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MEDICAL IMAGE COMPRESSION APPROACHES BASED ON

RUN-LENGTH, CHAIN CODE AND EZW ENCODING

ABSTRACT

In information theory, utilization of channel bandwidth efficiently, establishing the

practical telemedicine networks and even though archiving of medical images are

importantly considered to transfer data. The expression of an image using a fewer

number of bits with or without loss of information is defined as image compression or

coding. In order to image coding, there are many compression techniques.

In this dissertation, various compression algorithms are examined to reveal the

redundancy of 3D medical images more effectively. The context-based and

contour-based coding approaches are proposed bi-level compression pipelines. In the

first circumstance, the run-length coding is specialized for two-dimensional slices of

volumetric-medical images. Inter-voxel relationships and intra-pixel relationships are

revealed by different scanning procedures such as Hilbert, chevron, and perimeter.

Secondly, chain codes are applied to 2D-slices to code contour knowledge. In this

method, the contour defining algorithm is used and modified to code symbols

representation efficiently. The embedded zerotree wavelets (EZW) and sparsity are

gray-level compression approaches, and they utilize different wavelets.

In this study, proposed algorithms are experienced on the computed tomography

(CT) and magnetic resonance imaging (MR) datasets, which are acquired from Dokuz

Eylül University Hospital. The run-length and chain codes systems are applied for

bi-level CT and MR datasets and compression ratios approximately 100:1 and 200:1,

respectively. These achievements show proposed systems outperform JBIG and

CCITT that are well-known bi-level compression standards. The EZW algorithm only

tested for gray-level MR images. The results are presented in terms of common lossy

compression metrics.

Keywords: image compression, chain-code, medical image, run-length encoding
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KATAR UZUNLUĞU, ZİNCİR KOD VE EZW KODLAMALARI TABANLI

TIBBİ GÖRÜNTÜ SIKIŞTIRMA YAKLAŞIMLARI

ÖZ

Bilgi teorisinde, kanal bant genişliğinin verimli kullanılması, pratik teletıp

ağlarının kurulması ve tıbbi görüntülerin arşivlenmesi, verilerin aktarılması için

önemli olduğu düşünülmektedir. Bilgi kaybı olacak şekilde veya kayıpsız olarak az

sayıda bit kullanılarak bir görüntünün ifadesi, görüntü sıkıştırma veya kodlama olarak

tanımlanır. Görüntü kodlaması için birçok sıkıştırma tekniği vardır.

Bu tez çalışmasında, 3D medikal görüntülerin fazlalığını daha etkin bir şekilde

ortaya çıkarmak için çeşitli sıkıştırma algoritmaları incelenmiştir. Bağlam tabanlı ve

çevre tabanlı kodlama yaklaşımları iki seviyeli sıkıştırma boru hatları olarak

önerilmiştir. İlk durumda, katar-uzunluğu uzunluğu kodlaması iki boyutlu hacimsel

tıbbi görüntülerin dilimlerinin sıkıştırılması için özelleştirilmiştir. Vokseller-arası

ilişkiler ve pikseller-arası ilişkiler, Hilbert, chevron ve çevre gibi farklı tarama

prosedürleriyle ortaya çıkarılmıştır. İkinci olarak, zincir kodu, kontur bilgisini

kodlamak için 2D dilimlerine uygulanmıştır. Bu yöntemde, kontur tanımlama

algoritması, sembolleri temsil etmek için verimli bir şekilde kodlamak üzere

kullanılmış ve geliştirilmiştir. Gömülü sıfır-ağaç dalgacık (EZW) ve seyreklik gri

seviyeli sıkıştırmada kullanılan yaklaşımlardır ve farklı dalgacıklardan yararlanırlar.

Bu çalışmada, Dokuz Eylül Üniversitesi Hastanesi’nden elde edilen bilgisayarlı

tomografi (BT) ve manyetik rezonans görüntüleme (MR) veri setlerinde önerilen

algoritmalar deneyimlenmiştir. Katar-uzunluğu ve zincir kod sistemleri, iki seviyeli

CT ve MR veri kümelerinde uygulanmış ve sırasıyla yaklaşık 100:1 ve 200:1

sıkıştırma oranları elde edilmiştir. Bu sonuçlar, önerilen sistemlerin iyi bilinen iki

seviyeli sıkıştırma standartları olan JBIG ve CCITT’den daha iyi performansa

ulaştıklarını göstermektedir. EZW algoritması yalnızca gri seviyeli MR görüntüleri

için test edilmiştir. Sonuçlar, ortak kayıplı sıkıştırma ölçütleri olarak sunulmuştur.
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CHAPTER ONE

INTRODUCTION

The image compression algorithms are developed for natural images, and these

methods became standards over the years for any kind of image ranging from medical

to web-multimedia images. However, the medical images have intrinsically different

characters from natural ones. The state-of-the-art standards, which are designed for

natural data, could not reach the frontier of compression for medical images.

Therefore, the modern general purpose methods cannot achieve satisfactory

compression performance for medical images. Therefore, there is a substantial

amount of uncovered redundancy data in existing medical images (Hsu, 2015;

Bankman, 2008). Furthermore, current compression standards are not compatible

with telemedicine protocols. The limitations regarding efficient medical image

compression (Scholl et al., 2011) is elucidated in the following chapter.

With a grand increase of data from various sources (Gantz & Reinsel, 2012),

image compression has become an efficient tool for modern communication systems

such as telemedicine networks. And there are myriad studies have been carried out on

the subject (Karimi et al., 2016; Ageenko & Fränti, 2000; Lee et al., 2003; Anantha

Babu et al., 2016). As sub-area of image compression, medical image compression,

which become an indispensable tool for an e-health network, is one of the most

commercial and technically crucial application area (Taquet & Labit, 2012; Prabhu

et al., 2013). However, there is not available sufficient compression standard geared to

bi-level and gray level medical images. The DICOM standard rely on the ISO/IEC

and ITU-T standards, e.g. JPEG and JPEG-LS (Bruylants et al., 2015; NEMA, 2017).

Also, binary compression mode is not provided by the DICOM container. While the

JPEG achieves considerable performance, the information that sacrificed by the

method is inadmissible in the field of medicine. The lossy wavelet-based methods are

also introduced scalable compression to increase performance of the telemedicine

networks (Maglogiannis et al., 2009; Ramakrishnan & Sriraam, 2006). These

limitations result that the performance of the current compression standards remain in

limited range for medical data.
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The DICOM not only utilizes size-reduction algorithms but also contain metadata,

which is the textual information of the medical process and patients (NEMA, 2017;

Bairagi, 2017). However, the majority of compression standards do not have the ability

to convey the metadata except the standard od PNG (Graham et al., 2005). This brings

another restriction for usage of the up-to-date standards in telemedicine networks.

In this context, to achieve considerable compression performance for binary and

gray-level medical data, lossless compression schemes have been analyzed to improve

the codification performance. To this end, the algorithm of the run-length, chain and

wavelet-based compression schemes have been improved by considering the image

characteristics such as entropy, morphological structure, and compactness of the

objects in the image matrix. It is shown that proposed methods reveal inter-slice and

coding redundancies that the up-to-date pipeline cannot overcome.

1.1 Motivation

By the digital revolution, the data has become more crucial and indispensable than

ever, and a tremendous the amount of data emerges in our daily life. Furthermore,

with each passing day, the digital universe produces a massive amount of data, and it

is hard to foresee the size of this growth. The proportion of embedded and medical

data in big data will proliferate from 10% to 30% from 2015 to 2020 (Gantz &

Reinsel, 2012). Technologies such as developed medical data modalities,

virtual/augmented reality applications, and light field imaging, which produce

volumetric data at ultra-high resolutions, are among the primary sources of data

(Olshannikova et al., 2015; Karimi et al., 2016; Chang et al., 2006). These

tremendous quantities of data need to be transferred, archived, and retrieved, which is

a challenging task even for advanced data processing and transmission systems. This

creates a strong demand for algorithms that enable more efficient transmission and

storing facilities (Bairagi, 2017). Practical application and medical networks have

also become an increasing profound tool with recent developments in health-care

(Maglogiannis et al., 2009; Ramakrishnan & Sriraam, 2006; Taquet & Labit, 2012;
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Prabhu et al., 2013). And thus, the request for the mobility of medical records

requires a high-level bandwidth engaged by telemedicine network and more efficient

storage of device in the archiving system. New-generation Magnetic Resonance (MR)

and Computerized Tomography (CT) imaging systems are capable of scaling the

image resolution. The resulting a whole human body scans with high resolution could

exceed gigabytes of data load (Scholl et al., 2011). Consequently, progress in the

health-care platform and distributed collaborative applications for the medical

diagnostic process have brought a strong vogue of an efficient manner of medical data

transmission (Anusuya et al., 2014a).

The image compression and source coding are defined as the processes of

presenting raw data using fewer bits with no loss of information or loss of data in the

acceptable/reasonable range by computer science and information theory. To this end,

the redundancy and irrelevance of the data are revealed by compression algorithms.

So that, compression renders possible efficient teleradiology networks and archiving

system. Compression algorithms categorised in two main group: lossless (reversible)

and lossy (irreversible) techniques. All in all, compression algorithms become a more

and more vital and indispensable tool for modern medical e-health networks and data

processing system (Prabhu et al., 2013).

1.2 Telemedicine Networks and Medical Image Compression

Removing the geographical barriers for medical data circulation and spreading the

medical services to a great majority of the population by establishing a distributed

collaborative platform of medical data is becoming a significant requirement through

the progress of communication technologies (Hsu, 2015; Bairagi, 2017). Practical

application and medical networks have also become a influential tool with recent

developments in health-care systems.

Telemedicine is described as an electronic network which removes the physical

restrictions using telecommunications technologies to provide medical information,
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medical records, and services. Digital Imaging and Communications in Medicine

(DICOM) is a universal protocol for retrieval, archiving, presenting, and distribution

of the medical images and other records (NEMA, 2017). Well-defined standards of

PACS aims to provide cost-effective archiving, fast retrieval, and access to data

captured with various medical imaging modalities (Choplin et al., 1992).

Teleradiology is the sub-area of the telemedicine and is described as a practice of the

radiologists, who do not physically present in the physical location where the records

are produced, interpreting the medical records. These interactive e-health solutions

require effective communication which benefits optimal bandwidth and storage

facilities. The medical images are generated by various imaging systems, e.g., xray,

CT, ultrasound imaging, Positron-Emission Tomography (PET), MRI,

four-dimensional CT etc. The aforementioned modalities create tremendous amount

of data every single day. The size of these images may exceed gigabytes for a single

volumetric CT image. Therefore, the images are the primary and challenging record

of the teleradiology networks.

Advancements in the healthcare networks and collaborative distribution platforms

for medical records have brought to the conclusion the techniques for compression of

the medical records. At this stage, image compression algorithms, which reduce the

size of the image over 80%, come into play to alleviate the burden of the systems.

Effective compression process provides an efficient communication facility by

decreasing the total amount of stored data, transmission time, bandwidth and cost rate

that is an essential requirement for DICOM and PACS systems. Image compression

algorithms, which are designed in general propose, provide satisfactory compression

performance. However, these algorithms cannot entirely expose the compressibility

potential for medical data. The reason behind this limitation is that medical and

natural images intrinsically differ from in structural characteristics such as entropy,

non-stationarity, compactness, and energy, which primarily affect the compression

efficiency. Thus, there does still exist a growing demand for a compression scheme

that is particularly designed for medical data to achieve higher compression efficiency.
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1.3 Scientific Novelty of the Dissertation

There is an increasing demand for the interactive sharing of medical record through

a telemedicine network. This makes compression the process that is the most crucial

step of the modern e-health systems. However, a compression scheme that achieves

acceptable compression performance for all kind of medical data is not available. For

instance, bi-level compression schemes remain in restricted performance for gray level,

while the standards specialized for text and documents are also unfavorable for image

data. Additionally, the algorithms utilized by common networks are general purpose

algorithms that are not capable of compressing the medical images entirely. In this

context, the Run-Length Encoding (RLE), contour, and wavelet transformation based

three systems have been introduced for yielding compression of binary and gray-level

medical images. The methods are specialized aiming to reveal particular redundancy

existing in medical images. To accomplish this task, redundant data is analyzed in the

sense of characteristics, which are entropy, non-stationarity, energy, and compactness,

of medical images that differ from natural images. The scientific contributions of the

thesis are given in the following:

� Firstly, the embedded zerotree wavelet transform and sparsity based systems are

applied to the medical data set utilizing multiple wavelets (haar, curvelet,

bi-orthogonal). The data set and wavelet compatibility have been examined to

determine optimal wavelets for different kind of gray -level medical images.

� The second improvement is to develop an RLE based bi-level compression

scheme by extended scanning procedure in such a way of achieving

morphological coherence among scanning procedure and the mold of the objects

in the bi-level images. The RLE algorithm is an easy-to-implement

data-to-symbol coding process. However, it is used by compression standards in

common scanning procedure that provides a limited performance. The proposed

RLE algorithm is designed in the three-dimensional model. It harnesses the

coding redundancy stemmed to the inter-slice correlation among voxels. To

eliminate these limitations of the RLE, the proposed compression algorithm
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provides an extended scanning procedure. By this procedure, which employs

flexible scanning rules and orders such as Hilbert and perimeter, he method is

able to set an optimality case for scanning model consistent with the

morphological structure of the segmented shape, i.e., the organ, existing in the

image matrix. This procedure provides high-level flexibility for adaptations of

the RLE to the various shape of the organs. Providing a morphological

coherence produce a low-entropy symbol sequence.

The RLE is employed in two-dimensional (2D-RLE) and volumetric form

(3D-RLE). The 2D-RLE are managed to unveil a significant intra-slice

correlation through the instrument of the extended scanning forms and

appropriate entropy coder.In a volumetric manner, the 3D-RLE method proposes

a new algorithm to code bi-level 3D images by also operating the correlation

between the elements of volume (voxels), i.e. inter-slice correlation, together

with the intra-slice correlations. The scheme is created in a parametric model to

be integrable to telemedicine and e-health infrastructures. The simulation

outcomes attest that the 3D-RLE is superior current modern bi-level

compression standards.

� Present compression methods maps the image matrix into symbols sequence,

i.e., data-to-symbol/transformation and then convert encoded-symbols (entropy

coding) into the bitstream. This is the traditional strategy of commercial

compression standards. However, in recent years, it has been shown that

encoding only boundary of the object existing in the bi-level images by means of

a reversible chain rule is sufficient for lossless compression, instead of

deciphering the entire matrix data of the image. The compression efficiency of

the chain code-based systems achieves up to tenfold of the conventional

techniques. Moreover, this achievement primarily depends on the chain rules

and can be improved by suggesting new chain rules. In other words, this strategy

also includes redundancy of its own symbols. Therefore, these show a looming

potential of chain code based compression for bi-level medical images.

Motivated by these facts, a chain code based bi-level compression pipeline,
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namely the CrS, is proposed. The method employs current and modified chain

rules. The proposed method is employed improved chain rules, besides the

current chain rules. The chain rules are improved by optimizing the length of the

elements of the normalized angle difference (NAD) chain rule to reveal

redundancy existing in chain symbols.

The experimental results show that the suggested chain code based system can

unveil more redundancy compared to the-up-to-date techniques. Also, modified

NAD, namely mNAD, outperforms the existing chain rules and the NAD in the

case of occurring high-level of non-stationarity in the segmented objects.

Consequently, the proposed pipelines concentrate on the redundancy, existing in

medical data and that cannot be removed by general-proposed compression

techniques. The characteristics of the medical images, such as entropy, compactness,

non-stationarity, are taken into account in order to achieve this aim. Since any

information loss may impose catastrophic effects in the field of medicine, suggested

compression techniques are designed in the reversible mode so that there is no loss of

any information.

Throughout the thesis, the coding term is used for both encoding and decoding.

The term of bit stream and compressed data are used in the same meaning. The pixel

denotes picture elements of the image matrix. And the voxels refer to volumetric

image element also indicating the relationship between adjacent pixel from

succeeding frames/slice. The symbols refer to both pixel and voxel, i.e., the elements

of image data. Unless otherwise specified, the norm applied to the image is any

matrix norm.

The dissertation is organized as the following: Chapter 3 introduces the fundamental

concept of the lossless compression systems for images with common algorithms and

standards. In Chapter 4, redundancy existing in medical images are elucidated. The

RLE, an efficient lossless compression algorithm, is modified for binary medical data

in two and three-dimensional approaches. The last chapter presents the discussion of

the results and additionally the future work in Chapter 7.
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CHAPTER TWO

BACKGROUND

The conceptional background of data compression is clarified in this. Optimal

coding determination is explained to inspect the frontier of the lossless compression.

Finally, the related works for image compression are presented to figure out the

limitations of the existing compression systems.

2.1 Fundamentals of Data Compression

Compression is described as the skill of reshaping raw data in compact form with

the aim of representing it using fewer bits. It has been used in a wide range from

web transmission to e-health networks. By means of compression, the data can be

transmitted, stored and archived using less bandwidth and storage capacities. The raw

data is generally divided into three portions:

– Redundancy

– Irrelevancy

– Significance

The significance, i.e. information, is the main fraction intended to be

transmitted/stored by the system. The redundant is described as an statistical

resemblance among the elements of data, i.e., pixel or voxel which are the elements of

two- and three-dimensional images, respectively. Irrelevancy is the partition that

cannot be perceived or interested in by the receiver or observer of the systems, which

can be the human visual system (HVS) for image compression. The information

having high-frequency in medical images and metadata existing in portable network

graphics (PNG) formats are the examples of the irrelevance data for the HSV. The

compression methods are categorized into two groups concerning the condition of

these portions after the reconstruction: lossless and lossy techniques. While the raw
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data can be perfectly reconstructed in the case of lossless mode (also known as

reversible compression), in the lossy mode it is obtained in an approximated format

(known as irreversible compression) in which the data considered as redundancy is

eliminated. The lossless and lossy techniques utilize redundancy and irrelevancy of

the data for compression, respectively, see in Figure 2.1.

RedundacyIrrelevancy Significance

L o s s y   C o m p r e s s i o n 

L o s s l e s s   C o m p r e s s i o n 

Figure 2.1 Segments of the raw data regarding the compression process

Thereby, the lossless and lossy approaches decrease the size of raw data by

reshaping and eliminating the aforementioned data partitions, respectively. The

compression efficiency for the lossless methods depends on only their successes of

revealing the redundancy data. The difference between reconstructed and raw data,

i.e. retrieval error, determine the achievement of the lossy techniques. For the reason

that the redundancy has different characteristics, lossless methods are concentrate on

a specific type of redundant data. This eventuates that the compression achievement

of lossless methods is generally lower than the lossy one. Besides these, there exist

hybrid models that combine two strategies to achieve higher compression

performances.

The redundancy varies according to the data e.g. image, sound, hyperspectral and

so on. Thus, compression methods have to be evolved regarding redundancy to

achieve remarkable compression performance. The image, where the information is

embodied within the form of bitmap raster or vector graphics structure, have their

own characteristics intrinsically. This fact leads to evolving and specializing the

compression algorithm by harnessing these characteristics to compress the image data

more efficiently. To put it baldly, the aim of the image coding methodologies is to

bring into the open pixel or voxel correlations, wherever in their domain or
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transformed space, during the process. Note that, medical and natural images vary in

basic structural characteristics, e.g., the natural images are generally generated by

reflection of the light spectrum from object to sensors, while the imaging principle of

MR is based on aligning fo the atom with the magnetic field (Toennies, 2017). The

capabilities of modalities and characteristics of the medical images have also

diversified over the last decades. These developments bring the diverse type of

redundancy into being. Current compression standards mostly designed for natural

images have become inadequate for efficiently uncover the redundancy of the medical

images. As a result, developing a yielding compression technique for medical data

records is still a valid demand in the digital age.

In general, data compression systems consist of two fundamental blocks: encoder,

where the data converted to the bit-stream, which is the appropriate/desired state of

data for transmission or storing/archiving, and decoder where the original data is

reconstructed from the bitstream — in other words, the decoder operates the inverse

processes of the encoder to reacquire the original or approximated form of the data.

Note that perfectly reconstructed and approximated the form of lossless and lossy

mode, respectively. The details of the encoder and the decoder blocks are presented in

the following.

Defining a raw data in N dimensional real space, X ∈ RN , where N ∈ Z+. To

compress data X, generic architecture of encoder is shown in Figure 2.2. This

codification process has two successive sub-blocks as α data-to-symbol

transformation and γ entropy coder.

Input Data
X

α
S γ

C(k)
. . . 01100010 . . .

Compressed
data

Figure 2.2 The fundamental blocks of the encoder

The data-to-symbol transforms the raw signal X into the symbol sequence S which

may be more convenient to see the redundant part. Then, the entropy coder block γ,
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that could be variable/fix length coding, generates bit-stream sequence(
C(k) ∈ {0,1} | k = 1,2,3, . . .K,and K ∈ Z+

)
, which is the compressed data and where

K denotes the total quantity of bits that needed for representation of the raw data.

Lossless encoding methods desire to achieve the lowest possible number of K, which

represents the raw data without any loss of information.

Successfully codification of input data generates a sequence of bit stream C(k)

which can be stored in an achieving system or easily transferred by communication

networks. The compressed data can be reconstructed/uncompressed by performing

the decoding operations, whose sub-blocks are shown in Figure 2.3. The decoder has

two operations, in turn, inverse entropy coder γ−1 where the bit-stream is transformed

into symbols, and the symbol-to-data decoding β in which the reconstructed data X̂ is

generated using the symbols Ŝ (Goyal, 2001).

Compressed
data

. . . 01100010 . . .
C(k)

γ−1 Ŝ
β

X̂

Reconstructed

data

Figure 2.3 The fundamental blocks of the decoder

The process is called lossless approach if the reconstructed data X̂ is equal to raw

data X, however if X̂ is an approximated form of the raw data, it called as lossy

approach. The error between the raw and regenerated image is defined as

E(x,y) =
[
X(x,y) − X̂(x,y)

]
and given a matrix norm ‖ · ‖, note that the error

‖Elossless‖ = 0 and ‖Elossy‖ > 0 for lossless and lossy approaches, respectively. The

algorithms of lossy and lossless compression methods are listed in Table 2.1.

The irrelevance and redundancy are eliminated by lossy and lossless compression

algorithms, respectively. It should be kept in mind that the error E may be a piece of

critical information that affects diagnosis in the field of medicine. The lossless and

lossy compression methodologies are generally combined by the modern compression

schemes. A well-defined standard Joint Photography Expert Group 2000 (JPEG2000)

employs wavelet, quantization and arithmetic entropic encoder (Skodras et al., 2001).

The hybrid systems achieve considerable compression efficiency (Qin et al., 2018;
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Lih-Jen Kau, 2003).

The main processes of the designing lossless compression methods are presented

in Figure 2.4. The type of image data is identified in the first block, then the image

data is characterized in the succeeding sub-block. In step of the third and fourth,

appropriate transformations and algorithms are utilized to redundancy manipulation.

In this dissertation, the proposed methods takes into account the image characteristics

to effectively uncover the redundancy of the medical images.

Knowledge about 
source domain

Characterise
 the raw data

Define 
redundancy

Manipulate 
redundancy

M
o

d
el

lin
g

En
co

d
in

g

1

2

3

4

Derive code5

Figure 2.4 Main processes of designing a compression algorithm

The algorithms given in Table 2.1 are employed by modern compression standards.

Since the compression has a huge commercial significant for modern communications

networks, there are myriad compression algorithm/pipeline have been developed.

Block truncation, fractal encoding, and irreversible transformation based standards

such as JPEG, JPEG2000 are the common lossy techniques (Salomon, 2008). The

methods of JPEG-extended range (JPEG-XR), Joint Bi-level Image Experts Group
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family (the members are the JBIG and JBIG2), PNG, Tagged Image File Format

(TIFF), JPEG lossless (JPEG-LS), graphical interchange format (GIF), Windows

Bitmap (BMP), and ZIP are some of the most well-known lossless compression

algorithms (Hoffman, 2003). The standards JBIG2 (Howard et al., 1998), JPEG2000

(Skodras et al., 2001), JPEG (Wallace, 1992) have both lossless (reversible) and lossy

(irreversible) modes.

To summarize, considering lossless compression, the original record can be

reconstructed identically while in the lossy mode, the compressed data is an

approximated form of the original data. In medical signal processing, lossy

compression techniques could cause loss of information during the compression,

which may lead to further misdiagnoses. Therefore, lossy techniques are not generally

preferred by the medical applications which any loss of information may induce

catastrophic effects. These techniques are commonly preferred in web multimedia

transmission and applications. Even though the performance of the lossless

techniques remains under the lossy one, they are preferred in the field of medical

more that.

2.1.1 Performance Assessment of Compression Scheme

Evaluation of performance for the compression techniques is categorized into two

groups: fidelity metrics for lossy compression and compression efficiency for lossless

one. This evaluation metrics is elucidated in the following.

Performance of the lossless compression methods is measured by the universal

index: compression ratio. The metric is described in the amount of redundancy

achieved by the methods.

Definition 2.1.1. (Lossless compression metric) The raw and compressed data are

denoted as X and C, respectively. The Compression Ratio (CR) is formulated as

CR =
η(X)
η(C)

(2.1)
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where η(·) is the function that quantifies the size of data as number of bits (Salomon

& Motta, 2010). That is, the CR is the quotient of the number of bits representing raw

data and bit-stream C(k) that is the form of data that will be stored or transmitted.

A lossless compression efficiency measure is relative data redundancy, Rr (Gonzalez

& Woods, 2008). It is a common metric that indicates at what level the redundancy in

the data had been removed. Relative data redundancy Rr defined as

Rr = 1−
1

CR
(2.2)

The Rr is an indicator showing how much redundancy that the image contains. For

instance CR = 9 states that 9 bits of the uncompressed image is represented in 1 bit

by the compressed image X̂ representation. This expression can be seen as 9 : 1 in

literature. Considering CR = 9 implies that relative redundancy is Rr = 8/9. This means

that 88.88% of the X data is redundant.

To assess the lossless compression performance, we have suggested another index,

namely the relative compression ratio (CRr). The index provides a level of compression

efficiency according to achievement of a reference technique. Considering the CR f as

the compression ratio of method f , then the relative compression ratio of the technique

f is defined as follows.

CRr =

(
1−

CR f

CRb

)
×100 (2.3)

where CRb is the compression ratio of reference method.

The other evaluation metrics for lossless image compression are Bit per pixel (bpp)

and bit per voxel (bpv). These evaluation metrics are the measurement of the number

of bits that requires representing compressed data.

Definition 2.1.2. (Lossless compression metric) Consider a image function I : Z×Z 7→

Z. The image matrix expressed as I(x,y) = li of dimension M and N, in which x and y

denotes the coordinates in the spatial domain and ∀li ∈
{
0,1,2,3, . . .L

}
is the intensity

level of pixels and
{
ik
}M×N

k=1
. The bit per pixel is defined as

bpp =
M×N
η(C)

×L (2.4)
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where η(C) denotes the quantity of bits of the compressed file. The bit per voxel

(bpv) is defined in the similar manner with bpp but the only difference is that the raw

data
[
I(x,y,z)

]
M×N×K

is three-dimensional. Thus, the bpv formulated as

bpv = M×N×K
η(C) ×L. The metric is employed to assessed the compression systems in the

volumetric strategies.

The evaluation metrics of lossy techniques are also known as fidelity metrics. The

common metrics are Mean Square Error (MSE), which is defines as the error signal

between the raw and reconstructed data, and the Peak value of Signal Noise Ratio

(PSNR), which indicates the level of distortion. Lossy compression systems aim to

minimize distortion in the file after decompression while aim to receive maximum

compression efficiency. The error between the raw and reconstructed images, which is

denoted by the MSE metric, is defined in the following.

Definition 2.1.3. (fidelity index) Consider raw and reconstructed image I and Î,

respectively. The MSE fidelity metric is expressed as

MS E =
1

MN

M∑
x=1

N∑
y=1

(
I(x,y)− Î(x,y)

)2
(2.5)

where the image matrix dimensions are given as M and N (Sayood, 2017).

The second fidelity metric is the PSNR, whose definition is provided in the

following.

Definition 2.1.4. (fidelity index) Consider raw and reconstructed image I and Î,

respectively. The MSE fidelity metric is defines as

PS NR = 20log10
max |I(x,y)|

MS E
(2.6)

where max|I(x,y)| denotes the maximum number of pixel intensities of the image, e.g.,

28 = 256 for 8 bit intensity level images (Salomon & Motta, 2010).

The aim of the lossy techniques is to reconstruct the image with low-distortion and

high level of PSNR.
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2.2 Information Theory and Data Compression

The theory of the information identifies the frontiers of the data compression. To

make it clear, any data could be represented in a compact form whose boundary is

determined by the information measurement, i.e., the entropy of data. The entropy can

be interpreted as the quantity of the uncertainty of a data sequence (Cover & Thomas,

2005). That is, the redundant data is proportional to the entropy. Therefore, the concept

of information for entropy will be detailed in the aspect of data compression.

Considering the image I(x,y) ∈RM×N , intensity levels is a alphabetA =
{
0,1, . . .L−

1
}
, and ∀I(x,y) = li ∈ A, x and y are spatial coordinates, and M and N are dimensions

of image. The probability of occurrence of every M ×N elements li are presented in

set of P =
{
p j

}L
j=1, e.g. p j is the probability of I(x,y) = l j element.

Definition 2.2.1. The definition of entropy for the I(x,y) image data is formulated as

H(I) = −

L−1∑
j=0

p jlog2 p j (2.7)

in which L represents the number of intensity level of the I image matrix and each I j

occurs with the probability p j (Salomon & Motta, 2010).

The entropy function subject to corresponding probability is shown in Figure 2.5.

It can be concluded from the Figure 2.5 that the maximum level of the information

arises in the case of the maximum uncertainty, which indicates also maximum entropy,

and that is the probability equal to 0.5. The entropy is construed as a measure of the

smallest number of bits which is necessary to codify the pixel or voxels of an image

data (Karam, 2009). In other words, the entropy is the expected amount of information

that represent the data.

Images can be divided into categories such as artificial, natural, and biomedical

according to the scope of their entropy level. The performances of the methods vary

according to the data type as they are in different entropy classifications. Thus, the

entropy is a vital parameter in designing of compression schemes. Before demystify
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Figure 2.5 Entropy function regarding propability of symbols

optimality concepts for lossless compression, we need to define prefix and Uniquely

Decipherability (UD) properties. A codeword is said to be uniquely decipherable if

there exists only one possibility for decoded form. In other words, consider that the

compression process is a function whose domain is the representation of raw symbols

and its range is compressed codewords (Hoffman, 2003). This function satisfies the

UD property if and only if it is one-to-one- mapping. Otherwise, the decoder cannot

retrieval the original data, or there will be ambiguity in the decoded bit-stream. This is

why the UD code is a crucial property for lossless compression. The prefix denotes the

condition that no code-stream part can be the prefix of another part of code-stream. For

example, the code-stream parts c1 = 11010, c2 = 010, c3 = 0110 are the prefix codes.

The case of prefix coding is a subset of the UD property (Pu, 2005). Note that the

property of uniquely decipherable must be satisfied for a lossless compression system.

The Huffman and arithmetic coding algorithms satisfy prefix condition.

The entropy of a raw data can be manipulated by transformation or entropy

reduction algorithms to achieve minimum uncertainty case. This is the major idea

behind the lossless compression schemes, and it will be demystified in further.
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2.2.1 Optimal Coding for Lossless Compression

Since compression aims to procure the shortest possible code length for effective

communication and archiving, determination of the boundaries for codifying has

importance. Any source of data can be represented in compact form with optimal

conditions. The optimality of lossless compression, i.e. minimum code length,

depends on characteristics of the data such as entropy, compactness, etc.

Considering a raw image I(x,y) = li, ∀li ∈ A that is represented by elements of

dictionary A =
{
0,1, . . .L− 1

}
, the probability distribution of pixels of raw image is

denoted as P. Now, suppose we represent every element of A with C =
{
c j

}L
j=1 and

the length of these code words are L = (l1, l2, . . . lL). To achieve optimal code length of

representing image I in compressed form, we need minimize the code length. This is

an optimization problem expressed as follows,

min
li

l∗(P,L) (2.8)

where l∗(P,L) =
∑L

j=1 P jl j. The main problem is to minimize equation (2.8) subject to

the constraint li. And the question is that does exist a limit for l∗ or in other words,

what are the limits for an average number of code symbols that represent the image

data. Consider a binary prefix code stream whose average code length is formulated

as l∗ =
∑L

J=1 p jl j, where li is codewords representing elements ofA dictionary and the

frontier for l∗ can be described as an inequality which is

H(I) ≤ l∗ ≤ H(I) + 1 (2.9)

This inequality simply says that the expected length of any instantaneous array code

for a random variable I is equal to or greater than the entropy H(I). The proof of the

inequality (2.9) can be found in (Pu, 2005). It obvious from the expression (2.9) that it

is not possible to express any information in lossless mode unless the bit length in the

average of representing code is greater than the entropy of the raw data. These

interpretations are the theoretical endorsements for the entropy manipulation or

reduction algorithm being key point of the lossless compression schemes which is

arisen in Figure 2.4. Since the limitations of the compression posed in term of
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entropy, any method or transformation that reduced the entropy may yield the better

compression efficiency.

In this dissertation, the techniques of entropy manipulations for bi-level medical

images have been investigated. Thus, the image data has been reformed in low-entropy

sequences by scanning through the pattern compatible with the organ existing in the

segmented image. Furthermore, volumetric predictors have been employed to reduce

the entropy of 3D-images.

2.3 Related Works and Literature Review

This section will present a wide range of literature review of image compression

which categorized regarding the type of data being compressed (gray- and bi-level

images) and the form of reconstructed data (lossless and lossy compression). There is

a sharp distinction between gray level and bi-level image structure, i.e., a raster of

pixel/voxel (Soille, 2013). The intensity level of picture elements diversities is limited

in bi-level data. Therefore, there does exist an apparent relationship (high correlation)

between neighboring symbols (pixels and voxels) in the binary image data compared

to gray-level ones. The primary source of intra-slice and inter-slice redundancies in

the images are the correlated pixels/voxels, respectively (Salomon, 2008). In

consideration of the information, a compression algorithm, that takes cognizance of

the construction of bi-level images, can attain more compression efficiency. Lossy

compression algorithms are preferably used in multimedia and Internet applications

which may compromise image quality (Xu et al., 2016; Suresh, 2015). On the

contrary, lossless compression methods are used mostly in the biomedical and secure

communication where the loss of data cannot be tolerated (Anusuya et al., 2014a;

Shen & Rangayyan, 1997). Besides, the DICOM committee does not have strict

restrictions on the type of compression (Toennies, 2017); the lossless one is

significantly demanded in medical image analysis (Anusuya et al., 2014b; Cho et al.,

2004; Venugopal et al., 2016; Liu et al., 2017; Aldemir et al., 2018a).
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There are various modern lossy image compression standards that provide

satisfactory compression ratio in gray levels medical images such as JPEG, and

JPEG2000, wavelet coding standards (Goyal, 2001; Usevitch, 2001). Owing to the

property of frequency-domain localization, the importance of the wavelet transform

has increased dramatically (Shapiro, 1993; Graps, 1995; Sydney et al., 1998). In

modern compression systems, transform based algorithms using linear

transformations have been progressively come into prominence (Sayood, 2017; Tu &

Tran, 2002). Discrete cosine, discrete Walsh-Hadamard, and wavelet are some of the

commonly used transformations in modern compression (Rao & Yip, 1990;

Ramabadran & Chen, 1992). The 3D wavelet-based system is applied to medical data

in lossy-to-lossless approach (Bruylants et al., 2015). Three-dimensional integer

wavelet-based algorithm has also enabled loss-to-lossless compression for medical

images (Xiong et al., 2003). However, the integer wavelet-based compression

schemes have disadvantages on computational complexity. The transform based

system (discrete, wavelets) are generically designed in lossy mode and have

considerable computational load (Prabhu et al., 2013; Maglogiannis et al., 2009).

The PNG, JPEG-LS, GIF, TIFF are common used gray-level lossless compression

standards. The lossless compression systems must satisfy the UD to perfectly

reconstruct the data (Sayood, 2003; Miaou et al., 2009). It has to keep in mind that

since any information loss in medical data may cause a catastrophic effect in the sense

of diagnosis, the segmented medical images must be compressed by the lossless

compression methods. Therefore, the lossless compression techniques are generally

given preference in the field of medical data analysis (Anusuya et al., 2014a). Besides

the aforementioned lossless systems are employed for medical image compression,

they are designed in general-purpose. Therefore, the entire redundancy cannot be

eliminated by these methods.

E-health systems have to overcome the logistic problem process/transmission

Tera-to Petabyte of biomedical records (Gantz & Reinsel, 2012). Image compression

will be the major point in developing e-health applications, which also attain

acceptance from the medical practiser (Scholl et al., 2011). In the literature, various
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lossy and lossless binary compression systems have been experienced on the natural

and medical images (Karimi et al., 2016; Brahimi et al., 2017a; Venugopal et al.,

2016). However, the DICOM which is one of the most common medical compression

standard does not include a bi-level compression procedure (NEMA, 2017).

The RLE which is seeking for recurrent of the pixels along the way of the scanning

form is a simple and accomplished compression strategy to obtain coding redundancy.

The methodology has been experienced on a spread range of data from DNA to

medical images (Hara & Kawano, 2015; Liaghati & Pan, 2016). There are run-length

coding and JPEG based hybrid compression techniques (Yang & Wang, 2009). There

are practical volumetric medical data compression standards based on different

techniques (Schelkens et al., 2003; Xu et al., 2004). These codification procedures

cannot totally eliminate redundant parts in the binary images due to that the bi-level

images are naturally divergent from the gray level image. Therefore, there is not exit a

universal compression standard for medical image compression (Liu et al., 2017). To

overcome this limitation of the RLE based systems, an algorithm forming according

to objects occurring in the binary images structure might achieve a better compression

performance. The conformability of the scanning form and shape of the objects

existing in the bi-level image plays a significant part in specifying the number of

recurrence of the intensity levels of adjacent pixels. The linear and zig-zag (cantor

diagonal) are the common scanning forms used in the RLE based compression

algorithms (Strasser et al., 2015). In this context, addition to the standard scanning

forms (scanning pattern); perimeter (spiral), boustrophedonic, Morton (quadrant

scanning), Chevron, and Hilbert (Pi) using different orders have been applied to the

binary medical data. Numerical simulations have shown that the scan form which is

compatible with the shape of the image morphologically has provided better

compression performance (Aldemir et al., 2019). Therefore, scan forms determination

a proper scan form relevant to organ shape is the key point of the compression

performance.

The universal bi-level schemes, e.g., Joint Bi-level Image Experts Group (JBIG)

family (Howard et al., 1998; Regentova et al., 2005), the CALIC, and Octree (Wu &
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Memon, 1996; Moursi & El-Sakka, 2007), Adaptive Bi-Level Image Compression

(ABIC) (Mitchell & Rijavec, 2004), CCITT algorithms (Lu & Tan, 2003) are the

common state-of-the-art techniques (Sayood, 2003; Memon & Sayood, 1995). The

JBIG is one of the most successful binary data compression standards used for natural

and medical data (Memon & Sayood, 1995). In the recent study of (Guo et al., 2017),

the symbol-dictionary framework based JBIG2 lossless standard is employed to

encode binary images. The method is integrated in segmentation based system for

document compression (Regentova et al., 2005). Furthermore, JBIG2, an improved

member of JBIG family is able to compress binary images in a progressive manner

and achieves satisfactory compression ratios (CR) (Howard et al., 1998; Fowler et al.,

1995). A method designed for binary images harnesses the variable-size context and

forward-adaptive statistical approaches (Ageenko & Fränti, 2000). In the study of

(Lee et al., 2003) and (Qin et al., 2018) are two compression scheme designed based

run-length algorithm which is the fast and easy-to-implement lossless algorithm. The

RLE-based bi-level compression pipeline experienced on medical data and it

outperforms well-known binary reversible compression methods such as JBIG and

last version of the standardization called the CCITT (Aldemir et al., 2019).

In recent years, chain code representation, which is well-known a pattern

recognition and shape descriptor procedures, is evolved to encode the bi-level image

data (Rodríguez-Dagnino, 2005; Zahir et al., 2007; Schiopu & Tabus, 2013). The

chain coding is a shape representation technique that expresses the objects using their

boundary information. The main motivation of the chain code based compression

systems is to generate shorter code with low-entropy using less computational

complexity. The chain code rules are reversible and thus satisfied the uniquely

decipherable (UD) property. The chain code procedures preserve whole information

providing to allow considerable data reduction. The chain code based systems are

effectively employed as lossless compression in 2D and 3D approaches (Žalik et al.,

2015; Aguilar & Bribiesca, 2015). These systems become a powerful rival to modern

techniques during recent years (Huerta-Hernández & Sánchez-Cruz, 2014; Verdoja &

Grangetto, 2017). The chain code is employed as data-to-symbol transformation by
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the systems that combined chain coder with entropy coder such as Huffman or

arithmetic coders(Liu et al., 2007; Liu & Žalik, 2005; Sánchez-Cruz et al., 2007).

There are more variations of the chain rules such as unsigned Manhattan (Žalik et al.,

2016), slope chain code (Bribiesca, 2016) and the chain code for volumetric data

representation (Chen & Lee, 1991). The main motivation of the chain code

derivations is to generate shorter code with low-entropy using less computational

complexity.

It has been figured out that chain rule based compression systems superior to the

modern bi-level standards, including JBIG (Rodríguez-Dagnino, 2005) and JBIG2

(Zahir et al., 2007; Sánchez-Cruz & Rodríguez-Díaz, 2009), two well-established

robust bi-level compression standards. Motivated by these studies, various chain code

based compression schemes have been proposed (Bribiesca, 2008; Žalik & Lukač,

2014; Bribiesca & Bribiesca-Contreras, 2014). And the methods of RLE and the

chain-code are employed in hybrid compression scheme (Bailey, 2010; Liu et al.,

2012). However, chain-code based systems are generally developed for compression

of text and trivial shape natural/artificial shapes in computer graphics. Consequently,

the chain code based systems hold great potential for compressing binary medical

data. In this thesis, we propose a chain-code based system, namely the CrS, to

reversible compress medical data.

In this dissertation, we take up the lossless bi-level compression methods aim to

increase the compression performance for the medical images. After introducing

common lossless techniques in details, the proposed bi-level lossless compression

algorithms geared to medical images, which are the 3D-RLE (developed by a new

context-based algorithm) and chain-code (CrS), are elucidated. The performances

have been assessed on a wide range of data set consisted of different modalities (MRI

and CT) and on the various morphological structure (liver, spleen, and abdominal

aorta). Thus the compression performance of the current and proposed methods have

been comprehensively assessed.
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CHAPTER THREE

IMAGE COMPRESSION

In the last decades, the demand for the mobility of the multimedia products and of

the medical records has increased dramatically; concordantly, the requirement of the

bandwidth for networks and of storage capacity has also escalated. And the data

compression has become a crucial point for efficient communication and its

applications such as telemedicine and special networks. The coding of data is the

process of reducing the amount of data (one-dimensional (1D) signals, 2D and 3D

images, videos, etc.) to describe the information content with fewer bits. The (still)

image compression is an outstanding branch of data compression. To exemplify the

importance of image compression: a 360-degree image frame stream resolution of

16K needs 3Gb for one-minute video records, and compression technique can reduce

bandwidth requirement from 6× 103 Kbps to 4× 106 Kbps (Bassbouss et al., 2018).

As a sub-area of still image compression, the medical images have great importance.

A volumetric CT image of the heart needs over 1 Gigabyte storage of data. This

makes image compression vital for modern communications and e-health networks.

In this chapter, lossy and lossless image compression algorithms and standards are

described. The limitations and disadvantages of the existing systems are analyzed

regarding the characterization of redundant data to develop new approaches for

medical images.

3.1 Transform Based Image Compression

Transform based compression stands for applying an additional operation, linear

transformation, in both encoder and decoder. To explain, the encoder operation

consists of two fundamental sub-blocks quantizer and binary encoder and in addition

to the generic block, a new process, called transformation is applied before the

quantization. The generic block diagram of transform based compression techniques

(Creusere, 1997; Shusterman & Feder, 1994) for N dimensional data is given in
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Figure 3.1.
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Î

Figure 3.1 Generic block diagram of transform based compression

Transform block refers to the conversion of data to the transformation coefficients

that represent the data in the sense of some unique features in transformed space, e.g.,

in Fourier space as frequency harmonics or in wavelet space as details (high

frequencies in the data) and approximation coefficients (low-frequency components in

the data). As the generic compression diagram indicates, the transform block is

optional, not all the compression methods use it, however, it is commonly used in the

majority of techniques due to the transformation such as the transform of discrete

cosine and wavelet, provides a more effective quantization process and binary

encoding. In this system, wavelet is used as a transformation block, owing to the

advantages explained in Chapter 2.

Main diagrams of the transform-based compression scheme is depicted in Figure

3.1 will be expounded (Goyal, 2001). The first step of transform based compression is

to apply an reversible/irrevesible transformation. Let define T : RN×M 7→ Ck, y = T I

mapping whose coefficients are y = {yi}
k
i=1. The transformation generates coefficients

y, which signify the features belonging to N-dimensional I data in transformed space,

e.g., wavelet space. The second operation is the scalar quantization αn in which the

coefficients of data are digitized in terms of gray level magnitudes (symbols), see

details for DCT coefficients of the JPEG architecture in (Ansari et al., 2009). In other

words, the coefficients are mapped into symbols, which are the representing a finite

set of the value. The loss of data appears in the quantization block as can be figured

out. The final step of the codification is entropy encoding γ which allocates the

quantified levels of coefficients to the sequence of bits, i.e. compressed data.
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It is evident that if the transformation is chosen as reversible one such as

Burrow-Wheeler and Golomb, the loss of information is only stemmed from

quantization. And recall that the entropy encoders, e.g., Huffman and arithmetic, are

lossless algorithms.

Decoder is the block that processes code stream to reconstruct the original data.

First of all, the encoded data (bit stream) are inverted to a discrete set of symbols sn in

γ−1 entropy coder block. It is obvious that sn is recaptured by lossless mapping. The

second step of the decoder is the scalar quantizer block βn that converts the sn values to

ŷn transform coefficients. The final step of the decoder is U transformation which is the

inverse of T transform, U = T−1. The output of U block is Î that is the approximation

form of the original data I. The error between the raw and reconstructed images is

defined as E = ‖I − Î‖. The transform-based compression systems aim to minimize

code length of compressed data with the minimum possible amount of errors E.

As indicated in the codification structure, Î is an approximation form of the raw

data I, as a result of information loss which appears in both the encoder and the

decoder quantizer. Additionally, there is further loss of information caused by the

transform block. The loss of information appearing in the transformation block stems

from truncating the insignificant coefficients. Floating point number is registered in

the integer allocated memory blocks. In wavelet and fractal transforms the operations

such as conversion float to integer and thresholding are applied to the coefficients.

In this thesis, wavelet-based and sparse representation transformations are

proposed for the gray-scale medical image compression. Once the wavelet transform

based technique will be explained in details, their strengths and weaknesses have been

laid emphasis on. Then, the wavelet transform based compression technique, namely

Embedded Zero-tree Wavelet (EZW), will be introduced. The EZW technique is an

effective and simply-applicable compression method for gray-level images. Having

associated the transform based compression algorithm to wavelet transform, it has

been explained which the wavelets are appropriate for medical image. The EZW

algorithm is explained in detail through the advantages and drawbacks. The second
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transform based strategy is a sparse representation based compression scheme. The

main idea behind the sparsity is that the medical images have irrelevance details that

are considered as sparse data.

The EZW algorithm is commonly used in compression. The algorithm is regarded

as the fundamental of modern compression algorithms (Usevitch, 2001; Babu &

Alamelu, 2009). The method is applied to 2D natural (Brahimi et al., 2017b; Kadhim

et al., 2019) and medical images (Babu & Alamelu, 2009; Rani et al., 2018). Since the

success of the compression depends on the wavelets, the performance of the

algorithm corresponding to the selected wavelet basis has been assessed. In this

thesis, various wavelets such as orthogonal, bi-orthogonal, and symmetric bases

leading to the determination of optimal wavelet bases have been experienced.

Throughout the past decades, sparsity-based algorithms are employed in various

field of applications, including solving the inverse problem, image denoising, and

image compression, data denoising, and compressed sensing, and so on (Candès &

Wakin, 2008; Aldemir & Tohumoglu, 2016; Donoho, 1993). Sparse representation

approach has also been applied to the field of data compression (Fang et al., 2015; Liu

et al., 2015; Zhou et al., 2016). By this approach, sparsity is considered as truncating

wavelet coefficients using compressing sensing theory to reduce the bits representing

data (Chen et al., 2016). Implementations have been applied using symmetric and

orthogonal bases.

Study of optimal bases determination corresponding the structure of image

component, modification of the EZW, and sparsity techniques are still under

development. The EZW based compression system can be designed in both lossy and

lossless modes by providing scalable properties. Also, entropy encoders will be

integrated into these algorithms to accomplish a complete compression system.

Therefore, bases determination and comparison of the EZW and sparsity techniques

constitute one of the focus of future works.
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3.2 Lossless Image Compression

Lossless compression methods are intended to express an image data with the

possible smallest quantity of data without sacrificing any information. The main idea

of lossless compression algorithms is that image data contains a large of redundancy

which intrinsically occurs and is not related to the image. Motivated by this fact, any

part of the data is compressed without being lost by removing the redundancy part of

the data. Three kinds of redundancy can be found in the digital image data (Gonzalez

& Woods, 2008). Types of redundancy may occur in an image are defined as follows:

1. Coding redundancy: Code word is a system of symbol that represents a data.

The code word can be bits, number or letter e.i. ASCII code of B is 0102 (octal),

66 (decimal). Since the code word is not unique, code word longer than the

minimum code length that the data can represent cause redundancies. For

example, image intensity values encoded using 8-bit integer data units can be

expressed with more bits than needed. Fixed-length coding is another example

of coding redundancy. The difference average number of code between variable

and fixed length coding is the amount of this redundancy.

2. Spatial and Temporal redundancy: Since neighboring pixel values have a high

spatial correlation in an image data, the image can be expressed with

information more than needed. This type of redundancy is also designated

inter-pixel/inter-voxel correlation. The Figure 3.2 depictured high intra-frame

correlation 3.2b between the pixels compared to uniformly distributed random

images in 3.2a. Similarly, inter-slice of volumetric data have high correlation

between voxels.

3. Irrelevant information: This kind of redundancy is the data that can not be

perceived by the mankind visual system. Therefore, the algorithms that are

designed for human beings can increase compression performance by ignoring

such information. The redundancy stemmed from this source is also named as

psycho-visual in the literature.
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(a) Uniformly distributed random data (b) CT image

Figure 3.2 Uniformly distributed random and medical images having different level of compactness

The main redundancy type that has been enable lossless compression is coding and

spatial/temporal redundancy. Fix length codes that are used for representing the

image intensities could contain more bits that are needed to express the data. The data

elements of data (pixel or voxels) are proportional to the spatial/temporal redundant

data, i.e. the cross-correlation. Considering 16-bit 2D-MRI images set, there is a high

degree of spatial correlation between pixels. In 3D-MRI, additional to the spatial

relationship between slices, there is also inter-slice correlation across voxels.

Irrelevance information constitutes unnecessary data that exploited by lossy

techniques.

The slice and frame are defined as consecutive image matrix for video and

three-dimensional data, respectively. Therefore, the successive matrix pf volumetric

images will be represented as slice, throughout the dissertation.

3.3 Lossless Compression Systems

The lossless compression systems is composed in two main parts: encoder and

decoder blocks. The sub-blocks are shown in Figure 3.3. Input image data is converted

to a bit stream which is ready for archiving or transmission by the decoder. There does
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not occur any information loss while the encoder process. In the decoder blocks, the

identically inverse operations of the encoder process are performed, which means that

the raw image is perfectly reconstructed.

Define a raw image I ∈ R(N×M) in real space, as uncompressed and Î reconstructed

image, then error is |E(I − Î)| = 0 for lossless compression. The encoder has three

sub-blocks: transformation block where the input data are mapped in appropriate

space or domain in which the redundancy can be easily made out (transformation

coefficients). Any reversible transformation can be exploited such as burrow wheeler

or Walsh-Hadamard. Data-to-symbol coding generates symbol sequence which has

lower entropy compared to the transformed data. Finally, entropy encoder produces

compressed data by assigning the shortest dictionary elements to the symbol occurred

in the highest probability.

In the decoder process, the bit stream (compressed data) is exposed to the

operations identically inverse of the encoder ones. First, the bit stream is used to

regenerate the symbols by entropic decoder. The resulting symbols are converted to

transformation coefficients symbols to data blocks. Then, Î data is inversely

transformed by the identical transformation that applied in the encoder. Finally, the

data I is perfectly reconstructed at the output of the decoder block. The resulting

code-stream is the form of the raw data which can be effectively transmitted or stored.

The first two operations, identity transformation and data-to-symbol Mapping can

be evaluated as a pre-process to make the image data more compatible and efficient

with the lossless coding algorithms since the entropic encoders are independently

generates a bitstream (Karam, 2009). However, in modern compression systems

transformations and data-to-symbols coder are indispensable operations. Because of

that the decoder operations are identically inverse operations of those of the encoder,

only encoder blocks are explained. Definitions of the encoder blocks are given as

follow:

1. Transformation: A reversible and one-to-one mapping is applied as identical

transformation block. This operation aims to convert the I data to a more
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amenable form to unveil redundant data existing in Î. Word of ’amenable’ refers

that the data is represented as a set of coefficients in a new space where

achieving better compression ratio and low entropy. To achieve this purpose, the

block may increase the correlation between coefficients and therefore, obtains a

new statistical distribution. Differential/predictive mapping, Discrete Cosine

Transform (DCT) (Rao & Yip, 1990) and Red-Green-Blue (RGB) space to

luminance and chrominance (YCbCr) colour representation are some transforms

that commonly used in lossless compression scheme. As result of that, it is

impossible to separate the transformation from the application selection of

techniques depends on the application field.

Most of the state of art compression system use predictive mapping to decrease

the entropy of the image. For instance the JPEG and robust technique PNG are

utilized different linear predictive models. Throughout dissertation,

two-dimensional predictive coding modes is used as transformation to improve

coding efficiency for medical data. The predictive coding uses the inter-pixel

correlation between the image data element. Additionally, 3D predictive coding

is improved by using intra-frame correlation across the volumetric medical

image slices.

2. Data to Symbol Mapping: The resulting data of transformation sub-block

(coefficient in spatial or frequency domain) is converted to the symbols. This

may be done through the RLE and/or partitioning, chain code representation. In

this stage, the image data is divided into neighboring pixel values or reshaped

through to minimize entropy and complexity of data. The grouping of the data

units that provide the use of the possible correlation between the image data

provides a higher compression ratio while may cause to increase coding

complexity. The coding/decoding complexity does not pose any problem if the

implementation of the compression is applied to databases in off-line. On the

other hand, the computational load and complexity must be considered during

on-line applications.

One of the most well-known techniques used in data to symbol mapping is the
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RLE, which is an easy-to-implement and effective algorithm. The improvements

will be made on the RLE (by a context-based algorithm) to improve compression

performance for binary biomedical images throughput this thesis.

3. Lossless Symbol Coding: In this phase, the bit stream is generated from the

symbols by applying a variable or fixed length coding algorithm.

Variable-Length Code (VLC) algorithms estimate the probability of every

symbol then assigns a codeword to each symbols considering their probabilities.

In Fixed-Length Code (FLC) approach, each symbol is assigned with a

codeword of the same length. Of these methods, VLC handles code redundancy,

while the other method, FLC, ignores the coding redundancy, which leads to

worse compression performance (Karam, 2009). Therefore, the VLC approach

is mostly used by the modern compression systems such as Joint JPEG,

JPEG-Lossless (JPEG-LS), Joint Bi-level Image Expert Group (JBIG) in state of

art symbol coding. In the case of the VLC, the symbol that occurs high number

frequency is assigned to the shorter codeword (Hoffman, 2003). The well-known

VLC algorithms are (adaptive) Huffman and (adaptive) arithmetics coders.

3.4 Lossless Compression Algorithms

Lossless image compression is a branch of the image coding that attracts attention

due that no loss of knowledge. The aim of the lossless technics is to represent an

image data with the possibly minimum number of bits providing no loss of

information, it is the key point. In lossless image compression, the original and

reconstructed image must be identical in the terms of quantitative and qualitative

metrics. Huffman coding, that dictionary-based coding, is a commonly used by the

lossless standards (Yang & Wang, 2009; Liu et al., 2012). The arithmetic coding,

Huffman, Lempel-Ziv Coding, run-length encoding are the lossless comression

algorthms that have been lucidly expounded in this section. They are made use of by

common lossless compression standards such as JPEG, PNG, JBIG family (Karam,

2009; Hoffman, 2003).
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3.4.1 Huffman Coding

Huffman algorithm is a common entropy coder used in the lossless compression

systems, previously shown in Figure 3.3, in entropy encoder sub-block. It is an

algorithm that generates a variable length codeword according to the probability

values of the symbols.

The method starts with listing the probabilities of symbols in decreasing order to

construct Huffman tree. It creates a set of resource reductions by sorting the

probabilities of the considered symbols. Then algorithm combines the lowest

probability symbols with a single symbol that changes in the next resource reduction.

Then, it accumulates the probabilities of symbols from leaf to root by starting with

the smallest probability in each level of the tree. The process is repeated until the

main root, which means that the tree has been completed, last reduced source remain

with two symbols. Finally, the left and right side of the tree are assigned 0,1 codes,

respectively. The strength of the method is that it assigns the most repetitive symbols

(the sample has the highest probability) to the shortest code word, which reduces

compression significantly. The coding process is illustrated in Figure 3.5.

Figure 3.4 The binary tree of the Huffman symbols

Let define the symbol data pairs as

Rk = {r1, v1, r2, v2, . . . ,r(k−1)/2, v(k−1)/2, rk/2, vk/2}
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and probability of Rk samples are given as

PRk = {p1(2.5), p2(17.5), p3(5) . . . , pk(2.5)}

Huffman tree for Rk symbol sequence is given in Figure 3.4.
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Figure 3.5 Generic block diagram of coding

The occurrence probability of the run-length symbols for medical bi-level images

have been analyzed. These intensity level probabilities bring to exist the condition of

the negative power of 2. This case is the optimal for the Huffman algorithm to provide

the highest compression efficiency. Thus the Huffman coding has been utilized by the

run-length based proposed systems as the VLC. The implementation details illustrated

in Figure 3.5.

3.4.2 Arithmetic Coding

Arithmetic coder is a lossless compression algorithm that employed as entropy

coder by compression pipelines. The arithmetic coder deciphers the symbols

regarding to the probability distribution of the intensity of the image elements

(Rissanen & Langdon, 1979), e.g., bi-level images local structure that have pixel same

pixel intensity: 1/0. It codifies an input symbol stream with a single portion as the

compressed data, instead of displacing every single input symbol with a codeword

(Pu, 2005).

The arithmetic coder outperforms the Huffman coder in the case of the alphabet

of limited range. However, the alphabet range of scanned bi-level does not remain in
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a limited range. And thus, for RLE-based proposed systems Huffman is preferred as

entropy encoder.

3.4.3 Contour Encoding

Chain coding is a shape representation technique that expresses the objects using

their boundary information. It is also employed as the well-defined lossless

compression technique for binary data, see Figure 3.6.
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Line Coding

Data
Compression

Lossless
Compr.

.

.

.

Chain
Code

Run-
Length
encode

Lossy
Compr.

Channel
Coding

Figure 3.6 Chain code representation as lossless compression algorithm

The fundamental idea of the method is to transform the boundary pixel or voxel

information to a reversible and decipherable code. In other words, the contours of the

segmented regions of the bi-level images are coded by chain rules. The chain code

based systems hold a great potential for compressing binary medical data. In this

dissertation, a chain code based compression scheme has been proposed for bi-level

segmented medical images.
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3.4.4 Lempel–Ziv–Welch

Lempel-Ziv-Welch is dictionary based and commercially common used

compression algorithm. It has three most popular distributions that are LZ77, LZ78

and LZW (Ziv & Lempel, 1977, 1978). Firstly, the longest pattern for each segment

of the source is described by the LZW algorithm. Then it encodes them by the indices

in the dictionary. In the case of no matching in the dictionary, the segment will

become a new element. And next time, this segment will match the element of the

dictionary. By this basic update principle, the dictionary elements are optimized

during the process (Pu, 2005).

3.4.5 Run-length Encoding

Run Length Coding is an algorithm that used in mapping of data-to-symbol by

lossless compression standards. The idea of compressing the image data using RLE

algorithm is based on the observation that choosing a random pixel in the image will

probably have the same colour as its neighbours (Salomon & Motta, 2010). In other

words, there does exist high correlation between the consecutive pixels/voxels. The

performance of the methods highly depends on the correlation between the

neighbouring pixels. The methods present the image in form of symbols that indicates

the run and value which are the number of succeeding image elements and the

intensity value, respectively, see in Figure 3.7.

I
Raw

Image

Scanning
rule

vector Run (r)
Value (v)

. . . (rn−2,vn−2) (rn−1,vn−1) . . .

symbols

Figure 3.7 The run-length encoding based lossless compression system (encoder)

The image matrix reshaped in 1D sequence by matrix-to-vector scanning

procedures. The common scanning rules, linear, zigzag and boustrophedonic, are

illustrated in Figure 3.8. The input data I ∈ RM×N is image matrix. The RLE produces

a (run,value) pair called symbol from the I data sequence. The value is the intensity
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of the data sequence. The run states for the number of times of continuously

repetitions of the value. As a result, the pixels represented as vector sequence. The

resulting vector is matched to a set of symbol pairs
{
(r1,v1) (r2,v2), . . . , (rn,vn)

}
. Since

(a) Linear scanning (b) Boustrophedonic (c) Zigzag scanning

Figure 3.8 The traditional scanning forms of the RLE

the scanning rules are reorder the matrix as sequence, it is primarily affects the (r,v)

pairs. In other words, the entropy of the symbol sequence is determined by the

scanning rule. The scanning rules must be reversible that the vector-to-matrix must be

applied to one-dimensional sequence.

The RLE coding is used in various compression system such Bitmap (BMP) for

both grey level and bi-level data (Bradley, 1969; Associated & Adverse, 2015).

Furthermore, it is particularly more effective than other compression algorithms for

binary images due to that bi-level data has two level of intensity. The probability of

the contiguously repeating of the bi-level data is more than grey level images. This

means that adjacent pixel or voxels are more likely to be identical (Gonzalez &

Woods, 2008). There is various scan forms that applied gray level image (Maniccam

& Bourbakis, 2001).

The RLE is a practical tool for binary image compression. The considerations that

make RLE based compression algorithms effective for binary data are discussed below.

• Binary data have only two type of intensity values. Therefore, running the matrix

in a proper scanning form can catch the intensity repetitions effectively.
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• 2D-RLE compression approach does not need a header bit to generate a UD code

due to that only two intensity values exist.

• The RLE based volumetric compression has 2D bits, whereD denoted scan frame

depth, as indicators for satisfying lossless decodable code stream.

In this dissertation, the RLE based improvement lossless compression scheme is

applied on the binary 2D and 3D medical image data. Firstly, the scanning rules is

extended by new scanning rule. Secondly, a novel algorithm has been proposed for

compression of the volumetric images utilizing both intra- and inter-slice redundancy.

3.5 Lossless Bi-level Image Compression Standards

The grayscale and binary images have their own characteristics that need to be

examined with different approaches. These distinct attitudes are one of the most

important criteria the success of algorithms (Gonzalez & Woods, 2008). With the

increase of volumetric imaging algorithm, the gap increased. Therefore, the universal

compression standard could not eliminate redundancy in both gray scale, continuous

tone, and binary image category. State of art compression standards is not totally

designed as taking account the bi-level data structures.

Since any loss of the data may lead misdiagnoses, lossless techniques are

dominantly used in the field of medical data compression Numerous lossless

compression schemes using various algorithms are applied medical data (Khan et al.,

2017; Schelkens et al., 2003). A compression technique which is compatible with

bi-level can eliminate the redundancy data more than gray level based compression

techniques.

3.5.1 The JBIG Standardizations for Bi-level Image Compression

The bi-level image coding schemes are standardized by the group of Joint Bi-level

image Expert, JBIG. The standards of JBIG (officially called as ITU T.82) and JBIG2
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are well-established compression techniques that designed explicitly for bi-level data

(Hoffman, 2003). The JBIG family is special-purpose lossless standards (Hampel

et al., 1992). It is developed for the transmission of the bi-level image progressively.

The architecture of the methods employed deterministic prediction as a

transformation block — in addition to that the methods have gray-level compression

support.

The JBIG2 has been developed by the same group to increase the performance of

the JBIG. The JBIG2, which is the next generation version of JBIG, harnesses

model-based strategy to take into account the knowledge of the image data (Ono

et al., 2000). The standard analysis of the image in the text, halftones, and others. The

partitions are compression by applying different models to the segmented regions.

Furthermore, improved standards are able to compress in lossy and lossless form

(Salomon & Motta, 2010; Howard et al., 1998).

On the other hand, these methods are not designed specifically for binary medical

data. Besides the JBIG2 performs adjusted strategies to the different data region of

images such as text and generic region, it cannot factor in the characteristics of the

medical data, in total. Since JBIG is designed for bi-level text compression as fax

standards (Regentova et al., 2005), the performance of the methods remains in limited

range for medical bi-level compression (Marks, 1998). As a result, a compression

algorithm that designed by considering bi-level medical data is a vital demand in the

field of medical image analysis.

3.5.2 CCITT Standards

The CCITT compression standards introduce various bi-level compression

standards for text and fax transmission. The first released standards developed by the

ITU-T were T2 (also known as CCITT Group-1) and T3 ( CCITT Group-2). These

pipelines are currently inoperative, and T4 (CCITT Group-3) and T6 (CCITT-Group

4) are employed. The latest version of the CCITT standardization exploits the RLE

and Huffman coding. The latest version of CCITT, group-4, has been implemented on
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medical data throughout the thesis for a comprehensive assessment of the proposed

methods

To summarize, there are various compression standards for both bi-level and

gray-level image compression. However, these algorithms utilized by common

networks are general purpose algorithms that are not capable of compress the medical

images entirely. These standards are not specifically designed for medical images.

The following requirement is crucial for medical image standardization:

• The compression standards should be compatible to storing metadata which are

the text including patient information, annotaton of image modalities.

• For telemedicine integration (PACS, DICOM), the methods should be

parametrized in sense of compression and telemedicine networks paramaters.

• The algorithm should take account the structure of the image have different

characteristics. For instance, the inter-slice distance for CT and MRI are differe

from each other. Therefore, the inter-slice parameter may be determined

according to the modalities.

• Since the telemedicine network have huge burden, the computational load and

complexity must be considered

The aforementioned proprieties should be considered while developing a

special-oriented lossless medical image compression system. The proposed systems

are developed taking into account these properties.
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CHAPTER FOUR

REDUNDANCY IN MEDICAL IMAGES

What is the characteristics difference between the natural and medical images from

the points of compression? The answer lies behind the sources of redundancy existing

in two image categories which are generated by distinct acquisition principles. The

natural images are formed by recording amplitude of reflected light from the object.

The acquisition principle of the medical images are entirely different from the natural

images, e.g., CT images are produced by passing radiation through the various

locations of the body being imaged and the recording level of attenuation of the

signals (Seeram, 2015). Currently, there does exist numerous medical imaging

technologies that work with different imaging principles such as MRI, ultrasound

imaging. Furthermore, it results in significant disparities between the redundancies

existed in these sources. See the fundamental difference in the inter-slice and

inter-frame redundancies of video and consecutive volumetric images, respectively, in

Figure 4.1. It is obvious that inter-slice correlation are entirely different in natural

(difference of frame 1 and frame 2 (Foundation, 2019) ) and medical images

(difference of CT-slice 1 and CT-slice 2) in Figure 4.1. Consequently, the medical

image modalities yield different levels and types of redundancy compared to natural

images.

To achieve higher compression performance comparing general-purposed

standards, ones should consider the structure of the modalities during the

determination of the redundancy. The redundant data are formed regarding data

characteristics that are given below:

• Entropy is defined as unexpectedness of the image elements, i.e., pixel/voxels.

In other words, it is an expression for the measurement amount of information

(Cover & Thomas, 2005). The frontier of the compression is determined by the

entropy. The higher the entropy, the lower the redundancy and thus lower the

level of lossless compressibility. The expression of the entropy is formulated as

probabilistic distribution of the symbols, see the equation 2.2.1 at the Section 2.2.
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Frame 1 Frame 2

CT-slice 13 CT-slice 14





Figure 4.1 Different level of redundancy for medical and multimedia data (Foundation, 2019)

The probability distribution of the source determines the uncertainty through the

element of data. The higher amount of information the higher number of bits that

required to represent the source.

• Compactness is an intrinsic characteristic of a discrete object. It does not refer

to the property of closed and bounded subsets as defined in topology (Munkres,

2014). Compactness is described as the quotient of perimeter and area of discrete

objects existing in the binary images, i.e., a set of connected pixel (Bribiesca,

2008, 1997). High level of compactness results in less redundant data, in general.

The compactness of the object in the segmented bi-level image is defined as,

Cp =
P2

A
(4.1)

where P and A are the perimeter and area of the object, respectively. The

compactness is measured based on pixel and voxel for discrete images. The

compactness characteristics are significant in the sense of information conveyed

by the segmented organs. The compactness is significant for both

two-dimensional and volumetric compression strategies.

• Non-stationarity is described as a subjective quality index that measures
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structural context similarity of two images. The index provides what level of

change occur in morphological structures between two images, e.g., the

consecutive slices of volumetric CT-slices (Aja-Fernandez et al., 2006). The

high degree of non-stationarity corresponding to successive slices, the higher the

inter-slice correlation.

• Energy of the image matrix is an absolute value of pixel/voxel intensity levels, for

binary images enclosed curve or volume. To determine the energy of an image,

we exploit Frobenius norm, see appendix. The index does not provide knowledge

about where the energy is concentrated. Thus, it is a contributory measurement

used with the indexes mentioned above. The energy of image matrix I having

dimensions of M and N is described by the Frobenius norm which defined as

‖Ixy‖ =

[ M−1∑
x=0

N−1∑
y=0

|I(x,y)|2
]1/2

(4.2)

The measure of the energy of an image gives a practical perspective to identify

coefficients of transformation in the frequency domain. The energy index also

provides knowledge about the segmented organs, which can be regarded as a

parameter of compression schemes (Salomon & Motta, 2010).

The principle of medical image acquisition systems is entirely different from the

optical sensor photography. Therefore, the types of redundancy should be specifically

analyzed by compression schemes. See the different level of compactness belonging

to binarized natural and medical images in Figure 4.2b and Figure 4.2d, respectively.

The natural and medical images in these figures are different as regards the level of

compactness and entropy. Considering successive slices of the medical images, one

can see that the morphological structures are consistent with each other. This gives rise

to the low-level of non-stationarity.

Beside the aforementioned characteristics, inter-/intra- slice correlation, set

redundancy, - which is the mutual data occurring in more than one image in a

sequence of analogue images (Karadimitriou & Tyler, 1997)-, are also primary

characteristics that affect the achievement of the lossless methods for image
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(a) Natural image - boat (b) Binarised boat image (Otsu method)

(c) CT-liver (d) Segmented CT-liver (Selver et al., 2008)

Figure 4.2 The CT-liver (medical) and boat (natural) images having different level of compactness

(Petitcolas, 2018)
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codification. Set redundancy is not considered during the lossless compression

algorithm in this thesis. See different image characteristic in Figure 4.2a (Petitcolas,

2018) and Figure 4.2c. These characteristics of binary and grayscale images can be

analyzed to uncover more redundancy compared to traditional compression strategy.

The characteristics analysis of the typical natural and medical images is presented in

Table 4.1.

Table 4.1 Measurement of characteristic of the natural and medical images

Image Sets

Characteristics Lena Cameraman Boat Liver-CT Liver-MR Spleen

Entropy 18.0 16.6 18.0 14.6 12.6 10.5

Compactness 10 86.6 109.8 303 28.4 30.1

Energy 510 316 519 158 51 39

Non-stationary processes intrinsically occur images where texture/patterns are

present. For medical images, the successive images of the volumetric set have a

change of structural behavior that may contribute to revealing of inter-slice

redundancy. The metric Quality Index based on Local Variance (QIVL) introduces the

measurement of non-stationary between images I(x,y) and J(x,y), which represent

the slices of the volumetric image data set (Aja-Fernandez et al., 2006). The QIVL is

formulated as

QILV(I, J) =
2µVIµVJ

µ2
VI

+µ2
VJ

×
2σVIσVJ

σ2
VI

+σ2
VJ

×
σVIVJ

σVIσVJ

(4.3)

where µVI and µVJ are local variances of images I and J, respectively. The expression

σVI =
(
E
{(

Var(Ii, j)−µVI

)2})1/2
denotes the standard deviation of the local variance of

image I, and finally σVIVJ = E{
(
Var(Ii, j) − µVI

)
(Var(Ji, j) − µVJ )} indicates the

covariance between the variances of I and J, two consecutive images slices. The E{·}

denotes expectation value. A set of medical and natural images having different level

of non-stationarity is given in Figure 4.3. The QILV measurement of these medical

and natural images are presented in Table 4.2. The QILV index implies that there does

not exist any non-stationarity between two images in the case of QIVL = 1, which can

be interpreted as identical images. The consecutive CT images, liver slice 30 and 31,
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Table 4.2 Non-stationarity measurement of the natural and medical images

QILV index for non-stationarity analysis.

Images CT-liver-1 CT-liver-2 MR-liver-1 MR-liver-2 Lena Cameraman

CT-liver-1 1 0.96 0.07 0.069 0.031 −0.08

CT-liver-2 0.96 1 0.07 0.07 −0.04 −0.09

MR-liver-1 0.067 0.07 1 0.89 −0.002 −0.007

MR-liver-2 0.069 0.07 0.89 1 −0.004 −0.008

Lena −0.031 −0.04 −0.002 −0.004 1 0.16

Cameraman −0.08 −0.009 −0.007 −0.008 0.16 1

have minimum structural changes and maximum structural correlation, i.e., the value

of 0.96 indicates there exists considerably high stationarity between the two image

structure. This interpretation concludes that highly correlated successive slices will

significantly contribute to compression performance whether the inter-slice

correlation is considered .

The measurement of non-stationarity is one of the most significant parameters for

the volumetric compression systems in which the inter-slice correlation is the primary

source of the redundancy. Note that stationary between the slices of CT images are

greater than those of the slice of MR imaging.

The data characteristics, which are entropy, non-stationarity, compactness, and

energy directly affects the designing of the compression algorithm. The proposed

compression schemes, which are the volumetric context-oriented techniques (the

3D-RLE) and chain-code based compression pipeline (CrS) are designed considering

the characteristics aforementioned above.
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(a) Natural image: Lena (b) Natural image: cameraman

(c) CT-liver: slice 30 (d) CT-liver: slice 31

(e) MR-liver: slice 13 (f) MR-liver: slice 14

Figure 4.3 Natural and medical images having different level of non-stationarity, the image (a) and image

(b) (Petitcolas, 2018)

49



CHAPTER FIVE

PROPOSED BI-LEVEL COMPRESSION SCHEMES

Throughout the thesis, context (3D-RLE) and contour (chain-code) based bi-level

lossless compression schemes have been proposed. Wavelet transformation and sparse

representation approaches have been designed in lossy compression techniques and

applied to medical data sets. The proposed methods are specified in the following:

� The RLE algorithm is extended by utilizing multiple scanning forms. This

modification provides flexibility to scan different images having various

morphological structures. Furthermore, the extended RLE method has been

evolved for compressing bi-level volumetric medical images by taking account

inter-slice relationship (correlation between the voxels). The procedure, namely

3D-RLE, is able to determine coding redundancy between slices of the 3D

volumetric images. A volumetric context-based technique has been designed by

means of a new sweeping algorithm and extended scanning forms. In other

words, the code stream has been generated by multiple scanning form which is

determined according to image characteristics in the way of volumetrical

sweeping the slices. And thus, the methods unveil a considerable redundancy

through coherence between the shape of the objects existing in bi-level images

and scanning procedure. One-dimensional RLE –using extended scanning forms

– has only one slice depth and can be regarded as a restricted form of the

3D-RLE.

� The Chain Rule-based Compression Scheme, namely CrS, is proposed to

compress bi-level medical images. The CrS system consists of chain rule as

data-to-symbol coder and Huffman as the entropic encoder. The system is

employed three-orthogonal direction (3OT), normalized angle difference

(NAD), Freeman 4 (F4) and 8 (F8) directional chain rules. Furthermore, the

system exploits by modified NAD rule (MNAD), which is a

dictionary-optimized version of NAD.
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To summarize, context-oriented and chain-based bi-level compression pipelines

are proposed for medical image compression. These methods have been specially

designed for a new system which includes a necessary step for extending repeatability

and transfer of 3D medical imaging. The systems are suggested by developing a

DICOM compatible object that covers visualization parameters together with

compressed binary-segmented data for efficient transmission in teleradiology

applications. Therefore, bi-level compression plays a vital role not only reduces the

bandwidth of the transmission line but also providing an efficient reconstruction of

gray level images, see the telemedicine system is illustrated Figure 5.1. The proposed

systems are elucidated in the following subsection.

5.1 Extended Run-Length Encoding for Bi-level Medical Images

The RLE is one of the most effective and easy-to-implement compression algorithm

(Kim & Kim, 2009). The fundamental principle behind the process is to uncover the

repetitions of consecutive intensity of the image elements. It has been extended in two

ways:

1. To make available a flexible scanning procedure by providing multiple scanning

forms and orders. The order and form are defined as positions of and the rule of

the scanning procedure, respectively. The RLE can be geared to the

morphological structure of the objects in the bi-level image by parametrization

the scanning procedure. This provides the optimal level of entropy and increases

the capability of the RLE to obtain intra-slice redundancy in more efficiently.

2. A new novel volumetric RLE algorithm that is utilizing inter-slice correlation to

unearth coding redundancy between the voxels. The algorithm rasters the volume

by the extended scanning procure. By means of the algorithm, both inter-slice

and intra-slice coding redundancy can be revealed.

Many RLE based-algorithms harness the common scanning procedures such as linear,

zigzag, and boustrophedonic. These approaches restrict the revealing of redundancy.
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In this context, to eliminate these limitations of the RLE, the proposed compression

algorithm provides - an extended scanning procedure such as spiral and fractal Hilbert

to specify an optimality condition for scanning strategy consistent with the physical

shape (morphology) of the object (segmented organ) occurring in the image data. This

makes a flexible usage of the RLE for the various data sets consist of various

morphological structural image. The RLE technique also has been adapted to

volumetric data by a novel low-complexity algorithm whose details are presented in

the following subsection.

5.1.1 The RLE with Multiple Scanning Procedure

The scanning is the mapping that reorder the pixel in a form with low-entropy

sequence. Therefore, the scanning form is crucial to achieve more compression

performance. The RLE is extended to multiple scan forms and orders to adjust the

shape of the data by the proposed scheme. The RLE is employed as auxiliary

operation by the standards of BMP, JPEG, and TIFF (Miano, 1999; Wallace, 1992).

The scanning form is extended to boustrophedonic, linear, perimeter, Morton, Hilbert

(fractal scanning) and chevron. Moreover, the method has scan start point parameters

(order) such as (x,y), (y, x), (−x,y), (−y, x) to provide flexibility in the initial scan

positions, where (x,y) denotes spatial coordinates located at four quadrants. The

sample image matrix is illustrated in Figure 5.2 where the locations of the orders is

indicated.Scan form and order primarily effect the performance of the RLE based

compression algorithms. Therefore, multiple scan forms have been tested on bi-level

medical images to determine optimal scan form and order.

The Table 5.1 and Table 5.2 present the beginning and ending indexes, i.e.,

(orders), for the extended scanning rules employed by the proposed algorithm. It can

be interpreted that the orders (O) becomes more significant in the case existing

asymmetric objects in the bi-level images.

By suggested 2D-RLE scheme showed in Figure 5.3 with multiple scanning forms,

the methods has been applied to the binary medical image and combined with an
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Figure 5.2 The Morton scanning with different scanning orders

Table 5.1 Scanning orders and directions of the zigzag, boustrophedonic, linear, and Morton forms
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Table 5.2 Scanning orders and directions of the perimeter, Hilbert, and Chevron

efficient entropic encoder (Huffman). Firstly, the optimal scanning rules and orders

are initialized. Then, the run block is executed to generate RLE symbol and lastly,

these symbols are converted to bitstream by Huffman, variable length coding.

The scanning form are illustrated in the following.

Linear scanning is the basic form that used in the RLE and JPEG architecture

based compression algorithms (Peter D. Johnson, 2003). Numerical simulations of the

linear scanning have provided satisfactory results both 2D and 3D RLE algorithm.

Secondly, boustrophedonic matrix scanning form is applied in RLE based algorithms.

The procedure of boustrophedonic scan is shown in Figure 5.5. The third scan

procedure is zigzag which is commonly used in state of art compression standard

such JPEG (Wallace, 1992). Zigzag scan form is shown in Figure 5.6.

Perimeter scan form is fourth scan procedure shown in in Figure 5.7. It has been

supposed that spiral form is more appropriate for oval shapes compared to other forms.

Another scanning form that used in RLE is Morton scan. This form which is

shown in Figure 5.8 has been provided satisfactory result both for 2D and 3D RLE

compression algorithm.

Sixth scan procedure is the Hilbert curve. This scanning form is a fractal curve that
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Figure 5.3 The 2D-RLE based compression scheme
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)a )b )c )d

Figure 5.4 Linear scanning with a) (x,y), b) (y, x), c) (−x,y) and d) (−y, x) orders

)a )b )c )d

Figure 5.5 Boustrophedonic scanning with a) (x,y), b) (y, x), c) (−x,y) and d) (−y, x) orders

)a )b )c )d

Figure 5.6 Zig-zag scanning with a) (x,y), b) (y, x), c) (−x,y) and d) (−y, x) orders

)a )b )c )d

Figure 5.7 Perimeter(spiral) scanning with a) (x,y), b) (y, x), c) (−x,y) and d) (−y, x) orders
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)a )b )c )d

Figure 5.8 Morton scanning with a) (x,y), b) (y, x), c) (−x,y) and d) (−y, x) orders

)a )b )c )d

Figure 5.9 Hilbert scanning with a) (x,y), b) (y, x), c) (−x,y) and d) (−y, x) orders

is the optimal curve for RLE algorithms. The Hilbert scanning form shown in Figure

5.9 has been provided with the best results in terms of bpp and bpv both for 2D and

3D RLE compression algorithms.

)a )b )c )d

Figure 5.10 Chevron scanning with a) (x,y), b) (y, x), c) (−x,y) and d) (−y, x) orders

Chevron is the last scanning form. The scanning forms have illustrated in Figure

5.10 for four orders. This scanning procedure has not provided satisfactory result for

RLE algorithms, in general. However, it may achieve considerable compression

efficiency in the case of linearly distributed shape of the objects.
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5.1.2 A New Volumetric Run-Length Encoding Approach

The run-length encoding algorithm has been extended to compress volumetric

image data using inter-slice correlation addition to the intra-slice correlation

employed by conventional RLE based systems. The RLE algorithm is basically

designed based on the principle of that the high level of inter-slice voxel correlation

creates temporal redundancy. Addition to that, the 3D-RLE has taken account the

voxels correlations during the compression process. Similar to the intra-slice

association, there does exit a spatial dependency between adjacent voxel elements of

the 3D images. Utilizing voxel correlation has contributed compression performance

due to that the coding redundancy between slices is revealed. Main blocks of the

3D-RLE compression system are shown in Figure 5.11. The code stream is going to

be generated by these operations which are elucidated in below.

The sub-block of the 3D-RLE system is illustrated in Figure 5.12. Volumetric data

I(x,y,z), shown in Figure 5.12a, are scanned in depth of D in the first block of the

3D-RLE algorithm. Volumetric scanning for D = 2, which unveil inter-slice

correlation of only 2 slice, is illustrated in Figure 5.12b. Three-dimensional scanning

generates a V3D matrix. Every row of this matrix consists of an inter-slice correlated

scanning vector in D depth. The V3D matrix has been run in the second block

throughout a volumetric manner. The r3D,v symbol containing extra uniquely

decipherable bits (header bit will be detailed by the pseudo code) comparing (r,v)

peers in 2D-RLE algorithm. The last operation is entropy coding. Huffman encoding

is used for converting the symbol to the data using variable length coding. The

probability of occurrence of the run-length symbols L3D sequences is analyzed. The

probabilities of the RLE symbols are satisfying the optimal case which is the

probabilities are the negative power of 2. It is the condition that the Huffman

algorithm satisfies the optimum codeword as entropy coding. Therefore, Huffman

coding is employed to transform the symbols of the run-length into codestream.

The 3D-RLE based volumetric compression has extra header bits as the indicators

to satisfy lossless decodable code stream. The extra symbol has been emerged because
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1. slice

2. slice

. slice

3. slice

N

M

(a) Volumetric M×N ×D image data

1.slice

2.slice

110001100 01100

10001110010 01101

(b) The algorithm for 2 slice depth

2S

1S

3DS

(c) Scanned vector: S 1: 1. slice, S 2: 2. slice, S 3D: encoded of S 1 and S 2

Figure 5.12 The illustration for the 3D-RLE algorithm in the case of slice depthD is 2

61



of the inter-slice combinations to satisfy uniquely decipherable property, see in Figure

5.12c. As it is obvious from the illustration, the higher the inter-slice correlation the

fewer the number of header bit. Therefore, the compression efficiency directly depends

on these bits. Pseudo code of the 3D-RLE algorithm and codifications have been given

in Table 5.3 and Table 5.4 as a two parts. The PART-1 (5.3) expounds the case ofD= 1,

i.e. no inter-slice correlation. The PART-2 (5.4) reports details of the case ofD > 1, i.e.

utilization of both inter- and intra-slice correlations.

The proposed algorithm allows compressing the image in forms of 2D-RLE and

volumetric based RLE with extended scanning orders and forms. In the case of the

2D-RLE, it utilizes multiple scanning procedures and exploit the algorithm on every

slice, individually (pseudo code part A). That means only intra-slice correlation is

revealed by extended scanning procedure. In the 3D-RLE case, the system executed

in form of utilizing both inter/intra-slice codification by the way of three-dimensional

scanning strategy (part B of the pseudo code).

At the first pseudo part A, the image slices are mapped in to the vector

V = {Vn, n = 1,2, . . . , K, Vn = TS,O(In), ∀In ∈ J3D}

by transformation TS,O : Z×Z 7→ Z its steps are determined by S scanning form and

O scanning order where In is nth slice of J3D (Process A-1). In the following step, the

run-length converting R is performed to every Vn to construct

P = {Pn, n = 1,2, . . . , K, Pn = R(Vn), | ∀Vn ∈ V}

where R : Z 7→ Z. where R : Z 7→ Z (Process A-2). Symbol vector Pn are transformed

into the bit stream Cn harnessing the Huffman algorithm (Process A-3). As a result,

whole slices have been compressed and recorded as a bit stream. Note that there does

not need for extra-bit required for coding inter-slice relationships. However, it is worth

to remark that the scanning rules are reversible so that the UD property is ensured.

In part of pseudo B code (the condition of D > 1), the raw data are codifying by

harnessing relationships of intra-slice and also inter-slice correlations). The

volumetric image slices have been scanned by applying the transformations TS,O and
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Table 5.3 The 3D-RLE algorithm (Pseudo code PART 1)

The volumetric 3D-RLE methods and its algorithm
INPUTS PARAMETERS

Raw Image : J3D = {In ∈ Z×Z | n = 1,2, . . . ,K} and K ∈ Z+ is the slice

number of volumetric image

Scanning Form : S = {1,2, . . . ,7} 1 : Linear 2 : Boustrophedonic

3 : Zigzag 4 : Perimeter 5 : Morton

6 : Hilbert 7 : Chevron

Scanning Order: O = {1,2, . . .8} 1 : (+x,+y) 2 : (+y,+x)

3 : (+x,−y) 4 : (−y,−x) 5 : (−x,−y)

6 : (−y,+x) 7 : (−y,−x) 8 : (+y,−x)

Slice Depth : ∀D ∈ Z+ andD≤ K

Initialisation i = 1, i0 = 1, Q = M×N, i1 = 1, i2 = 1 and b = 1;

A) if D == 1, then:

Compress the slices of the image individually

while i < K do apply the matrix-to-vector mapping with S and O parameters

1: For each slice, generate re-ordered sequence form of the ith slice Vi[k] ∈ Z,

k = {1,2, . . . ,L} by applying T mapping J3D[:, :, i] 7→ Vi matrix-to-vector

transformation that scans the slices by means of the S and O.

2: Apply R run operation to transform Vi into Pi symbol vector consisting of

(v,r) pairs.

3: Symbol to data conversion: perform (Huffman) entropy coder which maps

Pi symbol vector to Ci bit stream

4: save Ci and i = i + 1, increment iteration number for the next slice.

5: Save every Ci bitstream vectors in C3D total code stream.

Output: C3D = 10111010 10 · · · compressed data (encoded code stream)
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Table 5.4 The 3D-RLE algorithm (Pseudo code PART 2)

The volumetric 3D-RLE methods and its algorithm
INPUTS PARAMETERS:

Raw Image : J3D

Scanning Form : S = {1,2, . . . ,7}

Scanning Order: O = {1,2, . . .8}

Slice Depth : ∀D ∈ Z+ andD≤ K

Initialisation i = 1, i0 = 1, Q = M×N, i1 = 1, i2 = 1 and b = 1;

B) if D > 1, then:

Coding the J3D image data by employing inter/intra-slice relationships.

while i0 <= K do perform T mapping J3D[:, :, i0]7→ Vi0 through

S and O parameters

6: Create an M3D matrix so that each reordered sequences Vi0 are assigned to

a corresponding row of the M3D: M3D[i0, :] = Vi0 .

7: Incrementation of the counter for following slice i0 = i0 + 1.

while i2 <= K do

while i1 <= Q do

If M3D[i1, i2] == M3D[i1 + 1, i2] . . . = M3D[i1 +D, i2], then:

8: V3D = cat(V3D,M3D[i1, i2]), append V3D to M3D[i1, i2])

else

9: hi1 = b +
∑D−1

k=0 2kM3D[i1 + k, i2],

10: V3D = cat(V3D,hi1), append V3D to hi1

11: i1 = i1 + 1

12: Concatenate escape character ’ch’: V3D = cat(V3D, ’ch’)

13: i2 = i2 +D

14: Perform run-length to generate P3D symbol sequence

15: Obtain C3D bit stream vector by applying entropy coder to P3D sequence.

16: save C3D codes stream, i.e. compressed data.

Output: C3D = 10111010 10 · · · compressed data (encoded code stream)
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the resulting symbols sequences are assigned as the row of M3D matrix (see the

process B-6). As s subsequent operation, the scan along the columns of M3D in a

non-overlapping blocks having scanning depth of D, and then assign a header (for

satisfying uniquely decipherable-UD property) in case of the voxel intensity of

scanned block is not identical,

And then, along the columns of M3D in non-overlapping blocks having depth D, if

the intensity levels of the all voxels in the block are not same, then the UD header

h = b +

D−1∑
k=0

2kM3D[i1 + k, i2] (5.1)

is calculated and the result is coded in V3D (Process B-9). The bias b is used in order

not to have 0 and 1 as a value of h, otherwise this contradict with fact that block of

all voxels having equal intensity level of 0 and 1 have to be coded as 0 and 1 (Process

B-8), respectively. The cat performed in step B-8, B-10 and 12 denotes concatenate

function. In the case ofD = 3, i1 = 1, i2 = 1, M3D[1 : 3,1] =


1

0

0


T

, the header h has the

value 1 that is not uniquely decipherable, one-to-one mapping, since it is same as the

all equal condition M3D[1 : 3,1] =


1

1

1


T

. Therefore, the bias b = 1 is added to the sum

to make the code the uniquely decipherable. The cat denotes the concatenate function.

For all slice depth and conditions, the code satisfied UD properties. An example of

I3×3×n is illustrated in Figure 5.13.

In summary, hn is the header used as an escape character to distinguish the voxels

belongs to different image slices. The identity and non-identity voxels are coded

according to proposed algorithm. Thus, non-identity voxels must be coded using hn to

decode in uniquely decipherable form. Same voxel values are coded as a single code

along with slice depth but the voxels having different values are coded using hn

header where n is the index of position (h1 where n = 1). For all slice depth and

conditions, the code satisfies UD properties.
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Figure 5.13 Example for the uniquely decipherable property

5.2 Chain Rule based Compression System (CrS)

The basic principle of the chain code based methods is to covert the boundary pixel

or voxel information to a lossless and decipherable symbols. In other words, the

contours of the segmented regions of the bi-level images are coded by chain rules.

Starting with the first introducing of CC representation by Freeman in 1961, various

derivations of the chain rules have been proposed.

There are more variations of the chain rules such as Freeman eight (F8) and four

(F4) directional (Freeman, 1961, 1974), unsigned Manhattan (Žalik et al., 2016),

slope (Bribiesca, 2016), vertex (VCC) (Bribiesca, 1999), three orthogonal (3OT)

(Sánchez-Cruz et al., 2007) chain codes and the chain code for volumetric data

representation (Martínez et al., 2016). In this dissertation, the F8 chain rule is

employed in the bi-level compression system. Aforementioned chain codes aim to

reduce lower entropy by reordering the image matrix via chain rules which are the

standards input format for numerous shape analysis algorithms. These chain code

procedures preserve whole information providing to allow considerable data
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reduction. As a consequence, they are effectively employed in lossless compression

algorithms in two- and three-dimensional approaches (Žalik et al., 2015), (Bribiesca,

2008). The procedure for the F4 and F8 chain rules are illustrated in Figure 5.14.
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Figure 5.14 Chain rule derivations a) F8 b) F4

The eight directional chain (F8) is the first code that was presented by Freeman

(Freeman, 1961). The procedure is based on scanning through the boundary of an

object in eight connectivity of the pixels. The F8 alphabet therefore consists of 7

symbols which
∑

(F8) = {0,1,2, . . .6,7}. The code is generated by σ ∈
∑

represents a

45 ◦×σ angle from the positive direction of the x coordinate axis. Similar to F8, F4

represents the boundary using 4 connectivity of neighboring image elements. Thus,

the F4 alphabet consists of 4 symbols is
∑

( f 4) = {0,1,2,3} and σ ∈
∑

represents a

90 ◦×σ angle from the positive direction of the x coordinate axis. Three-orthogonal

(3OT) is another chain rule that is composed of only three symbols

(Rodríguez-Dagnino, 2005). The 3OT alphabet, therefore, consists of three symbols∑
(3OT ) = {0,1,2} which is assigned in following rules: if the current coding direction

is the same as the coding direction of its predecessor, σ = 0; if the current coding

direction is equal to its first predecessor whose coding direction is different than the

direction of its predecessor,σ = 1; otherwise: σ = 2 and the symbol sequence is

generated. The performance of the chain rules depends on the shape of the segmented

objects, i.g. liver shapes. It maps the boundary information as the number of their
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vertex which is in touch with the bounding contour of the pixels (Salem et al., 2005).

The CC based systems hold a great potential for compressing binary medical data.

In this dissertation, a combined pipeline of run-length and chain code is designed

for bi-level medical images, see in Figure 5.15.

Having transformed every slice of the I(x,y,z) volumetric image to chain symbols

using F8 rule, the run-length approach is employed to reveal redundancy of chain

symbols. The Huffman coding is applied to (rc,vc) pairs as symbol-to-data operations.

Eventually, the raw three-dimensional is compressed as C(k),k ∈ N code stream. The

chain block has been experienced utilizing various chain rules such as F8 and F4 see in

Figure 5.14. The proposed systems designed as given in Figure 5.15 has been applied

to CT data set and achieved satisfactory compression ratio. Aforementioned chain rules

aim to reduce entropy by reordering contour pixel.

5.3 Transform based Compression System

The transformation is a common method employed by state-of-the-art standards.

Transform based systems aim to convey the raw image to a domain where the

redundancy becomes more discernible. The Fourier, discrete cosine, and wavelet

transforms are frequency domains transformations. The predictive mapping is a

spatial transformation that reshapes the raw image in a low-entropy. And thus, they

extend the boundary of lossless compression. The predictive coding is used by

prominent standards such as PNG, JPEG.

5.3.1 Predictive Mapping and RLE based Hybrid Compression

A modified lossless compression scheme has been proposed for binary biomedical

data. The image is exposed to one-to-one reversible transform, i.e., predictive coding.

Predictive mapping is operated as the lossless transformation to decrease the

entropy of the I ∈ R3 volumetric image. After the first step, Î image is transformed
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into symbols by the predictive model. Then the RLE data-to-symbol encoding is

exploited. As the last step of the coding phase, the symbols are converted into the

coded bit stream by the entropy coders. Huffman coding method is used as entropy

coding by the system. I(x,y,z) is an 3D image data where x, y, are spatial and z is

temporal coordinates, respectively. Suggested predictors models for 3D image data

are given below ;

1. Î(x,y,z) = αI(x−1,y,z)

2. Î(x,y,z) = αI(x,y−1,z)

3. Î(x,y,z) = αI(x−,y−1,z−1)

4. Î(x,y,z) = αI(x,y−1,z−1) +βI(x−1,y,z−1)− θI(r−1,c−1, s−1)

5. Î(x,y,z) = αI(x−1,y−1, s) +β(I(x,y + 1,z)− θI(x,y,z + 1))/3

6. Î(x,y,z) = αI(x−1,y,z) +β(I(x,y−1,z) + θI(x−1,y−1,z−1))/2

7. Î(x,y,z) = α(I(x,y−1,z−1) +βI(x−1,y,z−1)) + θI(x−1,y−1,z−1))/3

where α and β parameters are arbitrary selected scalar. Since there is no universal

parameters which is optimal for all images, these parameters are determined

according to the image characteristics. The 3D predictors are applied to medical data

set and the results show that the predictor contribute the performance of gray-scale

compression algorithms (Aldemir et al., 2018b).

5.3.2 Embedded Zerotree Wavelet Image Coding

In this chapter, proposed algorithm, Embedded zerotree wavelet (EZW)

coefficients coding has been introduced in details and have been applied to natural

and medical data. The EZW is a well defined and numerically easy to apply transform

based compression algorithm. The technique is proposed by Shapiro (Shapiro, 1993)

for 2D images. It is initially applied on 2D natural data and furthermore, is improved

for one-dimensional natural and medical data (Dehkordi et al., 2011; Tohumoglu &

Sezgin, 2007; Brechet et al., 2007; Cho et al., 2004). Through last decades, EZW has

been developed in various modified approaches and becomes the fundamental concept

of the modern compression algorithm such as JPEG2000, JPEG-LS. There are still

ongoing study on the EZW for multi-dimensional data (Cheng & Dill, 2014;
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Pearlman et al., 2002).

The EZW compression method consists of three processes in encoder: wavelet

transformation for obtaining decomposition coefficients. In wavelet transformation

block, the coefficients are truncated related to their algorithm of significance and

coded based an algorithm defined in Figure 5.20. The second process is to apply

scalar quantizer to the obtained wavelet coefficients. The last step is to perform

entropy encoding which is specifically adaptive arithmetic encoder in EZW.

Due to that embedded zerotree coding is analogous to the precision of a binary

finite-precision representation of real numbers, an encoded bit stream can be

terminated at any point for desired compression/distortion rate, by using an embedded

algorithm. At the same time, the code can reproduce the same image using the

remaining code from the halted encoded bit stream (Shapiro, 1993). In the following

subsections, the wavelet transform and the EZW algorithm have introduced briefly.

5.3.3 Wavelet Transform

Wavelet transform provides multi-resolution analysis which is an effective tool for

compression. The property allows developing practical and simple algorithms

commonly used to compress the data in medical applications. Wavelet based

algorithms such as EZW, Set Partitioning In Hierarchical Trees (SPIHT) algorithm

etc. lead high compression rate thus high dimensional data can be compressed

efficiently (Cho et al., 2004). Having defined the wavelet transform for 1D data, it can

be adapted to the function of 2D matrix by applying the same process to rows and

columns analogously. Wavelet transform for 1D discrete signal f (n) with M length is

expressed as follows,

Wφ( j0,k) =
1
√

M

∑
n

f (n)φ j0,k(n), j ≤ j0 (5.2)
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Wψ( j,k) =
1
√

M

∞∑
j= j0

f (n)ψ j,k(n), j ≤ j0 (5.3)

where φ j0,k(n) and ψ j,k(n) are basis function that defines in range of [0,M − 1] . The

signal f (n) can be reconstructed by operating inverse wavelet transform as described,

f (n) =
1
M

∑
k

Wφ( j0,k)φ j0,k(n) +

∞∑
j= j0

Wψ( j,k)ψ j,k(n) (5.4)

where Wφ( j0,k) states for the low frequency component (approximation coefficients)

and Wψ( j,k) states for high frequency components (detail coefficients). f (n) is

reconstructed by approximation and detail coefficients. Two-level decomposition in

rows of 2D signal is given in Figure 5.16. For the column decomposition same

process is repeated.

f (n,m)

H0

H1
I

I

2

2

a11

a10

H10

H11

H0

H1

a200

a201

a210

a211

2

2

2

2

LL

LH

HL

HH

ROW-level 1 ROW-level 2

Downsampling
by 2 factor

Downsampling
by 2 factor

Figure 5.16 Two level wavelet decomposition for 2D data

where f (n,m) is 2D image data, H0 and H1 are low and high pass filters respectively.

Wavelet coefficients aklm, k, l,m ∈Z and k indicate the level of the wavelet scale, indexes

l and m show the detail and approximation coefficients. Multiple levels can be made

by repeating the low-pass H0 and high-pass H1 filtering simultaneously. The sub-band

labeling scheme is shown in Figure 5.17.
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HH1
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HL3

HL2

HH2LH2

(b) Subband labeling for 2 level

Figure 5.17 Subband scheme for 1 and 2 level, 2D wavelet transform

While, the Fourier transform maps the discrete signal f (n) into a one-dimensional

sequence of the number called harmonics, the wavelet transform maps 1D data into

the two-dimensional arrays, called detail and approximation coefficients. The wavelet

has an importance that is pertinent to the localization of components. Therefore, the

wavelet is significantly important for tool transient signals, considering on 2D data

features: high-frequency component and unpredictable structure of the medical/natural

images. The property that is so useful for the compression is to provide the resolution

scalable.

Various users in the medical data network have desired to achieve compressed data

in a range of resolutions. For providing this demand, the EZW uses resolution scalable

property of wavelet. Additionally, unlike the compression methods, quality scalable

properties of wavelet based algorithms provides to get compressed data with various

Signal Noise to Ratio (SNR) in proportion to numbers of scales. This makes medical

data networks more flexible and practical in the aspect of bandwidth usage.

This section has aimed to explicate the concept of the wavelet transform that has

been pertinent to EZW algorithm in general. More information can be found in

(Sydney et al., 1998; Usevitch, 2001; Shapiro, 1993). Application of the separable

wavelet decomposition on natural and medical data have been shown in Figure 5.18

and 5.19. The application of wavelet decomposition has been employed using
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separable wavelet filter on 2D coronal view MRI slices. Discrete wavelet transform

(a) Original image (b) aprrox. coeff. (c) Detail coeff. (d) Detail coeff.

Figure 5.18 Decomposition of 2D medical data (Sudheimer et al., 2019)

has been applied on natural image in two-scale as detail and approximation

coefficients and the results are shown in Figure 5.19.

5.3.4 Embedded Zerotree Wavelet Algorithm

EZW coding is a simple algorithm that is compatible with numerical applications.

Due to that EZW is based on transform based algorithm and using the wavelet in

transformation block, it directly affects the performance of both the quantization and

the entropy coding. Another remarkable property of the EZW is that bits in code stream

is generating according to their importance whose algorithm is given Figure 5.20 below

whose output is converted the code.

The properties of the EZW algorithm are described below:

• Embedded coding that enables to truncate code stream according to importance,

• Transform based compression that provides better entropy and quantization

performance,

• Providing well-established subband analysis and compact multi-resolution

expression of the data by using wavelet transform,

• Outstanding performance on numerical realisation

• Easily applicable and has computational simplicity
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(a) Original image (b) 1. level approximation coeff. (c) 1. level detail coeff.

(d) 2. level detail coeff. (e) 2. level detail coeff. (f) 2. level detail coeff.

Figure 5.19 Decomposition of 2D natural data (Sudheimer et al., 2019)
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Figure 5.20 Significance map for EZW encoding
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significance map

Figure 5.21 Scanning order of the subband for encoding a significance map (a) The sub-band of the

parents to the sub-band of the children is indicated by the arrows. The sub-band of the lowest frequency

is located at the top of the left and the maximum one is located at the lowest part of the right (b) Parent

should be scanned before the children

• Adaptive multilevel entropy coding with no need to training or pre- stored tables

or codebooks and prior information

A discrete wavelet transform which provides a compact multi-resolution

representation of the image. Then the coefficients are scanned as a prioritization

protocol whereby the ordering of importance is obtained that. The ordering of

importance for the coefficient nd scanning of direction are shown in 5.21a and 5.21b,

respectively.

Application of the EZW algorithm is explained in detail by (Shapiro, 1993). EZW

algorithm has applied the discrete wavelet transform to obtain a multiresolution

representation of the image. Zerotree coding has created a significance map which

indicates the position of the significant coefficients in binary. Successive

approximation block has provided embedded coding and multiprecision

representation of significant coefficients. Then ordering of the importance has been

obtained by a prioritization protocol in terms of precision, magnitude, scale, and

spatial localization shown in 5.21a. In importance criteria, larger coefficients have

77



been considered as more important than smaller ones, independent from the scales

that scanned (Shapiro, 1993). Unlike the transitional method, EZW has used adaptive

multilevel arithmetic coding in the entropy block. An adaptive coding does not need

training or code tables.

Additionally, adaptive codes have been faster than classical methods. Finally,

iterative of the algorithm could be terminated at any level of application which

provides a wide range of scale for distortion of the metric from losses to lossy

compression. The EZW is applied on human brain MRI, the 3D slice of sagittal view

with different bases.

5.3.5 Sparse Representation Approach

Wavelet sparse decomposition approach which is used to reconstruct the original

image by linearly combining a concise subset of the bases can be used for data

compression. Images are represented in separable bases into wavelet space as shown

in Figure 5.19. Assume that an I ∈ CN image data with N ×M dimension is given,

then define an orthogonal basis as {ψm}m where ψ ∈ L2([0,1]3) and m ∈ N. Then

decomposition of the I image is given as,

I =
∑

m
〈I,ψm〉ψm (5.5)

m can be restricted as

KM = {m ∈ N :| 〈I,ψm〉 |> TM} (5.6)

Then the representation of I with the new set of KM becomes

Î =
∑

m∈KM

〈I,ψm〉ψm (5.7)

in the representation of equation (5.7), KM states for a set of the m that largest inner

product whose amplitude above TM threshold value (Stéphane, 2009). As a result

equation (5.7) indicates that an image data I can be represented in a sparse way as Î.

Motivated by this fact, Î can be regarded as a representation of I signal with the
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removal of the redundancy of the original signal. The level of the redundant data can

be determined by an appropriate threshold value applied on the wavelet coefficients.

In this thesis, hard and soft thresholds have been applied to the images for

compression. Eliminating wavelet coefficients have been regarded as redundant.

Obviously seen that the coefficients below the threshold have led to the loss of

information.

Considering a large class of signals, the number of wavelet coefficients is

diminishing rapidly. This property is called unconditional basis that makes wavelets

so effective in data denoising and removal of the redundancy for compression

(Sydney et al., 1998). Additionally, it has been shown that the wavelets in fields of

denoising, data compression, and detection have been nearly optimal for a broad class

of signals (Donoho, 1993). Motivated by the theory of sparsity, coefficients in KM set

have been related to redundancy. Conversely, the coefficients which have been in the

set m ∈ KM belonged to approximated data considering significant coefficient.

Therefore, the performance of compression has been directly affected by an efficient

threshold estimator. Hard and soft threshold has been used and the results have been

assessed according to Mean Square Error(MSE) and Peak Signal to Noise Ratio

(PSNR) distortion metrics.
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CHAPTER SIX

SIMULATIONS AND RESULTS

In this thesis, a wide range of medical data set is compressed by proposed

algorithms and up-to-date standards. For bi-level images, the run-length encoding

(2D-RLE and 3D-RLE) and chain rule based (CrS) compression schemes have been

developed. For gray level images, the EZW algorithm utilizing different wavelets

experienced on the gray-level images data set, and sparse representation approach is

suggested to compress medical images.

In this chapter, in turn, the experimental data sets have been demystified, proposed

bi-level techniques and their results are presented together with the state-of-the-art

standards, and finally, the simulation results of the EZW and sparsity-based methods

are presented.

6.1 Medical Image Data Sets

The data sets for testing proposed compression schemes are chosen from several

modalities and anatomical objects with diverse spatial structures so that the

performance of the compression techniques can be evaluated for a wide range of

applications. The abdominal region and vasculature are categories of the performed

data set. Expert physicians manually segmented each of the organs of interest to

create the bi-level data set. Abdominal CT data sets were acquired after the contrast

agent injection at the portal phase with the spiral scanning option. This allows

acquisitions in a spiral path as the patient goes through the gantry and offers several

advantages for 3D visualization, such as reducing misregistration between slices. This

is especially important for compression if the algorithm uses 3D scanning forms. The

CT series of 20 data sets are collected from the PACS of Dokuz Eylül University

Radiology Department randomly, and the liver is manually segmented for each image

individually. All of the image series has 3–3.2 mm inter-slice distance (ISD), and this

corresponds to a slice number around 90 (minimum 77, maximum 105 slices).

80



Sample images for MR-T1 sequence and abdominal aortic aneurysms aortic tree

(CT-Angiography) are presented in Figure. 6.1. Four abdominal organs are extracted,

including liver, right/left kidneys, and spleen (Figure 2.a). For T2-SPIR, ISD value

changes between 7.7 mm and 9 mm and has an average value equal to 8.6 mm.

Moreover, the x-y spacing in this sequence varies between 1.63 mm and 1.89 mm,

with an average of 1.53 mm. The number of slices for T2-SPIR sequence is 26 as a

minimum, 36 as maximum and 30 as average. On the other hand, T1-DUAL

sequences include two different series mentioned above. Each series has the same x-y

spacing, ISD, and number of slices. For T1-DUAL sequences, ISD has a value

between 5.5 mm and 9 mm with an average of 7.84 mm. The x-y spacing value in this

sequence is between 1.44 mm and 1.89 mm, and the average value is 1.61 mm. While

the average number of slices is 32.8, the minimum number is 26, and the maximum

number is 50.

The third data set, see in Figure 6.1g, consists of segmented objects in the second

category: vascular trees, see in Figure 6.1h to Figure 6.1l. The proposed compression

methods are tested in 19 CT angio data sets from 19 different patients having

Abdominal Aortic Aneurysms (AAA) using four different modalities (Figure 2.b)

(10). The first data set is acquired by a 16-row detector CT scanner with 3.2 mm ISD

from PACS located at our institution. The remaining data sets were selected among

acquisitions, which reflect the challenges of daily clinical practice Six data sets (i.e.,

data sets from 2 to 7) were acquired with a 320-row detector CT scanner with 3.0 mm

ISD, six data sets (i.e., data sets from 8 to 13) were acquired with a 64-row detector

CT scanner with 5.0 mm ST obtained. The performance of the proposed compression

methods for 3.0 and 5.0 mm ISD values are chosen to represent the efficiency of the

compression methods as these values are the most frequent ISD values used in

clinical routine. Six data sets (i.e., data sets from 14 to 19) were acquired using the

320-row detector CT scanner with 0.8 mm ISD. In total, 3649 DICOM images, which

have 512×512 pixel resolution, are segmented manually to extract aorta and the main

vessels departing from it.

The figure shows rendered abdominal images Figure 6.2a, segmented in Figure
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6.2b and uniformly distributed data in Figure 6.2c example of volumetric images. It is

obvious that the characteristics of the images, such as correlation between inter-slice

and intra-slice, compactness, are completely different from each other.

(a) Rendered MRI image (b) Rendered segmented image (c) Image of random data

Figure 6.2 Test data: (a) Rendered MRI image (b) rendered segmented binary image and (c) uniformly

distributed random data

The gray level medical images are obtained from public brain atlas data set of

Michigan State University, Brain biodiversity Bank (Sudheimer et al., 2019). The

image are acquired from MRI sagittal section with resolution of 658× 500. Since the

scope of the thesis broadly covers lossless compression of medical data, the

application of the lossy methods remains in a limited range. The MSE and PSNR are

the assessment metrics for lossy techniques.

The data sets of abdominal MR and CT are controlled and approved by the Dokuz

Eylül University Medical School Hospital Ethics Committee under grant number

2445-GOA. These data set are outcome of the projects supported by The Scientific

and Technological Research Council of Turkey (TÜBİTAK) -Scientific and

Technological Research Projects Funding Program- under grant number 116E133.

6.2 State-of-The-Art Binary Image Compression Standards

The proposed methods 3D-RLE and the CrS are compared to up-to-date lossless

bi-level compression techniques listed in Table 6.1 for comprehensive verification.
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These standards, except the PNG, are only the container of the image data. The PNG

has a special register to keep the embedded metadata, which is text information. The

metadata may consist of patient knowledge, such as name, gender, demographic

statistics, etc. Thus it is a significant instrument for medical images. It is a

network-friendly, patent-free architecture that is truly cross-platform and has the

features that are useful for teleradiology. Among these features are housing the data

(e.g. annotations, patient data, image contributor information) in the alphanumeric

string and allowing private information to be access by particular applications.

Furthermore, the addition of new meta-information to an image file, combining

deflate with pixel prediction, and wide-range control of transparency are some main

advantages of the format (Graham et al., 2005). The JBIG and JBIG2 are two most

Table 6.1 Categories of the compression strategy according to lossy and lossless approaches

JBIG

JBIG2

CCITT-G4

JPEG-XR

JPEG-2000

JPEG-LS

LZW

PNG

ZIP

Lossless Lossy Bi-level Gray-level

ABIC

Approaches Images

Method

succeeding bi-level techniques. However, they doe not support metadata transmission

and does not designed in praöteric form. The ABIC standards is designed by IBM

group and achieves considerable compression performance. However, it does not

employed by a common application, that may be the result of the patent restrictions.
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The compression results of listed methods have been assessed by quantitative lossless

compression metrics compression ratio (CR) and bit per pixel (bpp).

6.3 Run-Length Encoding based Compression Scheme

The Run-length encoding is easy-to-implement and well-defined lossless

compression algorithm. It is designed in two-dimensional and volumetric approaches

(Xu et al., 2004; Rajan & Fred, 2019). Modern compression standards utilize it as

data-to-symbol coding as an auxiliary module (Qin et al., 2018; Anantha Babu et al.,

2016). Despite these advantages of the algorithm, the compression pipelines harness

only standard scanning procedures which restrict the performance of the method. In

this dissertation, the RLE is improved from two aspects: firstly, the scanning

procedure is widened to capable of new scanning rules and orders. These

modifications give rise to morphological coherence between the physical mold of the

binary object (i.e., segmented organ) and the procedure of scanning. And Thus, the

redundant data could reveal more effectively. The simulation results given in Figure

6.3 shows compression performance for standard zigzag and perimeter scanning

rules. The 3D-image (CT segmented liver image of patient number 1) set has 97 slices

resolutions of 512× 512. Size of the raw and compressed images are given in Table

Figure 6.3 Compression performance of the RLE for zigzag and perimeter scanning

6.2. Since the energy of the first images (1 to 10 slices) are remains low level, it is
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Table 6.2 RLE techniques applied using standard zigzag and perimeter scanning rule

Image Sets

Method 12th sl. 24th sl. 36th sl. 64th sl. 80th sl. total(3D)

Raw data 256 256 256 256 256 24832

RLE-zigzag 4.51 6.55 11.67 8.42 6.14 740

RLE-perimeter 4.89 6.20 10.39 5.61 3.79 609

shown that the scanning rules cannot appreciably affect the compression efficiency.

However, the effects of the scanning rules are noticeable in the remaining slices (slice

10 to 97). Consequently, the results show that appropriate scanning rules can

significantly contribute the performance of the RLE even if without entropy coder that

reform the symbols using variable length coding.

The RLE based proposed method is experienced in two-dimensional mode, namely

2D-RLE. The algorithm has been extended by boustrophedonic, spiral (perimeter),

quadrant scanning (Morton), Pi (Hilbert), and chevron besides to generally employed

by the systems, see the scanning form in Figure 6.4. It shown that the perimeter,

1 2 3 4 5 6 7

Scanning Forms: 1-Lienar, 2-boustrophedonic, 3-zigzag, 4-perimeter, 5-Morton,  6-Hilbert, 7-chevron
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Figure 6.4 Compression performance for the RLE system using different scanning forms

Morton, and Hilbert are three forms that achieve minimum number of bit, which

imply the best compression efficiency (Aldemir et al., 2018a).

86



6.3.1 Volumetric RLE based Compression Algorithm: 3D-RLE

The RLE algorithm is developed for 3D-volumetric images, called 3D-RLE. The

technique utilizes the scanning pattern, which are expressed by scanning rules and

orders parameters, considering the correlation between the pixels of binary images.

When the general forms of segmented binary images have been taking into account,

the scanning procedure provides a flexible solution to remap the image matrix in

low-etropy sequence . The 3D-RLE is applied on volumetric medical images to unveil

the maximum amount of redundancy.

The method was first tested on two-dimensional slices of 3D MRI data and yielded

more successful results than the method operated classical scan form. In other words,

the algorithm is employed in case of D = 1. Then, the methods is experienced geared

various slice-depth and scanning procedure parameters. The Figure 6.5 shows CT data

set performance 2D-RLE (D = 1) and the 3D-RLE (optimal Do slice depth which is

determined as 4 ) methods compared to existing bi-level compression standards.

2D-RLE 3D-RLE CCITT-G4 JBIG JBIG2 JPEG2000 JXR LZW PNG ZIP
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Figure 6.5 The compression efficiencies of proposed and state-of-the-art techniques for the CT images

set (the average for all patients)

The Figure 6.6 shows the compression achievement for MR-liver data set (average

of MR-T1 and MR-T2 weighted imaging sections) of the 2D-RLE (the slice-depth is
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set to D = 1) and the 3D-RLE (the slice depth is determined as optimal Do) methods

compared to existing bi-level compression standards.
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Figure 6.6 The compression efficiencies of proposed and state-of-the-art techniques for the MR images

set (the average for all patients

The bit per voxel (bpv) metrics for CT and MR data sets are presented in Figure

6.7a and Figure 6.7b, respectively. One pixel of the raw images could be presented

by under 0.01 pixels using the proposed methods. This achievement can unburden the

bandwidth capacity of the telemedicine networks.

The optimal slice depth of MR data set is determined as 2− 3 which indicate less

inter-slice relationship compared to the optmal depth of CT images which have slice

depth 4. This difference stems from the image acquisition mechanism and is a

significant parameter that affects the compression performance. The scanning form

are Hilbert, perimeter, in general, for both Figure 6.5 and 6.6.

In point of view of the-state-of-the-art techniques, the performance of the methods

remain under the 3D-RLE techniques because of that the algorithm is specifically

designed to reveal the redundancy of medical images. The foremost consideration of

the 2D-RLE and 3D-RLE methods is to utilize coding redundancy by providing

morphological coherence between the shape of the segmented objects and scanning
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Figure 6.7 The bit per voxel metric for (a) CT and (b) MR data set
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procedure. As a result of this motivation, a flexible scanning procedure catch this

coherence and resulting in the best compression ratio compared the given group

state-of-the-art methods.

The extended scanning form have important impact on the accomplishment of the

RLE-based method. The Figure 6.8a and Figure 6.8b present the compression ratios

for CT and MR data set, respectively. The Hilbert, which is fractal scanning rule,
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(a) The performance of the scanning froms for CT data set
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Figure 6.8 The performance of the scanning froms for (a) CT and (b) MR data set

perimeter and Morton are three most successful scanning form of the proposed

3D-RLE method. An important observation is that the level of CR of MR data set

fluctuate in a broad range, which may be regarded as disadvantes of the methods. The
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reason of this instabilities arise form the level of non-stationarity. In other words, the

non-stationarity of CT is higher than of MR data set. This lead the performance

undulate of the method.

A notable observation for the Figure 6.5 and Figure 6.6 is that the overall

compression performances on CT data set of RLE based system are greater than the

performance for MR data sets. This main reason behind this result is that the ISD of

CT-liver volumetric images is fewer than of MR volumetric images. Note that, the

higher the ISD, the lower the inter-slice coding redundancy. Considering the other

characteristics of medical images, the energy of the CT images is higher of the MR

images. This indicates an obvious difference in the amount of information being

coded.

The order is the parameter that indicate the starting and end position of the

scanning procedure. This parameter has also impact on the overall performance of the

compressed scheme. The effects of the 4 orders for 7 different scanning forms is

presented in Figure 6.9a and Figure 6.9b for CT and MRI data sets, respectively. The

determination optimal order parameter of the methods is significant in the sense of

revealing more redundant data. In this context, order 3 provides the best compression

ratio for CT data set, in general. For MRI data set, the optimal order is determined as

number 3. Considering CT data set, The performance of the method has the least

dependency on the order parameter in the case of Hilbert, perimeter, and chevron. On

the contrary, zigzag, boustrophedonic, and linear are the orders that make fluctuation

on the performance of the methods in case of utilizing different orders. The same

analysis is valid for MR data set - which is expected.

In the case of a data set consists of non-symmetrical objects, one can conclude that

the performance of the method is more dependent on order parameters. It is suggested

that the compression parameters, including order, should be determined by taking into

account the image characteristics to obtain optimal compression rates.

The 3D-RLE also employs inter-slice correlation beside the intra-slice correlation.

The slice depth parameter indicates how many slices are figured out to unearth the
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(a) Compression efficiency for 3D-RLE employing 7 scanning forms, 4 orders and D = 4 for CT data

set

(b) Compression efficiency for 3D-RLE employing 7 scanning forms, 4 orders andD = 4 for MR data set

Figure 6.9 Test data: computed tomography slice and uniformly distributed random data
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correlations. For CT and MR image data sets, change of the CR according to the slice

numberD is presented in Figure 6.10. It shows that while increasing the slice number,

the compression ratio increase until the bound in which the slices are not correlated, or

does not have enough correlation. Once this the number of the frame depth is exceeded

the optimal case, the volumetric approach losses its ability of the redundancy revealing.

In MR imaging, the ISD values of slices are lower than those of CT images. Thus, the

Figure 6.10 Optimality of slice depth

number of correlated slices must be fewer for MR images. This fact can be observed

from the Figure 6.10 in which the optimal slice depth of MR (2-3) is less than those of

CT images (4-5). Non-stationarity is another fact that contributed to this result. Let’s

make it clear, the non-stationarity is a measure of common data between consecutive

slices.

The simulation has been extended by embodying ABIC and JPEG-LS standards for

a more comprehensive assessment. Furthermore, abdominal aortic aneurysms (AAA)

data set have a different level of compactness, energy, and non-stationarity properties

from the abdominal CT and MR data sets. More importantly, the entropy level of the

AAA is completely varies from the liver or kidney images. The results are presented in
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Table 6.3 in terms of CR. The metrics indicates that adaptive (ABIC) and context-based

(proposed RLE methods) are two the best techniques that achieve more than 100 CR

values.

To reflect the achieved CR percentages according to a reference, a second metric

called Relative CRr, which defined in Chapter 2 is calculated by taking the JPEG

2000 format the reference. The results are given Table 6.4. The RLE based systems

are designed as context based approaches by considering morphological shape of the

organs to determine optimal parameters. The relative compression performance of

context-based and adaptive techniques reach over 95%, in general, for all image data

sets. The PNG, which can store metadata for telemedicine networks, remains between

70% and 80% ratios for all data set. Besides the considerable performance of ABIC,

the method is not designed in parametric form, which makes it not appropriative for

e-health networks. A noticeable observation is that the standard deviation of the

context-based methods remains in a limited range. This is can be interpreted that the

method could provide an appropriate scanning procedure for all objects having

different morphological and other characteristics.

Figure 6.11a and Figure 6.11b collectively illustrate the CR for all abdominal

organs when MR modality is utilized via T1-DUAL and T2-SPIR pulse sequences,

respectively. It is observed from the results that the 3D-RLE (CRr = 94.98%,

CR = 171 ± 88) and the ABIC (CRr = 95.49% , CR = 188 ± 94) significantly

outperform the well-known techniques such as PNG (CRr = 77.18%, CR = 36± 13),

JPEG-LS (RCR = 83.84%,CR = 52± 26), JPEG − XR(CRr = 61.99%,CR = 22± 7),

CCIT-G4 (CRr = 88.23%, CR = 72±31), LZW (CRr = 53.19%4,CR = 18±8), JBIG2

(CRr = 87.16%,CR = 68± 33), and ZIP (CRr = 81.4%,CR = 45± 19)). For MR data

sets of kidneys, the performance of the context-based and adaptive methods achieve

more compression ratio compared to data set of liver and spleen. Besides achieving

the best results by far, the performances of 3D-RLE and ABIC vary considerably for

different organs due to their data-driven approach. Their average CR performances are

found as 105.1 (3D-RLE) and 139.63 (ABIC) for liver, 118 (3D-RLE) and 146.15

(ABIC) for spleen, and 191.15 (3D-RLE) and 184.8 (ABIC) for kidneys showing
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increased CR directly proportional to the compactness of the organ (P<0.05).

However, the algorithms, which have limited performance, show very similar

compression ratios independent of structural characteristics.

(a) Result of MR-T1 sequence

(b) Result of MR-T2 sequence

Figure 6.11 Compression ratio for segmented binary abdominal organs acquired by (a) MR-T1 and (b)

MR-T2 sequences

In general, the method achieves the highest CR for the kidneys and the lowest CR

for the liver. Considering 3D-RLE, this result can be attributed to the sensitivity of the

method to spatial coherence, which changes due to compactness, entropy, and
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structural morphology of the organs to be compressed. Since the 3D-RLE algorithm

releases the inter-slice redundancy, the lower the ISD of the data set, the higher the

compression performance. The results attest to the hypothesis as CR of CT images is

higher than the MR data sets. The independent sample test is performed and the

P < 0.01 for all data sets.

Figure 6.12 Compression Ratios for segmented organs acquired by CT (CT-AAA and CT-liver)

Considering all CT result in Figure 6.3, the 3D-RLE and ABIC (214 ± 21)

outperform all other methods by providing significant compression efficiency.

Although 3D-RLE also has high CR (115± 8), it is less than half of ABIC and very

close to JBIG2 performance (108± 7). On the other hand, when MR is considered,

3D-RLE and ABIC performances are almost equal to each other and they are both

significantly better than the rest of the algorithms. This can be supported by the fact

that the redundancy of the high-dimensional (more spatial detail) data can be released

more efficiently by the adaptive and context-based algorithms employed by the ABIC

and 3D-RLE, respectively. A noticeable observation is that the standard deviation of

the context-based methods remains in a limited range. This can be interpreted that the

method could provide an appropriate scanning procedure for all objects having

different morphological and other characteristics.
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Consequently, experimental results have shown that a specially established

compression algorithm can outperform general-purpose compression standards. This

achievement is accomplished by providing a flexible scanning procedure for RLE

algorithm. This approach is reconsidered by suggested a novel volumetric algorithm

(3D-RLE) to unveil the inter-slice redundancy existing in the medical images.

Furthermore, the proposed methods have been designed in parametric to be able to be

integrable into telemedicine networks. Hereby, the 3D-RLE method achieved an

approximate 5% and 25% higher CR than the best state-of-the-art method for CT and

MRI data set, respectively.

The simulation results have shown that the scan forms and orders have primarily

affected compression performance of the methods. Therefore, determining appropriate

scan form and order for medical data taking into account the physical mold of the

segmented organs is the crucial point for accomplish higher compression ratios. The

results have been compared to up-to-date standardization of compression such as JPEG

family, PNG, BMP, TIFF, GIF.

The 2D-RLE and 3D-RLE lossless compression strategies have been simulated on

CT, MR-T1, MR-T2 and CT-Angiography data sets. Firstly, 20 patients

three-dimensional images have been compressed slice by slice via 2D-RLE algorithm.

Boustrophedonic, spiral, quadrant, Pi, linear, chevron, and zig-zag scan forms have

been used during the numerical simulations. Hilbert, which is a fractal scanning form,

has been determined as optimal scan form because that has been provided the most

successful compression ratio in general.

The CT data set is compressed by proposed pipelines and state-of-the-art

techniques. The results are presented in terms of CR that is shown in Figure 6.12. The

results confirm that the proposed RLE based system is able to reveal a considerable

redundancy regardless of that it utilizes 2D or 3D approaches.

The MR data sets are compressed by proposed pipelines and state-of-the-art

techniques. The results, the average value of the T1-weighted and T2-weighted
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imaging sequences, are given in terms of CR, in Figure 6.11.

The methods achieve higher compression ratio for CT data set, compare to the

compression efficiency for CT and MR data set. The causation behind this result is

that the intra- and inter-slice correlation in CT data set is higher than the those of the

magnetic imaging data set. Since the 3D-RLE algorithm releases the inter-slice

redundancy, the lower the ISD of the data set, the higher the CR. The results confirm

the hypothesis as CR of CT is higher than the MR data sets.

The run length coding based two lossless compression methods namely 3D-RLE

has been proposed for binary biomedical data. Both algorithms have been extended

scan forms besides to commonly used zig-zag and linear scan forms. The simulation

results have shown that the scan forms and orders have primarily affected compression

performance of the methods. Therefore, determining appropriate scan form and order

for medical data taking into account the physical mold of the organs is the vital point

for unearth high level of redundancy.

The proposed 3D-RLE method is designed to be lossless, since any information loss

may cause a diagnostic error. All blocks of the pipeline are also lossless processes as

explained in the following: the first block is the volumetric matrix scanning that scans

the image in a volumetric manner and codes voxels having the same intensity level

as identical. Otherwise, a header hi is used as the escape character for non-identical

voxels through the depth D to satisfy the Uniquely Decipherable (UD) requirement,

where i subscript denotes the index for voxel position. The details of mathematical

expression for the header is given in the revised manuscript (see the pseudo code of

the proposed algorithm in Table 5.3 and Table 5.4). The second block is Run that

creates the vector of symbols corresponding to the sequence constructed in the previous

step. These symbols are the number of re-occurrence together with the intensity of the

voxels. This process also satisfies UD. In the last step, entropy-Huffman coding is

performed as a variable length coding to create compressed data, i.e. bitstream.

Compressed images can be perfectly reconstructed by the 3D-RLE decoder which

performs the identical inverse operations of the encoder. As the 3D-RLE and the
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state-of-the-art methods are lossless, CR and bpv are used as the figures of merits

instead of the lossy compression metrics: the SNR and the NMSE. All compressed

images are tested during the reconstruction process of the decoder. The compressed

data are also controlled by radiology specialists of the Dokuz Eylül University

Radiology department since the method is going to be integrated into a DICOM

3D-presentation state object. Consequently, the decoded images are tested by the

quantitative assessment metrics to avoid any loss of information.

6.4 The Chain Rule based Compression System

By the proposed Crs system, the chain code is employed as data-to-symbol coding

and run-length encoding is employed to reveal the redundancy of the chain code

symbols. The run-length symbols are finally transformed to codestream by Huffman

entropy coding block. The segmentation algorithm in study of (Selver et al., 2008) is

performed to obtain segmented bi-level liver images. The data sets are compressed by

the CrS system of which the pipeline wsa illustrated in Chapter 5.2.

Since the CrS is designed in two-dimensional approach, every slice of volumetric

images is compressed slice-by-slice. The method extracts the boundary of the

segmented liver and executes the chain rule for obtaining symbols. In the case of the

liver having 2 or more independent pixels areas, which are the most common case, a

sample for liver as shown in Figure 6.13, regions in the image are separated by

labeling algorithm and then the chain is exploited. These independent regions of the

symbols are codified using a header for being able to decipher the volume in decoder

block.

The simulation results of the RLE-based and the chain system are compared to PNG

for 5 patients in Figure 6.14a in terms of the number of bits of compressed data. The

accomplishment for remaining patients are presented in Figure 6.14b. From the figure

it is apparent that the CrS can uncover the redundancy part more than of the RLE based

and PNG systems, as it is expected.
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(a) (b) (c) (d)

Figure 6.13 Segmentation boundary extraction of the independent regions of the livers (a) Segmented

liver slice (b) Boundary extracted form of the segmented liver slice (c) The first part of separated slice

(d) The second part of separated slice

The simulations (average) results of the proposed methods and the state-of-the-art

standards for all patients have been reported in Table 6.6a (MR-T1), Table 6.6b

(MR-T2), and Table 6.6 (CT) in terms of number of bits.The results are presented as

the number of bits because of that the CrS system achieves almost 10000:1

compression ratios, which is hard to illustrate together with the state-of-the-art whose

performance remains under the 500:1 ratios. The data sets consist of various organs

such as kidney, liver, spleen, and aortic aneurysm.

The performance of some state-of-the-art and proposed CrS technique are shown

in Figure 6.15a and Figure 6.15b for CT-AAA and CT-liver data sets, respectively.

The chain code based system outperforms the RLE based systems and the other

state-of-the-art techniques in the sense of quantitative assessment metrics. It

employed by the F8, F4, 3OT, NAD, and MNAD chain rule, which has plenty of

movement capabilities, for data-to-symbol coding. The system ca be extended with

extra chain rules such as vertex and in volumetric approach. The MNAD rules

employed idle symbols such as {30,31,32} to reduce the entropy of the resulting chain

code symbol sequences.

The chain code based system (the CrS) has been applied to M-T1 and MR-T2

weighted image data sets: left and right kidney, spleen and vessel images. The

performance of the chain code based system for various chain rule is presented in

Table 6.6a for MR-T1 weighted, Table 6.6b for MR-T2 weighted and Table 6.6 for
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PNG 2D-RLE 3D-RLE CrS(F8)
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(a) Compression performance of the proposed method and modern standards(for typical 5 patients

(b) Average (20 patients) compression performance of the method and modern standards

Figure 6.14 Compression performance of the CrS system employed F8 compared to other standards
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(a) CT-AAA image data set

(b) CT-liver image data set

Figure 6.15 Compression performance of CrS system compared to other standards
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Figure 6.16 Compression ratios for MR-T1 and MR-T2 using the CrS

CT image data sets. The results show that since chain code compress the images using

only the boundary and location information of the segmented objects, it outperforms

the state-of-the-art compression standards. The performance of the system depends on

the chain rule. The entropy of the resulting chain symbol sequence decreases

significantly in the case of optimal selection of the chain rules. The CrS has some

disadvantages in sense of the high-entropy existing. Since the algorithm extract the

boundary and store location pixel of every object, codestream for high-entropy image

increase and compression efficiency decreases. On the other hand, the chain code

based system generally achieve more than 1000:1 compression ratios which are

considerably higher than the ratio of the up-to-date compression standards such as

JBIG family.

6.5 The EZW Compression

Since the termination of the wavelet coefficients was performed corresponding to

importance map, the image artefacts generally seen in DCT based techniques such as

JPEG, did not occurred in EZW.
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6.6 Sparse Representation based Compression

The simulations have been done on medical images for haar and curvelet bases

shown in Figure 6.17 with hard and soft threshold. The results of haar bases have been

shown in Figure 6.19 and Figure 6.19, and the soft threshold results have been shown

in Figure 6.20 and 6.21. Curvelet results for hard and soft threshold has been shown in

Figure 6.22 and 6.23, respectively.

The threshold level has a significant impact on the compression performance. As

the threshold level increases, the compression performance significantly improves

considering both groups of data and all bases. On the other hand, the processing time

for encoding and decoding increases proportional to the decrease of the threshold

level. Therefore, in the fields that the loss of information is not so crucial, lower

threshold level can be preferred. On the other hand, in the cases in which the image

quality is indispensable, the level of threshold can be determined as low as possible.

As a result, the threshold level and processing time are two trade-offs of the

compression.

Result of sparse approach in compression using hard threshold (haar basis) are

presented in Figure 6.19 and Figure 6.18.

Result of sparse approach in compression using soft threshold (haar basis): Result

of sparse approach in compression using soft threshold (haar basis):

Table 6.7 PSNR metrics assessment (medical image)

Threshold Value

4.5 1.5 0.15 0.075 0.015

Bases hard soft hard soft hard soft hard soft hard soft

Haar 65 66 68 67 77 74 82 77 97 88

Curvelet 57 56 71 63 76 74 79 76 90 83

Consequently, the sparsity-based lossy compression scheme has been applied to the

16 bit gray level DICOM images. Since there exists a high level of correlation between
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(a) 4 level haar decomposition

(b) 4 level curvelet decomposition

Figure 6.17 Haar and curvelet decomposition for sparse approach (Sudheimer et al., 2019)
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(a) Human MRI sagittal view (b) Hard threshold=4.5 (c) Hard threshold=1.5

Figure 6.18 Sparse approach in compression using haar basis with hard threshold (Sudheimer et al.,

2019)

(a) Hard threshold value=0.15 (b) Hard threshold

value=0.075

(c) Hard threshold

value=0.015

Figure 6.19 Sparse approach in compression using haar basis with hard threshold (Sudheimer et al.,

2019)

(a) Human MRI sagittal view (b) Soft threshold value=4.5 (c) Soft threshold value=1.5

Figure 6.20 Sparse approach in compression using haar basis with soft threshold (Sudheimer et al.,

2019)
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(a) Soft threshold value=0.15 (b) Soft threshold

value=0.075

(c) Soft threshold

value=0.015

Figure 6.21 Sparse approach in compression using haar basis with soft threshold (Sudheimer et al.,

2019)

Table 6.8 PSNR metrics assessment (natural image)

Threshold Value

4.5 1.5 0.15 0.075 0.015

Bases hard soft hard soft hard soft hard soft hard soft

Haar 64 66 68 67 77 74 82 77 93 87

Curvelet 55 54 69 61 77 74 80 77 87 83
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Result of sparse approach in compression using hard threshold (Curvelet basis):

(a) Human MRI sagittal view (b) Hard threshold value=4.5

(c) Hard threshold value=1.5 (d) Hard threshold value=0.15

(e) Hard threshold value=0.075 (f) Hard threshold value=0.015

Figure 6.22 Sparse approach in compression using curvelet basis with hard threshold (Sudheimer et al.,

2019)
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Result of sparse approach in compression using soft threshold (Curvelet basis):

(a) Human MRI sagittal view (b) Hard threshold value=4.5

(c) Hard threshold value=1.5 (d) Hard threshold value=0.15

(e) Hard threshold value=0.075 (f) Hard threshold value=0.015

Figure 6.23 Sparse approach in compression using curvelet basis with soft threshold (Sudheimer et al.,

2019)
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the consecutive pixels, this strategy achieves considerable compression performance.

However, the loss of information may be crucial for medical images.

6.7 The Implementation Challenges

Besides the compression performance, the implementation is an important

consideration for compression systems. The issues of implementation are taken up for

proposed systems 3D-RLE and the CrS.

6.7.1 The 3D-RLE

Performance is a major parameter for the efficiency of the whole telemedicine

system. In recent years, there are various implementation patents based on the RLE

approaches due to the fact that run-length is a simple and easy-to-implement

algorithm (Watanabe et al., 2019; Chen & Chang, 2019). The algorithm extends the

2D-RLE approach to the volumetric scanning using a simple algorithm that can be

implemented on the telemedicine platforms. The 3D-RLE method is developed in

MATLAB 2017b environment and have been implemented on the JAVA platform for

the efficient telemedicine networks and DICOM presentation states. The optimal slice

depth and other parameters should be considered for satisfactory compression

performance.

6.7.2 The Chain Rule-based Compression System

The chain rule-based systems (the CrS) achieves the best compression performance

which may exceed over 1000:1 ratio. This level of achievement is the tremendous

performance that general-purposed lossless bi-level methods cannot obtain. However,

there exist some issues must be considered before implementation of the chain-code

based systems. The principle of systems is to codify the only boundary of a bi-level

object instead of cipher all the pixel of the matrix. While the methods dramatically
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decrease the number of bits required for the reconstruction process, it also needs extra

complicated processes for compression and decompression, as follows. Recall that all

independent region in the bi-level image must be segmented, boundary extracted and

position labeled. These operations are time-consuming.

In this dissertation, the chain-code symbols are created in both JAVA and

MATLAB 2017b development environments. Considering medical data, the system

extracts the boundary of the organs and codify the boundary in acceptable

computational complexity and execution time for off-line applications. Moreover, the

systems can be experienced through the on-line e-health networks for a

comprehensive evaluation. The image characteristics such as compactness and

entropy can give information about the burden of processes. Consequently, the images

should be analyzed whether the process raises difficulties for telemedicine

implementations.
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CHAPTER SEVEN

CONCLUSIONS AND FUTURE WORKS

Removing the geographical restriction for medical data circulation and spreading

the medical services to the vast majority of the population by establishing a

distributed collaborative platforms of medical data is becoming a significant

requirement is associated with considerable improvement of communication

technologies. In recent years, effective and lossless compression of images provides

an efficient communication facility by the decreasing total amount of stored data,

transmission time, bandwidth and cost rate that is the essential requirement for

e-health networks standards such as DICOM and PACS. Accordingly, it is essential to

compress and transmit medical data in telemedicine systems, which involve

interactive transmission within and between health-care facilities using public and

special networks.

Image compression systems are designed to meet specific requirements, such as to

reduce the number of bits to store the image or to achieve required bit rate. They must

satisfy the quantitative/qualitative distortion metrics and computation complexity

affordable for the applications during the reconstruction process. In other words,

image compression systems seek out for reducing the number of bits involved in

reproducing of raw data that is used in a specially designed for medical data

processing or health archiving systems. The success of image compression algorithms

depends on their capabilities of revealing redundancy existing in the image data. Over

the last decade, the still images have become diversified, e.g., natural, scientific, and

medical images. However, the majority of the common compression standards are

designed for natural images and multimedia records. Consequently, the performance

of the general-purposed compression standards remains in a limited range for medical

images. In this thesis, new compression strategies are suggested to uncover the

redundancy of the medical images. To overcome the limitation of the current

techniques, the characteristics of the medical data have been taken into account

during the process of the compression by the proposed techniques.
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In this dissertation, it has been shown that the characteristics of the medical images

considerably differ from their of the natural ones in the sense of the entropy,

compactness, energy, and non-stationarity. Considering the characteristic of medical

images contributes to the redundancy removing capabilities of the methods. Thus,

they could uncover a considerable amount of redundancy that can not be detected by

the current standards. The three-dimensional run-length encoding, the 3D-RLE,

(context-oriented), the chain code based, embedded zerotree wavelet and sparsity

based systems are the techniques that are designed in characteristic-considering

strategy.

The 3D-RLE and the CrS methods are the lossless methods for bi-level medical

images that can faithfully reconstruct the images. The proposed methods which are

volumetric run-length encoding (3D-RLE) and contour based systems (CrS) are

lossless and bi-level compression techniques. The 3D-RLE has been utilized the

inter-slice and the intra-slice correlation between the image elements. The method has

suggested a new volumetric scanning algorithm that sweeps the voxels along a path

coherent with the shape of the organs. The CrS has compressed the binary image by

codifying only the boundary pixel of the organs. Thus, it reaches the remarkable

compression achievement that exceeds tenfold more than those of the conventional

compression standards such as JBIG and CCITT.

The sparsity and the EZW approaches are designed in a lossy mode for gray-scale

medical images. These techniques utilizing different wavelets such as curvelet and

wavelets with soft and hard thresholding are applied to the medical data sets.

The proposed methods have been simulated on different data sets such as

abdominal bi-level (segmented) images and gray-scale brain image sets. The

simulation results show that the proposed methods outperform the state-of-the-art

compression standards in terms of the common lossless compression evaluation

metrics. The context-oriented based strategy, namely the 3D-RLE, can reveal the

redundancy of the medical data up to 200:1 ratio. And the CrS system exceeds the

ratio of 1000:1 for the medical segmented image, on average. These achievements
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show that context-oriented and contour based systems obtain notable results for

medical images compared to the state-of-the-art bi-level compression standards.

7.1 Future Works

Compression performance for the run-length encoding primarily depends on the

scanning procedures. Fractal space-filling curves, e.g. Hilbert and spiral, are the most

successful forms. Thus, extended fractal forms such as Sierpiński curve, Peano curve,

Koch snowflake, Dragon curve, H-tree curve will be designed as the RLE scanning

procedures. Partitioning the image matrix while applying the RLE and

Burrow-Wheeler transform will be employed to unearth the redundant data in the

3D-RLE symbols.
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