
DOKUZ EYLÜL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES 
 

RESEARCH AND IMPLEMENTATION OF 

UNIFIED SMART ADAPTIVE REMOTE 

CONTROL PROTOCOL FOR CONSUMER 

ELECTRONIC EQUIPMENTS 

Ahmet Selçuk ÖZTÜRK 

December, 2006 

İZMİR



RESEARCH AND IMPLEMENTATION OF 

UNIFIED SMART ADAPTIVE REMOTE 

CONTROL PROTOCOL FOR CONSUMER 

ELECTRONIC EQUIPMENTS 

A Thesis Submitted to the  

Graduate School of Natural and Applied Sciences of Dokuz Eylül University 

In Partial Fulfillment of the Requirements for the Degree of Master of 

Science in Computer Engineering 

 

by 

Ahmet Selçuk ÖZTÜRK 
 

December, 2006 

İZMİR



ii

M.Sc THESIS EXAMINATION RESULT FORM 

 

We have read the thesis entitled “RESEARCH AND 

IMPLEMENTATION OF UNIFIED SMART ADAPTIVE REMOTE 

CONTROL PROTOCOL FOR CONSUMER ELECTRONIC EQUIPMENTS ” 

completed by Ahmet Selçuk ÖZTÜRK under supervision of Prof. Dr. Alp KUT 

and we certify that in our opinion it is fully adequate, in scope and in quality, as a 

thesis for the degree of Master of Science. 

Prof. Dr. Alp KUT 

 

Supervisor 

 

Doç.Dr.Yalçın ÇEBİ Yard.Doç.Dr.Zafer DİCLE 

 

(Jury Member)              (Jury Member) 

 

Prof.Dr. Cahit HELVACI 

Director 

Graduate School of Natural and Applied Sciences 



iii

ACKNOWLEDGMENTS 

 

I would like to thank to my supervisor, Prof. Dr. Alp KUT for his guidance and 

assistance in this thesis. 

 

I would like to thank to Assoc. Prof. Dr. Yalçın ÇEBİ for his guidance to improve 

this thesis content and its structure. 

 

I would like to thank to Asst. Prof. Dr. Zafer DİCLE who has listened, encouraged 

and motivated me when I was exhausted during end of this thesis. 

 

I also thank to my colleagues and managers from BEKO Electronic R&D 

departments for their endless support and encouragements. 

 

Finally, I would like to thank to my family for their endless support and 

encouragements. 

 

Ahmet Selçuk ÖZTÜRK 



iv

RESEARCH AND IMPLEMENTATION OF UNIFIED SMART 

ADAPTIVE REMOTE CONTROL PROTOCOL FOR CONSUMER 

ELECTRONIC EQUIPMENTS  

 

ABSTRACT 

 

Continuously growing technology and changes in customer needs has brought 

together a vast increase in the number of consumer electronic devices. With each 

new device, new features are introduced in parallel to this growing technology. New 

features mean more buttons on the devices’ remote controllers.  

 

Remote controllers were unable to show the same technological improvements as 

the new technology consumer electronic devices. Remote controller concepts in use 

today enable us to design only controllers with fixed number of buttons. Nevertheless 

some remote controllers that exist in the market today can define their own buttons 

and even macros by their properties or by aid of the computers. But all remote 

controllers basically control the devices with single directional communication by 

sending key codes with the help of protocols they use. 

 

To realize the same technological development achieved in consumer electronic 

devices a new concept is needed for their remote controllers. This approach is based 

on the principle of changing the number of keys on the remote controller that can be 

used according to the state of the controlled device. 

 

The aim of this study is to design a new protocol in order to develop more flexible 

applications and provide a framework for new kind of applications. In this approach 

bidirectional communication is targeted. The main aim in this thesis is making the 

communication is bidirectional. By doing this the number of key can be reduced or 

limited. Thus users will deal with smaller number of keys consequently the system 

will be less likely to crash on any given condition as the user will not be able to press 

unsuitable keys.   

 



v

Keywords: Remote Controllers, Remote Control Protocols, Adaptive Remote 

Controllers 



vi

TÜKETİCİ ELEKTRONİĞİNE YÖNELİK TEKİL, AKILLI VE ADAPTE 

OLUP FARKLILAŞABİLEN UZAKTAN KUMANDA PROTOKOLÜNÜN 

ARAŞTIRILMASI VE TASARIMI 

 

ÖZ 

 

Hızla artan teknoloji ve ihtiyaçların değişmesi ile beraber günlük yaşantımıza 

giren tüketici elektroniği cihazlarının sayısı artmaktadır. Her yeni cihaz, gelişen 

teknolojiye paralel olarak yeni özellikleride beraberinde getirmektedir. Daha fazla 

özellik bu cihazları kontrol etmek için tasarlanmış kumandalarda da daha fazla tuş

anlamına gelmektedir.  

 

Yeni teknoloji tüketici elektroniği cihazlarının gösterdiği teknolojik ilerlemeyi 

kumandalar gösterememiştir. Günümüzde kullanılan uzaktan kumanda yapısı ile 

üzerlerinde belirli sayıda tuşlardan oluşan kumandalar tasarlanmaktadır. Yine 

bilgisayar ya da kendi özellikleri ile tuş ve makro tanımlanabilen bir takım uzaktan 

kumandalar da mevcuttur. Fakat hepsi, tek yönlü bir iletişim ile, tuş kodları

kullanarak, kontrol edilen cihazları, kullandıkları protokol yardımiyle kontrol 

etmektedir. 

 

Tüketici elektroniği cihazlarındaki gelişmeyi, onları kontol eden uzaktan 

kumandalarda da gerçekleştirebilmek için yeni bir yaklaşım gerekmektedir. Bu 

yaklaşım, kumanda üzerindeki kullanılabilir tuş sayısının, kontrol edilen cihazın

bulunduğu durumuna gore değiştirilmesi esasına dayanmaktadır.  

 

Bu çalışmanın amacı, daha esnek ve yeni uygulamaların geliştirilmesine imkan 

sağlayan bir iskelet oluşturacak, yeni yaklaşımı uygulanabilir duruma getirecek 

protokol tasarlamaktır. Bu yaklaşımda iletişimin çift yönlü olması amaçlanmıştır. 

Bunun amacı belirli bir zamanda kumanda üzerindeki tuş sayısını azaltmak ya da 

kullanılabilecek tuş sayısını sınırlandırmaktır. Böylelikle kullanıcı hem az tuş ile 

karşılaşacak hem de kontrol edilen cihazın bulunduğu durumda kullanılmayacak bir 

tuşa basması ile cihazı kararsız hale getirmesi önlenecektir. 



vii

Anahtar Kelimeler : Uzaktan Kumandalar, Uzaktan Kumanda Protokolleri, 

Adapte Olabilen Kumandalar.  



viii

CONTENTS Page 

THESIS EXAMINATION RESULT FORM .............................................................. ii 

ACKNOWLEDGEMENTS ........................................................................................ iii 

ABSTRACT................................................................................................................ iv 

ÖZ ............................................................................................................................... vi 

 

CHAPTER ONE ........................................................................................................ 1 

INTRODUCTION...................................................................................................... 1 

1.1 Introduction.............................................................................................. 1 

1.2 Requirements ........................................................................................... 1 

1.2.1 Adaptive Remote Controller ............................................................ 2 

1.2.2 Error Tolerance ................................................................................ 2 

1.2.3 Buttonless Design ............................................................................ 2 

1.2.4 Platform Independency .................................................................... 2 

1.3 Structure of the Thesis ............................................................................. 3 

CHAPTER TWO ....................................................................................................... 4 

EXISTING REMOTE CONTROLLER COMMUNICATION ............................ 4 

2.1 Existing Remote Controllers Approach ................................................... 4 

2.2 Communication Mediums........................................................................ 4 

2.3 Infrared..................................................................................................... 5 

2.3.1 IRDA Physical Part.......................................................................... 6 

CHAPTER THREE ................................................................................................... 8 

IR PROTOCOLS ....................................................................................................... 8 

3.1 Introduction.............................................................................................. 8 

3.2 Philips’s RC5 IR Protocol........................................................................ 8 

3.3 SONY IR Protocol ................................................................................. 10 

3.4 Philips RECS-80 IR Protocol................................................................. 11 

3.5 NEC IR Protocol .................................................................................... 14 

3.6 Panasonic’s IR Protocol ......................................................................... 16 

3.7 RCMM (Remote Control Multimedia) IR Protocol............................... 18 

3.7.1 RCMM 12 Bit Mode...................................................................... 20 

3.7.2 RCMM 24 Bit Mode...................................................................... 21 



ix

3.7.3 RCMM OEM Mode....................................................................... 22 

3.8 Philips’s RC6 IR Protocol...................................................................... 22 

3.8.1 RC6 Mode 0................................................................................... 24 

CHAPTER FOUR.................................................................................................... 26 

INTRODUCTION TO NEW CONCEPT:  SMART ADAPTIVE REMOTE 

CONTROLLER (SARC)......................................................................................... 26 

4.1 Introduction............................................................................................ 26 

4.2 Smart Adaptive Remote Controller Concept ......................................... 26 

CHAPTER FIVE...................................................................................................... 30 

THE PROTOCOL DESIGN: SYSTEM STATES AND MESSAGING 

SRUCTURES ........................................................................................................... 30 

5.1 System States ......................................................................................... 30 

5.2 Smart Adaptive Remote Control State Diagram.................................... 30 

5.3 Controllable Device State Diagram ....................................................... 32 

CHAPTER SIX ........................................................................................................ 34 

SARCP PACKETS DEFINATIONS...................................................................... 34 

6.1 SARCP Packet Structure and Definitions.............................................. 34 

6.1.1 Multicasting or Learning Packet of Remote Controller (RCMLP) 34 

6.1.2 Command Packet of Remote Controller (RCCP) .......................... 36 

6.1.3 Transmission Status Packet of Remote Controller (RCTS)........... 38 

6.1.4 Identification Packet of Controllable Device (CDIP) .................... 39 

6.1.5 Data Packet of Controllable Device (CDDP) ................................ 40 

6.1.6 Transmission Status Packet of Controllable Device (CDTS) ........ 42 

6.2 The Use of Packet Number Field of RCMLP and CDDP ..................... 44 

CHAPTER SEVEN.................................................................................................. 45 

SARCP ENTITY PROPERTIES AND THEIR ELEMENT TYPES................. 45 

7.1 Types that Used in Entity Properties ..................................................... 45 

7.1.1 Version........................................................................................... 45 

7.1.2 Color Type ..................................................................................... 45 

7.1.3 Keytype Type................................................................................. 46 

7.1.4 Key Group Type ............................................................................ 46 

7.1.5 Key Function Type ........................................................................ 46 



x

7.1.6 Screentype Type............................................................................. 47 

7.1.7 Shape Type..................................................................................... 47 

7.1.8 addSub Type .................................................................................. 47 

7.1.9 payloadType Type ......................................................................... 48 

7.2 Entity Properties Used in SARCP.......................................................... 48 

7.2.1 The Remote Controller Property.................................................... 48 

7.2.2 Text Property ................................................................................. 49 

7.2.3 Key Property .................................................................................. 49 

7.2.4 Information Property...................................................................... 51 

CHAPTER EIGHT .................................................................................................. 53 

THE SARCP SIMULATION.................................................................................. 53 

8.1 Introduction............................................................................................ 53 

8.2 Development Platform ........................................................................... 53 

8.3 Application Properties ........................................................................... 54 

8.3.1 Sockets, Server and Client Sockets................................................ 55 

8.3.1.1 Sockets ....................................................................................... 55 

8.3.1.2 Client Sockets ............................................................................ 56 

8.3.1.3 Server Sockets............................................................................ 56 

8.4 Simulated Device and Device States ..................................................... 57 

8.4.1 Controllable Device Application as DVD Recorder...................... 57 

8.4.2 Remote Controller Application...................................................... 59 

8.5 Application Screenshots......................................................................... 59 

CHAPTER NINE ..................................................................................................... 74 

CONCLUSION & FUTURE WORK..................................................................... 74 

REFERENCES......................................................................................................... 76 

APPENDIX A ........................................................................................................... 78 

ABBREVIATIONS .................................................................................................. 78 



1

CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

Since the time remote controllers were invented and used in consumer products 

they started to be very important part of these products over the course of time. 

Remote controllers when first designed were targeted only at controlling consumer 

products. And products were not complex also were not so many. People had at most 

a TV set and may be a VCR. For this reason remote controllers of those days were 

only designed to control one device and were not that complex. But now the situation 

is dramatically changed.  

 

There has been a great increase at the variety and number of products owned by 

people. Nowadays a TV set, a music set a VCR or DVD Player/Recorder and may be 

some other different consumer products can be seen in any house. And all these 

products have their own remote controllers which have many complex functions to 

perform. For this reason remote controllers’ concept has changed. But the controller 

protocols and medium have not changed especially for consumer electronic products. 

 

A different approach for remote controllers that supports new requirements is now 

needed. These requirements are being adaptive, error tolerant, generally buttonless 

and platform independent. These requirements are explained below.   

 

1.2 Requirements 

The main requirements are to make remote controllers very flexible/adoptable, 

easy to use and these which include mechanisms that would prevent errors both for 

the controller and the controllable device and which would decrease the number of 

remote controller units to one.   



2

1.2.1 Adaptive Remote Controller 

Remote controllers contain certain number of keys to control any specific device. 

If the device has a complex structure the numbers of remote controllers’ keys are 

increased. This affects the usability of that controller. For that reason remote 

controllers’ keys should be easily increased or decreased but they should only 

contain required keys at any time depending on the controllable device state.  

 

1.2.2 Error Tolerance 

Once the remote controller contains the keys for only one state at a time, systems 

will not be able to accept any key that makes it crash and they will not crash the 

system during state changes by sending unusable keys from previous state. 

 

1.2.3 Buttonless Design 

To be adaptive, remote controllers must be able to change its button structures 

easily and present them to the user by different layouts. This is the property of 

presentation layer which may be able to learn user’s addictions and remote controller 

may be able to serve the buttons to touch screen depending on those addictions by 

drawing some of them bigger or smaller than others or in different color by using a 

touch screen. 

 

1.2.4 Platform Independency 

Remote controllers enable the users to control all devices that are compatible with 

this concept. In order to provide this, there must be a common protocol. Thus users 

will not deal with many remote controllers and will not keep many remote controllers 

in hand to control any device when needed. In addition to this, consumer electronic 

producers can design generic remote controller for their produced any device by 

supporting specific protocol. 

 



3

1.3 Structure of the Thesis 

The contents of this thesis are constructed according to this outline.  

 

In Chapter 2, the communication mediums are described which are used today. 

 

In Chapter 3, current remote controller protocols are examined. 

 

Chapter 4 is an introduction to Smart Adaptive Remote Controller concept, 

synchronization mechanism and its requirements. 

 

Chapter 5 contains definitions of system and messaging states. 

 

Chapter 6 contains definitions of new protocol structure and communication 

packets. 

 

Chapter 7 contains definitions of entities and their types which are used in Smart 

Adaptive Remote Controller Protocol. 

 

Chapter 8 gives brief information about simulation application of Smart Adaptive 

Remote Controller Protocol. 

 

Chapter 9 presents conclusion and future work. 

 



4

CHAPTER TWO 

EXISTING REMOTE CONTROLLER COMMUNICATION 

 

2.1 Existing Remote Controllers Approach 

Nowadays remote controllers are classified by physical communication mediums, 

their protocols and types. Type differentiates the remote controllers by the number of 

devices to be controlled. These types of remote controllers which control many 

devices are called universal remote controllers. These remote controllers are bought 

from electronic stores. Others are provided together with new products and they 

control only those products.  

 

The other classification element is communication medium and the most used 

communication medium in consumer electronic is infrared technology and this is 

what is explained in this chapter.  

 

Today, the common properties of existing remote controllers are working only in 

one direction, the signals or communications transfer the information only in one 

direction from remote controller to controllable device one at a time. One of the 

reasons of this is using infrared technology as a communication medium and infrared 

technology is mostly used in this communication.  

 

Another communication medium is Radio Frequency which is rarely used for 

specific applications. The following title gives a brief information about 

communication mediums. 

 

2.2 Communication Mediums 

The communication mediums mostly used today are infrared technology for 

remote controller devices and rarely radio frequency can also be used. If the medium 



5

is radio frequency the method or its applications can be Bluetooth or zigBee which is 

newly developed. But in consumer electronic sector remote controllers’ medium is % 

99.99 infrared (IR) technologies. For this reason only IRDA physical part is 

described here. 

 

2.3 Infrared 

Infrared is a legacy technology that will not die any time soon. Infrared is a 

wireless communication technology that makes use of the invisible spectrum of light 

that is just beyond red in the visible spectrum. It's suitable for applications that 

require short-range, point-to-point data transfer. Because it uses light, line of sight is 

a prerequisite for using infrared. Despite this limitation, infrared is widely used in 

household equipment and is increasingly popular in devices such as digital cameras, 

PDAs, and notebook computers. (Dumbill, Jepsoon & Weeks, 2004) 

 

Founded in 1993 as a nonprofit organization, the Infrared Data Association 

(IrDA) is an international organization that creates and promotes interoperable, low-

cost infrared data interconnection standards that allow users to transfer data from one 

device to another. The Infrared Data Association standards support a broad range of 

appliances, computing, and communications devices.  

 

There are currently four versions of IrDA; their differences are mainly in the 

transfer speed: 

• Serial Infrared (SIR) 

The original standard with a transfer speed of up to 115 kbps 

• Medium Infrared (MIR) 

Improved transfer speed of 1.152 Mbps; it is not widely implemented 

• Fast Infrared (FIR) 

Speed of up to 4 Mbps; most new computers implement this standard 

• Very Fast Infrared (VFIR) 

Speed of up to 16 Mbps; it is not widely implemented yet 

 



6

When two devices with two different IrDA implementations communicate, one 

steps down to the lower transfer speed. 

 

2.3.1 IRDA Physical Part 

The IrDA Physical Layer Specification sets a standard for the IR transceiver, the 

modulation or encoding/decoding method and also other physical parameters. IrDA 

uses IR with peak wavelength of 0.85 to 0.90µm. The transmitter's minimum and 

maximum intensity is 40 and 500 mW/Sr within a 30 degree cone. The receiver's 

minimum and maximum sensitivity is 0.0040 and 500 mW/cm2 within a similar 30 

degree cone. The link length is 0 to 1m with an error rate of less than 1 in 108 bits.  

 

There are three different modulations or encoding/decoding methods. The first 

one is mandatory for both IrDA-1.0 and IrDA- 1.1. The other two are optional and 

are for IrDA-1.1 only. For transfer rate of 9.6k, 19.2k, 38.4k, 57.6k or 115.2kbps 

operations, a start (0) bit and a stop (1) bit is added before and after each byte of 

data. This is the same format as used in a traditional UART. However, instead of 

NRZ (non return to zero), a method similar to RZ (return to zero) is used, where a 0 

is encoded as a single pulse of 1.6µsec to 3/16 of a bit cell, and a 1 is encoded as the 

absence of such a pulse. In order to have unique byte patterns to mark beginning and 

ending of a frame and yet allow any binary data bytes, byte stuffing (escape 

sequence) is used in the body of the frame.  

 

A 16-bit CRC is used for error detection. The 9.6kbps operation is mandatory for 

both IrDA-1.0 and IrDA-1.1. 19.2k, 38.4k, 57.6k and 115.2 kbps are all optional for 

IrDA-1.0 and IrDA-1.1. For transfer rate of 0.576M or 1.152 Mbps operation, no 

start or stop bits are used and the same synchronous format as HDLC is used. Again, 

a 0 is encoded as a single pulse (1/4 the bit cell) whereas a 1 is encoded as the 

absence of such a pulse. In order to ensure clock recovery, bit stuffing is used (same 

as in HDLC). The same 16-bit CRC is also used. Both 0.576M and 1.152 Mbps 

operations are optional for IrDA-1.1. For transfer rate of 4.0 Mbps operation, a 4-

PPM method is used. Again, no start or stop bits are used. In addition, bit/byte 



7

stuffing is not needed either. A 32- bit CRC is used in this case. This rate is used in 

IrDA-1.1 only. (Yeh, K.W., Wang, L.). 



8

CHAPTER THREE 

IR PROTOCOLS 

 

3.1 Introduction 

There are several remote controller protocols currently used. The manufacturers 

which produce consumer products use their own IR code formats or protocols. The 

reason of this is by using their own genuine remote controller system to guarantee 

their products controller signals never interfere with other products which are 

produced by other consumer electronic manufacturers. This is a prestige for 

manufacturers. For that reason there are many different remote controller protocols 

in this area. The well known protocols are Philips’s RC5, Sony’s, NEC’s and 

Matsushita’s IR code formats. But most popular one is Philips’s RC5 protocol. 

Except RC5 protocol, other protocols are not called protocol so much, they are called 

code format. 

 

3.2 Philips’s RC5 IR Protocol 

The RC5 remote controller protocol is one of the most popular and is widely used 

to control numerous home appliances, entertainment systems and some industrial 

applications including utility consumption remote meter reading, contact-less 

apparatus control, telemetry data transmission, and car security systems. Philips 

originally invented this protocol and virtually all Philips’ remotes use this protocol. 

 

Following is a description of the RC5. When the user pushes a button on the hand-

held remote, the device is activated and sends modulated infrared light to transmit 

the command. The remote separates command data into packets. Each data packet 

consists of a 14-bit data word, which is repeated if the user continues to push the 

remote button. The data packet structure is as follows: 



9

2 start bits, 1 control bit, 5 address bits, 6 command bits. 

The start bits are always logic ‘1’ and intended to calibrate the optical receiver 

automatic gain control loop. Next, is the control bit. This bit is inverted each time the 

user releases the remote button and is intended to differentiate situations when the 

user continues to hold the same button or presses it again. The next 5 bits are the 

address bits and select the destination device. A number of devices cause RC5 at the 

same time. To exclude possible interference, each must use a different address. The 6 

command bits describe the actual command. As a result, a RC5 transmitter can send 

the 2048 unique commands.  

 

The transmitter shifts the data word, applies Manchester encoding and passes the 

created one-bit sequence to a control carrier frequency signal amplitude 

modulator.(Seerden, P.) The amplitude modulated carrier signal is sent to the optical 

transmitter, which radiates the infrared light. In RC5 systems the carrier frequency 

has been set to 36 kHz. Figure 3.1 displays the RC5 protocol. The receiver performs 

the reverse function. The photo detector converts optical transmission into electric 

signals, filters it and executes amplitude demodulation. The receiver output bit 

stream can be used to decode the RC5 data word. This operation is done by the 

microprocessor typically. Single-die optical receivers are being mass produced by a 

number of companies such as Siemens, Temic, Sharp, Xiamen Hualian, Japanese 

Electric and others. (Kremin, n.d.) 

Figure 3.1 (a) RC5 protocol encoded data word (b) Consecutive data packets 

Figure 3.2 RC5 protocol encoded data word 

S1 S2 CB A4 A3 A2 A1 A0 C5 C4 C3 C2 C1 C0

Start Bits Control Bit Address Bits Command Bits

Frist Packet Repeated Packet

24,9 ms 

113,8 ms 

(a) 

(b) 



10

3.3 SONY IR Protocol 

The Sony IR protocol has three different versions: 12-bit, 15-bit and 20-bit 

versions. It is assumed that the 15-bit and 20-bit versions differ in the number of 

transmitted bits per command sequence in theory. But there are not found detailed 

information about these two types. For that reason described here 12-bit version 

Sony IR protocol. 

 

The Sony remote controller is based on the Pulse-Width signal coding scheme.  

The code exists of 12 bits sent on a 38kHz carrier wave. The data packet structure is 

as follows: 

1 start bit, 7 command bits, 5 address bits or device code 

The code starts with a header of 2,4ms or   8T where T is 300µs. The header is 

followed by 7 command bits that indicating an action to be performed and these 

command code bits are followed by 5 address bits that indicating which device 

should act upon the command code.  When data are transmitted repeatedly, the frame 

cycle is 45ms or 150 period. This means that total length of a bit stream is always 

45ms.  

 

The address and commands exists of logical ones and zeros. A logical one is 

formed by a space of 600µs or 2T and a pulse of 1200 µs or 4T. A logical zero is 

formed by a space of 600 µs or 2T and pulse of 600µs or 2T.  The space between 2 

transmitted codes when a button is being pressed is 40ms. The bits are transmitted 

least significant bits first. (Celadon, n.d.) 
 

Figure 3.3 Sony Protocol 

 

D0 D1 D2 D3 D4 D5 D6 C0 C1 C2 C3

Sync Pulse Data Code Command Code

C4

Sync 
Pulse 

8T Data 
‘0’ 

2T 2T Data 
‘0’ 

2T 4T T is 300 µs



11

The encoded data, 600µs for 0’s(zero’s), 1.2ms for 1’s or 2.4ms for start bit on 

periods followed by 600µs off periods or space, is then used to modulate a 38kHz 

signal which is used to drive the IR LED.  

 

When the encoded signal is on, the 38kHz signal is transmitted, when the encoded 

signal is off, the 38kHz signal is not transmitted, this gives a 'modulated' 38kHz 

signal which is actually used to drive the IR LED. (SB-Project, n.d.) 

 

3.4 Philips RECS-80 IR Protocol 

This protocol is designed by Philips and transmitters are produced by Philips and 

ST Microelectronics. Actually it was not seen this protocol being used in real 

applications up to now that our professional work experiment. For that reason 

information on this page is derived from the some data sheets of the Philips, ST 

microelectronics and researches on Internet.  

 

There are two small differences between the two company’s IC. The Philips IC 

has two modes of operation, one which is compatible with the ST chip and other one 

can handle up to 20 sub-system addresses. (SAA3008, 1988). 

 

The protocol features are; 

• 7 or 20 sub-system addresses, 64 commands per sub-system address  
• 1 or 2 toggle bits to avoid key bounce  
• Pulse distance modulation  
• Carrier frequency of 38kHz, or unmodulated  
• Bit time logic "0" is 5.1ms, logic "1" is 7.6ms (@ 455kHz Oscillator)  
• Command repetition rate 121.5ms (55296 periods of the main oscillator) 
 

The protocol uses pulse distance modulation. A logic "0" consists of a mark with a 

length of 6 periods of the carrier frequency (158µs), followed by a space which 

makes the total pulse to pulse distance 5.06ms. A logic "1" consists of a mark with a 

length of 6 periods of the carrier frequency, followed by a space which makes the 

total pulse to pulse distance 7.59ms. The Figure 3.4 represents these situations. 



12

Figure 3.4 RECS-80 bit abbreviations 

 

The Figure 3.5 shows a typical pulse train of a normal RECS-80 message. This 

example transmits command 36 to address 4.  

 

Figure 3.5 RECS-80 pulse train 

Usually the first pulse is a reference pulse, with a value of "1". The receiver may 

use this bit to determine the exact bit length. The next bit is a toggle bit. Its value is 

toggled whenever a key is released, which results in a different code every time a 

new key is pressed. This allows the receiver to discriminate between new key presses 

and key repetitions. Only the ST chip M3004 can disable its carrier, in which case 

the REF pulse is interpreted as a second toggle bit.(STMA3004LD, 2004) The 2-bit 

toggle value is incremented every time a key is released. Thus only in this mode 

there is no real REF pulse. The next 3 pulses S2 to S0 represent the sub-system 

address bits, sent with MSB first. This would allow for 8 different sub-system 

addresses but both the SAA3008 and the M3004 can only generate 7 sub-system 

addresses in normal mode. Next come the 6 command bits F to A, also sent with 

MSB first allowing for 64 different commands per sub-system address. The pulse 

train is terminated by a last pulse; otherwise there is no way to know the duration of 

bit A. (SAA3008, 1988) 

 



13

The entire command is repeated (with unchanged toggle bits) for as long as the 

key is held down. The repetition rate is 121.5ms (55296 periods of the oscillator).  

 

Address assignments are a bit odd with this protocol. You can not simply convert 

the binary value to a decimal value. Below you see a table explaining the relationship 

between the binary and decimal sub-system address values.  

 

Table 3.1 RECS-80 Conversion Table for 7 sub-system 

Binary Decimal
1 1 1 1
0 0 0 2
0 0 1 3
0 1 0 4
0 1 1 5
1 0 0 6
1 0 1 7

If more than 7 sub-system addresses needed application engineers can use the 

extended protocol which allows 13 additional sub-systems addresses. This is possible 

only if used SAA3008. The Figure 3.6 shows an extended message. This example 

transmits command 36 to address 10. 

Figure 3.6 RECS-80 pulse train for extended protocol 

The first two pulses are a special start sequence. The total duration of these pulses 

is equal to a normal "1" period. The next bit is a toggle bit. Its value is toggled 

whenever a key is released, which results in a different code every time a new key is 

pressed. This allows the receiver to discriminate between new key presses and key 

repetitions. The next 4 pulses S3 to S0 represent the sub-system address bits. This 

would allow for an additional 16 different sub-system addresses, although the 



14

SAA3008 can only generate 13 additional sub-system addresses in this mode. Next 

come the 6 command bits F to A, also sent with MSB first. The pulse train is 

terminated by a last pulse; otherwise there is no way to know the duration of bit A. 

The entire command is repeated (with unchanged toggle bits) for as long as the key is 

held down. The repetition rate is 121.5ms (55296 periods of the oscillator).  

 

Address assignments are a bit odd with this protocol. You can not simply convert 

the binary value to a decimal value. Below you see a table explaining the relationship 

between the binary and decimal sub-system address values. (SB-Project, n.d.) 

 

Table 3.2 RECS-80 Conversion Table for 12 sub-system 

Binary Decimal
0 0 0 0 8
1 0 0 0 9
0 1 0 0 10
1 1 0 0 11
0 0 0 1 12
1 0 0 1 13
0 1 0 1 14
1 1 0 1 15
1 0 1 0 16
0 1 1 0 17
1 1 1 0 18
0 1 1 1 19
1 1 1 1 20

3.5 NEC IR Protocol 

This protocol was developed by NEC. I've seen very similar protocol descriptions 

on the internet, and there the protocol is called Japanese Format. NEC manufactured 

the remote controller IC. But many IC manufacturers which produce controller can 

be produce their products to be decoded NEC format if ordered high volume by 

special agreements.  

 



15

The protocol feature; 

• 8 bit address and 8 bit command length  
• Address and command are transmitted twice for reliability  
• Pulse distance modulation  
• Carrier frequency of 38kHz  
• Bit time of 1.12ms or 2.25ms  

 

The NEC protocol uses pulse distance encoding of the bits. Each pulse is a 560µs

long 38kHz carrier burst (about 21 cycles). A logical "1" takes 2.25ms to transmit, 

while a logical "0" is only 1.12ms. The recommended carrier duty-cycle is 1/4 or 1/3. 

Figure 3.7 NEC Modulation 

 

The Figure 3.8 shows a typical pulse train of the NEC protocol. With this protocol 

the LSB is transmitted first. In this case Address $59 and Command $16 is 

transmitted. A message is started by a 9ms AGC burst, which was used to set the 

gain of the earlier IR receivers. This AGC burst is then followed by a 4.5ms space, 

which is then followed by the Address and Command. Address and Command are 

transmitted twice. The second time all bits are inverted and can be used for 

verification of the received message. The total transmission time is constant because 

every bit is repeated with its inverted length. If you're not interested in this reliability 

you can ignore the inverted values, or you can expand the Address and Command to 

16 bits each! 

 



16

Figure 3.8 NEC Protocol Pulse Train 

 

A command is transmitted only once, even when the key on the remote controller 

remains pressed. Every 110ms a repeat code is transmitted for as long as the key 

remains down. This repeat code is simply a 9ms AGC pulse followed by a 2.25ms 

space and a 560µs burst. (SB-Project, n.d.) 

Figure 3.9 Repeated commands wave form 

 

3.6 Panasonic’s IR Protocol 

Another infrared remote protocol I will explain is an older Panasonic remote 

protocol. The protocol is similar with the RECS-80 protocol but it uses more bits 

than the RECS-80 protocol. For the data transmission Panasonic uses the pulse-place 

modulation. 

 

For the communication a pulse is used with a fixed length, followed by which 

represents the logical state of the bit. 2048 codes are defined in this protocol, divided 

in 5 bits of custom code and 6 bits of data code. The custom code is a value which 

represents the manufacturer code and the data code is a value which represents the 

pressed button on the remote controller.  

 

Command

110 ms 110 ms 110 ms 

Repeated Repeated Repeated



17

The full transmitted code is 22 bits: First a header is sent then the custom code (5 

bits), then the data code, followed by the inverse of the custom code and the inverse 

of the data code, and to terminate a stop bit is added to the code. The inverse 

transmitted bits are very useful for the error detection.  

 

Each first part of a bit is always a high level with a fixed time and is followed by a 

low level where the time defines if the bit is a logic 1 or a logic 0.  

 

Timing diagram:   

T =420 µs to approx 424 µs in the USA and Canada  

T=454 µs to approx 460 µs in Europe and others 

 

Figure 3.10 The Panasonic IR Protocol Pulse Train  

 

The header is 8T high and 8T low, a 1 is coded 2T high and 6T low, a 0 is coded 

2T high and 2T low. 

 

1 1 1 1 1 0 1 0 1 1 0

Start Custom Code Data Code 

Inversed Custom Code Inversed Data Code Stop

0 10 0 1 0 0 0 000



18

3.7 RCMM (Remote Control Multimedia) IR Protocol 

This protocol developing by Philips for interactive multimedia remote controller 

products like wireless keyboards, mice and game pads for that reason the commands 

had to be short and very low power consumption to maximize remote usage and 

main product performance. (SB-Project, n.d.) 

 

Although RC5 and RC6 is dedicated to remote controller type of applications, it is 

not ideally suited for more interactive new input devices like wireless keyboards, 

multiple wireless game devices and wireless pointing devices. 

 

Therefore Philips has defined a higher speed and very low power consumption 

protocol targeted to the above new products.  

 

Although it is a standard within Philips, it is currently widely used as a ‘de facto 

standard’ for many OEM customers. RCMM can either work in a one-way or a two-

way mode depending on whether multiple simultaneous devices need to work 

together or not. 

 

Philips patented and published RCMM 1.5 version. This version is designed to 

provide the decoding simplicity of a one-way protocol and at the same time allow for 

multi-user simultaneous use, e.g. gamepads. In short it combines the best out of both 

worlds. No additional complexity is introduced at the receiver side, while it opens up 

a plethora of new possibilities in the multi-user application areas. Typical 

applications include set-top-box remote controllers or gamepads that allow multi-

player gaming. 

 

The RCMM protocol feature; 

• 12 bits or 24 bits per message  
• Pulse position coding, sending 2 bits per IR pulse  
• Carrier frequency of 36kHz  
• Message time ranges from 3.5 to 6.5 ms, depending on data content  
• Repetition time 28 ms (36 messages per second)  



19

The Figure 3.11 shows the most important transmission times of RCMM protocol. 

The message time is the total time of a message, counting form the beginning of the 

first pulse until the end of the last pulse of the message. This time can be 3.5 to 6.5 

ms, depending on the data content and protocol used. 

Figure 3.11 The RCMM Transmission time 

The signal free time is the time in which no signal may be sent to avoid confusion 

with foreign protocols on the receiver's side. Philips recommends 1 ms for normal 

use, or 3.36 ms when used together with RC-5 and RC-6 signals.  

 

The frame time is the sum of the message time and the signal free time, which can 

add up to just about 10 ms per message. About the repetition time is the 

recommended repetition time of 27.778 ms, which allows 36 messages per second. 

This is only a recommendation and is mainly introduced to allow other devices to 

send their commands during the dead times.  

 

No provision is made for data collisions between two or more remote controllers! 

This means that there is no guarantee that the messages get across.  

 

With this protocol a 36 kHz carrier frequency is used to transmit the pulses. This 

helps to increase the noise immunity at the receiver side and at the same time it 

reduces power dissipated by the transmitter LED. The duty cycle of the pulses is 1/3 

or 1/4. 

Message Time Signal free 
time

Repetition Time 

Frame Time 



20

Figure 3.12 The RCMM pulse train 

Each message is preceded by a header pulse with the duration of 416.7 µs (15 

pulses of the carrier), followed by a space of 277.8 µs (10 periods of the carrier). 

This header is followed by 12 or 24 bits of data.  

 

By changing the distance between the pulses two bits of data are encoded per 

pulse. Below you find a table with the encoding times. 

Table 3.3 RCMM encoding times 

Data Mark Space 
0 0 166.7 µs (6 cycles) 277.8 µs (10 cycles)
0 1 166.7 µs (6 cycles) 444.4 µs (16 cycles)
1 0 166.7 µs (6 cycles) 611.1 µs (22 cycles)
1 1 166.7 µs (6 cycles) 777.8 µs (28 cycles)

The RCMM protocol has three different type that called modes. Each mode is 

intended for a particular purpose and differs mainly in the number of bits which can 

be used by the application. All data is sent with MSB first. 

 

3.7.1 RCMM 12 Bit Mode 

The 12 bit mode is the basic mode, and allows for 2 address bits and 8 data bits 

per device family. There are 3 different device families defined: keyboard, mouse 

and game pad.  The Figure 3.13 describes 12 Bit mode packet structure. 

Figure 3.13 12 Bit mode packet structure 

Mode Adress Data 
2 bits 2 bits 8 bits 



21

The 12 bit mode is the basic mode, and allows for 2 address bits and 8 data bits 

per device family. There are 3 different device families defined: keyboard, mouse 

and game pad. 

 

Table 3.4 Mode bits for RCMM 12 Bit Mode 

Mode bits Device Type 
0 0 Extended mode 
0 1 Mouse mode 
1 0 Keyboard mode 
1 1 Game pad mode 

The 2 address bits provide for a way to use more than 1 device simultaneously. 

The data bits are the actual payload data. 

 

3.7.2 RCMM 24 Bit Mode 

The 24 bit mode, also known as extended mode, and allows more data to be 

transmitted per message. For instance for multi-lingual keyboards or a high 

resolution mouse. 

Figure 3.14 24 Bit mode packet structure 

 

Table 3.5 Mode bits for RCMM 24 Bit Mode 

Mode bits Device Type 
0 0 0 0 OEM mode 
0 0 0 1 Extended Mouse mode 
0 0 1 0 Extended Keyboard mode 
0 0 1 1 Extended Game pad mode 

Mode Data 
4 bits 20 bits 



22

3.7.3 RCMM OEM Mode 

In the OEM mode the first 6 bits are always 0 0 0 0 1 1. The next 6 bits are the 

customer ID (OEM manufacturer). My observation showed that Nokia used the code 

1 0 0 0 0 0 for their 9800 series digital satellite receivers. Finally the last 12 bits are 

the actual pay load data.  

Figure 3.15 24 Bit mode packet structure 

3.8 Philips’s RC6 IR Protocol 

RC-6 is, as may be expected, the successor of the RC-5 protocol. Like RC-5 the 

new RC-6 protocol was also defined by Philips. It is a very versatile and well defined 

protocol. Because of this versatility its original definition is many pages long. Here 

on my page I will only summarize the most important properties of this protocol.  

 

The RC6 feature, 

• Different modes of operation, depending on the intended use  
• Dedicated Philips modes and OEM modes  
• Variable command length, depending on the operation mode  
• Bi-phase coding (aka Manchester coding)  
• Carrier frequency of 36kHz  
• Manufacturer Philips  

 
RC-6 signals are modulated on a 36 kHz Infra Red carrier. The duty cycle of this 

carrier has to be between 25% and 50%.  

 

Data is modulated using Manchester coding. This means that each bit (or symbol) 

will have both a mark and space in the output signal. If the symbol is a "1" the first 

half of the bit time is a mark and the second half is a space. If the symbol is a "0" the 

first half of the bit time is a space and the second half is a mark. This is the opposite 

of the RC-5 protocol!  

 

Mode Data 
6 bits 12 bits 

Customer ID 
6 bits 



23

The main timing unit is 1t, which is 16 times the carrier period  
(1/36k * 16 = 444µs).  
 

With RC-6 a total of 5 different symbols are defined:  
 

1. The leader pulse, which has a mark time of 6t (2.666ms) and a space time 
of 2t (0.889ms). This leader pulse is normally used to set the gain of the IR 
receiver unit. 

Figure 3.16 Leader pulse 

 

2. Normal bits, which have a mark time of 1t (0.444ms) and space time of 1t 
(0.444ms). A "0" and "1" are encoded by the position of the mark and 
space in the bit time. 

Figure 3.17 Normal bit abbreviations  

 

3. Trailer bits, which have a mark time of 2t (0.889ms) and a space time of 4t 
(0.889ms). Again a "0" and "1" are encoded by the position of the mark 
and space in the bit time. 

 

Figure 3.18 Trailer bit abbreviations 

2.666 ms 889µs

444µs 444µs 444µs 444µs
Logic “0” Logic “1” 

889µs 889µs 889µs 889µs
Logic “0” Logic “1” 



24

The leader and trailer symbols are only used in the header field of the messages, 

which will be explained in more detail below. 

 

3.8.1 RC6 Mode 0 

Mode 0 is a dedicated Philips Consumer Electronics mode. It allows control of up 

to 256 independent devices, with a total of 256 commands per device. The command 

is a concatenation of different information. I will cover these different components 

from left to right. (SB-Project, n.d.) 

Figure 3.19 RCMM Mode 0 Packet Structure 

 

Header field 

The Header field consists of 3 different components.  

• First the leader symbol LS is transmitted. Its purpose is to adjust the gain of 
the IR receiving unit.  

• This leader symbol is followed by a start bit SB which always has the value 
"1". Its purpose is to calibrate the receiver's timing.  

• The mode bits mb2 ... mb0 determine the mode, which is 0 in this case, thus 
all three bits will be "0".  

• Finally the header is terminated by the trailer bit TR. Please note that the bit 
time of this symbol is twice as long as normal bits! This bit also serves as the 
traditional toggle bit, which will be inverted whenever a key is released. This 
allows the receiver to distinguish between a new key or a repeated key.  

Control Field  

This field holds 8 bits which are used as address byte. This means that a total of 

256 different devices can be controlled using mode 0 of RC-6. The msb is 

transmitted first. 

 

LS SB mb2 . . . mb0 TR
Header 

a7 . . . a0
Control 

c7 . . . c0 
Information Signal Free 



25

Information Field  

The information field holds 8 bits which are used as command byte. This means 

that each device can have up to 256 different commands. The msb is transmitted 

first.  

 

Signal Free Time  

The Signal Free time is a period in which no data may be transmitted (by any 

device). It is important for the receiver to detect the signal free time at the end of a 

message to avoid incorrect reception. The signal free time is set to 6t, which is 

2.666ms. 



26

CHAPTER FOUR 

INTRODUCTION TO NEW CONCEPT:  SMART ADAPTIVE REMOTE 

CONTROLLER (SARC) 

 

4.1 Introduction 

As mentioned before, a new remote controller structure is started to be defined 

and explained in this chapter. Actually the protocol is only a tool to make this new 

concept usable. This concept is based on drawing keys on a touch screen which are 

usable for the controlled device’s states one at a time. For example a DVD Recorder 

product has a remote controller with many keys defined statically and those keys are 

always on that remote controller whether they are used or not on any particular state. 

In this concept keys that can be used in current state are drawn on a touch screen 

dynamically.   

 

4.2 Smart Adaptive Remote Controller Concept 

The remote controller only contains keys to switch on the controlled device while 

in stand-by mode. If any device is registered or if there are more than one device 

registered, then remote controller may contain keys to select any of the registered 

devices. Figure 4.1 shows that sate of the remote controller. This state or view called 

base state or base view.  

 

This base view can be change by the implementers depending of their application 

of product, system states or system mechanisms. For that reason this view is given 

here only to give an idea about the remote controller while not in communication 

mode. While remote controller is in this view, user can only switch on the 

controllable device by using standby key or any key to switch on the device. In 

consumer electronics other keys in addition to standby key can be switch on these 

equipments 



27

Figure 4.1 Base view of adaptive remote controller 

Figure 4.1 shows the remote controller while it contains only key in order to 

switch on the device. That key is saved the remote controllers database when the 

device is registered or sent by controllable device while it is entering standby mode.   

 

After device switched-on and complete its boot-up sequence, it sends its keys 

which are used in its first state reached after booting. For example one of the more 

complex devices on the market is DVD Recorder now. After booting this DVD 

Recorder device user can change the channel by using numeric keys, change the 

setup settings or change the target/source storage for playing or recording or record 

the current channel audio and video or play something from selected storage media 

etc. Figure 4.2 shows the DVD Recorder’s keys after booting at the first state, and 

shows the mechanism of the new concept of remote controller messaging structure 

after pressing a key. 

 

Figure 4.2 can be different depending on the devices and their application 

software. In Figure 4.2 user presses the HDD/DVD button to select the storage 

device by toggling between HDD and DVD. After pressing that button the device 

sends new key or keys to remote controller if pressed key changes the device’s state. 

Here there is no key send on that state change. 

std 
by 

TV (Beko) 

Device selection 
buttons, if more than 
one device registered.

Indicator for the device 

to be controlled. 



28

Figure 4.2 An example of state change after booting a DVD Recorder 

Another example depending on Figure 4.3 if the user presses “play” key, DVD 

Recorder absolutely changes it is state from the current state, sends new keys and 

remote controller layout to the remote controller that is usable on that new state. 

Figure 4.3 An example of state change after pressed “play” key of DVD Recorder 

DVD 

Recorder 

DVD Recorder

Key properties send via protocol

RF or 802.11

Key Code

IR or RF

0x19 (hdd/dvd)

1 2 3

4 5 6

7 8 9

C 0
HDD/ 
DVD

std 
by

play 

record 
quality 

record 

record 
source 

setup

DVD Recorder

0x11 
(play)

disc menu display

anglesubtitle audio

DVD 

Recorder 

1 2 3

4 5 6

7 8 9

C 0
HDD/ 
DVD

record 
quality 

record 

record 
source 

play 

DVD 

Recorder 

1 2 3

4 5 6

7 8 9

C 0
HDD/ 
DVD

std 
by

setupsetup

std 
by



29

As understood from the above figures the concept is based on sending usable keys 

or remote controller layout to the remote controller while controllable device changes 

its state. By this, remote controller contains keys only which are useable on 

controllable device’s states and users can be use only convenient or usable keys. 

Thus users will not care about which keys are convenient, usable or which keys may 

not create application wise problem. In case of manufacturers they do not care much 

about the users pressing an inconvenient key which may cause the system to enter 

unstable state at any state change of the device. For those reasons this remote 

controller approach provides good opportunities for both users and manufacturers. 

For users they see usable keys only or the most used of them, for manufacturers  

system test efforts and number of system crashes will decrease due to the absence of  

remote controllers unusable keys while the device’s state changes. 



30

CHAPTER FIVE 

THE PROTOCOL DESIGN: SYSTEM STATES AND MESSAGING 

SRUCTURES 

 

5.1 System States 

The new concept system has a communication in two directions between remote 

controller and controllable device. Thus, new remote controllers are designed to 

control more than one device like a universal remote controller by using this system. 

One of the main purposes of this Smart Adaptive Remote Control Protocol does not 

need to know any controllable device or any hard coded device ID or key code of 

any devices. Because any suitable device or remote controller must be communicate 

with each other for controlling whether they know each other or not.   For that reason 

there must be a handshake state or registration state for both in order to see each 

other. For remote controller, this state is learning state to learn controllable device. 

For controllable device, this state is learning state its remote controller. Actually the 

device’s learning state is not important so much. But remote controller’s learning 

state is very important. Because every these type remote controllers send its ID to the 

controllable device. By this controllable devices send their keys or layout structures 

to the remote controllers, depending on their state changes. But how can remote 

controllers know controllable device’s keys at any time if that device does not send 

any key. Because of this the remote controllers learning state is more important than 

controllable devices learning state. 

 

5.2 Smart Adaptive Remote Control State Diagram 

The Figure 5.1 shows the remote controllers learning state (in the area closed with 

dashed line) and general working state diagram.  

 



31

Figure 5.1 shows the learning phase. This phase starts after the remote controller 

is switched on. In that phase, the remote controller checks any devices that are 

registered or not or there is any users demand for device register. Understanding no 

registered device found after a result of registered devices control operation, the 

remote controller starts multicasting if there is any device available in order to 

register its database. This is performed by a timeout to avoid remote controller goes 

into an infinite loop.  

Figure 5.1 State diagram for remote controller 

 

Other remaining part of the state diagram’s in Figure 5.1 is the normal running 

state of the Smart Adaptive Remote Control. This normal running state starts with 

Switched on 

Is There Any Registered Device?

Select Device 

Pressing Button 

AI Unite  
(Decide Key’s Appearances) 

(Optional) 

Is There Error? 

Draw Keys on 

Touchpad 

Multicast 

Any Response?

More Than One? 

Register Device 
ID 

Save Unregistered 
Device ID 

Save Registered 
Device’s Keys  

Is This Device First 
Device? 

Y

N

Draw Keys on Touchpad 

Timeout? 

Timeout? 

Wait 

Request New Keys 
Depending on State Changes 

N

Y

Y

Y

Y

N

Y
N

H

Y
N

N

Draw Keys on Touchpad 



32

checking if any registered device is available to control or not. If there is a registered 

device in order to control and if it is selected, then draws the keys on touchpad and 

waits the user to press a key. When the key is activated by the user remote controller 

sends it to controllable device and waits those returned keys depending on that 

device’s state changes. If any new keys received without error from the controllable 

device, remote controller draws them on the touchpad and waits for a new key 

activation from the user. If an error occurs during receiving new keys this receiving 

phase request must be repeated for that keys.  

 

5.3 Controllable Device State Diagram 

In previous sections controllable device learning state is described. In this section 

this learning state and general running state of controllable devices are described 

which are controlled by Smart Adaptive Remote Control Protocol. 

Figure 5.2 State diagram for controllable device 

Stand by 

Switched on 

Is Any Remote Controller Defined 

Is Multicast Available or Any 

Remote ID Entered

Wait in State 

Wait User Input For 
Listening 

Save Remote 
Controller ID 

Save State 

Is Any Input or Key 
Received? 

Send State Depended Keys 

N
Y

N

Y

NY



33

In Figure 5.2 the area, which is closed with dashed line, is the controllable 

devices’ learning state. The learning state starts with checking if there is any 

registered remote controller or not. If there is no defined remote controller then 

system checks any available multicasting. If there is multicasting then the 

controllable device saves remote controller’s ID which has made that multicasting. 

After that, the controllable device sends its keys, depending on its states, to the 

remote controller and than waits for keys from remote controller. 

 

Other remaining part of the area of Figure 5.2 is normal running state of the 

controllable device. This normal running state can be easily understood from the 

state diagram in Figure 5.2. This is established on sending keys or layouts to the 

remote controller depending on its status. 



34

CHAPTER SIX 

SARCP PACKETS DEFINATIONS 

 

6.1 SARCP Packet Structure and Definitions 

Mainly there are two different packet groups in this protocol which mostly have 

same packet structure. One for remote controller to controllable device and the other 

one is from controllable device to remote controller. The other two main packet 

structures are ACK or NACK type primitive packets. 

 

The packet sent by the remote controller to controllable device is very primitive. 

But others which are sent into the opposite direction is more complex. Because it has 

many different types payloads. All these packets and their structures are explained in 

this chapter. 

 

The packets are differentiating their synch byte by means of their flows. The 

packet’s synch byte value is 0x17 from remote controllers to controllable devices and 

the sync byte value is 0x19 into the opposite direction. The packet direction’s flow is 

understood by this sync byte. The reason of using synch byte or the importance of 

the knowing direction is the usage of communication method that is based on 

multicasting.  Because of this the sync byte is important in this approach. 

 

6.1.1 Multicasting or Learning Packet of Remote Controller (RCMLP) 

The multicasting packet of remote controller is used for learning or seeking 

controllable devices. This is the most important process of this approach. This packet 

is issued with multicasting method to all devices without pointing any devices. This 

operation can differ according to the transfer level of communication medium. 

 



35 

 

The RCMLP packet structure and its fields are shown below. 

Figure 6.1 RCMLP Packet structure 

 

Sync Byte  : This byte is used to understand data flow or the 

direction of packet. These packets are directed from remote controller to 

controllable device if the sync byte equals to 0x17. 

 

Protocol Version : This field describes the protocol version that is used 

in this communication. 

 

Packet Type  : Packet type describes the packet itself which help to 

understand the packet structure while packet parsing. 

 

Packet Number : Packet number describes packets if they are 

fragmented before transmitted. This will be used if the network medium 

permits small sized carrier packet. In order to avoid packets’ damage or lost 

transmitter should send packets by dividing into small sizes. The packet 

number starts with the x which defines the fragmented packets number and 

after this x decreases to 0 while each packet is being sent. The use of packet 

number is explained at the end of this chapter with an example. 

 

Remote ID  : This field is identifying the remote controller. This ID 

is saved by the controllable device and is used for all communications 

between these two devices. Remote ID is used by controllable device while 

sending data to the remote controller. The remote ID is a unique identifier for 

each remote controller. If one manufacturer has more than one remote 

protocol 
version

remote 
ID

state ID

1 byte 4 bytes 2 bytes

sync byte 
(0x17)
1 byte 

properties 
length

2 bytes 

properties

variable 
length 

CRC 32

4 bytes

packet 
type

1 byte

packet 
number
1 byte

reserved

1 byte



36 

 

controller design, suitable with this protocol, all remote controllers must have 

different remote IDs. 

 

State ID  : State ID field defines controllable system states. In 

this packet this value must be set to 0x00. Thus controllable device understand 

this communication is an authentication or a learning state.  

 

Properties Length : The properties length contains payload sizes that sent 

by this packet to the device.  

 

Properties  : Describes the remote controller’s properties. We will 

give more details about this field in next chapter. The aim by sending this to 

the controllable device is to provide universality of the remote controllers 

interface while interacting with the user. 

 

Reserved  : This area is reserved for future use. But 

manufacturers can specifically use this area for their application usage.  

 

CRC32   : CRC32 is used for checking error over all the packet 

content.  

 

6.1.2 Command Packet of Remote Controller (RCCP) 

This command packet is sent to remote controller to controllable device. And 

generally contains key code in its payload of the controllable device in order to 

conduct it. RCCP packet and its fields are shown at Figure 6.2. 

Figure 6.2 RCCP Packet structure 

protocol 
version

device 
ID

payload 
length

8
bytes

sync byte 
(0x17)

CRC32remote 
ID

state 
ID

1 byte 1 byte 4
bytes

4
bytes

2 bytes

payload

variable 
length 

4bytes

packet 
type

1 byte

reserved

1 byte 



37 

 

Sync Byte  : This byte is used to understand data flow or the 

direction of packet. These packets are directed from remote controller to 

controllable device if the sync byte equals to 0x17. 

 

Protocol Version : This field describes the protocol version that is used 

in this communication. 

 

Packet Type  : Packet type describes the packet itself which help to 

understand the packet structure while packet parsing. 

 

Remote ID  : Remote controller identifier. Controllable devices 

check this ID and make their operations if this ID is saved or belongs to 

authorized remote control in order to conduct it.  

 

Device ID  : Device ID field defines the controllable devices. This 

ID must be a unique identifier. Due to the multicast base of the protocol, the 

devices decide whether or not to response to this packet by using device ID. 

 

State ID  : State ID defines controllable devices’ system states. It 

is important because controllable device performs their operations by this state 

ID and key code that sent in payload.  

 

Payload Length : The payload length contains payload sizes that sent 

by this packet to the device. 

 

Payload  : The payload contains mostly the key code for 

controllable devices to control or conduct them. But this field must be a 

pointer. In the future, to extend protocol or to use different application this 

field may contains variable length data.  

 

Reserved  : This area is reserved for future use. But 

manufacturers can specifically use this area for their application usage. 



38 

 

CRC32   : CRC32 used for checking error over all packet 

content.  

 

6.1.3 Transmission Status Packet of Remote Controller (RCTS) 

The Transmission Status packet is used to understand that whether transmission is 

done successfully or not. RCTS packet and its field are shown at Figure 6.3. 

Figure 6.3 RCTS Packet structure 

 Sync Byte  : This byte is used to understand data flow or the 

direction of packet. These packets are directed from remote controller to 

controllable device if the sync byte equals to 0x17. 

 

Protocol Version : This field describes the protocol version that is used 

in this communication. 

 

Packet Type  : Packet type describes the packet itself which help to 

understand the packet structure while packet parsing. 

 

Remote ID  : Remote controller identifier. Controllable devices 

check this ID and make their operations if this ID is saved or the authorized 

remote control to conduct it.  

 

Device ID  : Device ID field defines the controllable devices. This 

ID must be a unique identifier. Due to the multicast base of the protocol, the 

devices decide whether or not to response to this packet by using device ID. 

 

protocol 
version

device 
ID

8 bytes 

sync byte 
(0x17)

ACK / 
NACK

remote 
ID

state 
ID

1 byte 1 byte 4 bytes 4 bytes 1bytes 

CRC32

4bytes 

packet 
type

1 byte

reserved

1 byte 



39 

 

State ID  : State ID defines controllable devices’ system states. It 

is important because controllable device performs their operations by this state 

ID and key code that sent in payload.  

 

ACK / NACK  : Shows the transmissions status. If this field is ACK 

(means that true) than transmission performed without any error if this field is 

NACK (means that false) than transmission has error. 

 

Reserved  : This area is reserved for future use. But 

manufacturers can specifically use this area for their application usage. 

 

CRC32   : CRC32 used for checking error over all packet 

content.  

 

6.1.4 Identification Packet of Controllable Device (CDIP) 

The Identification packet sent from controllable device to remote controller. The 

aim of this packet is informing the remote controller about itself. The controllable 

device sends its device ID and device name. This packet is sent only one time while 

learning procedure is running at the beginning of the communication. CDTS packet 

and its fields are shown at Figure 6.4 

Figure 6.4 CDIP Packet structure 

 Sync Byte  : This byte is used to understand data flow or the 

direction of packet. These packets are directed from remote controller to 

controllable device if the sync byte equals to 0x17. 

 

protocol 
version 

device 
ID 

sync byte 
(0x19) 

1 byte 1 byte 4 bytes

CRC32

4 bytes

device 
name 

variable 
length 

reserved

1 byte 1 byte 

packet 
type 



40 

 

Protocol Version : This describes the protocol version that is used this 

communication. 

 

Packet Type  : Packet type describes the packet itself which help to 

understand the packet structure while packet parsing. 

 

Device ID  : Device ID field defines the controllable devices. This 

ID must be a unique identifier. Due to the multicast base of the protocol, the 

devices decide whether or not to response to this packet by using device ID. 

 

Device Name : Describes the device name in order to present to the 

user on the remote controller.  

 

Reserved  : This area is reserved for future use. But 

manufacturers can specifically use this area for their application usage. 

 

CRC32   : CRC32 used for checking error over all packet 

content. 

6.1.5 Data Packet of Controllable Device (CDDP) 

The Data packet sent from controllable device to remote controller. This packet is 

the main packet of this flow. The data packet can contains two different areas from 

packets that sent remote controller to controllable device. These fields are payload 

type and 2 bytes reserved area field for future use. 

Figure 6.5 CDDP Packet structure 

payload 
protocol 
version

device 
ID
8

bytes

sync 
byte 

(0x19) type
remote 

ID
state 
ID

1 byte 1 byte 4
bytes

4
bytes

1
byte

CRC32

4bytes

length

1byte variable 
length 

reserved

1 byte 

payload  

type

1
byte

number

1 byte

packet 



41 

 

Sync Byte  : This byte is used to understand data flow or the 

direction of packet. These packets are directed from remote controller to 

controllable device if the sync byte equals to 0x17. 

 

Protocol Version : This describes the protocol version that is used this 

communication. 

 

Packet Type  : Packet type describes the packet itself which help to 

understand the packet structure while packet parsing. 

 

Packet Number : Packet number describes packets if packet 

fragmented before transmitted. This will be used if the network medium 

permits small sized carrier packet. In order to avoid packet damages 

transmitter side may send packets by dividing small size. The packet number 

starts the x that the fragmented packets count and after sending predecessor 

this number decreased to 0. The use of packet number is explained end of this 

chapter by examples. 

 

Remote ID  : Remote controller identifier. Controllable devices 

check this ID and make their operations if this ID is saved or the authorized 

remote control to conduct it.  

 

Device ID  : Device ID field defines the controllable devices. This 

ID must be a unique identifier. Due to the multicast base of the protocol, the 

devices decide whether or not to response to this packet by using device ID. 

 

State ID  : State ID defines controllable devices’ system states. It 

is important because controllable device performs their operations by this state 

ID and key code that sent in payload.  

 

Payload Type  : Describe the payload content. This will change 

respect of application. Because the payload can be differentiate by the 



42 

 

applications. The values that usable now and must be defined described 

below.  

Single Key :Shows payload carries one key and its 
properties.  

Multiple Key  :Shows payload carries more than one key and 
their properties. 
Information  :Shows payload carries information from 
controllable devices.  

Info with Button  :Shows payload carries information and buttons 
from controllable devices. This is used for when the information have 
choices.  

Payload Length : Contains the payload length.  

 

Payload : The payload contains single or multiple key 

descriptions, information or any application data depends on payload type. 

Manufacturers can carry many different type data with payload that defined 

with payload type.  

 

Reserved  : This area is reserved for future use. But 

manufacturers can specifically use this area for their application usage. 

 

CRC32   : CRC32 used for checking error over all packet 

content. 

 

6.1.6 Transmission Status Packet of Controllable Device (CDTS) 

The Transmission Status packet is used to understand that whether transmission is 

done successfully or not. CDTS packet and its fields are shown at Figure 6.6. This 

packet has same structure with RCTS except sync byte value. 

Figure 6.6 CDTS Packet structure 

protocol 
version

device ID

8 bytes 

sync byte 
(0x19)

ACK / 
NACK

remote 
ID

state ID

1 byte 1 byte 4 bytes 4 bytes 1bytes 

CRC32

4bytes 

packet 
type

1 byte 
reserved
1 bytes 



43 

 

Sync Byte  : This byte is used to understand data flow or the 

direction of packet. These packets are directed from remote controller to 

controllable device if the sync byte equals to 0x17. 

 

Protocol Version : This describes the protocol version that is used this 

communication. 

 

Packet Type  : Packet type describes the packet itself which help to 

understand the packet structure while packet parsing. 

 

Remote ID  : Remote controller identifier. Controllable devices 

check this ID and make their operations if this ID is saved or the authorized 

remote control to conduct it.  

 

Device ID  : Device ID field defines the controllable devices. This 

ID must be a unique identifier. Due to the multicast base of the protocol, the 

devices decide whether or not to response to this packet by using device ID. 

 

State ID  : State ID defines controllable devices’ system states. It 

is important because controllable device performs their operations by this state 

ID and key code that sent in payload.  

 

ACK / NACK  : Shows the transmissions status. If this field is ACK 

(means that true) than transmission performed without any error if this field is 

NACK (means that false) than transmission has error. 

 

Reserved  : This area is reserved for future use. But 

manufacturers can specifically use this area for their application usage. 

 

CRC32   : CRC32 used for checking error over all packet 

content. 

 



44 

 

6.2 The Use of Packet Number Field of RCMLP and CDDP  

The main purpose of packet number field of RCMLP and CDDP to describe the 

transmitted packet counts when their payloads are fragmented into small sized 

packets. The aim is avoiding the packet’s data lost in slow networks. The packet 

number starts from x that the fragmented packets count and after sending predecessor 

this number decreased to 0. When this number reached to 0 the receiver understand 

whole packet arrived and ready to retrieve its data.  

 

The transmitter has a threshold value that constraint for external effects.  For 

example baud rate of network or maximum transmission unite of that network. 

Transmitter composes payload data after that transmitter fragments this composite 

data chunk into the small packets respect of this threshold value. After this 

fragmentation transmitter adds packet header and define the packet number starting 

from fragment count and footer (calculated CRC32). 

 

Assume that our data has fragmented 5 pieces. The composed data and their 

fragments and fragmented data packets are shown at Figure 6.7. 

Figure 6.7 Packet fragmentation and use of packet number field  

00x19 3 1011 231011 14 7 x payload 1st piece 0x10ACB2

00x19 3 1011 231011 13 7 x

payload 2nd piece

0x10AF23 

payload 3rd piece 0x10DA79 

payload 4th piece 0x16F923 

payload 5th piece 0x1BAA79

payload 1st piece

payload 2nd piece 

payload 3rd piece payload 4th piece payload 5th piece

00x19 3 1011 231011 12 7 x

00x19 3 1011 231011 11 7 x

00x19 3 1011 231011 10 7 x



45

CHAPTER SEVEN 

SARCP ENTITY PROPERTIES AND THEIR ELEMENT TYPES 

 

7.1 Types that Used in Entity Properties 

Types define the some entity properties of predefined values. Some times these 

types are defined as enumerators and these types are explained below.  

 

7.1.1 Version 

The version describes the protocol version. In this thesis we describe only 

protocol structure that suitable for new remote controller approach. For that reason 

this protocol is only small set of may be “perfect” protocol for Smart Adaptive 

Remote Controller Protocol. In order to provide compatibility, we define a version 

area in every packet. The structure of the version is an enumerator that describes the 

protocol’s version. This structure can be expandable by adding new values by 

developing new versions of this protocol for this approach. 

typedef enum _versions { 
 VERSION_1 
} versions; 

 

7.1.2 Color Type 

The color type describes the color values of the button aspect of their state. The 

state means that this button has an action that called active while user pressing or 

passive there is no action. The structure must be describes the button’s color value in 

RGB (Red, Green, Blue) mode separately. All separate values must be integer. Color 

propertie’s structure described below. 
typedef _color { 
 unsigned int red;  //RED value 

unsigned int green; //GREEN value 
unsigned int blue;  //BLUE value 

} color; 



46 

 

7.1.3 Keytype Type 

The keytype type describes the key is a repeated key or not. Several keys like 

volume increment/decrement keys or up/down keys (depending on application) are 

called repeated keys. These keys are not changed the state of the controllable device. 

For that reason no need to sending new keys to the remote controller from 

controllable device, because there is no state change. The structure of the keytype is 

an enumerator and its values are shown below. 

typedef enum _keyTypes { 
 SINGLE, 
 REPEATED 
} keyTypes; 
 

7.1.4 Key Group Type 

The keyGroup type describes the groups that perform the operations about same 

type. For example for DVD playback keys that fast forward, pause, step are 

performing playback functionality. For that reason this keyGroup type say the remote 

controller key’s group that must be draw on the touchpad together. The structure of 

this type can be defined freely with an enumerator type by each manufacturer. Thus 

each manufacturer defines their own groups. The remote controller understands 

groups by this type. 

 

7.1.5 Key Function Type 

The keyFunction type describes the differences of the key functionalities like 

numeric key or non numeric key. For example 0 to 9 keys are numeric keys and after 

pressing these key may not be cause state change on the controllable device. In order 

to understand this distinction between keys this keyFunction type can be used. The 

structure of the keyFunction type is an enumerator and its values are shown below. 

typedef enum _keyFunctions { 
 NUMERIC, 
 STANDART  
} keyFunction; 

 



47 

 

7.1.6 Screentype Type 

The screentype type describes the remote controller’s screen type. The structure of 

the screentype type is an enumerator and its values are shown below. This type’s 

values can be expandable according to hardware’s specifications. 

typedef enum _screenTypes { 
 COLOR, 
 MONOCHROME  
} screenTypes; 

 

7.1.7 Shape Type 

The shapetype type describes the key’s shape. The structure of the shape type is 

an enumerator and its values are shown below. 

typedef enum _shapeTypes { 
 RECTANGLE, 
 SQUARE, 
 CIRCLE  
} shapeTypes; 

 

7.1.8 addSub Type 

The addSub type describes the key will adding or subtracting from previous key 

layout. For example “play” key must be removed from key layout on the touchpad 

after it is pressed. This type describes with below values to say to remote controller 

that key will removed or added to key layout which is drawn by previous state of the 

controllable device. The structure of the addSub type is an enumerator and its values 

are shown below. Thus CDDP will not send with too much key information and 

network will not been so much busy by setting appropriate value of this type’s. 

typedef enum _addSubTypes { 
 ATTACH, 
 DEATTACH  
} addSubbTypes; 

 



48 

 

7.1.9 payloadType Type 

The payloadType describes the protocol’s packets type. This type can be different 

application by application. But at least these are must be defined as single key, 

multiple key, information and information with button. This type only notifies the 

remote controller what payload coming and how it is interpreted. The structure of the 

payloadType is an enumerator and its values are shown below. These values can be 

expandable depending on the applications. 

typedef enum _payloadTypes { 
 SINGLE_KEY, 
 MULTIPLE_KEY, 
 INFORMATION, 
 INFORMATION_WITH_BUTTON 
} payloadType; 

 

7.2 Entity Properties Used in SARCP 

In SARCP and its application to provide compatibility some properties that used 

in SARCP must be defined. For example key properties. Because supporting 

universal controllability especially keys and some other properties must be defined 

strictly.  

 

But these entities are elements of the presentation layer. In the protocol layer we 

did not need to define these entities. But there is a common library between 

controllers and controllable devices to present keys and other visual elements after 

arriving to remote controller. And the library definitions can be sending to 

controllable device by RCMLP packet at remote controller while it is in learning 

phase.  

 

7.2.1 The Remote Controller Property 

This property describes the remote controller’s structure. These are remote 

controller’s screen dimensions, resolutions, color range and widget type’s etc. The 

aim by sending this to the controllable device is to provide universality of the remote 

controllers interface while interaction with the user. These properties are resolutions 



49 

 

(height, width), screen type (color or monochrome) and supported widget type or 

libraries. The entity structure is shown below. 

 

height  : An integer value that describe the height of the screen.  

width  : An integer value that describe the width of the screen.  

screen type : An integer value that describes the screen type.  

widget library : An integer value that describes the widget library of the 

remote controller that used for user interface drawing. This value is an 

enumerator type and their values are started from 1 and continue the defined 

widget library. The controllable devices do not have to know this value. But 

they must know their entire key that sent will drawn by that widget library.  

 

The remote controller property code structure is written is below. 

typedef _remoteController { 
 int  hegiht; 
 int width; 
 screenTypes screenType; 
 int widgetLibrary; 
} remoteController key; 

 

7.2.2 Text Property 

The text property select the predefined text font and size in the remote controller 

depending on the widget library that supported by remote controller. This structure 

can be different depending of the widget library. 

 

7.2.3 Key Property 

The keys are in this system most important. Because remote controller draw them 

on its touch screen by their properties and system interact with users with these keys 

that defined by their properties. And to provide universality of remote controller 



50 

 

every controllable devices send their keys an understandable format to interpret by 

every remote controller. The key properties listed below. 

 

key ID  : The unique key identifier. Keys are known by this ID. keyID 

is a unique number for every device and any keys. This means that same 

keyID’s can be possible for different devices. 

height  : Defines the height of the button.  

width  : Defines the width of the button.  

radius  : Defines the radius of the button.  

shape  : Defines the shape of the button. 

passive color : Defines the color while it is drawn. Not pressed state. 

active color : Defines the color while it is pressed. 

effect  : Defines the blinking effect on or off that button.  

text  : The text that written on the button after drawing.  

image  : Image which is drawing on the key. This image property is 

depending on defined widget in the remote controller. That reason I do not 

define this property here. 

textAlignmet : The text layout on the button.  

iconAlignmet : The icon layout on the button.  

key type : The key type property and its values are explained above.  

key group : The key group property and its values are explained above.  

key function : The key function property and its values are explained above.  

must  : The must property indicates that key always drawn on the 

touch screen without asking AI unit. In some states users may not use some 

keys which are usable in that state. But that keys are always sends to the 

remote controller. If the user does not use these keys before; if available; the 

remote controller AI unit can hide these keys by looking their previous usage 

frequency and if they have not use so much before than these keys may not 



51 

 

drawn on the touch screen of the remote controller. This can be 1 or 0 to 

indicate this property. 

lock after : The lock after property indicates that after the key is used the 

key pad on the touch screen whether locked or not.  This can be 1 or 0 to 

indicate this property. 

addSub  : This area indicates the key is adding or subtracting to 

previous key. This will increase the throughput of the drawing system. 

key cod e : The key code is the describe keys code that sending to the 

controllable device to inform for performing necessary operations. 

 

The key type code structure is written is below. 

typedef _key { 
 int  keyID; 
 int  hegiht; 
 int width; 
 int radius; 
 shapeTypes  buttonShape; 
 color   passiveColor; 
 color   activeColor; 
 boolean  effect; 
 char[15]  text; 
 image   icon; 
 alignment  textAlignmet; 
 alignment  iconAlignmet; 
 keyTypes  keyType; 
 keyGroups  keyGroup; 
 keyFunctions keyFunction; 
 boolean  must; 
 boolean  locAfter; 
 addSubbTypes  keyCode; 
 int keyCode; 

 } key; 

 

7.2.4 Information Property 

The information property can be used for sending informative messages. Any 

system can send informative message to the remote controller that supports this 

protocol whether they are controllable or not. For example a washing machine can 

send its state for informing its users about a problem getting water inside.  



52 

 

The informative messages can be plain messages or sometimes they can be having 

choices to give to user some decisions. These type informative messages have some 

buttons like windows warning messages like “yes”, “no” or “OK”. Buttons are used 

from standard predefined widget library. That reason there is no need to define 

button properties if will used. But only button code must be defined and send to the 

remote controller.  

 

message  : Describe the information message to the user.  

button OK code : Defines the OK button code if needed. 

button YES code : Defines the YES button code if needed. 

button NO code : Defines the NO button code if needed. 

 

The informative messages code structure is written is below. 

typedef _ infoMessage { 
 char[120] message;   //message text 

int buttonOKCode; //OK button code ID if needed 
int buttonYESCode;//YES button code ID if needed 
int buttonNOCode; //NO button code ID if needed 
} infoMessage; 

The informative messages can be plain messages or sometimes they can be having 

choices to give to user some decisions. These type informative messages have some 

buttons like windows warning messages like “yes”, “no” or “OK”. Buttons are used 

from standard predefined widget library. That reason there is no need to define 

button properties if will used. But only button code must be defined and send to the 

remote controller. 

 



53

CHAPTER EIGHT 

THE SARCP SIMULATION 

 

8.1 Introduction 

In order to enable this concept, a new protocol and mechanisms are defined at the 

previous chapters. And in order to prove this smart adaptive remote control protocol 

applicable, a simulation program is developed. The protocol provides a common 

language to make the remote controller and the controllable devices understand each 

other. This chapter explains our simulation application, which platform is used to 

develop, how this application is created and which components are used, what is the 

definition of simulated device and its states. End of all, the run-time screen shots will 

be given.  

 

Our application simulates two devices, one is the remote controller and the other 

one is controllable device as a DVD Recorder. The controllable device’s state 

diagram will be given in section 8.4. Please note that this is a simulation about 

proving the smart adaptive remote control protocol if it is applicable or is working. 

 

8.2 Development Platform  

The simulation program is developed at Borland C++ Builder. Borland C++ 

Builder is an object-oriented, visual programming tool to develop 32-bit applications 

for Windows platforms. By Borland C++ Builder highly efficient programs can be 

created in a short time without writing thousands lines of code. C++ Builder provides 

a suite of Rapid Application Development (RAD) tools at design and run. Borland 

C++ Builder supports object-oriented programming with two extensive class 

libraries. These libraries are Visual Component Libraries (VCL) and Borland 

Component Library for Cross-Platform (CLX). 

 



54

Borland C++ Builder also provides an integrated debugger for following code 

flow or finding and fixing errors in codes. This debugger is very powerful and 

practical tool for computer applications. But in real time applications this debugger is 

not helpful, especially if application has network communications. But it was very 

helpful. It shows variable values while you are trace the program line by line. 

 

Borland C++ Builder is provides hundreds of components with respect of those 

two libraries. Programmers can use components to develop very powerful 

applications. Of course many of these components are used in our simulation 

application. 

 

8.3 Application Properties  

This simulation application simulates a remote controller and a controllable 

device with a protocol by using Ethernet communication infrastructure and its 

physical layer. Because there are two different devices in this simulation application. 

And these devices run on two different computers to provide real system behaviors. 

For that reason this application uses standard Ethernet network for communication.  

 

This application placed on the IP structure at protocol stack. Actually the smart 

adaptive remote control protocol is independent from communication medium and 

it’s infra structure. It is designed to support this independency. This protocol can be 

run on many communications medium, i.e. RF application like Bluetooth or wireless 

networks by using its well defined properties.  

 

In order to provide communication between two end points our program uses 

benefits of sockets. A server socket component from VCL library of Borland C++ 

Builder used for remote controller in order to simulate it and a client socket 

component from same library used for controllable device in order o simulate it. 

Client and server sockets are explained in the following section. 

 



55

8.3.1 Sockets, Server and Client Sockets 

8.3.1.1 Sockets 

Sockets were created at Berkeley University in California in order to permit 

network communication with UNIX systems. A socket is a connection between two 

hosts or in the other words socket is a method which allows applications to 

communicate between them. Sockets perform seven basic operations depending on 

being server socket or client socket. These operations are; 

• Connect to a remote machine 
• Send data 
• Receive data 
• Close a connection 
• Bind to a port 
• Listen for incoming data 
• Accept connections from remote machines on the bound port 
 

The first four operations are used for both server and client sockets. The last three 

operations are needed only by servers, which wait for clients connections (Harold, 

2004) 

 

Data is transmitted across the Internet in packets of finite size called datagrams. 

Each datagram contains a header and a payload. The header contains the address and 

port to which the packet is going, the address and port from which the packet came, 

and various other information used to ensure reliable transmission. The payload 

contains the data itself. However, since datagrams have a finite length, it's often 

necessary to split the data across multiple packets and reassemble it at the 

destination. It's also possible that one or more packets may be lost or corrupted in 

transit and need to be retransmitted or that packets arrive out of order and need to be 

reordered. Keeping track of this—splitting the data into packets, generating headers, 

parsing the headers of incoming packets, keeping track of what packets have and 

haven't been received, and so on—is a lot of work and requires a lot of complicated 

code. 

 



56

Fortunately, sockets allow the programmer to treat a network connection as just 

another stream onto which bytes can be written and from which bytes can be read. 

Sockets shield the programmer from low-level details of the network, such as error 

detection, packet sizes, packet retransmission, network addresses, and more. 

 

8.3.1.2 Client Sockets 

A client is the host that initiates the connection with a server by socket. As 

mentioned before the operations of clients socket. Many programs normally use 

client sockets in the following order: 

1. The program creates a new socket with a constructor. 

2. The socket attempts to connect to the remote host. 

3. Once the connection is established, the local and remote hosts get input 
and output streams from the socket and use those streams to send data to 
each other. This connection is full-duplex; both hosts can send and receive 
data simultaneously. The data depends on the protocol. 

4. When the transmission of data is complete, one or both sides close the 
connection.  

 
Client socket is opens a connection by defined port to the server from a computer. 

There must be a server other side of the connection to perform a communication or 

data exchange. Client sockets are behaves like a requester in order to start 

communication with any server specified by a port. (Harold, 2004) 

 

8.3.1.3 Server Sockets 

A server socket is a listener which listens for incoming socket connections. The 

socket will listen on a specific port and respond when a message is sent to that port. 

The incoming messages may be from the same machine or another machine.  

 

A server program that used server socket basically performs following operations;  

1. A new socket is created on a particular port using a server socket 
constructor. 



57

2. The server socket listens for incoming connection attempts on that port 
using accept method.  

3. Gets input and output streams that communicate with the client. 

4. The server and the client interact according to an agreed-upon protocol 
until it is time to close the connection. 

5. The server, the client, or both close the connection. 

6. The server returns to step 2 and waits for the next connection. 

 
A server socket runs on the server and listens for incoming TCP connections. 

Each server socket listens on a particular port on the server machine. When a client 

on a remote host attempts to connect to that port, the server wakes up, negotiates the 

connection between the client and the server –accept this connection– and returns a 

regular socket descriptor representing the socket between the two hosts. In other 

words, server sockets wait for connections while client sockets initiate connections. 

Once a server socket has set up the connection, the server uses a regular socket 

descriptor to send data to the client. Data always travels over the regular socket. 

(Harold, 2004) 

 

8.4 Simulated Device and Device States  

In this simulation application there are two different devices simulated. DVD 

recorder is the controlled device. And remote controller is a Smart Adaptive Remote 

Controller. These two devices are explained in the following sections.  

 

8.4.1 Controllable Device Application as DVD Recorder 

The controllable device is a simulation of DVD Recorder. Their basic states and 

keys are simulated in application. Here DVD Recorder performs DVD playback, 

recording to DVD, time shifting, and increase and decrease the volume.  

 

This simulated device’s states can change with key commands coming from 

remote controller across from the network. These states diagram are given in Figure 

8.1. 



58

de
fa

ul
t

sta
t e

0

sa
nd

by

s ta
te

99

sto
p

s ta
te

1

pa
us

e

sta
te

6

pl
ay

ba
ck

st a
te

2

fa
st

bw
d

st
at

e
8

fa
st

fw
d

s t
at

e
7

sl
ow

fw
d

st a
te

9

slo
w

bw
d

st
at

e
10

tim
es

hi
ft

st a
te

5

pa
us

e

s ta
te

32

re
co

rd

s ta
te

4

pa
us

e

st
at

e
31

pl
ay

ba
ck

s t
a t

e2
1

fa
st

bw
d

s ta
te

13

fa
st

fw
d

sta
te

12

st
an

by
_k

ey

st
op

_k
ey

st
an

db
y_

ke
y

re
co

rd
_k

ey
pl

ay
_k

ey

tim
es

hf
t_

ke
y

st
op

_k
ey

fastbwd_key

paly_key

pa
us

e_
ke

y

pa
us

e_
ke

y

play_key

pa
us

e_
ke

y

fastfw
d_key

st
op

_ k
e y

s t
op

_ k
ey

st
op

_k
ey

st
op

_k
ey

st
o p

_ k
e y

pla
y_

ke
y

st
an

db
y_

ke
y

standby_key

st
an

db
y_

key

pl
ay

_k
ey pa

us
e_

ke
y

pause_key

pa
us

e_
ke

y

pa
us

e_
ke

y

pa
us

e_
ke

y
fa

st
fw

d_
ke

y

f a
st

bw
d_

ke
y

st
op

_k
ey

ej
ec

t

s t
at

e
99

ej
ec

t_
ke

y
ej

ec
t_

ke
y

eject_
key

ej
e c

t _
k e

y

ej
ec

t_
ke

y

eject_key

ej
ec

t_
ke

y

play_key

play

_key
sto

p_
ke

y

stop_key

standby_key

st
an

db
y_

ke
y

standby_key

st
an

db
y_

ke
y

st
an

db
y_

ke
y

Figure 8.1 State diagram of controllable device 



59

8.4.2 Remote Controller Application 

The remote controller simulation application only performs the receiving key 

information, drawing these keys to screen and sending their key code to the 

controllable device across the network. Screenshots may give some idea about 

remote controller. 

 

8.5 Application Screenshots  

In this section several screenshots are given about remote controller and 

controllable device from simulation.  

 

Figure 8.2 shows the remote controller is switched on and has no connections 

from any controllable device. Figure 8.3 shows remote controller switched on and 

has a connection from registered controllable device. This screenshot was captured 

while raw data pane was selected. Raw data pane shows you any communication 

data coming from the network with smart adaptive remote controller protocol. Figure 

8.4 shows controllable device is switched on and connected to the registered remote 

controller. Figure 8.5 shows controllable device with raw data pane tab after sending 

first CDDP to the remote controller. Figure 8.6 shows the remote controller with 

protocol pane after receiving CDDP from the controllable device. Figure 8.7 shows 

the remote controller with payload pane after receiving a CDDP from the 

controllable device. Payload pane shows you payload after parsed its content. From 

Figure 8.2 to Figure 8.7 are about initialization of remote controller and controllable 

devices states, in other words their first states after they switched on. 

 

Figure 8.8 shows remote controller after play key is pressed. After pressing play 

key (or any key) remote controller sends RCCP with play key command to 

controllable device and a new CDDP is received from controllable device which 

carries keys of controllable device’s new state. The Figure 8.9, Figure 8.10 and 

Figure 8.11 show after pressing play key from the remote controller. Figures are 

captured from the controllable device’s alternately protocol pane, payload pane and 

raw data pane. 



60

Figure 8.12, Figure 8.13, Figure 8.14 show remote controller after pressed standby 

key. Figures are captured from remote controller alternately raw data pane, payload 

pane and protocol pane of remote controller’s. Figure 8.15 shows controllable device 

after pressed standby key. 

Figure 8.2 Remote Controller after switched on. 



61

Figure 8.3 Remote Controller after receiving CDDP from 

controllable device. 

 



62

Figure 8.4 Controllable device after being connected to the registered remote 

controller.



63

Figure 8.5 Controllable Device with raw data pane after sending first CDDP to the 

remote controller. 

 



64

Figure 8.6 Remote Controller with protocol pane after CDDP is 

received. 

 



65

Figure 8.7 Remote Controller with payload pane after CDDP is 

received. 

 



66

Figure 8.8 Remote Controller after CDDP is received from the 

controllable device. 

 



67

Figure 8.9 Control Devices protocol pane after pressing play key from the remote 

controller. 

 



68

Figure 8.10 Control Devices protocol pane after pressing play key from the 

remote controller 

 



69

Figure 8.11 Control Devices raw data pane after pressing play key from the 

remote controller 

 



70

Figure 8.12 Remote Controller’s raw data pane after pressing 

standby key 

 



71

Figure 8.13 Remote Controller’s payload pane after pressing 

standby key. 

 



72

Figure 8.14 Remote Controller’s protocol pane after pressing 

standby key. 

 



73

Figure 15 Controllable Device’s payload pane after pressing standby key 



74

CHAPTER NINE 

CONCLUSION & FUTURE WORK 

 

Remote controllers have started to take an important place in our life recently. The 

reason for this each device has a remote controller and several features for certain 

devices can be performed only with the remote controller of that device. Users can 

control these devices always with the conscious of what thy want to do and which 

key is pressed then. They may not always have a user manual or a guide to help 

them. 

 

The increments of the consumer products in houses have brought together many 

remote controllers with them. As the users have a different remote controller for each 

device, they need to have each remote controller to be able to control any of these 

devices. Therefore several remote controller models exist in the market in to be a 

solution for this problem. However these types of remote controllers can not control 

the device in the next room. 

 

In this study that has been explained previous chapters, what can be achieved with 

a new approach for remote controllers and what is required to realize this approach. 

The most required thing is a communication protocol. 

 

The protocol that called as Smart Adaptive Remote Controller provides an 

implementation of new approach, completely independent of the communication 

infrastructure to be used. In order to provide control of more than one device and 

functioning  of these devices based on the principle of changing keys on the remote 

controller according to the state changes of devices, an infra structure is required that 

uses Radio Frequency (RF) technique as a communication infrastructure. 

 

The remote controller and the device should face each other while the 

communication infrastructure infrared. In this study, it is understood that RF 

communication should be preferred according to the infrared infrastructure, because 



75

of the possibility of state changes of devices at any time due to their features are 

considered. Furthermore using multicasting method as the principle of our approach 

makes it compulsory to use a communication infrastructure from radio frequency 

domain. For example wireless networks are very suitable for this remote controller 

and its protocol. Because all control mechanisms are implemented and many 

consumer products are manufactured built-in wireless modules for different 

applications and these built-in modules can be used for this application or remote 

controller system. 

 

On the other hand, radio frequency system (for this system wireless module) 

consumes too much power. While the controllable devices in standby mode these 

modules may be do not provide the conditions international committee’s desired 

obligations. For that reason a new wireless or radio frequency system must be 

evolved to provide international committee’s desired conditions. Various solutions 

can be applied for this situation. One of these may be the use of infrared technology 

to take the devices from stand-by mode. Thus the devices are prevented to consume 

so much power on stand-by mode. When the device functions in full power mode, 

new control mechanism can be run with RF technology.  

 

This study now only defines requirements to obtain bidirectional communications 

and states to achieve adaptive remote controller system.  For these a new protocol 

must be implemented and some messaging structures must be defined. And to 

provide universality, some user interface libraries must be defined strictly at remote 

controller side. At the future work, these user interface libraries or widgets should be 

designed at remote controller side. Also the communication medium and new 

mechanisms should be defined instead of using wireless networks. 

 



76

REFERENCES 

Cantu, M. (2003). Mastering Delphi 7. (1st Edition) Sybex 

 

Celadon Inc. (n.d.) Sample IR Code Formats.  Retrieved March 10, 2006, from 

www.celadon.com/infrared_protocol/infrared_protocols_samples.pdf 

 

Dumbill E., Jepson B., Weeks R. (2004). Linux Unwired. (1st Edition) O’Reilly 

 

Hyder, D. (2002). Infrared Sensing and Data Transmission Fundamentals.  

Retrieved March 11, 2006 from  

http://www.onsemi.com/pub/Collateral/AN1016-D.PDF 

 

Harold E.R. (2004). Java Network Programming, (3rd Edition) O’Reilly  

 

Kremin, V.  (2003). RC5 Codec.  Retrieved March 11, 2006 from 

http://www.enee.umd.edu/class/enee445.S2004/rc5codec.pdf 

 

Kernighan, B.W., Ritchie, D.M. (1988). C Programming Language (2nd Edition)  

Prentice Hall 

 

Oualline, S. (1995). Practical C++ Programming (1st Edition) O’Reilly  

 

SAA3008 (1988). Philips Semiconducters DataSheet. Retrieved July 20, 2006, from 

http://www.nxp.com/pip/SAA3008_CNV_3.html 

 

SB-Project. (n.d.). Retrieved May 8, 2006, from  

http://www.xsall.com/~sbp/ 

 

Seerden, P. (2003).  Using the Philips 87LPC76x microcontroller as a remote 

control transmitter. Retrieved March 10, 2006 from  

www.semiconductors.philips.com/acrobat/applicationnotes/AN10210_2.pdf 



77

STM3004LD, ST Microelectronics Datasheet 

http://www.chipcatalog.com/Datasheet/B825494F2306E69C0C45E18B7CC19F

25.htm 

 

Stroustrup B. (1997). The C Programming Language (3rd Edition) Addison-Wesley 

 

Yeh, K.W., Wang, L. (n.d.) An Intro to the IrDA Standard & System Implementation 

Retrieved May 13, 2006 from http://www.actisys.com/article.html 



78

APPENDIX A 

ABBREVIATIONS  

 

HDLC (High Level Data Link Control) 

A Link-Level protocol used to facilitate reliable point-to-point transmission of a 

data packet.  

 

Note: A subset of HDLC, known as "LAP-B," is the Layer-two protocol for 

CCITT Recommendation X.25. 

 

NRZ  (Non-Return-to-Zero) 

A code in which "1s" are represented by one significant condition and "0s" are 

represented by another, with no neutral or rest condition, such as a zero amplitude in 

amplitude modulation (AM), zero phase shift in phase-shift keying (PSK), or mid-

frequency in frequency-shift keying (FSK). (188 ) Note 1: Contrast with Manchester 

code, return-to-zero. Note 2: For a given data signaling rate, i.e., bit rate, the NRZ 

code requires only one-half the bandwidth required by the Manchester code.  

 

SR (Steradian)   

The metric unit of solid angle. The steradian is the Standard International (SI) unit 

of solid angular measure. There are 4Π, or approximately 12.5664, steradians in a 

complete sphere. The name is partly derived from the Greek stereos for "solid". 

 

A steradian is defined as conical in shape, as shown in the illustration. Point P

represents the center of the sphere. The solid (conical) angle q, representing one 

steradian, is such that the area A of the subtended portion of the sphere is equal to r2,

where r is the radius of the sphere.  



79

A general sense of the steradian can be envisioned by considering a sphere whose 

radius is one meter (r = 1m). Imagine a cone with its apex P at the center of the 

sphere, and that intersects the surface in a circle (shown as a red ellipse, the upper 

half of which is dashed). Suppose the flare angle q of the cone is such that the area A

of the spherical segment within the circle is equal to one meter squared (A = 1m2). 

Then the flare angle of the cone is equal to 1 steradian (q = 1sr). The total surface 

area of the sphere is, in this case, 12.5664 square meters (4Π times the square of the 

radius).  

 

Based on the foregoing example, the geometry of which is independent of scale, it 

can be said that a solid angle of 1sr encompasses about 1/12.5664, or 7.9577 percent, 

of the space surrounding a point.  

 

The number of steradians in a given solid angle can be determined by dividing the 

area on the surface of a sphere lying within the intersection of that solid angle with 

the surface of the sphere (when the focus of the solid angle is located at the center of 

the sphere) by the square of the radius of the sphere. 

 

The steradian was formerly an SI supplementary unit, but this category was 

abolished from the SI in 1995. 


