen and Li (2009) developed the Light Ray Optimization 
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algorithm based on optical principles. This algorithm mimics the behavior of rays in 

an uneven transparent medium. The searching process starts with dividing the search 

space into rectangular grids in which light rays go at different velocities (Shen and Li, 

2010: 919). The propagation velocity of light rays is calculated as the objective 

function value of the center of the related grid and that the propagation path represents 

the searching path in the problem solution. Besides, refraction or reflection occurs 

while trans-passing the grids for searching the global optima according to the 

characteristics of the corresponding grid (Shen and Li, 2012: 435). Although LRO is 

one of the first algorithms inspired by optics, it does not attract much attention in the 

literature. Wang and Shen (2012) modified LRO for multi-objective problems; Shen 

and Li (2012) improved the local searchability of LRO by implementing a simulated 

annealing strategy are some of the studies focusing on LRO and its extensions.  

 

2.2.6.2. Ray Optimization 

 

 Another optic-inspired algorithm is RO developed by Kaveh and Khayatazad 

(2012). Unlike LRO, RO utilized Snell's light reflection law.  According to that law, 

refraction of light occurs, and the direction changes when rays of light move from a 

lighter medium to a darker medium. By exploiting this principle, the candidate 

solutions approach the global optimum in the RO algorithm. Different from other 

algorithms mentioned in this chapter, the RO algorithm handles high dimension 

problems by dividing solution vectors into 2 or 3-dimensional spaces and then joining 

them together. Also, RO utilizes a definite movement vector in case of being out of 

the search space. After proposing the RO to the literature, its modifications have been 

developed. Kaveh et al. (2013b) improved the RO algorithm for high dimensional 

problems by changing the procedure for the division of search space into 2 or 3 and 

the boundary violation rule;  Beirami et al. (2020) modified RO for the multi-objective 

problems. Moreover, RO has been also applied in designing truss structures (Kaveh et 

al., 2013b), damage assessment (Kaveh et al., 2014b), optimization of the thickness of 

granular layers in railway tracks (Esmaeili et al., 2015), layout and size optimization 

(Kaveh and Ghazaan, 2015), economic generation scheduling (Beirami et al., 2020).  
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2.2.6.3. Optics Inspired Optimization 

 

 OIO is another algorithm inspired by the law of reflection and it models the 

behavior of light and its interactions with instruments. According to the law of 

reflection, a concave surface makes the light be converged whereas, a convex surface 

makes the light diverge. By utilizing these principles metaphorically, Kashan (2015a) 

developed OIO which assumes that the surface of the objective function is a wavy 

mirror including peaks and valleys as convex and concave mirrors. Thereafter, a 

candidate solution (image) is generated based on the mirror equations adopted in 

optics. Moreover, Kashan (2015a) developed two variants of OIO as well. Since OIO 

has the ability to handle unconstrained optimization problems, Kashan (2015b) 

developed a modified version of OIO to handle constraints. In addition, Wang et al. 

(2017) proposed a Self-adaptive OIO for better convergence speed and accuracy; 

Wang et al. (2020b) proposed an estimation method that integrates Support Vector 

Machine and Quantum OIO. Besides the theoretical developments, some application 

articles as clustering and routing in wireless sensor network (Lalwani et al., 2017), 

traveling tournament (Alatas and Bingol, 2019), design of truss structures (Jalili and 

Kashan, 2019), scheduling of batch processing machine (Alizadeh and Kashan, 2019) 

have also been published.  

 

2.2.7. Others 

 

Until now, the physics-based algorithms classified in terms of their principles 

have been reviewed and summarized. In Table 9, physics-based algorithms that are not 

put into a class are listed. In the following, each one will be reviewed and its recent 

developments will be summarized.  

 

Table 9: Other Algorithms 

Principle Algorithm Main Subjects Author(s) 

Law of motion 

Gases Brownian 

Motion Optimization 

(GBMO) 

Gas molecule – Mass – 

Velocity – Radius of 

Turbulent  

Abdechiri et al. 

(2013) 

Ions motion 
Ions Motion Algorithm 

(IMO) 

Attraction  - Repulsion - 

Anions - Cations - 

Motion – Charged  

Javidy et al. 

(2015) 
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Law of 

Thermodynamics 

Heat Transfer Search 

(HTS) 

Heat - Temperature - 

Balance 

Patel and Savsani 

(2015) 

Newton’s Law of 

Cooling 

Thermal exchange 

Optimization (TEO) 

Heat - Temperature - 

Position 

Kaveh and 

Dadras (2017) 

Henry’s Law 
Henry gas solubility 

optimization HGSO) 

Gas-Liquid - 

Temperature -  

Hashim et al. 

(2019) 

Balance 
Equilibrium optimizer 

(EO) 

Control Volume- Mass-

Balance 

Faramarzi et al. 

(2020b) 

 

2.2.7.1. Gases Brownian Motion Optimization 

 

GBMO is an algorithm inspired by the law of motion and mimics the gas 

molecules according to their positions, masses, velocities, and radiuses of turbulent 

(Abdechiri et al., 2013: 2934). In GBMO, the temperature has a crucial role in setting 

up the balance between exploitation and exploration. Molecules in small masses 

denote better candidate solutions and they can move faster which provides good 

exploitation. Moreover, in the beginning, the molecules are in high-temperature space 

and they have kinetic energies for exploring search space with the help of Gases 

Brownian Motion. However, with a lapse of time, temperature decreases, and turbulent 

rotational motion provides local searchability. Therefore, it is clear that the power of 

GBMO lies under the policy of changing the roles of Gases Brownian Motion with 

turbulent rotational motion. Afterward, GBMO has been improved with different 

procedures. For example, Rathore and Roy (2014) applied GBMO in transmission 

network expansion planning problem; Rahchamani et al. (2019) proposed an adaptive 

neuro-fuzzy inference system for classification by utilizing GBMO; Zamani et al. 

(2016) applied GBMO for Fractional Order PID controller; Nayak et al. (2019) 

designed digital differentiator by GBMO.  

 

2.2.7.2. Ions Motion Algorithm 

 

 Javidy et al. (2015) developed the IMO algorithm that utilizes the behavior of 

ions towards each other in terms of their charges. Although various algorithms employ 

charged particles under the classification of “Newton’s Gravitational Law” and 

“Magnetism”, IMO does not belong to both classes. In IMO, ions are treated as the 

candidate solutions in two groups (anions: negative ions and cations: positive ions). It 
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is clear that an attraction may occur between these two groups and repulsion may occur 

within the groups. Namely, anions tend to move toward the best cation, whereas 

cations move toward the best anion. The magnitudes of the charges are calculated in 

terms of the objective function values and the movements that occur by considering 

their charges. Furthermore, for exploration and exploitation procedures two phases 

(liquid and solid) of ions are employed. The process of the transition from liquid to 

solid yields IMO to converge the global optimum. Afterward, modified versions have 

been published in literature asserting that they provide better performances. Wang and 

Ma (2018) improved the convergence speed and accuracy by implementing an 

opposition-based learning strategy and changing random perturbations in the solid 

phase. Wang et al. (2019b) eliminated the local optimum stagnation and premature 

convergence by introducing a cloud adaptive inertia weight quantum chaotic IMO 

algorithm. Buch and Trivedi (2020) modified IMO as Non-Dominated Sorting IMO 

which utilizes selective crowding distance and non-dominated sorting method to 

preserve the diversity of the best solutions set. Besides, IMO has also attracted 

attention in engineering applications such as optimization of Least Squares Support 

Vector Machine parameters for temperature compensation approach (Li et al., 2016); 

optimization of the pump position in a water distribution network (Tahani et al., 2019). 

 

2.2.7.3. Heat Transfer Search 

 

 HTS is an algorithm inspired by the law of Thermodynamics and it is 

developed by Patel and Savsani (2015). This algorithm is built on the concept of 

thermal equilibrium. According to that principle, any system always tends to reduce 

the thermal imbalance between the system (candidate solutions) and the surrounding 

(best solution) by conducting heat transfer in the form of conduction, convection, and 

radiation. HTS employs clusters of molecules that are at different temperature levels 

and represent variables and the energy levels of molecules are treated as the objective 

function value of a problem. HTS includes conduction, radiation, and convection 

phases with equal probability to neutralize thermal imbalance, respectively. If the 

updated solution has a better fitness value, it will be accepted and a greedy selection 

procedure will be employed. In addition, the balance between intensification and 
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diversification is controlled for each phase with the help of the factors used. After the 

algorithm is introduced to the literature, different versions have been presented as well 

as in others. Savsani et al. (2017) developed multi-objective HTS which includes a 

non-dominated sorting method and diversity preserving crowding distance approach. 

Tejani et al. (2019a) improved HTS by incorporating the interactions between 

molecules as well as with surrounding and by introducing the population regenerator 

procedure. Alnahari et al. (2020) solved a dynamic optimization problem in chemical 

engineering with the help of HTS which is modified in terms of simultaneous heat 

transfer search, quadratic interpolation method, and population regeneration 

mechanism. In addition to theoretical developments, optimization of truss structures 

(Degertekin et al., 2017; Tejani et al., 2019b; Kumar et al., 2020a), optimization of 

semi-active suspension system (Garg et al., 2017), economic dispatch problem (Hazra 

et al., 2018; Pattanaik et al., 2020), optimum design of distribution networks 

(Mohamadi et al., 2020) are some of the application studies published in the literature.  

 

2.2.7.4. Thermal Exchange Optimization 

 

 Kaveh and Dadras (2017) developed the TEO algorithm inspired by Newton’s 

law of cooling. This law states that the rate of heat loss of a body is proportional to the 

temperature difference between the body and its surroundings. Differently from SA, 

TEO employs the temperature of bodies as their position and new positions are 

determined by grouping the bodies with new temperatures. As a distinctive feature, 

TEO has thermal memory that saves best-so-far solutions and removes the worst 

objects at the same time to improve the performance. Since the algorithm has been 

introduced relatively new, it has not been studied much yet. A year after, Kaveh and 

Dadras (2018b) modified TEO by implementing an offline parameter-tuning method 

to identify structural damage. Kaveh et al. (2018b) eliminated shortcomings of TEO 

and applied it for the optimization of the design of skeletal structures. Afterward, Xing 

and Jia (2020) implemented the Levy flight algorithm to TEO to obtain a better 

exploration and exploitation balance for image segmentation.  
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2.2.7.5. Henry Gas Solubility Optimization 

 

 HGSO is another physics-based algorithm inspired by Henry’s Law (Hashim 

et al., 2019: 646). According to Henry’s Law, the dissolved gas amount in a liquid is 

proportional to the partial pressure of that gas in equilibrium with that liquid. In HGSO, 

the solubility can be affected by temperature and pressure. For example, the solubility 

of gasses increases at less temperature but in a high-pressure environment. This 

algorithm utilizes clustering after the initialization step. Although HGSO proposed 

relatively new, it attracts attention. Saranya and Saravanan (2020) modified HGSO by 

implementing langrage relaxation; Shehabeldeen et al. (2020) hybridized HGSO and 

Artificial Neural Network (ANN); Hashim et al. (2020) improved HGSO by inserting 

a new section for accurate detection of target motif. Besides, HGSO applied for feature 

selection (Neggaz et al., 2020), shape optimization of a vehicle brake pedal (Yıldız et 

al., 2020), parameter optimization of Support Vector Regression (Cao et al., 2020b). 

 

2.2.7.6. Equilibrium Optimizer 

 

 Faramarzi et al. (2020b) proposed EO as one of the most recently published 

physic-based algorithms. It is inspired by control volume mass balance models. It is 

assumed that each agent changes its position according to the equilibrium candidates 

which are the best-so-far solutions. Although EO has been presented this year, it takes 

too much attention and is cited more than 25 times within a couple of months. For 

instance, Gupta et al. (2020b) implemented Gaussian mutation and exploratory 

mechanism into EO; Wunnava et al. (2020) proposed another version of EO which 

provides an adaptive position update strategy. Furthermore, modeling of a fuel cell 

(Menesy et al., 2020); economic dispatch problem (Agnihotri et al., 2020); prediction 

of laser cutting parameters (Elsheikh et al., 2020) are the first application studies.  
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CHAPTER THREE 

THE PROPOSED ALGORITHM 

 

In this thesis, two optimization algorithms that are adapted from the thesis 

prepared by Erdem (2007) are proposed. The first one called Random Search with 

Adaptive Boundaries (RSAB) is an initialization algorithm that provides adaptive 

initial solutions rather than pure random. The main power of the proposed algorithm 

is the ability to eliminate the local optimums by narrowing the search space. However, 

the proposed algorithm is not the one that guarantees the global optimum solution. 

Indeed, it is a generic methodology that can be applied in the initialization stage of any 

algorithm for unimodal or multi-modal problems. In other words, it provides an 

adaptive initial solution for both continuous unconstrained/bounded and constrained 

nonlinear optimization problems demonstrated in Eq. (3.1) and Eq. (3.2) that may have 

many local optima.  

𝑀𝑖𝑛 𝑓(�⃗�) 

∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢], 𝑥𝑙 ∈ ℝ, 𝑥𝑢 ∈ ℝ                                         (3.1) 

𝑤ℎ𝑒𝑟𝑒 𝑓: ℝ𝑛 ⟶ ℝ 

𝑥 ∈  ℝ, �⃗� ∈ ℝ𝑛 

where �⃗� is the solution vector, 𝑥𝑙 and 𝑥𝑢 are the boundaries of the related 

variable, lastly 𝑓(�⃗�) is the objective function whether in a linear or non-linear form. 

𝑀𝑖𝑛 𝑓(�⃗�) 

Subject to 

𝑔𝑖(�⃗�) ≥ 𝑏𝑖 𝑖 = 1,2, … , 𝑘 

   ℎ𝑗(�⃗�) = 0 𝑗 = 1,2, … , 𝑙                           (3.2) 

∀𝑥 ∈ [𝑥𝑙 , 𝑥𝑢], 𝑥𝑙 ∈ ℝ, 𝑥𝑢 ∈ ℝ                                         

𝑤ℎ𝑒𝑟𝑒 𝑓: ℝ𝑛 ⟶ ℝ, 𝑔: ℝ𝑛 ⟶ ℝ 𝑎𝑛𝑑 ℎ: ℝ𝑛 ⟶ ℝ 

𝑥 ∈  ℝ, �⃗� ∈ ℝ𝑛 𝑎𝑛𝑑 𝑘, 𝑙 ∈ ℵ 

where �⃗� is the solution vector, 𝑘 is the number of inequality constraints, 𝑙 is the 

number of equality constraints, 𝑥𝑙 and 𝑥𝑢 are boundary constraints, and all the 

functions could be linear or non-linear. 

The second algorithm is called Repulsive Forces (REF). Since the main 

principles depend on Newton’s General Gravity Law and Coulomb’s Law, that 
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algorithm can be regarded as a physics-based algorithm. REF model uses Coulomb’s 

Law to implement the repulsive structure of the particles in that particles are like 

charged. Different from the other algorithm, the REF algorithm aims to reach 

optimum-like solutions by constraint-handling abilities.  

In the following subsections, the details of both algorithms are explained. The 

pseudo-codes and their principles are given. 

 

3.1. RANDOM SEARCH WITH ADAPTIVE BOUNDARIES (RSAB) 

 

In this section, we introduce an algorithm that provides an adaptive initial 

(better than pure random initial) solution for continuous nonlinear optimization 

problems that may have many local optima. It is structured as a generic methodology 

that can be applied in the initialization stage of any algorithm for unimodal or multi-

modal problems. The stages of this algorithm were converted from the codes that 

Erdem (2007) prepared in Visual Basic. However, some structural changes have been 

implemented for the dynamic procedure used in the updated domains of variables in 

this thesis.  

The RSAB algorithm depends on updating given upper and/or lower intervals 

dynamically (i.e., boundaries iteratively). The main procedure includes two steps. The 

first step is called “Determine Intervals”. In this step, a search space is constituted by 

using the domain of decision variables used in the problem. This step provides 

determined intervals that satisfy boundaries or constraints for each variable. 

Thereafter, an initial solution is obtained by evaluating constraints if any. After the 

first run, a better solution is tried to be obtained in each iteration. The second step 

called “Update Intervals” depends on updating the intervals in terms of best-so-far 

solutions to reach a better solution. The pseudo-code of the algorithm and the detailed 

codes of updating interval are given below, respectively. Figure 16 shows the general 

pseudo-code and it starts with determining intervals. In Figure 17, the pseudo-code of 

“Determine Intervals” is given. Although the general flow is adapted from Erdem 

(2007), the approach for finding upper and lower limits is modified as explained 

below. 
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Figure 16: The Pseudo-code of Random Search with Adaptive Boundaries 

 

 

 

In the first step, the search space is determined by considering given boundaries 

of variables regardless of having constraints. The lower limit and the upper limit are 

found out by checking concurrently all boundaries in an iterative manner. In the case 

of constrained problems, all constraints are considered for each variable. It is worth 

mentioning that, since evaluating boundaries as constraints in the “Determine 

Intervals” step wastes time in visual basic codes, boundaries defined in the 

optimization model are excluded from evaluating loop. Instead, boundaries are 

considered as initial limits directly before checking constraints. 

Finding an upper limit or lower limit depends on the current boundaries of the 

variables except the related one. The only rule is that constraints should not be in the 

form of a numerator/denominator. The details of these two functions are given below: 

Find Upper Limit: 

• Replace the related variable with “x” and replace all the others with “lower limits” 

• If the sign of the related variable is positive while the others are negative: 

Replace the related variable with “x” and replace all the others with “upper limits” 

 

 1:  Determine intervals (Initial Limits) 

 2:  Create initial 1000 sized random solution vectors       

 3:  For each solution vector       

 4:         Evaluate constraints 

 5:  For each iteration         

 6:         If Improvement = FALSE 

 7:              Initial Limits 

 8:              If unconstrained problem 

 9:                   Update intervals by using the midpoint 

10:                 Else 

11:                   Update intervals by using the holdbest 

12:         Else 

13:              If unconstrained problem 

14:                   Update intervals by using the holdbest 

15:                 Else 

16:                   Update intervals by using the midpoint  

17:         For each variable 

18:                Create random values based on new intervals 

19:         For each solution vector 

20:                Evaluate constraints 

21:         Store Updated Interval 

22:  Loop Until maximum iteration given 

23:  For each variable 

24:      Calculate means, modes, medians of lower-upper limits 

25:      Updated Lower Limit = min (Mean_L, Mode_L, Median_L)  

26:      Updated Upper Limit = max (Mean_U, Mode_U, Median_U) 
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Find Lower Limit: 

• Replace the related variable with “x” and replace all the others with “upper limits” 

• If the sign of the related variable is positive while the others are negative: 

Replace the related variable with “x” and replace all the others with “lower limits” 

After replacing the variables, finding root operation is conducted. If the root is 

in the determined intervals, the new lower or upper limit is updated before considering 

the other constraint. This process continues until all constraints are reviewed. In the 

end, the maximum value in a lower limit set and the minimum value in an upper limit 

set will be stored as determined intervals of variables. 

 

Figure 17: The Pseudo-code of “Determine Intervals” 

 1: Create Intervals by considering boundaries 

 2: If constrained problem 

 3:    For each variable 

 4:       For each constraint 

 5:         If sign <= 

 6:            If rhs >= 0 

 7:               If all variables are positive sign 

 8:                  Find_upper_limit 

 9:               Else 

10:                  Find_coefficient 

11:                  If coefficient > 0 

12:                     change = TRUE 

13:                     Find_upper_limit 

14:            Else 

15:               If not all variables are positive sign  

16:                  Find_coefficient 

17:                  If coefficient < 0 

18:                     Find_lower_limit 

19:         Else 

20:            If rhs >= 0 

21:               If all variables are positive sign 

22:                  Find_lower_limit 

23:               Else 

24:                  Find_coefficient 

25:                  If coefficient > 0  

26:                     change = TRUE 

27:                     Find_lower_limit 

28:            Else 

29:                If not all variables are positive sign 

30:                   Find_coefficient 

31:                   If coefficient < 0 

32:                      Change_negative_signs 

33:                      Find_upper_limit  

*rhs = Right-hand side value of the constraint 
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After determining intervals, firstly 1000-sized random solution vectors are 

generated for once concerning equal chances according to the boundaries of variables 

in the hyperspace that has dimensions as much as the number of variables in the 

optimization model. To some extent, this method has been inspired by the “Scatter 

Search Algorithm” by Glover (1999). The pseudocode for the initialization is given in 

Figure 18.  

 

Figure 18: The Pseudo-code of Generating Random Numbers 

k = int (4 * random () + 1) 

If k = 1: 

     x𝑖 = ((𝛿𝑖
+ − 𝛿𝑖

−)/4) ∗ 𝑟𝑎𝑛𝑑𝑜𝑚() + 𝛿𝑖
− 

Else if k = 2: 

     x𝑖 = ((𝛿𝑖
+ − 𝛿𝑖

−)/4) ∗ 𝑟𝑎𝑛𝑑𝑜𝑚() + (𝛿𝑖
+ − 𝛿𝑖

−)/4 + 𝛿𝑖
− 

Else if k = 3: 

     x𝑖 = ((𝛿𝑖
+ − 𝛿𝑖

−)/4) ∗ 𝑟𝑎𝑛𝑑𝑜𝑚() + 2 ∗ (𝛿𝑖
+ − 𝛿𝑖

−)/4 + 𝛿𝑖
− 

Else: 

     x𝑖 = ((𝛿𝑖
+ − 𝛿𝑖

−)/4) ∗ 𝑟𝑎𝑛𝑑𝑜𝑚() + 3 ∗ (𝛿𝑖
+ − 𝛿𝑖

−)/4 + 𝛿𝑖
− 

 

Where 𝛿𝑖
−, 𝛿𝑖

+: Boundaries of each variable; 𝑥𝑖: Generated random number for 

ith variable; random (): A function generates random number between [0,1].  

 

Figure 19: Initial Particles (2-Dimension) 

 

Source: Prepared by the author 

 

A demonstration of generated particles is shown in Figure 19. This step also 

includes evaluating each particle individually in terms of their goal function values. It 

means that not only objective function value is calculated but also the amount of like 

charge for each particle is determined in the employer model so that repulsive forces 

can be assessed. In the case of unconstrained problems, the constraint satisfied rate is 
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taken as “1” and the maximum deviation as 0 directly. However, in the case of 

constrained problems, a penalty approach (explained in the REF algorithm section) is 

used. Among them, the best-so-far solution is stored as “holdbest”. In the first iteration, 

it is assumed that a better solution is not reached. 

Subsequently, the “Update Intervals” step is ready to be implemented. This 

step is designed to obtain robust and stable solutions. The underlying purpose of that 

step is to eliminate unnecessary search space that does not include the global optimum 

solution. The details of “Update Intervals” which includes two approaches are given 

in Figure 20-21 in the following.  

 

Figure 20: The Pseudo-code of Update Intervals by Using Midpoint 

1: For each variable 

2:    Calculate mid_point 

3:    If xbestsofar < mid_point 

4:       δ𝑛𝑒𝑤
−  = δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑

−  

5:       δ𝑛𝑒𝑤
+  = mid_point 

6:    Else 

7:       δ𝑛𝑒𝑤
−  = mid_point 

8:       δ𝑛𝑒𝑤
+  = δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑

+  

 

where mid_point is the middle point of the related variable interval, xbestsofar is 

the best-so-far value of the related variable, 𝛿−, 𝛿+ are the lower-upper limits. Update 

interval by using midpoint is running when there is no improvement for unconstrained 

problems and when there is an improvement for constrained problems. Since there are 

no restrictions in unconstrained problems, focusing on the holdbest may cause a wrong 

direction in case of no improvement. Furthermore, updating intervals by using 

midpoint helps unconstrained problems to converge the right area faster.  

 

Figure 21: The Pseudo-code of Update Intervals by Using Holdbest 

1: For each variable 

2:     𝑑𝑢 = δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑
+ − xbestsofar 

3:     𝑑𝑙 = xbestsofar - δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑
−  

4:     If 𝑑𝑢 > 𝑑𝑙 

5:        δ𝑛𝑒𝑤
−  = δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑

−  

6:        δ𝑛𝑒𝑤
+  = xbestsofar + 𝑑𝑙 

7:     Else 

8:        δ𝑛𝑒𝑤
−  = xbestsofar – 𝑑𝑢 

9:        δ𝑛𝑒𝑤
+  = δ𝑢𝑝𝑑𝑎𝑡𝑒𝑑

+  



70 
 

where 𝑑𝑢 is the distance between best-so-far value and upper limit of related 

variable, 𝑑𝑙 is the distance between the best-so-far value and the lower limit of the 

related variable. Updating intervals by using holdbest is running when there is an 

improvement for unconstrained problems and when there is no improvement for 

constrained problems. Since the ability of the penalty approach is a strength, focusing 

on holdbest in updating intervals improves the solution when there is no improvement 

for constrained problems. On the other hand, when there is an improvement updating 

intervals by considering holdbest provides better convergence for unconstrained 

problems.  

Consequently, the updated intervals are stored until the maximum iteration is 

reached. The final updated intervals are determined by considering all generated 

intervals for having robust, stable solutions. For that reason, mean-mode-median 

values of lower and upper limits are calculated. In the end, the minimum of lower 

limits and the maximum of upper limits will be the final updated intervals for the 

related problem.  

 Mean_L = The mean value of lower limits for the related variable 

 Mode_L = The mode value of lower limits for the related variable 

 Median_L = The median value of lower limits for the related variable 

 Mean_U = The mean value of upper limits for the related variable 

 Mode_U = The mode value of upper limits for the related variable 

 Median_U = The median value of upper limits for the related variable 

Updated Intervals = [Min (Mean_L, Mode_L, Median_L), Max (Mean_U, 

Mode_U, Median_U)] 

It is worth mentioning that there is a parameter using dynamically. Generally, 

the algorithms use constant set size/ population in literature, however, in our random 

search algorithm the set size can be changed according to the counter parameter. This 

feature reveals the difference of the RSAB algorithm from other algorithms in the 

literature. If there is no improvement in fitness value, the θ parameter is also increasing 

as the counter. However, the increasing amount is another parameter that can be 

modified. If there is an improvement, the counter remains the same as the last value, 

otherwise, the set size is increased by the defined amount. 
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In this algorithm there is no stopping criterion, instead, it will continue until 

the last iteration. However, for further studies, different stopping conditions can be 

considered. It would be better to clarify that the RSAB algorithm is not an algorithm 

that provides optimum-like solutions. It aims to narrow the search space without 

trapping local optimums and provides reduced candidate solutions to the main 

algorithms. In other words, the RSAB algorithm is thought of as an initialization 

algorithm before reaching the optimum-like solutions.  

 

3.2. REPULSIVE FORCES ALGORITHM (REF) 

 

In this part, an algorithm based on repulsive forces of particles is presented and 

it is called the Repulsive Forces Algorithm (REF). That method is a revised version of 

the algorithm introduced by Erdem (2007). It takes into account the natural forces that 

cause repulsion between bodies such as atomic and sub-atomic particles that may be 

like electrical charged, polarized in that their impact may cause shifting to the new 

locations and of course new minimum objective function value. These natural facts 

focus especially on physical and chemical phenomena as explained in the following 

section. Thereafter, the pseudo-code of the algorithm and its initialization, 

neighborhood, repulsive forces, displacement, duplication principles of the REF 

algorithm are given in the following sections.  

 

3.2.1. Theoretical Background 

 

In nature, there is much evidence for optimization that is encountered as a 

minimum energy state, equilibrium point, zero compound forces. Based on these 

inspirations, many physics and chemistry-based optimization algorithms have been 

proposed especially after the year 2000. According to the literature of physics-based 

algorithms given in the second chapter, it is seen that the motions, interactions, or 

dynamics of the particles that occurred in nature are used as inspirations. However, 

magnetism, quantum, and universe concepts are utilized as inspirations for physics-

based algorithms in general.  
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In the REF algorithm, Coulomb’s Law is used to implement the repulsive 

structure of the particles. The question to be answered by this model is to find the value 

of charged units in terms of the solution points, the distance between the particles, and 

the assignment of the Coulomb’s Constant that changes whether dynamically or 

statically. According to Coulomb's Law (Coulomb, 1785) between the two 

identical/opposite charged units, they attract or repel each other due to their electrical 

charge amount proportionally, polarity directionally, distance as inverse 

proportionally. The Coulomb Constant is similar to Universal Gravity Constant which 

is used in Newton’s General Gravity Law. Moreover, the impact of the distance factor 

can be explained by Inverse Square Law proposed by Newton (Newton, 1999: 238). 

The calculation of forces is demonstrated in Table 10. 

 

Table 10: Newton’s General Gravity versus Coulomb’s Law 

Newton’s General Gravity Law Coulomb's Law 

𝐹 = 𝐺
𝑚1𝑚2

𝑑2
 𝐹 = 𝑘

𝑄1𝑄2

𝑑2
 

G: universal gravity constant 

m1, m2: the mass of two bodies 

d: the distance between two bodies 

k: Coulomb’s Constant. 

Q1, Q2: electrical charge of two units 

d: the distance between two elementary units 

 

REF algorithm will stop when it reaches some predefined steady state. The 

question on the stopping condition is to find the level of zero or near zero combined 

net force exerting to each particle. This principle can be explained with equilibrium 

states in thermodynamics. The word meaning implies a state of balance which means 

all elements in a system have the same value whether it is temperature or pressure. 

There are various kinds of equilibrium such as thermal, mechanical, chemical, phase. 

Each principle asserts a state of balance in terms of different indicators (Çengel et al., 

2019: 14). Universal gravity, atomic and molecular structure, and magnetism sing the 

same song. They state something about forces and energy levels. Some particles may 

be suffered all the effects and of course forces. These forces influence the particles 

until a new equilibrium point in terms of combined forces by extracting some amount 

of energy that can be potential, kinetic, heat, chemical, and electrical. 

Moreover, in nature, nobody can control the instant location of atomic particles 

uniquely because of the uncertainty of locations. This is explained by Heisenberg's 

Uncertainty Principle in Quantum Mechanics (Busch et al., 2007: 155). The 
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uncertainty principle is adapted to the REF model in that initial scattering is selected 

as a random process and exact locations of the particles should be calculated with some 

uncertainty (i.e., probability) that should not be taken place in the model significantly. 

Besides, Pauli’s Exclusion Principle is another principle utilized in REF. 

According to that principle, no more than one particle can exist in the same state. This 

means that none of the particles can have the same repulsive forces. REF method 

ensures diversification like Tabu Search (Glover, 1989; Glover, 1990) and Scatter 

Search (Glover, 1999) especially at early stages before converging to the global 

optimum by giving no extra effort rather than applying repulsive forces. 

All particles tend to move to a new location under the forces if it is a better 

place. Displacements of each particle are calculated by considering the Law of 

Momentum in that total momentum must be conserved. The unit displacement is 

structured by considering Newton’s Second Law (Chandrasekhar, 2003: 18). 

 

3.2.2. Assumptions of REF 

 

REF algorithm is a population-based algorithm inspired by the principles 

mentioned above. It is assumed that the particles represent solution vectors and the 

global optimum solution is aimed to be reached by considering the interactions of 

particles in terms of their charges and distances. Other assumptions considered in REF 

are listed below. 

 Solution points are assumed as like particles that repel each other; they are 

differently charged elementary particles (i.e., magnitude of charges). 

 Particles move in hyperspace through only a path but not like a wave. 

 Magnitudes of particles are determined through corresponding objective 

function values. 

 Amount of replacements are computed by momentum law where both 

magnitudes of the particles and distance between the particles are considered 

as well as the direction of the particles after exerting the repulsive forces. 

 No attractions and merging are allowed for particles.  

 Repulsive forces occur between the solution point and its neighbors.  
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 No negative improvements are allowed, which means that if the new location 

after the repulsive effects on a selected particle has a higher energy level, it is 

assumed that the particle is forced to a higher energy level immediately back 

to its previous stationary state by emitting the energy.  

 The stopping conditions of the algorithm will not meet if the desired 

improvements and number of iterations are satisfied. 

 If a particle has greater ∆𝑥 than it must be, it is assumed that as if particle hits 

the wall of the constrained boundaries and goes back until ∆𝑥𝑖
𝑘+1 < 𝑥𝑖

𝑘/2. 

Therefore, the only remainder of ∆𝑥𝑖
𝑘+1 is available to use. 

 The multiplicative penalty-based method is used for constraint handling. 

 No particle can be found at the same location up to a certain degree of precision. 

 The best position of each particle in the population is maintained, and with each 

relocation, an attempt is made to reach a better than "best-so-far" position. 

 Each particle produced in the related run, whether it is a better solution or not; 

saved in a database. Thus, extra function evaluation will not be required for a 

previously evaluated particle. 

 

3.2.3. The Pseudocode of the Algorithm 

 

Before explaining each step of the REF algorithm, the pseudo-code of the 

algorithm is given in Figure 22. REF algorithm comprises Determine Intervals, 

Initialization, Multiplicative Penalty based Method, Repulsive Forces, Neighborhood, 

Displacement and Duplication check steps, respectively. Determine Intervals and 

Initialization steps are handled in the “Random Search with Adaptive Boundaries” 

algorithm section. The remaining modules will be mentioned in the following.  
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Figure 22: The Pseudo-code of REF Algorithm 

 

REF algorithm utilizes memory for two purposes. The first one is the creation 

of a database. Each particle is recorded in a memory along with the evaluation scores 

(constraint satisfied rates, total deviations). This procedure is inspired by the principle 

that each step in the Tabu Search algorithm is kept in a "history" mechanism and the 

repetition of previous solutions is prohibited by looking at this memory (Glover, 1989). 

However, in the REF algorithm, memory is used not as a banned list, but to get rid of 

unnecessary repetitive function evaluations. The second one is about recording the 

best-so-far positions of the particles. This approach is inspired by the elitism principle 

in the literature. The Elitism principle is one of the selection techniques that saves the 

best solution in the population to eliminate the risk of losing the best solution between 

iterations (Simon, 2013: 188). In the REF algorithm, best-so-far solutions of every 

particle are stored in order not to lose them in case of displacements. However, 

differently from the original elitism principle, there is no limitation for the number of 

elitist particles. Namely, the best-so-far particles are kept separately from the relocated 

particle set. 

 

3.2.4. Multiplicative Penalty based Method (MUPE) 

 

As stated by Erdem (2007), the early study by Yokota et al. (1995); Deb (2000); 

Coello (2002); Oyama et al. (2005) motivated and led as for penalty approach 

developed for the REF algorithm. The traditional approach for constraint handling for 

the single objective nonlinear programming is based on penalty functions where the 

fitness of a design candidate is determined based on a new aggregate function F, which 

 1: Determine Intervals 

 2: Create Initial Particles 

 3: Evaluate Constraints 

 4: For Each Iteration 

 5:      Until stopping condition is met 

 6:      For Each Particle 

 7:          Find Neighbors 

 8:          For Each Neighbor 

 9:              Find Incremental Replacements 

10:              If f(x) reduces Go to New Location 

11:              Update New State 

12:      Check Duplication 
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is a weighted sum of the objective function value and the amount of design constraint 

violations. 

In the REF algorithm, a multiplicative penalty approach is used for handling 

constraints. The multiplicative penalty-based constraint handling (MUPE) method 

developed by Erdem (2007) assumes that the goal function employs a single objective 

function to be minimized under the constraints to be satisfied that are joined in an 

objective function as in other penalty-based methods. In the case of 

unconstrained/boundary conditions, the goal function would be the objective function 

itself. Herein goal function combines both objective function and all constraints if it is 

a constrained nonlinear optimization. In this situation, objective function has three 

goals that can be expressed as: 

 Goal 1: Minimize or maximize 𝑓(�⃗�) 

 Goal 2: Minimize the total deviations from all constraints 

 Goal 3: Maximize the ratio of the satisfied constraints 

Here Goal 2 and Goal 3 provide a benchmarking on the condition that two 

infeasible solution points that have different constraint violation level in terms of both 

Goal 2 and Goal 3. Goal 2 deals with the relative summary measure of constraint 

violations of solution points. On the other hand, Goal 3 incorporates the ratio of 

satisfied constraints among overall ones. It can be concluded that selecting the “a 

solution point that has great violation on a single constraint but the others satisfied” 

against “a solution point that has little violations for all the constraints” is a 

benchmarking interest of this method. If all of the constraints were satisfied for the 

two solution points, Goal 1 would be the only criteria for comparing these solution 

points. Experimental studies will give us acceptable results on benchmarking and 

trade-offs about weighting values among these three parts.  

Apart from the previous studies, the MUPE method is interested in not only the 

ratio of satisfied constraints but also the total amount of violations regarding 

corresponding upper or lower constrained values. If the goal function acts as a heuristic 

function of the model of the combined objective function to be minimized, then the 

general form of the proposed heuristic fitness function will be: 

 𝐻(�⃗�) = 𝐻(𝑓(�⃗�), 𝑑(�⃗�), 𝑡(�⃗�))                                                             (3.3) 

where 
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𝑓(�⃗�): objective function to be minimized/maximized 

𝑑(�⃗�): the total amount of violations of the constraints 

𝑡(�⃗�): the ratio of the satisfied constraints 

The total amount of violation is calculated as a relative violation according to 

the right-hand-side value of the related constraints. In case of less than 1.00E-11 

deviation in the constraints, the candidate solution is considered feasible.  

  𝑑𝑖 = {
−|𝑔𝑖(�⃗�) − 𝑏𝑖|/𝑏𝑖,   𝑏𝑖 ≠ 0

−|𝑔𝑖(�⃗�) − 𝑏𝑖|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (3.4) 

It is worth noting that, each goal is considered according to different 

importance scores, namely constants (c1, c2, c3). Additionally, the sign of the objective 

function value is added to this heuristic function as multiplication as well. The pseudo-

code for the calculation of the heuristic fitness function is given in Figure 23. 

 

Figure 23: The Pseudo-code of Heuristic Fitness Function 

 1: If 𝑓(�⃗�) > 0 
 2:    goalSign = 1 

 3: Else  

 4:    goalSign = -1  

 5: Goal1 = |𝑓(�⃗�)|(𝑐1) 

 6: If |𝑑(�⃗�)| < η 

 7:    Goal2 = 
1

e(c2d(x⃗⃗⃗)) 

 8: Else 

 9:    Goal2 = λ 

10: If goalSign =1   

11:    Goal3 = 
1

𝑡(𝑥)(𝑐3) 

12: Else 

13:    Goal3 = 𝑡(�⃗�)(𝑐3) 

14: fitness = goalSign * Goal1 * Goal2 * Goal3 

*For maximization problems; Goal1, Goal2, and Goal3 should be considered inverse. 

 

where η is a defined total amount of deviations from constraints, λ (1.0E+100) 

is the penalty score for deviation in case of the total amount of deviation is bigger than 

η.  
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3.2.5. Repulsive Forces on Particles 

 

When the particles take their places in hyperspace by their randomly assigned 

values in the initialization part, they start to repulse each other according to their 

forces. Repulsive forces are exerted on each particle employing Equation 3.5 where 

𝑓(𝑥𝑖⃗⃗⃗⃗ ) corresponds to the amount of charge as similar to Coulomb’s 𝑄𝑖.  

𝐹 = 𝐶
𝑓(𝑥𝑖⃗⃗ ⃗⃗ )𝑓(𝑥𝑙⃗⃗ ⃗⃗ )

𝑑𝑖𝑙
2                                                                                                         (3.5) 

where F is a repulsive force between i and l particle; C is a repulsive force constant; 

𝑓(𝑥𝑖⃗⃗⃗⃗ ), 𝑓(𝑥𝑙⃗⃗⃗⃗ ) are the fitness values of particle i and l respectively; dil is the Euclidean 

distance between particle i and particle l and the calculation is demonstrated below.  

𝑑𝑖𝑙 = √∑ (𝑥𝑖𝑛 − 𝑥𝑙𝑛)2𝑛
1 = √ (𝑥𝑖1 − 𝑥𝑙1)2 + (𝑥𝑖2 − 𝑥𝑙2)2 + ⋯ + (𝑥𝑖𝑛 − 𝑥𝑙𝑛)2       (3.6)           

 

3.2.6. Neighborhood 

 

After calculating the fitness values of each particle, neighbor sets are 

constructing for each solution set. However, the determination of the number of 

neighbors is also another issue to be addressed. According to Pareto’s Principle, 

roughly 80% of the effects come from 20% of the causes (Sanders, 1987: 37). Namely, 

when neighborhood vectors are sorted in descending order, the magnitudes of forces 

decrease sharply after 2nd-5th vectors. For that reason, we prefer to ignore the rest of 

them. Moreover, when the number of variables is large finding neighbors for each 

particle becomes very time-consuming. Therefore, the number of neighbors must be 

limited. In the REF algorithm, the best (the closest) two neighbors for each particle are 

stored for the next steps. The positions of particles visualizing the process of choosing 

neighbors are given in Figure 24. This means that the most three closest particles are 

determined as neighbors of the corresponding particle. Thereafter, these neighbors are 

utilized for the displacement procedure of the particle.  
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Figure 24: Neighborhood 

 

Source: Prepared by the author 

 

3.2.7. Displacement 

 

After identifying neighbors, new locations of each particle must be calculated 

by considering the Impulse-Momentum Law in that total momentum must be 

conserved. Particles are assumed as the same charge not as magnitude but as a pole 

that is why all the interactions between neighbors are repulsive as demonstrated along 

one dimension. 

 

Figure 25: The Pseudo-code of Displacement 

 1: For each particle 

 2:     Find Neighbor 

 3:     For each Neighbor 

 4:         Do 

 5:            For each dimension 

 6:                Calculate the unified net force 

 7:                If improvement=True 

 8:                   Update New State 

 9:                   Update amount of displacement 

10:         While improvement=True 

 

After all the repulsive forces exerted on the selected particle 𝑥𝑖⃗⃗⃗⃗ , the unified (or 

compound) net force is calculated, and the new location of the selected particle is 

demonstrated as shown in Figure 26. Therefore, the distance between 𝑥𝑖⃗⃗⃗⃗  and �⃗�𝑖
′ is equal 

to the net displacement for the selected particle. 
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Figure 26: Displacement of The Particle 

 

Source: Prepared by the author 

 

REF algorithm employs Pauli’s Exclusion Principle as a diversification 

procedure on the principle that two particles cannot occupy the same state in a closed 

system. Thus, particles can explore hyperspace without sticking to one point. Indeed, 

REF guarantees the dissimilarity not only for different charges 𝑓(�⃗�) in similar 

locations but also similar charges in different locations. This situation can be satisfied 

by controlling and finding new iterative locations for particles via repulsive forces.  

In line with the net force, the particles are exposed, they can go to their new 

location in case it is a better position. If the possible location of the particle has a worse 

fitness value; the particle retains its current position. It would be better to clarify that 

particles can move within the allowed space which is determined by the boundary 

constraints of variables.  

Once each particle decides its neighbors, displacements for each particle must 

be calculated by considering the impulse-momentum theorem in that total momentum 

must be conserved. Particles are assumed as the same charge not as magnitude but as 

a pole that is why all the interactions between neighbors are repulsive as demonstrated 

along one dimension. This means that any attraction between particles is not allowed. 

In Figure 27, a demonstration is given for the repulsive forces along one dimension. 
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Figure 27: Repulsive Forces Along One-Dimension 

 

Source: Erdem, 2007: 60 

 

∑ 𝑚𝑣 = 0,   ∑ 𝑚
Δ𝑣

Δ𝑡
= 0                                                                                                  (3.7) 

According to the formulation given in Equation 3.6 (Holzner, 2011: 190), 

fitness values and relocation can also be used as m and velocity change respectively. 

However, in our approach time is omitted and revised as shown below: 

∑ 𝑓𝑖Δ�⃗�𝑖 = 0                                                                                                                    (3.8) 

Since it is known by Newton’s Third Law (Newton, 1999), two repulsive forces 

𝐹𝑥1
 and 𝐹𝑥2

 are equal to each other, the displacement depends on the current value of 

the particles. After having done the computations for all the displacements, for all 

neighbors in all dimensions in the hyperspace, each particle has a new state in both 

magnitude and direction. 

 𝑥𝑖
𝑘 =  𝑥𝑖

𝑘−1 + [Δ𝑥𝑖
𝑘−1𝛼 + 𝑥𝑏

𝑘−1(1 − 𝛼)], 𝑖 = 1, 2, . . , 𝑛                                                    (3.9) 

where n is the number of dimensions and k is the iteration number,  

As mentioned above, relocation runs when the new possible location has a 

lower fitness value for each particle which is given below: 

𝑓(𝑥𝑖
𝑘) < 𝑓(𝑥𝑖

𝑘−1)                                                                                                           (3.10) 

All particles have the intention to lower energy levels by changing their 

locations but that is not to say global minimum-level, it may be saddle point, as in the 

quantum state in the natural processes.  

The first iteration is completed after all the repulsions are considered for each 

particle in hyperspace. After the effect of the compound/net forces exerting on a 

particle, the unit displacement may be found by the momentum law. The amount of 

displacement for a given particle that is forced by compound forces (i.e., net forces) 

would be proportional to related dimensional force and its mass (i.e., objective 

function value) as shown below. 
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∆𝑥𝑖
′ =

𝐹
∆𝑥𝑖

2

𝑟2

𝑓(𝑥𝑖)
=

𝐹

𝑓(𝑥𝑖)
 
∆𝑥𝑖

2

𝑟2
                                                                                                               (3.11) 

After all final locations are determined for each particle in hyperspace, the first 

iteration is completed. These process chains are repeated until no remarkable 

movements and displacements occur. However, if a particle on the new location is 

under the effect of repulsive forces still, it changes its location as a small increased 

amount of displacement as shown in Eq. (3.12). 

𝛥𝑥𝑖
𝑘 = 𝛹𝛥𝑥𝑖

𝑘−1                                                                                                       (3.12) 

where Ψ ∈ [1.01,1.1] and a subjective parameter. In case of improvements 

𝛥𝑥𝑖
𝑘−1 continues to be multiplied by Ψ. After considering the forces caused by the 

neighbors, the unified net force is checked lastly and in case of remarkable change, 

new locations for particles are determined. 

 

3.2.8. Duplication 

 

As a diversification procedure, the REF algorithm employs Pauli’s Exclusion 

Principle that two particles cannot occupy the same state in a closed system. Thus, 

particles can explore hyperspace without trapping into a single point. Indeed, REF 

guarantees the dissimilarity not only for different charges 𝑓(�⃗�) in similar locations but 

also similar charges in a different location. This situation can be satisfied by 

controlling and finding new iterative locations for particles via repulsive forces. 

After each particle in the population moves to a new location as a result of the 

effect of its neighbors, duplication control is made in the population to meet Pauli’s 

Exclusion principle. However, a degree of precision is important to determine if the 

particles are in the same location. In our experiments, locations are assumed as 

duplication in case of first three digits are the same. In such cases, the following 

procedures are applied to determine the new position of the same particle heuristically. 

The new location is determined within the updated domain by considering the best-so-

far particle. At this point, the updated range is used instead of the originally defined 

range because of the balance between diversification and intensification. While 

duplication check provides diversification, repositioning in a wide range can create too 

much diversity which disrupts the balance. For this reason, making the repositioning 
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around the best-known solution has an intensification purpose to balance the 

exploration-exploitation ability of the REF algorithm. The updated domain for each 

variable is calculated as below: 

 

Figure 28: The Pseudo-code of Update Interval 

 1: For each variable 

 2:     randInterval = (0.21*log(random()+0.009)+1)* xbestsofar 

 3:     If 𝛿−<(xbestsofar – randInterval) < 𝛿+ 

 4:        δ𝑛𝑒𝑤
−  = xbestsofar – randInterval  

 5:    Else      

 6:        δ𝑛𝑒𝑤
−  = 𝛿− 

 7:    If 𝛿−<( xbestsofar + randInterval) < 𝛿+      

 8:        δ𝑛𝑒𝑤
+  = xbestsofar + randInterval  

 9:    Else       

10:        δ𝑛𝑒𝑤
+  = δ+  

 

 where 𝛿− and δ+ are the determined lower-upper limits in the beginning; 

𝛿𝑛𝑒𝑤
−  and 𝛿𝑛𝑒𝑤

+  are the updated lower and upper limits; randInterval is a random 

number and xbestsofar is the variable value in the best solution so far. It is worth 

mentioning that, duplication is checked for each new location found. This procedure 

continues until there is no more than one particle left from the same location. 

 

3.2.9. Stopping Condition 

  

The stopping condition is related to the number of function evaluations (FES). 

The pseudocode for the stopping condition is given in Figure 29. Although there is a 

limit for the number of function evaluations, the algorithm will stop in most of the 

cases where the main stopping condition is met. 
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Figure 29: Stopping Condition 

 1: For each trial 

 2:    Set Improvement = FALSE 

 3:    Set Counter = 0 

 4:    Set φ = 100000 

 5:    Do 

 6:      Apply REF  

 7:      If Improvement = FALSE 

 8:         Counter += 1   

 9:         If Counter = 1 // In case of first no-improvement 

10:            φ = FES 

11:      Else 

12:         Counter = 0 // In case of finding an improvement 

13:         φ = 100000  

14:    While FES < (1+β)*φ OR FES < Max_FES 
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CHAPTER FOUR 

EXPERIMENTAL STUDIES 

 

4.1. MATERIALS AND MODELING ENVIRONMENT 

 

 In the evolutionary optimization software literature, various kinds of 

frameworks have been developed. These frameworks have various advantages and 

disadvantages and are written in different languages. A comprehensive study reviewed 

32 numbers of platforms for optimization problems (Oztas and Erdem, 2021: 3832). 

According to that study, there is no overwhelming superiority between Java and C-like 

(C++, C#, and MATLAB) languages and the Python language attracts attention 

because of its popularity in the field of optimization. Moreover, the authors also 

reported that management scientists in social sciences tend to prefer easy-to-use 

platforms which are approximate to human language. In light of this information, we 

preferred to code the RSAB and REF algorithms in Python language, and PyCharm 

developed by the Czech company JetBrains was utilized as IDE. Besides, the general 

structure of Visual Basic codes prepared by Erdem (2007) has been converted into a 

Python coding environment by utilizing Python libraries and they have been created 

by using the class structure and object-oriented programming. The experiments are 

executed on an Intel Core i7 computer with a 2.60GHz CPU and 12 GB RAM under 

the windows operating system. RSAB-REF algorithm uses approximately 20% CPU 

and 1GB memory. 

 

4.2. BENCHMARK PROBLEMS 

 

There are standard benchmark optimization problems (i.e. unconstrained, 

single-objective, multi-objective, combinatorial) in the literature to validate the 

performance of the algorithms (Jamil and Yang, 2013: 1). As mentioned by Collins 

and Eaton (1997), test functions can be classified as continuous-discontinuous, 

convex-non-convex, unimodal-multimodal, quadratic-non-quadratic, low 

dimensionality-high dimensionality, deterministic-stochastic. According to Talbi 

(2009), the problems that are high dimension, multimodal and non-differentiable 

https://en.wikipedia.org/wiki/Czech_Republic
https://en.wikipedia.org/wiki/JetBrains
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cannot be solved by deterministic optimization algorithms. However, test functions are 

generally preferred according to the needs of the algorithms. For that reason, 

measuring the performance of stochastic optimization algorithms with appropriate test 

functions has an important place. 

In this thesis study, the performance of the proposed algorithm is tested with 

unconstrained/bounded benchmark problems, engineering design problems, and 

economic dispatch problem, respectively. The main reason to choose these benchmark 

problems is that they are the most commonly used test functions and have broad 

characteristics. The details of the benchmarks are given in the following sub-sections.  

 

4.2.1. Unconstrained/Bounded Problems 

  

 The list of the 22 benchmark functions used in this study is given in Appendix 

1 with the information of the input domain and the optimal-like solutions. Moreover, 

we provide the characteristics (dimension, continuity, convexity, multimodality, 

differentiability, separability) of the benchmarks as below in Table 11. General 

profiles of the preferred test cases have been tried to be kept quite diverse. 

 

Table 11: The characteristics of test cases 

Name 
N-

dimensional 
Continuous Multimodal Convexity Differentiable Separable 

De JongF1 + + + + + + 

AckleyF1 + + + - + - 

Rastrigin + + + + + + 

Cosine Mixture + - + - - + 

Exponential + + + + + - 

Cb3  - + + - + - 

Bohachevsky2 - + + - + - 

Griewank + + - - + - 

Alpine 1 + + + - + - 

Egg Crate - + + - + - 

3-D Paraboloid - + - + + - 

Price 2 + + + - + - 

Schaffer 1 - + - - + - 

Schwefel 1.2 + + - - + - 

Xin-She Yang F2 + - + - - - 

Bird - + + - + - 

Beale - + + - + - 

McCormick - + + + + - 

Giunta + + + - + + 

Himmelblau - + + - + - 

Branin - + + - + - 

Adjiman - + + - + - 
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4.2.2. Constrained Problems 

 

In the real world, especially in engineering design, optimization problems may 

have complex constraints. The highlight of the REF algorithm is its ability to deal with 

constraints very well. Constrained problems are much more important to show the 

effect of the multiplicative penalty method used in the REF algorithm. Therefore, the 

algorithm will be tested with the most common real engineering design application 

benchmarks (Pressure Vessel, Himmelblau’s Function, Welded Beam, 

Tension/Compression Spring Design). In addition, although these benchmarks are 

referred to as engineering design problems in the literature, problems that are 

essentially aimed at "cost minimization" can also be regarded as a possible operational 

problem. Also, Combined Heat and Power Economic Dispatch (CHPED) problem 

which is an allocation problem in the production sector is applied. The numbers of 

variables and constraints for each problem are given in Table 12. Their models are 

provided in Appendix 2-9. 

 

Table 12: Information about constrained problems 

Problems Variables  Constraints 

Pressure Vessel 4 4 

Himmelblau’s Function 5 6 

Welded Beam 4 6 

Tension/Compression Spring Design 3 4 

Combined Heat and Power Economic Dispatch 6 10* 

* There are two equality constraints. We consider them as ≤ and ≥ which become 4 constraints.  

 

In general, the algorithms to which the developed algorithm will be compared 

are randomly selected and re-run, and reported independently from the scholars who 

developed the algorithm. However, this situation may cause manipulation by using 

different parameters, different software hardware, or even different programming 

languages which give rise to biased results. For this reason, it will be better to compare 

the developed algorithm with the results of other algorithms as reported in the 

literature. At this point (if specified), population size, number of iterations, or function 

evaluation value will be sufficient indicators for comparison. Unfortunately, in some 

studies in the literature, even these parameters are not shared when making these 

comparisons. 
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While choosing the algorithms to be compared, care has been taken to ensure 

that they are up-to-date and published in high-quality journals. Similar physics-based 

algorithms are also included if any are executing the same benchmarks. The algorithms 

are listed in Table 13. 

 

Table 13: The algorithms published in the related literature 

Algorithm Population 
Max 

Iteration 
Trial FES 

Genetic Adaptive Search (Deb, 1997) (GeneAS) 100 NA NA NA 

Self-adaptive Penalty Approach (Coello, 2000) (SPA) NA NA 11 NA 

Co-evolutionary Particle Swarm Optimization (He and Wang, (2007)  

(C-PSO) 
NA NA 30 200000 

Improved Harmony Search Algorithm (Mahdavi et al., 2007) (IHS) NA NA NA 200000 

Harmony Search Algorithm (Vasebi et al., 2007) (HS) NA 40000 30 25000 

Evolution Strategies (Mezura-Montes and Coello, 2008) (ES) 200 NA 30 350000 

Modified T-Cell Algorithm (Aragon et al., 2010) (MTCA) 20 30-50 50 
320000

⸙ 

Charged System Search (Kaveh and Talatahari, 2010b) (CSS) NA NA 30 NA 

Firefly Algorithm (Gandomi et al., 2011) (FA) 25 1000 NA 50000ψ 

Mesh Adaptive Direct Search Algorithm (Hosseini et al., 2011) (MADS) NA NA 50 1000 

Ray Optimization (Kaveh and Khayatazad, 2012) (RO) 40 NA 50 NA 

Magnetic Charged System Search (Kaveh et al., 2013a) (MCSS) NA NA 30 NA 

Cuckoo search algorithm (Gandomi et al., 2013b) (CSA) 25 NA NA 5000 

Firefly Algorithm for CHPED (Yazdani et al., 2013) (FA) 40 200 100 NA 

Particle Swarm Optimization (Mohammadi-Ivatloo et al., 2013) (PSO) 500 300 NA NA 

Advanced particle swarm assisted genetic algorithm (Dhadwal et al., 2014)  

(PSO-GA) 
NA NA 30 5000 

Artificial Bee Colony Algorithm (Garg, 2014) (ABC) 20*D 500 30 NA 

Plant Propagation Algorithm (Sulaiman et al., 2014) (PPA) 40 25 100 30000 

Hybrid Flower Pollination Algorithm (Abdel-Raoufi et al., 2014) (H-FPA) 50 1000 30 NA 

Modified Oracle Penalty Method (Dong et al., 2014) (MOPM) 30 NA 100 90000 

Interior Search Algorithm (Gandomi, 2014) (ISA) NA NA 30 30000* 

Grey Wolf Optimizer (Mirjalili et al., 2014) (GWO) NA NA NA NA 
Colliding Bodies Optimization (Kaveh and Mahdavi, 2014) (CBO) 20 200 30 4000 

Canonical Coordinates Method (Chang and Lin, 2014) (CCM) NA 400 NA NA 

Optics Inspired Optimization (Kashan, 2015b) (OIO) 19 NA 30 5000 

Cuckoo search algorithm for CHPED (Nguyen et al., 2016) (CSA) 25 2000 100 NA 

Hybrid PSO-GA Algorithm (Garg, 2016) (H-PSO-GA) 20*D NA 30 NA 

Thermal Exchange Optimization (Kaveh and Dadras, 2017) (TEO) 30 10000 30 NA 

Social Cognitive Optimization (Sun and Li, 2018) (SCO) 100 100 20 NA 

Seagull Optimization Algorithm (Dhiman & Kumar, 2019) (SOA) 100 1000 30 NA 

Pathfinder algorithm (Yapici and Cetinkaya, 2019) (PA) 60 100 NA NA 

Hybrid GSA-GA Algorithm (Garg, 2019) (H-GSA-GA) 20*D 200 30 NA 

Butterfly Optimization Algorithm (Arora and Singh, 2019) (BOA) 50 NA 30 NA 

Kho-Kho Optimization (Srivastava and Das, 2020) (KKO) 200 500 15 NA 

Nuclear Fission-Nuclear Fusion Algorithm (Yalcin and Pekcan, 2020) 

(N2F) 
40 NA 30 30000 

Marine Predators Algorithm (Faramarzi et al., 2020a) (MPA) NA 500 30 25000 

Equilibrium Optimizer (Faramarzi et al., 2020b) (EO) 30 500 NA 15000 

Search and Rescue Optimization Algorithm (Shabani et al., 2020) (SRO) 20 NA 50 30000‡ 

Chaotic Grey Wolf Optimizer (Lu et al., 2020) (CGWO) 100 NA 30 40000 

Slime mould Algorithm (Li et al., 2020) (SMA) NA NA NA NA 
Chaos Game Optimization (Talatahari & Azizi, 2020) (CGO) NA NA 25 NA 
Group Teaching Optimization Algorithm (Zhang & Jin, 2020) (GTO) 50 NA 30 10000 

Teaching-learning based Marine Predator Algorithm (Zhong et al., 2020) 
(TLMPA) 

NA NA 30 NA 

Improved Grey Wolf Optimizer (Nadimi-Shahraki et al., 2021) (IGWO) 20 
(D*104)/

20⸙ 
10 NA 

*5000 for Pressure/8900 for Tension; ‡15000 for Welded Beam/25000 for Spring Design; ⸹13000 for Spring Design and Welded 
Beam; †30 for Welded Beam; ⸙D is the number of variables; ψ25000 for Pressure Vessel; ⸙36000 for Tension and 80000 for 

Pressure Vessel 
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4.2.3. Parameter Settings 

 

The parameters used in the RSAB-REF algorithms are determined as a result 

of trial and error test and presented in Table 14. 

 

Table 14: Parameter Settings 

The number of trials 30 

The importance constants (c1, c2, c3) (MUPE) (2.05, 11, 11) 

The number of the particles (population size) (n) 20 

The incremental parameter (𝛹) 1.02 

The stopping parameter (β) 0.5 

The neighborhood size (κ) 2 

The precision number (ρ) 3 

Maximum number of Function Evaluations (Max FES) 30000 

 

The parameters shown in Table 14 are utilized for all benchmarks except some 

special cases. For example, the importance constants used in MUPE are (2.05, 8, 3), 

population size is 50 and stopping parameter is 2.5 for CHPED problem; Max FES 

differs for high dimensional benchmarks in unconstrained/bounded problems (10000 

for unconstrained problems with 2-3 dimensions and 100000 for 30 dimensions) and 

the number of particles is structured as (Dimension*10) for 10&30 dimensional 

problems.  

 

4.3. EXPERIMENTS ON HYBRID REF ALGORITHM 

 

 The main purpose of the RSAB-REF algorithm is to reach the best-known 

solution in the related literature. The total working time required for this varies 

according to the complexity of the problem, the number of constraints, and the number 

of variables. Since the total running time is directly proportional to the number of 

iterations and the number of FES, this information is presented in detail for each 

problem, respectively. 
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4.3.1. Initialization 

 

It is worth mentioning that the RSAB algorithm is repeated with 50 iterations 

for each trial. Moreover, θ, the initial set size is defined as constant 20. Furthermore, 

η is taken as 200 in the MUPE approach. In case of fitness value reaches 1.00E-30 in 

the initialization algorithm (in unconstrained problems), the REF algorithm will be 

bypassed.  

Different from the other studies published in the literature, we report the 

averages of the variables’ updated lower and upper limits as an output of the RSAB 

algorithm. These limits show narrowed domains as an initialization step before 

reaching the optimum-like solution.  

The initially defined domains and the updated lower and upper limits for each 

unconstrained/bounded problem after the RSAB algorithm are presented in Table 15. 

The updated domains are the averages of 30 trials. The main reason to apply RSAB 

has been achieved when the global optimum values of variables are within the updated 

ranges. According to Table 15, it is seen that the RSAB algorithm reduced the search 

space by approximately half. 

 

Table 15: Updated lower and upper limits for unconstrained/bounded problems 

 Problem Domain Dimension 
Updated Domains  

(Averages of 30 trials for each variable) 

1 
De JongF1/ 

Sphere 
[-100,100] 

3 𝑥𝑖 ∈ [-43.819476, 35.991105]* 

10 𝑥𝑖 ∈ [-40.186921, 41.304585]* 

30 𝑥𝑖 ∈ [-38.259419, 36.537807]* 

2 AckleyF1 [-32,32] 

2 𝑥𝑖 ∈ [-13.359408, 13.284727]* 

10 𝑥𝑖 ∈ [-15.004468, 14.105291]* 

30 𝑥𝑖 ∈ [-16.73248, 15.463085]* 

3 Rastrigin [-5.12,5.12] 

2 𝑥𝑖 ∈ [-1.942695, 2.239764]* 

10 𝑥𝑖 ∈ [-2.749607, 2.418027]* 

30 𝑥𝑖 ∈ [-2.456009, 2.53529]* 

4 Cosine Mixture [-1,1] 10 𝑥𝑖 ∈ [-0.466412, 0.460306]* 

5 Exponential [-1,1] 
2 𝑥𝑖 ∈ [-0.443979, 0.349052]* 

10 𝑥𝑖 ∈ [-0.373108, 0.493297]* 

6 Cb3 [-5,5] 2 𝑥𝑖 ∈ [-2.331631, 1.557997]* 

7 Bohachevsky2 [-50,50] 2 𝑥𝑖 ∈ [-17.106277, 25.187521]* 

8 Griewank [-100,100] 

2 𝑥𝑖 ∈ [-47.614122, 54.182451]* 

10 𝑥𝑖 ∈ [-41.601211, 51.415394]* 

30 𝑥𝑖 ∈ [-32.454793, 38.934842]* 

9 Alpine 1 [-10,10] 

2 𝑥𝑖 ∈ [-6.833573, 2.643768]* 

10 𝑥𝑖 ∈ [-5.044324, 4.540503]* 

30 𝑥𝑖 ∈ [-5.029153, 5.028612]* 

10 Egg Crate [-5,5] 

2 𝑥𝑖 ∈ [-1.740414, 2.05632]* 

10 𝑥𝑖 ∈ [-2.306609, 2.588454]* 

30 𝑥𝑖 ∈ [-2.572602, 2.340737]* 

11 3-D Paraboloid [-10,10] 3 
𝑥1 ∈ [-2.092071, 7.723993] ;𝑥2 ∈ [-3.117435, 

6.751627]; 𝑥3 ∈ [-5.095768, 4.768861] 

12 Price 2  [-10, 10] 2 𝑥𝑖 ∈ [-4.523815, 4.186838]* 
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13 Schaffer 1 [-100, 100] 2 𝑥𝑖 ∈ [-53.175061, 40.762511]* 

14 Schwefel 1.2 [-100, 100] 
2 𝑥𝑖 ∈ [-32.507195, 45.576833]* 

10 𝑥𝑖 ∈ [-49.695003, 44.56004]* 

15 Xin-She Yang [-2π, 2π] 2 𝑥𝑖 ∈ [-2.593346, 2.516497]* 

16 Himmelblau [-5, 5] 2 𝑥1 ∈ [-2.16667, 2.833333]; 𝑥2 ∈ [-2.00693, 3.005908] 

17 Giunta  [-1,1] 2 𝑥1 ∈ [-0.001405, 1]; 𝑥2 ∈ [-0.001544, 1] 

18 Adjiman 𝑥1 ∈ [-1,2]; 𝑥2 ∈ [-1,1] 2 𝑥1 ∈ [0.538884, 2];  𝑥2 ∈ [-0.036695, 0.97748] 

19 Branin 𝑥1 ∈ [-5,10]; 𝑥2 ∈ [0,15] 2 𝑥1 ∈ [-0.516649, 7]; 𝑥2 ∈ [3, 10.5] 

20 Beale [-4.5,4.5] 2 𝑥1 ∈ [0, 4.5]; 𝑥2 ∈ [-0.070877, 4.5] 

21 Bird [-2π,2π] 2 𝑥1 ∈ [-3.560472, 2.760253] ;𝑥2 ∈ [-3.56138, 2.7235] 

22 McCormick 𝑥1 ∈[-1.5,4]; 𝑥2 ∈ [-3, 3] 2 𝑥1 ∈ [1.5, 1.25]; 𝑥2 ∈ [-3, 4.53E-05] 

* The averages of variables (xi) 

 

The same procedure is also conducted for constrained problems. It is more 

difficult to handle RSAB for constrained problems because of the possibility of losing 

global optimum or violating constraints. However, according to Table 16, the RSAB 

algorithm reduced search space successfully in case of constraints as well.  

 

Table 16: Updated lower and upper limits for constrained problems  

Problem Domains 
Updated Domains  

(Averages of 30 trials for each variable) 

Pressure Vessel 

𝑥1 ∈ [0.0625, 10] 

𝑥2 ∈ [0.0625, 10] 

𝑥3 ∈ [0, 100]  

𝑥4 ∈ [0, 240] 

𝑥1 ∈ [0.0625, 2.090642] 

𝑥2 ∈ [0.0625, 1.244526] 

𝑥3 ∈ [37.866315, 59.989319]  

𝑥4 ∈ [88.292303, 196.400645] 

Himmelblau’s Function 

𝑥1 ∈ [78, 102] 

𝑥2 ∈ [33, 45] 

 𝑥3 ∈ [27, 45] 

 𝑥4 ∈ [27, 45] 

 𝑥5 ∈ [27, 45] 

𝑥1 ∈ [78.013988, 79.141126] 

𝑥2 ∈ [33, 33.861337] 

𝑥3 ∈ [27.019917, 28.188766] 

 𝑥4 ∈ [43.607864, 44.8915]  

𝑥5 ∈ [42.857521, 44.971922] 

Welded Beam 

𝑥1 ∈ [0.125, 5] 

𝑥2 ∈ [0.1, 10] 

𝑥3 ∈ [0.1, 10] 

𝑥4 ∈ [0.1, 5] 

𝑥1 ∈ [0.128382, 0.30487] 

𝑥2 ∈ [1.107596, 7.629883] 

𝑥3 ∈ [8.048392, 9.967568] 

 𝑥4 ∈ [0.202204, 0.33574] 

Tension/Compression Spring 

Design 

𝑥1 ∈ [0.05, 1] 

 𝑥2 ∈ [0.25, 1.3] 

 𝑥3 ∈ [2, 15] 

𝑥1 ∈ [0.05, 0.062052] 

 𝑥2 ∈ [0.25, 0.655427] 

𝑥3 ∈ [5.765613, 12.91294] 

CHPED 

𝑥1 ∈ [0, 150] 

𝑥2 ∈ [81, 274] 

𝑥3 ∈ [40, 125.8] 

𝑥4 ∈ [0, 180] 

𝑥5 ∈ [0, 135.6] 

 𝑥6 ∈ [0, 2695.2] 

𝑥1 ∈ [0.099725, 16.743839] 

 𝑥2 ∈ [115.028577, 157.065205] 

𝑥3 ∈ [40.253933, 69.307731] 

 𝑥4 ∈ [10.848522, 84.045112] 

𝑥5 ∈ [15.303951, 99.741783] 

𝑥6 ∈ [0, 22.829386] 

 

RSAB algorithm is not an algorithm that guarantees the optimum solution. 

Indeed, it provides an adaptive initial (better than pure random initial) solution for 

continuous unconstrained/bounded or constrained nonlinear optimization problems 

that may have many local optima. For that reason, it is not proper to compare the results 

of the global optimization algorithms. Rather, after hybridizing RSAB with REF the 

best and the worst solutions among 30 trials will be compared with many other 

algorithms. According to the updated domains presented in Tables 15 and 16, the 
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RSAB algorithm reduced the search space by adaptively narrowing the boundaries. It 

is worth mentioning that, this procedure provides a contribution to problem-solving in 

terms of time and efficiency rather than adding burden to the REF algorithm. 

Mathematically speaking, the RSAB algorithm consumes approximately 10% of the 

total function evaluations. 

 

4.3.2. Hybrid REF Algorithm 

 

Since RSAB and REF algorithms are structured as successive procedures, after 

initializing RSAB, the REF algorithm is ready to be implemented. The experimental 

study of the Hybrid REF (RSAB-REF) algorithm is conducted for 22 unconstrained, 

5 constrained benchmark problems. The findings for each problem are documented in 

the following sections. The results will be discussed in the Conclusion section. 

 

4.3.2.1. Findings of Unconstrained Problems 

 

The experimental results for 22 unconstrained/bounded benchmarks are given 

in Table 17. Different dimensions have been applied for these benchmarks to see the 

capability of RSAB-REF. 13 of them can be regarded as small-sized (2-3 dimension), 

whereas the rest of them are 10&30 dimensions.  

 

Table 17: Updated lower and upper limits for constrained problems  

 Problem Dimension 
Global 

Min 

Best 

Objective 

Value 

MEAN Worst 

Objective 

Value 

Average 

FES Objective 

Value 

Standard 

Deviation 

Standard 

Error 

1 
De 

JongF1/Sphere 

3* 

0.0E+00 

0.0E+00 1.54E-09 6.05E-09 1.1E-09 2.97E-08 6753.77 

10 0.0E+00 7.47E+01 2.09E+02 3.82E+01 1.05E+03 28380.1 

30 1.74E-05 4.44E+03 6.95E+03 1.27E+03 2.69E+04 96355.7 

2 AckleyF1 

2* 

0.0E+00 

0.0E+00 9.84E-11 5.39E-10 9.85E-11 2.95E-09 3571.1 

10 3.11E-15 1.07E+00 2.65E+00 4.83E-01 1.03E+01 30385.73 

30 7.13E-04 1.14E+00 1.4E+00 2.56E-01 4.34E+00 101381.6 

3 Rastrigin 

2* 

0.0E+00 

0.0E+00 9.96E-02 3.04E-01 5.55E-02 9.96E-01 4078.77 

10 0.0E+00 7.79E-01 1.94E+00 3.54E-01 8.96E+00 29697.27 

30 2.84E-03 2.08E+01 3.54E+01 6.46E+00 1.76E+02 101404.2 

4 Cosine Mixture 10 -1.0E+00 -1.0E+00 -9.72E-01 1.05E-01 1.91E-02 -5.45E-01 30361.63 

5 Exponential 
2 

-1.0E+00 
-1.0E+00 -1.0E+00 0.0E+00 0.0E+00 -1.0E+00 5338.73 

10 -1.0E+00 -9.93E-01 1.58E-02 2.88E-03 -9.33E-01 26431.63 

6 Cb3 2* 0.0E+00 0.0E+00 1.95E-15 1.02E-14 1.87E-15 5.61E-14 3634 

7 Bohachevsky2 2* 0.0E+00 0.0E+00 4.37E-02 8.89E-02 1.62E-02 2.18E-01 6097.63 

8 Griewank 

2* 

0.0E+00 

0.0E+00 1.42E-02 1.81E-02 3.3E-03 6.66E-02 8215.1 

10 3.33E-16 8.92E-02 1.67E-01 3.05E-02 6.41E-01 29819.83 

30 5.16E-08 9.26E-01 1.68E+00 3.08E-01 6.28E+00 98399 

9 Alpine 1 
2* 

0.0E+00 
0.0E+00 6.68E-09 3.22E-08 5.88E-09 1.76E-07 6204.3 

10 1.26E-07 1.38E-02 4.41E-02 8.06E-03 1.96E-01 30431.33 
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30 3.61E-04 9.17E-01 1.64E+00 2.99E-01 7.51E+00 101561.3 

10 Egg Crate 

2* 

0.0E+00 

0.0E+00 1.6E-21 8.75E-21 1.6E-21 4.9E-20 2736.47 

10 4.82E-19 6.48E-01 3.55E+00 6.48E-01 1.94E+01 26419.97 

30 6.41E-08 1.75E+01 3.64E+01 6.64E+01 1.75E+02 101321.6 

11 3-D Paraboloid 3 0.0E+00 3.2E-09 1.73E-01 3.14E-01 5.74E-02 8.39E-01 9354.73 

12 Price 2 2 9.0E-01 9.0E-01 9.0E-01 7.23E-06 1.32E-06 9.0004E-01 5291.27 

13 Schaffer 2* 0.0E+00 0.0E+00 2.95E-05 1.62E-04 2.95E-05 8.85E-04 6684.47 

14 Schwefel 1.2 
2* 

0.0E+00 
0.0E+00 1.71E-10 7.89E-10 1.44E-10 4.26E-09 4777.37 

10 9.88E-18 1.9E+02 5.53E+03 1.01E+02 2.93E+03 30383.53 

15 Xin-She Yang 2* 0.0E+00 0.0E+00 2.04E-09 1.12E-08 2.04E-09 6.11E-08 3672.63 

16 Himmelblau 2 0.0E+00 7.81E-18 4.59E-10 1.52E-09 4.59E-10 1.38E-08 7419.7 

17 Giunta 2 6.04E-02 6.04E-02 6.04E-02 4.23E-17 7.73E-18 6.04E-02 9271.5 

18 Adjiman 2 -2.02E+00 -2.02E+00 -2.02E+00 1.49E-11 2.71E-12 -2.02E+00 5164.47 

19 Branin 2 3.98E-01 3.98E-01 3.98E-01 4.25E-11 7.75E-12 3.98E-01 9096 

20 Beale 2 0.0E+00 1.92E-16 8.98E-11 2.99E-10 5.48E-11 1.5E-09 9619.73 

21 Bird 2 -1.07E+02 -1.07E+02 -1.07E+02 2.16E-10 3.94E-11 -1.07E+02 9133.57 

22 McCormick 2 -1.91E+00 -1.91E+00 -1.91E+00 1.69E-09 3.08E-10 -1.91E+00 9428.13 

 

In some test cases (*), the global optimum solution is achieved by the RSAB 

algorithm before starting REF in some of the 30 trials (fitness value reaches 1.00E-30 

in RSAB). For this reason, the REF algorithm is bypassed in these trials.  

According to the results in Table 17, especially benchmarks with 2-3 

dimensions and even 10 dimensions achieved global minimum solutions successfully. 

For 30 dimensional problems with wide ranges, it can be said that it approaches the 

global minimum solution value to a certain degree. The standard deviations are 

noteworthy in problems with 30 dimensions and also large search spaces. However, it 

can be said that at least one out of 30 trials reached the global solution even in problems 

with 30 dimensions. Nevertheless, the problems with high dimensions can yield better 

results with more function evaluation values or stretching the stopping condition. 

 

4.3.2.2. Pressure Vessel 

 

The design of a Pressure Vessel is one of the most commonly used cost 

optimization problems. This problem has four variables where x3 and x4 are continuous 

while x1 and x2 are integer multiplies of 0.0625 inch which are the available thickness 

of the material (Sandgren, 1990: 227). The model and the figure of the problem are 

given in Appendix 2-3. The solution for the Pressure Vessel obtained by the RSAB-

REF algorithm is given in Table 18. The left-hand side values of each constraint are 

also provided which show the feasibility of the solution. Only the first constraint value 

is obtained as 9.94393E-12 which can be ignored.  
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Table 18:  Best solution for Pressure Vessel 

Objective Value x1 x2 x3 x4 

5850.38306 0.75 0.375 38.860104 221.365471 

Constraints 
g1(x) g2(x) g3(x)  

9.94393E-12 -0.004275 -1.26292E-05 

 

The descriptive statistics of the 30 trials are given in Table 19. Although 

maximum FES is limited to 30000, the minimum, maximum, and average FES values 

are reported as well. 

 

Table 19:  Experimental results of Pressure Vessel 

Best 5850.38306 Average Iteration 145.5 

Mean 6344.250094 Minimum FES 5681 

Worst 7962.557339 Average FES 22288.47 

Standard Deviation 652.4 Maximum FES 30124 

Standard Error 119.11  

 

The Pressure Vessel problem has been handled with many other metaheuristic 

algorithms previously. Since there are too many algorithms in the literature, only the 

recently published in high-quality journals are presented chronologically in Table 20. 

Most of the solutions could not be able to satisfy “having 𝑥1 and 𝑥2 as integer 

multiplies of 0.0625”. The best-known solution for Pressure Vessel seems obtained 

firstly by Mahdavi et al. (2007) and then by Gandomi et al. (2011). However, 

according to the reported values of variables, the true objective value should be 

5850.384 in IHS and FA presents 0.27 total deviation from constraints. RSAB-REF 

algorithm has provided the best-known solution with a smaller set size, fewer function 

evaluations, and no violation compared to FA and IHS.  

 

Table 20: Comparisons for Pressure Vessel (Best-so-far solution) 

Reference x1 x2 x3 x4 Objective 

GeneAS 0.9375 0.5 48.329 112.679 6410.3811 

SAP 0.8125 0.4375 40.3239 200 6288.7445 

C-PSO 0.8125 0.4375 42.091266 176.7465 6061.0777 

IHS 0.75 0.375 38.8601 221.36553 5849.76169 

ES 0.8125 0.4375 42.098087 176.640518 6059.745605 

MTCA 0.8125 0.4375 42.098429 190.787695 6390.554 

CSS 0.8125 0.4375 42.103624 176.572656 6059.09 

FA 0.75 0.375 38.8601 221.36547 5850.38306 (0.27) 

MCSS 0.8125 0.4375 42.10455 176.560967 6058.97 

ISA 0.8125 0.4375 42.09845 176.6366 6059.7143 

GWO 0.8125 0.4345 42.089181 176.758731 6051.5639 

CBO 0.779946 0.38556 40.49065 198.76232 5889.911 (0.001) 

TEO 0.779151 0.385296 40.369858 199.301899 5887.511073 

SOA 0.77808 0.383247 40.31512 200 5879.5241 (319.82) 
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PA 0.778168 0.3846489 40.31964 199.9999 5885.3351 (1e-06) 

N2F 1.125 0.625 58.290155 43.6926562 7197.72893 

MPA 0.8125 0.4375 42.098445 176.636607 6059.7144 

EO 0.8125 0.4375 42.098446 176.636596 6059.7143 

SRO 0.8125 0.4375 42.098446 176.636596 6059.714335 

SMA 0.7931 0.3932 40.6711 196.2178 5994.1857 

CGO 0.778169 0.51 40.319619 200 6247.672819 

GTO 0.778169 0.38465 40.3196 200 5885.333 (1.33) 

TLMPA 0.778169 0.384649 40.319618 200 5885.332774 (0.05) 

IGWO 0.779031 0.385501 40.36313 199.4017 5888.34 

Proposed Algorithm 0.75 0.375 38.860104 221.365471 5850.38306 

 

The descriptive statistics of the experiments are shown in Table 21. As it is 

seen, the performance of the RSAB-REF algorithm is better than the solutions reached 

by other algorithms. Although the worst and the standard deviation are relatively 

higher than the others, the feasible best-known solution is obtained by the proposed 

algorithm. 

 

Table 21: Comparisons for Pressure Vessel (Descriptive Statistics) 

Reference Best Mean Worst Std dev 

GeneAS 6410.3811 N/A N/A N/A 

SAP 6288.7445 6293.843232 6308.149652 7.413285 

C-PSO 6061.0777 6147.1332 6363.8041 86.4545 

IHS 5849.76169 N/A N/A N/A 

ES 6059.745605 6850.004948 7332.879883 4.26E+02 

MTCA 6390.554 6737.065147 7694.066881 3.57E+02 

CSS 6059.09 6,067.91 6085.48 10.2564 

FA 5850.38306 (0.27) N/A N/A N/A 

MCSS 6058.97 6063.18 6074.74 9.73494 

ISA 6059.714 6410.087 7332.846 384.6 

GWO 6051.5639 N/A N/A N/A 

CBO 5889.911 (0.002) 5934.201 6213.006 63.5417 

TEO 5887.511073 5942.565917 6134.187981 62.2212 

SOA 5879.5241 (319.82) 5883.0052 5893.4521 256.415 

PA 5885.3351 (1e-06) N/A N/A N/A 

N2F 7197.72893 7197.72905 7197.72924 7.90E-05 

MPA 6059.7144 6102.8271 6410.0929 106.61 

EO 6059.7143 6668.114 7544.4925 566.24 

SRO 6059.714335 6091.32594 6410.0868 8.03E+01 

SMA 5994.1857 N/A N/A N/A 

CGO 6247.672819 6250.957354 6330.958685 10.759156 

GTO 5885.333 (1.33) N/A N/A N/A 

TLMPA 5885.332774 (0.05) N/A N/A N/A 

IGWO 5888.34 N/A N/A N/A 

Proposed Algorithm 5850.38306 6344.25 7962.557 652.4 

 

4.3.2.3. Himmelblau’s Function 

 

Himmelblau proposed a non-linear constrained optimization problem in 1972 

and it is regarded as a mechanical engineering problem (Kumar et al., 2020b: 25). This 

well-known problem has five variables and six constraints. The model of the problem 

is given in Appendix 4. The solution for Himmelblau’s Function obtained by the 



96 
 

RSAB-REF algorithm is given in Table 22. As it is seen, all constraints are within the 

defined range which means that there are no violations.  

 

Table 22: Best solution for Himmelblau’s Function 

Objective x1 x2 x3 x4 x5 

-31025.55751 78.000017 33.000008 27.071017 45 44.969175 

Constraints 
g1(x)* g2(x)* g3(x)* 

 
91.999991 100.404777 20 

*0 ≤ 𝑔1(𝑥) ≤ 92;  90 ≤ 𝑔2(𝑥) ≤ 110; 20 ≤ 𝑔3(𝑥) ≤ 25 

 

The experimental results for Himmelblau’s Function are given in Table 23 as 

descriptive statistics. Maximum FES is limited to 30000, the minimum and the average 

FES values are reported as well. 

 

Table 23:Experimental results of Himmelblau’s Function 

Best -31025.55751 Average Iteration 69.83 

Mean -31017.015168 Minimum FES 5583 

Worst -30904.583815 Average FES 10841.87 
Standard Deviation 25.89 Maximum FES 18655 

Standard Error 4.73  

 

In Table 24, the feasible best-known solutions obtained for Himmelblau’s 

Function are given. It is clear that the best-known solution is reached by H-GSA-GA 

with -31027.64076 which was published in 2019. However, the H-GSA-GA utilizes 

20*Dimension as population size which becomes 100. Besides, other algorithms 

reached the -31025.5 objective value in general. ABC and H-PSO-GA have negligible 

violations in some constraints shown in brackets.  

 

Table 24: Comparisons for Himmelblau’s Function (Best-so-far solution) 

Reference x1 x2 x3 x4 x5 Objective  

CSA 78 33 29.99616 45 36.77605 -30665.233 

PSO-GA 78 33 29.99525 45 36.77582 -30665.5389 

ABC 78 33 27.070979 45 44.969024 -31025.57569 (3.5e-05) 

PPA 78 33 29.9952 45 36.7758 -30665.54 

H-FPA N/A N/A N/A N/A N/A -31025.5654 

OIO N/A N/A N/A N/A N/A -31025.50178 

H-PSO-GA 78 33 27.070951 45 44.969167 -31025.57471 (2.8e-05) 

H-GSA-GA 77.961 32.99948 27.072836 45 44.973943 -31027.64076 

Proposed Algorithm  78.000017 33.000008 27.071017 45 44.969175 -31025.55751 
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The descriptive statistics for Himmelblau’s Function are listed in Table 25. As 

it is seen, the performance of the REF algorithm for Himmelblau's Function is 

considerably good. 

 

Table 25: Comparisons for Himmelblau’s Function (Descriptive Statistics) 

Reference Best Mean Worst Std dev 

CSA -30665.233 N/A N/A 11.6231 

PSO-GA -30665.5389 -30665.53697 -30665.48996 8.76E-03 

ABC -31025.57569 (3.5e-05) -31025.55841 -31025.49205 0.0153528 

PPA -30665.54 N/A N/A N/A 

H-FPA -31025.5654 NA NA NA 

OIO -31025.50178 -31024.5348 -31020.60517 1.2092 

H-PSO-GA -31025.57471 (2.8e-05) -31025.55782 -31025.49205 0.01526 

H-GSA-GA -31027.64076 -31026.07246 -31025.38705 0.01803 

Proposed Algorithm  -31025.6 -31017 -30904.6 25.89 

 

4.3.2.4. Welded Beam 

 

The welded beam is a structural optimization problem that is generally 

preferred as a benchmark (Ragsdell and Phillips, 1976: 1021). This cost optimization 

problem consists of four design variables and six constraints. The model and its figure 

are given in Appendix 5-6. The solution for Welded Beam obtained by the RSAB-REF 

algorithm is given in Table 26. Furthermore, to show the feasibility of the solution the 

left-hand side values of each constraint are also provided. As it is seen from the 

constraint values, the solution is feasible as well.  

 

Table 26: Best solution for Welded Beam 

Objective x1 x2 x3 x4 

1.724867 0.205734 3.470438 9.036532 0.205734 

Constraints 

g1(x) g2(x) g3(x) 

 
-1.52501E-05 -0.000243 -1.72409E-07 

g4(x) g5(x) g6(x) 

-3.390645 -0.23554 -0.327636 

 

The experimental results for Welded Beam are given in Table 27 as descriptive 

statistics. Although maximum FES is limited with 30000 and actual FES values are 

also reported.  
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Table 27: Experimental results of Welded Beam 

Best 1.724867 Average Iteration 162.53 

Mean 1.79025 Minimum FES 9163 

Worst 2.078897 Average FES 25511.57 

Standard Deviation 0.08 Maximum FES 30129 

Standard Error 0.02   

 

The feasible best-known solution for Welded Beam has been obtained as 

1.724852 in the literature. Most of the algorithms have reached the feasible best-known 

solution, however, the solution values obtained differ after the 5th decimals as shown 

in Table 28.  

 

Table 28: Comparisons for Welded Beam (Best-so-far solution) 

References x1 x2 x3 x4 Objective 

GeneAS 0.2489 6.173 8.1789 0.2533 2.433116 

SAP 0.2088 3.4205 8.9975 0.21 1.748309 

C-PSO 0.202369 3.544214 9.04821 0.205723 1.728024 

IHS 0.20573 3.047049 9.03662 0.20573 1.7248 (1505.76) 

ES 0.19972 3.61206 9.0375 0.206082 1.7373 

MTCA 0.244369 6.218613 8.291474 0.244369 2.38113 

CSS 0.20582 3.468109 9.038024 0.205723 1.724866 

RO 0.203687 3.528467 9.004233 0.207241 1.735344 

MCSS 0.20573 3.470489 9.036624 0.20573 1.724855 

ISA 0.2443303 6.219931 8.291521 0.244369 2.3812 

GWO 0.205676 3.478377 9.03681 0.205778 1.72624 

CBO 0.205722 3.47041 9.037276 0.205735 1.724663 

TEO 0.205681 3.472305 9.035133 0.205796 1.725284 

SOA 0.205408 3.472316 9.035208 0.201141 1.723485  (1104.85) 

PA 0.0205795 3.470495 9.036624 0.20573 1.724853 (124635.3) 

N2F 0.20573 3.470489 9.036624 0.20573 1.724852 

MPA 0.205728 3.470509 9.036624 0.20573 1.724853 (0.05) 

EO 0.2057 3.4705 9.03664 0.2057 1.7549 

SRO 0.20573 3.470489 9.036624 0.20573 1.724852 

CGWO 0.20573 3.470499 9.036637 0.20573 1.724854 

SMA 0.2054 3.2589 9.0384 0.2058 1.69604 (725.21) 

CGO 0.198856 3.337244 9.191454 0.198858 1.670336 (1252.9) 

GTO 0.20573 3.470489 9.036624 0.20573 1.724852 

TMPA 0.20573 3.470489 9.036624 0.20573 1.724852 

IGWO 0.20573 3.47049 9.036624 0.20573 1.724853 

Proposed Algorithm  0.205734 3.470438 9.036532 0.205734 1.724867 

 

Different from Pressure Vessel and Himmelblau’s function, there are some 

infeasible solutions reported in the literature as can be seen in Table 28. According to 

the table, IHS, SOA, PA, MPA, SMA, and CGO reached infeasible solutions and their 

total deviations are given in brackets. Furthermore, CBO documented its best solution 

as 1.724663 which is wrong. According to the variables, its best reached objective 

value is 1.724983 which is not a rounding error. 



99 
 

In Table 29, the descriptive statistics for Welded Beam are reported. Table 29 

indicates that the RSAB-REF algorithm achieves the best-known solution nearly (with 

a 2.3E-05 deviation from the best-known solution which is negligible). 

 

Table 29: Comparisons for Welded Beam (Descriptive Statistics) 

Reference Best Mean Worst Std dev 

GeneAS 2.433116 N/A N/A N/A 

SAP 1.748309 1.771973 1.785835 0.011223 

C-PSO 1.728024 1.748831 1.782143 0.012926 

IHS  1.7248 (1505.76) N/A N/A N/A 

ES 1.7373 1.81329 1.994651 7.05E-02 

MTCA 2.38113 2.439811 2.710406 0.093146 

CSS 1.724866 1.739654 1.759479 0.008064 

RO 1.735344 1.9083 N/A 0.173744 

MCSS 1.724855 1.735374 1.750127 0.007571 

ISA 2.3812 2.4973 2.67 1.02E-01 

GWO 1.72624 N/A N/A N/A 

CBO 1.724662 1.725707 1.725059 0.000244 

TEO 1.725284 1.76804 1.931161 0.058166 

SOA 1.723485 (1104.85) 1.724251 1.727102 1.724007 

PA 1.724853(124635.3) N/A N/A N/A 

N2F 1.724852 1.725 1.726147 3.39E-04 

MPA 1.724853 (0.05) 1.724861 1.724873 6.41E-06 

EO 1.724853 1.726482 1.736725 0.003257 

SRO 1.724852 1.724852 1.724852 2.22E-11 

CGWO 1.724854 1.724854 1.724854 3.36E-16 

SMA 1.69604 (725.21) N/A N/A N/A 

CGO 1.670336 (1252.9) 1.670378 1.670903 9.30E-05 

GTO 1.724852 N/A N/A N/A 

TLMPA 1.724852 N/A N/A N/A 

IGWO 1.724853 N/A N/A N/A 

Proposed Algorithm  1.724875 1.7708 1.949681 0.05 

 

4.3.2.5. Tension/Compression Spring Design 

 

Tension/ Compression spring design problem is an optimization benchmark 

that aims to minimize the weight of the spring by satisfying requirements (Arora, 2017: 

47). There are three variables and four constraints. Its model and figure are given in 

Appendix 7-8. The best solution for Tension/Compression Spring Design obtained by 

the RSAB-REF algorithm is given in Table 30. As it is seen from Table 30, all 

constraints are satisfied. 

 

Table 30: Best solution for Tension/Compression Spring Design 

Objective x1 x2 x3 
 

0.012665 0.05183 0.360125 11.091955 

Constraints 
g1(x) g2(x) g3(x) g4(x) 

6.07936E-12 -2.54827E-12 -4.060463 -0.725363 
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The experimental results for Tension/Compression Spring Design are given in 

Table 31 as descriptive statistics. Maximum FES is limited to 30000, the minimum 

and the average FES values are also reported.  

 

Table 31: Experimental results of Tension/Compression Spring Design 

Best 0.012665 Average Iteration 180.93 

Mean 0.012858 Minimum FES 6917 

Worst 0.013368 Average FES 27053.13 

Standard Deviation 0.0002 Maximum FES 30122 

Standard Error 4.27E-05   

 

According to Table 32, the feasible best-known solution is 0.012665 reported 

in the literature. The RSAB-REF algorithm also reached the value of the best-known 

solution. It is worth noting that, the solutions less than 0.012665 (CSS, MCSS, and 

SOA) violated some constraints and their total deviations which are relatively small 

are given in brackets. 

 

Table 32: Comparisons for Tension/Compression Spring Design (Best-so-far solution) 

Reference x1 x2 x3 Objective 

GeneAS 0.5148 0.351661 11.632201 0.012705 

SAP 0.051728 0.357644 11.244543 0.012675 

IHS 0.051154 0.349871 12.076432 0.012671 

ES 0.051643 0.35536 11.397926 0.012698 

MTCA 0.051622 0.355105 11.384534 0.012665 

CSS 0.051744 0.358532 11.165704 0.012638 (0.01) 

RO 0.05137 0.349096 11.7679 0.012679 

MCSS 0.051627 0.35629 11.275456 0.012607 (0.02) 

ISA N/A N/A N/A 0.012665 

GWO 0.05169 0.356737 11.28885 0.012666 

CBO 0.051894 0.361674 11.007846 0.01267 

TEO 0.051775 0.358792 11.16839 0.012665 

SOA 0.051065 0.342897 12.0885 0.012645 (0.04) 

PA 0.051727 0.35763 11.235724 0.012665 

MPA 0.051725 0.35757 11.239196 0.012665 

IGWO 0.05162 0.355055 11.387968 0.012666 

SRO 0.051689 0.356723 11.288648 0.012665 

GBO 0.05203 0.36509 10.81456 0.012667 

CGO 0.051663 0.356078 11.326575 0.012665 

TLMPA 0.051681 0.356533 11.299823 0.012665 

Proposed Algorithm  0.05183 0.360125 11.091955 0.012665 

 

The descriptive statistics for Tension/Compression Spring Design are listed in 

Table 33. As it is seen, the performance of the RSAB-REF algorithm is better than the 

solutions reached by other algorithms.  
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Table 33: Comparisons for Tension/Compression Spring Design (Descriptive Statistics) 

Reference Best Mean Worst Std dev 

GeneAS 0.012705 0.012769 0.012822 3.94E-05 

SAP 0.012675 0.01273 0.012924 5.20E-05 

IHS 0.012671 N/A N/A N/A 

ES 0.012698 0.013461 0.016485 9.66E-04 

MTCA 0.012665 0.012732 0.013309 9.40E-05 

CSS 0.012638 (0.01) 0.012852 0.013626 8.3564e−5 

RO 0.012679 0.013547 N/A 0.001159 

MCSS 0.012607 (0.02) 0.012712 0.012982 4.7831e−5 

ISA 0.012665 0.013165 0.012799 1.59E-02 

GWO 0.012666 N/A N/A N/A 

CBO 0.01267 0.01273 0.0128808 5.00E-05 

TEO 0.012665 0.012685 0.012715 4.41E-06 

SOA 0.012645 (0.04) 0.012666 0.012666 0.001108 

PA 0.012665 N/A N/A N/A 

MPA 0.012665 0.012665 0.012665 5.55E-08 

IGWO 0.012666 0.013017 0.013997 3.91E-04 

SRO 0.012665 0.012665 0.012668 1.26E-07 

GBO 0.012667 0.012696 N/A 3.36E-05 

CGO 0.012665 0.01267 0.012719 1.09E-05 

TLMPA 0.012665 N/A N/A N/A 

Proposed Algorithm  0.012665 0.012858 0.013368 0.0002 

 

4.3.2.6. Combined Heat and Power Economic Dispatch Problem  

 

The combined heat and power economic dispatch problem (CHPED) is a 

minimization problem that includes two sub-problems as heat dispatch and power 

dispatch. This problem aims to calculate the unit heat and power production while 

minimizing total cost and satisfying power and heat demands (Guo et al., 1996: 1779). 

This benchmark problem has six decision variables (P1, P2, P3, H2, H3, H4) and twelve 

constraints (Sun and Li, 2018: 8), and its model is given in Appendix 9. However, 

since the proposed algorithm is structured on inequality constraints, the heat and power 

demand constraints are regarded as both " ≤ " and " ≥ ".  

 Since this problem has many constraints and includes demand equations which 

mean four inequalities, finding a stable solution is a challenging problem for the 

RSAB-REF algorithm. The best solution and constraints values obtained by the 

RSAB-REF algorithm are given in Table 34.  
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Table 34: Best solution for CHPED 

Objective P1 P2 P3 

 
9257.075 

0 160 40 

H2 H3 H4 

40 75 0 

Constraints 

g1(x) g2(x) g3(x) g4(x) 

0 0 0 0 

g5(x) g6(x) g7(x) g8(x) 

-79.888889 -67.993893 -194.468083 -79.360456 

g9(x) g10(x) 
 

-1.25E-07 -3.0E-08 

 

It is an expected result that the variables are integers due to the nature of the 

CHPED problem. Therefore, even if it is not defined as an integer at the beginning, 

the best-known solution (0, 160, 40, 40, 75, 0) has integer variables. The experimental 

results for the CHPED problem are presented in Table 35.  

 

Table 35: Experimental results of CHPED 

Best 9257.075 Average Iteration 85.97 

Mean 9625.02155 Minimum FES 9922 

Worst 10241.75 Average FES 27442.4 

Standard Deviation 274.69 Maximum FES 30305 

Standard Error 50.15  

 

In the literature, the best-known solution for the CHPED problem is also 

obtained as 9257.075. Moreover, as it is seen from Table 36, there are also violated 

solutions such as CCM and KKO. Their total deviations from constraints are given in 

brackets. According to Table 13, the algorithms that reach the best solution in the 

literature were performed with particles between 25 and 500. Accordingly, the 

performance of RSAB-REF with 50 particles can be evaluated as relatively good. 

 

Table 36: Comparisons for CHPED (Best solution) 

Reference P1 P2 P3 H2 H3 H4 Objective 

HS 0 160 40 40 75 0 9257.07 

MADS 0 160 40 40 75 0 9257.07 

FA 0.0014 159.9986 40 40 75 0 9257.1 

PSO 0 160 40 40 75 0 9257.07 

CCM 0 200 0 0 115 0 8606.07 (123.63) 

CSA N/A N/A N/A N/A N/A N/A 9257.075 

SCO 0 160 40 40 75 0 9257.07 

KKO 0.0282 155.015 44.9568 18.1301 96.8699 0 9217.03 (20.38) 

Proposed Algorithm 0 160 40 40 75 0 9257.075 
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The descriptive statistics for CHPED are listed in Table 37. As can be seen 

from the table, the solution of this problem has reached the best-known solution with 

the RSAB-REF algorithm.  

 

Table 37: Comparisons for CHPED (Descriptive Statistics) 

Reference Best Mean Worst Std dev 

HS 9257.07 NA NA NA 

MADS 9257.07 9257.515 9260.432 1.0743 

FA 9257.1 N/A N/A N/A 

PSO 9257.07 N/A N/A N/A 

CCM 8606.07 (123.63) N/A N/A N/A 

CSA 9257.075 9259.165 9327.972 9.886 

SCO 9257.07 9263.34 9276.23 NA 

KKO 9217.03 (20.38) N/A N/A N/A 

Proposed Algorithm 9257.075 9625.022 10241.75 274.69 
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CONCLUSION 

 

Optimization comprises many techniques to provide optimal solutions for 

problems including scheduling, allocation, designing in a wide range of fields. 

Regardless of the complexity of problems, optimization is a process for minimizing or 

maximizing a function under given conditions. However, as the complexity of the 

problems is getting higher, advanced optimization techniques are required. A problem 

can be defined as tractable in case of solving it in a reasonable computation time. This 

kind of problem belongs to Class P which means they can be solved by traditional 

optimization techniques in a polynomial time. Most of the real-world optimization 

problems are classified in NP-Hard where the problems have nonlinear characteristics 

and cannot be solved in polynomial time. Nevertheless, there are no efficient 

deterministic algorithms for the problems denoted as NP-Hard. Therefore, stochastic 

algorithms which are constructed on randomization somehow in their principles are 

needed. Especially with the developments of artificial intelligence and computation 

technology, modern optimization techniques become metaheuristic algorithms that 

provide approximate solutions to NP-Hard problems.  

The breaking point in problem-solving literature dates back to the early 1960s 

with the “evolution” concept. Genetic Algorithm, Evolutionary Programming, 

Evolutionary Strategies, Genetic Programming are pioneers for computational 

methods inspired by evolutionary processes. In the years of 1980s, with the 

developments of Simulated Annealing and Tabu Search, more metaphors have started 

to be used in algorithms. After 2000, the behaviors of living organisms, facts in nature, 

laws in the field of science have encouraged researchers to mimic these mechanisms 

for developing algorithms. In the state-of-the-art, many algorithms imitate these 

behaviors and interactions for solving real-world optimization problems. The number 

of new metaheuristic algorithms based on metaphors has exploded especially in the 

last decade. Although this topic attracts attention in the literature, some researchers 

asserted that the newly introduced metaheuristics have similarities regardless of 

different metaphors.  

However, according to the “No Free Lunch Theorem”, there cannot be an 

algorithm that is appropriate for all problems. For this reason, as real-world 
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optimization problems exist, scholars will continue to focus on developing novel 

algorithms that can solve most types of problems.  

 

Discussion about Findings 

 

The performance of the RSAB-REF algorithm has been tested with the most 

common unconstrained/bounded benchmark problems, engineering design problems, 

and economic dispatch problem respectively. Although these benchmarks are referred 

to as engineering design problems in the literature, problems that are essentially aimed 

at "cost minimization" can also be regarded as a business problem. The updated 

domains as the output of the RSAB algorithm and the best solutions obtained as a 

result of the RSAB-REF algorithm have been presented in Table 15-37.  

According to the findings of the RSAB algorithm, it is clear that the search 

space was reduced by approximately half for each unconstrained problem. For the 

RSAB algorithm, the initial set size was used as 20 regardless of the dimension size of 

the problems, and the amount of increase in case of no improvement was used as 0 

since RSAB is hybridized with the REF algorithm. It is recommended that the initial 

set size can be increased when the RSAB algorithm is applied only. For this reason, 

there is no radical difference between dimensions in test cases in terms of narrowing 

the search space. However, since 30 trials were run for each test function, the reporting 

of narrowed areas was only made as to the average of all trials and variables. As for 

constrained problems, it is more difficult to handle the RSAB algorithm because of the 

possibility of losing the global optimum or violating constraints. However, according 

to the findings, the RSAB algorithm reduced search space successfully in case of 

constraints as well. It is worth noting that, the reported domains succeed in between 

60%-90% approximately among 30 trials for constrained problems. The reason for the 

updated range to miss the global minimum is thought to be since the constraints do not 

contain the relevant variable. However, this situation does not prevent the REF 

algorithm from reaching the global minimum. This procedure provides a contribution 

to problem-solving in terms of time and efficiency rather than adding a burden to the 

REF algorithm. Mathematically speaking, the RSAB algorithm consumes 

approximately 10% of the total function evaluations. 



106 
 

According to the findings of Hybrid RSAB-REF for unconstrained problems, 

especially benchmarks with 2-3 sizes and even 10 sizes achieved global minimum 

solutions successfully. In addition to achieving a global minimum, standard deviations 

and errors indicate that the findings are consistent among 30 trials. As for 30-

dimensional problems, it can be said that at least one out of 30 trials reached the global 

solution to a certain degree. However, the standard deviations are noteworthy in 

problems with 30 dimensions and large search spaces. Therefore, the problems with 

high dimensions can yield better results with more function evaluation values or when 

stretching the stopping condition. 

It is very important to test constrained benchmark problems to show the 

capability of the MUPE approach employed in the REF algorithm. Although the 

maximum FES value is limited to 30000 for all constrained problems, in some cases 

the algorithm terminated with lower FES values because of the stopping condition. 

This helps the REF algorithm to quickly complete that trial in case the global solution 

is missed in the RSAB algorithm. 

According to the experimental results for the Pressure Vessel problem, the best 

feasible solution was reached as 5850.38306 by satisfying all constraints with the 

RSAB-REF algorithm. The result compared with many algorithms published in high-

quality journals. According to the solutions published in the literature, it seems that 

HIS and FA have obtained the best-known solution so far. However, after a detailed 

examination, it was recognized that the reported values for IHS and FA did not reflect 

the truth as explained in the previous section. Besides, most of the studies could not 

be able to satisfy “having x1 and x2 as integer multiplies of 0.0625”. Although the 

worst and the standard deviation are relatively higher than the others, the feasible best-

known solution in the literature is obtained by the proposed algorithm. Moreover, the 

RSAB-REF algorithm has provided the best-known solution with a smaller set size, 

fewer function evaluations, and no violation compared to FA and IHS.  

According to the findings for Himmelblau’s function, the best-known solution 

is reached by H-GSA-GA with -31027.64076 which is published in 2019. However, 

the H-GSA-GA utilizes 20*Dimension as population size which becomes 100. 

Besides, other algorithms reached the objective value of -31025.5 in general. Besides, 

there are also infeasible solutions reached by other algorithms in Table 24-25.  The 
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performance of the RSAB-REF algorithm for Himmelblau's Function is considerably 

good since -31025.5 was obtained and all constraints were satisfied. 

According to the experimental results for Welded Beam, 1.724867 was 

obtained by the RSAB-REF algorithm which is feasible. The feasible best-known 

solution for Welded Beam has been obtained as 1.724852 in the literature. Most of the 

algorithms have reached the feasible best-known solution, however, the solution 

values obtained differ after the 5th decimals. The RSAB-REF algorithm achieved the 

best-known solution with a 2.3E-05 deviation from the best-known solution which is 

negligible. According to the comparison table, IHS, SOA, PA, MPA, SMA, and CGO 

reached infeasible solutions. Although CBO documented its best solution as 1.724663 

which seems the best-known solution in the literature, its adjusted objective value is 

1.724983 which cannot be a rounding error. As a result, it can be concluded that the 

RSAB-REF algorithm performed quite well for the Welded Beam problem. 

Another unconstrained benchmark problem is Tension/Compression Spring 

Design problem. The RSAB-REF algorithm was reached 0.012665 by satisfying all 

constraints which is the best-known solution in the literature as well. However, 

according to the comparison table, the solutions violated some constraints less than 

0.012665 (CSS, MCSS, and SOA) with relatively smaller deviations. Therefore, it is 

clear that the RSAB-REF algorithm also performed well for this problem too. 

 Except for engineering design problems, CHPED was preferred to be tested as 

a different business problem. This problem aims to calculate the unit heat and power 

production. Although it is not defined as integer programming, the best-known 

solution in the literature has integer values. However, this result is not surprising 

because of the nature of the allocation problem. Finding a stable solution for the 

CHPED problem is challenging for the RSAB-REF algorithm since this problem has 

many constraints and includes demand equalities. Since some deviation of constraints 

is allowed in MUPE, constraints should be treated as inequalities in the RSAB-REF 

algorithm. For this reason, considering equality constraints as two inequalities (≤, ≥) 

makes CHPED a more challenging problem. According to the findings for the CHPED 

problem, the RSAB-REF algorithm was reached the best-known solution (9257.075) 

without any violation. However, it would be better to mention that variables were 

restricted to integers. According to the solutions published in the literature, CCM and 
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KKO violated some constraints. When the population sizes (changing between 25-

500) used by the algorithms obtained 9257.075 are examined, it can be concluded that 

the performance of RSAB-REF with 50 particles is relatively good. However, it is 

worth mentioning that the RSAB-REF algorithm is open to improvement to obtain 

more stable results with fewer particles for problems like CHPED. 

 

Discussion about Similar Algorithms 

 

As an overall assessment, it is obvious that the REF algorithm is similar to 

algorithms in both the magnetism class and Newton's gravitational law class since it 

employs Coulomb’s Law, Pareto’s Principle, Pauli’s Exclusion Principle, Newton’s 

Third Law, Momentum Law. Considering the physics-based algorithms introduced in 

Section 2, it is seen that the REF algorithm belongs to both the magnetism class and 

Newton's gravitational law class. 

The most prominent feature of REF is the “repulsive forces between particles”. 

No algorithm relies solely on repulsive forces, as in the REF algorithm. GSA, CFO, 

CSS allow particles only to attract each other, whereas EM, MOA, MCSS, EFO, APO, 

GIO are the algorithms that allow particles to attract and repulse each other. Among 

them, MOA, MCSS, and EFO consider attraction between particles strongly than 

repulsion.  

Another prominent principle in the REF algorithm is Coulomb's Law. EM and 

CSS, which belong to the magnetism class, are also based on Coulomb's Law as well. 

However, EM differentiates in terms of allowing attraction whereas CSS also utilizes 

Gauss Law additionally.  

Moreover, REF employs memory. Thus, in each iteration of the algorithm, it is 

aimed to beat the previous best. In this way, it is easier to reach the global optimum. 

As for the others, EM and CSS also use memory in their principle. On the other hand, 

although memory usage provides better convergence, Rashedi et al. (2009) asserted 

that GSA is a memoryless algorithm but works as effectively as algorithms with 

memory. 

Furthermore, REF calculates repulsive force by considering a Gravity Constant 

as a function that depends on the logarithm of the distance between particles. GSA 
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also incorporates Gravitational Constant as a function based on the total number of 

iterations and the time and it decreases dynamically through the iterations. Unlike REF 

and GSA, GIO algorithm employs a constant number for Gravitational Constant.  

As for the neighborhood principle, REF takes into account a defined number 

of neighbors which are the most-closest ones and this means that a particle can be 

affected only by its neighbors. Furthermore, REF employs Euclidean distance between 

particles as in GSA. Among the similar algorithms, MOA considers repulsion and 

attraction until the distance approaches infinity between particles. Besides, the power 

of the distance parameter used in Newton’s Gravitational Law is flexible between -5 

to 5 in the APO algorithm rather than square which is used generally.  

 The highly dissociative property is whether the mass or energy of the particles 

is taken into account in algorithms. Since the REF algorithm is inspired by Coulomb’s 

Law, the particles get involved in force calculation as electrical charges. However, the 

algorithms belong to Newton’s Gravitational Law and MOA utilizes particle mass. On 

the other hand, HO, EM, CSS, MCSS consider charges of particles.  

Furthermore, the REF algorithm assumes that particles can move in hyperspace 

through only a path but not like a wave. A similar principle is also employed by the 

MCSS algorithm by allowing only straight-line movements.  

Although the REF algorithm and the algorithms mentioned above have both 

common and distinctive features, it should be noted that the main purpose of this study 

is not to duplicate existing algorithms through a new metaphor, but to provide an 

algorithm that converges the best-known solution values. To reach better solutions it 

is very important to determine the best combination of features inspired from the 

literature or metaphors. Therefore, achieving better results in a specific problem type 

is the primary goal, regardless of metaphors and similarities. It is also worth noting 

that physics-based algorithms, which have common features with REF, have been 

generally applied for unconstrained problems. Those developed for constrained real-

world problems have been included in the comparison list within the scope of this 

thesis.  
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Theoretical Implications 

 

In this thesis study, an evolutionary computation model for 

unconstrained/bounded and constrained continuous optimization problems has been 

developed. This model is constituted as a hybrid algorithm that includes RSAB as an 

initialization algorithm and REF as the main algorithm. These two algorithms 

presented in this thesis study are adapted from the thesis study conducted by Erdem 

(2007). However, certain structural modifications have been implemented. A 

comprehensive preliminary study has been carried out to decide on which framework 

and which programming language will be used for coding the proposed algorithm (see 

Oztas and Erdem, 2021). According to the findings of this study, management 

scientists in social sciences tend to prefer easy-to-use platforms which are approximate 

to human language. For this reason, we preferred to code the RSAB and REF 

algorithms in Python language on the PyCharm framework. The developed algorithms 

have been coded by the author under object-oriented programming and class structure 

to provide more readable and systematic codes. Moreover, code optimization has been 

applied numerous times to the code prepared within the scope of the study and 

improvements have been achieved by getting rid of the existing bottlenecks. 

RSAB algorithm can be thought of as a procedure for banning regions in the 

search space where there is no global solution. It has been developed to provide 

adaptive initial solutions by reducing the diversity of randomness in the initialization 

procedure. The outstanding feature of this algorithm is the ability to escape from 

eliminating accidentally global optimum in multi-modal problems unlike in 

straightforward methods. Moreover, this initialization procedure does not add 

additional burden to existing solution methods, and on the contrary, it provides a 

contribution to problem-solving in terms of time and efficiency. For this initialization 

algorithm, the “Update Intervals” procedure has been newly developed as a 

modification to obtain robust narrowed intervals. This module includes two sub-

modules that are running in case of the improvements in solutions for 

unconstrained/bounded and constrained problems. This algorithm runs for the defined 

number of iterations. The final updated intervals are determined by considering all 

generated intervals for having robust, stable solutions. For that reason, mean-mode-
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median values of lower and upper limits are calculated. In the end, the minimum of 

lower limits and the maximum of upper limits will be the final updated intervals for 

the related problem.  In this way, the updated domains as the output of RSAB will be 

the search space as input in the REF algorithm. 

REF Algorithm has been structured on the principle that the forces between a 

particle and its neighbors make the particle moved to a new location where a better 

solution may exist. The repulsive structure of the particles and the movements can be 

considered as the mimics of Coulomb's Law and Momentum Law respectively. 

Furthermore, Tabu Search Algorithm and Elitism selection approach have inspired the 

memory usage of the main algorithm. Moreover, the REF algorithm includes the 

MUPE approach which is developed for constraint handling by considering 

satisfaction rates, the total deviations of constraints, and objective function in a 

multiplicative manner.  

REF algorithm comprises “Determine Intervals”, “Initialization”, 

“Neighborhood”, “Displacement”, and “Duplication” steps. Modifications have been 

applied to each step except the "Neighborhood". “Determine Intervals” and 

“Initialization” are the common steps with  RSAB which are executed only once 

when operating as a hybrid algorithm. Modifications have been applied to each 

procedure within the scope of this thesis study except the neighborhood procedure.  

Some modifications have been applied to increase the efficiency of the 

algorithm by considering unified (net) forces. Another prominent change in the 

proposed algorithms is the duplication module. The duplication has been newly 

developed in this thesis as a control mechanism for duplications in population to meet 

Pauli’s Exclusion principle. However, a degree of precision is important to determine 

if the particles are in the same location. In our experiments, locations are assumed as 

duplication in case of first three digits are the same. In such cases, different 

displacement procedures are applied to determine the new position of the same particle 

heuristically. While duplication check provides diversification, repositioning in a wide 

range can create too much diversity which disrupts the balance. For this reason, 

making the repositioning around the best-known solution has an intensification 

purpose to balance the exploration-exploitation ability of the REF algorithm. 



112 
 

Furthermore, a database structure has been created to reduce the function 

evaluation load in the algorithm. Memory capacity has been implemented to the REF 

algorithm for two purposes. This database can be thought of as a memory capability. 

The first one is the creation of a database. Each particle is recorded in a memory along 

with the evaluation scores (constraint satisfied rates, total deviations). It is worth 

mentioning that, in the REF algorithm, memory is used not as a banned list as in Tabu 

Search, but to get rid of unnecessary repetitive function evaluations. The second one 

is about recording the best-so-far positions of the particles. In the REF algorithm, best-

so-far solutions of every particle are stored in order not to lose them in case of 

displacements. However, differently from the original elitism principle, there is no 

certain ratio for the elitist particles. Namely, the best-so-far particles are kept 

separately from the relocated particle set.   

 

 Limitations  

 

Some limitations of this thesis study should be noted. Although numerous code 

optimization was conducted, the latest version of the algorithm consists of operations 

that contain several for loops which is time-consuming because of its working 

principles and the nature of object-oriented programming. The performance of the 

developed algorithms is limited by the tested benchmarks. Moreover, the performance 

of the RSAB-REF is limited for large-dimensional problems, since the objective 

function value is the single control mechanism in unconstrained problems. In addition, 

since MUPE, which is the prominent capability of the algorithm, developed for 

constraint handling, is a penalty-based approach, determining importance scores by 

trial and error can be considered as a disadvantage. Apart from this, hardware 

qualifications such as central processing unit (CPU), computer data storage, the 

motherboard can also be considered as the constraints of this thesis.  

 

Further Studies 

 

Suggestions for future studies can be examined based on the proposed 

algorithm, programming language, and alternative computing approaches. There may 
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be structural changes that can be implemented to the algorithm. The problem range 

solved by the algorithm can be expanded. Modifications can be made to increase the 

performances for large-dimensional unconstrained problems and to achieve the desired 

result with fewer function evaluation values. Also, the developed approaches provided 

in the modules can be integrated with different algorithms and performance 

comparison can be achieved. Moreover, it can be integrated with various algorithms 

as a different hybrid algorithm. Within the scope of this thesis, the python codes of the 

algorithm will be made available to those concerned from platforms such as GitHub 

as open source. Thereafter, it is also planned to develop a user interface for the 

proposed algorithms. Consequently, researchers will be provided with an optimization 

tool that can apply the RSAB-REF algorithm easily. 

Improvements can be applied to the programming language. It is always 

addressed that NP-Hard problems cannot be solved in polynomial time. However, 

another issue that needs to be addressed is that iterative methods should be developed 

with fewer loops and provide solutions in polynomial time. For this reason, it will be 

beneficial to develop programming languages suitable for functional programming 

using matrix-based associated memory. 

Challenges in the field of optimization facing today comprise solving NP-Hard 

problems, which entails finding the best solution out of an enormous number of trials 

regardless of algorithms and even programming languages. Therefore, technologies 

may be inadequate in increasing the size of the problems that can be handled and in 

reducing the amount of time required to find a solution at the same time. Although 

parallel programming offers multiple solutions simultaneously which achieve results 

much faster by dividing the required transaction volume and time by the processors, 

even supercomputers may become impractical because of the complexity. With the 

latest technology of quantum computing, tools are being developed for researchers to 

work beyond classical capabilities. IBM Quantum, Google Quantum AI are the main 

examples of the technology which leads the world in quantum computing to solve 

complex problems the world's most powerful supercomputers cannot solve.  

Furthermore, specially designed Ising machines using a mathematical model have 

been developed for cases where even supercomputers cannot handle. The latest 

example of this technology is the Simulated Bifurcation machine developed by 
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Toshiba for large-scale, complex combinatorial optimization problems in a short time 

(Toshiba Corporation, 2019). According to Tatsumura et al. (2019), Simulated 

Bifurcation provides an opportunity to solve complex combinatorial problems very 

fast by massively parallel processing. According to Toshiba, this speed is 1000 times 

faster than when using standard optimized simulated annealing software. Moreover, 

Toshiba also considers developing general-purpose – to handle other problem types- 

Simulated Bifurcation Ising Machines as well. (Boyd, 2020). Therefore, these recent 

developments show us that there will be breakthroughs for optimization problems in 

the near future. 
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App. p.1 
 

APPENDIX 1: Unconstrained/Bounded Benchmark Problems 

Name Test Function Range Objective 

De JongF1 

/Sphere 
 ∑ 𝑥𝑖

2

𝑛

𝑖=1

 [-100,100] Min: 0 at  (0, 0, …,0) 

AckleyF1 20 + 𝑒 − 20exp (−0.20√
1

5
∑ 𝑥𝑖

2

𝑛

𝑖=1

) − exp (
1

𝑛
∑ cos (2𝜋𝑥𝑖))

𝑛

𝑖=1

 [-32,32] Min: 0 at (0, 0…, 0) 

Rastrigin 100𝑥 + ∑(𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖)

𝑛

𝑖=1

 [-5.12,5.12] Min: 0 at (0, 0…, 0) 

Cosine  
Mixture 

∑ 𝑥𝑖
2

𝑛

𝑖=1

−
1

10
∑ 𝑐𝑜𝑠(5𝜋𝑥𝑖)

𝑛

𝑖=1

 [-1,1] 
Min -0.1*n at 

(0,0,..,0) 

Exponential −𝑒𝑥𝑝(−0.5 ∑ 𝑥𝑖
2

𝑛

𝑖=1

) [-1,1] Min: -1 at (0, 0,…,0) 

Cb3 (Three 
Hump Camel) 

2𝑥1
2 − 1.05𝑥1

4 +
1

6
𝑥1

6 + 𝑥1𝑥2 + 𝑥2
2 [-5,5] Min: 0 at (0, 0) 

Bohachevsky

2 
𝑥1

2 + 2𝑥2
2 − 0.3 cos(3𝜋𝑥1) 0.4 cos(4𝜋𝑥2) + 0.3 [-50,50] Min: 0 at (0, 0) 

Griewank 
1

4000
∑ 𝑥𝑖

2 − ∏
𝑥𝑖

√𝑖

𝑛

𝑖=1

𝑛

𝑖=1

+ 1 [-100,100] Min: 0 at (0,…,0) 

Alpine 1 ∑|𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|

𝑛

𝑖=1

 [-10,10] Min: 0 at (0,…,0) 

Egg Crate ∑ 𝑥𝑖
2 + 25𝑠𝑖𝑛2(𝑥𝑖)

𝑛

𝑖=1

 [-5,5] Min: 0 at (0,…,0) 

3-D 

Paraboloid 
 2𝑥2 + 10𝑦2 + 5𝑧2 + 6𝑥𝑦 − 2𝑥𝑧 + 4𝑦𝑧 − 6𝑥 − 14𝑦 − 2𝑧 + 6 [-10,10] 

Min: 0 at (1.4, 0.2, 

0.4) 

Price 2 1 + ∑ 𝑠𝑖𝑛2(𝑥𝑖) − 0.1𝑒− ∑ 𝑥𝑖
2𝑛

𝑖=1

𝑛

𝑖=1

 [-10,10] Min: 0.9 at (0,…,0) 

Schaffer 1 0.5 +
𝑠𝑖𝑛2(∑ 𝑥𝑛

𝑖=1 𝑖

2
)2 − 0.5

1 + 0.001(∑ 𝑥𝑖
2𝑛

𝑖=1 )2
 [-100,100] Min: 0 at (0,…,0) 

Schwefel 1.2 ∑(∑ 𝑥𝑗

𝑖

𝑗=1

)2

𝑛

𝑖=1

 [-100,100] Min: 0 at (0,…,0) 

Xin-She Yang 

Function 2 
∑|𝑥𝑖|𝑒(− ∑ sin (𝑥𝑖

2)𝑛
𝑖=1 )

𝑛

𝑖=1

 [-2π,2π] Min: 0 at (0,…,0) 

Himmelblau (𝑥1
2 + 𝑥2 − 11)2 + (𝑥1 + 𝑥2

2 − 7)2 [-5,5] Min: 0 at (3, 2) 

Guinta 
0.6 + ∑[sin (

16

15
𝑥𝑖 − 1) + 𝑠𝑖𝑛2(

16

15

2

𝑖=1

𝑥𝑖 − 1) +
1

50
sin (4(

16

15
𝑥𝑖

− 1))] 

[-1,1] 

Min: 0.060447 at 

(0.45834282, 
0.45834282) 

Adjiman cos(𝑥1) sin(𝑥2) −
𝑥1

(𝑥2
2 + 1)

 
[-1,2] 

[-1,1] 
 

Min:  
-2.02181 at (2, 

0.10578) 

Branin 

1

51.95
(𝑥2 −

5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)2 + 10 (1 −

1

8𝜋
) cos(𝑥1)

− 44.81 

[-5,10] 

[0,15] 
 

Min:  

0.397887 at (-𝜋, 

12.275;𝜋, 2.275;9.424
78,2.475) 

Beale 
(1.5 − 𝑥1 − 𝑥1𝑥2)2 + (2.25 − 𝑥1 + 𝑥1𝑥2

2)2

+ (2.625 − 𝑥1 + 𝑥1𝑥2
3)2 

[-4.5,4.5] Min: 0 at (3, 0.5) 

Bird sin(𝑥1) 𝑒(1−cos(𝑥2))2
+ cos(𝑥2) 𝑒(1−sin(𝑥1))2

+ (𝑥1 − 𝑥2)2 [-2π,2π] 

Min:  

-106.764537 at 
(4.70104, 3.15294; -

1.58214, -3.13024) 

McCormick sin(𝑥1 + 𝑥2) + (𝑥1 − 𝑥2)2 − (
3

2
) 𝑥1 + (

5

2
) 𝑥2 + 1 

[-1.5,4] 

[-3,3] 
 

Min:  

-1.9133 at (-0.547,  
-1.547) 

 

 



App. p.2 
 

APPENDIX 2: Pressure Vessel Model 

Minimize 𝑓(�⃗�) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3 

Subject to 

−𝑥1 + 0.0193𝑥3 ≤ 0 

−𝑥2 + 0.00954𝑥3 ≤ 0 

−𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0 

𝑥4 − 240 ≤ 0 

𝑥1, 𝑥2 ∈ [0.0625, 10]; 𝑥3 ∈ [0, 100]; 𝑥4 ∈ [0, 240] 

 

APPENDIX 3: Pressure Vessel Figure 

 

Source: (Cagnina et al., 2008: 323) 

 

APPENDIX 4: Himmelblau’s Function Model 

Minimize 𝑓(�⃗�) = 5.3578547𝑥3
2 + 0.8356891𝑥1𝑥5 + 37.293239𝑥1 − 40792.141 

Subject to 

𝑔1(�⃗�) = 85.334407 + 0.0056858𝑥2𝑥5 + 0.00026𝑥1𝑥4 − 0.0022053𝑥3𝑥5 

𝑔2(�⃗�) = 80.51249 + 0.0071317𝑥2𝑥5 + 0.0029955𝑥1𝑥2 + 0.0021813𝑥3
2 

𝑔3(�⃗�) = 9.300961 + 00.0047026𝑥3𝑥5 + 0.0012547𝑥1𝑥3 + 0.0019085𝑥3𝑥4 

0 ≤ 𝑔1(�⃗�) ≤ 92 

90 ≤ 𝑔2(�⃗�) ≤ 110 

20 ≤ 𝑔3(�⃗�) ≤ 25 

𝑥1 ∈ [78,102]; 𝑥2 ∈ [33,45]; 𝑥3, 𝑥4, 𝑥5 ∈ [27,45] 

 

 



App. p.3 
 

APPENDIX 5: Welded Beam Model 

Minimize 𝑓(�⃗�) = (1 + 𝑐1)𝑥1
2𝑥2 + 𝑐2𝑥3𝑥4(𝐿 + 𝑥2) 

Subject to 

𝑔1(�⃗�) =  𝜏(�⃗�) − 𝜏𝑚𝑎𝑥 ≤ 0 

𝑔2(�⃗�) =  𝜎(�⃗�) − 𝜎𝑚𝑎𝑥 ≤ 0 

𝑔3(�⃗�) =  𝑥1 − 𝑥4 ≤ 0 

𝑔4(�⃗�) =  𝑐1𝑥1
2 + 𝑐2𝑥3𝑥4(𝐿 + 𝑥2) − 5 ≤ 0 

𝑔5(�⃗�) =  𝛿(�⃗�) − 𝛿𝑚𝑎𝑥 ≤ 0 

𝑔6(�⃗�) = 𝑃 − 𝑃𝑐(�⃗�) ≤ 0 

𝜏(�⃗�) =  √(𝜏′)2 + 2𝜏′𝜏′′
𝑥2

2𝑅
+ (𝜏′′)2 

𝜏′ =
𝑃

√2𝑥1𝑥2
; 𝜏′′ =

𝑀𝑅

𝐽
; 𝑀 = 𝑃(𝐿 +

𝑋2

2
); 𝑅 =  √𝑥2

2

4
+ (

𝑥1+𝑥3

2
)2 

𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2

2

12
+ (

𝑥1 + 𝑥3

2
)2]} 

𝜎(�⃗�) =  
6𝑃𝐿

𝑥4𝑥3
2; 𝛿(�⃗�) =  

4𝑃𝐿3

𝐸𝑥3
3𝑥4

 

𝑃𝑐(�⃗�) =  
4.013𝐸√𝑥3

2𝑥4
6

36
𝐿2

(1 −
𝑥3

2𝐿
√

𝐸

4𝐺
) 

𝑥1 ∈ [0.125, 5]; 𝑥2, 𝑥3 ∈ [0.1, 10]; 𝑥4 ∈ [0.1, 5] 

c1 = 0.10471; c2 = 0.04811; P = 6000; L = 14; E = 30000000; G = 12000000 

𝛿𝑚𝑎𝑥 = 0.25; 𝜏𝑚𝑎𝑥 = 13600; 𝜎𝑚𝑎𝑥 = 30000 

 

 

 

 

 

 

 

 



App. p.4 
 

APPENDIX 6: Welded Beam Figure 

 

Source: (Cagnina et al., 2008: 323) 

 

APPENDIX 7: Tension/Compression Spring Design Model 

 

Minimize 𝑓(�⃗�) = (𝑥3 + 2)𝑥2𝑥1
2 

Subject to 

𝑔1(�⃗�) = 1 −
𝑥2

3𝑥3

71785𝑥1
4 ≤ 0 

𝑔2(�⃗�) =  
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0 

𝑔3(�⃗�) = 1 −  
140.45𝑥1

𝑥2
2𝑥3

≤ 0 

𝑔4(�⃗�) =  
𝑥1 + 𝑥2

1.5
− 1 ≤ 0 

𝑥1 ∈ [0.05, 1]; 𝑥2 ∈ [0.25, 1.3]; 𝑥3 ∈ [2, 15]  

 

 

 

 

 

 

 



App. p.5 
 

APPENDIX 8: Tension/Compression Spring Design Figure 

 

Source: (Cagnina et al., 2008: 323) 

 

APPENDIX 9: Combined Heat and Power Economic Dispatch Model 

𝑀𝑖𝑛 𝑐1(𝑃1) + ∑ 𝑐𝑗(𝐻𝑗 , 𝑃𝑗) + 𝑐4(𝐻4)

3

𝑗=2

 

𝑔1(�⃗�) =  𝑃1 + 𝑃2 + 𝑃3 ≤  200 

𝑔2(�⃗�) = 𝑃1 + 𝑃2 + 𝑃3 ≥  200 

𝑔3(�⃗�) = 𝐻2 + 𝐻3 + 𝐻4 ≤  115 

𝑔4(�⃗�) = 𝐻2 + 𝐻3 + 𝐻4 ≥  115 

𝑔5(�⃗�) = 𝑃2 + 0.177778𝐻2 ≤ 247 

𝑔6(�⃗�) = 𝑃2 + 0.16985𝐻2 ≥ 98.8 

𝑔7(�⃗�) = −𝑃2 + 1.781915𝐻2 ≤ 105.74468 

𝑔8(�⃗�) = 𝑃3 + 0.151163𝐻3 ≤ 130.697 

𝑔9(�⃗�) = 𝑃3 + 0.067682𝐻3 ≥ 45.076142 

𝑔10(�⃗�) = −𝑃3 + 1.1584𝐻3 ≤ 46.8812 

𝑃1 ∈ [0,150], 𝑃2 ∈ [81,274], 𝑃3 ∈ [40,125.8] 

𝐻2 ∈ [0,180], 𝐻3 ∈ [0,135.6], 𝐻4 ∈ [0,2695.2] 

𝑐1(𝑃1) = 50𝑃1 

𝑐2(𝐻2, 𝑃2) = 2650 + 14.5𝑃2 + 0.0345𝑃2
2 + 4.2𝐻2 + 0.03𝐻2

2 + 0.031𝑃2𝐻2 

𝑐3(𝐻3, 𝑃3) = 1250 + 36𝑃3 + 0.0435𝑃3
2 + 0.6𝐻3 + 0.027𝐻3

2 + 0.011𝑃3𝐻3 

𝑐4(𝑃4) = 23.4𝐻4 


