SELF-TUNING PID CONTROLLERS

A Thesis Submitted to the
Graduate School of Natural ::md Applied Sciences of
Dokuz Eyliil University
In Partial Fulfillment of the Requirements for

the Degree of Master of Science in Electronics Engineering, Electronics and
Communication Program

by

Caner AYGUN

$
P

February, 1997

IZMIR

- M.Sc THESIS EXAMINATION RESULT FORM

We certify that we have read this thesis and that in our opinion it is fully adequate, in
scope and in quality, as a thesis for the degree of Master of Science.

7

Dr.Yavuz Senol

(Advisor)

/
f cl e Hraldun oo,

(Committee Member)

Lgﬂﬂ\pcwv\
wf‘% NG-OAL

(Committee Member)

Approved by the

Graduate School of Natural and Applied Sciences

Ulho e

Prof. Dr. Macit Toksoy

Director

o P aidal e RPN URU§4LJ

“mnsvom MERKEZ!

ACKNOWLEDGMENTS

The author wishes to express his sincere thanks and appreciation to Dr. Yavuz Senol for
his attention, guidance, insight, and support during this research and the preparation of this
thesis. In addition, special thanks to Dr. Erginer Ungan for his constructive comments,
suggestions and for providing valuable trace data to create many of the displays.

The author also acknowledges the generous technical support from Enko Limited
Company and thanks to H. Sinan Kazazoglu for his valuable recommendations.

11

ABSTRACT

PID controllers are widely used mn many industrial applications. Although there are
several conventional PID controller tuning techniques, these techniques are not appropriate
for some systems such as time variant or remote located systems. Conventional tuning
procedures consider systems with fixed and constant coefficients. Conventional control
system design procedure is based on linear system approach. However, some applications
whose design criteria can change in large ranges need nonlinear approach. Thus, if the
system is time variant and changes are in large range, conventional PID controllers can not

work properly.

A self-tuning system does not need to be tuned by the system engineer. Optimal tuning
point can be obtained by the self-tuning mechanism for different conditions of time variant
systems to work on the desired closed-loop performance.

In this thesis, development and performance of a self-tuning PID controller has been
discussed. The realized system is based on recursive least squares (RLS) parameter
estimation method and pole-placement technique for controller design process.

CONTENTS

Chapter One

INTRODUCTION

L INtrodUCHON. ...
1.1 Control SYStemScooovviiiiieieee e
1.2 Conventional Control System Approaches.............cccccoeeeuunne..
1.3 Three-term (PID) Controllersc.ooooeeuiviiieeiiieeeeenne,
1.4 Self-Tuning SYStemSscccceoiomiriirniieieeiesreerec e
1.5 Self~Tuning PID Controllersccooevvvvvievievecreeenieeeen.

Chapter Two

THREE TERM (PID) CONTROLLERS

2. Three-term (PID) Controllers

2.1 Conventional Feedback Control Structuresc........
2.2 Proportional Control Structurecccoooevvereviiciecrieinen,
2.3 Ro0t Locus Analysisccoooeieiiiiieeeieeeeeeeaeeeeeeeeaae
2.3.1 Variation of Closed-Loop System Poles.......................
232Real AXISLOCE ..ovoiiiiiiiecee e
2.3.3 ASYMPLOLESoooeieieeeieneeeeeeteeeee e
2.3.4 Breakaway Pointsccooeveeiiieicieeiee e
2.3.5 Departure and Arrival Angles ...l
2.3.6 Construction of the Root-Locus
2.4 Integral Control Structureccocoovveveriieeieniieee e

.....................

.....................

.....................

2.4.1 Stability Analysis of First Order Integral Control Systems
2.4.2 Stability Analysis of Second Order Integral Control Systems

2.5 Derivative Control System Structureccceevvevveveennen..
2.6 Proportional + Integral (PI) Control Structure

2.7 Proportional + Integral + Dertvative (PID) Control Structure

115

W e -

O O O 0000 3~ hwn

Chapter Three

SELF-TUNING SYSTEMS

3. Self-tuning Systems e e
3.1 INtrodUCHION ...oooviiieeiic et

3.2 Self~Tuning and Adaptive Control Approachesc..ccoeoiivieriinnn.

3.3 Self-Tuning SyStem StrUCTUTEo.veeeeeeeeeeeeee oo

3.4 System MOdels ...

3.5 Least Squares (LS) Methodc.ooviiiii e

3.6 Recursive Least Squares (RLS) ...,

3.6.1 Recursive Least Squares Algorithm ..o

3.6.2 Initializing The EStimatorcccoocooeii it

3.7 Pole Assignment COntrolc..cooooiiiiiiiiiece e
3.7.1 Controller Design by Pole Assignment for First Order Systems

3.7.2 Three-Term Controller Design by Pole Assignment for Second
Order SYSIEIMS.cotnuiieeniiiieeceiieeeeeeeeee et e e e e et e e e ae e
- 3.8 Self Tuning PID Controller Design Algorithmc..ccooeiiiviiiiee,

Chapter Four

A SELF-TUNING PID CONTROLLER APPLICATION

4. A Self-tuning PID Controller Applicationcccoouvveiveiiieeeiieeeeecieeeeee

4.1 INtrOQUCLION ...ooviiiiiiiiiiii e e
4.2 Mathematical Analysis of a Serial RLC Circuitccocooeviviiieieinn.
4.3 APPHCAHION ...ooiiiieiii ettt et

Chapter Five

HARDWARE AND SOFTWARE OF THE APPLICATION

5. Hardware and Software of the Applicationc....coocoiiin. USSR
5.1 Hardware Structure of the System..................cccoooiiiiiiiiiiieeeceee
5.2 The Mathematical Model of the Plant ...
5.3 Software Structure of the Systemcccccooiiiiiiiiiii e

v

17
17
17
18
20
22
24
24
25
25
25

26
28

34
34
35
37

Chapter Six
APPLICATION RESULTS
6. Application Results ... 40
6.1 INtrOdUCHIONoove e e 40
6.2 Recursive Estimation Results ..., 40
6.3 Self-tuning PID Implementation Resultsc.coooovinieeen. 44
Chapter Seven
CONCLUSIONS
7. CONCIUSIONS.c.iiiiiiiiiietie ettt e eae s 56
REFERENCES
REFETEICES ...ttt et et eeaeeeenee e 58
APPENDICES
1. Technical Product Information for the DAP 800ccooovioiiiieeeieeeeeeen. 1
2. Recursive Estimation and Pole-assignment Control Software in C Language 6
3. Recursive Estimation Procedure for DAP800ocooovviiiiieeiiieeeeeee.

4. PID Control Procedure for DAPSBOO ...

2

LIST OF TABLES
Page
Table 2.1 The effects of Kp, Ki and Kd on the closed-loop response. 16
Table 6.1 The plant and desired overall system specifications of the measured 44

systems.

Figure 2.1.

Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4

Figure 5.1

LIST OF FIGURES

Block diagram for output feedback control

Block diagram of proportional control

Simple closed-loop system

Root-locus plot of Eq.2.17

Root-locus for integral control of a first order system
Root-locus for integral control of a second order system
Block diagram of a PI control system.

Block diagram of a PID control system.

System response to a step input

Control system design steps

Self-tuning controller structure

Discrete signal and its continuous time equivalent
Discrete time system model

A system with all possible input and disturbance components
A closed-loop first order system

Serial RLC circuit

Parameter estimation step of the self-tuner
Implementation of PID control

Flow chart of the self-tuning application

Self-tuning system application

Vil

Page

10

11

13
14
15

19

Figure 5.2
Figure 5.3a
Figure 5.3b
Figure S.4
Figure 5.5
Figure 6.1a
Figure 6.1b
Figure 6.2a
Figure 6.2b

Figure 6.3a

Figure 6.3b

Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10
Figure 6.11
Figure 6.12

Figure 6.13

The plant which 1s controlled in the application

Unit step response of the plant while C=1.5uF

Unit step response of the plant while C=15uF

Flow chart of the recursive estimator software

Flow chart of PID implementation software

Test signal(plant input) and plant output while C=1.5pF
Test signal(plant input) and plant output while C=15uF
Parameter estimation for C=1.5uF

Parameter estimation for C=15pF

Calculated step resbonse of the estimated transfer function for
C=1.5yF

Calculated step response of the estimated transfer function for
C=15yF ‘

Step response of the RLC circuit while C=15uF, £=0.1, @,=10
Step reSpbnsc of the RLC circuit while C=15uF, £=0.8, », =10
Step response of the RLC circuit while C=15yuF, £=0.1, w,=3
Step response of the RLC circﬁit while C=15uF, £=0.8, & =3

Step response of the RLC circuit while identified and controlled
plants are different. (Cunp500 = VSUE, Coronea = L.54F)

Step response of the RLC circuit while C=1.5yF, £€=0.1, ®,=10
Step response of the RLC circuit while C=1.5uF, £=0.8, ,=10
Step response of the RLC circuit while C=1.5yF, £=0.1, @,=3
Step respbnse of the RLC circuit while C=1.5uF, £=0.8, @, =3

Step response of the RLC circuit while identified and controlled
plants are different. (C, 5.0 = L5, C ppppiies = 1514F)

VIl

35
36
36
37
39

41

43

45
46
47
48

49
50

51

53

54

CHAPTER ONE

INTRODUCTION

1.1 Control Systems

Control system engineers are interested in understanding and controlling of their
environment. The aim of control engineering is to provide useful and economic products
and systems for the advantage of mankind. The systems to be controlled must be understood
and modeled by system designers to obtain a more effective control structure and preferred
performance. However, since most systems are extremely complex to understand and
difficult to modeling, control engineers frequently must think about control of poorly
defined systems (DORF, 1986, p.2).

Control engineering is established on the basis of feedback theory and linear system
analysis. A control system is an interconnection of system parts that will provide a desired
system response. Each parts of system can be represented by a block and input-output
relations of blocks represent the cause and effect relationship of the process.

An open-loop control system utilizes a controller or control actuator in order to obtain
the desired response without feedback. Therefore, the controller, the control actuator and
other environmental conditions must be defined perfectly because, control system can not
measure and compare the actual output of the system with respect to desired output.
Nevertheless, most control systems are not suitable to obtain certain relations between
inputs and outputs. Hence, open-loop systems are not appropriate for poorly defined
systems.

In contrast to open-loop systems, closed-loop systems utilize feedback in order to
compare actual output with the desired output. Feedback 1s an additional measure of actual
output and used to calculate difference between actual and desired system outputs.
"A feedback control system is a control system that tends to maintain a prescribed
relationship of one system variable to another by comparing functions of these vanables and
using the difference as a mean of control (DORF, 1986, p.2)."

The aim of the closed-loop control system is to ensure that the actual output follows in
some way the desired output and rejects the effect of the unpredictable inputs (disturbances)
which corrupts the system output. A closed-loop control system consists of a
precompansator that is used to shape the transfer function between the system input and

19

output, and a controller that is used to determine the closed loop stability, disturbance
rejection and sensitivity characteristics of control system .

1.2 Conventional Control System Approaches

The conventional control system approach considers systems with fixed and constant
coefficients. This assumption of time-invariance is essential to conventional design
procedures. Therefore, control engineer must design a robust control system which can
work properly in all of possible operating conditions. Since, the system which will be
controlled must be known by designer and undetermined conditions must be restricted
against to unrestrained system behaviors.

Conventional control system design procedure is constructed on linear system theory.
Linear system approach is generally a tolerated approximation because a complete nonlinear
theory does not exist and linear solutions are sufficient to most nonlinear control system
design problems. However, some applications whose design criteria can change in large
ranges need nonlinear approach. In this case, constant control coefficients are determined as
capable to conform variable system conditions even though general performance loss
(Wellstead & Zarrop,1991,pp 1-4). ‘

1.3 Three-term (PID) Controllers

One form of controller which is widely used in industrial process control is called three-
term (PID) controller. Three-term controllers include a proportional, an integral and a
derivative control terms. Therefore, the three-term controller is also called a PID controller.
PID controllers are widely used in industnal applications because, they perform satisfyingly
in spite of their functional simplicity. Conventional PID controllers are designed on the basis
of local linearization about an operating point. These controllers are very effective if the
load changes are small and the operating conditions do not force the system too far away
from the linearizing balance point.

The terms of PID controller can be used one by one or any combination of two terms.
Hence, P, I, D, PI, PD, ID and PID control concepts are available. However, some
concepts which consist a term or a combination of two terms of PID, as D, ID and I are not
suitable to apply to most applications. Furthermore, P, PI and PD control concepts are well-
known controllers.

To implement a PID controller, proportional, integral and derivative gain parameters
must be determined for the given process. The selection of the coefficients of PID
controllers is a search problem in a three-dimensional space. Different coefficient selections
cause different responses, for example, different step responses for a step input. The

LI

coefficients of a PID controller can be determined by moving in the search space according
to some experimental methods or trial and error basis. There are several rules and methods
to solve this tuning problem. "Conventionally, a PID controller is tuned manually using one
of the two procedures described by Zeigler and Nichols (Hang & Sin, 1991, p428)."
However, system tuning issue is a main problem in control engineering (Dorf, pp573-615).

1.4 Self-Tuning Systems

Conventional control system design procedure needs to know about system behavior and
system characteristics. Additionally, constant coefficients must be suitable for all determined
operating conditions. However, most systems are not suitable to determine system
characteristics for all conditions because, these systems include undetermined parts and
these parts have some difficulties to find their characteristics. For that reason, tuning and
calibration is necessary to most conventional control systems.

Second handicap of conventional control systems is that, most systems have time-variant
parameters and constant coefficients are not sufficient to obtain desired system response
while parameters change in large ranges.

"The basic idea of a self-tuning system is to construct an algorithm that will automatically
change its parameters to meet a particular requirement or situation (Wellstead ef al, 1991,
p.4)." The self-tuning concept includes two different adjustment mechanism approaches:
The first approach is based on initial auto-tuning of system parameters which are time-
invariant but not desired constantly by the designer. Thus, after initial tuning, the adjustment
mechanism is not required and can be disabled until another tuning process is requested by a
control mechanism or system operator. The second auto-adjustment method is based on
continuous adjustment. In practice, both ideas are based on nearly same basis except small
algonthmic details. However, initial-adjusting systems are called self~funing and
continuous-adjusting systems are called adaptive in the terminology (Wellstead er
al,1991,pp 4-6).

The self-tuning controller concept for obtaining an automatic adjustment mechanism is to
identify the system using measured input and output data and then, to form a suitable
controller using the identified system. This concept can be divided into two main processes:
To identify the system and to form an appropriate controller using the identified system.

Implementations of self-tuning systems in practical applications were started after low
cost digital computer equipment had developed. However, the self-tuning system idea is
older than low cost digital computers. For example:

Kalman described a self-tuning optimizing controller in 1958, but the algorithm was
impractical at the time due to digital computer limitations of cost, speed and size. The
current interest in self-tuning control was first stimulated by the Czech researcher Peterka
who showed how system identification and controller syhentesis could be combined into
one iterative procedure for process control.(...) In the 1970s the results of this impetus
became evident with the publication of several key papers presenting self-tuning
controllers for various design criteria (WELLSTEAD & ZARROP, 1991, p.10).

Nowadays, self-tuning control systems are used in many applications especiaily industrial

processes.
1.5 Self~-Tuning PID Controllers

PID controllers are widely used components of industrial applications. These controllers
have very simple structure and their performances are as pleasant as their simplicity.
However, using of PID controllers are restricted by some applicational difficulties:

e PID controllers need initial tuning. Even though there are several effective theoretical
based tuning techniques, in most applications, these techniques are not feasible because of
the practical reasons. In most simple PID controller applications, trial and error methods can
be used successfully. However, tuning of some complex systems which have difficulties
about estimating the system charactenistics is difficult and hazardous. Because, these systems
may not appropriate for trial and error based methods. A wrong tuning may cause unwanted
underdamped responses and high cost damages.

e PID controllers are designed and tuned to operate beside a constant operating point. If
the load changes are large and the operating conditions force the system too far away from
initial operating point, the performance of PID controller decreases.

Self-tuning approach is a reliable solution for these limitations of conventional PID

controllers.

In this study, self-tuning PID controllers are analyzed and a self tuning PID controller
which controls a second order RLC system is realized.

(941

CHAPTER TWO
THREE-TERM (PID) CONTROLLERS

2.1 Conventional Feedback Control Structures

A very basic concept in control design is that of error feedback. Figure2.1 illustrates a
general output feedback control structure applied to an I/O system, with any disturbance

inputs ignored. The transfer function for the original or primary system(often referred to as
the plant) is designated by G (s). As shown in Figure2.1, the input to G (s) is represented

U(s). The concept is to construct a controller G, (s)whose output U(s) will drive the system
G,(s) so that its output Y(s) is desired. As shown in Figure2.1, E(s) is the difference

between a scaled command input KsR(s) and some output feedback function H(s)Y(s).
When K(s)=H(s)=1, then E(s) is just the difference between the input and the output which
is called as error. The gain Kg on the input is a scaling that is useful in obtaining a desired
steady-state relationship between the input and the output .

Controller Plant

RG) SOV go |9 g |
S J ¢ b

H(s)

Figure 2.1 Block diagram for output feedback control

The overall transfer function of the controlled system shown in Figure2.1 is determined

as;

¥(5) = G.()G, () KR() - H()Y (5)] (Eq2.1)

_Y(s) _ KG(9G,(s) Q)
R(s) 1+G.(s)G,()H(s) P(s)

G(s) (Eq2.2

The design problem is to pick Ks, Ge(s) and H(s) in order to obtain suitable response. If
the system is to be a regulator, a typical command input is a constant input (i.e., a step
input). For this case, to satisfy the required steady-state output and certain transient
performance specification (such as percent overshoot, return time, settling time) is the main
problem. If the system to be a tracking servo system, then a typical command input is a
sinusoidal.residual input. Therefore, the system must track low-frequency inputs and ignore
high-frequency inputs associated with noise.

To accomplish these objectives, classical control theory focuses on the choice of the
parameters in various possible structures for the controller and feedback transfer functions
G(s) and H(s) (Grantham & Vincent, 1993, pp.175-180).

2.2 Proportional Control Structure

Proportional control builds a control which is proportional to the error signal. An ideal
proportional controller may be represented in time and frequency domains as,

uft) = Ke((Eq2.3)
Ges) =K (Eq2.4)

The gain K is typically provided by an electrical or a mechanical device, for example a
power amplifier or a field-controlled DC motor or a gear box.

Proportional control concept is the simplest feedback control idea. However, this type of
controllers can not be sufficient in many applications.

In any real application, to achieve a pure proportional control is nearly impossible.
Because, in all real applications, there will be a finite inductance or a mass and so on.
Therefore a real proportional controller may be represented as

K
I+zs

G.(s)= (Eq2.5)

However, generally for most proportional control systems, 7, are sufficiently small and can

be neglected.

R S G Yy

Figure 2.2 Block diagram of proportional control

The transfer function of a proportional control system which is illustrated in Figure2.2 1s,

Y(s) __KG,()

R(s) 1+KG(5) (Eq2.6)

The output of a proportional controller is directly related to error signal. If there is not
any error, controller output provides zero output. Hence, proportional control systems
generally operate with error. The measure of error is related to proportional gain K
However, stability of a proportional control system is also related to proportional gain K.
Root-locus analysis method which is descnibed in Section 2.3 is a graphic based stability
analysis method (Grantham & Vincent, 1993, p.181).

2.3 Root Locus Analysis

An analytical method called root-locus analysis is presented in this section for displaying
the location of the poles of the closed-loop transfer function

G
1+GH

(Eq2.7)

as a function of the gain-factor K of the open-loop transfer function GH (Distefano &
Stubberud & Williams, 1967, pp. 237-259).
2.3.1 Variation of Closed-Loop System Poles

Consider the closed-loop transfer function of the system illustrated in Figure 2.3 is

C G
~= 2.8
R 1+GH (Ea28)
Let the open-loop transfer function GH be represented by,
KN (s)
GH = 29
DGs) (Eq2.9)
R C
| G 2>

[k-

Figure 2.3 Simple closed loop system

where N(s) and D(s) are the finite polynomials in the complex variable s and K is the open-
loop gain factor. The closed-loop transfer function then becomes

C G GD

—= = Eq.2.10
R 1+KN/D D+KN (Eq.2.10)

The closed-loop poles are roots of the characteristic equation,
D(s)+KN(s)=0 (Eq.2.11)

A locus of these roots plotted in the s-plane as a function of K is called a root-locus.

2.3.2 Real Axis Loci

The real axis section of the root-locus are determined by counting the total number of
finite poles and zeros of GH to the right of the points. If K>0, points of the root locus on
the real axis lie to the left of an odd number of finite poles and zeros. In contrast K<O,
points of the root locus on the real axis lie to the left of an even number of finite poles and

Zeros.
2.3.3 Asymptotes

For large distances from the origin in the s-plane, the branches of a root-locus approach
a set of straight-line asymptotes. These asymptotes emanate from a point in the s-plane on
the real axis called the center of asymptotes o, given by,

WA
T I (Eq.2.12)
n—m

where -p; are poles, -z; are zeros, n is the number of poles, and m the number of zero of
GH.

The angles between the asymtotes and the real axis are given by,

(21+1)180

degrees for K> 0
e If;lsg‘ (Eq.2.13)
degrees for K< 0
n-m

for 1=0,1,2,..., n-m-1. This results in a number of asymtotes equal to n-m.

2.3.4 Breakaway Points

A breakaway point oy, 1s a point on the real axis where two or more branches of the root-
locus depart from or arrive at the real axis. The location of the breakaway point can be
determined by solving the following equation for Gy, :

n

P J. (Eq.2.14)

=1 O T 0 51 Op 2

2.3.5 Departure and Arrival Angles
The departure angle of a root-locus from a complex pole is given by

6, =180°+argGH' (Eq.2.15)

where argGH' is the phase angle of GH computed at the complex pole, but ignoring the
contribution of that particular pole.

The angle of arrival of the root-locus at a complex zero is given by

6, =180°-argGH"' (Eq.2.16)

where argGH" is the phase angle of GH computed at the complex zero, ignoring the effect
of that particular pole.

2.3.6 Construction of the Root-Locus
A root-locus plot may be sketched using the procedure as described below:
STEP.: The portions of the root-locus are determined on the real axis.

STEP2: The center and angles of the asymptotes are computed and the asymptotes on the
plot are drawn. '

STEP3: The departure and arrival angles at complex poles and zeros (if any) are
determined and indicated on the plot.

STEP4: The branches of the root-locus are sketched so that each branch of the root-locus
erther terminates at a zero or approaches infinity along one of the asymptotes.

Example (Distefano et al, 1967, pp. 257-259):

The root-locus plot for the closed-loop whose open-loop transfer function is

10

=-—1-<——, >0 (Eq.2.17)
s(s+2)(s+4)
is sketched in Figure 2.4.
/
Imaginary axiiA/
-

>
Real axis

Figure 2.4 Root-locus plot of Eq.2.17

2.4 Integral Control Structure

Integral control is similar to proportional control, but proportional controllers provide
constant output while constant error exists, on the other hand, the output of integral
controller changes to minimize the error. This property is frequently needed to achieve a
zero steady output error due to an uncertain constant system bias. However, if error e(t) is
not constant, for example changes from positive to negative, the value of the integral
controller will change sign some time later because of the accumulated positive value of the
integral. If changes are predictable, integrator may be reset to zero by a reset control system
when conditions change. In contrast if changes are unpredictable, a pure integral controller
generates an incorrect response.

An ideal integral controller may be represented in time and frequency domains as follows

i

u(t) = —;—j.e(ndr (Eq.2.18)

1
Gels)=— (Eq.2.19)

i

where 7, is the integral gain constant.

Pure integral control cannot be achieved in a physical system. In physical systems, an
integrator is approximated with the transfer function (Grantham et a/, 1993, p.181),

Go(s)=——, 0<g<<I (Eq.2.20)
E+1TS

2.4.1 Stability Analysis of First Order Integral Control Systems

An integral controller which has the transfer function as Eq.2.19. controls a first order
system whose transfer function is ‘

G,(s)= ;%,;; (Eq.2.21)

The closed-loop transfer function of the system is

G(s) - - K:qo/ z-l
S +psS+qy/ T,

and root-locus plot of the transfer function in Eq.2.22 is illustrated in Figure2.5.

im/\
1__F
‘Ci—4q0 A
> #X —— >
'PO o

Figure 2.5 Root-locus for integral control of a first order system

According to root-locus plot, a first order integral control system is stable for all positive
values of K and all values of q, and p, if open-loop system is stable. However, integral
control cannot stabilize an unstable system (Grantham ef al, 1993, pp.196-199).

2.4.2 Stability Analysis of Second Order Integral Control Systems

In this case, an integral controller which has the transfer function as Eq.2.19. controls a
second order system whose transfer function is

9,
Gs)e—To Eq.2.23
»(5) s’ +ps+p, (Eq)

The closed-loop transfer function of the system is

quO / Tx

G(s) = (Eq.2.24)

S +ps +ps+q,/ T

i(o/\
——ﬂ ;
”~

c

N

Figure2.6 Root-locus for integral control of a second order system

N\

According to root-locus plot, integral control cannot stabilize an unstable system.
Additionally, although open loop system is stable, if K or 1/1;is set too high, the closed-

loop system will be unstable (Grantham et a/, 1993, pp.204-206).
2.5 Derivative Control System Structure

Derivative control produces a control that is proportional to the rate of change of the
error. If the error is increasing, the control is positive and vice versa. If error is constant, the
control is zero. Derivative control does not force the error to zero. Therefore, it 1s typically
applied in conjunction with other control elements as proportional and integral control.

Differentiation is an inherently noisy process. Any noise on the input signal would be
differentiated and the output would be disordered.

—
LI

An ideal differential controller may be represented in time domain and frequency domain
as follows (Grantham ef al, 1993, p.182),

u(t)=r1, -6%2 (Eq.2.25)
G.(s)=1,8 (Eq.2.26)

2.6 Proportional + Integral (PI) Control Structure

PI control is the sum of proportional and integral controls. A PI controller which is
shown in Figure 2.7 may be represented in time domain as,

u=Ke +l—fedt (Eq.2.27)
T.

i0

Gp(s) C(s)
H(s)
Figure 2.7 Block diagram of a PI control system.
The PI controller has the transfer function
Go(s) = K +—— = Kus+1 (Eq.2.28)
T,5 7,8

If the PI control is applied to a first order system described in Eq.2.21, a second order
overall transfer function

(Krs+D)K.q,/ 7,

G(s)=—
S +(p,+Kq,)s+q,/ 1,

1s obtained.

According to Eq.2.29, the poles of overall transfer function can be located on any
location by changing K and t;. Therefore, an unstable open-loop first order system can be
stable by suitable choices for K and t,. Additionally, performance of the system can be

14

modified to obtain desired specifications such as settling time and percent overshoot. PI
control is a good choice for controlling first-order systems.

If PI control is applied to a second order system described in Eq.2.23, the overall transfer
function '

(Kq,/ 7))+ K .Kq,s
s+ plsz + (po + qu)s +4, / TZ;

G(s) = (Eq.2.30)

is obtained.

In Eq2.30, if p,<0, the onginal system is unstable and PI control cannot stabilize it.
Therefore, unlike first-order case, PI control cannot be used in all second-order applications
(Grantham et al, 1993, p.206).

2.7 Proportional + Integral + Derivative (PID) Control Structure

A PID controller is composed by the sum of proportional, integral and derivative control
concepts as shown in Figure 2.8. The time domain output equation of a PID controller s,

u(t)=Ke(?) +—1-J.e(t)dt +1, de(1) (Eq.2.31)
T, dt
Ge(s)
| P N
©

G©)

N

RGs) * l ¢
-_'5@ ‘ A I
____)l D

e ———

H(s)

Figure 2.8 Block diagram of a PID control system.

This controller has a transfer function,

Gq(s)= K+——1-+ 7,8 (Eq.2.32)
T,8

and this transfer function (Eq.2.32) may be rewritten as

G.(s) = (Eq.2.33)

K(s’ +as+b)
s
Therefore, a PID controller introduces a transfer function with one pole at the ongin and
two zeros that can located anywhere in the left-hand s-plane.

In a PID controller, proportional control avoids delay in the system. Integral control
eliminates offset which can be invoked by using proportional control. The primary benefit
from the integral term is the elimination of steady state error while differential term helps
improve the responsiveness and stability. Proportional control has the effect of reducing the
rise time and reduces (but never eliminate) the steady-state error. Integral control has the
effect of eliminating the steady-state error, but it makes the transient response worse. If
integral control to be used, a small Ki should always be tried first. Derivative control has the
effect of increasing the stability of the system, reducing the overshoot, and improving the
transient response. Overshoot, rise time and settling time of a system response is shown in
Figure 2.9. The effects on the closed-loop response of adding to the controller terms Kp, Ki
and Kd are listed in Table 2.1.

Ymax,

Maximum overshoot

N

0 Lrise time Lsettling

Figure 2.9 System response to a step input

Table 2.1 The effects of Kp, Ki and Kd on the closed-loop response.

16

Closed-loop Rise time Overshoot Settling time Steady-state
response error
Kp Decreases Increases No change Decreases
Ki Decreases Increases Increases Eliminates
Kd No change Decreases Decreases No change

Note that these correlation are not exactly accurate, because Kp, Ki, Kd are related to
each other. Changing one of these variables can change the effect of the other two. For this
reason, the table should only be used as a reference while Ki, Kp, Kd values are being
determined by trial & error (Web Site of The University of Michigan, 1997).

CHAPTER THREE
SELF-TUNING SYSTEMS

3.1 Introduction

The conventional feedback controllers which were analyzed in Chapter2 have constant
design parameters as K, t,, T,. These parameters must be determined for each system by
the system engineers. The tuning of one or two term controllers as P, I, PI or PD is fairly
easy, because these controllers have one or two parameters to adjust. However, a PID
controller which has three or four parameters is not always easy to tune, particularly if the
dynamic of the process is slow. The derivative action is, therefore, frequently switched off in
industrial controllers although this deteriorates the operating performance. Additionally,
some controllers, which may include feedforward or state feedback can often have more
than 10 adjustable parameters. To adjust so many parameters without a systematic
procedure is nearly impossible. One method to adjust the controller parameters is to develop
a mathematical model for the process and to derive the parameters by using some control
design procedures. However, another appropriate method to combine system identification
and control design is self-tuning.

Another motivation for using adaptive or self-tuning control is that the characteristics of
the process and its disturbances may change with time. Frequently, these changes are
unpredictable and of a type which cannot be compensated for by robust design. The
adjustment mechanism of a self-tuning or adaptive system can provide the means of
adapting to system change. If the changes are not too rapid, a properly designed self-tuning
controller may be used for continuous tuning to obtain a performance which is close to the
optimal one (Narendra & Monopoli, 1979, pp.2-3).

3.2 Self-Tuning and Adaptive Control Approaches

The main conception of self-tuning and adaptive control is to construct a system that will
automatically adjust its parameters to obtain required performance.

Self-tuning and adaptive control concepts convey nearly same idea. However, some
systems are approximately time invariant. These systems have initial tuning problem and to
change the system parameters is not necessary after initial tuning. Thus, adjustment
mechanism can be disabled after initial tuning. In contrast. some systems change in time and
need continuous tuning. In the terminology, initial adjustment is called self-tuning and
continuous adjustment 1s called adaptive control (Wellstead ¢r a/. 1991 pp.4-6).

18

3.3 Self-Tuning System Structure

Tuning problem of a conventional controller may be defined as determining the
parameters of the controller which controls an unknown system to obtain desired system

response.

A se¢lf-tuning control system can adjust its parameters by using some additional
mechanisms as a system identifier and a controller designer. The main concept of self-tuning
is to identify the system (plant) dynamic and to change the controller parameters according
to identified system and desired overall system response.

A self-tuning control system includes four main parts:
1 Controller
ii. System (Plant)
iii. System identifier

iv. Controller designer.

A conventional control system includes a controller and a system as same as a self-tuning
control system. However, since the system identifier and the design mechanisms are not
included, conventional systems are had to tune by the design engineer. Moreover, a self-
tuning system able to approximate the system transfer function to a desired structure as a
second or higher order transfer function. Thus, the design engineer must determine a
general system model, but not to determine the coefficients of the system transfer function.

The second necessity to determine the appropnate controller parameters is to decide the
overall system response and resuit, the system transfer function.

Figure 3.1 illustrates the design steps of a control system. In step 1, the mathematical
representation of the system is defined according to design objectives. In self-tuning design
procedure, the system to be controlled must be modeled as a linear transfer function with
undetermined parameters and required overall system must be modeled exactly according to
the system response by the design engineer. Thus, automatic system identifier can determine
the undetermined system parameters and complete the modeling task. Additionally,
controller structure must be determined by the design engineer as a PID controller or
another type of controller structure.

In step 2, design stage, the parameters of the controller are calculated individually by the
controller designer mechanism according to determined overall system structure and

19

calculated system parameters. Then, the calculated parameters are downloaded to

controller.

In the implementation stage, the controller operates with the parameters which were
downloaded in the design stage.

The validation phase is essential to success and is one of the most important arguments in
favor of seif-tuning. Because, in conventional off-line design the validation phase often
proves unsatisfactory and this leads to a time-consuming repetition of the whole sequence of
modeling, design and implementation. The main advantage of self-tuning is that the
sequence is performed on-line and much faster. However, validation is associated with a
qualitative measurement of performance and it is not an algorithmic element of the self-
tuning loop.

Design 3
objective
1 3
Modelling Unsatisfactory (' Implementation
Validation
/ 4

Satisfactory
Figure 3.1 Control system design steps

A self-tuning structure and the three stages of system design, modeling, design and
implementation are sketched in Figure 3.2. The sequence of the tasks is summarized in a
simple algorithm below (Wellstead ez al,1991,pp.11-12):

STEP1: Implement the parameters which are initialized or determined in the previous
iteration.

STEP2: Estimate the system transfer function by using input and output relations of the
system.

20

STEP3: Calculate appropriate controller parameters from estimated system transfer
function and desired overall system transfer function.

STEP4: Change the controller parameters with calculated parameters in STEP3.

Design Design Modeling
criterion
— Control System
synthesis 2 identifier K7
Implementation
VN u y
‘ Controller System >

Figure 3.2 Self-tuning controller structure
3.4 System Models

"No mathematical model can ever display every nuance of behavior of the system that it
1s constructed to represent, but this is never required (Wellsteat et dl, 1991, p.41)." Most
real dynamic processes are nonlinear and continuos in time. In contrast, generally linear
models for both the parameters and the data are used in self-tuning systems. Because, linear
approach eases analysis, estimation and design.

Self-tuning systems are generally microprocessor based systems. As a result, self~tuning
systems are inherently digital and discrete time modelling is suitable for these systems.

A discrete signal and its continuous time equivalent are shown in Figure 3.3. In this
illustration, u(t) i1s a discrete sequence that is obtained from a continuous signal u,(t). A

discrete sequence may be obtained from

u(t) =uc(tes) (Eq3.1)

where 1 is the sampling mterval.

U(t) 7
T |
A |

L J | !

7]

.
] L

-1 0 1 2

Figure 3.3 Discrete signal and its continuous time equivalent

The relation between mnput and output signals of a discrete time system can be
represented as a linear difference equation.

x()+ax(t-1)+..+a, x(t-n,)=bu(t)+bu(t - 1)+...+b, u(t —n,) (Eq.3.2)
The unit backward shift operator =™ defined by
x()=x(t-i) (Eq.3.4)

and Eq.3.2 can be rewritten as (Wellstead ef a/,1991,pp.41-43),
B
x(t)= {71] u(t) (Eq.3.5)

where A and B are polynomials as,

A=) =1+a,z7 +. +a, 27

B(z"")=b,+b="+...+b, ="

(Eq.3.6)

In Figure 3.4, a discrete time system model whose input and output are u(t) and x(t) is
shown.

t
P'(‘l—%‘ System L>

Figure 3.4 Discrete time system model.

ool

3.5 Least Squares (LS) Method

A self-tuning control system must identify the physical system to be controlled according
to construction defined by the design engineer. This construction is generally a discrete time
transfer function with undetermined parameters. Control system must determine these
parameters using input/output relation of the physical system. Least squares is the most
familiar method to determine the parameters of a system(plant) transfer function.

Control input B

u(t) A
Measurable +
disturbance D +\ y(t)

w(t) A 7

+

Random / +
disturbance C

e(t) A

@Xt) dnft disturbance

Figure 3.5 A system with all possible input and disturbance components.

In Figure 3.5, a system block diagram with control input, measurable, random and drift
disturbance components is shown. This system has a transfer function (Wellstead et
al,1991,pp.71-72),

Ay(t)=Bu(@-1)+Dv(@)+D(t)+Ce(t) (Eq.3.7)
where,
A=1+az" +. +a, 7™ (Eq.3.8)
B=b,+bz" +. +b 7"
D=d,+dz" +.+d, ™
D(t)=d,+dt+..+d, 1™

C=1+c¢z "'+ . +c, =~

Eq 3.7 can be rewrtten as,

y(t)=x" ()8 +e(t) (Eq.3.9)

where 0 is the vector of unknown parameters, defined by

eT :[—a,,...,—-ana,bo,. b ..»,dnd7d07'-->dnd>cl>“‘>cnc](Eq‘3‘lo)

¥ [1

and x(t) is defined by,

x' ()= [y(t =1,y —n)ut = 1), u(t —n, = 1D)y(@),...v(t —n,),Lt,..t™ e(t = 1),e(t —2),...e(t —nc)]

(Eq.3.11)

To determine the unknown parameter vector 8, a model can be assumed
(1) =xT ()0 +é() (Eq.3.12)

where is a vector of adjustable model parameters and é(¢)is the corresponding modeiling
error at time t. A suitable selection of § must minimize e(1).

é(t)=e(t)+x7 (1)(0-6) (Eq.3.13)
Equation3.12 can be rewritten,

y=X0+é (Eq.3.14)

and error vector € can be obtained clearly,
é=y- X8 (Eq.3.15)

To minimize €, the sum of squares of errors, J, must be minimized.

N
J=Y e(n=¢é"é (Eq.3.16)

e=1
To find least squares estimate, J can be rewritten,

J=(y-X6) (y-X8)=y"y-6"XTy-y" X0 +67 X7 X6 (Eq.3.17)
Setting to zero the derivative of J with respect to 6 fora stationary point,

%z—ZX’y+2XTXé=O (Eq.3.18)

If the second derivative matrix

oJ*
é 2

=X'X (Eq.3.18)

D>

is positive definite, the solution of the first derivative is a unique minimum.

Thus, the least squares estimator for the parameter vector is (Wellstead et a/,1991,p.73),

~

-1
0=[x"x] [Xy] (Eq3.19)
3.6 Recursive Least Squares (RLS)

In many self-tuning systems, parameter estimation method is designed to be iterative
because of two main reasons:

1. In self-tuning systems, estimated parameters are updated at each sample interval by using
all previous data and a new data. However, in the previous estimation cycle, the old data are
already calculated and previously estimated parameters contain the effect of the previous
data. Least squares method can not use the previously estimated parameters and calculates
all off the previous data in each sample interval. This means too many unnecessary
computations and waste of time. In contrast, RLS is an iterative method that calculates the
self-tuning system parameters by using the previously estimated parameters (é(t -1)), and

the last sampled data. So, the use of RLS method reduces parameter estimation time.

2. All of the previous data must be stored by using the least squares method since these data -
are needed for further calculations. However, RLS parameter estimation needs only
previously estimated parameters and the last sampled data. As a result, RLS method reduces
the necessary data memory capacity.

An RLS algorithm is described in the following section.
3.6.1 Recursive Least Squares Algorithm (Wellstead er a/,1991,p.89)
At the step t+1,
Stepl: Form x(t+1) using the new data.
Step2: Form g(z+1) using
g(t+1)=y(t+1) - x" (1 + DB() (Eq.3.20)

Step3: Form P(t+1) using

i XD+) P() 3
P(”l)‘P(t){I”' 1+xT(t+1)P(t)x(t+1)} (Eq.3.21)
STEP4: Update (¢)
Ot +1)=0(r)+ Pt + Dx(t + De(t +1) (Eq.3.22)

STEPS: Wait for the next time step to elapse and loop back to STEP1.
3.6.2 Initializing The Estimator

In general, the choice of initial parameter estimations are not curical to convergence
behavior. However, it is useful to select the initial parameters as

a=-1 by =1,

a =03 #1) b, =0(i #0)

The usual way to determine the data vector with initial values is to begin sampling the
information for a few time steps before the recursive estimator is started.

A standard choice for P(0) is the unit matnx scaled by a positive scalar r.
PO)=rl

Typically, r is set in region 1-1000 according to application (Wellstead er a/,1991,pp.
119-120).

3.7 Pole Assignment Control

The main aims of feedback design are to modify the dynamic response of a system and to
reduce the sensitivity of a system output to disturbances. The poles of a system determine
the stability of a system and effect the nature of its transient response. Thus, it is possible to
obtain desired dynamic response by changing the placement of the system poles.

3.7.1 Controller Design by Pole Assignment for First Order Systems

A first order system illustrated in Figure3.6 may be represented in discrete time domain
by (Wellstead et al,1991,pp.244-245),

|

y(t)= I u(t) (Eq.3.23)

_a:”‘

and this model has a continuous time transfer function as

Yo _ f 5
Us) 1+as (Eq3.24)

where a is the time constant and f'is the system gain. o and f are related to the discrete time
model parameters by
a=exp(—t,/a)

b= (1-a)f (Eq.3.25)

where 1 s the sampling time. As seen clearly, the time constant of open loop system is

related to a.

However, the overall transfer function of the system shown in Figure 3.6 is represented
by

(1) = r(t-1) (Eq.3.26)

b
1-(a-bg):"

In this case, closed loop system response is related to (a-bg) instead of a. The location of
the pole may be assigned by changing the feedback loop gain g. Thus, the system time
constant alters from a. to 8 where

a=-1,/ln(a)

Eq.3.27
B=-1,/In(a-bg) (Eq)

| — System
i | + ue | bz Output, y(t
— } vy L :”() Z - put, y(t)

i S]‘ 1az

g
l !
ST~ Controller

Figure 3.6 A closed loop first order system

3.7.2 Three-Term Controller Design by Pole Assignment for Second Order Systems
If the system shown in Figure 3.6 is a second order system then the desired pole set will
consist of the two zeros of the second order polynomial

T=1+42" 44,270

where,

1, = —2exp(~¢w,7,)cos| 7,0, (1- £)"*}
t, =exp(-26w,t,)

(Eq.3.28)

where & and oy are respectively the damping factor and natural frequency of the desired
closed-loop second-order transient response.

Three-term controller (PID controller) is a second order controller. A PID controller
can be represented in discrete time form as (Wellstead et a/,1991,p.249),

u(t) = r(1)(8 +& +8:)— (& +gl:-] +g23_2).V(1) (Eq.3.29)

1_ -1

The coefficients g,,g,,8, are related to £,k , k, which are the proportional, integral and

p? -4

derivative settings of the PID controller by

k,=-g-2g,
k=g, (Eq.3.30)
k=g,+8+&

The transfer function of a second order system which is controlled by a PID controller is
represented by

-1

b,z
()= : _fl —-u(t) (Eq.3.31)
+a;z" +a,z

The overall system transfer function is obtained by combining Eq.3.29 and Eq.3.31 as
the following form,

b= (8o + 81 + &)
y(t)= - e - —r(t) (Eq.3.32)
(-zND(+az"+a,z?)+ bz (g, +8,27 +8,57)

The pole positions of the system is strongly related to system dynamic. The coefficients
g,.8:,8, are the controller parameters and can be set to a value to provide desired closed

loop performance. Thus, the pole placement of the system can be changed to appropnate
locations by determining g,,8,,8,.

By equating the denominator of (Eq.3.32) to a general second order polynomial
(A-zY(+az " +a,z)+b,c (g, + 8= + g2) =1+ +4,27

(Eq.3.33)

the following solution for the controller setting is obtained (Wellstead ef al,1991,p.249),

t1+(1—a1)
(e —
0 b
= L+(a-a) (Eq.3.34)
b,
&
gg b,

3.8 Self Tuning PID Controller Design Algorithm

STEP!: Determine the required overall system dynamic response, damping factor and
natural frequency.

STEP2: Calculate the denominator polynomial of the desired system from
T=1+1z"+14,2"7
1, = -2exp(-¢w, rs)cos{ tw,(1- ‘;‘2)"2}

tZ = exp(—zéwn T:)

STEP3: Find the transfer. function of the system by using RLS method which is described in
Section3.6. :

STEP4: Calculate g,,8,,8, by using (Eq3.34)

STEPS: Calculate k,,k ,k, by using (Eq3.30) and set the proportional, integral and

p’ 2

derivative gains of PID controller.

CHAPTER FOUR
A SELF-TUNING PID CONTROLLER APPLICATION

4.1 Introduction

In this-chapter, a self-tuning PID controller application is discussed. Most of physical
systems may be represented by first or second order transfer functions. PI controllers are
sufficient to control all first order systems as described in Section 2.6. However, second
order systems may need PID controllers to obtain desired overall response. In this
application, a simple second order system which is a serial RLC circuit is selected to control
because of its applicational simplicity.

The selection of a RLC circuit as a plant provides some advantages. The first advantage
of using RLC circuit is that system parameters can be changed in wide range easily by
changing the value of a component for example the value of the capacitor. The second
advantage is that a transducer which converts the system output to a voltage level in order
to obtain feedback is not necessary since the system output is already a voltage level of a
component as the capacitor. Most physical systems (for example a heater or an electric
motor) must be driven by a power drive unit as a PWM modulator or a phase control unit.
Therefore, calculation of these transfer functions may not be easy. Thus, comparing of the
experimental results with calculated predictions may not be correct. The third advantage of
using RLC circuit is that the system can be driven by digital to analog converter output

without any non-linear drive unit.

However, a RLC circuit has also a disadvantage. Response time and damping factor of a
RLC circuit is related with the values of R,L and C. Thus, inductors with large values are
necessary to obtain slow and underdamped responses . Otherwise, system responses are
faster than processor speed.

4.2 Mathematical Analysis of a Serial RLC Circuit

A serial RLC circuit which is shown in Figure 4.1, includes a resistor, an inductance and
a capacitor in serial connection. The fundamental integrodifferential equation of this circuit

is
V +Ri+L—i+—-—1 J.idt—-V (t,)=0 (Eq.4.1D)
in ,t C out *0 q‘ .

The second-order equation obtained by differentiating the equation with respect to time

is,

d*i di i
L—+R—+—=0 Eg.4.2
A C (Bq4.2)

The overdamped response of Eq.4.2 is

i() = Ae™ + 4,e™ (Eq.4.3)

where,

2
R R 1
S, =—7—-% (‘—‘"’ T~
L LC

1\S)

and thus,

The form of the critically damped response is

i()=e=(At+4) (Eq.4.4)

and the underdamped case may be written as
i(t)=e " (B,coswt + B,sinw) (Eq.4.5)

For three cases, the capacitor voltage, V_, ,, is (Hayt & Kemmerly, 1978, pp.244-246),

1¢.
V. =V..(t) + j i(f)dt (Eq.4.6)
R L
+
AN T+
\%
out
Vin L

Figure 4.1 Serial RLC circuit

The frequency domain transfer function of the circuit shown in Figure 4.1 s,

V }/LC

i

V. » R 1
S S —+—
L LC

A general formulation for second order systems may be written as,

2
n

)
G(s)=
(s) s’ +28w 5+

and Eq.4.7 may be rewritten in discrete time domain as,
bz ' +b
L1y — 1 2
W(“’)" 1 RS .2
-a:z" —a,z

where,

E>1

- - __ s
o=¢w,, 0=0,{&-1, = N
a, =2exp(—oT)cosh(wT)
a, = —exp(-20T)
b, = 1-exp(-oT)[cosh(wT) + ysinh (wT)]
b, = exp(—oT)[exp(~6T) - cosh(awT) + ysinh(wT)]

¢=1

a, =2exp(-w,T)

a, =—exp(-2w,T)

b, =1-exp(-w, 1)1+ w,T]

b, = exp(-w,N[exp(-w, 1) +w,T-1]

&<l

o=¢w,, w=01-&, 7= g
TF

a, = 2exp(—-oT)cos(wT)

a, = —exp(-207T)

b, = 1-exp(-oT)[cos(wT) + ysin(wT)]

b, = exp(-oT)[exp(~oT) - cos(&T) + y sin(w)]

(Neuman & Baradello, 1979, p.857).

(Eq.4.7)

(Eq.4.8)

(Eq.4.9)

(9]
2

4.3 Application

A self-tuning system must contain a controller, a plant, a system identifier and a
controller designer parts as discussed in Section 3.3. In this application, a data acquisition
board is used as the controller and the feedback input port of the system identifier. System
identification and controller design steps are done by an 80486 based PC and the plant is
constructed by a serial RLC circuit.

In this application, the process speed of the data acquisition board is insufficient to
provide both PID control and send the measured values to the PC simuitaneously. So,
parameter estimation step of the self-tuning algorithm is realized by cancelling the PID
control to apply a squarewave test signal to the plant directly as shown in Figure 4.2.

Estimated
parameters
Controller Recursive
designer estimator
Test signal
Plant
generator A a(ty Y(t)

Figure 4.2 Parameter estimation step of the self-tuner

Recursive least squares (RLS) algorithm which was discussed in Section 3.6 is used to
obtain the parameters of the plant. The recursive estimator determines the parameters of the
plant as a second order discrete time transfer function

b=
— u(t) (Eq.4.10)

)=
n 1+a,:=" +a,z

After determining the parameters q,, a,, b,, the coefficients of the PID controller are
calculated by using desired overall transfer function specifications (damping factor, natural
frequency) and the estimated plant parameters. In this application, desired overall system is
a second order system. The calculation method of the PID coefficients were discussed in
Section 3.7.2.

After the calculated PID controiler coefficients have been downloaded to the controiler,
the system performs PID control as shown in Figure 4.3.

()

(%)
(8}

PID
Controller

u(t)

Plant

J®
7

Figure 4.3 Implementation of PID control

A complete flow chart of the applied self-tuning algorithm is shown in Figure 4.4.

START

Define the overall
system response

NA

N

Implement a test

signal to the plant K— —)

Send the test signal
and output of the plant
to the estimator

Has the lest signal
implemented for six
cycles?

Calculate the PID
coefficients

Download PID
coefficients to the
PID controller

N

Start the PID
controller

Yes

\D_____l

Calculate the
plant
parameters

Is a new system
definition required?

Figure 4.4 Flow chart of the self-tuning application.

CHAPTER FIVE
HARDWARE AND SOFTWARE OF THE APPLICATION

5.1 Hardware Structure of the System

In this application, analog input/output and PID implementation are provided by a data
acquisition board called DAP800 (see Appendix). DAP800 has an on-board Intel 80C188
processor and is appropriate for intelligent data acquisition and control applications. It
provides 8 analog inputs, 2 analog outputs, arithmetic operations and some mathemetical
functions as PID, FFT, digital filtering etc. DAP80O is located in an 80486 microprocessor
based personal computer (PC). Since DAP800 has its own microprocessor, it can perform
stand-alone while the PC performs another process. However, PC and DAP800 can
communicate each other by using the data bus of the PC. Thus, the PC software can process
the data from DAP800 while DAP800 performs another process such as signal generating
or data sampling.

In the first stage of the self-tuning, DAP800 provides a squarewave test output to the
plant. It sends the data -which are read from input and output of the plant- to the PC. The
PC performs a recursive least square algorithm by using these data concurrently.

To obtain a better estimation result, the period of the test signal should be a few times
longer than the damped period of the plant.

In the second stage of the self-tuning, the coefficients of the PID controller are calculated
from the estimated parameters and desired overall system response by the PC software.
After these calculations, calculated PID coefficients and another DAP800 software
procedure which performs PID control are downloaded to DAP800. The setpoint of the
PID controller is changed by PC software and the response of the overall system is recorded
to compare with theoretical results. The illustration of the system is shown in Figure 5.1.

Feedback
OorP
DAP800 =
Plant

Figure 5.1 Self-tuning system application

LV¥)
W

5.2 The Mathematical Model of the Plant
The plant which is controlled by self-tuning PID controller in the application is shown in
Figure §5.2.

8=3 kohm 1=b0Henry

(9]
<3
(e
[
ot

Figure 5.2 The plant which is controlled in the application

In this application, capacitor value, C, is changed to obtain different system responses. In
this paper, only two values of C which are 1.5uF and 15uF are discussed:

For C=1.5uF,

The damping factor, &, is obtained by combining Eq.4.7 and Eq.4.8 as,

R |C
:=-,—\/; - Eq.5.1)

and the damping factor of the system can be calculated from Eq.5.1 as

-6
i 3000 }1.5x10 —09%
2 50

The damped frequency, @,, can be calculated from Eq.4.3 as

a=~R—=3O
2L

—

@, = =115.47

1
NLC
w,=\wg-a =1115rad/s
f,=17.74H:=., T,=563ms
For C=15uF,

The damping factor of the system can be calculated from Eq.5.1 as

E=3OOO /I_S.Y]O' 0.8
. 2 \ 50

The damped frequency, @, can be calculated from Eq.4.3 as

= =30
0 = e =365
JLC
w, =+or—a =20.82rad/s
f,=331Hz, T,=301.8 ms

The computational step response of the system while C=1.5uF and C=15yF are shown in
Figure 5.3a and Figure$5.3b.

Samples (T's=0.001sec)

Figure 5.3a Unit step response of the plant while C=1.5uF

1.2 -
l..
0.81
0.6 +
04 1
0.2

Lt B e IR o AN AL A B S A e A T - A AL < D 3 “A T

- N M T O XS CMmT AT BT -

R e R e e e e e = T & T o T o I o |

Samples (Ts=0.001sec)

Figure 5.3b Untt step response of the plant while C=15uF

5.3 Software Structure of the System

The software of the self-tuning PID controller application is constructed by three main
parts:

+ Recursive estimator
o PID parameter calculator
e PID controller.

Recursive estimation process is performed by two different software which are run in the
PC and the DAP800 concurrently. The flow chart of the recursive estimator subroutine of
the software is shown in Figure 5.4.

PC DAP800
START

Send the DAP software
to DAP800

A\

Start the DAP00 | __ - - . _ b . __

Receive the input and A.PPlY squarewave test
the output of the plant. L e L signal to the plant.
from the DAP800 \

A \ Measure the input and the
Calculate the parameters : output of the plant.

- --1 Send the measured data
N to the PC.
Have 3000 sampled

data recetved?

Stop the DAP800

i

Figure 5.4 Flow chart of the recursive estimator software

38

RLS algorithm which was discussed in Section 3.6 is used to calculate the parameters of
the plant transfer function. The initial parameters are obtained by presampling before
estimation. The sampling period of the input and output i1s determined as 1 millisecond. The
initial value of the P matrix is selected as

v

i
©c o wn
o wn o
w o o

to obtain proper experimental estimation resuits.

PID parameter calculation is done by the PC according to the calculated plant parameters
and desired overall system response criterta which are damping factor and natural

frequency.

PID implementation is performed by DAP800. DAP800 is capable to provide PID
function with respect to desired PID parameters. The DAP procedure which provides PID
and PID parameters which are calculated in previous step are downloaded to DAP80O by
the PC. The setpoint of the overall system can be sent to DAP800 by the PC at any time.
The flow chart of the PID implementation software is shown in Figure 5.5

PC

START

Send the PID procedure
and PID coefficient to
DAP800

Send a new setpoint to
DAP800

No

Stop the DAP800

EXIT

|
f
|
i
1
3
|

DAP800

Measure the feedbéck

Calculate the PID output

Set the output channel

Figure 5.5 Flow chart of PID implementation software

40

CHAPTER SIX
APPLICATION RESULTS

6.1 Introduction

In this chapter, the experimental measurements and results of the self-tuning control
system that controls the RLC circuit illustrated in Figure 5.2 are given.

6.2 Recursive Estimation Results

The squarewave test signal and the measured plant output are shown in Figure 6.1a and
Figure 6.1b for C=1.5uF and C=15pF.

The desired discrete time model of the plant is

b,z
1+a;z™" +a,z

)= — u(t)

and the estimated parameters are,

(For C=1.5pF)
a, =-1922
a, =0.934
b, =0.013
(For C=15uF)
a, =—1.948
a, =0.949
b, =0.001

The estimation period of the parameters is shown in Figure 6.2a and Figure 6.2b.

As a result, the estimated discrete time transfer functions of these plants are,

0.013™
0= uit for C=15
O 1-1.922z7 +0.934z7) r uE
0.001=™'
V= u(? for C=15uF
YO =T Toas=" ro0a0:7 “Y) 7z

41

These transfer functions can be represented in difference equation form as

V(1) =1.922p(t 1)~ 0.934y(t ~2)+0.013u(r—1) for C=1.54F

¥(t)=1.948y(¢ ~1) - 0.949y(r ~2) +0.001u(t 1) for C=154F

The step responses of the estimated transfer functions are calculated to verify the

estimation results by using the difference equations. These results are shown in Figure 6.3a

and Figure 6.3b.
T
A s
Y ‘ Y 1
| L L
3 I 1 l ‘ ! f . f ! !
2 [X [L L
E‘-@vhlcmhd«olnneinvhom»o:hd-nuo*-—-q»-cmlsooxlvn —
LI R EEE R ER AR EEL B8 R S B LR :%sz
R --hn—-—)-——-;‘—-—(‘lf‘llf‘lf‘(‘lbllf‘l o o™
[
4 === PLANT OUTPUT
i"'H,ANTINPUT
Samples (Ts=0.001s)

Amplitude

Figure 6.1a Test signal(piant input) and plant output while C=1.5uF

1 i ;_.ﬁ ; r r I
1| ‘T T A R O Y
1 Lo | | T
g 8 S) N | N _— |
tkslecplegbsdedl e s et s ek a2 dk 2
=8 F 5 RS »mp::]::’:size;;fm:]::afaaa.;
o I
T I I |
AT L A S S A
' | | l Plamoutputé
E 4
| — — Pantinput !
4

Samples (Ts=0.001s)

Figure 6.1b Test signal(plant input) and plant output while C=15uF

Parameter values

Parameter values

G

Wl

a2=0.934
a2
l}0=0.013
b0 4
122852233 RS882888 3888888338388 ¢%
al=-1.922
al /
4
-2
|
.3 4
1
Samples (T's=0.001sec)
Figure 6.2a Parameter estimation for C=1.5uF.
a2
] -
1 7
/
a2=0.949
bo= 0.(3\01
b0 4

al

al=-1.948

Samples (Ts=0.0015)

Figure 6.2b Parameter estimation for C=15pF.

= =
(8 4= (=2}
1

—

Amplitude
(=]
(=]

0.6 -
0.4
0.2
0
- NN T N O 0D =Nt N O 00N O =M
i s I s T L 2 T = T - B oo B I o Y s o TR (N "o Y B o B I~) W I o I D
L e e e e e e e e e = B s B e B e]
Samples

Figure 6.3a Calculated step response of the estimated transfer function for C=1.5uF

12 7

e
%

Amplitude
<
=)}

0.4
02 +
0 Mt
—_ N T O 0N D NN O~ ON Ao
~N MM T WO R0 0 =N OO N
L T T T B T R T T Y & B o S o B o §
Samples

Figure 6.3b Calculated step response of the estimated transfer function for C=15uF

The step responses which are obtained from frequency domain transfer functions of the
RLC circuits were shown in Figure 5.3a and Figure 5.3b. As seen clearly, step responses
which are obtained from estimated parameters and frequency domain transfer functions are
very similar. Therefore, estimation results are verified by the similarity between Figure 5.3

and Figure 6.3.

44

6.3 Self-tuning PID Implementation Results

In this section, step responses of two different RLC circuits which are controlled by the
self-tuning PID controller are given for different damping factors and natural frequencies.
The plant which is controlled by PID controller is shown in Figure 5.2. Different open loop
transient responses of the plants are obtained by changing the value of the capacitor.

Table6.1 shows the plant and desired overall system specifications of the measured
systems. In this table, identification and PID control values of the capacitor is meaning the
capacitor value of the RLC circuit (plant) while parameter estimation step and PID
implementation step respectively. In normal conditions, these values are equal until the plant
is forced to change by external effects. However, self-tuning system parameters should be
identify again when the plant parameters are changed. Figure 6.8 and Figure 6.13 show step
responses when identified system and controlled system are different.

The measurement results are illustrated in Figure 6.4 - Figure 6.13.

Table 6.1 The plant and desired overall system specifications of the measured systems.

C value while | C value while 2 o, Figure number
identification PID control | (Damping fac.) (rad/sec)
(uF) (119) ,

15 15 0.1 10 Figure 6.4
15 15 0.8 10 Figure 6.5
15 15 0.1 3 Figure 6.6
15 15 0.8 3 Figure 6.7
15 1.5 0.1 10 Figure 6.8
1.5 1.5 0.1 10 Figure 6.9
1.5 1.5 0.8 10 Figure 6.10
1.5 1.5 0.1 3 Figure 6.11
1.5 1.5 0.8 3 Figure 6.12
1.5 15 0.1 10 Figure 6.13

45

01 = "o “1'0=3 “dric =D 3piym 1naso DY 9yl Jo asuodsas Qoem

pg aandiy

AT

P g o

il vk e S T o R P PUTRIRIEVL S |
izt L - - o U
(ST PRt —v < R PN PR St -
S P W'Y S sl At A a4 & P U WU PUD Y ¥ ORI VR W
—p—— —— ——r—r——" LANES A ama Py B e fann a4 ——g—— —— v
‘ Y
o e, - ERFIPRE BT TR O L
A A
- v v

B e e v

40

01 ="® ‘g0=3 “Irig [=D 3pym unamo J1Y 9yl jo ssuodsar dayg g9 aandiy

kwlhhund...)l_ PR S

& | AT oy

-
!)
!
3 T
“ -
H 4-
!
E a4
| H +
i i
¢ -
N
i 1 H u-
: g
B M .
“ i {
[PR ..b,: wd e i i e s I et 47 gt o B bt . 2 - [T J U, R S —
i ® @
. i i L 3
1 ¥
) E
: H L L 3
| { l T
i K m L 3
b PN P PSP .. .~ NEPUP PP SN PR PN
el A JBat i e e e e an oo e men o oo LI J0Nn Sis Sy nies man a2 Yot el s calfpurndg e i el sanfpmi ooy e
H b
m. 5 ' 4!
) : { +
3 ! '
t H i L 3
3+ 4 H
H i ! r
: i ; i
R . i : 3 N . IRRURTAS: SPRP S —
R : H %
i : +

YR T Y AT A YT W WS YW T vy TrTeY vErey w v }L

j
j

et it e

i
1
i

oA - - +* PP T NN VRN (Y Ip—
: } 1

m 1 -

! +

!

b e g e U E R S, SRE PR N RN PPN S —

o L e b kBl € - 00N o e
2
v

4 b A

T e L

o deotn v s B v, [P PNy SNRp———

47

€ ="® ‘1°0=3 ‘415 1=D 3jiym unoad)1y oy Jo asuodsar dajg 9°9 danSiy

+
GO] AT [x0id
4
L 4
SRUUSNUNURIES RS S .4 N AN
-
-
L
4
SN S 1. e ol . S PO
L 4
-*
C
+
e e . e - e e
L .4
L 4
L J
v
T o Lo Ty I SO U WP USFIES NEPUSPOR Aottt
e - PR |

Sadddee T e A e

s, it 1 e P T e

WY % NO

48

€ = ‘@ ‘g:0=3 ‘A1 1=D 9ym NNoI)Ty oY1 Jo asuodsas doig

L9 3andy

““l...zixlﬂl . Ji.. ,,,,,, S e ey . o s e ’ A
: .~
! {
{ ! i |
: ; H
§ i { {
. o R U Y SO H i . -
- M ! ! .]
i ! : ; i
; : f !
) ! {
: ' ! :
: { .
i ! !
Fa——rnert N B0c oo don w6 H e
) ; '
k i
H i
i !
} {
i i
— - e § e
i ; ;
: 1
i s
y ;
! §] 2
P PO ST S S b beeebort eeboned. Bttt bt b oodtctadod — .-».L»lt?-»’»
ot LARE e o L g e A e e St + L e e 2o o L 4
i : i :
i : i
: ; g ;
. . .
. : i : !
' i : i
r— I B H - e i g
A : o 2 A B m
v ey v
. . ;
; ¢ : ; : i
3 : H ; i
O 4 ’ - * . € . - + - A - S e
| i : H
i ; i : i
: .”, w | |
; ; ! _ b
: : !
: ; : ! .)
5 3
e i t ; ! . e}
i 3 i - ; e PR
! ; 3]] !
d . ! L ¢
m |
L |

49

__ pajjonuo:

(/s = < is 1 = TPy uasagup ok sjuepd pojjoJIU0d puB PIPIIUIPL A[IYMm JINDIID JTY Y} Jo dsuodsar dayg g'9 dunByy

, mmd-., 1 AT [xoy

e T Y PR covii.. o E., ool e it e o o oian v

4
3
&
¥
¢
&

SRR EL IR T B T e e 2% . e b e b ven R 9 s v e e riemar]

e

!.. R
i
.
:
H
i
¥
&
v

b

[

L 2
-
+
-
-
+
<

L
L 3
L 2
>
4
L 3
-

L 3
-
ES
L 3
-»
-+
o
-
1}
-
+
8 ¢
*

-
»
»
-
-
L d
L
e
<
4
r
-

e

SRRV
2
v

WS % NO | 11bH

50

01 ="® ‘1'0=3 ‘g1 1= apym HNoNd)Y 9yl Jo asuodsas dayjg 9 danSy

GO ! AT |
] t -
i +
Wﬂ

L NS BN BN Suas amat

Sandbardnls bl b PO Sevdiodorslirondirnbsnbead o s SN Sl PUPUEP U S W S WY
- famdparipmale L g fan L e e ot §lprinfpaf B S Jas ans aas s ane oon e o Poeorafponcd 4= e
ﬁ a L J
!
! m L
1 i -
i f
} 1 L]
e . - H i [S - U S—
¥
_ - }
- UNUU———

[it |

el st vl

W

01 = @ ‘g'0=3 ‘dNS [=D d[1yMm HNO1D DTy oY1 Jo asuodsas daig Q19 24nSiy

"

-

-~

.r .
L o
9G0 I AT |X0d
L o
u‘
N SR S SRR S _ S RNV ——
g
-+
L 3
£l -
! +
i
S - . N i e]
{ ' 4
; i [
!) T
i w 4 f L 3
i [} 4
i { { 1
b e Y ———— |:! 20 [heo - - - O TR -
i ¢ .ﬁ
* .« d
{ -
! |
| 3 ! L
H i 3
% m -
A
L e s B e e DRl e o e B e e e S e e e e A
L o

I S

cl
v

O A o B e e e L.lfl.l.li,llz...lrlw o e - 1}4:4:...!@.11,111..41‘41, R R o |
,, ; i ! i %.

€= @ “1°0=3 41 =D Iym Inomd Ty 9y Jo ssuodsas daig 11'9 umdyy

r -z--\ Jt :j , }f.;;sx)— e B
| S50 | | 1T oy
{ 1
i i t !
| 1 /]

; | m |
! {

{ | ! ! ;

w i : i !

J ; } ; i

j i i i “

: y ‘ :

i w _,,

! ; ~ M

{ * H ! :

: ! ;

SR

€="® “g'0=3 ‘drlg 1= Ay Nnon0 J SY1 o asuodsar darg 719 aundiy

.
G0 | [AT [X0ld
E 3
+
frroreares 55 P e e = comna BN - PR [ey, 2 4 e e ar—y
&+
+
« L 4
1
! +
o . - 4 . , - . . - SR
i ! -+
U SO
A
rom—ry P |
oty Aoty

B L R I L —

b PSR

i e 3

i

4 uv

. -~

! 4+

iw Jmer N

: G " - &+ DU S ——
-+

i
i

=
¥

- . e R « e 0 s ey e gy

__ paljoamon

(51 =) <711 = PP) Juasayip aae sjuejd pajjo1u0d PUB PIHUSPI I[IYM HNOND Y SY1 Jo ssuodsal doig €1°9 andiy

-t

4

&
. s
_«'..‘m-‘u-\-“.- -

ey

LY !
L
GO i AT Ixoy
&
i i 4
AP .)) s
i f 3 1
: i !
i : !]
P I ’ &
: ! | 1
m ! o>
e 1. | ,
‘ B & - - [Sy wrsnross o mory
b w * w e
§ y M N L 9
| “ W .”. i
, m n_ “)|
i
: M i 1
i ! i T
m o
ettt a rvra—reay
Attt et —
1
$
|
]
}
o

PRI RR—

T D T e o W) o . i ot e ey P
Y
v
3

b
3

e

B I

S A i ot 1 g e+

=
5

v B e gl

55

As seen clearly, the measured systems which are desired to obtain same overall step
responses (for example Figure 6.4 and Figure 6.9) have similar damping frequency and
similar damping factors. However, if the system is controlled by an invalid parameter set as
shown in Figure 6.8 and Figure 6.13, the system gives undesired response. This means that
the self-tuner can estimate the plant parameters and calculate the proper PID coefficients

successfully.

Weights of the PID function coefficients of DAP800 are unknown because of the PID
calculation method of DAP800 is not transparent. In other words, the PID function
coefficients of DAP800 are multiplied by unknown coefficients. Thus, calculated PID

parameters must be scaled by other coefficients to use with DAP800. In this application,
calculated PID coefficients, X, X, K, are scaled as,

Ko papso = Kp *0.9
K papwo =K, *1.2
Kp_papsoo = Kp *0.36

However, these scale factors are found experimentally and they are not actual values of
these coefficients. Therefore, there are small differences between the systems which are
desired to obtain same overall step responses. ‘

56

CHAPTER SEVEN
CONCLUSIONS

In this thesis, a self-tuning PID controller has been realized. In many industnal
automatic control applications, the controlled systems contain different physical magnitudes
such as temperature, speed, humidity etc. However, in this study, the controlled object was
the voltage of a capacitor which was used in a serial RLC circuit. The reasons of using a

RILC circuit were;

1. Calculating the transfer function and transient response of a RLC circuit is simpler than
another physical system contains physical magnitudes except voltage or current. Thus
comparing of the experimental results with the theoretical calculations can be done

properly.

2. The response of a RLC circuit can be changed in large ranges by altering the values of
R,L or C components easily.

3. There is no need to use any electrical drive unit to control the plant and any transducer to
obtain feedback signal.

The realized self-tuning PID controller hardware were constructed by a data acquisition
board called the DAP800 and an 80486 microprocessor based PC. In parameter estimation
step of self-tuning process, the input and output of the plant were measured by the DAP800
and the parameters were calculated by the PC. All of the calculations consist of simple
arithmetical operations. Therefore, the applied self tuning algorithm can be realized by a
simpler microcontroller instead of 80486 based PC. Additionally, most of physical systems
which are used in industrial applications have slower transient responses than the used RLC
circuit. Therefore, a microcontroller which is slower than the PC can perform self-tuning
PID properly. Thus, the use of self-tuning PID controllers become more practical and these
controilers can be employed in wide range of industrial applications.

Recursive least squares parameter estimation method was used to obtain open-loop
discrete time transfer function parameters of the RLC circuit. The estimated transfer
functions are compared with the theoretical transfer functions and verified.

PID implementation stage of self-tuning controller is performed by the DAP800. In this
application, the open-loop damping frequency of the RLC circuit is larger than 10Hz. The
sampling frequency of the PID controller is selected as 1 Ksample/second to obtain proper

57'

closed-loop transient and steady-state responses. However, the DAP800 can not provide
PID control and another task such as communicating with PC simultaneously, because of
this sampling frequency is very fast for process speed of the DAP800. So, undesired
transient responses are obtained when the setpoint of the PID controller is changed by PC
using the communication pipe of the DAP800. These undesired responses continue for a
while and after communication process is completed, PID process continues properly.

The performance of the self-tuner was verified by comparing the desired closed-loop step
responses with measured step responses of the RLC systems. Additionally, when the PID
controller was tuned to obtain same natural frequency and damping factor from different
RLC circuits, very similar closed-loop step responses were obtained. The difference
between closed-loop step responses obtained from different RLC circuits results from the
unknown scale factors - which are different from each other and estimated by using trial and
error method - of PID function of the DAP800.

The designed system provides two main advantages: The first advantage is that desired
second order system responses can be obtained easily without any calculation and tuning
operations. It is sufficient to determine the damping factor and natural frequency of the
overall system to obtain desired system response. The second benefit is that if the
characteristic of the controlled system alters in time, controller can identify the new system
and perform properly without any manual tuning.

REFERENCES

Distefano, J.J.& Stubberud, A.R. & Williams, 1.J. (1967). Theory and problems of
feedback and control systems. Shaum Publising.

Dorf, R.C. (1986). Modern control systems. Addison-Wesley

Grantham, W.J. & Vincent, T.L. (1993). Modern control systems analysis and design.
Singapore: John Wiley & Sons.

Hang, C.C & Sin, K.K (1991). On-line auto tuning of PID controllers based on the
cross-correlation technique. JEEE transactions on industrial electronics, 38, 428-
437

Hayt, W.H. & Kemmerly, J.E. (1978). Engineering circuit analysis. Tokyo:McGraw-
Hill Kogakusha.

Narenda, K.S & Monopoli, R.V (1980). Applications of adaptive control. New York:
Academic Press

Neuman, C.P & Baradello, C.S. (1979). Digital transfer functions for microcomputer
control. IEEE transactions on system, man, and cybernetics, 9, 856-857

58

Web Site of The University of Michigan (1997). Control Tutorials for Matlab. PID.html at

www engin.umich.edu.

Wellstead, P.E. & Zarrop, M.B (1991). Self-tuning systems control and signal
processing. New York: John Wiley & Sons.

APPENDICES

2265 { 16th Avenue N.E.

MICROSTAR Bellevue, WA 98004

Sales & Customer Support: (206) 453-2345

™ Finance & Administration: (206) 453-9489
LABORATORIESZ | Fax: (200 4533199

Technical Note TN-101 Version 1.1

Technical Product Information for the DAP 800™

The DAP 800 models

. each have an on-board Intel 80C188XL 10-MHz or 16-MHz processor.

. work with the XT/PC/AT/ISA bus for 8086/286/386/486 and Pentium PC platforms.
. transfer data at high rates: up to 105K samples per second from a DAP 800 to the PC.
. allow fast real-time processing.

. offer low latency — 1 ms per task — for fast response.

. sample analog or digital inputs at rates up to 105K samples per second.

. update two analog outputs at rates up to 105K samples per second each.

. update digital outputs at rates up to 105K samples per second.

This technical note describes all of the DAP 800 models in terms of software speed and functionality,
special hardware characteristics, and similarities with other Data Acquisition Processor™ boards.

There are three DAP 800 models: the DAP 801/101, the DAP 800/102, and the DAP 800/103. Their
hardware differs mostly in three areas: speed of the on-board CPU, DRAM size, and sampling rate.
These specifications are compared in Table 2 — “DAP 800 Typical Hardware Specifications.”

The DAP 801/101 has the added feature of a serial connector which allows it to communicate with
the PC in stand-alone mode. Ask for Microstar Laboratories Technical Note TN-158 for more
information on configuring the DAP 801/101 in stand-alone mode.

The DAP 800 is the lowest-priced Data Acquisition Processor board available from Microstar
Laboratories, and is appropriate for intelligent data acquisition and control applications where cost is
important. With the DAP 800, Microstar Laboratories provides intelligent data acquisition and
processing at the cost of a non-intelligent board. The DAP 800 provides all the standard DAPL™
commands available on other boards, performing them at rates appropriate for lower speed
applications.

The on-board multi-tasking operating system, DAPL, is a complete software environment for real-
time data acquisition. DAPL is common to all Data Acquisition Processors and ensures that board-
level hardware differences are transparent. To aid application development, DAPL comes complete
with many system diagnostics, in addition to automatic memory and system checks that are done at
initialization. Tasks that perform averaging, triggering, FFTs, filtering, arithmetic operations, and
many other functions are pre-coded in DAPL. These tasks, or DAPL commands, are chained together
to form a complete data aquisition application. Custom commands also can be written with the
Advanced Development Toolkit if multiple commands need to be combined or if a specific
application cannot be implemented with standard DAPL commands.

Another common element shared by the DAP 800 series is the bus interface. The DAP 800 models
work with both XT and AT ISA busses for 286/386/486 and Pentium PC platforms. 256-byte first-in-

Technical Product Information for the DAP 800 1

first-out (FIFO) buffers allow fast data transfer to the host PC. For example, the DAP 800/102 and
DAP 800/103 can transfer information to the PC at rates as high as 105K samples per second.

The main feature of the DAP 800 is its ability to solve applications at a low-cost. The DAP 800 is an
excellent choice for applications where there is a need for moderate real-time triggering, averaging,
control, interpolation, or many other functions, but no need for high-speed FFTs or other
computationally intensive operations. Table 1 gives information about the execution speed of DAPL
commands on the DAP 800. For higher power applications, any of the DAP 1200e™, DAP 2400e™,
DAP 1216e™, DAP 2416e™, or DAP 3200e™ series may be appropriate. Contact Microstar
Laboratories for more information on these products.

Table 1: DAPL command execution speed for the DAP 800 series

DAPL Command Description Time of Execution! | Time of Execution on
on DAP 801/101 DAP 800/102 or
DAP 800/103
BRVERAGE Averages groups of 16 345.6 us 152 ps
data points?
FET FFT of blocksize of 463 ms 247 ms
512 points
REFILTER Filters input data with 580.4 us 316 pus
20 tap filter
LIMIT Generates level based 12.4 us 7 us
triggers on 1% of data
WAIT Processes data based 14 ps 6 us
upon triggersata -
retention rate of 5 out
of 100 samples
DAPL Expression: Adds two word-length 174.4 ps 64 us
P3 = P1 + P2 pipe values together

In addition to its processing capabilities, the DAP 800 provides a complete arrangement of analog
and digital input and output sections. The analog input section is expandable—up to 32 single-ended
or 16 differential inputs. See Table 2 for more information.

Data is sent or received by the DMA controlier of the 80C188XL at a rate of up to 105K samples per
second. This data is clocked at a sampling rate or output rate controlled in software, but the actual rate
is accurately set by on-board crystal-controlled timers. The sample period is specified in steps as
small as a quarter of a microsecond. The length of every sample penod is accurate to 50 parts per
million.

In addition to on-board timing, the DAP 800 also has provisions for an external input trigger and an
extemal clock input for input and output.

1 The speed given is an actual application speed for the DAPL task. including sampling. DAPL task-switching
and activation, and simulated transfer time. Kernel speeds for the tasks are actually faster.

2 The speed given is for the complete block operation, if applicable. For a per value speed, the time of
execution must be divided by the block size.

2 Technical Product Information for the DAP 800

To clarify the operation for the various hardware sections, Figure 1 displays the architecture of the
internal processing in the DAP 800.

80C188XL

DAP 800
ARCHITECTURE

.
:

ADC
2
| DIG IN
2K oma ,
:1: DACO
3 > DMA
S DAC1
DIG OUT
___ A
@ BiFIFO <}::ll> HOST PC

N4

Figure 1: DAP 800 Data Acquisition Hardware

The 80C188XL processor, shown in Figure 1, performs the operations necessary for data acquisition
and control. The CPU resides on the local DAP 800 bus and directs all data transfers. For instance,
data from the analog and digital inputs are sent via DMA transfers to the on-board DRAM memory.
From there it can be processed by the CPU, transferred to the PC, and/or directed via DMA to the
output section.

Transfer of data and other communication to the PC is handled by a FIFO buffer. Information can be
exchanged with the PC in both directions simultaneously and can be either DAPL programs, binary
or text data, error messages, or DAPL system commands. This communication method is not only
faster than DMA, but allows multiple Data Acquisition Processors to share one interrupt line. In this
way, up to 14 Data Acquisition Processors can control and acquire data in one PC.

In addition to the processor and data transfer hardware, some important hardware specifications of
the DAP 800 are given in Table 2 on the following pages.

(99]

Technical Product Information for the DAP 800

Table 2: DAP 800 Typical Hardware Specifications

Specification DAP 801/101 DAP 800/102 DAP 800/103
imensions 13.37" x 4.2" 13.37" x 42" 13.37" x 4.2"
Teight 9.1 0z 9.1 0z 9.1 0z
PU Type Intel 80C188XL Intel 30C188XL Inte] 80C188XL
PU Clock Speed 10 MHz 16 MHz 16 MHz
PU DRAM 256 Kbytes 256 Kbytes 1 Mbyte
ata Acquisition Mode DMA DMA DMA
us Support? XT, AT XT, AT XT, AT
C Interface Hardware 256 byte FIFO 256 byte FIFO 256 byte FIFO
C Transfer Mode 1/0Q Interrupt 1/O Interrupt 1/0 Interrupt
faximum Transfer Rate* 75K samples/sec 105K samples/sec 105K samples/sec
ower Requirements +5V, 2.0 Amps +5V, 2.0 Amps +5V, 2.0 Amps
)perating Temperature 0-50 °C 0-50 °C 0-50 °C
.ccuracy of Crystal Clocks 50 parts per million 50 parts per million 50 parts per million
'ype of A=D Converter Successive Successive Successive

Approximation Approximation Approximation

{odel of A=D Converter

Maxim MAX163

Maxim MAX163

Maxim MAX163

fax. Analog Sampling at
fain = 1

75 K samples/sec

105 K samples/sec

105 K samples/sec

iain = 10 75 K samples/sec 100 K samples/sec 100 K samples/sec
jain = 100 25 K samples/sec 25 K samples/sec 25 K samples/sec
jain = 500 2 K samples/sec 2 K samples/sec 2 K samples/sec
{umber of Channels 8 8 8
:xpandable To 32 32 32
wnalog Input Voltage Ranges | -2.5t0 +25V 25t0+25V 25t0+25V
OtoSV Oto5V Oto5V
Sto5V Sto5SV StoSV
-10to 10V -10to 10V -10to 10V
tesolution 12 bits 12 bits 12 bits
f Range is -5 to 5 Volts 24mV 2.4mV 24mV
\ccuracy +1 LSB +1 LSB +1 LSB
f Range is -5 to § Volts £24mV 2.4 mV 2.4 mV
Analog Input Bias Current 12 nA 12 nA 12 nA
Analog Input Impedance >> 10 MQ >> 10 MQ >> 10 MQ

3 The DAP 801/101 also can communicate in stand-alone mode via an RS-232 connection.

4 When used in stand-alone mode, the DAP 801/101 can transfer data at a maximum rate of 100 samples per

second.

Technical Product Information for the DAP 800

Table 2: DAP 800 Typical Hardware Specifications cont.

Specification DAP 800/1 or DAP 800/2 DAP 800/3
DAP 801/1

~ommon Mode Rejection 90 dB 90 dB 90 dB

Viax. Input Voltage +25V 25V +25V

T'ype of D=>A Converter Voltage Output Voltage Output Voltage Output

Model of D=A Converter Burr-Brown DACS811 Burr-Brown DAC3811 Burr-Brown DAC811

Maximum Update Rate 75K updates/sec 105K updates/sec 105K updates/sec

Number of Channels 2 2 2

Output Ranges Otol0V Otol0V Oto 10V
StoSV Sto5V StoSV
-10to 10V -10to 10V -10to 10V

Resolution ‘ 12 bits 12 bits 12 bits

[f Range is -5 to 5 volts 2.4 mV 2.4mV 2.4 mV

Accuracy +1 LSB, +1 LSB, +1 LSB,

If Range is -5 to 5 volts +2.4mV +2.4mV +2.4 mV

Output Impedance 0.2Q 0.2Q 02Q

Current Source Maximum +1 mA 1 mA +1 mA

Digital Input/Qutput Logic ALS TTL ALS TTL ALS TTL

Max. Digital Update Rate 75K words/sec 105K words/sec 105K words/sec

Number of Input Bits 8 8 8

Number of Output Bits 8 8 8

Digital Input .

Min. Logical High 2V 2V 2V

Max. Logical Low 08V 08V 08V

Max. Current Sink 20 uA 20 A 20 pA

Max. Current Source 20 uA 20 A 20 A

Digital OQutput

Min. Logical High 26V 26V 26V

Max. Logical Low 05V 05V 05V

Max. Current Sink 24 mA 24 mA 24 mA

Max. Current Source 2.6 mA 2.6 mA 2.6 mA

Hardware Clock 25ns 25ns ' 25 ns

Min. Pulse Width

riardware Trigger 60 ns 60 ns 60 ns

Min. Pulse Width '

Trigger Modes GATED GATED GATED
ONE-SHOT ONE-SHOT ONE-SHOT

th

Technical Product Information for the DAP 800

/I APPENDIX 2

/****************************#********************************#*****

RECURSIVE ESTIMATION AND POLE-ASSIGNMENT CONTROL SOFTWARE

AARIK AR KRR AR AR F AR AR KRR KRR AK AR KA KRR AR AA A A A AR A AR A AN AAHHAK |

#include<stdio.h>
#include<graphics.h>
#include<stdlib.h>
#include<math.h>
#include<fentl.h>
#include<dos.h>

#include<dapiocd.c>
#include<clock.c>
#include<c_lib.c>
#include<dapto.c>
#include<cfgdap.c>

FILE *DapBinIn, *DapTextOut, *DapTextIn, *DapBinOut;

I XOGFEXB11]
void XxXT(float x[4],float result[4][4])

{
result[1][1]=x[1] * x[1] ;
result[1][2]= x[1] * x[2] ;
result[1][3}=x[1] * x[3] ;

result[2][1]= x[2] * x[1] ;
result{2]{2]= x[2] * x[2];
result[21[3]= x[2] * x[3];

resut[3][1]= x[3] * x[11,
result[3][2]= x[3] * x[2] ;
result[3][3]=x[3] * x[3];

}

void mux3x3(float A[4][4],float B[4]{4],float result[4][4])

{
result{1]{1]= A[1]{11*B[1](1] + A[1]{2]*B{2]{1] + A[1][3]*B{3][1];
result{1]{2]= A[1]{1]*B(1]{2] + A[1]{2]*B[2](2] + A[1][3]*B[3]{2];
result{1][3]= A[1][1]*B[1][3] + A[1]{2]*B[2][3] + A[1][3]*B[3][3];

result[2]{1]= ARJ[1]*B(1][1] + A[2][2]*B[2][1] + A[2](3]*B[3](1];
result[2]{2]= A2][1]*B[1][2] + A{2]{2]*B[2][2] + A[2][3]*B(3][2];
result[2}[3]= AR2][1]*B[1][3] + A[2][2]*B[2][3] ~ A[2][3]*B[3][3};

result{3][1]= A[3][1]*B[1]{1] + A{3][2]*B[2][1] + A[3][3]*B[3][1];
result(3]{2]= ABI[11*B1][2] + A[3][2]*B[2][2] + A[3][3]*B[31{2];
result{3][3]= A[3]{1]*B[1][3] + A[3][2]*B[2]3] + A[3][3]*B[3](3};

}

void mux13_33(float A[4] float B[4][4],float result{4])

{
result[1]= A[1]*B[1][1] + A[2]*B[2][1] + A[3]*B[3][1];
result{2]= A[1]*B{1]{2] + A[2]*B[2][2] + A[3]*B[3]{2];
result{3]= A[1]*B[1][3] + A[2]*B{2][3] + A[3]*B[3][3];

}

void mux33_31(float A[4][4],float B[4],float result[4])

{
result{1]= A[1][1)*B[1] + A[1}[2]*B[2] + A[1}[3])*B[3]};
result[2]= A[2]{1]*B[1] + A[2][2]*B[2] + A[2](3]*B[3];
result[3]= A[3][1]*B[1] + A[3][2]*B[2] + A[3][3]*B[3];
}

float mux13_31(float A[4],float B[4])

return A[1]*B[1]+ A[2]*B[2] + A[3]*B[3];
}

void equal3x3(float source[4][4],float destination[4][4])
{

nt ij;

for(i=1;i<4;++) for(j=1;j<4;++) destination[i][jl=sourcefi]j};
}

void DapRun1()

{
inti,yl, y2;

if ((DapBinln = fopen("ACCEL1","rb")) == NULL) ||
((DapTextOut = fopen("ACCELOQ","wt")) == NULL))
{
printf{"Error opening DAP device driver\n"),
exit(1);
}

fWriteloCtlStr(DapBinIn,"S, M00");

fprintf{DapTextOut, "RESET\n"); /* Send a command to reset the DAP */

/1 fFlushDap(DapTextln);
fFlushDap(DapBinln);

if (fConfigDap(DapTextOut,"TEZ_DENE.DAP") >= 200)
{

printf{"Error while configuring DAP\n");

exit(2);
}

sleep(1);

fprintf{DapTextOut, "LET TEST_PER = 500\n");
fprintf{DapTextOut, "EMPTY OPIPEO\n"),
fprintfiDapTextOut, "EMPTY IPO\n"),
fprintDapTextOut, "EMPTY IP1\n");
fprintf{DapTextOut, "START OA,IA PA\n"),

}

void DapRun2()

{
inti, yl, y2;

if (DapBinin = fopen("ACCEL1","rb")) == NULL) ||
((DapTextOut = fopen("ACCEL0","wt")) == NULL))
{ .
printf{"Error opening DAP device driver\n™);
exit(1);

}
fWriteloCtiStr(DapBinln,"S,M00");

fprintfiDapTextOut, "RESET\n"); /* Send a command to reset the DAP */

fFlushDap(DapTextln);
fFlushDap(DapBinIn);

if (fConfigDap(DapTextOut,"PID.DAP") >= 200)

{
printf{"Error while configuring DAP\n");
exit(2),

}

sleep(1);

void DapStop()
{

fpnntf(DapTextOut, "STOP\n");, /* Send a command to stop the DAP

*/

fWriteIoCtiStr(DapBinIn,"R"); /* Restore ACCEL device driver mode */

fclose(DapBinin); /* Close files */
fclose(DapTextOut);
fclose(DapTextIn);

void main()
{
FILE *fp;
float x[4],t[4],P[4][4],R1[4][4],R2[4][4],R3[4];
floaty l,y 2,u_lLy,u;
float E,denumerator;
int xx,yy,y_factor;
nt 1,),k=0;
int gdniver = DETECT, gmode, errorcode;
int KP,KI KD, ch;

float zeta, Wn,Ts;
float t1,12,scale;

float g0,g1,82;
/finitial conditions
clrscr();

i (fp=fopen("estimate.xIs","wt"))==NULL) exit(-1);
for(i=1;i<4;+H) for(j=1;<4;++)

{

}if(i-j) P[i][j}=0; else Pi][j]=5;
t[1]=0;t[2]=0;t[3]=1; //initial values of tetha vector

printf{"'zeta=");scanf("%f" & zeta);
printf{"Wn="); scanf{"%f",&Wn);

Ts=0.001;
y_factor=1,

k=0;
initgraph(&gdriver, &gmode, "C:\\COMPS\TCPP\\BGI\\");
errorcode = graphresult();

if (errorcode != grOk) /* an error occurred */

{
printf("Graphics error: %s\n", grapherrormsg(errorcode));

printf{"Press any key to halt:");
getch();
exit(1); /* terminate with an error code */

}

setbkcolor(GREEN));,
cleardevice();
setcolor(BLUE);

line(0,getmaxy()/2,getmaxx(),getmaxy()/2);
DapRun1();

y=y_l=y_2=1.0;
u_1=0;

for(i=0,i<100;++1)

{ .
y=(float)getw(DapBinIn)/100.0;
u=(float)getw(DapBinIn)/100.0;

y_2=y_l;
y_1=y;
u_l=u;

}

while(1)
{

++k;

>

// STEP i

y=(float)getw(DapBinIn)/100.0;
u=(float)getw(DapBinIn)/100.0;

putpixel(k/5.y*y_factor+240,RED);

x[1]=y_Lx[2]=y_2x[3]=u_l;
// STEP u

E=y-mux13_31(x,t);
/ STEB il

XxXT(x,R1); //x(t+1)*xT(t+1)
mux3x3(R1,P,R2); /* numerator */

mux13 33(x,P,R3);
denumerator=1.0+mux13 _31(R3,x); //denumerator.

for(i=1;i<4;++1) for(j=1;j<4;++;) R2[i]{j}/=denumerator; /Divide

for(i=1;1<4;++) for(j=1;j<4;++j) //Subtract from I
{

if(i'=y) R2[i]j]*=-1;

else R2[i][j]=1-R2[1](j];
}

mux3x3(P,R2,R1); // mux by P,result is in R1

equal3x3(R1,P);

// STEP iv

mux33_31(P,x,R3);
R3[1]*=E;R3[2]*=E;R3[3]*=E;
t{1]=t{1]+R3[1];
t2]=t[2]+R3[2];
t{31=t[3]+R3(3];

//STEP v

y_2=y_1;
y_1=y;
u_l=u;

ilk>3100 |} kbhit()) {sound(500);delay(100);nosound();break;}
putpixel(k/5,t{1}*y_factor+240,RED);

putpixel(k/5,t{2]*y_factor+240, YELLOW);,
putpixel(k/5,-t[3]*y_factor+240,LIGHTCYAN),

t1=-2*exp(-zeta*Wn*Ts)*cos(Ts*Wn*pow((1-zeta*zeta),0.5));
2=exp(-2*zeta*Wn*Ts);

gO=(t1+(1-t{1NA[3];

gl=(2+[1]-t[2]))3];

g2=t[2JA[3];

DapStop();
closegraph();

clrser();
printf("\ny(t):%f y(t-1):%f y(t-2):.%f\nHesaplanan de§erler: al:%f a2:%f
b0:%f\n"y,y_Ly 2.t[1],{2],t[3]);

DapRun2();
loop:;
scale=0.55;

=(int)(-(g1+2*g2)*1000/scale);
KI=-(int)((g0+g1+g2)* 10000/scale),
KD=-(int)(g2*10/scale);

printf{"\nKp:%d Ki:%d Kd:%d",-KP,-K1 -KD);

fprintf{DapTextOut,"LET SETP=0\n"),
fprintf{DapTextOut,"LET P=%d\n" KP),
fprintf{(DapTextOut,"LET I=%d\n",KI);
fprintfiDapTextOut,"LET D=%d\n"KD);,

fprintDapTextOut, "START 1A ,PA\n");
while(lkbhit());
ch=getch();

if{ch="")

{
fprintf{DapTextOut,"LET SETP=-10000\n");
sleep(2);
goto loop;

}

fclose(fp);
DapStop(),

; APPENDIX 3

;RECURSIVE ESTIMATION PROCEDURE FOR DAP800

RESET

VARIABLES TEST_PER=500,SETP=5000
PIPES PO,P1

ODEFINE OA 1
SET OPIPEO A0
TIME 1000
END

IDEFINE 1A 2
SET IPO SO
SET IP1 S1
TIME 500
END

PDEFINE PA
SQUAREWAVE(10000,TEST PER,OPIPE0)
MERGE(IPO,IP1,SBINOUT)

END

START IA,OAPA

13

; APPENDIX 4
; PID CONTROL PROCEDURE FOR DAP800

RESET

OPTIONS LLATENCY=0ON
VARIABLES SETP,P,I.D
PIPES PO,P1

IDEFINE 1A 1
SET IPO SO
TIME 1000
END

PDEFINE PA -
PID(IPO,SETP,P,2000,1,15000,D,50,P1)
DACOUT(P1,0)

END

14

