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ABSTRACT

Data compression techniques are developed to increase the efficiency of
communication channels and to occupy less space in storage media. This technique
helps reducing communication period, enabling more data flow and decreasing the
cost of hardware for data storage. Almost in all data transfer and data storage needs,
data compression techniques are extensively used. Amongst the many applications,

image data compression has great importance due to its high redundant data content.

In this study, different image data compression techniques are investigated and
compared with each other for their efficiency and effects on image quality. Among
the many data compression techniques, the following ones are choosen to be
compared with each other: Run-Length Coding, Discrete Fourier Transform, Discrete
Cosine Transform, Vector Quantization, Hierarchical Finite-State Vector
Quantization and Wavelet Transform techniques. The basic criteria in comparing

these techniques are their compression rates versus their signal to noise ratio.

This studj? has revealed that at low compression rates Run Length Coding and in
high compression rates Vector Quantization and Wavelet Transform are more
efficient than the others. As alternative approaches, techniques which are called
hybrid Wavelet Transform with Vector Quantization technique and hybrid Wavelet
Transform with Hierarchical Finite-State Vector Quantization are proposed and
presented. The results show that these combinations have better performance than the

each algorithm individually at high compression ratios.
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OZET

Veri Sikigtirma teknikleri iletim band: genigliginin etkin bir gekilde kullanimi ve
verilerin en az bellege ihtiyag duyacak sekilde depolanmas: igin gelistirilmigtir.
Boylece iletim siiresi ve bilgileri saklamak i¢in gerekli donanimin en aza indirilmesi
saglanabilmektedir. Veri Sikistirma tekniklerinin birgok uygulama alanlari vardir.
Bunlarnn iginde gorinti sikistirma giinimiizde dnemi gittikge artan bir uygulama

alanidir.

Bu tezde uygulamada en ¢ok kullanilan gériinti sikigtirma yontemleri incelenerek
goriintiler tizerindeki etkileri gosterilmis ve yontem karsilagtirmalan yapilmigtir.
Run-Length kodlama, Ayrik Fourier Transform, Ayrik Kosiniis Transform, Vektor
Kuantalama, Hiyerargik Vektér Kuantalama, Wavelet Transform teknikleri ile
gorintiler sikigtirilip, farkls sinyal giiriltti oranlar1 ve mutlak hata oranlar sikigtirma
oranlarina goére karsilagtinlmistir. Run-Length Kodlama’min digik sikigtirma
oranlarinda daha etkili, buna ragmen Vektdér Kuantalama, Hiyerarsik Vektor
Kuantalama ve Ayrik Kosiniis Transform metotlarinin daha yiiksek sikigtirma

oraninda daha iyi sonug verdigi gorilmiigtiir. -

Yeni sikigtirma yontemleri olarak da, 6nce Wavelet Transform uygulanmisg
goriintiiye, bir uygulamada Vektér Kuantalama metodu diger uygulamada ise
Hiyerarsik Vektér Kuantalama uygulanmistir. Ortaya ¢ikan bu melez sikigtirma
tekniklerinin sonucunda elde edilen resimlerin yiiksek sikigtirma oranlarinda, diger

sikigtirma tekniklerine gére orijinal resme daha yakin oldugu gorilmistiir.
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CHAPTER ONE
INTRODUCTION

Data Compression seeks to reduce the number of bits used to store or transmit
information. By using compression techniques, the analog data, which is at very high
rate, is converted to relatively low rate discrete data for communication over a digital
gommuﬁication link or storage in a digital memory. The data compression techniques
have received increased attention, because recently digital cbmmunication and secure
communication have become increasingly important. For efficiency and economical
reasons, it is necessary to reduce the transmission rate and to limit the amount of data

to be stored.

Nowadays, data compression has many applications. One of the most popular
applications is image compression. The image data compression techniques are one
of the major parts of image processing. These techniques are useful in television,
remote sensing via satellite, aircraft, radar, computer communications, document

processing, video archiving and transmission.

For example, the Meteosat radiometer produces ;)ne image slot (37.5 Mbytes)
every half an hour. The required storage capacity for daily image is then
1.8Gbytes[11]. The use of compression methods yielding compression ratios of 8 or
higher significantly reduces the storage space and the transmission time of these
images. In the specific case of 8 to 1 compression ratio, the gain in efficiency and the
economical profit are already obvious. The necessary storage -space and the
transmission time will indeed be divided by a factor 8 for the same amount of data,
and the communication channel capacity will be multiplied by the same factor for the

given transmission time and communication line.



Data compression techniques for image can be divided into two major families:
lossless and lossy[3]. Lossy data compression on an image accepts a certain loss of
accuracy in exchange for greatly increased compression. Lossy data compression on
an image is more effective when applied to a graphics image and digitized voice.
Most compression techniques can be adjusted to different quality levels, gaining
higher accuracy in exchange for less effective compression. Lossless compression
consists of those techniques guaranteed to generate an exact duplicate of the input
data stream after decompressing. This is the type of compression used when storing

database records, spreadsheets or word processing files.

A variety of lossless and lossy compression schemes have been developed
nowadays. In the second chapter, firstly, image properties such as histogram, image
enhancement techniques and spatial filtering are given. In the third chapter, different
lossless and lossy compression techniques are examined. In this thesis, Run-Length
Coding [4] as a sample of lossless compression, Discrete Fourier Transform [8].
Discrete Cosine Transform[15], Vector Quantization[10], Hierarchical Finite-State
Vector Quantization [23] and Wavelet Compression[17] which is very popular in
recent years are examined. In the fourth chapter, the hybrid compression techniques

are presented.

Discrete Fourier Transform and Discrete Cosine Transform are usually used as a

. first step for other compression techniques such as JPEG [15]. Wavelet Compression
technique is an alternative method which is preferred in recent years to transform
coding. In this thesis, hybrid compression techniques are examined as alternative
compression methods. The performance results are presented and compared with
other compression techniques. The hybrid compression techniques are implemented
by combining wavelet compression with vector quantization and wavelet
compression with hierarchical Finite-State Vector Quantization. All compression
algorithms are written in “C” for windows programming language. The compression
results are presented and the results are compared to each other according to their
compression ratio, signal to noise ratio and mean square error for different images.

And all the performance results are given in the conclusion.



CHAPTER TWO

INTRODUCTION TO DIGITAL IMAGE
ENHANCEMENT

2.1 An Image Representation

The term image is a two-dimensional light intensity function, f{x,y). This function
defines the value of the brightness of the image at any point x and y spatial

coordinates.

A digital image is a function f(x,y) that has been discretized both in spatial
coordinates and brightness. A digital image can be considered as a matrix of which

row and column indices identify a point in a image. Each element of this digital array

is called as a pixel.
Upper-left
corner of
image "_) Pixels
o0 ! 2 1 4 5 6 7. 8

0
¥
!

2

Lines 4.

7

“‘M\—'

Figure 2.1 The discrete pixel numbeﬁng convention.,



Figure 2.2 A 320x240 digital image showing the location of pixel (35,99).

The picture shown in Figure 2.2 includes total 76,800 pixels.

images can have either digital or analog representation. In the - digital
representation of gray-level images, the image is presented as a two-dimensional
array of numbers. Each gray-level is presented by 8 bits (1 byte), then the gray level
may have any of 2° or 256 possible values. These levels are assigned integer values
ranging from 0 to 255, with O representing the darkest intensity level and with 255
representing the brightest intensity level. In a colored image, the representation is
similar except the number represents three primary colors: red, green and blue at each
location of the matrix. For a 24 bit color representation, the number is divided into

three 8 bit segments. .Eéch segment represents the intensity of the colour primaries.

In the analog form, images are usually presented as horizontal raster lines. Each
line is basically an analog signal carrying the continuous variations of light intensities
along a horizontal line in the original scene. For example; images on television sets

are displayed through raster scanning.
2.2 Sampling and Quantization

A digital image is composed of discrete points of gray-level tone, rather than

continuously varying tones. To obtain a digital image from a continuous-tone image,



it must be divided up into individual points of brightness. Additionally, each point of
brightness must be described by a digital data value. The processes of breaking up a
continuous tone image and determining digital brightness values are referred to as

sampling and quantization that are illustrated in Figure 2.3.

Sampler
sl

Continuous Sampled Image Sanplneﬂ t:zd
uantiz
Tone Image P

Figure 2.3 An image is converted from a continuous-tone to a digital form.

As a result of this process, the obtained matrix is shown below:

f0,00  £0,1)  f(0,2) . fOM-1)  flo.M)
fL0) L) K12 - fOM-D M)
f(N-i,O) f(N-i,l) f(NQi,z) FN-1,M-1) f(N-i,M)
fN,0) N1 fN.2) - M) fNM)

The quality of the digital image is directly related to the number of the pixels, M
and N. These aspects are known as image resolution. Image resolution -is the

capability of the digital image to resolve the elements of the original scene.

For digital images, the resolution characteristics can be broken into two primary

groups as spatial and brightness resolution (or color resolution for color images).
2.3 Spatial Resolution

Spatial resolution is described as how many pixels comprise a digital image. The.

more pixels in the image, the greater its spatial resolution.



The continuous-tone image, like a photograph or video camera image, is broken
into enough discrete pixels so that the digitized image contains all the information of
the original. This means that the displayed digital image would look identical to the
original continuous-tone image to an observer. This criterion holds true, when the

digital image is intended for use by human observer.

The concept of spatial frequency explains how finely the image is sampled. The
required sampling rate must be determined so that the digital image adequately
resolves all the spatial details of the original continuous-tone image. Mathematically,
the theorem is classical sampling theorem that is used to represent fully the spatial
details of an original continuous-tone image. The image is sampled at a rate at least
twice as fast as the highest spatial frequency contained in it. This guarantees that both
the dark and light portions of the detail are sampled. The highest spatial frequencies
that can be contained in the resulting digital image will not exceed one half of the

sampling rate. This frequency is named as Nyquist rate.

If sampling occurs at a slower rate than required by the sampling theorem, high
spatial frequency details will be missed in the digital image. However, the digital
image will appear to have less spatial resolution than the original image. Because, in
this digital image, there are not enough pixels to represent all of the spatial details of
the original image. On the other hand; if sampling occurs at a rate Iugher than that_

requlred by the samplmg theorem extra pixels will be created.”

In real-life systems, the sampling rate of a particular image acquisition system is
generally fixed. It is not adjusted by the spatial frequency of image. The camera and
digitizer are selected to meet the minimum spatial-resolution requirements of the

application.



(a) An image with spatial resolution of  (b) Resolution reduced to % in both x

640 x 480 pixels. and y dimensions: 320 x 240 pixels.

pixels. pixels.

(e) Resolution reduced to 1/16: 40 x 30 (f) Resolution reduced to 1/32 :20 x 15

pixels. pixels.

Figure 2.4 The effect of spatial resolution on a sample image.



Figure 2.4 shows that the effect of an image sampled at different spatial resolution.
As the resolution is increased, the structure of the image becomes more apparent. The
image with the least spatial resolution is the one with a resolution of 40x30. This

image is virtually unintelligible.

The spatial resolution requirements of an image are based on its intended
application. Digital images for use in television production applications require a
spatial resolution of about 640x480. Moreover, 320x240 image appears to be virtually
identical to the 640x480 version as shown in Figure 2.4 (a) and (b). So, this version

can be selected easily for some applications.

As the spatial resolution increases, the number of pixels climbs exponentially. For
640x480 version, the total number of pixels in the image is 307,200. But, for the
160x120 version, the number of the pixels 1s 19,200. It is important to consider the
spatial resolution required by a given application. Selecting the minimum necessary

resolution can significantly reduce digital image storage and processing time.
2.4 Brightness Resolution

Every pixel in a digital image represents the intensity of the original image at the
spatial location where it was sampled. The digital brightness of pixel represents the

intensity of the original image.

Intensity refers to the magnitude of light energy actually reflected from a physical
scene. The term brightness refers to the measured intensity after it is acquired,
sampled, quantized, displayed and observed. The brightness of a pixel accounts for all

the effects induced by the entire imaging system.

The quantization process converts the continuous-tone intensity to a digital
brightness value at the sample points. The accuracy of the digital value is directly

dependent upon how many bits are used, the brightness can be converted to one of



eight gray-levels. In this case, gray-level “0” represents black, gray level “1”
represents white and gray levels “1” through “6” represent the ascending gray tones
between black and white. The eight gray levels comprise what is called the gray-scale,

or in this case, the 3-bit gray scale.

With a 4-bit brightness value, every pixel’s brightness is represented by one of 16-
gray levels. And 8-bit brightness value yields a 256 level gray-scale range. Every

additional bit used to represent the brightness doubles the range of the gray-scale.

(a) Brightness resolution of 8 bits, 256 (b) Brightness resolution of 7 bits, 128

gray level. gray level.

(¢) Brightness resolution of 5 bits, 32 (d) Brightness resolution of 3 bits, 8

gray level, gray level.

Figure 2.5 The effect of brightness resolution on a sample image.
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(e) Brightness resolution of 2 bits, 4 (H) Brightness resolution of 1 bits, 2

gray level. gray level.

Figure 2.5 (cont.)

Figure 2.5 shows an image quantized to various brightness resolution. The image
quantized to eight bits of brightness resolution appears very natural and continuous.
As the brightness resolution decreases, the image appears coarser and mechanical.
This effect is known as brightness contouring. Contouring occurs when there are not
enough gray levels to represent the actual brightness in the original image adequately.

Brightness contouring is the effect of insufficient brightness resolution.

The number of bits used in quantizing an image depends on how the image will be
used. 8 bit quantization is the most common way used in many applications and

generally sufficient.
2.5 Color Resolution

For color images, the same concepts of sampling, quantization, spatial and
brightness resolution are valid. But, instead of a single brightness value, color digital
images have pixels that are generally quantized using three brightness components. In
displaying color, three independent color emitters are used. These emitters have a

unique spectral band of light to generate all colors in the spectrum.
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At a color video display screen, if it is a cathode ray tube (CRT), liquid crystal
display (LCD) or another type, individual dots of solid colors will be noticed. These

dots emit light in the colors of red, green and blue.

All the colors in the spectrum can be created with the primary colors of red, green

and blue (RGB). This is called the additive of primary colors that are emitting light.

Digital image processing must handle the red, green and blue components of each
pixel of image. Generally, each component must be quantized at a resolution rate

equivalent to the brightness resolution used in a gray-scale image.
2.6 Histogram Processing

The brightness characteristics of an image can be displayed with a tool known as
the brightness histogram. In general terms, a histogram is a distribution graph of a set
of numbers. The brightness histogram is a distribution graph of the gray levels of
pixels within a digital image. It provides a graphical representation of how many
pixels within an image fall into the various gray level steps. A histogram appears as a
graph with brightness on the horizontal axis from 0 to gray scale, and number of

pixels on the vertical axis.

The histogram gives a convenient and easy way to read representation of the
concentration of pixels versus brightness in an image. Using this graph, it is seen that
an image is dark or light and in high or low contrast. Figure 2.6 show histogram

graphs for different images.



p(ry) p(ry)

Dark Image Bright Image
() (b)
p(rx) p(r)
A A
Low Contrast High Contrast

(c) (d)

il il l’ Ll

Figure 2.6 Histograms corresponding to four basic image types.

Figure 2.7 The “Lightnou” image with 256 gray level and 320x240 pixels.
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Figure 2.8 The histogram of the “Lightnou” image.

Figure‘ 2.7 and Figure 2.8 show the original image and their histogram,
respectively. The histogram for color images are computed and displayed for each

color (blue, red and green) components.
2.7 Image Enhancement

The principal objective of enhancement techniques is to process an image so that

the result is more suitable than the original image for a specific application.

The approaches for image enhancement fall into two broad categories: spatial
domain methods an'd frequency domain methods. The spatial domain refers to the
image planeftself, and is based on direct manipulation of pixels in an image.
Frequency domain processing techniques are based on modifying the Fourier

Transform of an image.

Enhancement techniques for spatial domain are based on point processing which
modifies the gray level of a pixel. The input image is converted to the output image

according to mathematical or logical relationship.



For example, negatives of digital images are useful in numerous applications, such
as displaying medical images and photographing a screen with monochrome positive
tilm. The negative of digital image is obtained by using the transform function.

s=T(r) (2.1)

This transfer function expressed in Equation 2.1 1s shown in Figure 2.9, where L is

the number of the gray levels.
Output Gray Level

I

L-1

> Input Gray Level
0 L-1

Figure 2.9 A kind of transform function for image transformation.

The original image with 256 gray level, the gray level transformation function and
negative of the image are shown in Figure 2.10.

Output Gray Level

* Input Gray Level

(a) The complement operation mapping function for 256 gray level.
Figure 2.10 The complement function, original image and brightness

complement of the image.



(b)The “Room” image with 256 (¢) The brightness complement of

gray level and 256x256 pixels. “Room” image.
Figure 2.10 (cont.)

Histogram sliding and histogram stretching operations are also examples for
histogram processing. These operations redistribute the brightness in an image and

enhance contrast characteristics of images.

By looking at a histogram of an image, the contrast deficiencies can be determined.
The most frequently encountered types of histograms are those showing
characteristics such as low-contrast/low dynamic range, high contrast/high dynamic
range, well-balanced contrast/high dynamic range. An image of poor contrast quality

. look can be made considerably better by using sliding and stretching operations. -

The histogram sliding operation is simply addition or subtraction of a constant
brightness value to all pixels in the image. The sliding operation is sometimes referred

to addition of offset to the image brightness.

The histogram stretching operation is the multiplication by or division of all pixels
by a constant value. The stretching operation is referred to addition of a gain to the

image brightness value.
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Figure 2.11 shows the original image, the function of the histogram slide mapping

and the image after histogram sliding, respectively.

Output Gray Level

A

255

, Input Gray Level
0 64 128 192 255

(a) The histogram slide function for 256 gray-level image.

(b) The “Building” image with 256 (c)The “Building” image after histogram
gray-level and 320x240 pixels. sliding. ' |

Figure 2.11 The histogram slide function, original image and the image after

histogram sliding operation.

The image that is shown in Figure 2.11(b) is a low contrast image. The histogram
of the image ranges from 120 gray level to 250 gray level. By subtracting the
brightness value of 120 from all pixels by using a point process, more contrast image
than the original image can be obtained. In this study, histogram slide function shown
in Figure 2.11(a) was applied to the image and then, as a result of sliding operation,

the more contrast image was obtained as shown in Figure2.11(c).



For the stretching process, the each pixels of the image 1s multiplied by a specific

value. For this example, the gain value is selected as shown in Figure 2.12 (a).

As a result of this operation, the image appears considerably better contrast
characteristics. In this study, histogram stretching function shown in Figure 2.12(a)
was applied to the image and then, as a result of sliding operation, better contrast

image was obtained as shown in Figure 2.11(c).

Output Gray Level

A

, nput Gray Level

0 64 128 192 255

(b) The “Building” image with 256 (¢) The “Building” image after histogram

gray-level and 320x240 pixels. stretch.

Figure 2.12 The histogram stretch function, original image and the image

after histogram stretching operation.
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2.8 Spatial Filtering

Pixel point processing provides image combinations, image gray-scale alterations
and corrections, all of which are important digital image processing tools. However,
point operations can not provide the ability to alter spatial scene details with an image.
Because, point processes act pixel by pixel by mapping a single corresponding output

pixel. The point process does not consider neighboring input pixels in its processing.

Pixel group processing operates on a group of input pixels surrounding a centre
pixel. The adjoining pixels provide valuable information about brightness trends in the

area. Using these brightness trends, the spatial filtering has been done.

An image is composed of basic frequency components ranging from low
frequencies to high frequencies. Where rapid brightness transitions are prevalent,
there are high spatial frequencies. Slowly changing brightness transitions represent
low spatial frequencies. The highest frequencies in an image are found wherever sharp
edges or points are present like a transition from white to black within a one or two

pixel distance.

An image can be filtered to accentuate or remove a band of spatial frequencies,
such as the high frequencies or low frequencies. These digital image processing

operations is known as spatial filtering operations.

The spatial convolution process uses a weighted average of the input pixel and its
immediate neighbors to calculate the output pixel brightness value. The group of
pixels used in the weighted average calculation is called the Kernel. Kernel dimension
is generally square with an odd number of mask values in each dimension. The Kernel
can have the dimensions of 3x3 and 5x5 etc. In practice, 3x3 and 5x5 Kernels are

used in most spatial filtering operations.



The mechanics of spatial filtering operation is straightforward. In carrying out 3x3

Kernel convolution, 9 convolution coefficients are defined as seen below:

Table 2.1 3x3 Kernel Convolution Coefficients.

a b C

d e f

g h i
1

This array of coefficients is called the convolution mask. Each pixel in the input is
evaluated with its 8 neighbors, using this mask to produce an output pixel value. The
pixel and its 8 neighbors are multiplied by their respective convolution coefficients
and all of them are summed. The results are placed at the same centre pixel location
in the output image. This process occurs pixel by pixel for each pixel in the input

image. The equation for the spatial convolution process is

O.y)=al(x~Ly—1)+bl(x,y=D+cl(x+1y~1)+
di(x=1Ly)+el(x,y)+ fI(x+1L,y)+ gl(x-1Ly+1)+ (2.2)
hl(x,y+ 1) +il(x+1Ly+1)

where implied that each input pixel is processed through the equation.
2.8.1 Low-pass Spatial Filtering

A spatial low-pass filter allows to pass the low frequency components of an
image. High frequency components are attenuated and are virtually absent in the
output image. A common low-pass convolution mask is composed of all nine
coefficients having the value of 1/9. The 3x3 and 5x5 mask for low-pass filter are

shown below.
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Table 2.2 Low-pass filter masks of various sizes.

1 1 1 1 1 1 1 1
1/9] 1 1 1 17257 1 1 1 1 1
1 1 1 1 1 1 1 1

In these study, by using 3x3 and 5x5 low-pass filter mask, the sample images are

low-filtered and presented in Figure 2.13.

AV
(a) The “Lightnou” image with 256 (b)Low-pass filtered “Lightnou” image

gray-level and 320x240 pixels. by using 3x3 mask.

(c)Low-pass filtered “Lightnou” image

by using 5x5 mask.

Figure 2.13 The original images and low-pass filtered images by using 3x3

and 5x5 masks.
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et SNSRI S s
(d) The “Room” image with 256 (e)Low-pass filtered “Room”
gray-level and 256x256 pixels. image by using 3x3 mask.

image by using 5x5 mask.

Figure 2.13 (cont.)

The visual effect of a low-pass filter is image blurring. This is because the sharp
brightness transitions become attenuated to small brightness transitions. If 5x5 mask is
used for low-pass filtering, the image becomes more blurred according to 3x3 mask

usage.



22

2.8.2.High-pass Spatial Filter
The high-pass filter has the opposite effect of the low-pass filter. It attenuates low

frequency spatial components while leaving high frequency components untouched. A

common high-pass mask is shown below.

Table 2.3 High-pass Filter Mask.

In these study, by using 3x3 high-pass filter mask, the sample images are high-

filtered and presented in Figure 2.14.

(a) The “Lightnou” image with 256 (b)High-pass  filtered  “Lightnou”

gray-level and 320x240 pixels. image by using 3x3 mask.

Figure 2.14 The original images and high-pass filtered images by using 3x3

mask.
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(¢) The “Room” image with 256

gray-level and 256x256 pixels.

Figure 2.14 (cont.)

(d)High-pass  filtered

image by using 3x3 mask.

‘lRoom77

23
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CHAPTER THREE

DATA COMPRESSION TECHNIQUES
FOR IMAGE

3.1 Introduction to Data Compression

Image compression and decompression operations are used to reduce the data
content of a digital image. The goal of these operations is to represent an image with
some required quality level. Image compression operations seek to extract essential
information from an image, so that the image can be accurately reconstructed.

Nonessential information is discarded.

Image storage refers to the electronic storage of an image’s data typically on
magnetic or other permanent media. Image transmit refers to the electronic transfer of

data of an image over a data link.

If the amount of the necessary data to represent an image can be reduced, then the
amount of time to transmit can be reduced. In addition, the amount of storage space is
reduced. For instance, the compression of image data by a ratio of ten to one will
allow the transmission of ten compressed images in the same time as required for one

uncompressed image.

Image compression schemes are divided into two general groups, lossless

compression and lossy compression. Lossless image compression preserves the exact



25

data content of the original image while lossy image compression preserves some

specified level of image quality.

All image data compression schemes involve both compression and decompression
operation which is the inverse operation of compression. The compression operation
converts the original data into a compressed image data form. The decompression
operation converts the compressed image data back to its original uncompressed form.
The general communication system model and the source encoder and decoder model

in the system are shown in Figure 3.1. The f(x,y) function refers to input data and

f’ (x,y) function refers to output data in Figure 3.1.

Sf(x,y) | Source Channel | CPamnel [opanngl Source flx. )
—» Encoder ¥ Encoder [————® Decoder —%| Decoder [

(a) A General Communication System Model

f(x,y) Symbol Channel
—» Mapper y Quantizer p, Encoder |

(b) Source Encoder

A

Channel Symbol © Inverse f(xy)
—»  Decoder %  Mapper |—p

(c) Source Decoder

Figure 3.1 A General Communication System Model, Source Encoder and

Source Decoder.
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Image compression and decompression operations are often called image coding
operations, because the process uses data coding methods to represent an image in a

new form.

The amount of compression operation is calculated by dividing the data size of the
original image by the data size of the compressed image. The result is called as
compression ratio. If the value of compression ratio in bit/pixel is small, the high
compression ratio is obtained. And, the higher the compression ratio, the smaller the

compressed image size has become.

The compression ratio, Cg is

C, =" pivel/ pixel or C,= EZ—bit/pixel(bpp) G.bH

2 I

where n, is the data size of the original image and n, is the data size of the

compressed image. The relative data redundancy can be defined as
R, =1 ——l—(pixel/pixel) (3.2)
CR

The another goal of the data compression is also to reduce data redundancy in an
image. A prqctical compression ratio, such as 10 (or 10:1) means that the input data
“set has 10 information carrying units for every 1 unit in compressed output data set.
The corresponding data redundancy of 0.9 implies that 90 percent of the data in the

input set is redundant.

In this thesis, the compression results are calculated by using mean square error
(MSE) and peak signal-to-noise ratio (PSNR) criteria. These criteria are given in
Equation 3.3. and 3.4 [16]. The performance of the compression techniques is

obtained according to compression ratio (bpp) and peak signal-to-noise ratio (dB).
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The mean square error is

MSE = Mi(f(‘( )~ fey)f (3.3)
TMANG LT N

y=0

The peak signal-to-noise ratio is

. 2
PSNR =10*log,, (peak — signal — value) (3.4)
MSE

where
peak-signal-value =255 for an 8 bits/pixel image.

M*N = number of total pixels in image.

f(x,y) ,f'(x,y) = value of pixel (x,y) in the original and reconstructed images.

3.2 Lossless Image Compression

When a set of arbitrary digital data is compressed such as text document or
numeric accounting data, lossless compression is applied mostly. Because; as a result
of decompression, it is desired that the exact original data is reproduced. If the
reconstructed data is not exactly same as the original data, the reconstructed data can
not be used properly in these kinds of appli'ca'tions.' For instance; a text document
might have a few miséing characters after decompressing operation. Because; close
approximation is not good enough for these examples. The type of compression
scheme, where the compressed data is decompressed back to its exact original form is

called lossless data compression. It is devoid of losses or degradation of the data.

A variety of lossless image compression schemes have been developed. Many of
these techniques come directly from the digital data compression and have been
merely adapted for use with digital image data. Run-Length coding, Huffman coding

are typical examples for lossless image compression techniques.
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3.2.1 Run-Length Coding

In lossless image compression, there is an intrinsic limitation to how much an
image can be compressed. The entropy of an image is a measure of its information
content. If the entropy is high, an image’s information tends to be highly
unpredictable. An entropy of an image can be computed as the probability of its
occurrence. This is displayed as a number of bits necessary to represent that

probability. For any random image, the entropy is,

Entropy = Number of pixels in a line x number of lines x number of bits per pixel.
For 640 pixel x 480 line and 8 bit image, the entropy will be 2,457,600. Any one of
22437600 possible different images can be represented by an image of these

dimensions.

Run-Length coding image compression takes advantage of the fact that several
nearby pixels in an image will be tended to have the same brightness value. Grouping

pixels of identical brightness into single codes can reduce this form of redundancy.

The Run-Length Coding is one of lossless compression techniques, when the
threshold 1s set to zero. For threshold values greater then zero, the RLC is not one of
the lossless compression techniques any more. However, hivgher compression ratios
are obtained when the threshold is greater than zero. as a result of lossy Run-Length
Coding. So, in this study, the threshold values are chosen greater than zero to

compare Run-Length Coding with lossy compression techniques.

The Run-Length scheme works as following: The original image is evaluated by
starting at the first pixel at the location (0,0). This pixel is named as reference pixel.
For Run-Length coding, a specific threshold is chosen according to compression ratio

and application. By looking at reference pixel and its following neighbours across the
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line. the scheme determines how many following pixels are in the same brightness
interval that is chosen as threshold. If the next one or more pixels in the sequence are
in the threshold intervals according to the reference pixel, they are all represented by a
new code. The new code is made up of two values, a brightness value and the number
of pixels that are in the same threshold. The process then moves to the next pixel in
the same line with a new brightness value and repeats when the end of the line is
reached. the process starts again at the start of the next line. The process continues

until the entire image is Run-Length coded.

3.2.1.1 The Performance Result of the Run-Length Coding

In this study, different kinds of images are compressed and decompressed by using
Run-Length coding and the results are obtained. Moreover: various threshold values
are chosen to examine the effect of the threshold on compression ratio and peak

signal-to-noise ratio.

Table 3.1 PSNR results of different images compressed Run-Length Coding

at different Threshold.

Threshold=20 Threshold=35 Threshold=540

PSNR | Cg PSNR | Ci PSNR | Cp
Image (dB) | (bpp) (dB) | (bpp) (dB) | (bpp)
Palml 29,94 5,12 24,59 2,63 21,37 1.45
Lightnou 29.81 3.82 24,63 2,28 21,41 1.53
Building 29,56 3.11 24,44 1,58 21,19 0,90
Text 30,00 4.17 25,16 2,38 22,13 1,56
Lenna 30,50 1,74 25,19 0,78 21,82 0,42
Peppers 30,21 1,88 24,91 0,94 21,88 0,61
Mandrill 30,73 5,68 24,57 2,83 21,12 1,40
Room 30,50 2.75 24,67 1,37 21,12 0,79
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(a) The “Lightnou” image with 320 (b) Threshold = 15
SNR =32,68dB MSE=15
CR=483bpp (1,65:1)

pixels x 240 lines and 256 gray-level.

(c) Threshold = 20 (d) Threshold = 35
SNR =29,81dB MSE=68 SNR =24,63dB MSE=224
CR=3,82bpp (2,10:1) CR=228bpp (3,51:1)

%

AR R

(e) Threshold = 50
SNR=21,41dB MSE=470
CR=1,53bpp (5,22:1)

Figure 3.2 The “Lightnou” image compressed and decompressed by Run-Length coding.
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(a) The “Peppers” image with (b) Threshold = 15
SNR=32,44dB MSE=37
CR=244bpp (3,28:1)

256x256 pixels and 256 gray-level.

(¢) Threshold =20 (d) T
SNR=30,21dB MSE=62 SNR=24,91dB MSE=210
CR 1) CR=0,94bpp (8,52:1)

(4,25
3 N

e
(e) Threshold = 50
SNR=21,88dB MSE=422
CR=0,61bpp (13,18:1)

Figure 3.3 The “Peppers” image compressed and decompressed by Run-Length coding.
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The compression results are presented in Table 3.1 and Table 3.2 for various
images, and also sample images compressed and decompressed by using Run-Length
Coding are given in Figure 3.2 and Figure 3.3. As shown in the tables, if the threshold
increases, the compression ratio also increases but the peak signal-to-noise ratio
reduces. The optimum compression ratio is chosen for applications’ requirement.
When the threshold is small, the decompressed image becomes closer to the original

image; however, the compression ratio becomes smaller as seen in the figures.

Table 3.2 PSNR and MSE values for different Threshold levels.

Image PSNR | MSE | bpp CR | Threshold Pixels
(dB)
Lightnou 36,99 13| 6,55 1,22 10| 320x240
Lightnou 32,68 15| 4,83 1,65 151320x240
Lightnou 29,81 68| 3,82 2,10 201 320x240
Lightnou 24,63| 224 2,28 3,51 35|320x240
Lightnou 21,411 470 1,53 5,22 50 |320x240
Lightnou 18,45 928 0,95 8,42 70 {320x240
Peppers 35,34 19| 3,34 2,39 10 |256x256
Peppers 32,44 37 2,44 3,28 15|256x256
Peppers 30,21 62| 1,88 425 201256%x256
Peppers 24,91 210 0,78 10,20 351256x256
Peppers 21,88 422 0,61 13,18 50| 256x256

Peppers 18,90 836! 0,36] 2222 70| 256x256

3.3 Lossy Image Compression

The lossy image compression techniques reduce the amount of the data required to
reconstruct the original image. Although there will be losses in the digital data of the

original image, the image maintain its integrity and the level of its quality.

The greatest advantage of the lossy compression techniques is their ability to

compress an image to a much smaller data form than the lossless schemes.
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For many applications, the degradations introduced by the lossy compression
schemes can be easily accepted in exchange for their incredibly high compression
ratios. For instance, television broadcasters do not need to maintain absolute image

data integrity when transmitting video programmes to viewers.

Many lossy image compression schemes have been developed and some of these

methods will be presented in this thesis.
3.3.1 Discrete Fourier Transform Coding

A frequency transform composes an image from its spatial-domain form of
brightness into a frequency domain form of fundamental components. Each frequency
component has a magnitude and a phase value. Similarly, an inverse frequency
transform converts an image from its frequency-domain form back into its spatial
domain form. The frequency domain form of an image is also depicted as an image
where brightness is represented by the magnitudes of the various fundamental

frequency components.

~ Numerous frequency transforms exist and each has an inverse transform to convert
a frequency image back to its original spatial form of brightness. For continuous
functions, the common transform used in the applications mostly is the Fourier

Transform.

The 2-D Fourier transform and its inverse transform are

o 0
F(u,v)= f ff(x,y) exp(— J2m(ux + vy))dx dy and

0 —o0

Fx ) =] [Fuvyexp(j2z(ue +vp)dudv  (3.5)

0 -0
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The type of Fourier transform, which is used to process digita

I functions is called
Discrete Fourier Transform (DFT).

The 2-D continuous function flx)y) is discretized into g

S o, ¥0), f(x +Ax, y, +4Y), [(xo +24x, yy +24y), .

sequence

. by taking N samples
Ax units apart. The 2-D Discrete Fourier Transform of the discretized function is

1 MaA . (ux vy)
F(u7v)~,m)§) gf(x,y)exp[ J2r ;\_JﬂL_/\? (3.6)

foru=0,1,2,... M-1 and v = 0,1,2,... N-1.

2-D Inverse Discrete Fournier Transform is

B 1 M-1N~1 . (}—1{ _Q) X
f(x,y)~m—uzto E)F(u,v)exp[ﬂfr M+N J (3.7)

forx=0,12,.. M-I and y=0,1,2,... N-1.

When images are sampled in a square array (M=N), the 2-D Discrete Fourier

Transform pair will be;

1

f()c,y)exp[w jZﬁ(ux; W)J (3.8)

1 N-1N-
F(u,v)::}\}~ >
x=0 y=

0

foru, v=0,1,2, ... N-1 and

Fx,y)= ;i—,— > ¥ F v)exp[ﬂrz( d ; e )J (3.9)

u=0 v=_
forx, y=0,1,2, ... N-1.
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In practice. images are typically digitized in square arrays, so Equation 3.8 and 3.9

transform pair is used mostly as the Discrete Fourier Transform.

In the encoding DFT compression, firstly image pixels are grouped into 8x8 block
and then for each block, DEFT formulation shown in Equation 3.8 is applied. As a
result of this calculation, 64 values that are referred as DFT coefficients are obtained
for each block. These 64 Discrete Fourier coefficients are arranged in order by Zig-

Zag order rule, which is shown in Figure 3.4.

58 o0 02 |63 (04 |05 [o& [a7
-

10 11 1.2 1.3 1.4 1.5 1.6 17

20 /129 22 i3 fl2a Jjes fes oy

3.0 3,1 3.2 3.3 34 3,5 3.6 37
4.0 4.1 4,2 4,3 4.4 4.5 4.6 4,7
5.0 5.1 52 53 5,4 55 56 57
6.0 6.1 6.2 8,3 8.4 85 8,8 8.7

7.0 7.1 7.2 73 7.4 7.5 7.8 7.7

Figure 3.4 The path of Zig-Zag Sequence.

After applying Equation 3.8, complex DFT coefficients occurred. In this thesis, the
magnitude of these complex coefficients are used in the decompressing operation.
Similarly. the coefficients resulted from Equation 3.9 are also complex numbers. To
obtain the pixel values of decompressed images, the magnitude of these complex

numbers are determined.

The first coefficient that is at (0,0) location is named DC value. The other
coefficients in the block are AC values. The DC coefficient and following few AC

coefficients contain low frequency features of an image. The rest of the coefficients
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represent the high frequency features of an image. Thus, the image can be applied to
low-pass filter according to low frequency coefficients and also be applied to a high-
pass filter according to high frequency coefficients. The coefficients used in
compression are stored in the memory or transmit along to the channel and the others
are set to zero. As a result, the compression ratio can be calculated according to the
data in image and the number of stored coefficients. The reconstructed image is

obtained by using Inverse Fourier Transform as given in Equation 3.9.

8x8 Image —p DFT |l Zig-Zag Encoder Compressed
Blocks Order Image
(a)
Compressed || Decoder [y Inverse | I IDFT _p| Decompressed
Image Zig-Zag Image
(b)

Figure 3.5 The compression and decompression scheme of Discrete Fourier

Transform Coding.

In this thesis, the compression and decompression block diagram for Discrete
Fourier Transform Coding presented in Figure 3.5 are used to simulate this

-compression method and the results are obtained.

3.3.1.1 The Performance Result of Discrete Fourier Transform Coding

The images are compressed by Discrete Fourier Transform compression technique
at different compression ratios and the results are obtained for various images at
different compression ratios. The sample images are shown in Figure 3.6 and the all
results are given in Table 3.4. As shown in the table, as a result of decreasing

compression ratio, the signal-to-noise ratio reduces.
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2
53

TN

(a) The “Peppers” image with (b) SNR=29,55dB MSE=72
256 gray-level and 256x256 CR=6bpp  (1,33:1)

(c) SNR=26,92dB  MSE=132 (d) SNR=25,82dB MSE=170
CR=3bpp (2,67:1) CR=1,5bpp (5,33:1)

SRS :
A

(e) SNR=24,57dB MSE=227 (f) SNR=22,97dB  MSE=328
CR=0,75bpp (10,66:1) CR = 0,375 (21,33:1)

Figure 3.6 Compressed and decompressed images by DFT Coding.
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The magnitude of first 64 Discrete Fourier Transform coefficients of a sample
image are shown in Table 3.3 according to pixel values of image. As shown 1n Table

3.3, the first coefficient (DC) is the biggest value in the all coefficients.

Table 3.3 The pixel values of the first 8x8 block of “Peppers” image and 64

DFT coefficients of this image.

8x8 block pixel values 8x8 block DFT coefficients
104 | 156 | 156 [ 152 {152 [ 140 | 124 120 1356 69 57 58 55 58 57
132 1184 {184 | 184 | 188 | 184 | 184 | 176 31 7 131 9 10 10 9
128 | 180 | 184 | 184 |'184 ;184 | 180 | 176 39 16 8 10 9 7 4
96 | 1883 184 {184 {184 [180 | 180 176 36 4 8 H 9 10 11
92 1188|184 | 184 {184 | 180 180|176 43 10 4 4 4 4 4
148 (184 | 184 | 180 [ 180 | 184 | 180 | 172 36 14 11 10 9 i1 8
PE2 [ 184 1184 1180 | 180 | 184 [ 180 | 176 39 2 4 7 9 10 8
128 | 184 180 [ 180 | 184 | 184 | 180 1176 51 13 9 10 10 9 13

Table 3.4 Peak signal-to-noise ratio (PSNR) versus compression ratio (bpp)

for various images compressed by Discrete Fourier Transform coding.

bpp/dB 0,375 0,75 1,125 1,5 2,25 3 4,5

Palm1 20.17 21,48 22,09 22,48 22,96 23,46 24.10
Lightnou 19,95 | 20,80 21,50 21,86 22,24 22,53 22.88
Lenna 23,93 25,801 26,49 20,73 27,45 27,76 28.54
Peppers 22,17 24,571 2539 25,83 26,43 26,93 27.52
Tiffany 23,79 24,71 25,90 26,67 27,13 26,09 26,04

In this study, the peak signal-to-noise ratios for various images, which are
compressed and decompressed by using Discrete Fourier Transform are obtained for
different compression ratios. According to Table 3.4, if the compression ratio

increases, the peak signal-to-noise value becomes worse. In Discrete Fourier




39

Transform, the compression ratio directly depends on the DFT coefficients that are

used in the decompression operation.

3.3.2 Discrete Cosine Transform Coding

Discrete Cosine Transform (DCT) has become very popular choice for image data
compression in recent years. In the DCT coding, firstly image pixels are grouped into
8x8 block and then Equation 3.10 is applied to each block similar to DFT. As a result
of calculation 64 DCT coefficients for each block, the coefficients are arranged in
order by Zig-Zag order rule. The coefficients, which are not used in compression are
set to zero. The decompressed image is obtained by using inverse Discrete Cosine

Transform given in Equation 3.11.

The scheme of the compression and decompression of Discrete Cosine Transform

Coding is given in Figure 3.7.

8x8 Image ». DCT |l Zig-Zag | 3 Encoder | ! Compressed

Blocks Order Image
-Decompressed » Inverse | IDCT Decoder

Image h Zig-Zag I

Figure 3.7 The compression and decompression scheme of Discrete Cosine

Transform Coding.
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The 2-D DCT pair is defined as [15];

Cluv) = Fa(zJ)a(v)NZji F(x ) cos(ZEEEHD rJ”I)]cos[ﬂ(—f]—yviﬂ] (3.10)

y=0 x=0
for u,v=0,1,2,...,.N-1,

& xw(Qu+1) yr(2v+1)

fx,y)= \/T‘Z(;;a(u)a(V)C(u ,V)Cco [#]COS[W] (3.11)
for x, y=0.1,2,....N-1.

a(0) = a(uy=1 ; for u=1273....N.

1
"\/—5— 2

alvy=1 ; for v=1235.... N.

In this study, Equation 3.10 is used to obtain the Discrete Cosine Transtorm

coefticients and to decompressed the images, Equation 3.11 is used.
3.3.2.1 The Performance Result of Discrete Cosine Transform Coding

By using Equation 3.10 and 3.11, DCT compression and decompression are
simulated. Figure 3.7 and Figure 3.8 show sample images compressed and
decompressed by using DCT techniques and Zig-Zag order rule. Moreover; the
compression result are obtained for various images at different compression ratios as

presented in Table 3.5.



41

(a)The “Palm1” image with 256 gray- (b)SNR=30,73dB MSE=99

level and 320x240 pixels. CR =6 bpp (1,33:1)

(¢)SNR=26,14dB MSE=158 (d)SNR=24,81dB MSE=215
CR=4,5bpp (1,77:1) CR=3bpp (2,67:1)

RS

(e)SNR=24,59dB MSE=265 (HSNR=22,57dB  MSE=360
CR=225bpp (3,55:1) CR=15bpp  (5,34:1)

Figure 3.8 Compressed and decompressed sample images by DCT.
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(2)SNR=22,15dB  MSE=396
CR = 1,125 (7,11:1)

S
(1) The “Room” image with 256
gray-level and 256x256 pixels.

(k)SNR=22,77dB  MSE=224
CR=225bpp (3,55:1)

Figure 3.8 (cont.)

(h)SNR=2137dB MSE=474
CR=0,75bpp (10,67:1)

()SNR=2420dB  MSE=247

[l

CR =3 bpp 2,67:1)

(DSNR=21,29dB  MSE=483
CR=0,75bpp (10,67:1)
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The first 64 Discrete Cosine Transform coefficients and pixels values of “Palm1”
image are shown in Table 3.5. As shown in the table, the first coefficient (DC) is the

biggest value in the all coefficients.

In this study, the peak signal-to-noise ratios of various images, which are
compressed and decompressed by using Discrete Cosine Transform, are obtained for
different compression ratios. According to the results that are presented in Table 3.6,
if the compression ratio increases, the peak signal-to-noise ratio becomes worse. In
Discrete Cosine Transform, the compression ratio directly depends on the DCT

coefficients that are used in the decompression operation.

Table 3.5 The pixel values of the first 8x8 block of “Palm1” image and 64
DCT coefficients of this image.

8x8 block pixel values 8x8 block DCT coefficients
218 | 218 {215 (1216 213 1215|214 |216 17241 -1 2| 4| 2¢ -1| -2 1
217|217 | 214 1214 213 {213 215 | 216 24 6 5] -4 1 1 2 -2
216 {216 {214 1214 12151213 {214 |216 1 1 1 1 1 Iy 0| -2
215 (215 {215 1214 12151214 {216 {214 41 1 1 1y 0l 0} 1 -1
2151215 12151214 1217 1216 1216 |216 0‘ 1} -1f 0] 0 1 1 0
216 | 216 {214 1215 | 219|218 |217 | 216 1 I} 0 1} O 1{ 0 0
215 |215 213 215 | 218 | 217 | 218 | 215 2 1] o 1] 2] 4] 1] o
214 1214 1212 1215|219 |217 | 217 | 213 0, 0O 1 0 1 0 1 0

The compression results presented below, the coefficients are obtained by using
Zig-Zag order. If the coefficients along the x-axis are used to reconstruct the image,

the peak signal-to-noise ratio decreases in the same compression ratio as shown in

Table 3.6.
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Table 3.6 The comparison of the Normal Order (N-O) with Zig-Zag Order.

1,5 bit/pixel 3 bit/pixel
bpp/dB | N-O 7-7-0 | N-O 7-7-0
Peppers | 24,24 28,84 28,84 32,57

Room 2438 22,43 26,46 24,20

Palm1l 21,05 22,57 23,20 24,81

Table 3.7 Peak Signal-to-noise ratio (PSNR) versus compression ratio (bpp)

for DCT compression.

bpp/dB | 0,1875| 0,375 | 0,75 | 1,125 1,5 2,25 3 4,5 6

Palml 19,61 20,19 21,37 22.15] 22,57] 2459] 2481 26,14] 28,17

4
Building 20,361 20,75 19,62 19,36 19,24 19.29 19.33| 19,92 20,12
0

Lightnou 19,15 1981} 1994 20,34! 20,32{ 20,550 20,70} 20,81 20,30

Lenna 23,51 24,08 2699 28,35] 23,289| 30,42 31,41 33,36) 34,71

Peppers 22,06 24,531 26,061 27.84| 28,841 30,57, 32,57| 3491| 37,34

Madrill 21,15 21,71 22,77 23,45 2393 24,63} 25,48 26,70| 28,54

Room S 2L15) 20,62 21,29 21,38 2243 22,77| 24,20 24,63| 30,73 |

2

View 20,03 19,521 20,231 21,261 21,69 22,26| 23,19 24,22 2588

Tiffany 22,09 22221 2234 2300 24,03} 24,51 27,13} 27,34} 31,23

3.3.3 Application of Discrete Cosine Transform : JPEG Compression

The Joint Photographic Experts Group (JPEG) standard, established jointly by the
ISO/IEC and CCITT organisations, is one of the best important image data

compression standard of 1990’s [3].
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The JPEG image data compression standard handles gray-scale and colour images
of varying resolution and size. It is intended to support many industries that need to
transport and archive images. The JPEG standard is used in graphics and desktop
publishing, medical imaging, colour fax and countless other applications. This
standard is commonly used in lossy mode. However; there is also lossless mode with

reduced compression performance.

The JPEG specification consists of several parts, including a specification for both
lossless and lossy encoding. The JPEG lossy compression algorithm operates in three

successive stages shown in Figure 3.9.

DCT Coefficient Lossless
Transformation »  Quantization »  Compression

Figure 3.9 The Block Diagram of JPEG Compression

Firstly. an image is transformed to the frequency domain using the Discrete Cosine
Transform. Then resulting smaller valued frequency components are discarded,
leaving only the longer-valued components. The remaining trequency components are

DPCM coded and then Huffman coded.

The JPEG compression scheme is adjustable. For instance, the number of retained

frequency components can be changed, producing variable compression ratios and
inversely proportional decompressed image quality. The JPEG algorithm can be fine-
tuned to meet an application’s requirements of compressed image data size and

decompressed image quality.
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3.3.4 Vector Quantization (VQ)

Image data compressing using vector quantization has attracted the interest of both
academia and the data compression industry since the early 1980°s. Vector
quantization is one of the most powerful tools for audio, speech, image and video
compression. The most important features of vector quantization can be summarized
as follows; simplicity of the decoder, potential of a fractional bit allocation for the
vector components, ability to exploit the statistical correlation between neighboring

data in a straight forward manner, reduce the transmission bit rate or the storage data.

An important goal of the design of a vector quantization is the construction of the
VQ codebook, since it affects both coding efficiency and implementation complexity
of the decoder. Linde, Guzo and Gray have developed a constructive method for VQ
codebook design that is a systematic generalization of Lloyd’s method I for designing
optimum scalar quantizer [1]. The generalized Lloyd algorithm or LGB algorithm
generates a locally optimal codebook by iteratively improving an initial codebook with
respect to a given training sequence. Typically, the VQ codebook designed using LGB
consists of quantization regions with nonregular shapes and sizes, so that the best
available code vector can be selected after comparing a given input vector against to
all available code vectoré in the codebook. LGB methods guarantee a locally optimum’

codebook relative to the source vectors.

Encoding complexity is a major drawback in the real-time implementation of full-
search VQ, since the number of computations required for the selection of the closest
code vector, increases exponentially with the vector dimensions and the coding rate.
Several methods have been improved to solve the problem of VQ encoding
complexity. Typically, these methods involve imposing a certain structure to the VQ

codebook so that unconfined access to all effective code vectors is restricted. Tree-
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structured VQ, multistage VQ, product-code VQ, classified VQ, and finite-state VQ
fall into this category. They have proved to be very successful for both image and

video coding applications [21].

ENCODER
Image
=y Vector Decomposition
V.
Wi
W, W, AV W Transmission
) 0, W) > Channel
W, Index jopt
Wi
Codebook
DECODER
Vector Reconstruction  —¥% Image
A
CodedV,
. Wi
Transmission W,
Channel —>
Index jopt W, Wjop‘
Wi
Codebook

Figure 3.10 Encoding and Decoding Scheme of Vector Quantization.
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The encoding and decoding scheme of vector quantization compression technique
is shown in Figure 3.10. This scheme is the basis of the other types ot vector

quantization techniques.

In general, both the codebook size and the vector dimension play very important
role in overall performance. If the vector dimension is chosen large, the better
potential performance is obtained. However, with increased vector dimension, the
required codebook size also increases. and increasing vector sizes add computational
complexity. So the most common vector sizes are chosen as 1x2, 2x2 and 4x4-pixel
dimension. Different codebook sizes can be used to compressed images for example;
8. 16. 32 etc. The vector size and codebook size is selected according to the
application. The more vector sizes and codebook sizes are chosen, the more

competitive reconstructed images are obtained.
3.3.4.1. The Vector Quantizer Design

A vector quantizer can be defined as a mapping Q of K-dimensional Euclidean

space Ry into finite subset Y of Rg. Thus.
Q:Rxk=2>Y where Y=(x,;1=1,2,3,....N)-

is the set of reproduction vectors and N 1s the number of vectors in Y. An encoder
generates the address of the reproduction vector by using input vector x. And a
decoder generates the reproduction vector x by using addresses. The distortion
measures with d(x,X) that represent the penalty between x and x vectors and the
best mapping minimizes d(x,x). The LGB algorithm and other variations of this
algorithm are based on this minimization. One simple distortion measure is the square
crror distortion for K-dimensional Euclidean space given by Equation 3.12. This

equation measures the square of the Euclidean between the vectors.
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K-1

d(x,®) =l x - %= (x, - %) (3.12)

j=0

The purpose of an optimal vector quantizer designing is to obtain a quantizer
consisting of N reproduction vectors, such that it minimizes the expected distortion.

Lloyd proposed on iterative nonvariational technique for design of scalar quantizer.

The time averaged square error distortion is given by Equation 3.13.
S
D(x)Q(x)):—N—Zd(xi)xi) (313)
=0

The LGB algorithm for a known distribution training sequence follows these rules:

1) Initialization: Given N = number of levels, a distortion threshold £>0.0, an
initial N-level reproduction alphabet Ao, and a training sequence {x;j=1,2,...n}. Set

m=0 and D-1 = 0.

2) Given An={yii=1,2,...N}, find its minimum distortion partition

P(Am)={S;;i=1,2,...,N}of the training sequence: xieS;ifd(x,,y,)<d(x;,y,)forall k.

Compute the resulting average distortion

n-1

D, =D[(4,,P(4,)]=n-1Y mind(x,,y) (3.14)
=) Yedn

3)  If (Dm1-Du)/Dw < &, halt with A, and P(A,) describing the final quantizer.

Otherwise, continue.
4) Find the optimal reproduction alphabet ,\?(P(zzim)):{,%(Si);izl,2,...,N} for

P(Am). Set Apet = % (P(An)). Replace m by m+1, and go to 2.
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of successively higher rates until achieving an acceptable level of distortion. This
method considers an M-level quantizer with M=2%, R=0.1...., and continues until it
achieves an initial guess for N-level quantizer as follows:

1) Initialization: Set M=1, and define /:!O = x(A), which is the centred of the
entire alphabet (the centred of the training sequence if a sample distribution is used.)
2) Given the reproduction alphabet Ag(M) containing M vectors {yi:i=1.....M}.
split each vector y; into two close vectors y; + € and y; - €, where € is a fixed
perturbation vector. The collection A of {vi+ & vi-¢g 1=1,....M} has 2M vectors.
Replace M by 2M.

3) When M is equal to N, it is set A0=A(M) and the process is halted. Ay is then
the initial reproduction alphabet for the N-level quantization algorithm. If not. run the

L.GB algorithm for an M-level quantizer on A(M) and then return to step 2.

X4 X, X3 X4 Xs Xe X7 Xg

Figure 3.11 The typical tree of codebook structure of Vector Quantization.

The typical tree of the codebook structure of an image for vector quantization is
presented in Figure 3.11. This tree structure is an example of 8 codebook design. As a
result of these operations, the N codebook or reproduction vector is obtained. Each
vector is then compared to a set of codeword vector stored in a ROM, and a codeword

address, which is identifying the best match is transmitted. The receiver reconstructs
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the image using corresponding templates in plane of the original vectors that are
stored in the receiver codebook ROM. The compression ratio for vector quantization

is calculated simply as given Equation 3.15.

. log, N, A
CR:——T—bpp (315)

where V_ is the codebook size and £ is the number of pixel in selected codevector.
For example; if it is used 2x2 codevector and 32 codebook, the compression ratio will

be .25 bit/pixel.
3.3.4.2 The Performance Result of Vector Quantization

In this thesis. images are compressed and decompressed by using vector
quantization technique for different codebook and codevector sizes. The sample
images are shown in Figure 3.12 and Figure 3.13 and the obtained results are given in

Table 3.10. Table 3.12 and Table 3.15.

4 x, i

(a) The “Lenna” image with 256 (b)SNR=31,41dB MSE=47

— 1 7Q.
gray-level and 256x256 pixels. CR=3,5bpp  (2.28:1)

Figure 3.12 The “Lenna” images by decompressed Vector Quantization
g g Y

in different codebook sizes with 1x2 vector size.



(¢)SNR=31,32dB MSE=48 (d)SNR=31,23dB MSE=49
CR=3bpp (2,66:1) CR=25bpp (3,2:1)

(f) SNR=29,44dB MSE =74
CR=2bpp 41 CR = 1,5 bit/pixel (5,33:1)

(2)SNR=26,73dB  MSE=138 (h)SNR=21,99dB MSE=411
CR=1bpp 8:1 CR=0,5bpp (161

Figure 3.12 (cont.) '

52
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(a) The “Lightnou” image with 256 (b)SNR=27,20dB MSE=119

gray-level and 320x240 pixels. CR =3 bpp (2,66:1)

(c)SNR=27,06dB MSE=124 (d)SNR=26,58dB  MSE=249
CR=25bpp (3,2:1) CR = 2bpp (4:1)

(e)SNR=25,06dB MSE=218 (HSNR=22,01dB  MSE=409
CR=1,5bpp  (5,33:1) CR=1bpp  (8:1)

Figure 3.13 The “Lightnou” images by decompressed Vector Quantization

in different codebook sizes with 1x2 vector size.



54

The codebooks for various sizes are presented Table 3.8 and Table 3.9 to give an

example to the codebook type.

Table 3.8 The codebooks of the “Lenna” image shown in Figure 3.12 (d).

Codebook Codebook Codebook Codebook

(x1,%2) (x1,X2) (x1,%2) (x1,%2)
53 53 9 79 80 | 17 | 104 103 | 25| 133 134
59 59 10 82 32 18 | 106 106 j 26 | 141 140
62 61 11 85 86 19 | 110 110 [ 27| 149 147
64 65 | 12 | 88 89 | 20 | 114 114 {28 | 155 155
67 68 13 91 92 21 | 117 117 |29 162 162
70 71 14 94 94 22 1 121 120 130} 170 171
73 74 | 15 | 97 98 | 23 | 124 125 131 179 180
76 77 | 16 | 100 101 | 24 | 129 128 132 191 191

OO~ !N 5| b m

Table 3.9 The codebook of the “Lenna” image shown in Figure 3.10 (f).

Codebook Codebook Codebook Codebook
(x1,X2) (x1,X2) (x1,X2) (x1,X2)
1 60 61 3 84 85 5 109 109 { 7 | 145 145
73 73 4 96 96 6 123 123 1 8 | 174 174

Table 3.10 The peak Signal-to-noise ratio (dB) versus compression ratio (bpp)

for Vector Quantization with 1x2 codevector.

Codebook 2 4 8 16 32 64 128 .

bpp/dB 0,5 1 1,5 2 2,5 3 - 3,5

Palm1 17,527 22,024 25,06] 26,58} 27,06] 27,20 27,25
Lightnou | 18,07 22,01{ 24,75| 26,40} 27,20y 27738} 27,49
Building 17,60f 20,981 23,85| 26,09} 28,22} 29,441 29,50
Text 17,321 20,74| 23,54 25,28 26,55} 26,76§ 2713
Lenna 21,991 26,731 29,44} 30,81} 31,23} 31,32} 3141
Peppers 20,20) 24,69, 28,69 30,81 31,70y 31,75{ 31,80
Madrill 20,39 24,33, 26,52} 2734, 27.64| 27,68] 27,68
Room 19,76} 23,43} 26,43] 28,59 29,87} 30,00{ 30,54
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(a) The “Lightnou” image with 256 (b)SNR=27,60dB MSE=113

gray-level and 320x240 pixels. CR=175bpp (4,57:1)

(c)SNR=27,56dB MSE=114 (d)SNR=27,45dB MSE=117
CR=1,5bpp (534:1) CR=125bpp (6,4:1)

(d)SNR=2530dB MSE=192 (e)SNR=22,26dB MSE=386
CR=0,75bpp (10,67:1) CR=05bpp (16:1)

Figure 3.14 The “Building” images by decompressed Vector Quantization in

various codebook sizes with 2x2 vector size.
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Table 3.11 Peak signal-to-noise ratio (PSNR) versus compression ratio (bpp)

for Vector Quantization with 2x2 codevector.

Codebook | 2 4 8 16 32 64 | 128
bpp/dB 025 05 | 0,75 1 1,25 | 1,5 | 1,75
Palm1 17,40] 21,06] 23,09] 23,95| 24,19] 2424] 2426

Lightnou | 17,80} 21,02} 22,87 23,57 23,75} 23,79 23,79
Building 17,941 2226} 2530 27,02, 27.45] 27,56, 27,60
Text 17,65| 20,601 23,09| 24,05| 24,27} 2433 24733
Lenna 21,88) 26,06y 2826 29,27 29,56{ 29,62 2938
Peppers 20,007 24,05] 26,86| 28,13 28,54 28,04] 2845
Madrill 19,77 22,77} 24,121 24,53 24,69] 24,71| 24,71
Room 19,46 22,851 25,21 26,70| 27,41} 27,52| 27,52

Table 3.12 The codebook of the “Building” image shown in Figure 3.14 (d).

Codebook Codebook Codebook Codebook
(X1,X2,¥15¥2) X1,X2,Y15¥2) X1,¥2,¥1,¥2) X1,X2,Y15¥2)
1 37 37 13 87 86 |5 124 124 17 169 168
36 37 86 86 124 124 168 168
2 63 63 | 4 105 105 |6 142 142 | 8 | 221 222
63 63 106 105 142 142 222 221

Table 3.13 Peak signal-to-noise ratio (PSNR) versus compression ratio (bpp)

for Vector Quantization with 4x4 codevector.

Codebook 64 128 Codebook 64| 128

bpp/dB 0,375 0,4375| |bpp/dB 0,375 0,4375
Palml 20,87 20,88] |View 21,18 21,19
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According to the performance results, the more codebook size is used, the better
peak signal-to-noise ratio is obtained and the reconstructed images are more
competitive the original images. Moreover; when the less vector size is used, the peak
signal-to-noise ratio increases, because; the details in the image can be process better,

when the vector size is small.

(a)The “Peppers” image with 256 (b) Codebook =64 Vector Size = 1x2
, SNR=31,75dB  MSE=
gray-level and 256x256 pixels. CR =3bpp (2.66'1)

za&&%ﬁx&

(c) Codebook =64  Vector Size =2x2  (d) Codebook =64 Vector Size = 4x4
SNR=28,64dB  MSE=89 SNR=20,77dB  MSE=254
CR =1,5bpp (5,33:1) CR =0,375bpp . (21,33:1)

Figure 3.15 The compressed and decompressed “Peppers” image at the same

codebook and various codevectors.
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3.3.5 Hierarchical Finite-State Vector Quantization (HFSVQ)

Vector quantization is an efficient spatial domain image coding technique at low bit
rate, for example;lbit/pixel. Various improvement of the vector quantization
techniques have been developed, in order to achieve successful compression while
keeping satisfactory quantities of the reconstructed image. Vector quantization
generally causes high frequency quantization errors around sharp edges. The high
frequency errors may cause sharp edges blurred, which damages the perceptual quality
in the reconstructed images. However, the distortions in the smooth area may not be

apparently observed by human eye.

Hierarchical Finite-State Vector Quantization is developed on the basis of the
vector qauntization techniques. However; in the HSVQ technique, an original image is
decomposed into blocks of different sizes, which are assigned into different layers

according to their gray-level scale contrast.

The blocks with low contrast, which are located in a smooth region of the image,
will have large block sizes and be assigned into higher levels. Fewer codebook sizes
are chosen for the representative vectors in these higher layers, since there are strong
correlation between adjacent pixels in the smooth regions. For blocks with high
contrast where the gray-scales \)ary dramatically from pixel to pixel, more codebook is

used to represent details in an image.
The codes for image coding with the HFSVQ consists of two parts:

1. The first part consists of the structure codes that provide the information of
layer assignment of the image blocks. This is named as Structure Map.
2. This other part consists of the local address indexes of the codeword in the

codebook.
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Structure Map Vector Quantization Address indexs
(LAYER for each Layer. » for each Layer
reconstruction)

Figure 3.16 A general compression scheme of the Hierarchical Finite-State

Vector Quantization.

The HFSVQ scheme is more efficient than conventional VQ techniques, because it
is adjusted the reconstructed accuracy in different regions. As a result of the

compression, lower bit rate can be obtained than the other methods.
3.3.5.1 Structure Map

Any image can be divided into several regions according to its gray-level contrast
for a given threshold. The gray-scale contrast is calculated by horizontal and
perpendicular gradyent. The horizontal gradyent is the average difference between the
horizontal pixels and the perpendicular gradyent is the average difference between the
perpendicular pixels in a block. If the both gradyents in a block are smaller than the
threshold, this block is accepted in the smooth layer. Otherwise, it is assigned into

higher layer.

To reconstruct the structure map of an image, firstly, the whole image ié divided
into a group of blocks of size 16x16. If the gray-level is lower than the selected
fhreshold, this block is assigned into layer 1(L;) that is the smoothest layer. Otherwise,
this block can be divided into subblocks of size 8x8. The same threshold is applied this
block and if the gray-level is lower than the threshold, it is assigned into layer 2 (L),
which are fairly smooth regions than L,. If it is not, this block again can be divided
into subblocks of size 4x4. The same threshold is used and the gradyent of this block is
smaller than the threshold, it is put into layer 3 (L3), otherwise, it is assigned into layer

4 (Ly).
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0 1
16x16 UL
"0 1
8x8 <
Lo
0 1
4x4 &

Figure 3.17 A Structure Tree.

15 Ls | Ls
Lo
Ls | Ls
Ly
Ls | L4
L2
Ly | Ls
0 15 16 £5

Figure 3.18 A Structure Map.

Figure 3.19 The “Tiffany” image and its Structure Map.
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3.3.5.2 Hierarchical Finite-State Coding

After obtained a structure map of any image, the vector quantization technique is
applied to each layer and the codebook for each layer is obtained individually. Least
bits or codebook for Layerl and most bits or codebook for Layer4 are chosen to

represent the original image. As a result, the details in the image are seen clearly.
The compression ratio for four layers is calculated as following:

_Nb +N,b,+N;b, + N,b, 1
N log, £

CR

bpp (3.16)

N The total number of pixels in the original image.
Ni...Nys: The number of pixels for each layer. They are changing according to
selected threshold and image.
b;...bs . The number of bits used for each layer.

k : The number of codevector size.

In this study, four different kind of codebook for each layer'and three different
threshold values are selected and applied to the various images. Threshold values are
selected to 4,5 and 6 respectively, and the effect of the threshold on the compression
ratio and signal-to-noise ratio are examined. While simulating the HFSVQ
compression method, 2x2 codevector is used for all layers. In addition, to examine the
effect of the codebook size on the performance of the compression, various codebook

sizes are chosen and the results are obtained.
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The various codebook and threshold values for each Layer in HFSVQ technique
are presented in Table 3.14. The necessary bit number for each codebook is equal to

bit =log, codebook .

Table 3.14 Various codebook and threshold values for each Layer in HFSVQ

compression.

Codebook size | Layerl | Layer2 | Layer3 | Layer4 | Threshold
Option -1 2 4 8 16 4 1516
Option -2 4 4 16 32 4
Option -3 4 4 32 64 4
Option —4 8 16 32 64 4

3.3.5.3 The Performance Result of Hierarchical Finite-State Vector

Quantization

The sample images compressed at different threshold values and codebook size are

presented in Figure 3.20 and 3.21, Table 3.15 and 3.16.

If the codebook size used for each layer increase‘s, the compression ratio also
increases. Because, the compression ratio changes directiy the number of bit used for
each codebook. The compression ratio also depends on the threshold. Because, if the
threshold is chosen small, the number of block in the Layer-4 increases and the total
required bit also increases for all image. Additionally, if a small threshold is used to
compress, the details of image are made more visible and reconstructed images

approximate original images.



(a) The “Tiffany” image with 256
gray-level and 256x256 pixels.

( ¢)SNR=25,03
CR=0,4325
Threshold =5

L1=2 codebook

L3=8

MSE=204
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(b) SNR=25,14

CR=0,4775 -
Threshold =4
L1=2 codebook
13=8
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(d) SNR=24,93
CR=0,41
Threshold =6

1.1=2 codebook

L3=8

MSE=199
(16,75:1)

MSE=209
(19,51:1)

L2=4
L4=16

Figure 3.20 The images compressed and decompressed by using HFSVQ at

different threshold values and the same codebook design.
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(a) The “Peppers” image with 256 (b) SNR=26,14 MSE=158
. CR=0,775 (10,32:1)
gray-level and 256x256 pixels. Threshold =4
L1=4 codebook L2=4
L3=32 L4=64

7
7 :'/y'

(¢) SNR=26,06 MSE=161 (d) SNR=24,49 MSE=231
CR=0,69 (11,59:1) CR=0,5225 (15,31:1)

Threshold =4 Threshold =4

L1=4 codebook L2=4 L1=2 codebook 12=4

L3=16 L4=32 L3=8 -L4=16

Figure 3.21 The images compressed and decompressed by using HFSVQ at

different codebook sizes and the same threshold values.
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Table 3.15 PSNR values versus compression ratio at different threshold values

for various images for HFSVQ.

L1=1; L2=2; L3=3; L4=5 bit
Threshold=4;
d . ?
Bbpp I HoNR(an) CR(bpp) | Compression
Ratio
Lenna 24,85 0,48 16,67
Peppers 24,49 0,5225 15,31
View 21,41 0,67 11,94
Room 23,15 0,5575 14,35
Tiffany 25,14 0,4775 16,75
L1=1; L2=2; 1.3=3; L4=5 bit
Threshold=5;
dBbpp 5o R(@E) CR(bpp) | Compression
Ratio
Lenna 2417 0,4325 18,50
Peppers 24,01 0,46 17,39
View 21,33 0,6525 12,26
Room 22,78 0,5125 15,61
Tiffany 25,03 0,4325 18,50
L1=1; L2=2; L3=3; L4=5 bit
, A Threshold=6; '
dB/bpp T poRR(dB) CR(bpp) | Compression
Ratio
Lenna 23,79 0,41 19,51
Peppers 23,51 0,4275 18,71
View 21,28 0,6475 12,36
Room 22,48 0,4825 16,58
Tiffany 2493 0,41 19,51
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Table 3.16 PSNR values versus compression ratio at different codebook size

and same threshold values for various images for HFSVQ.

L1=2; 1.2=2; L3=4; L.4=5 bit
Threshold=4;
dBbPP | T HoNR(dB) CR(bpp) | Compression
Ratio
Lenna 26,52 0,65 12,31
Peppers 26,06 0,69 11,59
View 21,64 0,8125 9,85
Room 23,93 0,71 11,27
Tiffany 26,89 0,6575 12,17
L1=2; 1.2=2; 1.3=5; L.4=6 bit
Threshold=4;
dB/bPP HoNR(@B) | CR(bpp) | Compression
Ratio
Lenna 26,55 0,72 11,11
Peppers 26,14 0,775 10,32
View 21,69 0,955 8,38
Room 23,98 0,805 9,94
Tiffany 26,93 0,73 10,96
' L1=3; L2=4; L3=5; 1L.4=6 bit
Threshold=4;
dB/bpp PSNR(dB) CR(bpp) Compression
Ratio
Lenna 29,15 0,98 8,16
Peppers 29,45 1,0225 7,82
View 25,09 1,17 6,84
Room 26,78 1,0575 7,57
Tiffany 28,09 0,9775 8,18
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3.3.6 Wavelet Compression

Considerable interest has arisen in recent years regarding new transform
techniques that specifically solve the problems of image compression and other
analysis [17]. These techniques are grouped into the headings of multi-resolution
analysis time-frequency analysis and wavelet transforms. In this chapter, the wavelet

compression on an image will be illustrated.

For many decades, scientists have wanted more appropriate functions than the
sinus and cosines, which comprise the bases of Fourier analysis, to approximate
choppy signals. The sinus and cosines functions are not suitable for approximating
sharp spikes. But with wavelet analysis, it can be used for approximating functions
that are contained in finite domain. Wavelet is well suited for approximating data

with sharp discontinuities.

The Fourier Transform and Wavelet Transform are both linear operations that
generate a data structure. The mathematical properties of the matrices involved in the
transform are similar as well. The inverse transform matrix for both the Fast Fourier

and Discrete Wavelet Transform is the transpose of the original one.

Result of both transforms can be viewed as a rotation in function space to a
different domain. For Fast Fourier Transform, this new domain contains basis
functions that are sinus and cosines. For the wavelet transform, this new domain

contains more complicated basis functions called mother wavelets.

Wavelet compression is an excellent tool for data compression. For example; the
FBI has standardised the use of wavelets in digital fingerprint image compression.
The compression ratios are on the order of 20:1, and the difference between the

original and the decompressed image is very little.
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3.3.6.1 Wavelet Transform

Wavelets are functions that satisfy certain requirements. The name wavelet comes
from the requirement that they should integrate to zero waving above and below the x-

axis. There are a lot of different wavelet functions as shown in the Figure 3.22.

1.<
0.5 05
0 0 M
‘ -0.5
-0.5-]
._1_'
1 T 7 H T T T T T 1
5 0 5 10 15 5 0 5 10 15
a=1.000000  b=1.000000 a=0.500000  b=5.000000
0.5
0.5-
0- 04
-0.51
~0.5-] ;
] 1] T T T T T T T Tf
-5 0 5 10 15 -5 0 5 10 15
a=1.000000  b=5.000000 2=3.000000  b=5.000000 '

Figure 3.22 Different kind of continuous wavelet functions.

* Once mother wavelet W(x) is fixed, and the dilation of the mother wavelet is;
x-—t
()= 8| T 61D
where s and t are integers. It is convenient to take special values for t and s in
defining the wavelet basis. s = 27 and t=k where j and k are integers as well. The

choice of s and t is called critical sampling,

For a given function of set of sampled data f(¢), the Wavelet decomposition can

be written as;
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f(t):zszicijwij(t) (3.18)

i=0 j=0

which is a linear combination of the w, functions, where ¢, is Wavelet coefficients.

The basic one-dimensional wavelet transform for continuous function is;
WU k) = [ £ (0w ()l (3.19)

This gives the wavelet coefficient at W (s,1), so the calculation will be repeated for
each value of s and t. The result is a two dimensional function or a set of two-

dimensional data points in the discrete case.

The inverse wavelet transform is used to reconstruct the function from its wavelet

representation. This is shown in Equation 3.18 in general case;

f@)=Cy [ [eyw, (O)djci (3.20)
To explain how wavelets work, the simplest and oldest of all wavelets, Haar

Wavelet is chosen.
A

1/2 1

Figure 3.23 A Haar wavelet function.
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The scaled and translated Haar wavelet is described as

Yik() =P, 2/t k) (3.21)

The sample of these wavelets can be shown as graphs in Figure 3.24.

A A
»
A4 \ 4
j=0, k=1 =0, k=2
A
- »
\ - v
j=-4, k=0 j=-3, k=0

Figure 3.24 Scaled and translated Haar wavelet functions.

It is common knowledge in mathematical circles that a continuous function can be
approximated by these Haar functions in a way similar to the use of sine and cosine
functions in the Fourier Series approximations. A linear combination of Haar function

is constructed, whose sum approximates the required function is:
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f@) = i 4, iBﬂH 27/t —k) (3.22)

J=—0 k=—w
which has the same appearance as Equation 3.20 but with ¢, = 4 B, .

By assuming that the highest frequency present is 2, which corresponds to a scale

of 2. The first step in the determination of the coefficients ¢, is to factor out the

highest frequencies, at the j=-1level.

For any problem that is to be solved using computer, the bounds of the sums will be
finite. For image processing and vision purposes, the function will consist of regularly

sampled values, the grid being imposed by the digitisation process.

What is called a wavelet transform with respect to the Haar basis is really the

calculation of the values for ¢, . According to Equation 3.20, with modifications to

Haar basis, these can be written as below:

~ J(k+1)

cp =2, FO)E, (0 (3.23)

The series in Equation 3.22 can be rewritten as:

-1 k=w

F@O=2 2.c, ¥, (0 (3.24)

=0 k=—w

The coefficients of the highest frequency layer all have j=-1; solving Equation 3.24

using Haar wavelets gives:
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o=t [ a=TPOTIOED g

Each layer can be computed in this way, one at a time. In this instance, the relation

is:

1

Cie = E(ajﬂ,Zk - aj+],2k+]) (326)
1

Qe = E<aj+l.2k + aj+1,2k+l) (3.27)

¢, defines the difference between neighbourhood pixels in the image and is named

as G function and a,,is the average of the neighbourhood pixels, named as H

function.

Low Low Low
f&) = co(k) ¢, (k) > (k) e,k
High High : High:
& (%) dy (k) d, (%)
@

Low €-1(%) ¢ (&)

Hign : =.

| ®

o f ONAs

Figure 3.25 Fast implementation of the wavelet transform.

In the Figure 3.24, the fast implementation of the wavelet transform is presented.
The first part of the figure shows basic principle of the algorithm is the repetitive split

of the sequence ¢, into two halves using the low and high operations. The second

part shows the implementation of the low-pass and high-pass operators using filtering

and decimation by a factor of two.
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AnJy image can be approximated by a matrix A in which the entries AW correspond

to intensities of grey in the pixel (x,y). The process of the image wavelet
decomposition goes as follows: On the rows of the matrix A, the filters H and G are

applied. Two resulting matrices are obtained: H,4 and G,4, both dimension

2" x 2" (subscript r sﬁggest that the filters are applied on rows of the matrix A).

Figure 3.26 Lenna image wavelet decomposition
3.3.6.2 The Performance Result of Wavelet Transform

In this study, sample images are analysed according to the Wavelet transform, and
reconstructed images are presented Figure 3.27, Figure 3.28 and Table 3.17. The

differences between the images are examined.
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(a) The “Madrill” image with 256 (b) SNR=24,76 MSE=217
gray-level and 256x256 pixels. CR=2bpp (4:1)

(c) SNR=22,48  MSE=367
CR=0,5bpp  (16:1)

Figure 3.27 The decompressed ‘“Madrill” images with Wavelet compression.

Table 3.17 PSNR versus compression ratio for images compressed with

Wavelet compression.

bpp/dB 2bpp 0,Sbpp | bpp/dB 2bpp 0,5bpp

Palml 24,40 21,47} Peppers 28,79 24,97
Lightnou 23,90 21,00 View 22,95 20,40
Building 27,64 23,26 1 Room 27,72 21,98
Text 24,44 19,61 | Madrill 24,77 22,48

Lenna 29,74 26,17 | Tifanny 28,26 24,57




(a) The “Room” image with 256 (b) SNR=27,72 MSE=110

gray-level and 256x256 pixels. CR=2bpp (4:1)

(c) SNR=2198 MSE=412
CR=0,5bpp  (16:1)

‘Figure 3.28 The “Room” images compressed and decompressed by Wavelet

compression technique.
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3.4 Comparison of the Data Compression Techniques

The compression performance results are presented for each compression technique
individually. According to the given results, the compression techniques are compared

to each other.

Table 3.18 Comparison of Discrete Fourier Transform Coding and Discrete

Cosine Transform Coding at same compression ratios.

0,75 bit /pixel 1,5 bit /pixel
bpp/dB DFT DCT DFT DCT
Palm1 2148, 21,37 22,48 22,57
Lightnou 20,80 19,94 21,86| 20,32
Lenna 25,80 26,99 26,73 28,89
Peppers 2457 26,06 25,83 28,84
Tiffany 2471 22,34 26,67| 24,03

As shown in Table 3.18, when discrete Fourier transform coding and discrete
cosine transform coding are applied to images, the signal-to-noise ratios are close to
each other at the same compression ratio. For both techniques, at high compression

ratios, good performance results are obtained.

According to the Table 3.19, at high compression ratios vector quantization with
2x2 codevector gives better performance results compared to vector quantization with
1x2 codevector. But vector quantization with 2x2 codevector réquires more memory

size than the other,
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Table 3.19 Comparison of vector quantization with 1x2 codevector and 2x2

codevector at same compression ratio.

1 bit /pixel 1,5 bit /pixel
bpp/dB 1x2 2x2 1x2 2x2
Palm1 22,021 23,95 25,06 24,24
Lightnou 22,01 2357 24,75 23,79
Building 20,98 27,02 2385 27,56
Text 20,74 24,05 23,541 24,33
Lenna 26,73| 2927 | 29.44| 29,62
Peppers 24,69 28,13 28,69 28,64
Madrill 2433 2453 26,52 24,71
Room 23,43 26,70 26,43 27,52

If the DCT and DFT compression techniques are compared to vector quantization,

it is seen that the vector quantization has better performance.

By using hierarchical finite-state vector quantization, more high compression ratios
are obtained like 0,48bit/pixel, when the same signal-to-noise ratio is used with the

other compression techniques.

Wavalet compression technique gives good performance results at low compression

ratio for example 2bit/pixel.
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CHAPTER FOUR

THE HYBRID COMPRESSION
TECHNIQUES

4.1 An Introduction of Hybrid Wavelet Transform and Vector Quantization

Compression Technique

In this thesis, the vector quantization method and wavelet transform methods are
individually simulated and also the performance results are given in the previous
chapter. In this chapter, the two methods are used together and as a result of the

simulation, better performance results are obtained.

The encoder and decoder block diagram for the Hybrid Wavelet Transform and

Vector Quantization Compression Technique is shown in Figure 4.1.

Image | Discrete
Wavelet 3| Vector Decomposition

Transform
14
W1
W2
Wf Transmission

Wi » min; d(V, -W;) +————» Channel

! Index jopt
Wk

Codebook

(a) Decoder
Figure 4.1 The Block Diagram of Hybrid Wavelet Transform and Vector

Quantization.
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Inverse
Vector R tructi Y Discrete [mao
ector Reconstruction Wavelet —» Image
T Transform
CodedVi
.. Wi
Transmission W2
Channel —P
Index jopt Wi Wjapt
Wk
Codebook
(b) Decoder

Figure 4.1 (cont.)

By using the decoder and encoder block diagrams of the hybrid wavelet transform
and vector quantization compression method is examined and the performance

results are obtained.

4.1.1 The performance result of Hybrid Wavelet Transform and Vector

Quantization

Firstly, the wavelet compression is applied to fhe image, and compressed image is
obtained. After, vector quantization technique is applied to this image. Some
compressed and decompressed images are presented in Figure 4.2 and 4.3. Moreover,
the sample images are given in Table 4.1 and 4.2 for different codebook size and

codevector size,

As shown in tables, when the small codebook size is used, the high compression
ratio is obtained but the signal-to-noise ratio decreases. If the codevector size
becomes small, the signal-to-noise ratio increases however, the compression ratio

becomes low. The optimum configuration is chosen according to applications.
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(a) The “Lenna” image with 256 (b) 32 codebook size

1x2 vector size

4:1 wavelet comp.
SNR = 26,34 MSE =151
CR = 0,625 bpp (12,8 :1)

gray-level and 256x256 pixels.

(c) 32 codebook size

2x2 vector size

4:1 wavelet comp.
SNR = 25,68 MSE =176
CR=0,3125bpp (25,6 :1)

Figure 4.2 The “Lenna” compressed images by hybrid wavelet compression

and vector quantization at different codevector size.



(a) The “Peppers” image with 256
gray-level and 256x256 pixels.

RS

(¢) 32 codebook size
2x2 vector size
4:1 wavelet comp.

SNR =24,71

CR=0,3125 bpp

MSE =220
(25,6 :1)
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S S
(b) 32 codebook size
1x2 vector size
4:1 wavelet comp.
SNR =25,93
CR = 0,625 bpp

'MSE =166
(12,8 :1)

(d) 64 codebook size
2x2 vector size
4.1 wavelet comp.

SNR = 23,61

CR =10,375 bpp

MSE =283
(21,33 :1)

Figure 4.3 The “Peppers” compressed images by hybrid wavelet compression

and vector quantization at different odevector size and codebook size.
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Table 4.1 PSNR values versus compression ratio at different codevector and

32 codebook for wavelet compression with VQ.

32 codebook
dB/bpp (2x1 codevector) | (2x2 codevector) | (4x4 codevector)
0,625 bpp 0,3125 bpp 0,078 bpp
Lenna 26,34 25,68 21,87
Peppers 25,93 24,71 19,85
View 21,50 20,22 17,94
Tiffany 26,34 18,53 18,13
Madrill 23,20 22,38 20,24

Table 4.2 PSNR values versus compression ratio at different codevector and

64 codebook for wavelet compression with VQ.

64 codebook
dB/bpp (2x1 codevector) | (2x2 codevector)

0,75 bpp 0,375 bpp
Lenna 25,73 24,01
Peppers : 25,23 23,61
View - 21,41 19,44
Tiffany 26,09 19,07
Madrill 22,82 21,23

4.2 An Introduction of Hybrid Wavelet Transform and Hierarchical Finite

State Vector Quantization Compression Technique

In this thesis, in the third chapter, the hierarchical finite state vector quantization
method is simulated and the performance results are obtained for different codebook

size and threshold values. In this chapter, the two methods which are wavelet



transform and hierarchical finite-state vector quantization are combined and at high

compression rates, better performance results are obtained as shown in the Table 4.3.

The compression scheme of the Hybrid wavelet compression and hierarchical

finite state vector quantization technique is given in Figure 4.4

Discrete Vector _Address

Wavelet 5 Structure | 3| Quantization | indexes for

Transform Map for each each Layer
(Layers) Layer.

Figure 4.4 A general compression scheme of the Hybrid Wavelet

Compression and Hierarchical Finite-State Vector Quantization.

In this study, the hybrid compression method is examined by using the
compression block diagram as shown in Figure 4.4, and the performance results are

obtained.

4.2.1 The performance result of Hybrid Wavelet Transform and Hierarchical

Finite State Vector Quantization

Firstly, the wavelet compression is applied to the image, and compressed image is
obtained. After, Hierarchical Finite State vector quantization compression is applied
to this image. In Figure 4.5 and 4.6, compreésed and decompressed sample images
are presented at different compression ratio. To examine the effect of the codebook
size of the compression ratio and signal-to-noise ratio, different codebook size are

used. The results are presented in Table 4.3.

As shown in tables, if small codebook size is used for each layer, the high
compression ratio is obtained. However, the signal-to-noise ratio decreases. Four
layers are and 2x2 codevector is used for each layer while simulating this hybrid

compression technique.
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(b) L1=8 codebook L2=16

(a) The “Peppers” image with 256 13=32 La=64

gray-level and 256x256 pixels. 2x2 vector size 4:1 wavelet
SNR = 24,75dB MSE =218
CR =0,2553 bpp (31,34:1)

(c) L1=4 codebook L2=4 (d) L1=2 codebook L2=4
L3=16 L4=32 L3=8 L4=16
2x2 vector size 4:1 wavelet 2x2 vector size 4:1 wavelet
SNR =23,54dB MSE = SNR = 22,83dB MSE =
CR =0,1723bpp (46,43:1) CR =0,1303 bpp (61,40:1)

Figure 4.5 The “Peppers” image compressed a hybrid wavelet compression
and hierarchical finite-state vector quantization method with different

configuratious.
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L
L

(a) The “Tiffany” image with 256 (b) L1=8 codebook L2=16
. L3=32 L4=64
gray-level and 256x256 pixels. 2x2 vector size 4:1 wavelet
SNR =24,13dB MSE =169
CR = 0,2444bpp (32,73:1)

e
(¢) L1=4 codebook L2=4 (d) L1=2 codebook L2=4
L3=16 L4=32 L3=8 L4=16
2x2 vector size 4:1 wavelet 2x2 vector size 4:1 wavelet
SNR =22.47dB MSE =215 SNR = 23,54dB MSE =288

CR = 0,1642bpp (48,72:1) CR = 0,1194bpp (67,0:1)

Figure 4.6 The “Tiffany” image compressed by using hybrid wavelet
compression with hierarchical finite-state vector quantization method by using

various configurations.
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Table 4.3 PSNR values versus compression ratio at different codebook sizes

and same threshold for wavelet compression with HFSVQ.

L1=1; L.2=2; 1.3=3; L4=4 bit
Threshold=4; 4:1 wavelet comp.
dB/bpp PSNR(dB) | CR(bpp) Compression
Ratio
Lenna 24,24 0,1199 66,72
Peppers 22,83 0,1303 61,40
Room 20,56 0,1392 57,47
Tiffany 23,54 0,1194 67,00
L1=2; L.2=2; 1.3=4; 1.4=5 bit
, Threshold=4; 4:1 wavelet comp.
dB/bpp PSNR(dB) | CR(bpp) Compression
Ratio
Lenna 24 81 0,1626 49,20
Peppers 23,54 0,1723 46,43
Room 20,84 0,1773 45,12
Tiffany 22,47 0,1642 48,72
L1=3; L2=4; 1.3=5; 1.4=6 bit
Threshold=4; 4:1 wavelet comp.
dB/bpp PSNR(dB) | CR(bpp) Compression
Ratio
Lenna 25,85 0,2449 32,67
Peppers 24,75 0,2553 3134
Room 21,72 0,2642 30,28 |
Tiffany 24,13 0,2444 32,73
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CHAPTER FIVE
CONCLUSION

The principal objective of this thesis is to present data compression techniques for
images and to describe the most commonly used compression methods. So, the most
popular compression techniques were examined, simulated and the performance
results were obtained according to signal to noise ratio and compression ratio. In
addition, a hybrid wavelet transform and vector quantization was introduced as a new

technique.

If the compression ratio is low, Run-Length Transform becomes more effective by
means of mean square error. However, if the compression ratio increases, the mean
square error and difference between the reconstructed image and original image
increases. As the Run-Length Coding is lossless compression technique, it is

convenient to use it on texts or documents then graphics for low rate compression.

The vector quantization and hierarchical finite-state vector quantization methods
give better results at high compression ratio for instance 1 bit/pixel. Getting better
results with increasing codebook size causes more memory size. Also increasing
vector size yields worse performance results, though. So, optimum vector size and
optimum codebook size must be chosen according to the desired hardware and

compression ratio.

In this study, it is seen that as a result of wavelet transform also get high
compression ratio and low mean square error like vector quantization and

hierarchical finite-state vector quantization.
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In this thesis, hybrid compression methods were examined. After wavelet
compression, vector quantization technique was applied to the images, and good
results were obtained compared to wavelet transform and vector quantization
individually at high compression rates. Additionally, after wavelet compression,
hierarchical finite-state vector quantization also was applied to the images and high
signal to noise ratios were obtained at high compression rates. The signal to noise
ratio versus compression ratio for each compression method were obtained and the

performance results were compared to each other.
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