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Övgü KINAY, Burcu ÜÇER, and Selma GÜRLER for their support in this process.

I would like to thank my dear parents, Nevin & Coşgun TEKİN, who have always
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CONSTRUCTION AND ANALYSIS OF CLUSTERING ALGORITHMS
BASED ON FUZZY RELATIONS AND THEIR APPLICATIONS TO

EEG DATA

ABSTRACT

In this work, fundamentally two algorithms have been proposed. The first one is the

NRFJP (Noise-Robust FJP) algorithm which is a robust version of the known fuzzy

neighborhood-based FJP (Fuzzy Joint Points) clustering algorithm. In the NRFJP

algorithm each point for which certain eps1 fuzzy neighborhood cardinality is smaller

than certain eps2 threshold is perceived as noise. Moreover, in case eps2 is zero, the

sensitivity of the NRFJP through noises is turned off, consequently NRFJP algorithm

transforms into FJP algorithm.

The second algorithm is the FN-DBSCAN (Fuzzy Neighborhood DBSCAN)

algorithm which is a mixture of FJP and density-based DBSCAN (Density Based

Spatial Clustering Applications with Noise) algorithms. In the study, the effects of

fuzzy neighborhood relation in density-based clustering have been investigated. Besides

being a more general algorithm, the FN-DBSCAN algorithm transforms into the

DBSCAN algorithm when the crisp neighborhood function is used.

The modified version of the FN-DBSCAN algorithm has been developed so as to

apply cluster analysis to BIS data. As a result of the computational experiments, it has

been observed that FN-DBSCAN based approach gives closer results to the expert’s

opinion than the well-known FCM (Fuzzy c-means) clustering algorithm.

The codes for the proposed algorithms, NRFJP, FN-DBSCAN and the modified

version of FN-DBSCAN to analyze BIS data, have been developed in Borland C++

Builder SDK and they have been designed as an integrated software system.

Keywords: Fuzzy relation, clustering, NRFJP, FN-DBSCAN, EEG, BIS index.
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BULANIK İLİŞKİLERE DAYALI KÜMELEME ALGORİTMALARININ
OLUŞTURULMASI, ANALİZİ VE EEG VERİLERİNE UYGULANMASI

ÖZ

Bu çalışmada temel olarak iki algoritma önerilmektedir. Birincisi, bulanık

komşuluğa dayalı FJP (Fuzzy Joint Points) algoritmasının sapan değerlere dayanıklı

versiyonu olan NRFJP (Noise-Robust FJP) algoritmasıdır. NRFJP algoritmasında,

belirli bir eps1 için, bulanık komşuluk kardinalitesi eps2 eşiğinden düşük olan her bir

nokta sapan değer olarak ele alınır. Algoritmada, eps2 değeri sıfır olarak seçildiğinde,

NRFJP algoritmasının sapan değerlere karşı duyarlılığı yok olur ve NRFJP algoritması

FJP algoritmasına dönüşür.

Çalışmada önerilen ikinci algoritma ise, FJP ve yoğunluğa dayalı DBSCAN (Density

Based Spatial Clustering Applications with Noise) algoritmalarının karışımı olan

FN-DBSCAN (Fuzzy Neighborhood DBSCAN) algoritmasıdır. Çalışmada, yoğunluğa

dayalı kümelemede kullanılan bulanık komşuluk ilişkilerinin etkisi incelenmiştir.

FN-DBSCAN daha genel bir algoritma olmasının yanında, klasik komşuluk fonksiyonu

kullanıldığında DBSCAN algoritmasına dönüşmektedir.

BIS verilerine kümeleme analizi uygulamak için FN-DBSCAN algoritmasının

modifiye edilmiş versiyonu geliştirilmiştir. Yapılan hesaplama deneyleri sonucunda,

iyi bilinen FCM (Fuzzy c-means) kümeleme algoritmasına kıyasla, FN-DBSCAN

temelli yaklaşımın uzman görüşüne daha yakın sonuçlar verdiği gözlenmiştir.

Önerilen NRFJP, FN-DBSCAN ve FN-DBSCAN temelinde BIS verilerinin analizi

için geliştirilmiş algoritmanın Borland C++ Builder programlama dilinde kodları

yazılmış ve entegre bir yazılım sistemi halinde tasarlanmıştır.

Anahtar Sözcükler: Bulanık ilişki, kümeleme, FCM, DBSCAN, FJP, NRFJP,

FN-DBSCAN, EEG, BIS indeksi.
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CHAPTER ONE

INTRODUCTION

Brains do not reason as computers do. Computers reason in clear steps with

statements that are black or white. They reason with strings 0s or 1s. Humans reason

with the vague terms of common sense as in “The air is cool” or “The speed is fast” or

“He is young”. These fuzzy or gray facts are true only to some degree between 0 or 1

and they are false to some degree. Brains work with these fuzzy patterns with ease and

computers may not work with them at all. Fuzzy logic tries to change that.

The key idea of fuzziness comes from the multivalued logic of the 1920s:

Everything is a matter of degree. A statement of fact like “The sky is blue” or “The

angle is small” does not have a binary truth value. It has a vague or fuzzy truth value

between 0 and 1. And so does its negation “The sky is not blue.” So the sky is both

blue and not blue to some degree. This simple point of fact violates the either-or laws

of logic that extend from the first formal logic of ancient Greece to the foundations of

modern math and science.

Fuzzy logic builds gray truth into complex schemes of formal reasoning. It is a

new branch of machine intelligence that tries to make computers reason with our gray

common sense. The earlier uses of the term fuzzy logic were the same as continuous

truth or vagueness. It meant matters of degree and gray borders and thus breaking the

either-or law of binary logic. Today, fuzzy logic refers to a fuzzy system or mapping

from input to output that depends on fuzzy rules. The rules in turn depend on fuzzy

sets or vague concepts like cool air or blue sky or small angle and these terms depend

on fuzzy degrees of truth or set membership. Fuzzy logic means reasoning with vague

concepts. In practice it can mean computing with words.

Fuzziness began as vagueness in the late nineteenth century. Pragmatist philosopher

Charles Sanders Peirce seems the first logician to have dealt with vagueness (Peirce,

1931). Logician Bertrand Russell first identified vagueness at the level of symbolic

1
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logic (Russell, 1923). In the 1920s, logician Jan Lukasiewicz worked out the first

fuzzy or multivalued logic (Lukasiewicz, 1970).

In 1965 Lotfi A. Zadeh, from the University of California at Berkeley, published

the landmark paper “Fuzzy Sets” (Zadeh, 1965). This paper first used the word fuzzy

to mean “vague” in the technical literature. The name fuzzy has not only persisted

but largely replaced the prior term vague (Zadeh, 1987). Zadeh’s 1965 paper applied

Lukasiewicz’s logic to each object in a set to work out a complete fuzzy set algebra

and to extend the convex separation theorem of pattern recognition.

Since Lotfi A. Zadeh (1965) introduced the concept of fuzzy sets that produced

the idea of allowing to have membership functions to all clusters, fuzzy clustering has

been widely studied and applied in a variety of substantial areas. In general, the process

of grouping a set of objects into classes of similar objects is called clustering (Hartigan,

1975). By clustering, one can identify dense and sparse regions, and therefore,

discover overall distribution patterns and interesting correlations among data attributes

(Kaufmann & Rousseeuw, 1990). As it is well-known, clustering has its roots in many

areas, including statistics, data mining, biology, image processing, machine learning,

etc.

The main subject of the study is to analyze and evaluate new clustering algorithms

based on the fuzzy neighborhood relations. As a real-world application, the algorithms

have been applied to BIS (bispectral index) data which are recorded by using EEG

(electroencephalography).

The rest of this dissertation work is as follows: In the second chapter, preliminaries

about cluster analysis and a categorization of major clustering algorithms are handled.

Also, among various clustering methods, FCM (Fuzzy c-means) and DBSCAN

(Density Based Spatial Clustering Applications with Noise) algorithms are explained.

In the third chapter, some basic concepts of relations are given and they are all

investigated in view of both crisp and fuzzy situations.
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In the fourth chapter, fuzzy neighborhood-based clustering methods, which form

the basics of the dissertation, are investigated. First of all, Fuzzy Joints Points (FJP)

algorithm and some of its basic concepts are explained since the two proposed methods

are based on the FJP algorithm. Then, Noise-Robust FJP (NRFJP) algorithm, which is

a modified form of FJP algorithm to handle noise points, is proposed and an entropy-

based method to adjust one of its parameters is discussed. Then, the second proposed

method, Fuzzy-Neighborhood DBSCAN (FN-DBSCAN) which is a mixture of fuzzy

relation-based FJP and fast-running DBSCAN algorithms is explained in detail.

In the fifth chapter, in order to form a basis for the real-world application, some

basic notions of two of the data collection techniques, electroencephalography (EEG)

and Bispectral Index (BIS) are mentioned.

In the sixth chapter, in order to handle the problem of determining BIS stages for

21 people, by modifying the mentioned algorithms according to BIS data, FCM-based

and FN-DBSCAN-based approaches are explained and compared both analytically and

graphically.

In the seventh chapter, a software “The FJP Family”, coded in Borland C++ Builder

6.0 SDK, for fuzzy neighborhood-based clustering methods is introduced and some

examples are given.

Finally, conclusions are stated in the last chapter.



CHAPTER TWO

PRELIMINARIES OF CLUSTERING ALGORITHMS

Clustering and classification tasks are among the most important problems in modern

data mining technologies used in processing large databases (Han & Kamber, 2001;

Larose, 2005). Clustering analyzes data objects without consulting a known class label

different from classification. In general, the class labels are not present in the training

data simply because they are not known to begin with. Clustering can be used to

generate such labels. The objects are clustered or grouped based on the principle of

maximizing the intra-class similarity and minimizing the interclass similarity. That is,

clusters of objects are formed so that objects within a cluster have high similarity in

comparison to one another, but are very dissimilar to objects in other clusters. Each

cluster that is formed can be viewed as a class of objects, from which rules can be

derived (Grabmaier & Rudolph, 2002).

2.1 Classification of Major Clustering Algorithms

In general, major clustering methods can be classified into the categories (Han &

Kamber, 2001):

• Partitioning methods,

• Hierarchical methods,

• Density-based methods,

• Grid-based methods,

• Model-based methods.

Some clustering algorithms integrate the ideas of several clustering methods, so that

it is difficult to classify a given algorithm as uniquely belonging to only one clustering

method category. Furthermore, some applications may have clustering criteria that

require the integration of several clustering techniques. A more detailed relationship

between these categories are given in Figure 2.1.

4
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2.1.1 Partitioning Methods

Partitioning methods aim to directly obtain a single partition of the collection of

items into clusters. Many of these methods are based on the iterative optimization

of a criterion function reflecting the “agreement” between the data and the partition.

Methods using the squared error rely on the possibility to represent each cluster by a

prototype and attempt to minimize a cost function that is the sum over all the data items

of the squared distance between the item and the prototype of the cluster it is assigned

to. In general, the prototypes are the cluster centroids, as in the popular k-means

algorithm (MacQueen, 1967). Several solutions were put forward for cases where a

centroid cannot be defined, such as the k-medoid method (Kaufmann & Rousseeuw,

1990), where the prototype of a cluster is an item that is “central” to the cluster, or the

k-modes method (Huang, 1997) that is an extension to categorical data.

The above-mentioned heuristic clustering methods work well for finding spherical-

shaped clusters in small to medium-sized databases. To find clusters with complex

shapes and for clustering very large data sets, partitioning-based methods need to be

extended.

2.1.2 Hierarchical Methods

Hierarchical methods aim to obtain a hierarchy of clusters, called dendrogram, that

shows how the clusters are related to each other. These methods proceed either by

iteratively merging small clusters into larger ones (agglomerative algorithms, by far the

most common) or by splitting large clusters (divisive algorithms). A partition of the

data items can be obtained by cutting the dendrogram at a desired level. Agglomerative

algorithms need criteria for merging small clusters into larger ones. Most of the criteria

concern the merging of pairs of clusters (thus producing binary trees) and are variants

of the classical single-link (Sneath & Sokal, 1973), complete-link (King, 1967) or

minimum-variance criteria (Ward, 1963; Murtagh, 1984). The use of the single-link

criterion can be related to density-based methods but often produces upsetting effects:

clusters that are “linked” by a “line” of items cannot be separated or most items are
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individually merged to one (or a few) cluster(s). The use of the complete-link or of the

minimum-variance criterion relates more to squared error methods.

Hierarchical methods suffer from the fact that once a step (merge or split) is done, it

can never be undone. This rigidity is useful in that it leads to smaller computation costs

by not worrying about a combinatorial number of different choices. However, a major

problem of such techniques is that they cannot correct erroneous decisions. There

are two approaches to improving the quality of hierarchical clustering: (1) perform

careful analysis of object “linkages” at each hierarchical partitioning, such as in CURE

(Guha et al., 1998) and Chameleon (Karypis et al., 1999), or (2) integrate hierarchical

agglomeration and iterative relocation by first using a hierarchical agglomerative

algorithm and then refining the result using iterative relocation, as in BIRCH (Zhang

et al., 1996).

2.1.3 Density-Based Methods

Most partitioning methods cluster objects based on the distance between objects.

Such methods can find only spherical-shaped clusters and encounter difficulty at

discovering clusters of arbitrary shapes. Other clustering methods have been developed

based on the notion of density. These methods consider that clusters are dense sets of

data items separated by less dense regions; clusters may have arbitrary shape and data

items can be arbitrarily distributed. Many methods, such as DBSCAN (Brecheisen

et al., 2003) (further improved in (Brecheisen et al., 2003; Daszykowski et al., 2004)),

rely on the study of the density of items in the neighborhood of each item. DBSCAN

(Density-Based Spatial Clustering Applications with Noise) is typical density-based

method that grows clusters according to a density threshold (Ester et al., 1996). DBSCAN

is a kind of clustering algorithm based on intra-cluster densities. In this algorithm,

distance queries is made for each point in data set for pre-determined ε value and it is

investigated whether the points in ε-neighborhood of the point is larger than the MinPts

value or not . It is possible to form a set with points that have values larger than MinPts

and for each element of this set, complex-shaped cluster is obtained by repeating the

same process.
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There are other density-based clustering algorithms as GDBSCAN (Generalized

DBSCAN), and OPTICS (Ordering Points to Identify the Clustering Structure) in

the literature (Sander et al., 1998; Daszykowski et al., 2004; Ankerst et al., 1999).

GDBSCAN algorithm is proposed for the density-skewed case. In this method, α and

MinPts values are determined by the user according to the densities. Set densities

are arranged in increasing order and the sets with fewer densities are joined by using

Greedy algorithm. DBSCAN calculates many distance functions that increases the

complexity of the algorithm. In order to reduce this complexity, OPTICS algorithm

is recommended. In this algorithm, distance queries of έ which are smaller than ε

are made and distinct distance functions are used only if it is desired to obtain real

clustering. A data set can be represented in OPTICS while multidimensional projection

is not possible in DBSCAN.

Some interesting recent work on density-based clustering is using 1-class support

vector machines (Ben-Hur et al., 2002).

2.1.4 Grid-Based Methods

Grid-based methods quantize the object space into a finite number of cells that form

a grid structure. All of the clustering operations are performed on the grid structure,

i.e. on the quantized space. The main advantage of this approach is its fast processing

time, which is typically independent of the number of data objects and dependent only

on the number of cells in each dimension in the quantized space.

STING (Wang et al., 1997) is a typical example of a grid-based method. CLIQUE

(Agrawal et al., 1998) and Wave-Cluster (Sheikholeslami et al., 1998) are two clustering

algorithms that are both grid-based and density-based.

2.1.5 Model-Based Methods

Model-based methods hypothesize a model for each of the clusters and find the best

fit of the data to the given model. A model-based algorithm may locate clusters by

constructing a density function that reflects the spatial distribution of the data points.
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It also leads to a way of automatically determining the number of clusters based on

standard statistics, taking noise or outliers into account and thus yielding robust

clustering methods.

Model-based clustering methods follow two major approaches: a statistical approach

and a neural network approach. Examples of the statistical approach include COBWEB

(Fisher, 1987), CLASSIT (Gennari et al., 1989), and AutoClass (Cheeseman & Stutz,

1996). Studies of the neural network approach include competitive learning by Russell

(1923) and SOM (self organizing feature maps) by Kohonen (1982).

2.1.6 Fuzzy Clustering

In classical (hard/crisp) clustering, the boundary of different clusters is crisp such

that each pattern is assigned to exactly one class. On the other hand, the boundary

between clusters may not be precisely defined in real life such that some of the patterns

can belong to more than one cluster with different positive degrees of membership.

This case is represented by fuzzy clustering instead of crisp clustering (Höppner et al.,

1999; Dumitrescu et al., 2000).

In the fuzzy clustering literature, FCM algorithm is the best-known fuzzy clustering

method and its variants are found in the literature (Dunn, 1973; Bezdek, 1973). Most

of these approaches suppose the fuzziness of clustering with respect to possibility of

membership of some elements into some classes. But in this work, a different approach

of fuzziness based on a Fuzzy Joint Points (FJP) method is considered. Basic difference

of this method is its comprehension of fuzziness in a hierarchical point of view, i.e. it

considers the elements by constructing homogenous groups in detail. It is obvious that

the elements are more dissimilar when they are discussed in more detail. The fuzzier

the elements, more similar they are. In this case, fuzziness of clustering points out the

investigation of the considered properties in more detail. Since all of the elements will

be dissimilar from each other in minimal fuzziness degree of zero, each element can be

considered as an individual cluster. On the other hand, in maximal degree of fuzziness,

all of the elements can be considered to be similar to each other in such a way that they
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belong to one class.

Finding the optimal cluster number, specifying initial clusters and direct methods

for clustering with iterative development are fundamental problems of FCM-type

clustering algorithms. Among these methods, K-nearest neighbor (KNN) and Mountain

method are used widely (Zahid et al., 2001; Yager & Filev, 1994; Velthuizen et al.,

1997). But these methods have some disadvantages. For instance, the basic

disadvantages of KNN are necessity to a priori given number of clusters and to assign

equal number of elements to each class. The basic disadvantage of Mountain method

is necessity to set up its parameters and without correct set up, the method may give

bad results.

Another approach to fuzzy clustering is the Fuzzy Joints Points (FJP) method

(Nasibov & Ulutagay, 2005a,b). Unlike FCM, FJP method is able to recognize clusters

with arbitrary structure. Furthermore, FJP method does not have a disadvantage such

as predetermining the number of clusters or constructing initial clusters. On the other

hand, FJP method has an integrated cluster validity mechanism to determine the optimal

number of clusters. From this view, FJP method is more advantageous than both

hierarchical clustering algorithms and density-based DBSCAN algorithm.

The fundamental idea of the FJP method is to compute the fuzzy relation matrix

based on the distance between points. Then, for certain α ∈ [0,1], α-level sets and

equivalence classes are constructed. At the same time, these α-degree equivalence

classes determine each α-level set of the fuzzy clusters. Also note that, these α-level

sets are not computed for all α ∈ [0,1] degrees, instead they are computed only for

α-levels in which the number of clusters are affected. Then, the final level set is

computed based on the maximal change interval of the α’s. In other words, the α-level

degree that reflects the cluster structure optimally and α-level set appropriate for these

level are found simultaneously.
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2.2 FCM Algorithm

As a partitioning method, the k-means algorithm was first introduced by Mac-Queen

(MacQueen, 1967). The k-means algorithm takes the input parameter, k, and partitions

a set of n objects into k clusters so that the resulting intra-cluster similarity is high but

the inter-cluster similarity is low. Cluster similarity is measured in regard to the mean

value of the objects in a cluster, which can be viewed as the cluster’s center of gravity.

Fuzzy c-means (FCM) algorithm is a generalization of the k-means algorithm. It was

first introduced by Dunn and then generalized by Bezdek (Dunn, 1973; Bezdek, 1973).

FCM algorithm partitions a collection of n vectors (X = {x0,x1, . . . ,xn} ⊂ Rp) into

c fuzzy groups such that the weighted within-groups sum of squared error objective

function is minimized. The objective function and constraints for FCM are defined as

Jm(u,v) =
c

∑
i=1

n

∑
j=1

um
i j d (vi,x j)→Min (2.1)

subject to:

c

∑
i=1

ui j = 1, ui j ∈ [0,1], 0 <
n

∑
j=1

ui j < n

In Equation (2.1), ui j is the membership of the jth data point in the ith cluster, vi is

the ith cluster center, and d (vi,x j) is the distance between vi and x j, i.e.

d (vi,x j) =
[ p

∑
k=1

(x jk− vik)2
]1/2

(2.2)

The necessary conditions for Jm to reach its minimum are given below:

vi =

n

∑
j=1

um
i j x j

n

∑
j=1

um
i j

(2.3)
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ui j =
1

c

∑
l=1

[
d (vi,x j)
d (vl,x j)

] 2
m−1

(2.4)

FCM Algorithm.

Step 1. Given unlabeled data set X = {x0,x1, . . . ,xn};

Fix c,m, ||.||A and ε > 0;

Choose initial cluster centers {v10,v20, . . . ,vc0} arbitrarily;

Set t = 1.

Step 2. Compute all memberships ut = [ut
i j], i = 1,2, . . . ,c ; j = 1,2, . . . ,n using

Equation (2.4);

Step 3. Update all c fuzzy cluster centers vt
i using Equation (2.3).

Step 4. Compute Et = ‖vt − vt−1‖2

Step 5. If Et < ε stop, else t = t +1 and go to Step 2.

End.

2.2.1 Initialization of Clusters

Initialization of clusters is one of the most crucial steps of FCM clustering algorithm.

Speed of resulting and shapes of resultant clusters may differ with respect to this.

Therefore, initial cluster construction methods are important. Some of the well known

initial cluster construction methods are Mountain method, Modified Mountain method

and K-Nearest-Neighbors rule (Yager & Filev, 1994; Velthuizen et al., 1997; Zahid

et al., 2001).

2.2.2 Cluster Validity

Cluster validation is an important issue in cluster analysis since the correct structure

of a data set is unknown. Once the partition is obtained by a clustering method, the
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validity function can help us to validate whether it accurately presents the data structure

or not. Hence, detecting the cluster validity is the basic problem of cluster analysis.

Cluster validity indices may be defined as identifying the optimal cluster number. It

is impossible to detect the real structure of the cluster if a little mistake is made in

determining the number of clusters. Some of the widely used cluster validity criteria

are given Table 2.1 (Bezdek, 1974, 1975; Dunn, 1974; Fukuyamo & Sugeno, 1989;

Xie & Beni, 1991; Kwon, 1998).

Table 2.1 Some of the widely used cluster validity indices.l ll

Criteria Functional description Optimal number

PC VPC =
1
n

c

∑
i=1

n

∑
j=1

u2
i j max(VPC,U,c)

CE VCE =−1
n

c

∑
i=1

n

∑
j=1

ui j loga ui j min(VCE ,U,c)

FS VFSm =
c

∑
i=1

n

∑
j=1

um
i j[d

2(x j,vi)−d2(mx,vi)] min(VFS,U,c)

SI VSI =
min
i6= j

d(ui,u j)

max
i

δ(ui)
max(VSI,U,c)

XB VXB =

c

∑
i=1

n

∑
j=1

u2
i j‖x j− vi‖2

n(min
i6=k

‖vi− vk‖2)
min(VXB,U,c)

lllllllllllllllllllllllll

2.3 DBSCAN Algorithm

To discover clusters with complex shape, density/neighborhood-based clustering

methods have been developed. These typically regard clusters as dense regions of

objects in the data space that are separated by regions of low density (representing

noise).

DBSCAN (A Density-Based Spatial Clustering of Applications with Noise) is a

density-based clustering algorithm (Ester et al., 1996). The algorithm grows regions

with sufficiently high density into clusters and discovers clusters of arbitrary shape in

spatial data-bases with noise. It defines a cluster as a maximal set of density-connected

points.
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Consider a data set X = x1,x2, ...,xn. Each object xi has m properties. Thus, each

datum xi could be handled as a point of m-dimensional space, i.e. xi = (xi1,xi2, ...,xim).

In this sense, the Euclidean distance d(xi,x j) between any points xi,x j ∈ X can be

determined as follows:

d(xi,x j) =
[ m

∑
k=1

(xik− x jk)2
]1/2

(2.5)

First of all, let us define some concepts used in the DBSCAN algorithm. The

neighborhood set of point x ∈ X detected by using any of the membership function

is determined as follows (Figure 2.2).

Definition 2.1. The neighborhood set of point x∈ X with parameter ε (ε-neighborhood

set) is as follows:

N(x,ε) = {y ∈ X | d(x,y)≤ ε}. (2.6)

Definition 2.2. x ∈ X is called a core point with parameters ε and MinPts if

|N(x,ε)| ≥MinPts (2.7)

is satisfied where |N(x,ε)| is the cardinality of the set N(x,ε).

Definition 2.3. Let p,q ∈ X . A point p is directly density-reachable from a point q

with respect to the ε and MinPts if q is a core point and p ∈ N(q,ε).

Note that other points can only be directly density-reachable from core points.

Definition 2.4. Let pi ∈ X , i = 1, ...,n. A point p is density reachable from a point q

with respect to ε and MinPts if there is a chain of points p1, ..., pn, p1 = q, pn = p, such

that pi+1 is directly density-reachable from pi.

Definition 2.5. Let p,q,o ∈ X . A point p is density connected to a point q with respect

to ε and MinPts if there is a core point o such that both p and q are density-reachable

from o with respect to ε and MinPts.
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Figure 2.2 Illustration of some concepts used in DBSCAN
a) core point, b) direct density reachability, c) density
reachability, d) density connectivity.

Density reachability is the transitive closure of direct density reachability, and this

relationship is asymmetric. Only core objects are mutually density reachable. Density

connectivity, however, is a symmetric relation.

Definition 2.6. Let D be a database of points. A cluster C with respect to ε and MinPts

is a non-empty subset of D satisfying the following conditions:

a) Maximality: ∀p,q: if p ∈C and q is density-reachable from p with respect to ε

and MinPts, then q ∈C.

b) Connectivity: ∀p,q ∈ C: p is density-connected to q with respect to ε and

MinPts.
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Definition 2.7. Let C1, ...,Ck be the clusters of the database D with respect to parameters

ε and MinPts. Then, noise is defined as the set of points in the database D not belonging

to any cluster Ci, i.e. noise = {p ∈ D | ∀i : p /∈Ci}.

The main idea of DBSCAN algorithm is that each core point must have a certain

minimum number of neighbors (MinPts) in a certain ε radius. The running principle of

the algorithm is as follows: starting from each core point, every core point and points

in its neighborhood which are directly density reachable from it (so called seed points)

form a set of seeds. Then, the process continues by starting from another core point

and a new set of seeds is formed until each core point is handled in this sense. The

pseudocode of the DBSCAN algorithm is as follows:

DBSCAN Algorithm.

Step 1. Specify Eps and MinPts .

Step 2. Mark all the points in the data set as unclassified.

Step 3. Find an unclassified core point p with Eps and MinPts. Mark p to be classified.

Start a new cluster to be the current cluster and assign p to the current cluster.

Step 4. Find all the unclassified points in the Eps-neighborhood of p. Create a set of

seeds and put all these points into the set.

Step 5. Get a point q in the seeds, mark q to be classified, assign q to the current cluster,

and remove q from the seeds.

Step 6. Check if q is a core-point with Eps and MinPts, if so, add all the unclassified

points in the Eps-neighborhood of q to the set of seeds.

Step 7. Repeat step 5 through 6 until the set of seeds is empty.

Step 8. Start a new cluster and repeat step 3 through 7 until no more core-points can be

found.
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Step 9. Output all the clusters found so far, and mark all the points, which do not belong

to any cluster, as noise.

End.

In the following chapters, by using above mentioned clustering algorithms, various

modifications of fuzzy neighborhood relation based clustering algorithm are

constructed and comparative analysis is performed.



CHAPTER THREE

FUZZY RELATIONS

A relation represents the presence or absence of association, interaction, or

interconnectedness between the elements of two or more sets. This concept can be

generalized to allow for various degrees or strengths of relation or interaction between

elements. Degrees of association can be represented by membership grades in a fuzzy

relation in the same way as degrees of set membership are represented in the fuzzy set.

In fact, just as the crisp set can be viewed as a restricted case of the more general fuzzy

set concept, the crisp relation can be considered to be a restricted case of the fuzzy

relation (Klir & Folger, 1988; Pedrycz & Gomide, 1998).

3.1 Crisp Relations and Their Properties

Definition 3.1. If A and B are two sets and there is a specific property between elements

x of A and y of B, this property can be described using the ordered pair (x,y). A set of

such (x,y) pairs, x ∈ A and y ∈ B, is called a relation R.

R = {(x,y) | x ∈ A,y ∈ B} (3.1)

R is a binary relation and a subset of A×B.

If (x,y) /∈ R, x is not in relation R with y. If A = B or R is a relation from A to A, it

is written

(x,x) ∈ R or x R x , R⊆ A×A. (3.2)

Definition 3.2. For sets A1,A2,A3, ...,An, the relation among elements x1 ∈ A1,x2 ∈

A2,x3 ∈ A3, ...,xn ∈ An can be described by n-tuple (x1,x2, ...,xn). A collection of such

n-tuples (x1,x2, ...,xn) is a relation R among A1,A2,A3, ...,An which is called n-ary

relation. That is

(x1,x2, ...,xn) ∈ R, R⊆ A1×A2×·· ·×An. (3.3)

18
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Definition 3.3. Let R stand for a relation between A and B. The domain and range of

this relation are defined as follows

dom(R) = {x | x ∈ A,(x,y) ∈ R for some y ∈ B} (3.4)

ran(R) = {y | y ∈ B,(x,y) ∈ R for some x ∈ A}. (3.5)

Here we call set A as support of dom(R) and B as support of ran(R). dom(R) = A

results in completely specified and dom(R) ⊆ A incompletely specified. The relation

R⊆ A×B is a set of ordered pairs (x,y). Thus, if we have a certain element x in A, we

can find y of B, i.e., the mapped image of A. We say “y is the mapping of x”.

If we express this mapping as f , y is called the image of x which is denoted as f (x)

R = {(x,y) | x ∈ A,y ∈ B,y = f (x)} or f : A→ B. (3.6)

3.1.1 Properties of Relation on a Single Set

The fundamental properties of relation defined on a set, that is, R ⊆ A×A such as

reflexive relation, symmetric relation, transitive relation, closure, equivalence relation,

compatibility relation, pre-order relation and order relation is handled in detail.

1. Reflexive Relation: If for all x ∈ A, the relation xRx or (x,x) ∈ R is established,

we call it reflexive relation. The reflexive relation might be denoted as

x ∈ A→ (x,x) ∈ R or µR(x,x) = 1, ∀x ∈ A

where the symbol “→” means implication. If it is not satisfied for some x ∈ A,

the relation is called irreflexive. If it is not satisfied for all x ∈ A, the relation is

antireflexive.

2. Symmetric Relation: For all x,y ∈ A, if xRy = yRx, R is said to be a symmetric
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relation and expressed as

(x,y) ∈ R→ (y,x) ∈ R, µR(x,y) = µR(y,x), ∀x,y ∈ A.

The relation is asymmetric or nonsymmetric when for some x,y ∈ A, (x,y) ∈ R

and (y,x) /∈ R. It is an antisymmetric relation if for all x,y ∈ A, (x,y) ∈ R and

(y,x) /∈ R.

3. Transitive Relation: This concept is achieved when a relation defined on A

verifies the following property.

(x,y) ∈ R,(y,z) ∈ R→ (x,z) ∈ R, ∀x,y,z ∈ A.

4. Closure: When relation R is defined in A, the requisites for closure are,

a) Set A should satisfy a certain specific property.

b) Intersection between A’s subsets should satisfy the relation R.

The smallest relation R̂ containing the specific property is called closure of R.

Definition 3.4. A relation R⊆A×A is an equivalence relation if reflexivity, symmetry,

and transitivity conditions are satisfied.

If an equivalence relation R is applied to a set A, we can perform a partition of A

into n disjoint subsets A1,A2, ...,An which are equivalence classes of R. At this time in

each equivalence class, the above three conditions are verified. Assuming equivalence

relation R in A is given, equivalence classes are obtained. The set of these classes is a

partition of A by R and denoted as π(A/R).

Definition 3.5. If a relation satisfies reflexivity and symmetry conditions for every

x,y ∈ A, the relation is called compatibility relation.

If a compatibility relation R is applied to set A, we can decompose the set A into

disjoint subsets which are compatibility classes. In each compatibility class, the above
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two conditions are satisfied. Therefore, a compatibility relation on a set A gives a

partition. But the only difference from the equivalence relation is that transitive relation

is not completed in the compatibility relation.

Definition 3.6. For any x,y,z ∈ A, if a relation R ⊆ A× A satisfies reflexivity and

transitivity conditions, it is called pre-order relation.

We can assure that if a pre-order exists, it implies that an order exists between

classes, and that the number of members in a class can be more than 1. If the property

of antisymmetric relation is added to the pre-order, the number of member in a class

should be 1 and it becomes an order relation.

Definition 3.7. If a binary relation R ⊆ A×A satisfies i) reflexivity, ii) antisymmetry,

and iii)transitivity conditions for any x,y,z ∈ A, it is called order relation or partial

order relation .

When relation R is given to an arbitrary set A, an order according to R is defined

among the elements of A. If the condition (i) is replaced by

(i’) Antireflexive relation

x ∈ A→ (x,x) /∈ R

we apply the term strict order relation for it.

In the order relation, when the following condition (iv) is added, we call this relation

a total order or linear order relation.

iv)∀x,y ∈ A,(x,y) ∈ R or (y,x) ∈ R

The total order is also termed as a chain since it can be drawn in a line. Comparing

to the total order, the order following only conditions i) , ii) and iii) is called a partial

order, and a set defining the partial order is called partial order set.

Definition 3.8. For all x,y ∈ A, (x 6= y),

i) If (x,y) ∈ R, xRy or x > y, f (x) = f (y)+1.
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ii) If reachability relation exists in x and y, i.e. if x R̂y, f (x) > f (y).

Now we can summarize as follows :

(1) In the pre-order, the symmetry or nonsymmetry is allowed. But in the case of

order, only the antisymmetry is allowed. In other words, adding the antisymmetry

to the pre-order, we get an order.

(2) A pre-order is said to be an order between classes. In other words, an order is a

pre-order restricting that the number of class is 1.

(3) An equivalence relation has symmetry, so it can be obtained by adding the

symmetry to the pre-order relation.

Characteristics so far discussed are summarized in Table 3.2.

Table 3.2 Comparison of relations.ll l

Property
Relation Reflexive Antireflexive Symmetric Antisymmetric Transitive

Equivalence X X X
Compatibility X X

Pre-order X X
Order X X X

Strict order X X X

l l

3.2 Fuzzy Relations and Their Properties

If a crisp relation R represents that of from sets A to B, for x ∈ A and y ∈ B, its

membership function µR(x,y) is,

µR =

 1 if (x,y) ∈ R

0 if (x,y) /∈ R
. (3.7)

This membership function maps A×B to set {0,1}, i.e.

µR : A×B→ [0,1] (3.8)
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Definition 3.9. Fuzzy relation has degree of membership whose value lies in [0,1],

R = {((x,y),µR(x,y)) | µR(x,y)≥ 0, x ∈ A, y ∈ B}. (3.9)

Here µR(x,y) is interpreted as strength of relation between x and y. When µR(x,y)≥

µR(x′,y′), (x,y) is more strongly related than (x′,y′). When a fuzzy relation R⊆ A×B

is given, this relation R can be thought as a fuzzy set in the space A×B.

Assume a Cartesian product space X1×X2 composed of two sets X1 and X2. This

space makes a set of pairs (x1,x2) for all x1 ∈ X1,x2 ∈ X2. Given a fuzzy relation R

between two sets X1 and X2, this relation is a set of pairs (x1,x2)∈R. Consequently, this

fuzzy relation can be presumed to be a fuzzy restriction to the set X1×X2. Therefore,

R⊆ X1×X2.

Fuzzy binary relation can be extended to n-ary relation. If X1,X2, ...,Xn are assumed

to be fuzzy sets, fuzzy relation R ⊆ X1×X2× . . .×Xn can be said to be a fuzzy set of

tuple elements (x1,x2, . . . ,xn), where x1 ∈ X1,x2 ∈ X2, . . . ,xn ∈ Xn.

When crisp relation R represents the relation from crisp sets A to B, its domain and

range can be defined as,

dom(R) = {x | x ∈ A, y ∈ B, µR(x,y) = 1}

ran(R) = {y | x ∈ A, y ∈ B, µR(x,y) = 1}

Definition 3.10. When fuzzy relation R is defined in crisp sets A and B, the domain

and range of this relation are defined as:

µdom(R)(x) = max
y∈B

µR(x,y)

µran(R)(y) = max
x∈A

µR(x,y)

Set A becomes the support of dom(R) and dom(R) ⊆ A. Set B is the support of
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ran(R) and

ran(R)⊆ B.

Given a certain vector, if an element of this vector has its value between 0 and 1,

this vector is called a fuzzy vector. Fuzzy matrix is a gathering of such vectors. Given

a fuzzy matrix A = (ai j) and B = (bi j), operations can be performed on these fuzzy

matrices.

i) Sum: A+B = max[ai j,bi j]

ii) Max product: A•B = AB = maxk[min(ai j,bi j)]

iii) Scalar product: λA where 0≤ λ≤ 1.

Definition 3.11. If a fuzzy relation R is given in the form of fuzzy matrix, its elements

represent the membership values of this relation. That is, if the matrix is denoted by

MR, and membership values by µR(i, j), then MR = (µR(i, j)) and it is called a fuzzy

relation matrix.

It is obvious that a relation is one kind of sets. Therefore operations of fuzzy set to

the relation can be applied. Assume R⊆ A×B and S ⊆ A×B.

i) Union Relation: Union of two relations R and S is defined as follows:

µR∪S(x,y) = max[µR(x,y),µS(x,y)] = µR(x,y)∨µS(x,y), ∀(x,y) ∈ A×B

In general, the sign ∨ is used for max operation. For n relations, it is extended to

the following:

µR1∪R2∪...∪Rn(x,y) = ∨RiµRi(x,y).
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ii) Intersection Relation : The intersection relation R∩ S of set A and B is defined

by the following membership function:

µR∩S(x,y) = min[µR(x,y),µS(x,y)] = µR(x,y)∧µS(x,y), ∀(x,y) ∈ A×B

The symbol ∧ is for the min operation. In the same manner, the intersection

relation for n relations is defined by

µR1∩R2∩...∩Rn(x,y) = ∧RiµRi(x,y).

iii) Complement Relation : Complement relation R for fuzzy relation R shall be

defined by the following membership function:

µR(x,y) = 1−µR(x,y), ∀(x,y) ∈ A×B

iv) Inverse Relation: When a fuzzy relation R ⊆ A×B is given, the inverse relation

of R−1 is defined by the following membership function:

µ−1
R (y,x) = µR(x,y), ∀(x,y)⊆ A×B

Definition 3.12. Two fuzzy relations R and S are defined on sets A,B and C. That is,

R ⊆ A×B,S ⊆ B×C. The composition S•R of two relations R and S is expressed by

the relation from A to C, and this composition is defined by the following:

µS•R(x,z) = max
y

[min(µR(x,y),µS(y,z))]

= ∨y[µR(x,y)∧µS(y,z))], for(x,y) ∈ A×B, (y,z) ∈ B×C.

S•R from this elaboration is a subset of A×C. That is, S•R⊆ A×C.

If the relations R and S are represented by matrices MR and MS, the matrix MS•R

corresponding to S•R is obtained from the max-min product of MR and MS, i.e.
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MS•R = MR •MS.

Presuming that the relations R and S are the expressions of rules that guide the

occurrence of event or fact. Then the possibility of occurrence of event B when event

A is happened is guided by the rule R. And rule S indicates the possibility of C when B

is existing. For further cases, the possibility of C when A has occurred can be induced

from the composition rule S •R. This manner is named as an inference which is a

process producing new information.

Definition 3.13. We can obtain α-cut relation from a fuzzy relation by taking the pairs

which have membership degrees no less than α. Assume R⊆ A×B, and Rα is a α-cut

relation. Then,
Rα = {(x,y) | µR(x,y)≥ α, x ∈ A, y ∈ B}.

Note that Rα is a crisp relation.

Definition 3.14. Fuzzy relation can be said to be composed of several Rα’s as following:

R =
[

α

αRα

where α is a value in the level set; Rα is a α-cut relation; αRα is a fuzzy relation. The

membership function of αRα is defined as,

µαRα
(x,y) = α•µRα

(x,y), for(x,y) ∈ A×B.

Thus we can decompose a fuzzy relation R into several αRα, so called decomposition

of relation.

Definition 3.15. The projection of a fuzzy relation R⊆ A×B with respect to A or B is

as follows:

µRA(x) = max
y

µR(x,y) : projection to A, ∀x ∈ A,y ∈ B
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µRB(y) = max
x

µR(x,y) : projection to B, ∀x ∈ A,y ∈ B

Definition 3.16. Extending the projection in 2-dimensions to n-dimensional fuzzy set,

assume relation R is defined in the space of X1×X2×·· ·×Xn. Projecting this relation

to subspace of Xi1×Xi2× . . .×Xik is called projection in n-dimension and it gives a

projected relation given below:

µRXi1×Xi2×···×Xik
(xi1,xi2, . . . ,xik) = max

X j1 ,X j2 ,...,X jm
µR(x1,x2, . . . ,xn)

where X j1,X j2, . . . ,X jm represent the omitted dimensions, and Xi1×Xi2×·· ·×Xik the

remained dimensions, and thus

{X1,X2, . . . ,Xn}= {Xi1×Xi2×·· ·×Xik}∪{X j1,X j2, . . . ,X jm}.

Definition 3.17. As the opposite concept of projection, cylindrical extension is possible.

If a fuzzy set or fuzzy relation R is defined in space A×B, this relation can be extended

to A×B×C and we can obtain a new fuzzy set. This fuzzy set is written as C(R).

µC(R)(a,b,c) = µR(a,b), a ∈ A, b ∈ B, c ∈C.

3.2.1 Characteristics of Fuzzy Relation

Assume that fuzzy relation R is defined on A×A. The followings are some properties

of a fuzzy relation.

1. Reflexive Relation: For all x ∈ A, if µR(x,x) = 1, we call this relation reflexive.

2. Symmetric Relation: When fuzzy relation R is defined on A× A, it is called

symmetric if it satisfies the following condition:

µR(x,y) = µ ⇒ µR(y,x) = µ, ∀(x,y) ∈ A×A.

If we express this symmetric relation as a matrix, we get a symmetric matrix. So

we easily see that our previous relation “x is close to y” is a symmetric relation.
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We say “antisymmetric” for the following case.

µR(x,y) 6= µR(y,x) or µR(x,y) = µR(y,x) = 0, ∀(x,y) ∈ A×A, x 6= y.

We can also define the concept of “asymmetric” or “nonsymmetric” as follows.

µR(x,y) 6= µR(y,x), ∃(x,y) ∈ A×A, x 6= y.

“Perfect antisymmetry” can be thought to be the special case of antisymmetry

satisfying:

µR(x,y) > 0 ⇒ µR(y,x) = 0, ∃(x,y) ∈ A×A, x 6= y.

3. Transitive Relation: Transitive relation is defined as,

µR(x,z)≥max
y

[min(µR(x,y),µR(y,z))], ∀(x,y), (y,x), (x,z) ∈ A×A. (3.10)

If we use the symbol ∨ for max and ∧ for min, the last condition becomes

µR(x,z)≥ ∨y[µR(x,y)∧µR(y,z)].

If the fuzzy relation R is represented by fuzzy matrix MR, we know that left side

in the above formula corresponds to MR and right one to MR2 . That is, the right

side is identical to the composition of relation R itself. So the previous condition

becomes,
MR ≥MR2 or R⊇ R2.

4. Transitive Closure : As we have referred the expression of fuzzy relation by

matrix MR, fuzzy matrix MR2 corresponding composition R2 shall be calculated

by the max-min composition of MR, i.e.

µR2(x,z) = MR •MR = max
y

[min(µR(x,y),µR(y,z))].

Transitive relation was referred to as R ⊇ R2 and thus the relation between MR
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and MR2 holds
MR ≥MR2,

then again, the relation R ⊇ R3 may well be satisfied, and by the method of

generalization we know

R⊇ Rk, k = 1,2,3, . . .

from the property of closure, the transitive closure of R shall be,

R̂ = R∪R2∪R3∪ . . .

Generally, if we go on multiplying fuzzy matrices (i.e, composition of relation),

the following equation is held:

Rk = Rk+1, k ≤ n

where R⊆ A×A and the cardinality of A is n. So, R̂ is easily obtained

R̂ = R∪R2∪R3∪ . . .∪Rk, k ≤ n

3.2.2 Classification of Fuzzy Relation

In this section, the concepts of equivalence, compatibility, pre-order and order relations

of crisp relations is generalized to those of fuzzy relations. We assume relation R is

defined on A×A.

Definition 3.18. If a fuzzy relation R ⊆ A× A satisfies reflexivity, symmetry, and

transitivity conditions, it is called a fuzzy equivalence relation or similarity relation.

Using this similarity relation, the following three applications can be performed.

(1) Partition of sets : Just like crisp set A is done partition into subsets A1,A2, . . . by

the equivalence relation, fuzzy set A also can be performed partition.
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(2) Partition by α-cut : If α-cut is done on a fuzzy relation, we get crisp relations.

By performing α-cut on fuzzy equivalence relation, we get crisp equivalence relations

and thus the set A can be partitioned. For instance, if a partition is done on set A into

subsets A1,A2,A3, . . . , the similarity among elements in Ai is no less than α. The α-cut

equivalence relation Rα is defined by

µR(x,y) =

 1, if µR(x,y)≥ α, ∀x,y ∈ Ai

0, otherwise
.

If α-cut is applied according to α1 in level set {α1,α2, . . .}, the partition by this

procedure is denoted by π(Rα1) or π(A/Rα1). In the same manner, π(Rα2) is obtained

by the procedure of α2-cut. Then, it is known that if α1 ≥ α2, Rα1 ⊆ Rα2 and it can be

said that π(Rα1) is more refined than π(Rα2).

(3) Set similar to element x : If similarity relation R is defined on set A, elements

related to arbitrary member x ∈ A can make up “set similar to x”. Certainly this set

shall be fuzzy one.

Definition 3.19. If fuzzy relation R in set A satisfies reflexivity and symmetry conditions,

it is called fuzzy compatibility relation or resemblance relation.

If fuzzy compatibility relation is given on set A, a partition can be processed into

several subsets. Subsets from this partition are called the fuzzy compatibility classes

and if α-cut is pplied to the fuzzy compatibility relation, α-cut crisp compatibility

relation Rα is obtained. A compatibility class Ai in this relation is defined by,

µR =

 1, if µR(x,y)≥ α, ∀x,y ∈ Ai

0, otherwise

the collection of all compatibility classes from a α-cut is called complete α-cover. Note

the differences of the cover and partition.

Definition 3.20. Given fuzzy relation R in set A, if the reflexivity and transitivity

conditions are well kept for all x,y,z ∈ A, this relation is called pre-order relation.
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Also if certain relation is transitive but not reflexive, this relation is called semi-pre-order

or nonreflexive fuzzy pre-order.

Definition 3.21. If relation R satisfies the reflexivity, antisymmetry, and transitivity

conditions for all x,y,z ∈ A, it is called fuzzy order relation.

Definition 3.22. A corresponding crisp relation R1 from given fuzzy order relation R

by arranging the value of membership function can be obtained as follows:

i) if µR(x,y)≥ µR(y,x) then µR1(x,y) = 1, µR1(y,x) = 0

ii) if µR(x,y) = µR(y,x) then µR1(x,y) = µR1(y,x) = 0.

If the corresponding order relation of a fuzzy order relation is total order or linear

order, this fuzzy relation is named as fuzzy total order, and if not, it is called fuzzy

partial order. When the antisymmetry relation condition of the fuzzy order relation

is transformed into perfect antisymmetric, the fuzzy order relation becomes a perfect

fuzzy order, where perfect antisymmetry is defined as follows:

µR(x,y) > 0 ⇒ µR(y,x) = 0, ∀(x,y)nA×A, x 6= y.

When the reflexivity relation condition of the fuzzy order relation does not exist, the

fuzzy order relation is called fuzzy strict order.

In the fuzzy order relation, if R(x,y) > 0 holds, let us say that x dominates y and

denote x≥ y. With this concept, two fuzzy sets are associated.

Definition 3.23. Dominating class R≥[x] which dominates x is defined as,

µR≥[x](y) = µR(y,x).

Definition 3.24. Dominated class R≤[x] with elements dominated by x is defined as,

µR≤[x](y) = µR(x,y).
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3.2.3 Dissimilitude Relation

The reflexivity, symmetry, and transitivity conditions for the similarity relation were

mentioned above. Especially, the transitivity is defined as given in Formula (3.10).

Dissimilitude relation maintains the opposite position in the concept of similarity relation.

As a result of applying the complement relation R, instead of relation R, we can think

of the transitivity of R.

For any (x,y) ∈ A×A, since µR(x,y) = 1−µR(x,y), transitivity of R shall be,

µR(x,z)≥ ∨y[(1−µR(x,y))∧ (1−µR(y,z))].

The right part of this relation can be transformed by A∩B = A∪B, i.e.

(1−µR(x,y))∧ (1−µR(y,z)) = 1− (µR(x,y)∨µR(y,z)).

Consequently,

µR(x,z)≥ ∨y[1− (µR(x,y))∧µR(y,z))]

i.e.

µR(x,z)≤ ∨y[µR(x,y))∧µR(y,z)].

So, this property is called transitivity of min-max operation.

Definition 3.25. Given fuzzy relation R in set A×B, if the antireflexivity, symmetry,

and min-max transitivity conditions are well kept, this relation is called dissimilitude

relation.

In the next chapter, fuzzy neighborhood relation is constructed on the basis of

distance between data points. Furthermore, the clustering process is performed via

construction of equivalency sets by using the transitive closure of this fuzzy relation.



CHAPTER FOUR

FUZZY NEIGHBORHOOD-BASED CLUSTERING ALGORITHMS

4.1 FJP Algorithm

As abovementioned, in classical fuzzy clustering the matter of fuzziness is usually a

possibility of membership of each element into different classes with different positive

degrees from [0,1]. In Fuzzy Joint Points (FJP) approach, the fuzziness of clustering is

evaluated as how much in detail the properties of classified elements are investigated

(Nasibov & Ulutagay, 2005b). The main advantage of the FJP algorithm is that it

combines determination of initial clusters, cluster validity and direct clustering, which

are the fundamental stages of a clustering process. Moreover, it also uses a more

sensitive neighborhood analysis compared to DBSCAN algorithm since it benefits the

fuzzy sets theory (Nasibov & Ulutagay, 2005a, 2006a,b).

It is possible to handle the fuzzy properties with various level-degrees of details

and to recognize individual outlier elements as independent classes by the FJP method.

This situation could be important in biological, medical, etc. problems in order to

recognize new forms of living objects.

Let F(E p) denote the set of whole p-dimensional fuzzy sets of the space E pand

µA → [0,1] denote the membership function of the fuzzy set A ∈ F(E p).

Definition 4.1. A conical fuzzy point A = (a,R) ∈ F(E p) of the space E p is a fuzzy

set with membership function (Figure 4.1)

µA(x) =

 1− d(x,a)
R

if d(x,a)≤ R

0 otherwise
(4.1)

where a ∈ E p is the center of fuzzy point A, and A = (a,R) is R ∈ E1 is the radius of

its support suppA, where

suppA = {x ∈ E p |µA(x) > 0}.

33
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Figure 4.1 Fuzzy conical point A = (a,R) ∈ F(E2).l l

The α-level set of conical fuzzy point A = (a,R) is calculated as

Aα = {x ∈ E p |µA(x)≥ α}= {x ∈ E p |d(x,a)≤ R · (1−α)}. (4.2)

Note that an analogue of conical fuzzy point A = (a,R) ∈ F(E1) of space E1 is a

triangular symmetrical fuzzy number A = (a,R,R).

Let A = (a,R) and B = (b,R) be fuzzy points from the set X ⊂ F(E1) and let

T : X ×X → [0,1] denote a fuzzy similarity relation on the set X as follows:

T (A,B) = 1− d(a,b)
2R

, (4.3)

where a ∈ E p and b ∈ E p are the centers of the fuzzy points A and B respectively as

shown in Figure 4.2.

Equation (4.3) can be rewritten as

d(a,b) = 2R(1−T (A,B)). (4.4)
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Figure 4.2 Fuzzy α-neighbor points A = (a,R) and B = (b,R) in the space E2.l

It is obvious that the relation T is reflexive, i.e. ∀A ∈ X , T (A,A) = 1 is provided.

Definition 4.2. Let A and B be fuzzy points on the set X ⊂ F(E1). If

T (A,B)≥ α (4.5)

is provided for fixed α ∈ (0,1], then the points A and B are called fuzzy α-neighbor

points and it is denoted by A∼α B (Figure 4.2).

Lemma 4.1. (Nasibov & Ulutagay, 2005a) The fuzzy points A = (a,R) and B = (b,R)

are α-neighbor for fixed α ∈ (0,1] if and only if the inequality

d(a,b)≤ 2R(1−α) (4.6)

is provided, where d(a,b) denotes the distance between the centers of the fuzzy points

A and B.

Proof. Suppose that for some α ∈ (0,1], the fuzzy points A = (a,R) and B = (b,R) are

α-neighbor points. Then, by definition, the inequality (4.5) is provided. Hence, with
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α ∈ (0,1], recalling (4.3) the following is obtained,

1− d(a,b)
2R

≥ α⇒ d(a,b)≤ 2R(1−α). (4.7)

Now, suppose inequality (4.6) holds. We then find

α≤ 1− d(a,b)
2R

= T (A,B), (4.8)

i.e. relation (4.5) is provided. This completes the proof of the lemma.

Definition 4.3. If there is a chain of α-neighbor fuzzy points C1, . . . ,C2 ,k ≥ 0, for

fixed α ∈ (0,1], between the points A and B, i.e.

A∼α C1,C1 ∼α C2, . . . ,Ck−1 ∼α Ck and Ck ∼α B, (4.9)

then the fuzzy points A and B are called fuzzy α-joint points.

Definition 4.4. Let X ⊂ F(E p) be a set of fuzzy points. If the fuzzy points A and B are

α-joint for α ∈ (0,1] and ∀A,B ∈ X , then the set X is called fuzzy α-joint set.

Let d(Aα,Bα) be the classical distance between the level sets Aα and Bα, i.e.

d(Aα,Bα) = min{d(x,y) | x ∈ Aα,y ∈ Bα}. (4.10)

Let the relation T̂ : X × X → [0,1] be the transitive closure of relation

T : X ×X → [0,1], which is obtained by using max-min composition.

Theorem 4.1. (Nasibov & Ulutagay, 2005a) The fuzzy points A and B are fuzzy α-neighbor

points for fixed α ∈ (0,1] if and only if the following relation holds:

Aα∩Bα 6= /0 (4.11)
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Proof. Suppose that the fuzzy points A and B are α-neighbor points, consequently,

inequality (4.5) is satisfied. First, assume that (4.11) is not satisfied, i.e.,

Aα∩Bα = /0. (4.12)

Then on the line connecting the points a ∈ E p and b ∈ E p there exists x ∈ E p,

x 6= Aα, x 6= Bα , such that the inequalities

d(a,x) > R(1−α) and d(b,x) > R(1−α) (4.13)

hold.

In view of the fact that a, x, and b are collinear from (4.13), the following can be

written:

d(a,b) = d(a,x)+d(x,b) > 2R(1−α). (4.14)

But by the assertion of Lemma 4.1, the latter inequality contradicts the condition of

the fact that points A and B are α-neighbor.

Now, suppose that 4.11 holds. Then ∃x : x ∈ Aα,x ∈ Bα. Hence, in view of 4.13, the

following is obtained:

d(a,x)≤ R(1−α) and d(b,x)≤ R(1−α). (4.15)

In view of the triangle property of the distance, it follows from 4.15 that

d(a,b)≤ d(a,x)+d(x,b)≤ 2R(1−α)⇒ d(a,b)≤ 2R(1−α). (4.16)

By the statement of the Lemma 4.1, the latter inequality asserts that the fuzzy points

A and B are α-neighbor points. This completes the proof of the theorem.
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Theorem 4.2. (Nasibov & Ulutagay, 2005a) Any points A,B ∈ X of the finite set X are

fuzzy α-joint points if and only if

T̂ (A,B)≥ α (4.17)

holds, where T̂ : X ×X → [0,1] is the transitive closure of the fuzzy relation T .

Proof. First, assume that the fuzzy sets A and B are α-joint sets. Then by Definition

4.3, a sequence of fuzzy points C1, . . . ,Ck, k≥ 0 between the points A and B exists, i.e.

T (A,C1)≥ α, T (A,C2)≥ α, . . . , T (Ck−1,Ck)≥ α, T (Ck,B)≥ α. (4.18)

Recall that T̂ of any relation T is the minimal transitive relation containing the

relation T , i.e. (Pedrycz & Gomide, 1998):

a) ∀A,B ∈ X , the relation T̂ (A,B)≥ T (A,B) is satisfied,

b) ∀A,B,C ∈ X , it follows from T̂ (A,B)≥ α and T̂ (B,C)≥ that T̂ (A,C)≥ α.

Then, in view of property (a), it follows from 4.18 that

T̂ (A,C1)≥ α, T̂ (A,C2)≥ α, . . . , T̂ (Ck−1,Ck)≥ α, T̂ (Ck,B)≥ α. (4.19)

Recalling property (b), from the latter inequalities it follows that inequality

(4.17) is satisfied.

Now, let us prove that points A and B are α-joint fuzzy points.

By the definition of transitive closure (Pedrycz & Gomide, 1998),

T̂ = T ∪T 2∪ . . .∪T k−1∪T k∪ . . . (4.20)
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and for a reflexive relation T on an n-element set,

T ⊂ T 2 ⊂ . . .⊂ T n−1 = T n = T n+1 = . . . . (4.21)

Then for some 1≤ k ≤ n−1,

T̂ = T k. (4.22)

Since inequality (4.17) is valid, the following is obtained:

T k(A,B)≥ α (4.23)

which asserts that the elements of A and B are connected by a chain (A,C1, . . . ,Ck−1,B)

of length k and that for all sequences of pairs from this chain, it holds that

T (A,C1)≥ α, T (A,C2)≥ α, . . . , T (Ck−1,Ck)≥ α, T (Ck,B)≥ α. (4.24)

By Definition 4.3, the latter inequalities assert that the points A and B are fuzzy

α-joint points, which completes the proof.

Let a data set {x1,x2, . . . ,xn}, xi ∈ E p be given. It is required to divide the set into

homogenous groups, i.e. to classify its elements. Number of classes is unknown a

priori. Note that, in FJP algorithm, the fuzzy relation T : X ×X → [0,1] is normalized

by calculating the radius of the considered fuzzy points as

R =
max{d(xi,x j) | xi,x j ∈ X}

2
≡ dmax

2
. (4.25)

Thus ∀A,B ∈ X the degree of the relation T (A,B) is defined as

T (A,B) = 1− d(a,b)
dmax

, (4.26)
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that implies,

d(a,b) = dmax · (1−T (A,B)). (4.27)

The following algorithm is suggested in work (Nasibov & Ulutagay, 2006b) in order

to solve the abovementioned problem. The value of optimal degree α is calculated

and then the initial set {x1,x2, . . . ,xn} is partitioned into fuzzy α-joint sets by this

algorithm.

FJP Algorithm.

FJP1. Compute:

di j := d(xi,x j), i, j = 1, . . . ,n;

dmax := max di j;

ε := 0.01 ·min di j;

Set α0 := 1;,

FJP2. Compute the fuzzy relation Ti j := 1−
di j

dmax
, i, j = 1, . . . ,n;

Compute the transitive closure T̂ of the relation T ;

FJP3. Set yi := xi, i = 1,n; t := 1; k := n;

FJP4. Compute: dt := mind(yi,y j); αt := max{1− dt+ε

dmax
, 0} ;

FJP5. Call the procedure Clusters(αt) where the fuzzy αt-joint sets X1,X2, . . . ,Xk, and

the number k of these sets for αt are computed;

FJP6. If k > 1, then set yi := X i,i = 1, . . . ,k , t = t +1; and go to FJP4;

If k = 1, then go to FJP7;

FJP7. Compute:

∆αi := αi−αi+1; i = 0, . . . , t−1;

z := arg max∆αi;

α := αz−
∆αz

2
;

FJP8. Call the procedure Clusters (α) with parameter α.
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FJP9. α is the optimal membership degree of clustering;

k is the optimal number of clusters;

X1,X2, . . . ,Xk is the partition of the set X .

End.

The auxiliary procedure Clusters (α) is used to implement the FJP algorithm. For a

fixed input parameter α, this procedure partitions the set X = {x1,x2, . . . ,xn} into fuzzy

α-joint sets and returns these sets and the number of the sets.

Procedure Clusters (α)

Input parameter: α

Output parameters: α-fuzzy joint sets X1,X2, . . . ,Xk ; k- number of these sets;

Cl1. S := X = {x1,x2, . . . ,xn}; k := 1;

Cl2. Get the first element A ∈ S of the set S;

Create sets: Xk := {B ∈ S | T̂ (A,B)≥ α}; S := S\Xk;

Cl3. If S 6= /0, then let k := k +1 and go to Step 2;

Otherwise go to Step 4;

Cl4. Return the sets X1,X2, . . . ,Xk; and number k of these sets.

End.

4.1.1 FJP Cluster Validity Index

As mentioned in Section 2.2.2, one of the most crucial problems of all clustering

algorithms is the validation of clusters obtained. An advantage of the FJP algorithm is

that it has an integrated mechanism for cluster validation. Once a clustering structure

is obtained for convenient α-level, a validity function is computed. At the end of

the clustering process, the clustering structure that gives the maximum value to this

function is considered as optimal.
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Let A = (a,R) and B = (b,R) be fuzzy points from the set X ⊂ F(E1) and let

T : X×X → [0,1] denote a fuzzy similarity relation on the set X as defined in Equation

4.3.

Figure 4.3 Location of homogenous sets obtained by the
FJP algorithm.

Let Xk , k = 1, t, be homogenous classes created with respect to clustering. The

followings can be written (Figure 4.3):

d in
k = dmax · (1− min

x,y∈Xk
T̂ (x,y)), (4.28)

d in
max = max

k
d in

k , (4.29)

d out
min = min

i 6= j
{d (X i,X j) | i 6= j}, (4.30)

d out
max = max

i, j
d (X i,X j). (4.31)

As mentioned above, the cluster validity criterion used in FJP algorithm depends on

the largest α change interval that does not affect the cluster number. Since the fuzzy

point membership function is monotonic, its inverse function exists. Thus, the change

interval of α parameter can be evaluated based on distance, and the following cluster
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validity function can be used (Nasibov & Ulutagay, 2007a):

VFJP = d out
min−d in

max = min
i6= j

{d (X i,X j)−max
k
{dmax · (1− min

x,y∈Xk
T̂ (x,y))}. (4.32)

In other words, the clustering structure that gives maximum value to the above

function is determined as optimal.

Due to the appropriate optimality structure, the cluster validity criterion given in

Equation (4.32) can be rewritten as follows:

V ′
FJP = min

i6= j
d (X i,X j)−min

k
min

x,y∈Xk
T̂ (x,y). (4.33)

4.1.2 Analysis of Clusters’ Structure in FJP Clustering

In this section, the properties of clustering structures which are formed on the base

of the FJP approach are investigated.

The initial data set X can be divided into k fuzzy α-joint clusters each providing

∀i, j : i 6= j ⇒ X i∩X j = /0 and
k[

i=1

X i = X (4.34)

with a fixed α value.

It is obvious that the clustering structure, determined by FJP method, is based on the

α-level degree. Let’s designate homogeneity classes as X j(α), j = 1, . . . ,k(α). Thus,

the Formulae (4.28)-(4.31), given in Section 4.1.1, can be rewritten based on α-level

as follows:

d in
k (α) = dmax · (1− min

x,y∈Xk(α)
T̂ (x,y)), (4.35)
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d in
max(α) = max

k
d in

k (α), (4.36)

d out
min(α) = min

i 6= j
d (X i(α),X j(α)), (4.37)

d out
max(α) = max

i6= j
d (X i(α),X j(α)), (4.38)

The following theorems are proven to explain the relation of this structure with

α-degree better.

Theorem 4.3. d in
max(α) is a non-increasing function of the α parameter.

Proof. Consider first ∀α1,α2 : α2 ≤ α1. It is obvious that for each X i = X i(α1),

i = 1,2, . . . ,k(α1), a certain ∃ j ∈ {1,2, . . . ,k(α2)} : X j = X j(α2) can be obtained, i.e.

X i ⊂ X j. (4.39)

Thus,

min
x,y∈X i

T̂ (x,y)≥ min
x,y∈X j

T̂ (x,y) (4.40)

can be written and by using the last inequality,

din
i (α1) = dmax · (1− min

x,y∈X i
T̂ (x,y))

≤ dmax · (1− min
x,y∈X j

T̂ (x,y)) = din
j (α2) (4.41)

i.e.

din
i (α1)≤ din

j (α2) (4.42)

is obtained. Consequently,

d in
max(α1) = max

i
din

i (α1)≤max
j

din
j (α2) = d in

max(α2) (4.43)
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holds. As a result, it is proved that

d in
max(α1)≤ d in

max(α2) (4.44)

holds ∀α2 ≤ α1.

Theorem 4.4. d out
min(α) is a non-increasing function of the α parameter.

Proof. First, consider ∀α1,α2 : α2 ≤ α1. It is obvious that each set X i = X i(α2),

i = 1,2, . . . ,k(α2), will contain at least one ∃ j ∈ {1,2, . . . ,k(α1)} : X j = X j(α1) set.

In other words, some clusters which are different in α1-level will be in the same cluster

in α2 -level and the number of different clusters for which mini 6= j selection is possessed

will decrease. Hence, the following can be written:

min
i 6= j

d (X i(α1),X j(α1))≤min
i 6= j

d (X i(α2),X j(α2)) (4.45)

By taking (4.37) into account,

d out
min(α1)≤ d out

min(α2) (4.46)

holds ∀α2 ≤ α1 which completes the proof.

Theorem 4.5. d out
max(α) is a non-decreasing function of the α parameter.

Proof. Consider ∀α1,α2 : α2 ≤ α1. It is clear that each set X i = X i(α2),

i = 1,2, . . . ,k(α2), will contain at least one ∃ j ∈ {1,2, . . . ,k(α1)} : X j = X j(α1), set.

In other words, some clusters which are different in α1-level will be in the same cluster

in α2 -level and the number of different clusters for which maxi6= j selection is possessed

will decrease. Hence,

max
i 6= j

d (X i(α1),X j(α1))≥max
i 6= j

d (X i(α2),X j(α2)). (4.47)
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can be written. By taking (4.38) into account,

d out
max(α1)≥ d out

max(α2) (4.48)

holds ∀α2 ≤ α1 which completes the proof.

Theorem 4.6. (Nasibov & Ulutagay, 2007c) If for any partition of the set X holds

d in
max

d out
min

<
1
2

<
d out

min−d in
max

d out
max

, (4.49)

then FJP algorithm will determine this partition as optimal.

Theorem 4.7 given below has a better usage in comparison with Theorem 4.6 since

it provides a wider upper bound.

Theorem 4.7. If for any partition of the set X holds

d in
max

d out
min

<
1
2

<
d out

min
d out

max +d in
max

, (4.50)

then FJP algorithm will determine this partition as optimal.

Proof. Suppose that a hidden structure with possible partition that holds the inequalities

(4.50) exists. Values of α , calculated by the cyclic use of the steps 4-6 of the FJP

algorithm, are denoted as α0,α1, . . . ,αt . It is obvious that if a partition of the set X is

recognized, then it holds that

din
max < dout

min < dout
max. (4.51)

Hence, some sequent values αz and αz+1 of the sequence αi, i = {0,1, . . . , t} ,

generated by step 5 of the FJP algorithm, will be convenient to the distances d in
max

and d out
min, and there there will be no value of the parameter α∈ (αz+1,αz) which affects

the structure of clusters.
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Let’s denote the values of the relation T by 1 = α0, α1, α2, and α3 , proper to

the distances 0 = d0, d in
max, d out

min, and d out
max. With respect to the steps 7-9, the above

considered partition is calculated in the FJP algorithm when

α
1−α

2 = ∆αz = αz−αz+1 = max
i=0,...,t−1

∆αi (4.52)

Now, (4.52) can be proven when (4.50) holds.

Assume that (4.50) holds. Consider at first the inequality given below:

d in
max

d out
min

<
1
2
. (4.53)

Thus following sequence of inequalities holds:

2din
max < d out

min ⇒ d in
max < d out

min−d in
max

⇒ d in
max−d0 < d out

min−d in
max. (4.54)

Consequently, by taking (4.3) into account,

α
0−α

1 = (1− d0

dmax
)− (1− d in

max
dmax

) =
d in

max−d0

dmax
(4.55)

α
1−α

2 = (1− d in
max

dmax
)− (1−

d out
min

dmax
) =

d out
min−d in

max

dmax
(4.56)

are obtained. By taking (4.54) into account in (4.55) and (4.56),

α
0−α

1 < α
1−α

2 (4.57)

is obtained. Then, ∀αi,α j ∈ [α1,α0],

| αi−α j |≤ α
0−α

1 < α
1−α

2 (4.58)
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holds that implies ∀αi,αi+1 ∈ [α1,α0],

αi−αi+1 < α
1−α

2 (4.59)

Now, consider the second part of (4.50). Let

1
2

<
d out

min
d out

max +d in
max

, (4.60)

holds from which follows

d out
max +d in

max < 2d out
min (4.61)

i.e.

d out
max−d out

min < d out
min−d in

max. (4.62)

Thus, the following can be written:

α
2−α

3 = (1−
d out

min
dmax

)− (1− d out
max

dmax
) =

d out
max−d out

min
dmax

(4.63)

Taking (4.55) and (4.63) into account, from (4.62) it follows that

α
2−α

3 < α
1−α

2. (4.64)

Then ∀αi,α j ∈ [α3,α2],

| αi−α j |≤ α
2−α

3 < α
1−α

2, (4.65)

holds, i.e.

αi−αi+1 < α
1−α

2. (4.66)
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Thus from (4.59) and (4.66)

α
1−α

2 = max
i=0,...,t−1

∆αi (4.67)

follows which completes the proof.

4.2 NRFJP Algorithm

Although FJP algorithm has many advantages, it is unsuccessful in clustering data

with noise points. In this section Noise-Robust FJP (NRFJP) algorithm which is robust

through noises is proposed (Nasibov & Ulutagay, 2007a). In this algorithm each

point for which certain ε1 fuzzy neighborhood cardinality is smaller than a certain ε2

threshold is perceived as noise. Note that, by changing the ε1 and ε2 parameters, it is

possible to change the sensitivity of the NRFJP algorithm through noises. It is obvious

that in order to turn off the sensitivity of the NRFJP through noises, it is enough to

make ε2 = 0. Finally, in the result of clustering, it is be possible to assign the noise

points to the nearest class.

Let N(x) denote a fuzzy neighborhood set of given point x ∈ X on the base of the

fuzzy relation T , i.e.

N(x) = {(y,T (x,y))|y ∈ X}. (4.68)

Let

N(x,ε1) = {y ∈ X |T (x,y)≥ ε1} (4.69)

be the ε1-level set of N(x), i.e. fuzzy ε1-neighborhood set of the point x ∈ X .

Definition 4.5. A point x ∈ X is called a noise point with parameters ε1, ε2 for given

ε1 ≥ 0 and ε2 ≥ 0, if card N(x,ε1) < ε2 is satisfied, where

card N(x,ε1) = ∑
y∈N(x,ε1)

T (x,y) (4.70)

is the fuzzy cardinality of the set N(x,ε1).
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NRFJP Algorithm.

Step 1. Compute:

di j := d(xi,x j), i, j = 1, . . . ,n;

dmax := max
i, j=1,...,n

di j;

ε := 0.01 · min
i, j=1,...,n

di j.

Set up the values ε1 and ε2;

Let α0 := 1;

Step 2. Compute the fuzzy relation Ti j := 1−
di j

dmax
, i, j = 1, . . . ,n;

Compute the transitive closure T̂ of the relation T ;

Step 3. Call the procedure NoiseFilter(ε1,ε2) to divide initial data set X into core Xcore

and noise Xnoise sets, i.e., X = Xcore∪Xnoise and Xcore∩Xnoise = /0.

Step 4. Let nc = count of elements Xcore;

Set: yi := xi, i = 1, . . . ,nc; t := 1; k := nc;

Step 5. Compute: d(yi,y j) = min{d(x′,x′′)|x′ ∈ yi,x′′ ∈ y j}, i, j = i, . . . ,k;

dt := min
i6= j

d(yi,y j); αt := max
{

1− dt + ε

dmax
,0
}

;

Step 6. Call the procedure Clusters(αt) to calculate fuzzy αt -joint sets X1,X2, . . . ,Xk,

with conical fuzzy points
(

xi,
dmax

2

)
, i = 1, . . . ,nc, and to constitute number k of

these sets with current value αt ;

Step 7. If k > 1, then set yi : X i, i = i, . . . ,k; t = t +1 and go to Step 5;

If k = 1, then go to Step 8.

Step 8. Compute: ∆αi := αi−αi+1, i = 0, t−1;

z := arg max
i=0,..., t−1

∆αi; ᾱ := αz− ε;

Step 9. Call the procedure Clusters(ᾱ) with parameter ᾱ ;

Step10. ᾱ is the optimal membership degree of clustering;

k̄ is the optimal number of clusters;

X1,X2, . . . ,Xk is the partition of the set X .
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Step11. For each element x ∈ Xnoise repeat step 12;

Step12. Compute: k∗ = argmin{dist(x,Xk) | k = 1, . . . , k̄};

Assign x to the Xk∗ .

End.

The procedure NoiseFilter(ε1,ε2) is used to divide initial data set X into two disjunctive

core Xcore and noise Xnoise sets, i.e. X = Xcore∪Xnoise and Xcore∩Xnoise = /0.

Procedure NoiseFilter (ε1,ε2).

Input parameters: ε1 and ε2;

Output parameters: The sets Xcore and Xnoise;

Step 1. Let X ≡ {x1,x2, . . . ,xn} is the set of initial points Xnoise 6= /0;

Step 2. For each element x ∈ X repeat the steps 3 and 4:

Step 3. Calculate Card N(x,α1) = ∑
y∈N(x,ε1)

T (xi,yi);

Step 4. If Card N(x,α1) < α2, then mark x as noise point, i.e. Xnoise = Xnoise∪{x};

Step 5. Let Xcore = X\Xnoise;

Step 6. Return the sets Xcore and Xnoise.

End.

4.2.1 Adjusting the Optimal Values of the Parameters of NRFJP

Prior to the theory of fuzzy sets, two principal measure of uncertainty were recognized.

One of them, proposed by Hartley (1928), is based solely on the classical set theory.

The other, introduced by Shannon (1948), is formulated in terms of probability theory.

Both of these measures pertain to some aspects of ambiguity, as opposed to vagueness

or fuzziness. However, each measures a different aspect of ambiguity: Hartley’s
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measure pertains to nonspecificity, Shannon’s measure to conflict or dissonance in

evidence (Klir & Folger, 1988).

Both Hartley and Shannon introduced their measures for the purpose of measuring

information in terms of uncertainty. Therefore, these measures are often referred to as

measures of information. It has been more common, however, to refer to the measure

invented by Shannon as the Shannon entropy. The name entropy was suggested by

Shannon himself, presumably because of a similarity in the mathematical form between

his measure and that of physical entropy as defined in certain formulation of statistical

mechanics.

The Shannon entropy, which is a measure of uncertainty and information formulated

in terms of probability theory, is expressed by the function

H
(

p(x) | x ∈ X
)

=− ∑
x∈X

p(x)log2 p(x), (4.71)

where p(x) | x ∈ X is a probability distribution on a finite set X . It is thus a function of

the form

H : P→ [0,∞),

where P denotes the set of all probability distributions on finite sets.

Shannon entropy was considered for many years to be the only feasible basis for

information theory. It has certainly dominated the literature on information theory

since it was proposed by Shannon in 1948. Hartley information, which is in a fact a

predecessor of Shannon entropy, is rarely mentioned in the current literature. When

it is mentioned, it is almost always given one of two probabilistic interpretations. In

the first, it is viewed as a measure that only distinguishes between zero and nonzero

probabilities in the given probability distribution, that is, a measure that is totally

insensitive to the actual values of the probabilities. It is derived from Shannon entropy

by replacing any nonzero probability in the probability distribution with one.

The second probabilistic interpretation views Hartley information as equivalent to
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Shannon entropy under the assumption that all elements of the set X are equally probable.

In this case, the equal probabilities are 1/|X |. When we substitute them for p(x) in

Formula (4.71), we readily obtain the Hartley information log2|X |.

Based on the adjustment of ε1 and ε2 parameters, NRFJP algorithm could result

in different partitions. If the parameters are not set well, clustering results could be

incorrect. In this part Shannon entropy is applied in order to obtain the optimal value

of ε1 parameter (Nasibov & Ulutagay, 2006c).

Figure 4.4 Neighborhood-density of points.lll l

In order to evaluate the neighborhood-density of a point based on the ε1 parameter,

the following function can be used:

w(xi,ε1) = Card N(xi,ε1) = ∑
y∈N(x,ε1)

T (xi,yi), i = 1, ...,N. (4.72)

Then w(xi,ε1) values are normalized (Figure 4.4):

w′(xi,ε1) =
w(xi,ε1)

max
i

w(xi,ε1)
. (4.73)

By selecting the ε1 parameter, it is aimed to divide the data set into core and noise

points distinctively. Entropy can be used as an indicator of the division. A greater value

of the entropy indicates that the elements are approximately in the same location while

a smaller value is an indication of a distinctive division. In this sense, the objective is
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to find an ε∗1 value that makes the entropy of the w(xi,ε1) minimum based on ε1 (Figure

4.5):

E(ε∗1) = min
ε1∈[0,1]

E(ε1) = min
ε1∈[0,1]

[
−

N

∑
i=1

w′(xi,ε1) · ln w′(xi,ε1)
]

(4.74)

Figure 4.5 Entropy function depending on ε1.l l

4.3 FN-DBSCAN Algorithm

The main objective of the crisp neighborhood-based clustering algorithms such as

DBSCAN is to grow the interested cluster until its density is greater than a specified

threshold (Ester et al., 1996; Sander et al., 1998). Namely, each point in the interested

cluster should consist of at least a minimum number of points within a certain threshold.

Such a method could be used in order to eliminate outlier points and to determine

clusters with irregular shapes.

As mentioned previously, FN-DBSCAN algorithm integrates the advantages of

DBSCAN and NRFJP algorithms in such a way that it combines the speed of the

DBSCAN algorithm and robustness of the NRFJP algorithm (Nasibov, 2007; Nasibov

& Ulutagay, 2008a, 2009).
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The parameters ε and MinPts are used in crisp DBSCAN algorithm. The parameter

ε is selected to provide the condition 0≤ ε≤ dmax, where

dmax = max
xi,x j∈X

d(xi,x j) (4.75)

where d(xi,x j) is the distance between the points xi and x j. However, since ε represents

the direct value of the neighborhood radius, it takes values from different intervals

corresponding to the scale of data. Such a case causes some problems in adjusting the

values of ε. In order to eliminate this problem, we can normalize data

xi = (xi1,xi2, ...,xim) , i = 1, ...,m, and get an ε value from the interval [0,1] by using

the following transformation

xi j =
xi j− xmin

j

(xmax
j − xmin

j )
√

m
, j = 1, ...,m (4.76)

where

xmin
j = min

i=1,...,n
xi j and xmax

j = max
i=1,...,n

xi j, j = 1, ...,m.

The multiplier
1√
m

guarantees to agglomerate all of the points into a sphere with

radius 1. So the condition dmax ≤ 1 and respectively the condition 0 ≤ ε ≤ 1 will be

satisfied.

On the other hand, we use the formula given below in order to invert the value of

MinPts to the interval [0,1] and indicate it by ξ parameter:

ξ =
MinPts

wmax (4.77)

where

wmax = max
i=1,...,n

wi, (4.78)

where wi is the cardinality of the point xi within a given radius. In general words,

concerning fuzzy situation, wi is the sum of the membership degrees of points to the
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neighborhood set within ε radius. Hence,

wi =
n

∑
k=1

Nxi(xk) (4.79)

where Nxi(xk) is the neighborhood degree of the point xk to the point xi. In crisp case,

for obtaining Nxi(xk), the following formula is used:

Nxi(xk) =

 1, if d(xi,xk)≤ ε

0, otherwise
(4.80)

If it is enlarged to the fuzzy neighborhood case, Nxi function could be formed as any

neighborhood membership function.

Figure 4.6 Points x1 and x2 are similar according to crisp
neighborhood cardinality, but dissimilar according to fuzzy
neighborhood cardinality.

One of the fundamental advantages of using fuzzy neighborhood function is that

the neighborhood membership degrees of the points with different distances from core

point also differ. But, in DBSCAN algorithm, there is no difference between points

within the same neighborhood radius of core point (Figure 4.6). Because of that

it could be more advantageous to use fuzzy neighborhood function instead of crisp

neighborhood function.

Now let’s investigate points x1 and x2 which have the same number of neighbors

within a given ε radius (Figure 4.6). It is obvious that points x1 and x2 in Figure 4.6 are
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the same according to the crisp neighborhood relation used in DBSCAN. On the other

hand, if fuzzy neighborhood function is used, point x1 will have a higher membership

degree of being a core point than that of point x2. Such a neighborhood membership

function used in NRFJP algorithm is as follows (Nasibov & Ulutagay, 2007a):

Nx(y) =

 1− d(x,y)
dmax

, if d(x,y)≤ ε

0, otherwise
(4.81)

Figure 4.7 Neighborhood relation used in DBSCAN
method.

The graphics of the membership functions given by Formulas (4.80) and (4.81) are

shown in Figure 4.7 and Figure 4.8, respectively. As it is seen from Figure 4.7, points

y1 and y2 have the same neighborhood membership degrees to the point x in case of

crisp membership function. But they are different in fuzzy membership case, i.e. since,

y1 is closer to x than y2 is, the membership degree of y1, i.e. α1, is higher than the

membership degree of y2, i.e. α2 (Figure 4.8). Note that we can also deal with other

neighborhood membership functions which might take the neighborhood relation into

consideration more sensitively (Nasibov & Ulutagay, 2007a).

As seen from the figures, different sensitivity can be reached by using different

membership functions in neighborhood analysis. For instance, the membership function
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in Figure 4.7 handles the points within radius ε1 as identical whereas there is an obvious

distinction in Figure 4.8. By using the formula given below, the difference becomes

more evident (Figure 4.9):

Nx(y) = max

{
1− k · d(x,y)

dmax
,0

}
. (4.82)

Figure 4.8 Neighborhood relation used in FJP
method.

lllllllll
Figure 4.9 Linear neighborhood relation. llllllllll
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However, the sensitivity is the same on near and far distance of the reference point.

But by using the following exponential membership function shown in Figure 4.10, the

sensitivity differs exponentially:

Nx(y) = exp

(
−
(

k · d(x,y)
dmax

)2
)

. (4.83)

Note that, in definition of the fuzzy point, if different nonlinear functions are used,

different results can be found by the FJP algorithm. For example, consider a data set

with 8 elements. If the membership function is linear as in Figure 4.11, the widest

change interval in which the α-parameter does not affect the number of clusters is

found as the interval number 3 and according to the working principle of the algorithm,

such a situation is appropriate for two clusters.

Figure 4.10 Exponential membership function.lll

However, when the membership function of the fuzzy points looks like bell-shaped

as in Figure 4.12, the widest change interval found as number 2 and such a situation

is suitable for four clusters. Thus, FJP algorithm finds two clusters if a membership

function of a fuzzy point as in Figure 4.11 is used whereas it detects four clusters if a

membership function of a fuzzy point as in Figure 4.12 is used.
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Figure 4.11 Linear membership function.l l

Figure 4.12 Bell-shaped membership function.l l

Note that in FJP-based algorithms, the lowest layer that is suitable for one cluster is

not taken into consideration.

In order to explain the FN-DBSCAN algorithm the concepts given above will be

defined for fuzzy sets approach. The main advantage of transforming the DBSCAN

algorithm to the FN-DBSCAN algorithm by using the fuzzy sets theory is the usability

of various neighborhood membership functions that regularize different neighborhood

sensitivities. So the FN-DBSCAN method could be more robust to the variations of

the density within clusters and to the scale of the (Nasibov & Ulutagay, 2008a) dataset.
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Definition 4.6. The fuzzy neighborhood set of point x ∈ X with ε1 parameter is a fuzzy

set determined as follows:

FN(x;ε1) =
{
(y,Nx(y)) | y ∈ X , Nx(y)≥ ε1

}
(4.84)

where Nx : X → [0,1] is any membership function that determines neighborhood relation

between points.

ε1 parameter used in Formula (4.84) determines the minimal threshold of neighborhood

degrees. Note that if the neighborhood membership function is given in the form (4.81),

then the parameter ε that fixes the maximal neighborhood radius and the parameter ε1

in (4.84) that fixes the minimal neighborhood membership degree have the following

relationship:

ε = dmax (1− ε1) (4.85)

Definition 4.7. A point x is called a fuzzy core point with parameters ε1 and ε2 if

card FN(x;ε1)≡ ∑
y∈N(x;ε1)

Nx(y)≥ ε2 (4.86)

holds for the point x ∈ X , where

N(x;ε1) = {y ∈ X |Nx(y)≥ ε1}. (4.87)

determines the ε1 level set of the fuzzy neighborhood set of the point x.

Definitions 4.6 and 4.7 in FN-DBSCAN algorithm are used instead of Definitions

2.1 and 2.2 in DBSCAN algorithm, respectively. Definition 4.7 differs from Definition

2.2 in such a way that it uses a level-based neighborhood set instead of a distance-based

neighborhood set and it uses the concept of fuzzy cardinality instead of crisp cardinality

in the determination of a core point.
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In FN-DBSCAN algorithm, other points could be directly density-reachable only

from a fuzzy core point as in the DBSCAN algorithm. Definitions 2.3 through 2.7

in DBSCAN algorithm are also used directly in FN-DBSCAN algorithm. By the

guidance of these definitions, the pseudocode of the FN-DBSCAN algorithm on the

basis of fuzzy neighborhood relation is given below:

FN-DBSCAN algorithm.

Step 1. Specify parameters ε1 and ε2.

Step 2. Mark all the points in the data set as unclassified. Set t = 1.

Step 3. Find an unclassified fuzzy core-point with parameters ε1 and ε2.

Step 4. Mark p to be classified. Start a new cluster Ct and assign p to the cluster Ct .

Step 5. Create an empty set of seeds S. Find all the unclassified points in the set N(p;ε1)

and put all these points into the set S.

Step 6. Get a point q in the set S, mark q to be classified, assign q to the cluster Ct , and

remove q from the set S.

Step 7. Check if q is a fuzzy core-point with parameters ε1 and ε2; if so, add all the

unclassified points in the set N(q;ε1) to the set S.

Step 8. Repeat step 6 through Step 7 until the set of seeds is empty.

Step 9. Find a new fuzzy core point p with parameters ε1 and ε2, and repeat Step 4

through Step 7.

Step10. Mark all the points, which do not belong to any cluster, as noise.

End.

Note that the FN-DBSCAN algorithm gives the same results as the DBSCAN algorithm

does if the neighborhood membership function is handled as in the Formula (4.80).

So the FN-DBSCAN algorithm can always be adjusted to give the better results than
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the DBSCAN algorithm by using an appropriate neighborhood membership function

(Nasibov & Ulutagay, 2007a,b).

Figure 4.13 Some of the data sets with various shapes and densities.l l
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Example 4.1. In order to compare FN-DBSCAN algorithm which is based on fuzzy

neighborhood analysis with DBSCAN algorithm which is based on crisp neighborhood

analysis, we use 22 data sets with various shapes and densities. The data sets were

obtained from the papers (Bensaid et al., 1996; Dong et al., 2006; Nasibov & Ulutagay,

2006b, 2007a) and some of them were simulated. Some of the data sets used in

experiments are shown in Figure 4.13.

The codes for algorithms were developed in Borland C++ 6.0 SDK and the experiments

were computed in Pentium(R)-D, 2.80 GHz, 2 GB RAM computers.

Correctness of the clustering results is validated by the expert visually. To evaluate

the performances of the algorithms, we use the indicators given below, as “Correct

Number Percent (CNP)” that indicates the percentage of the ratio of number of correct

classified data sets to all number of data sets and “Correct Range Percent (CRP)” that

indicates the percentage of correct result range of ε1 parameter to the whole [0,1]

interval.

To formulate the CNP and CRP criteria the following notations are used:

• N- number of all data sets;

• n(ε1,ε2)- number of correct clustered data sets with fixed parameters ε1 and ε2

of the algorithm;

• [εL
1i(ε2),εU

1i(ε2)]- the “Correct Range (CR)”, i.e. the widest continuous interval

of the ε1 parameter for fixed ε2, in which algorithm gives correct results for the

data set i, i = 1, ...,N, where εL
1i(ε2) is the lower bound, and εU

1i(ε2) is the upper

bound of the interval;

• ε
opt
1 (ε2)- the value of the ε1 parameter in which the number of correct classified

data sets is maximum for fixed ε2.
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So the CNP and CRP indicators are calculated as follows:

CNP(ε1,ε2) =
n(ε1,ε2)

N
·100% , (4.88)

CRPi(ε2) =| ε
U
1i(ε2)− ε

L
1i(ε2) | ·100% , (4.89)

CRP(ε2) =

N

∑
i=1

CRPi(ε2)

N
. (4.90)

The experimental results for 22 data sets are given in Table 4.1. As it is seen, k = 1

for linear case has approximately same results with the crisp case. However, the results

vary when different neighborhood membership functions are used. The results of the

algorithm ameliorate when we change the value of the parameter k from 1 through 20,

and then they deteriorate. The best results are found in linear case for k = 15.

Figure 4.14 CRP(ε2) for ε2 = 0.1,0.2,0.3,0.4 in crisp membership case.l l

We can say that results generally get better when exponential neighborhood function

is used. The best results in exponential case are found for k = 20. If we compare this

result with the best results of linear case and the best results of the crisp case, we
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can conclude that exponential membership function is very effective. Good results are

marked in bold in Table 4.1. In order to show these results visually, comparisons are

given as histograms for various values of the parameters (Figures 4.14-4.17).

Figure 4.15 CRP(ε2) for ε2 = 0.1,0.2,0.3,0.4 and k = 15 in linear membership case.l l

Figure 4.16 CRP(ε2) for ε2 = 0.1,0.2,0.3,0.4 and k = 20 in exponential membership case.lll

As it is seen from the histogram, crisp neighborhood membership function results in

correct partitions in a narrow range of ε1 parameter. However, in fuzzy neighborhood

membership function case, the results of FN-DBSCAN algorithm are stable in a wider

range of ε1 parameter. It is obvious that the best results are found by using exponential

membership function given in Equation 4.83. Otherwise, the worst results are observed

by using crisp membership function given in Equation 4.80. Approximately the same

results are obtained by using Equation 4.81 and 4.82 for neighborhood membership
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functions. In exponential case, CRP indicator for ε1 parameter is about 25-45% while

this index is only 3-5% in crisp case.

Figure 4.17 Comparison of the best results of the CRP(ε2) , a) for ε2 = 0.4 in crisp membership
case, b) for k = 15, ε2 = 0.4 in linear membership case, c) for k = 20, ε2 = 0.3 in exponential
membership case.

In the second indicator the least squares method of regression is used. Hence, we

look for such an optimal value of the ε1 parameter that its distance defined as follows

from its CR will be minimum (Figure 4.18):

d(ε1, [εL
1i,ε

U
1i]) =

 1, if ε1 /∈ [εL
1i,ε

U
1i]

0, otherwise
. (4.91)

In fact,

f (ε1;ε2) = N−n(ε1;ε2). (4.92)

The optimal value of the ε1 parameter at fixed value of the ε2 parameter is obtained

by the following optimization problem:

f (ε1;ε2) =
N

∑
i=1

d
(
ε1, [εL

1i,ε
U
1i]
)2 → min (4.93)

The solution of the problem (4.93) has been mentioned previously as ε
opt
1 (ε2).
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Corresponding optimal value f (εopt
1 ;ε2) indicates the number of data sets for which

the algorithm gives minimum incorrect results for the fixed value of the ε2 parameter.

Figure 4.18 [εL
1i,ε

U
1i] intervals of ε

opt
1 value for k = 20, ε2 = 0.3 in exponential membership case.

Figure 4.19 [εL
1i,ε

U
1i] intervals of ε

opt
1 value for k = 15, ε2 = 0.4 in linear membership

case.llllllllllllllllllllllllllllll
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It is clear from Table 4.1 that in fuzzy neighborhood function cases, most of the

results are better than that of crisp case. Moreover, we get the best results for k = 15

and ε2 = 0.4 in linear case, and k = 20 and ε2 = 0.3 in exponential case (Figures

4.19-4.20). The accuracy rate for the CNP indicator is also better than that of the crisp

case, in other words the indicator is 91% for the fuzzy exponential (k = 1) case whereas

it is less than 73% in all variants of the crisp case.

Figure 4.20 [εL
1i,ε

U
1i] intervals of ε

opt
1 value for ε2 = 0.4 in crisp membership case.l l

To sum up, we can conclude that for data sets with high density, greater values of

the parameters k and ε1 (k = 15÷ 20, ε1 = 0.90÷ 0.99), and in data sets with low

density, smaller values of these parameters should be preferred. We can also note that,

for data sets with large number of noise points, greater values of the ε2 parameter

(ε2 = 0.3÷0.4) give better results.

So, in this chapter, which forms the theoretical foundation of dissertation, new

Noise-Robust FJP and Fuzzy Neighborhood DBSCAN algorithms are presented and

comparative analysis that point out the advantages of the algorithms are performed.



CHAPTER FIVE

DATA COLLECTION TECHNIQUES

Living organisms are made up of many component systems- the human body, for

example, includes the nervous system, the cardiovascular system, and the

muscoloskeletal system, among others. Each system is made up of several subsystems

that carry on many physiological processes. For example, the cardiac system performs

the important task of rhythmic pumping of blood throughout the pulmonary system for

oxygenation of the blood itself.

Physiological processes are complex phenomena, including nervous or hormonal

stimulation and control; inputs and outputs that could be in the form of physical

material, neurotransmitters, or information; and action that could be mechanical,

electrical, or biochemical (Rangayyan, 2002). Most physiological processes are

accompanied by or manifest themselves as signals that reflect their nature and activities.

Such signals could be of many types, including biochemical in the form of hormones

and neurotransmitters, electrical in the form of potential or current, and physical in the

form of pressure or temperature (Akay, 2000).

The representation of biomedical signals in electronic form facilitates computer

processing and analysis of data.

5.1 Electroencephalography

The summated neuronal activity of the brain recorded as minute electrical potentials

from the human scalp is called the electroencephalogram (Akay, 2000). Conventionally,

such potentials are recorded with three types of electrodes: scalp, cortiacal, and depth

electrodes. For scalp recording, the electrodes are typically placed on the scalp in

accordance with some internationally defined geometrical sites (Figure 5.1).

Information derived from the depth electrodes and microelectrodes has shown that

under normal circumstances conducted action potentials in axons contribute little to

the surface EEG because they occur asynchronously in time in large number of axons,

71
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which run in many directions relative to the surface. Thus, their net influence on

potential at the surface is negligible. Whether recorded from the scalp, cortex, or depths

of the brain, these biopotentials represent a superposition of the volume conductor

fields produced by a variety of active neuronal current generators.

Figure 5.1 The 10-20 system of electrode
placement for EEG recording.

The EEG signal contains information regarding changes in the electrical potential of

the brain obtained from a given set of recordings. These data include the characteristic

waveforms with accompanying variations in amplitude, frequency, phase, and so on as

well as brief occurrence of electrical patterns.

The EEG signal patterns are modulated by a wide range of variables, including

biochemical, metabolic, circulatory, humoral, neuroelectric, and behavioral factors.

The EEG is extremely difficult for an untrained observer to interpret, partially because

of the spatial mapping of functions onto different regions of the brain and electrode

placement. The EEG is used routinely in the diagnosis of neurological disorders such

as epilepsy, stroke, and brain damage; it is also used in sleep and drug research and the
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investigation of the pscyhiatric disorders.

EEG signals exhibit several patterns of rhythmic or periodic activity. The

commonly used terms for EEG frequency f bands are (Figures 5.2-5.4):

• Delta (δ) : 0.5≤ f ≤ 4 Hz;

• Theta (θ) : 4≤ f ≤ 8 Hz;

• Alpha (α) : 8≤ f ≤ 13 Hz;

• Beta (β) : f ≥ 13 Hz.

Figure 5.2 From top to bottom: (a) delta rhythm; (b) theta rhythm; (c) alpha
rhythm; (d) beta rhythm; (e) blocking of the alpha rhythm by eye opening; (f) 1
s time markers and 50 µν marker.

The alpha wave is replaced by slower rhythms at various stages of sleep. Theta

waves appear at the beginning stages of the sleep; delta waves appear at deep-sleep

stages. High-frequency beta waves appear as background activity in tense and anxious

subjects. The depression or absence of the normal (expected) rhythm in a certain state

of the subject could indicate abnormality. The presence of delta or theta (slow) waves in

wakeful adult would be considered to be abnormal. Focal brain injury and tumors lead

to abnormal slow waves in the corresponding regions. Unilateral depression (left-right
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asymmetry) of a rhythm could indicate disturbances in cortical pathways. Spikes and

sharp waves could indicate the presence of epileptogenic regions in the corresponding

parts of the brain.

l l
Figure 5.3 Eight channels of the EEG of a subject displaying
alpha rhythm.l l

Figure 5.4 Ten channels of the EEG of a subject displaying
spike-and-wave complexes. lll
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5.2 Bispectral Index

Bispectral analysis is a statistical technique that allows study of phenomena with

nonlinear character, such as surf beats and wave breaking (Johansen & Sebel, 2000).

Bispectral analysis provides a description to a continuous pseudo-randomly varying

signal (e.g., EEG) that is an alternative to other conventional power spectral analysis

techniques derived from fast Fourier transformation. Bispectral analysis is

computationally intensive, and it was not until fast microprocessors were developed

that online bispectral analysis of the EEG in the operating room became possible.

Conventional analysis of the EEG using fast Fourier transformation produces

information regarding the power, frequency, and the phase of the EEG signal. Typical

displays, such as the compressed spectral array, graph power and frequency information

and discard the phase information. Bispectral analysis represents a different description

of the EEG in that interfrequency phase relations are measured, i.e., the bispectrum

quantifies relations among the underlying sinusoidal components of the EEG. The data

contained in both the bispectral analysis and conventional frequency-power analyses

of the EEG are used to create the proprietary parameter of the bispectral index, or BIS.

The BIS integrates various EEG descriptors into a single variable. The mixture of

subparameters of EEG activity was derived empirically from a prospectively collected

database of anesthetized volunteers with measures of clinically relevant sedative

endpoints and hypnotic drug concentrations. The process by which BIS was derived is

shown schematically in Figure 5.5.

In order to point out hypnotic or sleep level, BIS stages are used. In humans, 5 BIS

stages and the stage awake are defined. Each BIS stage is characterized by a specific

pattern of frequency content. BIS stages are defined as follows:

• Stage awake: Signal with continuity alpha activity.

• Stage 1: No presence of alpha activity, low beta and theta activity,
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• Stage 2: Less than 20 % of delta activity and presence of K-complexes and

spindles. K-complexes are low frequency waves near 1.0 Hz, with an amplitude

of at least 75 mV. Spindles are well defined waves in the range 11-15 Hz with a

time duration of more than 0.5 seconds. There is no criterion about the amplitude

of a spindle.

• Stage 3: More than 20 % and less than 50 % of delta activity,

• Stage 4: More than 50 % of delta activity.

• Stage REM: Low amplitude waves with little theta activity and often sawtooth

waves. REM and awake signals might have a similar shape, but REM have little

alpha activity.

Figure 5.5 The Bispectral Index Scale (BIS
versions 3.0 and higher)
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The classification of EEG sleep is usually made by a visual scorer, which takes

30-s epochs and give a classification according to the rules of Rechtschaffen and Kale

(Rechtschaffen & Kales, 1968). Not every epoch has 100% properties of an specific

stage. The decision is made according to which stage properties are present the most

and that is sometimes difficult to be carried out.

By using the abovementioned data collection techniques, BIS sleep data are obtained

and in the next chapter fuzzy clustering approach has been used for detecting the sleep

stage levels.



CHAPTER SIX

BIS-CLUSTERING AND APPLICATIONS

Determining BIS Stages by FCM-based algorithm

In this section, an algorithm is constructed to determine BIS stage intervals with

respect to the BIS values by using FCM algorithm. At first, all the measurement series

are merged in a pooled data set. We have BIS value recorded by EEG and stage level

determined by experts, and they are denoted by xi and si, for each measurement (point)

in the pooled data set, respectively. Note that BIS stages get integer labels from 1 to

5 and BIS values get continuous values from interval [0,100]. Mean, αk, and standard

deviation, σk, of the BIS values are computed for each set of points that have the

k-th stage (k = 1, ...,5). Then, by using the axis orthogonal projection method, the

fuzzy membership functions of classes for BIS values convenient to each stage are

determined. The centers of the classes k = 1, ...,5, αk , and their membership functions

µk(·) are taken from the FCM results. Then BIS stage level of each point i is stored as

si = arg max
k=1,...,5

µk(xi), i = 1, ...,n (6.1)

To summarize, the algorithm to determine the BIS stages is given below.

Algorithm 1.

Step 1. Merge all the data sets to construct a data pool.

Step 2. Run the FCM algorithm with cluster number is equal to 5 with respect to BIS

values xi, i = 1, ...,n to form the clusters corresponding to stage levels k,

k = 1, ...,5.

Step 3. Determine a stage label si with respect to the maximum membership degree of

the BIS value xi by using Formula (6.1).

End.

78
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Determining BIS Stages by FN-DBSCAN-based algorithm

In this section, an algorithm is constructed determine BIS stage intervals with respect

to the BIS values by using FN-DBSCAN method. At first, all the measurement series

are merged in a pooled data set. Mean, αk, and standard deviation, σk, of the BIS values

are computed for each set of points that have the k-th stage (k = 1, ...,5). Then, by using

the axis orthogonal projection method, the fuzzy membership functions of classes for

BIS values convenient to each stage are determined. These classes are assumed to

be normally distributed and their parameters are calculated as shown below (Babuska,

1998; Kung & Su, 2007):

αk =
∑i∈Ik

xi

nk
and σk =

√
∑i∈Ik

(xi−αk)2

nk
(6.2)

where Ik is the index set of xi values convenient to the k-th stage, i.e. Ik = {i | si = k},

and nk is the number of measurements with BIS stages equal to k. According to the

method used in (Babuska, 1998; Kung & Su, 2007), the bell-shaped fuzzy membership

function of BIS values convenient to k-th stage is constructed as follows:

µk(x) = e−
1
2

(
x−αk

σk

)2

, k = 1, ...,5 . (6.3)

Formula 6.2 is then used to determine the stage labels of clusters formed by the

FN-DBSCAN algorithm. Suppose that the number of clusters found by using

FN-DBSCAN algorithm is M. The average of BIS values of each cluster is calculated

and a stage label is determined with respect to this value. Hence,

xm =
∑i∈Cm xi

nm
, m = 1, ...,M (6.4)

where Cm is the index set of elements in the m-th cluster, and nm is the number of

elements in this cluster. Then for each m-th cluster
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k∗m = arg max
k=1,...,5

µk(xm), m = 1, ...,M (6.5)

is calculated in order to determine the appropriate stage label. The stage label of each

measurement in cluster m is stored as k∗m, i.e.

si = k∗m, i ∈Cm, m = 1, ...,M. (6.6)

To summarize, the algorithm to determine the BIS stages is given below.

Algorithm 2.

Step 1. Merge all the data sets to construct a data pool.

Step 2. Calculate mean, αk, and standard deviation, σk, by using Formula (6.2) for each

set of BIS values, having the stage k, k = 1, ...,5.

Step 3. Determine the fuzzy membership functions of classes convenient to each stage

level k = 1, ...,5 by using Formula (6.3).

Step 4. Run the FN-DBSCAN algorithm to part measurement series into connected intervals

according to BIS values. Each connected interval is a separate cluster.

Step 5. Calculate the average of BIS values of each cluster by using Formula (6.4).

Step 6. Determine cluster membership degrees of the average value for each cluster by

using Formula (6.3).

Step 7. Determine a stage label for each cluster with respect to the maximum membership

degree of the average value by using Formula (6.6).

Step 8. Determine a stage label for each point within the cluster with respect to the stage

label of the cluster.

End.
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6.1 Experimental Results

The main purpose of this study is to show that studies on neighborhood-based

cluster analysis gives effective results in predicting stage levels of BIS measurement

series (Ulutagay & Nasibov, 2008a,b, 2009; Nasibov et al., 2008, 2009). 21 data sets

each of which are registered in every five seconds during sleep for a 25-minute periods

are used to demonstrate functionality of the FN-DBSCAN clustering algorithm. Thus,

each data set consists 306 BIS measurements containing BIS stages given by experts.

For instance, a part of the data set DB1 is given in Table 1. As first two columns, in

order to use in learning process, experts determined the BIS stage values corresponding

to each measurement moment (Table 6.1, Column 3).

Table 6.1 BIS values and stages for data set DB1.l l

No BIS-value BIS stage Normalized x̄k BIS stage
(by expert) BIS-value (by method)

1 39.2 2 0.392 0.391 2
2 39.2 2 0.392 0.391 2
3 39.2 2 0.392 0.391 2
4 40.8 2 0.408 0.391 2
5 40.9 2 0.409 0.391 2
6 38.8 2 0.388 0.391 2
7 38.4 2 0.384 0.391 2
8 39.0 2 0.390 0.391 2
9 38.9 2 0.389 0.391 2

10 37.9 2 0.379 0.391 2
11 33.2 2 0.354 0.391 2
12 33.2 2 0.332 0.391 2
13 36.1 2 0.361 0.391 2
14 37.9 2 0.379 0.391 2
15 39.6 2 0.396 0.391 2
16 38.7 2 0.387 0.391 2
17 39.9 2 0.399 0.391 2
18 42.5 2 0.425 0.391 2
19 42.5 2 0.425 0.391 2
20 43.0 2 0.430 0.391 2
. . . . . . . . . . . . . . . . . .

l l

The participants arrived at the laboratory approximately 2h prior to their regular

sleep time. They spent the sleep period lying on a bed which was located in a dimly

illuminated, acoustically, and electromagnetically shielded chamber. Data for the study

comprises first night recordings. Because the current study is related to non-REM
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sleep, corresponding to the first sleep cycle, approximately 90 min of data was

processed both for BIS and EEG data pools.

EEG activity was recorded using an electro-cap for whole scalp with 30 EEG

electrodes, which were referenced to linked earlobe electrodes, based on the

international 10-10 system.

The research was performed in the Sleep Dynamics Laboratory of the Biophysics

Department of the Faculty of Medicine, Dokuz Eylül University. BIS recording was

performed using a bispectral index monitor (Aspect-A2000) with a sensor (BIS Quatro).

BIS sensors were applied to the left forehead as specified by the manufacturer, above

and parallel to eyebrow and next to left eye (sensors were checked for signal quality

[SQI], assuming impedance below 5 kOhms).

In every five seconds, BIS was recorded via the RS232 cable using a HyperTerminal

protocol. The subjects were monitored via a video system and their BIS and EEG

recordings were synchronized. Sleep scoring was performed by visual inspection (with

second verification by the Sleep Disorders Center in Department of Neurology at DEU,

Faculty of Medicine) according to the criteria of Rechtschaffen & Kales (1968) in

30-s time windows (awake 0, stage 1, stage 2, stage 3, stage 4). For every single

Rechtschaffen and Kale score there were six BIS values obtained (6×5s).

The experiments showed that FN-DBSCAN-based algorithm is more successful

than the FCM-based algorithm. The FN-DBSCAN-based algorithm determines only

jumping situations, and does not respond to permanent changes (Figure 6.1). Thus, we

can say that FN-DBSCAN-based algorithm is more advantageous than the FCM-based

algorithm in detecting the sudden reactions and durations of the stable intervals for

series in BIS data.
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(a)

(b)

Figure 6.1 Clustering results of the FN-DBSCAN algorithm for data set DB1 (a) clustering
plot alone, (b) compared with expert opinion (bold black lines under the colored lines).

Example. First of all, by merging 21 data sets each of which has 306 measurements,

a data pool of consisting 21× 306 = 6426 data is formed. Mean, αk, and standard

deviation, σk, of the BIS values for each k-th (k = 1, ...,5) is stage level calculated by

using the Formula (6.2) (Table 6.2 and Figure 6.2).

Table 6.2 Mean and standard deviation of each BIS stage.l l

Stage level Mean Standard deviation
(k) (αk) (σk)

llllllllll 1 llllllllll lllllllll 0.311 lllllllll 0.055
llllllllll 2 llllllllll lllllllll 0.493 lllllllll 0.122
llllllllll 3 llllllllll lllllllll 0.689 lllllllll 0.130
llllllllll 4 llllllllll lllllllll 0.836 lllllllll 0.087
llllllllll 5 llllllllll lllllllll 0.886 lllllllll 0.084

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

Then, fuzzy membership functions of mean BIS values convenient to each stage

level for each stable class is determined by using the Formula 6.3 of the axis orthogonal

projection method (Figure 6.3).
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Figure 6.2 Means and standard deviations of the standardized values of the stages.

Figure 6.3 Membership functions of the standardized values of the stages.llllllllll

In order to illustrate the proposed approach, the results of the FN-DBSCAN algorithm

for some measurements of DB1 are given in Table 6.1. Naturally, different clustering

results were obtained for various values of ε1 and ε2 parameters of the algorithm.

The concept of distance is used in order to reach the nearest results of the experts’

opinions. In this sense, the following formula is used to compute the distance between

the predicted serie, ser, and series given by expert, each consisting of 306 data:

d(ser, expert) =

√√√√306

∑
i=1

(si− si)2 (6.7)

where si and si are the BIS stage levels of the i-th measurement given by the experts

and computed by the Formula (6.6), respectively.

Each point xi, i = 1, ...,n, is considered as a two-dimensional point (i,xi) on the time

series plot. The following weighted Euclidean distance is used to calculate the distance

between the i-th and the j-th points of a measurement serie:
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d(i, j) =
√

(i− j)2 +η · (xi− x j)2 (6.8)

where η ∈ [0,1] is a scale parameter.

Table 6.3 Optimal results for all data sets.l l

DB OptScale MinBIS OptEps1 OptEps2 Clusters
(η) distance (ε1) (ε2) (k)

DB1 0.25 4.008 0.88 0.1 6
DB2 1.00 2.031 0.51 0.2 6
DB3 0.20 2.716 0.99 0.0 87
DB4 1.00 2.264 0.62 0.0 7
DB5 0.10 1.541 0.97 0.0 5
DB6 0.90 0.866 0.75 0.2 9
DB7 0.05 2.795 0.99 0.0 5
DB8 0.10 2.716 0.97 0.0 5
DB9 0.20 2.475 0.93 0.0 4

DB10 0.15 1.732 0.98 0.0 16
DB11 0.05 0.000 0.01 0.0 1
DB12 0.35 2.264 0.93 0.0 21
DB13 0.30 2.165 0.75 0.0 4
DB14 0.20 1.920 0.97 0.0 4
DB15 0.35 4.257 0.90 0.0 10
DB16 0.05 3.725 0.99 0.0 4
DB17 0.25 1.500 0.95 0.0 6
DB18 0.80 0.829 0.75 0.0 4
DB19 0.50 2.345 0.84 0.1 4
DB20 0.05 3.132 0.01 0.0 1
DB21 0.05 2.194 0.99 0.0 5

lllllllllllllllllllllllllllllllllllllllllllllllllllllll

The results for each data set, among the η parameters, optimal η parameter, i.e. the

nearest results to expert’s opinion, which are obtained by running FN-DBSCAN based

algorithm, are given in Table 6.3. Moreover, for each data set various η parameters are

given in Tables 6.5-6.11. In these tables, for each η parameter, optimal values of ε1

and ε2 parameters and the number of clusters obtained for these values are given.

By running FCM-based algorithm for various values of the fuzziness exponent (q),

ranging from 1.5 through 15.0 sum and increasing 0.1 in each step, the nearest results

to expert’s opinion are also obtained. In Table 6.4, for each data set, sum square error

results for optimal values of parameters obtained by FN-DBSCAN and FCM-based

algorithms are given. Under the “FCM” heading, it is seen that FCM results for q is

changed from 1.5 to 2.9, the results for q = 3, and q is changed from 3.1 to 15. Since
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FCM gives the same sum square of error results except q = 3, running ranges of q are

given in such a way.

Table 6.4 Sum square error results for expert vs FN-DBSCAN and expert vs FCM.l l

FCM
llll DB llll FN-DBSCAN llll q=1.5-2.9 llll llllllll q=3.0 llllllll llll q=3.1-15.0 llll

DB1 82 169 159 169
DB2 66 272 213 272
DB3 160 306 273 306
DB4 84 167 149 169
DB5 37 253 233 253
DB6 12 110 175 110
DB7 123 220 202 220
DB8 120 166 151 166
DB9 52 141 122 141
DB10 51 122 125 122
DB11 0 4 6 4
DB12 257 322 332 322
DB13 75 352 337 352
DB14 61 145 137 145
DB15 291 367 330 367
DB16 219 240 208 240
DB17 72 67 64 67
DB18 10 88 70 89
DB19 87 385 354 385
DB20 148 415 368 415
DB21 81 180 177 180

l l

The results obtained for the optimal values of each algorithm are

evaluated by using the above formula and the results are shown in Table 6.12.
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In order to evaluate the classification accuracy (CA) for each series (data set), the

following formula is used:

CA =
correctly detected number of points in the serie

total number of points in the serie
. (6.9)

Experimental results showed that FCM-based algorithm found the best results for

q = 3. The best results of both FCM and FN-DBSCAN-based algorithms are compared

statistically by Wilcoxon signed ranks test in SPSS statistical software (Figure 6.5).

According to the test results, it is statistically significant with p < 0.001 that

FN-DBSCAN gives lower SSE than FCM, i.e. finds closer results to the expert’s

opinion. Furthermore, the comparison for the best results, i.e. the minimum sum

square error results of each algorithm are given graphically in Figure 6.4. Average

classification accuracy of FCM and FN-DBSCAN-based algorithms are 58% and 71%,

respectively.
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Figure 6.4 Graphical plots for SSEs of FCM and FN-DBSCAN algorithms. lll

Table 6.12 Classification accuracy of the algorithms.l l

FN-DBSCAN FCM
DB Number of Classification Number of Classification

correct points accuracy correct points accuracy
DB1 153 0.500 152 0.497
DB2 240 0.784 162 0.529
DB3 186 0.608 125 0.408
DB4 222 0.725 199 0.650
DB5 269 0.879 144 0.471
DB6 294 0.961 231 0.755
DB7 183 0.598 125 0.408
DB8 186 0.608 173 0.565
DB9 254 0.830 186 0.608

DB10 255 0.833 184 0.601
DB11 306 1.000 302 0.987
DB12 224 0.732 168 0.549
DB13 231 0.755 116 0.379
DB14 245 0.801 214 0.699
DB15 15 0.049 66 0.216
DB16 117 0.382 175 0.572
DB17 261 0.853 251 0.820
DB18 296 0.967 236 0.771
DB19 219 0.716 30 0.098
DB20 158 0.516 28 0.092
DB21 225 0.735 177 0.578
Mean 216.143 0.706 164 0.536

Std. dev. 67.320 0.220 68.276 0.223

l l
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Figure 6.5 Results of Wilcoxon signed rank test to compare SSEs of FCM and
FN-DBSCAN algorithms.



CHAPTER SEVEN

SOFTWARE FOR FUZZY NEIGHBORHOOD BASED CLUSTERING

In this chapter, presentation and running principles of the program system

constructed for the methods and algorithms which are explained in Chapters 4 and

6 are given. Moreover, detailed information concerning the forms, functional buttons,

and informative components constituted in “The FJP Family” Program is given. Code

for the program systems are developed in Borland C++ Builder 6.0 SDK and applied

on Pentium IV, 2.66 Mhz CPU, 2 Gb RAM computer.

When the program starts to run, the window given in Figure 7.1 appears on the

screen. Since all the proposed algorithms are based on the FJP method, we named the

opening program as “The FJP Family”. When the mentioned algorithms are clicked

from Figure 7.1, corresponding form appears on the screen. Now, let us investigate the

methods mentioned in the dissertation in detail.

Figure 7.1 Program selection window.

97
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7.1 Software of NRFJP Algorithm

In this section, we explain the running principle of the software of NRFJP

algorithm explained in Section 4.2.

Figure 7.2 Opening window of NRFJP program.l l

7.1.1 Forms

In Figure 7.1, when the NRFJP button is clicked, Figure 7.2 appears on the screen.

First of all, it is required to select the table by pressing on the “OpenDB” button

(Figure 7.3).

Figure 7.3 Data set selection window.l l
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It is possible to see the structure of a two-dimensional data set before starting

the clustering process (Figure 7.4). “ViewDB” button is pressed for this purpose in

Figure 7.3.

Figure 7.4 Visualization of data set.l l

The parameters ε1 and ε2 of the NRFJP algorithm can be set up from the “Parameters”

part of the main program window of NRFJP program. Moreover, the parameter “k”

that is used in various neighborhood membership functions can also be determined. In

order to select the neighborhood membership function and distance metric which are

to be used in clustering, “Options” is clicked from the menu, and the window shown

in Figure 7.5 appears on the screen. For instance, we select “Euclidian distance” as

distance metric, and “FJP-k-line” as linear neighborhood membership function. Let

the value of “k” be 1 for this function. When the “Solve” button is clicked in the main

form, clustering process starts. Clustering result for ε1 = 0.90 and ε2 = 0.2 is shown in

Figure 7.6. On “Clustering Results” part, it is shown that optimal number of clusters

for given parameters is “kOpt=3” and the α-level convenient to this cluster number is

“α = 0.9393”. Furthermore, since we check the “Timer” option, it is shown that the

process is realized in 5 seconds in “Time (sec)” part. If we select “Visual Step” option

before clicking on the “Solve” button, each clustering structure convenient to α-level,

in which number of clusters is affected, is shown one-by-one in a separate form. Then,

optimal clustering results are shown at the end of the clustering process.
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Figure 7.5 Options for distance measure and
membership function.

Figure 7.6 Clustering results of FN-DBSCAN algorithm with parameters
ε1 = 0.9 and ε2 = 0.1.

Neighborhood degrees for each element is shown on a graphic if the “Neighborhood”

button is clicked (Figure 7.7). The neighborhood degrees of the elements are given in

decreasing order in this graphic and it is possible to decide for the suitable value of

ε2 parameter by looking at the widest jumping interval. The red line placed on the

sticks can be moved upwards and downwards. When this line is moved, the value of

ε2 parameter changes as the name of the window. After the form is being closed, the

last value of the parameter is written across the “Eps2” information component placed

in the main form.

When “Visualization” button is clicked, the visual clustering result is shown (Figure

7.8). It is also possible to select the style of elements in a cluster. Elements can be
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shown as digits or as colored rectangles if “Digits” or “Rectangles” item is selected,

respectively, from the “Points” part. It is available to decide whether the noise points

are assigned to the nearest clusters according to the distance from core point or prototype

by selecting “FromCores” or “From Prototypes”, respectively from the “Noise Distance”

part. However, if “Visualization” button is clicked after “VisualNoises” option is

checked, noise points are checked as “+” and they are not assigned to any cluster. For

instance, in Figure 7.8a, noise points are assigned to the nearest clusters according to

distance from prototypes while they are not assigned, instead shown as “+”, in Figure

7.8b.

Figure 7.7 Neighborhood degrees of all elements in decreasing order.

(a) (b)

Figure 7.8 Visualization of clustering results with (a) points assigned to nearest
clusters, (b) noise points.
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The clustering results of each α-level, in which the number of clusters is affected,

are written on a flat file. “FJP.txt” button can be used at any time to display the contents

of the flat file as shown in Figure 7.9. In the first line of this file, the values of

the parameters ε1 and ε2 are shown. The columns “i” , “Alfa[0]”, “kClust[0]”, and

“Delta[0]” show, by order, the step number, α-level in which the number of clusters is

changed, number of these clusters convenient to α-level, and the difference between

the preceding and corresponding α-level. “D in max”, “D out min” and “D out max”

are the values of formulas given in (4.36), (4.37) and (4.38), respectively, in order to

calculate the clustering structure. Columns “Prop1” and “Prop2” are the lower and

upper bounds of Theorem 4.7, respectively, which is used to determine the optimal

clustering structure. Under the “Optimum” heading, abstract information for the

optimal clustering structure obtained in the clustering process is given.

Figure 7.9 Flat file of clustering results.l l
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7.1.2 Functional Modules

Followings are the functional modules assigned to the corresponding buttons on the

opening window of the NRFJP program and their functions:

OpenDB - Opens the data set on which the clustering process will be realized

(Figure 7.3).

ViewDB - Shows the two-dimensional data set visually (Figure 7.4).

Solve - Runs NRFJP algorithm.

Visualization - Shows the clustering result visually (Figure 7.8).

Neighborhood - Shows neighborhood degree graph for each element in decreasing

order. It can be used to set up the value of ε2 parameter (Figure 7.7).

FJP.TXT - Provides access to the flat file “FJP.txt” in which the clustering results

are saved (Figure 7.9).

7.1.3 Informative Components

Timer - Keeps time for the clustering process if it is checked.

kOpt - Shows the optimal number of clusters.

Alfa - Shows the α-level convenient to the optimal cluster number.

Time(sec) - Shows the elapsed time for the clustering process.

Eps1 - Fixes the value of ε1 parameter which determines the threshold of the

neighborhood cardinality.

Eps2 - Fixes the value of ε2 parameter which determines the threshold of the

neighborhood density.



104

K - Fixes the value of the parameter “k” used in the neighborhood membership

function.

FromPrototypes - Takes into account the distance from prototypes in order to assign

noise points to the nearest clusters.

FromCores - Takes into account the distance from core points in order to assign

noise points to the nearest clusters.

VisualNoises - If this option is checked before clicking the “Visualization” button,

noise points are shown as “+”, i.e. they are not assigned to clusters.

VisualStep - If this option is checked before clicking the “Solve” button, clustering

results for each affected α-level is shown on the screen one-by-one. In each display,

confirmation is needed to continue clustering process.

7.2 Software of FN-DBSCAN Algorithm

In this section, we will explain the running principle of the software of FN-DBSCAN

algorithm mentioned in Section 4.3.

Figure 7.10 Opening window of FN-DBSCAN program.l l
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7.2.1 Forms

In Figure 7.1, when the FN-DBSCAN button is clicked, Figure 7.10 appears on the

screen. First of all, it is required to select the table by pressing on the “OpenDB” button.

It is possible to see the shape of the data set by pressing on the “ViewDB”‘button given

as in NRFJP program. The parameters ε1 and ε2 of FN-DBSCAN algorithm can be

fixed according to the data set. Furthermore, we can determine the parameter “k” used

in various neighborhood membership functions. By clicking on the “Options” menu

item from the main menu, the form given in Figure 7.5 appears on the screen that

provides selection for distance metric and neighborhood membership function. For

instance, select “Euclidian distance” and linear neighborhood membership function

from Options and determine “k” as 1. When “FN-DBSCAN” button from

“FN-DBSCAN block” panel in the main menu is clicked, then clustering process starts.

In “Clustering Results” panel placed on the lower left hand side of Figure 7.11,

it is shown that “Cluster # 3”, i.e. the optimal number of clusters is found as 3.

“Visualization” button again provides a visual presentation for the clustering results.

As in NRFJP program system, this program offers various options for the presentation

of clustering results in the “Points” and “Noise Distance” panels.

This time, we run FN-DBSCAN algorithm by selecting exponential neighborhood

function from the “Options” window given in Figure 7.5. When this option is checked,

due to the previous experiments as the most suitable value, the parameter “K” is

determined as 8.3 automatically. But another value can also be specified for this

parameter.

It is also possible to see the optimal number of clusters for each value of the

parameters ε1 and ε2 found by the algorithm by specifying the upper and lower bounds

in the “AutoClustering” panel. At the beginning program window “Eps1Min”,

“Eps1Max”, “Eps2Min” and “Eps2Max” values are 0.80, 0.99, 0.1 and 0.4, respectively.

For example, in Figure 7.12, we specify Eps1Min as 0.01, Eps1Max as 0.99, Eps2Min

as 0.1, and Eps2Max as 0.4, which means that the algorithm will start by ε1 and ε2
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values, and in each step by increasing ε1 0.01 through 0.99, for each value of ε2 by

increasing 0.1 after pressing “AutoBoundary” button, algorithm will run 400 times. For

each specified value of the parameter, we get an optimal clustering structure. Hence,

by running FN-DBSCAN algorithm for 400 times, and the results are being written to

Memo on the right hand side of the program window for each value given in Figure

7.12. In this manner, for each cluster number, we can detect the working ranges of

the parameters. In Figure 7.12, optimal number of clusters is found as “Cluster # 33”

which is the result for the last running of the algorithm for ε1 = 0.99 and ε2 = 0.4.

Besides, on the left hand side part of the form, the elapsed time for the auto-clustering

process can be seen. The values across the “Begin” and “End” labels are the starting,

and the final second and split second.

Figure 7.11 Clustering results of FN-DBSCAN algorithm with parameters
ε1 = 0.9 and ε2 = 0.3.

In this program, simulating clusters from certain distributions and structures for

certain number of data are also allowed by selecting “Cluster Generator” from “Tools”

menu item (Figures 7.13-7.14). By the help of the “Cluster Generator” auxiliary

procedure, it is possible to work on an existing data set by clicking on the “Open”

button as well as simulating a data set.
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Figure 7.12 Automatic clustering results of FN-DBSCAN algorithm.l l

Figure 7.13 Selection of Cluster Generator procedure.l l

In order to simulate a data set, first of all, the distribution of clusters should be

selected from “Distributions” panel located at the upper right hand side of the form.

Afterwards, the desired number of elements (k) in each attempt should be determined.

The clusters can be simulated in two ways. The first one is realized by determining the

radius of the cluster by entering the value on “r” label and then clicking on the screen.

The other way is drawing a rectangle within a desired radius on the screen by the help
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of the mouse (Figure 7.14). Thus, when we drop out clicking on the mouse, the first

cluster within a defined radius and with defined number of elements is generated. Let

the clusters have a uniform distribution with 80 elements in each cluster. When we

draw a rectangle on the screen, the first cluster is placed in this area (Figure 7.15).

After each generated cluster, total number of elements of the data set is written across

“N” placed at the “Parameters” panel. In Figure 7.16, it is shown that there are 4

clusters each having 80 elements. We can save our data set by clicking on the “Save”

button, or we can clear data window by clicking on the “Clear” button.

Figure 7.14 Opening window of Cluster Generator procedure
and determination of cluster frame.

Figure 7.15 The first cluster has been generated within a
defined frame.
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Figure 7.16 Four clusters have been generated. l l

7.2.2 Functional Modules

Followings are the functional modules assigned to the corresponding buttons on the

opening window of the FN-DBSCAN program and their functions:

OpenDB - Opens the data set on which the clustering process are realized (Figure

7.3).

ViewDB - Shows the two-dimensional data set visually.

FN-DBSCAN - Runs FN-DBSCAN algorithm.

Visualization - Shows the clustering result visually.

K-Neighborhood - Shows neighborhood degree graph of each element. It can be

used to set up the value of ε2 parameter.

Entropy - Determines the optimal value of ε1 parameter by using entropy-based

methods explained in Section 4.2.1.

AutoBoundary - Enables running FN-DBSCAN algorithm within specified ε1 and

ε2 ranges, i.e.
(
[E ps1Max−E ps1Min]×100+1

)
×
(
[E ps2Max−E ps2Min]×10+1

)
times, in order to determine the working parameter ranges of the algorithm.
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7.2.3 Informative Components

FromPrototypes - Considers the distance from prototypes to assign noise points to

the nearest clusters.

FromCores - Considers the distance from core points to assign noise points to the

nearest clusters.

VisualNoises - If this option is checked before clicking the “Visualization” button,

noise points are shown as “+”, i.e. they are not assigned to clusters.

Digits - Shows visual clustering results as digits. Note that each different digit

represents a cluster.

Rectangles - Shows visual clustering results as rectangles. Note that each different

color represents a cluster.

Cluster # - Shows optimal number of clusters at the end of the clustering process.

Time(sec) - Displays the elapsed time for clustering process.

Begin - Displays the starting time in seconds and split seconds.

End - Displays the final time in seconds and split seconds.

K - Specifies the value of parameter k used in the neighborhood membership function.

Eps1 - Fixes the value of ε1 parameter which determines the threshold of the

neighborhood cardinality.

Eps2 - Fixes the value of ε2 parameter which determines the threshold of the

neighborhood density.

MinEntropy - Displays the minimum entropy value after clicking on the “Entropy”

button.
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Eps1Min - Specifies the minimum value of ε1 parameter that is to be used in

automatic clustering.

Eps1Max - Specifies the maximum value of ε1 parameter that is to be used in

automatic clustering.

Eps2Min - Specifies the minimum value of ε2 parameter that is to be used in

automatic clustering.

Eps2Max - Specifies the maximum value of ε2 parameter that is to be used in

automatic clustering.

7.3 Software of FN-DBSCAN Algorithm for EEG

In this section, we will explain the running principle of the software of

FN-DBSCAN algorithm, designed for EEG, which was explained in Section 5.2.

Figure 7.17 Opening window of FN-DBSCAN algorithm for EEG program. l l

7.3.1 Forms

In Figure 7.1, when the FN-DBSCAN EEG button is clicked, Figure 7.17 appears

on the screen. First of all, it is required to select the table by pressing on the “OpenDB”

button (Figure 7.18). It is possible to see the shape of the data set by pressing on the

“ViewDB” button as we did in previous programmes (Figure 7.19).
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Figure 7.18 Data set selection.l l

Figure 7.19 Visualization of data set.l ll

It is possible to make various selections by clicking on the “Options” menu item.

For instance, distance metric from “Distance Measure”, neighborhood membership

function from “Membership Function”, lower and upper bounds of ε1 and ε2 parameters

to realize automatic clustering from “Auto-Boundary Parameters” panel, the weights

of variable and the amount of weight that is to be used to determine scale automatically

from “Auto-Scale Parameters” panel are possible. Unless “Weighted Euclidian”

distance measure option is checked, “DY Coef” and “ScaleStep” options are inactive.

As we have just mentioned above, there are options for clustering with various

distance metrics. For instance, “Weighted Euclidian” distance can be used to obtain

better clustering results by assigning different weights to time (X) and BIS-value (Y )

variables. The relative weights of these variables can be set up by using parameter used

in Formula (6.8). In order to find out the best value of this parameter in a certain range,

“Auto-Scale Parameters” panel in “Options” menu item can be used. In Figure 7.20,

“DX Coef” and “DY Coef” are the weights of X and Y variables, respectively. “Scale

Step” is the incremental step of parameter that reflects the relative weight. Note that
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the weight of Y variable is the corresponding η parameter.

Figure 7.20 Options window.l ll

Figure 7.21 Auto-Scale results.l ll

The value of “DY Coef” coefficient is increased from beginning through 1 as much

as “Scale Step”. Then the value of η that gives the nearest result to the expert’s opinion

is considered as optimal.

After closing “Options” window, if “Auto-Scale” button is clicked, the results are

shown in Figure 7.21. In “Auto-Boundary Results” part, given in the middle Memo,

the sequence number, its reference cluster number, cluster mean, stage mean given by

expert and stage mean found by the method are shown for each element according

to each value of ε1 and ε2 parameters. In “Auto-Scale Results” part, the nearest

result to the expert’s opinion, i.e. “MinimalBIS distance”, optimal values of ε1 and
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ε2 parameters and the optimal number of clusters for that scale are shown. Finally, in

the bottom the optimal values for the optimal scale among the above-mentioned results

are given (Figure 7.22). If “Show BIS stages” item is checked, placed at the bottom

left hand side of the form, before pressing “Visualization” button, it is possible to show

stage values both given by the expert (black lines) and obtained by the FN-DBSCAN

method (colored lines) for a visual interpretation and comparison (Figure 7.23).

Figure 7.22 Clustering results of FN-DBSCAN based algorithm.l ll

Figure 7.23 Clustering results, stage values given by expert (black lines), stage values obtained
by FN-DBSCAN (colored lines).

So that we can see the clustering results by keeping the scale constant and entering

the minimum and maximum values of ε1 and ε2 in “Options” window, it is enough

to press “Auto-Boundary” button. The results are shown only in “Auto-Boundary

Results” part. In Figure 7.24, the elapsed time for detecting boundaries of ε1 and

ε2 by automatic clustering for η = 0.25 after checking “Timer” item is shown.

In addition to the information given in Figure 7.24, if “Auto-Boundary” button is

pressed after checking “ShowMeans” item in the main form, the number of elements

in each cluster and means of elements in that cluster for each dimension are also shown

for the optimal parameter values (Figure 7.25).
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Figure 7.24 Auto-Boundary results.

Figure 7.25 Auto-Boundary results with means of each cluster in each dimension.

7.3.2 Functional Modules

The functions of the buttons “OpenDB”, “ViewDB”, “Visualization” and

“FN-DBSCAN” are the same as given in FN-DBSCAN programme.

Auto-Boundary - Runs FN-DBSCAN algorithm for each value of ε1 and ε2

parameters within range defined in Figure 7.20.

AutoScale - The scales of X and Y variables are set up in Figure 7.20. The scale

of Y variable are increased as much as defined in “ScaleStep”. The optimal results for

each scale and at the end the results for the optimal scale are found and written on the

Memo given in the right hand side of form given in Figure 7.21.
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7.3.3 Informative Components

In this programme, the functions of the informative components are the same as the

ones given in FN-DBSCAN program except the followings:

ShowMeans - If this item is checked before pressing on the “Auto-Boundary” button,

the number of elements in each cluster and cluster mean for each dimension for the

optimal clustering structure are shown.

Show BIS stage - If this item is checked before pressing on the “Visualization”

button, besides clustering results, the stage values both given by the expert (black lines)

and obtained by the FN-DBSCAN method (colored lines) are shown.

BIS-Stage No - In order to compare the results found by the method with the

results given by the expert and to find the nearest structure to the expert’s opinion, it is

necessary to enter a number in this part. Data sets are numbered from 1 to 21. Also, for

each data set the stage values given by the expert are defined in the programme code.

The comparison is made according to the number given into this part.

Elapsed Time - Shows the elapsed time for clustering in seconds if “Timer” item is

checked.

Note that “The FJP Family” software system presented in this chapter is produced

in the scope of the dissertation work. Consequently, this software system is used in

order to evaluate the performances of NRFJP, FN-DBSCAN and FN-DBSCAN for

EEG algorithms.
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CONCLUSION

In this work, fundamentally two algorithms have been proposed. The first one

is the NRFJP algorithm which is a robust version of the known fuzzy neighborhood

based FJP clustering algorithm. The second one is the FN-DBSCAN algorithm which

is a mixture of FJP and density-based DBSCAN algorithms. Moreover, in Borland

C++ Builder 6.0 SDK system, the codes of both algorithms have been developed.

The results of the work have been published in articles (Nasibov & Ulutagay, 2006c,

2007a,b,c, 2008a,b, 2009; Nasibov et al., 2008; Ulutagay & Nasibov, 2008a,b; Nasibov

et al., 2009).

The fundamental idea of the FJP method is to compute the fuzzy relation matrix

based on the distance between points. For this aim, for certain α ∈ (0,1], α-level sets

and equivalence classes are constructed. At the same time, these α-degree equivalence

classes determine each α-level set of the fuzzy clusters. Also note that, these α-level

sets are not computed for all degrees, instead they are computed only for α-levels in

which the number of clusters are affected. Then, the final level set is computed based

on the maximal change interval of the α’s. In other words, the α-level degree that

reflects the cluster structure optimally and α-level set appropriate for this level are

found simultaneously.

However, the FJP algorithm is not robust through noises. In order to eliminate

such a disadvantage, in this work NRFJP algorithm has been suggested. In the NRFJP

algorithm each point for which certain ε1 fuzzy neighborhood cardinality is smaller

than certain ε2 threshold is perceived as noise. Note that, by changing the ε1 and ε2

parameters, it is possible to change the sensitivity of the NRFJP algorithm through

noises. Moreover, if ε2 = 0, the sensitivity of the NRFJP through noises is turned off,

consequently NRFJP algorithm transforms into FJP algorithm.

The other proposed algorithm, FN-DBSCAN, is based on fuzzy neighborhood

function. In the study, the effects of fuzzy neighborhood relation in density-based

117
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clustering have also been investigated. Besides being a more general algorithm, the

FN-DBSCAN algorithm transforms into the well-known DBSCAN algorithm when

the crisp neighborhood function is used. Experiments with various shapes and densities

show that FN-DBSCAN algorithm is more robust than the DBSCAN algorithm is.

On the other hand, FN-DBSCAN algorithm runs faster than the fuzzy neighborhood

relation-based algorithms FJP and NRFJP. Thus, FN-DBSCAN algorithm combines

the speed of DBSCAN and robustness of FJP algorithms. Computational experiments

with parameter-based linear and exponential neighborhood functions have been

performed. After experiments with several values of the parameters, the parameters

that give better results have been obtained.

In summary, in this thesis;

1. Fuzzy neighborhood-based clustering method (FJP) has been handled and a new

NRFJP algorithm which is FJP’s noise-robust variant has been suggested.

2. To determine the optimal number of clusters in fuzzy neighborhood-based

clustering, a novel cluster validity criteria VFJP has been proposed.

3. The analysis of clustering structure has been investigated and the sufficient

condition for the optimal clustering structure has been formulated and proved

as a theorem.

4. In order to obtain the optimal values of the parameters of the NRFJP algorithm

which determine the sensitivity through noise points, an entropy-based method

has been suggested.

5. On the basis of a crisp density-based algorithm, DBSCAN, a novel fuzzy

neighborhood based FN-DBSCAN clustering algorithm has been proposed. As a

result of computational experiments, it has been shown that using fuzzy

neighborhood relations in FN-DBSCAN algorithm provides more robustness

to noise points than using classical neighborhood relations as in the DBSCAN

algorithm.



119

6. A modified version of the FN-DBSCAN algorithm has been developed so as to

apply cluster analysis to EEG data. Moreover, as a real-world application, this

modified algorithm is applied to BIS sleep data which is recorded by EEG in the

Department of Biophysics, Faculty of Medicine, Dokuz Eylül University. The

experimental results showed that FN-DBSCAN based approach obtains closer

results to the expert’s opinion than the well-known and widely used FCM clustering

based approach.

7. The codes for all of the proposed algorithms have been developed in Borland

C++ Builder SDK and they have been designed as an integrated software system.

Improving the time and memory complexities of the proposed clustering algorithms

will be the basis of our future investigations. Furthermore, it is aimed to investigate the

behaviour of the algorithms in real-world applications from various fields.
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Höppner, F., Klawonn, F., Kruse, R., & Runkler, T. (1999). Fuzzy Cluster Analysis:

Methods for Classification, Data Analysis and Image Recognition. John Wiley &

Sons.

Huang, Z. (1997). A fast clustering algorithm to cluster very large categorical data

sets in data mining. SIGMOD Workshop on Research Issues on Data Mining and

Knowledge Discovery (SIGMOD-DMKD97), 55–58.

Johansen, J. W. & Sebel, P. S. (2000). Development and clinical application

of electroencephalographic bispectrum monitoring. Anesthesiology, 93 (5),

1336–1344.

Karypis, G., Han, E. H., & Kumar, V. (1999). CHAMELEON: A hierarchical

clustering algorithm using dynamic modeling. Computer, 32, 68–75.

Kaufmann, L. & Rousseeuw, P. J. (1990). Finding Groups in Data. John Wiley &

Sons.

King, B. (1967). Step-wise clustering procedures. Journal of the American Statistical

Association, 69, 86–101.

Klir, G. & Folger, T. (1988). Fuzzy Sets, Uncertainty, and Information. Prentice Hall,

Englewood Cliffs, NJ.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43, 59–69.

Kung, C. C. & Su, J. Y. (2007). Affine takagi-sugeno fuzzy modelling algorithm by

fuzzy c-regression models clustering with a novel cluster validity criterion. IET

Control Theory Applications, 1 (5), 1255–1265.



123

Kwon, S. (1998). Cluster validity index for fuzzy clustering. Electronic Letters, 34

(22), 2176–2177.

Larose, D. (2005). Discovering Knowledge in Data. Wiley-Interscience.

Lukasiewicz, J. (1970). Studies in Logic and the Foundations of Mathematics. North

Holland.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate

observations. 5th Berkeley Symp. Mathemtaical Statistics & Probability, 1, 281–297.

Murtagh, F. (1984). Structure of hierarchic clusterings: implications for information

retrieval and for multivariate data analysis. Information Processing and

Management, 20 (5), 611–617.

Nasibov, E. (2007). Analysis of fuzzy neighborhood relation in density-based

clustering. 1st Int. Conf. On Soft Computing Technologies in Economy, Baku,

Azerbaijan, 113–123.

Nasibov, E. & Ulutagay, G. (2005a). A new fuzzy joint points method for fuzzy

clustering. Automatic Control and Computer Sciences, 39 (6), 8–17.

Nasibov, E. & Ulutagay, G. (2005b). FJP: A new hierarchical method for fuzzy

clustering. 3th Int. Conference on Soft Computing, Computing with Words and

Perceptions in System Analysis, Decision and Control, Antalya, Turkey, 212–220.

Nasibov, E. & Ulutagay, G. (2006a). A new fuzzy joint points criteria for cluster

validity. Int. Conf. on Modeling and Simulation (AMSE), Konya, Turkey, 625–629.

Nasibov, E. & Ulutagay, G. (2006b). On the fuzzy joint points method for fuzzy

clustering problem. Automatic Control and Computer Sciences, 40 (5), 33–44.

Nasibov, E. & Ulutagay, G. (2006c). Optimal adjustment of the parameters of

noise-resistant fuzzy joint points clustering method. Int. Conf. On Application of

Fuzzy Systems and Soft Computing (ICAFS), Siegen, Germany, 80–86.



124

Nasibov, E. & Ulutagay, G. (2007a). A new unsupervised approach for fuzzy

clustering. Fuzzy Sets and Systems, 158, 2118–2133.

Nasibov, E. & Ulutagay, G. (2007b). On cluster analysis based on fuzzy relations

between spatial data. 5th EUSFLAT Conference, 2, Ostrava, Czech Republic, 59–62.

Nasibov, E. & Ulutagay, G. (2007c). Uzaysal veri analizinde bulanık mantık yaklaşımı.
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