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ABSTRACT

Blind source separation is the problem of finding a linear transformation to
separate statistically independent components from a mixture of sources, which
contains at least as much signals as the number of the sources to be separated. The
problem is called blind, since the only information at the hand is the mixture
obtained from the sensors, but neither the number of sources nor their contribution to
mixture is known. The general name of the technique to find such a transformation is
Independent Component Analysis. This study focuses on the algorithms, which is
capable of real time extraction of independent components. Independent Component
Analysis algorithm formulations are reviewed and the simulation results with
examples to sound and image separation are given. A performance comparison of

several algorithms is also included.
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OZET

Kor kaynak ayirma, en az aynlmasi gereken bilesen kadar kaynak igeren eldeki
bir kaynak kanigimindan, istatistiksel olarak bagimsiz bilesenleri ayiracak lineer bir
doniisiim bulma problemidir. Eldeki karigimda bulunan bagimsiz kaynaklann sayis
ve bunlarn karnigima ne oranda katkida bulunduklan bilinmediginden problem kor
olarak nitelendirilir. Bahsi gegen tipte bir doniigiim bulma probleminin genel adi
Bagimsiz Bilesen Analizi’dir. Bu caligma gergek zamanda istatistiksel olarak
bagimsiz bilesenleri ayirabilecek algoritmalar {izerinde yogunlagmigtir. Bagimsiz
bilesen analizi algoritmalarina iligkin formiilasyon gézden gegirilmis, ses ve gorinti
ayirmaya iligkin 6meklerle desteklenerek simiilasyon sonuglan verilmigtir. Ayrica

s6z konusu algoritmalarin performans karsilagtirmasi da sunulmustur.
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CHAPTER ONE
INTRODUCTION

1. Introduction

Blind source separation is a relatively new area of signal processing especially gained
attraction after mid-80’s. The main goal of the blind source separation algorithms is to
separate statistically independent signal components from a linear mixture without any other
pre-requisites. By this we mean that the only clue to find sources is the sensor data, that is
assumed to be obtained by linearly mixed sources, but in general, neither the number of
sources nor their contribution to mixture is known. Hence the problem is called blind source
separation. Situation can be imaged in what is called the cockrail party effect: In a cocktail
party there are many sound sources, which forms a complex sound source at overall. But a
person can preciously detect and listen .a special person of interest. Then there should be a
way to extract the information of a single source from the others, because brain must have a
mechanism to get the information apart from the others by only using the sound that comes
to the ears. Of course the mixtures of individual sources at different ears are different and
this is one of the clues, and perhaps another one is the statistical properties of sources, which

is learned somehow.

Since individual sources are formed by completely different physical mechanisms that
does not interact, we can assume that their statistical properties are different, to be precious
they are statistically independent. Obtaining statistically independent components from
mixtures of such sources is called Independent Components Analysis. Statistically
independent components obtained from this process can also be used as features in various

areas of science like data analysis, image processing, speech processing etc.

Herault and Jutten seem to be the first to have addressed the problem of Independent
Component Analysis around 1983. This problem is given many other names including
source separation problem. But this name is proposed by Herault and Jutten around 1986,

because of the similarities with principle component analysis. Their solution was

LC VUKSEKOGRET M KURULY
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problematic since it showed lack of convergence for several situations. Giannakis et. al.
worked on identifiability of ICA in 1987. Lacoume, Gaeta and Ruiz introduced higher order
statistics but their algorithms were realistic only for 2 dimensional case. Algebraic properties
are addressed by Cardoso, Comon, Fety and Inouye et. al. between 1988 and 1991. Besides
the properties of problems studied, development of information theoretic unsupervised
learning rules for neural networks pioneered by Linsker, Becker & Hinton, Atick & Redlich,
Plumber & Fallside and others between 1988 and 1993. Recently Oja, Karhunen, Amari,
Cardoso, Bell, Hyvarinen and others proposed efficient neural algorithms for independent

component analysis.

Motivation of this study comes from a search for an algorithm that can separate
individual speakers from a speech, in which two or more speakers speak at the same time, or
from a background noise (e.g. sounds at an office environment, or motor noise at a helicopter
cockpit). Such situations are hard ones for computer based speech understanding. Separating
speakers before processing should improve the performance of speaker independent speech
recognition techniques. Such an algorithm can also be used as a security issue by separating
speaker in advance before processing (e.g. think the situation where two speakers speak at
the same time to give an order to a machine. Of course supervisor of the machine must have

the highest priority and his or her sound should be selected to be processed first.).

In this thesis some of the Independent Component Analysis algorithms which may have
practical importance for this propose will be introduced. The formulations of algorithm will

be briefly discussed and simulation results and comparisons will be given.

This thesis is organized as follows: In chapter two, necessary background definitions and
mathematics including Principal Component Analysis (PCA), which is a pre-processing
stage for obtaining independent components in most of the algorithms which will be
discussed later, is given. In chapter tree Independent Component Analysis (ICA) is
formulated and two major approaches -namely Maximum Entropy (ME) and Minimum
Mutual Information (MMI)- with relevant algorithms are represented. Chapter four is
consisted of the simulations and results of algorithms. A summary and a comparison of these

are discussed in the conclusions.



CHAPTER TWO
BASIC DEFINITIONS AND PROPERTIES

1. Entropy

1.1. Entropy of Discrete Random Variables

Let random variable X uniformly quantized into finite number of discrete levels
with 8x, which is the separation between these levels and is small enough to

represent the variable adequately. We can denote X by":
X =& |k =0,21,42,--- £K} Eq. 2.1

The probability of event X = x 1s given by:

K
pk=P(X=xk), 0<pr =<1, Zpkzl
k=K

We can say that, if event X = x;; occurs with probability px=1and Viz k p;=0,
there is no surprise and so no new information is obtained observing X. But if the
probability is low then there is more surprise and information when X takes the value

x rather then value x; with higher probability p; where 1 # k.

Therefore, surprise, uncertainty and information concepts are related. We can
briefly say that the amount of information is related to the inverse of probability of

occurrence. Information gained after observing the event X = x, with probability px

! Uppercase letters (e.g. X) denote random variable and lowercase letters denote (e.g. x) values of

random variable. Their vector or matrix versions are shown in bold face (e.g. X).



is defined as a logarithmic function by Claude Shannon in his famous work
[Shannon, C. (1948)] as follows:

I(xy )= log(—l—j = —log(p) Eq. 2.2
Pk
Here base of logarithm is arbitrary. When it is e, units of I(x) are nats, and when it
is 2 then units are bits. Properties of I(x) can be summarized as follows:
1. p=1=1(x) =0, ie. if event is certain, no information is gained.

2. 0 <p<1 = I(x¢) 2 0 i.e. occurrence of an event X = x; never results a loss of

information but it either provides some or none.

3. p<pi = I(xq) > I(x;) i.e. the less probable an event is, the more information we

gain through its occurrence.

The mean of I(xy) over range 2K+1 discrete values is given by:

H(X)=El(x )]

K K
= Y pil(xk)=— > pxlog(py)
k=—K k=—K

Eq. 2.3

H(X) is called entropy and it is a measure of the average amount of information

conveyed per message. Here we define 0-log 0 = 0 to avoid any ambiguity.
The entropy H(X) is bounded as follows:
0 <H(X) <log(2K+1)  with 2K+1 discrete levels.
Properties of entropy are:

1. HX)=0< px=1and V i# k p; =0 which is the lower bound and shows that

there is no uncertainty about event X.



2. HX) = log(2K+1) & Vk, pr=

(i.e. all discrete values are
2K +1

equiprobable). This is the upper bound and corresponds to maximum uncertainty.
The second property is a result of following lemma :

Given any two probability distributions {py} and {q;} for a discrete random

variable X, then:

> Pk log(-mi) >0 Eq.2.4
k qk

which is satisfied with equality if and only if qx = py for all k. [Haykin, S. (1998),
Gray, R.M. (1990)]

The relative entropy or Kullback - Leibler divergence (distance) between two
probability mass functions px(x) and qx(x) (where these show the probabilities that
the random variable X is in state x under two different conditions) is defined by
[Haykin, S. (1998); Kullback, S. (1968)]:

Dypjq = ENPX (X)log( Zz 8] Eq.2.5

Here sum is over all possible states of system and qx(x) plays a role of reference

measure.

1.2. Differential Entropy of Continuous Random Variables

Let X be a continuous random variable probability density function (p.d.f.) fx(x).

Using analogy with entropy of discrete random variables we can define:

h(x)=—fo(x)logfx(x)dx=—E[19gfx(>;)] Eq. 2.6

—o0

h(x) is called differential entropy of X. It is not in any sense a measure of

randomness of X. This can be justified as follows:



Let x = k-8x, k=0, 1, £2, ... and 6x — 0, then

H(X)=- lim ffx(xk)axlog(fx(xk)&)

Ox— k=—o0

=h(X)- lim logdx
dx—0

Here —log &x approaches to infinity as §x—0, which means continuous random

variable has infinitely large entropy.

When we have a continuous random vector X consisting of n random variables

X1, X2, ..., Xq , differential entropy of X is defined as n fold integral:

h(X)=- fo (x)logfx (x)dx = —E[logfx (x)] Eq. 2.7

—
where fx(x) is the joint probability density function of X.
Some useful properties of differential entropy are:

1. h(X+c)=h(X) for constant ¢
2. h(aX)=h(X)+logja|

3. h(AX) = h(X)+log |det(A)], where det(A) is the determinant of matrix A.

2. Maximum Entropy Principle

Suppose that a stochastic system with a set of known states but unknown
probabilities is given and we know some constrains (e.g. ensemble averages or
bounds). The problem is to choose a probability model that is optimum in some

sense. Usually there are infinite numbers of such models.

Maximum Entropy (ME) principle states that [Haykin, S. (1998); Jaynes, E.T.
(1957)):



When an inference is made on the basis of incomplete information, it should be
drawn from the probability distribution that maximizes the entropy, subject fo

constraints on the distribution.

ME problem is a constrained optimization problem. One can maximize
differential entropy Eq. 2.7 to hold the ME principle over all p.d.f. fx(x) of a random

variable X, subject to the following constraints:

1. fx(x) 2 0, with equality outside the support of X

2. fo(x)dx =1

—0

0
3. Ifx(x)gi(x)dx =q; fori=1,2,...,m

—00
where g;(x) is some function of x.

Method of Lagrange Multipliers can be used to solve the problem. According to
this:

I(f) = T [— f ()logfx (x) + Agfx (x)+ 3 A (x)fix (x)}dx Eq. 2.8

- i=1

where Ag, A1, ..., Am are Lagrange Multipliers. Differentiating the integrand with
respect to fx(x) and setting the result equal to zero, we get:

m
-1- logfx(x)+k0 + ingi(x) =0

i=1

Rearranging gives:

“L+ho+ D higi(x)
fy(x)=e i=l Eq. 2.9

We choose A;’s according to the above constraints 2 and 3.



If the knowledge about random variable X, is made up the mean p and variance
o?, using g;(x) = (x-w)* and a, = ¢°, and applying LaGrange Multipliers method, we
find that:

_(x-wp
e 26° Eq. 2.10

f =
X(X) mo

which is p.df. of a Gaussian random variable X of mean p and variance o> The

maximum value of differential entropy of such a random variable is given by:
1 2
h(X)= 0 [1 +log(2nc )] Eq.2.11

We can conclude that for any random variable Y with same mean and variance
with X,

h(X) 2 h(Y)

with the equality holding only if X and Y are the same, and the entropy of Gaussian

random variable X is uniquely determined by the variance of X.

In multidimensional case, second order statistics of zero mean m-dimensional X
can be described by the covariance matrix =F [ XX"]. With the same method above

we get:

l T
! ()
f = , Eq. 2.12
R Py ‘

h(X)= —;—[m +mlog(2n)+log | det(Y) |] Eq.2.13



3. Mutual Information

3.1. Mutual Information of Discrete Random Variables

Consider a stochastic system with input X and output Y, and both X and Y are
permitted to take discrete values x and y, respectively. H(X) is a measure of prior
uncertainty about X. The problem is to measure uncertainty about X after observing
Y.

A useful measure for our propose is conditional entropy. Conditional entropy of X

given Y is defined as follows:

H(X|Y)=H(X,Y)-H(Y) Eq. 2.14
with property,
0<H(X|Y)<HX) Eq.2.15

Conditional entropy H(X|Y) represents the amount of uncertainty, remaining
about the system input X after observing the system output Y. Here H(X,Y) is the
joint entropy of X and Y, and is defined by,

HX,Y)=-% ¥ p(xy)logp(x,y) Eq.2.16
xeXyeV

where p(x,y) is the joint probability mass function of X and Y, and summation is
over all possible states of X and Y respectively.

As H(X) represents the amount of uncertainty about the system input before
observing the system output, and H(X|Y) represents our uncertainty about the system
input after observing the system output, then the difference H(X)-H(X|Y) must
represent our uncertainty about the system input that is resolved by observing the
system output. This is called mutual information between the random variables X
and Y, and shown as I(X;Y).
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1(X;Y)=H(X)-H(X | Y)

=X > p(x,Y)log[%S’E%J Eq.2.17

xeNyeY
Entropy is a special case with H(X) = I(X;X).
Properties of mutual information may be summarized as follows:

1. [(Y:;X)=1(X;Y), i.e. mutual information between X and Y is symmetric. Here
I(Y;X) is the uncertainty about system output Y resolved by observing the

system input X.

2. I(X;Y) 2 0 i.e. the mutual information is always positive. This means on the
average we cannot lose information by observing system output, and mutual
information is zero if and only if the system output and system input are

statistically independent which is a key to blind source separation.
3. We can also express mutual information in terms of the entropy of Y:
I(X; Y)=H(Y)-H(Y|X) Eq.2.18

i.e. here conditional entropy H(Y|X) conveys information about the processing

noise rather than about the system input X.

3.2. Mutual Information of Continuous Random Variables

Using analogy with the discrete case we can express the mutual information

between random variables X and Y as:

I(X;Y)= T T fX,Y(x,y)log(%(_)E—)zg)]dxdy Eq. 2.19

—00 —a0

fx v(x,y)="fx(x]y)fy(y) 50,
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( fx,y (x.y)

I(X;Y)= T T fX,Y(x,y)log mjdxdy

—00—00

where fx y(x,y) is the p.d.f. of X and Y, and fx(x|y) is the conditional p.d.f of X,
givenY =y.

Mutual information of continuous random variables has the following properties:

I(X; Y)=h(X)-h(X|Y)
=h(Y)-h(Y|X) Eq. 2.20
=h(X)+h(Y)-h(X,Y)
1(Y;X)=1(X;Y) Eq. 2.21
I(X;Y)20 Eq. 2.22
Here h(X) is the differential entropy of X, and h(Y) is the differential entropy of

Y. Conditional differential entropy is defined as:

a0 © )
h(X|Y)=-[ [fx y(x,y)logfx(x|y)dxdy Eq. 2.23

—00 —00
The parameter h(X,Y) is the joint differential entropy of X and Y.

In Eq. 2.22 equality holds only when X and Y are szatistically independent. If this

condition holds, then we can write:

fx v (x.y)=fx (x)fy (y) Eq. 2.24
or,

fx(x|y)=1fx(x)
where fx(x) and fy(y) are marginal p.d.f.’s of X and Y respectively.

Discussion can be expanded to vector form for vector random variables X and Y.

In this case mutual information is defined as:
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I(X;Y)= T T fxy (x, y)log(%‘_ix(—’l{)ﬁj dxdy Eq. 2.25

The properties of mutual information I(X,Y) is the same as what are stated in Eq.
2.20, Eq. 2.21, Eq. 2.22 for scalar variables.

3.3. Kullback-Leibler Divergence

Kullback-Leibler divergence, which is defined for discrete case in Eq. 2.5, plays a
central role in independent component analysis. This definition can also be expanded
to the general continuous random vector case. Let fx(x) and gx(x) be two different
p.d.f’s of m-by-1 vector X. Kullback-Leibler divergence is defined as [Haykin, S.
(1998); Shore, J.E. & Johnson, R W. (1980)]:

Deyllex = _T fx (X)IOg(;);((’;)))dx Eq. 2.26

Properties of Kullback-Leibler divergence can be summarized as follows:

1. Dygg 2 0. Equality holds when fx(x) = gx(x), i.e. two distributions perfectly

match.
2. Dy is invariant to following changes of the vector x.
e Permutation order in which the components of x ordered,
o Amplitude scaling,
e Monotonic nonlinear transformation.
Relation between mutual information and Kullback-Leibler divergence is:

(X, Y)=Dr, Iy fy . Eq. 2.27

d )
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In other words mutual information I(X;Y) between X and Y is equal to the Kullback
—Leibler divergence between joint p.d.f fx y(x,y) and the product of p.d.f’s fx(x) and

fy(y).

A special case of interest is the Kullback-Leibler divergence between the p.d.f.

fx(x) of and m-by-1 vector X and the product of its marginal p.d.f’s. Let fxi (x;)

denote the i™ marginal p.d.f. of element X;, then,
~ w .
in (Xi)= _[fx (x)d‘x(l)’ i= 1,2,"‘,1‘1’1 Eq. 2.28
—0

where x® is the (m— 1)-by-1 vector left after removing the i™ element from x.

Kullback — Leibler divergence between fx(x) and the factorial distribution [ ?(xi)
i

is given by [Haykin, S. (1998)]:

m ~
Dy iy = -h(X)+ ¥ h(X;) Eq.2.29

i=1
3.4. Pythagorean Decomposition

Let m-by-1 random vector U consists of independent variables i.e.:
m

fy(®) = [Tfu, ;)
i=1

and m-by-1 random vector X defined in terms of U by:
X =AU
where A is a non-diagonal matrix.

Let ?Xi (x;) denote the marginal p.d.f. of each X; that is derived from fx(x) and
Then the Kullback — Leibler divergence between fx(x) and fy(x) admits the following

Pythagorean Decomposition



DfX ”fU = Dfx ”‘f‘:x + D’f‘-'x ”fU Eq. 2.30

3.5. Negentropy

Negentropy of a random vector X, with differeantial entropy h(X), is defined as:
J(X) = h(X gguss ) h(X) Eq. 2.31

where Xgauss is @ Gaussian random variable of the same covariance matrix as X.
Negentropy can be interpreted as the amount of structure of distribution of Y. It is
largest when distributions is clearly concentrated on certain values. It can also be

viewed as a measure of the non-Gaussianity of X.
We can express mutual information “I” between m scalar random variables X;

(=1,2,...,m)as

m ~
1(X1,X5,...Xm) = Y h(X;)-h(X) = D¢ Eq. 2.32

i=1

We can rewrite it in terms of negentropy:

1(X1,X 5,0 X ) = 3(X) - %J(Xi)+llog I1ei Eq.2.33
vt 2 " det(C)

where C is the covariance matrix of X, and c; are diagonal elements of it. If the X;

are uncorrelated (white), then we obtain [Hyvarinen, A. (1997)]

m
1(X1,X 5,00 Xm ) = 3X) - Y I(X;) Eq.2.34

i=1

3.6. Maximum Mutual Information Principle

Maximum mutual information principle (InfoMax) is stated as follows [Linsker,
R. (1989)]:
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The transformation of random vector X observed in the input layer of neural
system to a random vector Y produced in the output layer of the system should be
chosen that the activities of the neurons in the output layer jointly maximize
information about the activities in the input layer. The objective function to be

minimized is the mutual information I(X;Y) between vectors X and Y.

We should note that application of InfoMax principle is problem dependent and in
general determination of the mutual information is a difficult task. So instead of
calculating mutual information directly, one can use a surrogate mutual information
computed on the premise that the vector output Y of a neuron has a multivariate
Gaussian distribution with the same mean vector and covariance matrix as the actual
distribution due to ME principle. Kullback-Leibler divergence is used to provide
such a mutual information, under the condition that network has stored information
about the mean vector and covariance matrix of the output Y, but not the higher

order statistics.

Consider a noiseless network that transforms a random vector X of arbitrary

distribution to a new random vector Y of different distribution, i.e:
Y = WX

The mutual information between the input vector X and the output vector Y is as

follows:
1(Y;X)=H(Y)-H(Y | X)

If mapping from X to Y is noiseless then conditional entropy H(Y|X) diverges to —.
This is due to the differential nature of continuous random variables. Using the

gradient with respect to W of the entropy we can solve the problem. We can write

al(Y;X) _ aH(Y)
oW oW

Eq. 2.35

because H(Y|X) is independent of W.
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This shows that for a noiseless mapping network, maximizing the entropy of the
network output Y is equivalent to maximizing the mutual information between

system output Y and system input X.

As our propose is to develop a self organizing algorithm to separate individual
sources buried in a mixture, since we have no other information except input signals,
InfoMax principle is important. Since mutual information is an objective function to
hold ME and InfoMax principles, our problem in the hand takes the following form:
We have a series of random vectors X, Xy, ..., X, with corresponding outputs Y;,
Y,, ..., Y. Our objective is to minimize statistical dependence between the
components of the output Y since we assume those individual sources in the mixture
are statistically independent because of that they are produced from completely
different physical situations. This is equivalent to minimize mutual information
between every pair of the random variables consisting the system output vector Y,

i.e. I(Y;;Y;) where i=j.
3.7. Approximation of Probability Density Functions

As minimization of mutual information is a difficult task, we stated that we could
use a surrogate mutual information function instead of calculating it directly. This
leads to finding approximations of p.d.f.’s using the higher order cumulants of the
variable of interest and using these at calculation of mutual information. Two
methods used in various ICA algorithms [Comon, P. (1994); Amarn, S., Cichocki, A.
& Yang, H. H. (1996); Haykin, S. (1998)] are Edgeworth Series and Gram—Charlier

series.
3.7.1. Gram-Charlier Series Expansions

Let oy(®) be the characteristic function of a random variable Y. By definition
[Childers, D.G. (1997)]:

o o] . )
oy(@)= [fy(y)e’¥dy, j=+-1 Eq. 2.36
-

k™ order moment of random variable Y is defined as:
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my = E[Yk]= Tyka(y)dy Eq. 2.37

~Qo0

If k™ order moment of a random variable exists ¢y(®) can be expanded in a power

series in neighborhood of ® = 0 as follows:
® (o k
oy(@)=1+ Zg—kl)_mk Eq.2.38
k=1 X
Logarithm of @y(®) can be expanded in a Taylor Series about ® = 0, as follows :

o
logo(@)= ¥ —K—"‘ (jo)" Eq.2.39
o

Here coefficients , are called cumulants or semi-variants of Y, and may be

expressed as:
dn
K, = loglolo - i n=12,.. Eq. 2.40

Assuming that Y is zero mean (i.e. u = 0), and variance of Y is normalized to

unity (i.e. 6®=1), thenk; =0, x, = 1, Eq. 2.39 becomes:
1,. < Kp /- n
1ogo(®)=~(jof + ¥ ~2(jo) Eq. 2.41
2 a3 !
Here we can express @y(w) by taking exponential of it. If we calculate exponential

of Eq. 2.41 using power series expansion of the summation term and recollecting

terms with the like powers of (jo), we get new coefficient of expansion as:
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Ks

=0 -2
“ =120
Cy =0 Cq =7%6‘(K6 +10K32)

1 Eq. 2.42
K3

= Cr =——K +35
C3 6 7 5040( 7 K4K3)

=— = +56K:x3 +35
“4 0 ©8 = 20320 V8 TOVKSK3 T 0K )
Taking inverse Fourier Transform of @y(®) we get:

e o]
fy(y)=a(y)| 1+ Y cxHk(y) Eq. 2.43
k=3

which is the Gram-Charlier expansion of p.d.f. Here a(y) is p.d.f of a normalized

Gaussian random variable i.e.:

afy)=—=—e 2 Eq. 2.44

Hi(y) are Hermite polynomials defined with the recursive relation:

Ho(y)=1 Hi(y)=y
Hy1(y)= yH(y)-kHy 1 (v) Eq. 2.45

The natural ordering of term is not best for our situation, but rather ordering
k =(0),(3),(4,6),(5.7.9), ... Eq. 2.46

is better. This means if we retain terms through k=4, we should also include the term
k=6 in the expansion [Haykin, S. (1998)].

3.7.2. Edgeworth Expansion

The Edgeworth expansion of p.d.f. fy(y) about its best Gaussian approximate
oy) up to order four with zero-mean and unit variance is given by [Comon, P.
(1994)]:



10k 52
6l

fy (v)= aly)| 1+ S Ha () + S Har)+ =2 Ho(y)+ 2 Hs(y)-

35 28042
$ A g (y)+ =3 H9(Y)+‘;—,6H6(Y)+“‘

7! 9! Eq. 2.47
56 35,2 2100k42
+ 226355 b (y)+ 224 Hg (y)+ 24 Hy g (y) + -
8! 8! 10!
15400k _
+ ——-—12‘K3 HIZ (Y)+ O(m 2):]

Here term decrease uniformly, which is not the case in Gram—Charlier expansion,

and that is the benefit of using this series.

3.8. Principle Component Analysis

Most of the ICA algorithms require that input data is zero-mean and unit variance,
since they use the expansions like Eq. 2.43 or Eq. 2.47. In other words data should be
pre-whitened and its mean should be removed. Pre-whitening removes the effects of

second-order statistics to the non-linearities used in the algorithms.

Let xx (k=1, 2, 3, ...), be m-by-1 input vectors that is to be whitened. We are

searching for a transformation V with,
vk = VX Eq.2.48

with the requirement that:

E[vkva] =1, Eq. 2.49

where I, is m-by-m unit matrix. There are so many ways to make such a
decorrelation. Standard Principle Component Analysis (PCA) which is a widely used
technique is one of them. We can simultaneously compress information optimally in
mean square sense and filter possible Gaussian noise using PCA. We can define it as

follows: Let

R=E[xx] Eq. 2.50



be the covariance matrix of m-dimensional zero mean vectors x. The i™ principle

component of x is:
a; = xTui Eq. 2.51

where w; is the normalized eigenvector of R corresponding to the i™ largest
eigenvalue A;. The subspace spanned by the principal eigenvectors u;, u, ..., Up
(p<m) is called the PCA subspace of dimensionality p [Oja, E., Karhunen J., Wang,
L., & Vigario, R. (1995)].

PCA whitening matrix can directly calculated by the formula:

1
v=b 2UT Eq. 2.52

here m-by-m matrix D is a diagonal matrix in form:

Ay 0 - 0

0 A‘ 0
p=| . % .

: : . 0

0 0 - Apy

where 2, is denoting i* largest eigenvalue of R in Eq. 2.50. And U is formed by:
U=[ug,uy,...,up]

where w;’s are corresponding eigenvectors of A;’s. We can compress data using only

the p dimensional subspace with inverse transformation, i.e.:
x="Ua Eq. 2.53

PCA can also be used to estimate number of sources (or independent
components). This is because p largest eigenvalues of R are some linear
combinations of source signal powefs added to noise power o assuming that x, are
formed from a mixture of unknown sources. The remaining m-p eigenvalues

correspond to noise only, and are equal to zero theoretically. We can deduce number
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of sources from here and also filter the noise [Karhunen, J., Oja, E., Wang, L.,
Vigario, R., Joutsensalo, J. (1997)].

Instead of directly calculating PCA whitening matrix from Eq. 2.52, we can use a
neural network, which learns whitening matrix from the input data. Such a network

model is illustrated in Figure 2.1 .

Figure 2.1 Single layer neural network model for PCA

Network contains at least m+1 iﬁputs to resolve m PCA’s. If we denote weight
matrix with V = (v;;), where 1 is the input number and j is the neuron number, then a
simple learning rule to learn the whitening matrix V, is stated as follows [Karhunen,

I, et. al. (1997)]:

Vieer = Vi Nk kkva - I]V Eq. 2.54

where vi’s are defined in Eq. 2.49, and 7y is the learning rate. V is initialized with
small random values. This algorithm sometimes suffer from stability problems, but
this can be justified by observing if output vector vy’s satisfy the whiteness condition

E[vv']=I, after a number of iterations.

Another algorithm which is called subspace rule is given by [Oja, E. (1995)]:
By = By +ni[xi — Bviclv| Eq.2.55

where,
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Vg = BkTXk Eq. 2.56

For this algorithm individual weight vectors, which are the columns of B, become
orthonormal after a successful number steps and tend to a basis of the m-dimensional
dominant eigenvector subspace of the input correlation matrix, but usually the

individual weight vectors do not tend to the eigenvectors.

In general, separation algorithms using pre-whited data have better stability
properties and converge faster. But whitening can make separation difficult if mixing
of sources ill conditioned or some of the sources are weak compared to others
[Karhunen, J., et. al. (1997)].

4, Classification of Random Variables (Sources)

A random variable X is called sub-Gaussian if it is uniformly distributed or its

p.d.f fx(x) is expressible in form e"g(x), where g(x) is a differentiable (except

(26

possible at origin) even function, and g(x) an strictly increasing for 0 < x <co.

Typically this type of p.d.f.’s. are flatter than Gaussian (e.g. bimodal) (Figure 2.2a).

Random variable X said to be super-Gaussian if -g—@ is strictly decreasing for
X

0 < x <o, and all other properties mentioned hold. This type of p.d.f.’s has longer
tails and a sharper peak than standard Gaussian function (Figure 2.2¢c).

Kurtosis of a random variable X can be defined as:

Eq. 2.57

x4(x)= E[El— 3
(elx2]f

Sign of kurtosis can be used to determine the type of the random variable.
Random variable is said to be sub-Gaussian or super-Gaussian if the sign of the
kurtosis k4(X) is negative or positive respectively. Kurtosis can be viewed as a

measure of peakedness of p.d.f. .
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Classification of random variables in such a manner is important, because the

separation capability of most ICA/BSS algorithms depend on this property.

a - sub-Gaussian b - Gaussian ¢ - super-Gaussian
0.5 : 0.5 ; 05
0.4 0.4 A 1 04
0.3 0.3 0.3
0.2} 0.2 0.2
0.1} 1 0.1r 0.1t
-5 0 5 -5 5 -5 B 5

Figure 2.2 Probability distribution functions.
a) k4(x) <0, b) x4(x) =0, ¢) k4(x) > 0

Another useful property to measure the shape of the p.d.f. is skewness and defined

as:

s= M { Eq. 2.58
Ox

which is a measure of symmetry of p.d.f. with standard deviation ¢ about the mean
px-
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CHAPTER THREE

INDEPENDENT COMPONENT ANALYSIS &
BLIND SOURCE SEPARATION

1. Independent Components

Let S(n) be the random source vector defined by:
s=[8; 85 - Sy’

where the m components are supplied by a set of independent sources. S is applied to
a linear system whose input - output characterization is defined by a non-singular m-

by-m matrix A called mixing matrix.. The result is
X =AS Eq. 3.1
where,
T
X=[X; X3 = Xn]

S and A are both unknown. Given only X, the problem is to find a demixing
matrix W such that the original source vector S can be recovered from output vector
Y defined by

Y =WX Eq.3.2

where,

Y=[Y1 Y, - Ym]T



All S;, X; and Y; i=1,..., m assumed to be zero mean signals. Blind source
separation problem (BSS) is stated as follows [Haykin, S. (1998)].

Given N independent realizations of observation vector Y, find an estimate of the

inverse of the mixing matrix A.

Source separation is performed over sensors -i.e. spatial diversity has primary
importance- provided that realizations of the vector X are formed from different
mixture_s of the sources. Unfortunately, this imposes that we need at least m sensors
to separate m sources. As stated earlier, PCA can be used to determine number of
sources in the environment, but of course we need to limit maximum number of

SOuUrces in some sense.

Also we can add additive noise to the model, but since we have no information
about the original sources, demixing stage will accept noise as a source, which, in

fact, is statistically independent from any other sources in the input stage.

I

: .

| Mixer — Demixer —————:>
| 4

I A ] - w

|

| \

i- Unknown environment Noise } \

Figure 3.1 Block Diagram for Blind Source Separation

The solution of BSS problem may be expressed in the form
Y = WX = WAS — DPS - Eq.3.3

D is a non-singular diagonal matrix and P is a permutation matrix and — shows a
transformation. By this we mean order and amplitudes of components of Y may be

different since we don’t know the order and amplitudes of the components of S.

Problem in the hand is called blind, since we have no prior information about the

original signals, but the only information available is the realizations of input X
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denoted by x. The main principle that gives a way to solve this problem is called
Independent Component Analysis (ICA)[Comon, P. (1994)]. We can also view ICA
as an extension of PCA. PCA can only impose principle components up to second
order statistics while constraining the direction of the basis vectors of expansion
orthogonal. But in ICA expansion the basis vectors are not orthogonal and higher
order statistics are considered. In practice one can only search for transformation
directions that makes the output as statistically independent as possible and that is

enough for most of the situations.

BSS problem may usually be compounded by unknown propagation delays,
extensive convolution imposed on the sources by the environment (think the case
where cocktail party is given at a room with echo and walls reflect sounds altering
them). Current algorithms are not capable of overcoming all this situations. Blind
deconvolution algorithms also exists which is out of our interest [Bell, AJ. &
Sejnowski, T.J. (1995)]. Mixing matrix can also change with time. Most of the

algorithms can deal with slowly varying mixing matrixes.

1.1. Criterion for Statistical Independence

A practical measure for statistical independence of components of Y is mutual
information I(Y;;Y;) between the random variables Y; and Y;. In ideal case I(Y;,Y) is
zero if Y; and Y; are statistically independent. This suggests minimizing the mutual
information between every pair of the random variable of Y. This is equivalent to
minimize the Kullback-Leibler divergence between the following two distributions

fy(y,W) parameterized by W and corresponding factorial distribution defined by

~ m ~
fy (y, W) = [ fy; (vi. W) Eq. 3.4
i=1
where fyi(y;, W) is the marginal p.d.f. of Y;. Then a variant of InfoMax principle can
be expressed as follows [Comon, P. (1994)]: .

Given an m-by-1 vector X representing a linear combination of m independent
source signals, the transformation of the observation vector Y by a neural system

into a new vector Y should be carried out in such a way that Kullback-Leibler
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divergence between the parameterized p.d.f fy(v,W) and corresponding factorial

distribution 7Y (v, W) is minimized with respect to unknown parameter matrix W.

Adapting Kullback-Leibler divergence formula Eq. 2.29 to our present situation

gives:

m ~
Dy (W)= -h(Y)+ ;n(yi) | Eq. 3.5
i= :
Here we should determine the h(Y) and ﬁ(Yi) in terms of W. We know that
Y = WX then,

h(Y)= h(WX) = h(X)+ logidet(W) Eq. 3.6

where det(W) is the determinant of W.

However determination of h(Y;) is usually difficult than h(Y) because it requires
integrating out the effects of all components of the random vector Y except i"
component. We may over come this by deriving an approximate formula for h(Y;) in
terms of higher order moments. This is accomplished by truncating one of the

expansions Eq. 2.43 or Eq. 2.47.

Gram-Charlier expansion of a parameterized marginal p.d.f FYi (y;, W) is

described by (see Eq. 2.43)

[+ o]
fy, (i W) = a(Y; )[1 + Yo Hi(yi )} Eq.3.7
k=3
taking up to k=(4,6) we get,

2

, : L +10k,
fy Ea(yi)(l+%H3(yi)+———K;f .H4(yi)+——————(K"° is )

= Hs(yi)J Eq.3.8

where ;i k™ order cumulant of Y;. Let m;) denote k™ order moment of Y; defined "

by:
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m;, = E[Yik]= E[(i wikXi)k]

k=1
All Y; is zero-mean so o;>=m; and,
K3 =M,;

2
Kj4 =Mj4=3m;,

2 3

using,

2

10g(1+y)sy—y7

and ignoring 3 order and higher terms, we can write:

1°ngi (y;) =loga(y;) + -

( X 2 (ki g +10K; 32)
log| 1 2 :

i,3 Ki,2
+T!H3(Yi)+T!H4(Yi)+ 5 Hg(yi)

Evaluating Eq. 2.7 we get :

o
h(Y;) = - ffy,(vi)logfy, (yi)dy;  i=L2,...,m

—a0

2 2 2.2
log(2ne) - i3 _ Kis _ (xj,6 +10x; 37)
12 48 1440

3 Ki,32 (kig + 10Ki,32) Ki,42(1<i,6 + 10‘<i,32)
T2 Ki3 Kigt +

8 » ) 24 24
L Kis (k; 6 +10x; 3%)° N Kig® . (ki 6 +10%; 3%)°
64 16 432

~

N | =

Now using Eq. 3.6 and Eq. 3.14 in Eq. 3.5
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Eq. 3.10a

Eq. 3.10b

Eq. 3.10c

Eq. 3.11

Eq.3.12

Eq. 3.13

Eq.3.14



Df||’f“(W) =-h(X)- log|det(W)| + % log(2ne)---

+5Ki3 Kig

2 Ki,32 Ki,42 (Kie +10Ki,32)2 3 5
-y + +
— 12 48 1440 8

Eq.3.15
Cxia (kie +10ki37)  Kig®(Ki6 +10K15%)
24 24
_ Kia(kie+ 10k;5°) _ Kig" (ki + 10x; 5°)°
64 16 432

Here all cumulants are functions of weight matrix W.

We can directly minimize Eq. 3.15 [Haykin, S. (1998)] or Df”; derived from
Edgeworth expansion of Eq. 3.4 [Comon, P. (1994)].

We can also maximize negentropy to minimize mutual information between the
elements of Y. But directly calculating Eq. 2.34 is not easy, too, so we need

approximations of negentropy. Many approximations are proposed to archive the

goal. Two of them is:

~ Lo(v)P + L
J(Y)~12s(Y) o k4 (Y) Eq.3.16

m m 4
1= 3Jxai)|= Lev* |3
1=1 i=1
or simply:
m
J1,(Y)= ZE[Y{‘] Eq.3.17
i=1

where k4(y) is forth order cumulant of variable Y, defined in Eq. 2.57, for sources
that have negative kurtosis, or maximize it for positive kurtosis is enough [Karhunen,
J., et. al, (1997)]. However, such cumulant based methods provide poor
approximations of negentropy, since finite-sample estimators of higher cumulants

used in practice are highly sensitive to outliers. Even if the cumulants are perfectly
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estimated, they measure the tails of distribution but largely unaffected by the
structure of the p.d.f near its center. A better approximation is given by [Hyvarinen,
A. (1997)] as:

J(Y)z_;‘”lki[E[GxY)]—E[Gi(v)]P Eq. 3.8

where k; are some positive constants and v is a Gaussian variable of zero mean and
unit variance. Variable Y must also be unit variance and zero mean. The functions G;

are some orthogonal functions. If only single expectation is used:
1(Y) < [E[G(Y)] - E[G(v)]]? Eq.3.19

is obtained. Approximations based on Eq. 3.19 are generally superior to

approximations like Eq. 3.16 or Eq. 3.17.

In all of the above situations, we need an adaptive procedure to compute higher
order cumulants assuming Y;, which has zero mean and unit variance. Unit variance

assumption can be dealt with two approaches:

1. Constrained Approach: Here unit-variance assumption is imposed on the
computation of Kj 3, Kj4, and K¢ for all i. But there is no guarantee that o; of Y;

is constant.

2. Unconstrained Approach: Here o is treated as an unknown time-varying
parameter. Estimates of K; 4 and K;¢ account for the variation of ;2. So a proper

relationship between estimates of all three higher-order cumulants.

2. Algorithms for Independent Component Analysis

Most of the ICA/BSS algorithms use the same neural network architecture as
PCA, which is shown in Figure 2.1 . But, of course learning algorithms are either
extensions of PCA or completely different. Some of the algorithms proposed earlier

are as follows:
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2.1. Bell’s Method

Bell’s algorithm [Bell, A.J. & Sejnowski, T.J. (1995)] depends on maximization
of differential entropy h(Y). Individual neurons in the model Figure 2.1 has an

activation function @(y) which is defined as:

m
o(y)=——.,  y=Ywixi+w, Eq.3.20
1+e i=1
That is,
y = o(Wx +w) Eq. 3.21

Here w, is the bias and wi’s (i=1, 2, ... ,m) are weights of the neuron associated
with input x;. A plot of activation is given in Figure 3.2. Since ¢(u) is monotonically

increasing, we can write output p.d.f. in terms of input p.d.f. as:

fY(<P(WX+Wo))=f)|(J(!x) - £q.3.22

where |J] is the Jacobian of the transformation. A careful examination of Eq. 2.7 and
Eq. 3.22 shows that maximization of log |J] is enough to maximize h(Y). Using well-
known gradient descent method by Cauchy [Kreyszig, E. (1993)] we find the weight

change for weight matrix W, it is given as:
1
AW = T -2 T
w n([W [+ - 200k ) Eq.3.23
Awg =1(1-20(y))

where 1 is learning rate parameter which is small enough to allow convergence. So

resulting learning rule for separation matrix W in its time varying form as follows:

Wicip = Wy + nk([WT]—l +(1- 2<p(y))ij

Wo,,, = Wo,,, +Nk(1-20(y))

Eq. 3.24
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Figure 3.2 Activation function for Bell’s BSS algorithm

2.2. Amari’s Method

Bell’s algorithm suffers from being slow, because it needs computation of inverse
of transpose of weight matrix in every step of iteration, and it is unstable if W is
degenerate (i.e. det W=0). To overcome this problem we can use ratural gradient

instead of gradient, which is defined by:
V'F(W)=(VF(W))WTw Eq.3.25

and denoted by V', where V is the gradient operator and F is some function of W.
Omitting the biases and applying natural gradient to Eq. 3.24 we get Amari’s
algorithm [Amari, S., et. al (1996)]:

Wi = Wi + 1 (1 — oy )y’ )Wk Eq. 3.26

We can also use following functions to approximate mutual information with this

algorithm:
01(y)=y’ Eq.3.27

02 (y)= 2 tanh(y) Eq.3.28
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9 7 5 3
o3(y)=3y" +2y7 - LyT By 4+ By Eq.3.29

2.3. Haykin’s Method

This method maximizes Eq. 3.15. To do this, we have to derive the gradient of Eq.
3.15.

Let Ay denote ik™ cofactor of matrix W using Laplace’s expansion of det(W) by

i®rowie.:

m
det(W)= Y wypAp i=12,....m Eq. 3.30
k=1

where wy is the ik™-element of W. Differentiating the logarithm of det(W) with

respect to wig gives:

. log(det(W)) = 3 t(1W) r 0 det(W)
. e w.
ik b g Eq. 3.31
=—tk __(w Ty
det(W)
Partial derivatives of other terms are as follows in Eq. 3.15 are
oK 3 2
—= =3E Yi Xk . Eq. 3.32a
ik '
OKigq _ 3
—5% — 4E[Y’ X |- 12m; L E[Y; X ] Eq.3.32b
OWi ?
0 2y _ 5 :
——(Kj 6 +10K; 3°) = 6E|Y;"X |- 30m; 4E[Y;X]--
OWik Eq.3.32c
—-60mi’2E[Yi3Xk]+ 180m; 5 2E[Y; X, ]
Changing expectations to instantaneous values and rearranging yields:
OKi3 2 3y.x, Eq.3.33a
ow

ik



aK'
b4 gy 3%, Eq. 3.33b
OWik
0 (ki +10Kk;3°) =96y x Eq. 3.33¢
" _
Substituting these results in formulation of the derivative of Dﬂu’ (W) yields:
0 _
5D (W) ==(W™ D + 0y )x Eq.3.34
ik

Here ¢(y;) is the non-monotonic function of the learning algorithm. It’s given by

o) =2y + 2yl + Dy e 2y L2y gy 2w

2 7 Eq.335
27 T3V TS 1571 "3 Vi Ty Y M

which is plotted in Figure 3.3. The slope of activation function is positive in the
interval (-0.734,0.734) and this is a requirement for the stability of the algorithm.

10

oy) O

-1 -075 -05 -025 0 025 05 075 1
y
Figure 3.3 Activation function @(y;) for Haykin’s unconstrained variance

approach
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Minimization of Eq. 3.15 may be implemented using gradient descent method.

According to this adjustment applied to individual weight wy is defined by:

awie = -n=2-Dye =n((WTh - 001 )u) Eq.336

where m is learning rate parameter. For the whole adjustment matrix we can write:

AW = (W T - oy ™) Eq.3.37
where,
0(¥)=lo(y1) oly2) - olym)f Eq.3.38

Substituting y'=x"W' in Eq. 3.37 yields:
AW =1 (I —o(y)y?! )W“T Eq. 3.39

Here I is identity matrix. So we can write the update formula for weight matrix as:

Wii1 = Wi + 1 (I ~ oy v )Wk_T Eq. 3.40

This rule need the inverse of transpose of the matrix which is time consuming to

calculate. Substituting Eq. 3.25 in Eq. 3.40, we get:

Wiy = W+ 1 (I ~ oy )yi " )Wk Eq. 3.41

Comparing Eq. 3.41 with Eq. 3.26 shows that kernels of algorithms are same,
although they are using different criteria to maximize. It should also be noted that,
Haykin’s algorithm does not impose any variance constraints on input data so it does

not need whitening.

In batch form, where each column of matrix Y holds vectors y(n), we find update

rule for Haykin’s unconstrained variance ICA algorithm as:

1
Wi =W +ng (I - ﬁ‘P(Yk)YkT )Wk Eq. 3.42
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where N is the number of available data point used in batch computations [Haykin,
S. (1998)].

2.4. Fast Fixed Point ICA algorithm (FFICA)

Another algorithm that has practical importance is fixed point ICA algorithm,
which relies on maximization of negentropy defined in Eq. 2.31 [Hyvarinen, A.
(1997)]. This algorithm maximizes Eq. 3.19 in form:

.% Jo(wi)= g(Ek} (WiTx)]- E [G(V)])2 Eq. 3.43
under constraint;

E[(wiTwa ij)] =8 Eq. 3.44

Here output is defined as y = w'x. Choice of contrast function G depends mostly

on computational simplicity and ordering of distributions imposed:

G in Eq. 3.43 can be chosen as:

Gi(x)= gll—logcosh(alx) d_(iixl(i) = tanh(x)
2 2
_asx _agx
G,(x)= —%e 2 dezx(X) =xe 2 Eq. 3.45
Gs(x)= %x“ de3x(X) =x*

where a; 2 1, a; ~ 1 are constants.

It is shown that G; is a good general purpose contrast function, but if ICA’s are
highly super-Gaussian or robustness is very important, G, may serve better. G; can

only be used to separate sub-Gaussian sources with no outliers.
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For one unit which only extracts one ICA, we need to find maximums of
E[G(wa)], under the constraint E[(wa)]=||w||2=l. This conditions satisfied at points

where
F(w)= E[xg(wa)] pw=0 Eq. 3.46

where B is a constant, and g(x)=

oG g(x) If wy is the value of w at its optimum,
X

B=E[wo xg(Wo'x)]. We can apply Newton’s method to find the optimum [Kreyszig,
E. (1993)]. The Jacobian matrix of F(w) is given by:

JF(w)=E [xng'(wa)] ~-BI Eq. 3.47

If data is whitened (i.e. E[xx"] = I, we can simplify first term as E[g (w'x)]L. We
can also approximate  using actual value w instead of wy. Thus we obtain simplified

Newton iteration as;

E .xkg (wkTXk)—_ Bkwk]

Wil = Wi = .
E[g'(Wk xk)_ —Bx Eq. 3.48
“'k+l
W =
kel Wk+l"

Normalization with respect to norm is added to improve stability. Multiplying
both sides of first equation in Eq. 3.48 by B-E[g (w'x)] gives:

Wi+ =E [ng (Wkak)] -E [g' (Wkak)]Wk
vA"k+l
lwk+1 "

Eq.3.49

Wil =

which is a fixed point learning rule for whitened data. To improve convergence of

Newton iteration we can add a learning rate parameter 1 to Eq. 3.48 as follows:

PR S TFHE LU

DOKUMANIASYON MZAKEZ]
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E[xkg (Wkak)— Bkwk]
E[g' Wkak)] —Bx Eq. 3.50

Wil = W — Mg

Wk+1

Wiy = s
1 Pl

For non-whitened data this learning rules can be modified as follows

Wi =RE [ng (WkTXk)] -E [g'(WkTXk)]Wk

Wiat = Wici1 Eq. 3.51
\/Wk+lTR6Vk+l
- RE|x,glwi Txi -Biw
Fia1 = Wi =T [ kg( }; k) P k]
E[g'(wk Xk)] ~ By Eq. 3.52
Wi+ = L=
\/"A"k+lTR"AVk+1

where R is covariance matrix defined in Eq. 2.50, and in practice expectations in

these algorithms must be replaced with their estimates.

To estimate whole ICA transformation, we need to prevent different neurons
converging to the same maxima. This can be archived by decorrelating the outputs
Wi'X, W, 'X, ...,Wn X after each iteration. One of the way to do decorrelation is using
deflation which means we estimate independent components one by one. When we
estimate p™ independent component, we run the one unit fixed point algorithm for
Wy, and after each iteration we subtract the projections Wy W;w;, j=1, ....p from

Wwp+1. After this we renormalize wp.i. To sum up:

1. Apply one of the one — unit learning rules given in Eq. 3.49, Eq. 3.50, Eq. 3.51
or Eq. 3.52 for wy1,

2. Decorrelate wp+; with other previously calculated p vectors i.e. let,

Y
T
Wpil = Wpi1— D, Wpii RW;W; Eq. 3.53a
j=t
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3. Renormalize wp+ i.e. let

Wp+l1
Wpil = ;’ Eq. 3.53b
\/ Wpil RWpy

4. Repeat steps 1-4 until all ICA vectors are extracted.

At steps 2 and 3 we omit covariance matrix R if we use whitened input versions
of algorithms.

This deflation scheme tends to find ICA’s whose type is imposed by the non-
linearity first (e.g. using G, given in Eq. 3.45, algorithm first extracts super-Gaussian
ICA’s). But in some applications this privileged scheme may not be suitable. In these
cases we can use a symmetrical decorrelation scheme and let all the ICA’s converge

at the same time. Direct method to accomplish this is to calculate:

LetW = W(WTRW)—% Eq.3.54

where inverse square root in Eq. 3.54 may be obtained from eigenvalue

decomposition of W'RW, i.e. W'RW =EDE' as

(WTRW)% _ED 2ET Eq. 3.55

A simpler alternative to Eq. 3.55 is to use following algorithm:

1. Let,

W= Eq. 3.56a
[wrw]

2. Let,

w=2w-lww'rw Eq. 3.56b

3. Repeat step 2 until convergence.
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The norm in step 1 can be any ordinary matrix norm (e.g. largest absolute row or

column sum).

In contrast to gradient descent methods, where convergence is linear, FFICA
algorithm has cubsic or at least quadratic convergence. This means the convergence is
always faster then gradient descent method based algorithms mentioned above. It
also has the advantage that selecting learning rate parameter n is easy and it can also

be omitted.

The algorithm finds independent components directly, but apparent form Eq. 3.43,
it may fail to find more then one Gaussian ICA’s, from which most of other ICA

algorithms also suffer. In fact, this is a rare situation for real world signals.

2.5. Other Methods

In [Karhunen, J., et. al. (1997)] there are two other method suggested by Erkki
Oja et. al. One of them is:

Wice1 = Wi +mge (xi — wk‘P(Yk))(P(YkT) Eq. 3.57
where,
y=W'x Eq. 3.58

which is represented as an extension of PCA. The other one is so-called bigradient

algorithm defined as:
Wi = Wi +1ex k(P(y K )+ Yka(I - Wkka) Eq.3.59
where v is another learning parameter.

Both of these algorithms try to maximize Eq. 3.17 in some sense. Non-linearity of
neurons (i.e. @(y)) are chosen so that, they contain a dominant term in their Taylor
series expansion, which is directly associated with kurtosis, and when maximized,

maximizes Eq. 3.17. Some of such functions are Eq. 3.20, Eq. 3.27, or Eq. 3.28.



Another variant of Eq. 3.26, which extends learning rule using two non-linearities,

is:
Wies1 = W + 1 (I — 01 (Y#k )<P2 (YkT))wk Eq. 3.60

and given in [Cichocki, A., Kasprzak, W., & Amari, S. (1996))].

A more general algorithm called £ASI (Equivariant Adaptive Source Separation
via Independence) algorithm, which is given in [Cardoso, J.F. & Laheld, B. (1994)],

is as follows:

T _ T _ T
yy -1 L 9y Tyw(Yk) W, Eq. 3.61
l+ngyk Yk 1+nklyk <9(ka

Wi = W =g

where y=Wx. This algorithm minimizes differential entropy h(Y), directly and

whitening is not needed.
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CHAPTER FOUR
SIMULATIONS AND RESULTS

This section is consisted of results obtained from the simulations of selected
algorithms mentioned in chapter three, which may have practical importance.
Amari’s method (Eq. 3.42), Haykin’s method (Eq. 3.42 with non-linearity Eq. 3.395),
Cichocki’s method (Eq. 3.60) and FFICA (Eq. 3.49) algorithms are tested and results
are summarized. Two different artificially generated data sets are used to compare
these algorithms. FFICA algorithm is tested with real sounds and images, too. This
algorithm also tested with extreme cases such as frequency switching, amplitude

switching or loss of one of the sources in the mixture.

1. Data Sets Used In Simulations.

In this study, two different types of artificially generated data sets are used. First
data set is formed by sampling simple well-known functions with a sampling

frequency 22050 Khz. and duration of 0.1 sec.:

S1(t) = 0.1sin(273000t)
S, (t) = 0.3square(271250t) Eq. 4.1
S5(t) = 0.25sawtooth(2n555t)

Resulting data set is shown in Figure 4.1.

The signals forming the second data set have wider bandwidth then the signals of
the first data set. One of the sources was also chosen to be white noise to illustrate
the behavior of the algorithms in the presence of noise. For the second data set
sampling frequency is 44100 Hz and the duration of the signals are 0.1 sec. The data
set 2 is shown in Figure 4.2.
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Figure 4.1 Original sources for data set 1.
Only first 256 samples are shown
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Figure 4.2 Source signals for data set 2
Only first 256 samples are shown
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Figure 4.3 Waveforms of data set 3.

The data set 2 is formed using the following formulation:

S(t) = 0.15in(273000t )cos(22300t)
S, (t) = 0.05sign(sin(271000t + 9 cos(27250t))) Eq. 4.2
S5(t)=random data uniformly distributed in[-0.1,0.1]

The sound waves used in test are sampled at 11025 Hz. The first waveform
belongs to a female speaker who sings, the second waveform is sampled from a
classical music performance and the third waveform belongs to a male speaker and

contains a plane speech. (Figure 4.3 ). For these signals the total duration is 3

seconds.

Figure 4.4 shows the histograms of sources used in all data sets. Y-axes of these
plots show the number of samples in an amplitude bin and are not plotted in the same

scale. But they can give a sense how the p.d.f. of the sources may look like.

Sign of the kurtosis of these sources are summarized in Table 4.1.
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Data Set 1

v

05-025 0 02505 -05-026 0 02505 -05-025 O 02505

Data Set 2

05025 0 02505 -05-025 0 02505 -05-0268 0 02505

A\

05025 0 02505 -05-025 0 02505 -05-025 O 025 05
§1 82 83

Data Set 3

Figure 4.4 Amplitude histograms of sources
Y-Axes of plots show the number of samples belonging to same bin

Table 4.1 Sign of the kurtosis of the sources used in test data set.

Si(t) | Sa(t) | Ss(D)
Data Set 1 - - -
Data Set 2 + - -
Data Set 3 + + +

All these data are then ihdividually mixed with a random mixing matrix using Eq.
3.1. Mixing results for data set 1, 2 and sound waveforms (data set 3) are shown in

Figure 4.5, 4.6 and 4.7. The mixing matrix is:

-.7270 -.6017 -.4312
A=|-9765 -.4026 -.0616
7878 3229 —-.8704

whose elements are drawn from a pseudo-random number generator.



2. Performance Criteria

Since problem at the hand is totally blind, it is not easy to test and compare
different algorithms. But at the test stage, we can artificially generate the mixing
matrix A and source vectors S in model Eq. 3.1, which is shown in Figure 3.1 .
Simply we can think that after the convergence, demixing matrix W will tend to A™,
so WA must tend to identity, and so closer the result of WA to identity, better the
performance of the algorithm. However, in discussion about the formulation of
independent analysis, it was mentioned that individual places of ICAs at output Y
cannot be determined in advance (see Eq. 3.3). In fact, we initialize algorithms with a
random valued W, so places of basis vectors of ICA space -which are the columns or
rows of W depending on the formulation of the algorithms- change time to time. A

better performance measure can be defined as follows:

Let,
. | Eq.4.3
then,
p=§ § lpijl R IPij‘ 1 Eq. 4.4
T4 ma);lpikl j=1 i=1mfx|pkil

Here, performance index p is a measure of diagonality of P. If matrix P is perfectly
diagonal, p=0, and for a matrix whose elements are concentrated on the diagonal, p
will be low. Otherwise it will be high. So p is a good performance measure for
ICA/BSS algorithms and may be used to compare algorithms if same mixing and

source matrices are used for different type of algorithms.

3. Tests and Results

Although most of the separation algorithms were tried, the visual results for
Haykin’s unconstrained variance approach and FFICA will be illustrated here, since

they’re most appealing ones for real time applications. Other algorithms seem to be
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so dependent to p.d.f. of input data -which cannot be known beforehand- for
choosing of non-linearities, and they can only separate certain types of sources (e.g.

sub-Gaussian ones).

It’s important to note that instead of using online versions, in which the system
sees only one input at a time and correction of weights are performed with this, batch
versions of algorithms are used. Here a number of inputs (say 256) are presented at
once and weight changes are made according to average change of these inputs.

Inputs are drawn randomly from mixed matrix to improve convergence.

The first test was a simple mixing test. Here the weight matrix was initialized with
the identity matrix (except deflation approach at FFICA, which initialized with a
random orthogonal weight matrix), and the networks are trained with data until the

convergence is obtained. And all the data in the hand is presented to network at once.

The convergence test used was [Wi.;; — Wi | < & or [Wy; + Wy | <&, where ¢ is the

convergence radius and chosen to be 10™ for all tests. The learning rate adjusted

using the annealing technique deﬁnéd with the equation my = 1‘|0e_%000 when

necessary, where np is initial learning rate and k is the time index.

The results for Haykin style learning and FFICA for data set 2 are shown in
Figure 4.8 and Figure 4.9 , respectively. The results using FFICA for the sound data
are shown in Figure 4.10 . For the data set 2, the network using Haykin’s rule
converged in 199 iterations and the final performance index p was 1.7135, and
FFICA converged in 4 steps and the final performance index p was 0.0830. For the
sound data, FFICA converged in 3 steps with non-linearity o(y)=y using
symmetrical approach and final p was 0.503.
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Figure 4.5 Input set 1 obtained after mixing data set 1
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Figure 4.6 Input set 2 obtained after mixing data set 2
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Figure 4.8 Result of Haykin style learning for data set 2
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Figure 4.9 Result of FFICA for data set 2
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Figure 4.10 Result of FFICA for data set 3
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Table 4.2 Simulation Results

Rule Approach oly) 0(y) p # of iterations Dataset #
| ————————————— |
Eq. 3.42 - ¥ - 0.0342 ~ 1200 1
_ | Ea.3.42 - tanh (y) - - 5.5366 - 1
§ Eq. 3.42 - Eq. 3.29 - 0.0316 ~ 1200 1
< | Eq.342 - v - 0.1845 ~ 2500 2
Eq.3.42 - tanh (y) - 6.8162 - 2
Eq.3.42 - Eg. 3.29 - 2.1005 =~ 4000 2
;5; Eq. 3.42 - Eg.3.35 - 0.0008 54 1
2| Ba3a - Eq. 3.35 - 1.71355 199 2
Eq. 3.49 deflation v - 0.0119 ~12 1
Eq. 3.49 deflation tanh(y) - 0.0110 ~ 10 1
2
Yy
Eq. 3.49 deflation ye 2 - 0.0150 ~ 12 1
Eq.3.49  symmetric v - 0.0166 4 1
< Eq. 3.49 symmetric tanh(v) - 0.0181 3 1
U 2
= y
21 Eq.349  symmetric Y - 0.0180 3 1
3 ye
ey
S| Eq.349  deflation v - 0.0807 ~13 2
= | Eq.3.49 deflation tanh(y) - 0.0816 =1 2
& 2
= deflati - 0.1966 12 2
Eq. 3.49 eflation ye 2 - . =
Eq.3.49  symmetric v - 0.0830 4 2
Eq. 3.49 symmetric tanh(y) - 0.0842 4 2
2
Eq. 3.49 symmetric ye 2 - 0.0852 4 2
Eq. 3.60 - v sien(y) __ 0.4020 ~ 900 1
Eq. 3.60 - v tanh(y) _ 0.0244 ~ 1000 1
Eg. 3.60 - Y v 3.5410 - 1
y2
3 _— ~
Eq. 3.60 - y ye 2 0.0298 ~ 900 1
§ Eq. 3.60 - sign(y) ¥ 6.1005 - 1
S |_Eq.3.60 - tanh(y) Y’ 6.2627 - 1
O y2
Eq. 3.60 - tanh(y) ye‘7 4.1158 - 1
Egq. 3.60 - v tanh(y)  0.0472 ~ 3500 2
2
y
Eq. 3.60 - y ye“{ 0.1380 ~ 4000 2
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Clearly, the selection of non-linearity effected the performance dramatically for
learning rule Eq. 3.42 and Eq. 3.60. Since the non-linearity determines the terms
which is maximized in the expansion of p.d.f, this is an expectable result. And these
algorithms can not separate sources of different kinds, but perform well for sub-
Gaussian sources. Eq. 3.42 with special non-linearity, given by Eq. 3.35, proposed by
S. Haykin is better than Eq. 3.42 and Eq. 3.60 with other non-linearities. Clearly,
FFICA is slightly better than Haykin’s rule for the same stopping criteria. Fastest
algorithm is FFICA, and its behavior does not strictly depend on the choice of non-

linearity. The results for simulations are summarized in Table 4.2.

In the second test, adaptivity of FFICA algorithm is illustrated. Instead of
presenting all the data at the hand to the input at once, the data is processed frame by
frame with a finite number of cycles. The results for data set 1 with FFICA and
evaluation of performance index p are shown in Figure 4.11 and Figure 4.12. Here
the frame length is 128 samples, and each frame is iterated 10 times. It’s apparent
that the algorithm finds the demixing matrix in about 2000 samples, so we can
conclude that any mixing condition changes faster then this can not be traced. This
duration is strictly depend on the number of samples in a frame and the number of
iterations per frame. Although the algorithm converges faster in terms of samples,
using a larger frame length or more number of iterations per frame increases the
duration of simulation, and so the processing time. Decreasing these values makes

the simulation faster, but convergence needs more time to occur in this case.

FFICA algorithm was also tested for the extreme cases. The first of these is a
sudden change of frequency of one of the sources and this is illustrated in Figure
4.13 and corresponding performance index is shown in Figure 4.14 . As expected,
the performance is almost independent of such changes, since BSS problem is

inherently runs spatially (over sensors), and spectral diversity is almost unimportant.

Another case is a sudden amplitude change in one of the signals. This situation is
illustrated in Figure 4.15 with performance index characteristics in Figure 4.16 .
Algorithm can track this change with an expectable performance index.
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Figure 4.11 Results FFICA algorithm running in frame by frame manner.
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Figure 4.12 Evaluation of p for FFICA running on data set 1



A more problematic case is the sudden shutdown of one of the signals contributed
to the mixture. This situation is illustrated in Figure 4.17 and Figure 4.18 . The
algorithm can track that change, too. The output assigned to the source that has just
been shutdown is slowly assigned to one of the remaining sources as clearly seen
from the figures. Performanée index eventually gets worse since the P=WA is no

more identity matrix.

The happening instants of all these extreme cases are shown with arrows on the

figures.

In the last test 4 different pictures of size 256x256 with 64 gray levels illustrated
in Figure 4.19 are mixed with a random orthogonal matrix (Figure 4.20 ). The
simulation took approximately 31.02 seconds on an AMD K6-2 333 Mhz. PC
running MATLAB code. Final performance index was 1.3186. The results of this
simulation are shown in Figure 4.21 . The visual quality is quite good, if we consider
that the only information at the hand is the mixtures in Figure 4.20 . The change of
the sign in Output 1 and Output 2, which causes the images to be negatives of
originals, should be noted. This is because of the amplitude scaling mentioned
before. This effect can not be avoided since we don’t know the actual scaling of

amplitudes in the mixture.
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Figure 4.13 Outputs when the frequency of sinusoid decreases to half rate
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Figure 4.14 Performance index for frequency switching test
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Figure 4.15 Outputs when the square waves amplitude decreases suddenly.
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Figure 4.16 Performance index for amplitude change test
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Figure 4.19 Original images used in picture test

Mix 1 Mix 2

Figure 4.20 Mixture presented to input of FFICA algorithm.



Figure 4.21 Qutput of FFICA for image test
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CHAPTER FIVE
CONCLUSIONS

Blind source separation is an interesting problem, which is strictly related with
information content of the mixtures. Mutual information between the channels of
mixture makes a way to solve the problem that will be impossible otherwise, since

we have more unknowns than knowns at the hand.

All algorithms presented in this study can be used to train neural networks to
separate sources for certain cases. The choice of algorithm mostly depends on the
type of the sources to be separated. But in real time applications it is almost

impossible to know the types of sources beforehand.

FFICA algorithm proved to be the most suitable algorithm for real-time
applications for its appealing properties of being a fast fixed-point algorithm and
almost independent of choice of algorithm parameters such as learning rate and non-
linearity used to approximate mutual information. But the fixed-point form of this
algorithm has a handicap that it needs pre-whitening before processing. This is a
handicap, because when input is processed frame by frame manner, whitening
degenerates amplitude information, which may change from frame to frame. If the
amplitude varies fast from frame to frame, whitening causes the powers of signals in
each frame to be the same, hence it deforms the waveform. To overcome this, we
need to do whitening in larger frames than we used ICA, but this forces the real time
processing times to be longer, since we need to collect that much of data first to
apply PCA, and run ICA on the result. We can also use the variant of the learning
rule that uses covariance matrix, but this is computationally intensive, since it needs

estimation of covariance matnx first.
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Haykin’s rule is slow compared to FFICA, but it can be useful since it does not
need pre-whitening. But this algorithm is hard to control since it needs a careful

adjustment of learning rate parameter.

Other algorithms tested are not found to be useful for real-time operations, but for
their simplicity, they can be used for off-line (i.e. where signals from the sensors are

stored to be processed later) for feature extraction and data analysis.

The tests of the extreme cases show the behavior that may be encountered in real-
word applications. In general, noise does not effect performance drastically, because
it is treated as a source with the requirement that there is at least one empty output

for noise apart from other sources.

We can say that, although there are many variants of ICA/BSS algorithms
- proposed, there still remain fundamental problems such as statistical efficiency and

convergence properties of learning algorithms.

1. Future Work

As mentioned earlier, BSS problem introduced in this study only consist of
separating linearly mixed sources. But in real world applications sources are often
convolved with unknown filtering and it may contain effects like reverberation.
These effects should also be considered. Blind Deconvolution can be viewed as a
constrained BSS problem and recently many robust algorithms are introduced about

it. This study can be extended to include blind deconvolution.

Since it has been introduced, BSS is extensively used with sound separation
problem. But up to now there are no complete studies that combines a BSS algorithm
with a speech recognition environment. Such an environment is illustrated in Figure
5.1. Here directions and distances of each speaker are different, so the microphones
collect mixtures of these signals. After a preprocessing stage, these mixture signals
can be separated to individual sound sources, which then selected to be an input to a
speaker independent speech recognition system. The system can decide which of the
sound sources to be processed. This system may need a speaker recognition system

running parallel with the ICA stage, since we can not determine the places of the
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speakers at the output of ICA/BSS stage. Such a system should perform better then a
speech recognition system alone at a multi sound source environment. This study
aimed to search for a suitable algorithm that can work in real time with such a system
at such an environment. We can conclude that, although they are problematic in
some cases, there are robust é.nd fast algorithms, which can be used in such a system
if their parameters are carefully controlled with intelligent strategies (e.g. fuzzy

control of learning parameters).
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Figure 5.1 ICA/BSS combined with a speech-processing environment.

ICA/BSS can also be used with antenna arrays and radar systems to improve the
output quality for just selecting the signal of interest before processing it. It also has
application areas in medical signal processing such as EEG field scanners and
separation of fetus generated medical signals (e.g. heart beat) from mother generated

ones.
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