
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF

NATURAL AND APPLIED SCIENCES

A TOOL TO CREATE 3D ANIMATION FILMS

by

Yunus Emre ALPÖZEN

December, 2006

İZMİR

A TOOL TO CREATE 3D ANIMATION FILMS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylul University

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Computer Engineering

by

Yunus Emre ALPÖZEN

December, 2006

İZMİR

ii

M.SC THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “A TOOL TO CREATE 3D ANIMATION

FILMS” completed by Yunus Emre ALPÖZEN under supervision of Prof. Dr. R.

Alp KUT and we certify that in our opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Master of Science.

Supervisor

 (Jury Member) (Jury Member)

Prof.Dr. Cahit HELVACI

Director

Graduate School of Natural and Applied Sciences

Prof. Dr. Alp Kut

iii

ACKNOWLEDGEMENTS

This thesis has been prepared at the time of working with a great effort in a

different city. Entire thesis implementation consists of 120.000+ lines of code and

most of these codes are written during weekends and late at nights. Nevertheless,

after this exhausting study, I am very proud of having such a thesis like this. I believe

that know how I gathered during this study is invaluable.

I would like to express my deep and sincere gratitude to my supervisor, Professor

Alp KUT, Chair of the Department of Computer Engineering. His understanding,

encouraging and personal guidance have provided a good basis for the present thesis.

I wish to express my warm and sincere thanks to Associate Professor Yalçın Çebi

for his essential assistance and moral support.

If this thesis help someone to build up something that works interest of humanity

and for a better world, I would have more vital reasons to be proud of this work.

iv

A TOOL TO CREATE 3D ANIMATION FILMS

ABSTRACT

The aim of this study is to have know how on creating 3D animation films,

discipline 3D animation film generation process and develop a sample tool to create

3D animation films.

Current 3D animation film industry use computers that have built in graphics

engines and dedicated for this purpose. Uncommonly, underlying hardware is

produced specifically for the software to produce films. Most of these computers are

operated on Sun Systems and have costs in million dollars rank. It is not possible to

reduce these requirements for a personal computer unless this generation process

taken under control.

3D animation film generation process can be managed by applying standard

SDLC (Software Development Life Cycle). However, execution step requires a

robust IDE (Integrated Development Environment) and built in graphics engine that

provides abstraction on rendering details and let user to take care about big picture.

Development environment code named as “Weendigo”. Weendigo is a Red Indian

belief on migration of the human beings' capabilities, courage, power, and skills

when he was eaten by another human being. Pneuma is the vital spirit which makes

men the most valuable creature in the world. By the way, Weendigo refers to

development environment and Pneuma is the name of the underlying graphics

engine. Weendigo has a component based architecture that allows add or remove

components at runtime by implementing some interfaces. Therefore Weendigo

gathers all skills and capabilities from the components added and pneuma let them

born. Also this functionality provides different points of view for the people have

different roles in this process which will lead to discipline from beginning to end.

Keywords: 3D, 3D animation film, movie generation, IDE, Weendigo, Graphics

Engine, Pneuma, Microsoft .NET Framework, Microsoft DirectX

v

ÜÇ BOYUTLU ANİMASYON FİLM GELİŞTİRME ARACI

ÖZ

Bu çalışmanın amacı üç boyutlu animasyon film geliştirme konusunda tecrübe

edinilmesi, üç boyutlu film geliştirme sürecinin disipline edilmesi ve örnek bir üç

boyutlu animasyon film geliştirme aracının geliştirilmesidir.

Şu an ki üç boyutlu animasyon film sanayisinde kullanılan bilgisayarlar

donanımsal grafik motorlarına sahip bu amaç için tasarlanmışlardır. Sıradışı olarak,

kullanılan donanımsal altyapı kullanılan yazılımlara özel olarak üretilmiştir. Bu

bilgisayarların bir çoğu Sun Systems üzerinde çalışan milyon dolarlık ederlere

sahiptir. Oluşturma süreci kontrol altına alınmadıkça bu gereksinimlerin kişisel

bilgisayarlar seviyesine indirilebilmesi olası değildir.

Üç boyutlu animasyon film geliştirme süreci SDLC izlenerek yönetilebilir. Buna

karşın geliştirme adımı kullanıcının detaylara takılmadan büyük resim ile

ilgilenebilmesine izin veren, görsellik ihtiyaçlarına soyutlama yapabilecek, gömülü

bir grafik motoruna sahip güçlü bir entegre geliştirme ortamına (IDE) gereksinim

duymaktadır. Bu projedeki geliştirme ortamı “Weendigo” kod adıyla anılmaktadır.

Weendigo, kızıl derili inanışına göre bir insanın başka bir insanı yediğinde onun

yeteneklerine, cesaretine, gücüne ve kapasitesine sahip olması durumudur. Pneuma

ise insanları diğer canlılardan daha değerli yapan ruh anlamındadır. Weendigo bu

projedeki entegre geliştirme ortamının, Pneuma ise grafik motorunun ismidir.

Weendigo bileşen temelli mimarisiyle belirli arayüzleri destekleyen bileşenlerin

çalışma zamanında eklenip çıkartılmasına izin vermektedir. Weendigo bu

bileşenlerin yeteneklerine sahip olurken, Pneuma bu bileşenlere can vererek

yeteneklerin açığa çıkartır. Ek olarak bu özellik, farklı rollerdeki kişilere farklı bakış

açıları sunarak sürecin başından sonuna kontrol altında olmasını sağlamaktadır.

Anahtar Sözcükler: Üç boyut, Üç boyutlu animasyon film, Film oluşturma, IDE,

Weendigo, Grafik Motoru, Pneuma, Microsoft .NET Framework, Microsoft DirectX

vi

CONTENTS

M.Sc THESIS EXAMINATION RESULT FORM.. ii

ACKNOWLEDGEMENTS.. iii

ABSTRACT... iv

ÖZ..v

CHAPTER ONE INTRODUCTION...1

CHAPTER TWO PREVIOUS WORK ...5

CHAPTER THREE MATERIALS AND METHODS8

3. 1 Game Development Process at a Glance ..8

3.2 Microsoft DirectX (Graphics API) ..11

CHAPTER FOUR WEENDIGO ...17

4.1 Weendigo Startup Page...17

4.2 Weendigo Solution Explorer...19

4.3 Weendigo Toolbox ...26

4.4 Property Window..35

4.5 Timeline Track Bar...41

4.6 Resource Management..43

4.7 Weendigo Docking Library...48

4.8 Dialog Management..58

vii

CHAPTER FIVE SCENARIO MANAGEMENT ..60

5.1 Scenario (Game) Engine ...60

5.2 Scene Design User Interface ...64

5.3 Scene Compilation..71

5.4 Scenario Manager ...76

CHAPTER SIX PNEUMA...86

6.1 Pneuma Design...86

6.2 Hardware Enumeration ...95

6.3 Common Controls in 3D Environment..102

6.4 Darken Scene Algorithm...115

6.5 Rendering Static Meshes...118

6.6 Rendering Animated Meshes ..125

6.7 Rendering Text ...135

6.8 Scene Background ..140

6.9 Camera Usage ..143

viii

CHAPTER SEVEN POST IMPLEMENTATION REVIEW150

7.1 Cross Threading Issue...150

7.1.1 Cross-threading Vulnerability ..150

7.2 Dynamic Code Injection ...160

7.2.1 Why Weendigo Needs On-the-fly Code Generation?162

7.2.2 What is Code Dom? ...165

7.2.3 Weendigo On-the-fly Code Generation ..166

7.3 Exception Handling ..169

7.3.1 ADPlus ..172

7.3.2 Application Verifier ...174

7.3.3 Dr. Watson...174

7.3.4 WinDbg ...175

7.4 Performance Issues ...176

CHAPTER EIGHT

CONCLUSION...180

REFERENCES...182

APPENDICES ..183

1

CHAPTER ONE

INTRODUCTION

Weendigo is a Red Indian belief on migration of the human beings' capabilities,

courage, power, and skills when he was eaten by another human being. Pneuma is

the vital spirit which makes men the most valuable creature in the world. By the way,

Weendigo refers to development environment and Pneuma is the name of the

underlying graphics engine. Weendigo has a component based architecture that

allows add or remove components at runtime by implementing some interfaces.

Therefore Weendigo gathers all skills and capabilities from the components added

and Pneuma let them born. From now on, Weendigo will refer for development

environment and Pneuma will refer for graphics engine.

Weendigo is a complete set of design tools for building animation films. Visual

Basic, Visual C++, Visual C#, Visual J# and including all other languages supported

by .NET Framework all use the same integrated design environment, which allows

them to share facilitates in the creation of a film. Weendigo consist more than

120.000 lines of code. Supporting Microsoft .NET technologies is an important

feature also this is why it has a similar interface with Microsoft Visual Studio .NET

2005 development environment. It is not possible to write codes on Weendigo. But

weendigo also has a built in compiler. It only compiles project and does not produce

any output until user decides to preview video or produce video. This compilation

just warns user for specific design time errors that might cause run time exceptions.

2

Figure 1.1 Weendigo has a user interface similar with Visual Studio .NET 2005

As you have seen the figure above it is very similar to Visual Studio .NET 2005

development environment. To efficiently manage the items that are required by your

development effort, such as components and scenes and media files, Weendigo has a

built in container named as Weendigo Solution. Solution Explorer is provided as part

of the Weendigo Integrated Development Environment (IDE).

There is a toolbox like Visual Studio .NET style, which allows you add/remove

components supported by Weendigo. It is possible to add items from this toolbox to a

scene by using drag and drop. By right clicking this toolbox, you will be able to

enumerate GAC (Global Assembly Cache), COM+ (Component Object Model)

components, and specify a custom .NET component to use your weendigo project.

There is a property grid like Visual Studio .NET style, which allows you to set

properties of objects at design time. When you click an object all of the properties of

this object are enumerated on this grid. Some of these properties might be marked as

3

read-only, weendigo automatically senses these properties and shows these

properties in a state that cannot be altered.

In all scenes, there is a duration bar which is an essential need for animation films.

Scenes duration must be defined during design time. All changes made on scenes at

specific times are recorded by weendigo in XML form and being ready to use for

scenario manager at the time of playing movie.

All of the containers included in Weendigo are dockable containers. Docking,

resizing and repositioning of these containers are designated for ease to use.

By using drag and drop, you can prepare a scene for playing. After all it becomes

a big problem to find out any design time errors. Current development environments,

including Microsoft Visual Studio .NET 2005, the source files are compiled but the

design time errors are not handled by compilers. Design time errors are causes

exceptions during run time. It is not an acceptable situation, if you are producing a

3D animation films. It might take hours to find out what is wrong. To overcome this

issue, weendigo introduces a new style of compilation. Weendigo compilation

performs compilation on each design time object separately. Thus provides an

efficient approach on producing films. A sample snapshot of compilation process is

given below.

4

Figure 1.2 Weendigo performs a compilation on prepared scene to check design time error which

might cause a run time exception

In this scene, weendigo design time compiler complains that no valid file is

specified for Animation Object in “scene1.scn”. There are two different objects in

our scene but definition of a valid animation object file for these instances was

forgotten.

5

CHAPTER TWO

PREVIOUS WORK

In film, the term 3-D (or 3D) is used to describe any visual presentation system

that attempts to maintain or recreate moving images of the third dimension, the

illusion of depth as seen by the viewer.

The principle involves taking two images simultaneously, with two cameras

positioned side by side, generally facing each other and filming at a 90 degree angle

via mirrors, in perfect synchronization and with identical technical characteristics.

When viewed in such a way that each eye sees its photographed counterpart, the

viewer's visual cortex will interpret the pair of images as a single three-dimensional

image.

The stereoscopic era of motion pictures begins in the late 1890s when British film

pioneer William Friese-Greene files a patent for a 3-D movie process. In his patent,

two films are projected side by side on screen. The viewer looked through a

stereoscope to converge the two images. Because of the obtrusive mechanics behind

this method, theatrical use was not practical. Frederic Eugine Ives patented his stereo

camera rig in 1900. The camera had two lenses coupled together 1 3/4 inches apart.

In 1903, 3-D films were shown at the Paris Exposition under the auspicies of the

Lumiere Brothers. While it is unconfirmed, the footage may have been a remake of

their film L'Arrivée du Train. Regardless, they later filmed this footage

stereoscopically in the late 1930s.

After computers becoming an important part of our lives, cartoon and film

industry began to replace their old fashioned technologies with new ones which are

computer aided software. There are still some films support 3D views. However, this

idea brought out 3D animation films. The very first totally computer generated

animation movie was Toy Story.

6

A computer-animated film commonly refers to feature films that have been

computer-animated to appear three dimensional on a movie screen. While traditional

2D animated films are now done primarily on computers, the technique to render

realistic 3D computer graphics (CG), or 3D Computer-generated imagery (CGI), is

unique to using computers to create movies. Here is a list of well known animation

films chronological by release date:

• 1995

o Toy Story

• 1998

o Antz

o A Bug's Life

• 1999

o Toy Story 2

• 2000

o Dinosaur

• 2001

o Shrek

o Final Fantasy: The Spirits Within

o Monsters, Inc.

o Jimmy Neutron: Boy Genius

• 2002

o Ice Age

o Jonah: A VeggieTales Movie

• 2003

o Finding Nemo

• 2004

o Ark

o Homeland (film)

o Shrek 2

o Shark Tale

o Terkel in Trouble (Denmark, "Terkel i knibe")

o The Incredibles

7

As seen in the list, number of produced film by release date is increasing year by

year. A full list of animation films is given in appendices, see also upcoming films by

year. Most of the films given above are generated on Sun Systems Graphics Servers

using Pixart’s software. Uncommonly, underlying hardware is produced specifically

for this software. It is not possible to get a demo version or allow these films to be

generated using a personal computer.

There are several tools to prepare video using a 3D scene. 3D Studio Max is

capable to produce a video by playing an animation according to key frames. But this

feature in 3D Studio Max is embedded and not available for a team work. Also,

scene merging and some other important features are not enabled. Weendigo serves a

complete solution from beginning to end in a 3d animation film. 3D Studio Max

solution is limited with rendering arbitrary scenes not intended to prepare a 3D film.

8

CHAPTER THREE

MATERIALS AND METHODS

Game development and animation film development processes are familiar with

each but differs in some key points. Creation of a 3D animation film process can be

considered as a software development project. By the way, there are different roles as

this process contains art in addition to computer science. This chapter includes game

development process, and technologies used in this project.

3. 1 Game Development Process at a Glance

A computer game is a computer-controlled game. A video game is a computer

game where a video display such as a monitor or television is the primary feedback

device. The term "computer game" also includes games which display only text (and

which can therefore theoretically be played on a teletypewriter) or which use other

methods, such as sound or vibration, as their primary feedback device, but there are

very few new games in these categories. There always must also be some sort of

input device, usually in the form of button/joystick combinations (on arcade games),

a keyboard & mouse/trackball combination (computer games), or a controller

(console games), or a combination of any of the above. Also, more esoteric devices

have been used for input. Usually there are rules and goals, but in more open-ended

games the player may be free to do whatever they like within the confines of the

virtual universe.

In common usage, a "computer game" or a "PC game" refers to a game that is

played on a personal computer. "Console game" refers to one that is played on a

device specifically designed for the use of such, while interfacing with a standard

television set. "Video game" (or "videogame") has evolved into a catchall phrase that

encompasses the aforementioned along with any game made for any other device,

including, but not limited to, mobile phones, PDAs, advanced calculators, etc.

9

Development of computer and video games is undertaken by a developer, which

may be a single person or a business. Typically, large-scale commercial games are

developed by development teams within a company specializing in computer or

video games. A typical modern video or computer game costs from $1 million up to

$15 million to develop. Development is normally funded by a publisher. A

contemporary game can take from one to three years to develop, though there are

exceptions.

While in the early era of home computers and video game consoles in the early

1980s, a single programmer could handle almost all the tasks of developing a game,

the development of modern commercial video games involves a wide variety of skill-

sets and support staff. As a result, entire teams are often required to work on a single

project.

Game development process can be easily considered a software project

management process. As SDLC (Software Development Life Cycle) process

suggests following steps exist in a software project:

• Project Definition (Initial Request): project is defined by non IT people
generally by the sponsor of the project.

• Requirement Specification: Project Manager forms a cross functional
project team to define the detail project scope including the technical solution
and alternatives

• Functional Analysis: Project Manager conducts meetings with appropriate
project stakeholders to review, modify and/or approve the requirements
document

• Project Planning: Project Manager leads the project team to develop a detail
and comprehensive project plan based on the preliminary project plan and
requirements document

• Application Specification: application specification including user interface
design and business logic controls is defined by business analysts.

• Technical Analysis: technical details and technical constraints are defined by
a lead developer.

• Development: project team executes the project plan, implements demanded
application in order to predefined application specification and obeys the
preceding technical analysis design.

10

• System Test: functionality, unit and integration tests including end to end
tests are performed. Usually this is duty of business analyst who has prepared
application specifications.

• User Acceptance Test: end user tests are performed to finalize project.
Usually this is duty of project owner. This includes providing project plan
status to project stakeholders and obtaining customer approval.

• Deployment: the project team implements the project into production
environment.

• Post Implementation Support: This includes managing changes, taking
corrective action and user education.

• Post Implementation Review: this is a measurement of project success.

A typical present-day game development team usually includes:

• One or more producers to oversee production

• At least one game designer

• Artists

• Programmers

• Level designers

• Sound engineers (composers, and for sound effects)

• Testers

Some members of the team may handle more than one role. For example, the

producer may also be the designer, or the lead programmer may also be the producer.

However, while common in the early video game era, this is increasingly more

uncommon now for professional games. Also these roles can easily be mapped to

roles in SDLC process.

3D computer graphics are works of graphic art that were created with the aid of

digital computers and specialized 3D software. In general, the term may also refer to

the process of creating such graphics, or the field of study of 3D computer graphic

techniques and its related technology.

11

3D computer graphics are different from 2D computer graphics in that a three-

dimensional representation of geometric data is stored in the computer for the

purposes of performing calculations and rendering 2D images. Sometimes these

images are later displayed in a pre-rendered form, and sometimes they are rendered

in real-time.

3.2 Microsoft DirectX (Graphics API)

Microsoft DirectX is a set of low-level application programming interfaces (APIs)

for creating games and other high-performance multimedia applications. It includes

support for high-performance 2-D and 3-D graphics, sound, and input. In a

perspective of creating a 3D animation film requires 3D graphics and 3D sound

ability. Weendigo includes a 3D framework based on Microsoft DirectX

technologies. Weendigo film generation only includes 3D Graphics facilities.

Microsoft Direct3D is a low-level graphics application programming interface

(API) that enables you to manipulate visual models of 3-dimensional objects and

take advantage of hardware acceleration, such as video graphics cards.

The graphics pipeline provides the horsepower to efficiently process and render

Direct3D scenes to a display, taking advantage of available hardware. This figure

conceptually illustrates the building blocks of the pipeline:

Figure 3.1 Microsoft Direct 3D graphics pipeline

12

Here is a brief description of each block:

• Vertex Data, Untransformed model vertices are stored in vertex memory
buffers.

• Primitive Data, Geometric primitives, including points, lines, triangles, and
polygons, are referenced in the vertex data with index buffers.

• Tessellation, The tesselator unit converts higher-order primitives,
displacement maps, and mesh patches to vertex locations and stores those
locations in vertex buffers.

• Vertex Processing, Direct3D transformations are applied to vertices stored in
the vertex buffer.

• Geometry Processing, Clipping, back face culling, attribute evaluation, and
rasterization are applied to the transformed vertices.

• Textured Surface, Texture coordinates for Direct3D surfaces are supplied to
Direct3D through the IDirect3DTexture9 interface.

• Texture Sampler, Texture level-of-detail filtering is applied to input texture
values.

• Pixel Processing, Pixel shader operations use geometry data to modify input
vertex and texture data, yielding output pixel color values.

• Pixel Rendering, Final rendering processes modify pixel color values with
alpha, depth, or stencil testing, or by applying alpha blending or fog. All
resulting pixel values are presented to the output display.

This implementation details are hidden from a 3D animated film designer in

Weendigo. Vertex and/or primitive data are provided in Microsoft X Files.

Transformation texture mapping are performed by Weendigo automatically. Other

hardware details are performed by Microsoft Direct3D libraries.

13

Figure 3.2 Shows the relationships between a Window application, Direct3D,GDI, and the hardware

This figure is taken from Microsoft DirectX 9.0 SDK documentation library. This

figure shows only what Microsoft DirectX does. However, Weendigo graphics

engine called “Pneuma” performs too many things based upon these layers.

Direct3D exposes a device-independent interface to an application. Direct3D

applications can exist alongside GDI applications, and both have access to the

computer's graphics hardware through the device driver for the graphics card. Unlike

GDI, Direct3D can take advantage of hardware features by creating a HAL

(Hardware Acceleration Layer) device.

A HAL device provides hardware acceleration to graphics pipeline functions,

based upon the feature set supported by the graphics card. Direct3D methods are

provided to retrieve device display capabilities at run time.

The primary device type is the HAL device, which supports hardware accelerated

rasterization and both hardware and software vertex processing. If the computer on

which your application is running is equipped with a display adapter that supports

Direct3D, your application should use it for Direct3D operations. Direct3D HAL

14

devices implement all or part of the transformation, lighting, and rasterizing modules

in hardware.

Applications do not access graphics adapters directly. They call Direct3D

functions and methods. Direct3D accesses the hardware through the HAL. If the

computer that your application is running on supports the HAL, it will gain the best

performance by using a HAL device.

Direct3D supports an additional device type called a reference device or reference

rasterizer. Unlike a software device, the reference rasterizer supports every Direct3D

feature. Because these features are implemented for accuracy rather than speed and

are implemented in software, the results are not very fast. The reference rasterizer

does make use of special CPU instructions whenever it can, but it is not intended for

retail applications. Use the reference rasterizer only for feature testing or

demonstration purposes.

Weendigo supports both HAL and REF devices and allow users to switch between

them by clicking a button or pressing F3 button.

Typically 3D graphics applications use two types of Cartesian coordinate systems:

left-handed and right-handed. In both coordinate systems, the positive x-axis points

to the right and the positive y-axis points up. You can remember which direction the

positive z-axis points by pointing the fingers of either your left or right hand in the

positive x-direction and curling them into the positive y-direction. The direction your

thumb points, either toward or away from you, is the direction that the positive z-axis

points for that coordinate system. The following illustration shows these two

coordinate systems.

15

Figure 3.3 There are two distinct cartesian coordinates: Left-handed

Cartesian Coordinates and Right-handed Cartesian Coordinates. By

the way, Weendigo only support Left-handed Cartesian Coordinates

which is commonly preferred.

Animated Objects have different approaches on calculating transforms.

Transformation of World, View and Projection matrices and using camera options

will be documented in another article. Direct3D uses the world and view matrices

that you set to configure several internal data structures. But important point is

setting these matrices are time consuming. Weendigo has an implementation of

setting these matrix transformations in an optimized way. Each time you set a new

world or view matrix, the system recalculates the associated internal structures.

Setting these matrices frequently-for example, thousands of times per frame-is

computationally time-consuming.

Lights are used to illuminate objects in a scene. When lighting is enabled,

Direct3D calculates the color of each object vertex based on a combination of:

• The current material color and the texels in an associated texture map.

• The diffuse and specular colors at the vertex, if specified.

• The color and intensity of light produced by light sources in the scene or the
scene's ambient light level.

When you use Direct3D lighting and materials, you allow Direct3D to handle the

details of illumination for you.

16

How you work with lighting and materials makes a big difference in the

appearance of the rendered scene. Materials define how light reflects off a surface.

Direct light and ambient light levels define the light that is reflected. You must use

materials to render a scene if lighting is enabled. Lights are not required to render a

scene, but details in a scene rendered without light are not visible. At best, rendering

an unlit scene results in a silhouette of the objects in the scene. This is not enough

detail for most purposes. Weendigo currently has a view to designate the lights in

scene. But this facility is not implemented, yet. Currently, Weendigo uses only one

light at a scene. Further versions should allow user administer lights on scene at each

frame.

With DirectX 9.0, developers can take advantage of DirectX multimedia

functionality and hardware acceleration while using managed code. DirectX 9.0 for

Managed Code enables access to most of the original unmanaged DirectX

functionality. Using managed distribution of Microsoft DirectX, provides an

abstraction over programming language and memory management facilities

underlying operating system.

As a conclusion, choosing Microsoft DirectX 9 and managed extension in

Weendigo implementation involved the following advantages:

• Platform Abstraction

• Hardware Abstraction

• Operating System Abstraction

• Device Driver Abstraction

• Graphics Pipeline Abstraction

• Programming Language Abstraction

These advantages add worth Weendigo to have as a built in facility. Therefore,

Weendigo has the facilities given above which competitor does not. Most of the

competitors use technologies and hardware specific for their implementation.

17

CHAPTER FOUR

WEENDIGO

Weendigo is a robust development environment to create 3D animation films. In a

programming perspective Weendigo is a Win32 application. By the definition, In

developement process, there were same problems with any other Win32 application.

Also, there are some advantages of implementing Weendigo as an Win32

applicaiton. For instance, entire user interface is being prepared by using visual

inheritance.

4.1 Weendigo Startup Page

Hyper Text Markup Language (HTML) is a markup language designed for the

creation of web pages with hypertext and other information to be displayed in a web

browser. Preparing rich text content in a windows application requires too much

effort. For a rapid application approach, embedding HTML content in a windows

application is a commonly used trick. Weendigo start page is implemented using this

approach.

In Microsoft .NET Framework 2.0, “System.Windows.Forms.WebBrowser”

control exist in class library. This control lets you host Web pages and other browser-

enabled documents in your Windows Forms applications. You can use the

WebBrowser control, for example, to provide integrated HTML-based user

assistance or Web browsing capabilities in your application. Additionally, you can

use the WebBrowser control to add your existing Web-based controls to your

Windows Forms client applications.

In Weendigo implementation, WebBrowserWindow inherits from WebBrowser

control class. This class automatically load an HTML file. StartPageWindow

implements BasePage which is a requirement for hosting in Weendigo IDE. There is

composition relation between StartPageWindow and WebBrowserWindow. In

18

StartPageWindow constructor prepares and initializes WebBrowserWindow control.

Constructor implementation is given below:

public StartPageWindow(string pFullPath,DockingContainerWindow pParent)

 : base(pParent)

{

fullPath = pFullPath;

if (fullPath.Length>0)

{

wWindow= new WebBrowserWindow(pFullPath);

}

else

{

wWindow = new WebBrowserWindow();

}

wWindow.IsWebBrowserContextMenuEnabled = false;

wWindow.Dock = System.Windows.Forms.DockStyle.Fill;

wWindow.ScrollBarsEnabled = false;

this.Controls.Add(wWindow);

}

Both of these classes’ implementation details are given below for clarity:

WebBrowserWindow

WebBrowser

Class

Properties

CurrentURL

DefaultURL

Methods

Initialize

WebBrowserWindow (+ 1 overload)

 Figure 4.1 Web Browser Window class interface

StartPageWindow

BasePage

Class

Fields

fullPath

wWindow

Properties

UniqueID

Methods

StartPageWindow

 Figure 4.2 Start Page Window

class interface

19

It is possible to embed some menu items functionality in this page like

enumerating recent projects, opening and loading solutions. Only handling link click

events would be enough. A sample snapshot of start page is given below.

Figure 4.3 A sample snapshot of startup page. Also it is possible to customize this user interface by

only modifying HTML source code

4.2 Weendigo Solution Explorer

One of the common needs of an Integrated Development Environment is

organizing your files and objects. Weendigo Solution Explorer provides you with an

organized view of your project files (scenes) as well as ready access to the

commands that pertain to them. Weendigo Solution Explorer has a standard view

represents the active solution as a logical container for one 3D movie project and

scenes associated with them. You can open project items for modification and

perform other management tasks directly from this view.

20

Weendigo solutions include scenes, scenes include scene objects. Weendigo

Solution Explorer represents only scenes. Scene objects are represented when you

open related scene. Weendigo Solution Explorer is a tree view designated to show

currently loaded scene. A set of functions (including opening, closing solution files,

and etc.) are exposed to integrate Weendigo Solution Explorer with Weendigo IDE.

Figure 4.4 Weendigo Solution Explorer has a similar properties with Visual Studio .NET 2005

Weendigo Solution Explorer is built up using three different classes:

• SolutionExplorer

• SolutionTreeNode

• SolutionConfiguration

Solution Explorer class inherits “TreeView” class and intended to be a

communication point between Solution and Weendigo IDE. Weendigo IDE can only

have a single instance of Weendigo Solution Explorer. Nevertheless, Weendigo

Solution Explorer is not marked as a sealed class by design.

21

SolutionTreeNode class inherits “TreeNode” class and used by Solution Explorer.

All of the items (including solution node itself) in tree view are constructed using

this class. This class is not publicly exposed by Weendigo IDE.

SolutionConfiguration class inherits “ConfigurationBase” class which is provided

by Weendigo IDE for use of any purpose configurations. A solution configuration is

matched with a single weendigo solution file.

Weendigo Solution Explorer serves the following facilities:

• Creating a new solution is accomplished by calling “InitiateOnFile”

method.

• Loading a solution file is accomplished by calling this class’s

“ConstructFromFile” method.

• Closing a loaded solution is accomplished by calling “UnloadSolution”

method.

• Adding a new item is accomplished by calling “AddNewSolutionItem”

method.

• Removing an existing item is accomplished by calling

“RemoveSolutionItem” method.

• Saving a solution is accomplished by calling “StoreFile” method.

Other facilities exposed by Weendigo Solution Explorer are followings:

• When user double clicks on a solution item, SolutionItemSelected event is

fired thus causes Weendigo IDE to load selected solution item. If selected

item is already loaded, Weendigo IDE automatically brings front selected

solution item.

• When user left clicks on a solution item, SolutionItemLeftClick event is

fired. This is an informative event for Weendigo IDE. Left clicking on a

solution item once enables user to edit selected scene name.

22

• When user right clicks on a solution item, SolutionItemRightClick event is

fired thus forces Weendigo IDE to show a popup menu for selected

solution item.

• When a solution item is renamed by left clicking one time on a solution

item or using F2 shortcut key, Weendigo Solution Explorer fires a

SolutionItemRenamed event.

• When a solution item is deleted by choosing delete from popup or using

Del shortcut key, Weendigo Solution Explorer fires a

SolutionItemRemoved event after removing selected item.

• When user right clicks on solution (root node), SolutionRightClick event

is fired thus forces Weendigo Solution Explorer to show a solution

specific popup menu.

 Figure 4.5 Solution Tree Node class interface

23

 Figure 4.6 Solution Explorer class interface

24

SolutionConfiguration

ConfigurationBase

Class

Fields

createDate

modifiedDate

schemaVersion

solutionFileVersion

solutionItems

solutionName

solutionUniqueID

Properties

CreateDate

ModifiedDate

SolutionName

Methods

SolutionConfiguration

UnloadSolution

Nested Types

SolutionItem
Class

Fields

fullPath

itemName

Properties

FullPath

Name

Methods

SolutionItem (+ 1 overload)

SolutionItemCollection

CollectionBase

Class

Properties

this

Methods

Add

Contains (+ 1 overload)

IndexOf (+ 1 overload)

Insert

Remove

 Figure 4.7 Solution Configuration class interface

As shown in diagram, SolutionConfiguration includes two internal class

declarations for solution items (SolutionItem) and solution item list

25

(SolutionItemCollection). This class is a serializable class to map between physical

solution file and Weendigo Solution Explorer.

Weendigo solution files contain SolutionConfiguration instance in XML

serialized form like following:

<?xml version="1.0"?>

<SolutionConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <FileVersion>1.0</FileVersion>

 <SchemaVersion>1.0</SchemaVersion>

 <SolutionGUID>1e6c1c64-debf-47c4-aa82-59eb3f359e61</SolutionGUID>

 <SolutionName>3</SolutionName>

 <CreateDate>2006-04-19T17:31:01.65625+03:00</CreateDate>

 <ModifiedDate>2006-05-14T15:18:36.359375+03:00</ModifiedDate>

 <Contents>

 <SolutionItem Name="Scene1" Path="D:\Workspace\documents\test1\3\Scene1.scn" />

 <SolutionItem Name="Scene2" Path="D:\Workspace\documents\test1\3\Scene2.scn" />

 <SolutionItem Name="StartScene" Path="D:\Workspace\documents\test1\3\StartScene.scn" />

 <SolutionItem Name="EndScene" Path="D:\Workspace\documents\test1\3\EndScene.scn" />

 <SolutionItem Name="CreditsScene"

Path="D:\Workspace\documents\test1\3\CreditsScene.scn" />

 <SolutionItem Name="NewScene" Path="D:\Workspace\documents\test1\3\NewScene.scn" />

 </Contents>

</SolutionConfiguration>

XML Schema definition is given below:

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified"

elementFormDefault="qualified">

 <xs:element name="SolutionConfiguration">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FileVersion" type="xs:decimal" />

26

 <xs:element name="SchemaVersion" type="xs:decimal" />

 <xs:element name="SolutionGUID" type="xs:ID" />

 <xs:element name="SolutionName" type="xs:string" />

 <xs:element name="CreateDate" type="xs:dateTime" />

 <xs:element name="ModifiedDate" type="xs:dateTime" />

 <xs:element name="Contents">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" name="SolutionItem">

 <xs:complexType>

 <xs:attribute name="Name" type="xs:string" use="required" />

 <xs:attribute name="Path" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Weendigo Solution Explorer has an extensible interface which will allow further

changes. Implementation details are hidden from Weendigo IDE. This approach has

important advantages. For instance, adding support for multiple solution files

(similar to Microsoft Visual Studio .NET 2005 Project files) is mitigated. For further

improvements, Microsoft Visual Source Safe integration might be added to have

source control management features.

4.3 Weendigo Toolbox

The Toolbox displays pre-registered items for use in Weendigo projects. There are

several built in components including Weendigo Static Object, Weendigo Animation

Object, and Weendigo Text Object available for use. Also, it is possible to add or

remove these items at runtime. The items available can include .NET components,

and COM components that support a common interface and marked with attribute

27

named as “ToolboxDescriptorAttribute”. All components listed in toolbox can easily

be added your scene by a simple drag and drop operation. Weendigo IDE hosts

Toolbox itself. But implementation details are hidden from Weendigo IDE.

Weendigo “ToolboxControl” is a class derived from ToolStrip control. Each item

listed in toolbox is represented with “ToolboxItem” class which is derived from

ToolStripButton control.

ToolboxControl

ToolStrip

Class

Fields

_current

components

Properties

Current

Methods

AddSeparator

AddToolBoxItem

AddToolboxItems

Dispose

InitCustomProperties

InitializeComponent

OnMouseDown

ToolboxControl

tsButton_Click

Nested Types

ToolboxItem

ToolStripButton

Class

Fields

dragDropObject

Methods

OnMouseMove

ToolboxItem

 Figure 2.8 Toolbox Control class interface

Each ToolboxItem has a dragDropObject which encapsulates drag and drop object

inside. When user clicks a toolbox and moves it to scene in design view, selected

28

toolbox item adds this encapsulated drag and drop object to clipboard. It is Weendigo

IDE responsibility to handle drag and drop events.

ToolboxControl is implemented with singleton design pattern and can be

accessible via Current static property. Having multiple instances of toolbox control is

not a desired expectation. This is why this class is implemented with singleton design

pattern. Toolbox control is a dockable control embedded in Weendigo IDE.

Figure 4.9 Weendigo Toolbox control enumerates

registered controls available to use. Also hiding this

toolbox control is possible by clicking pin icon

Drag and drop object simply has a reference for BaseDisplayObject which is the

base interface for Pneuma architecture. Also, “DragDropEncapsulationObject” is

used by drag and drop events inside 3D scene design view in Weendigo.

29

DragDropEncapsulationObject
Class

Fields

baseObject

Properties

CurrentObject

Methods

Clone

Create

DragDropEncapsulationObject

GetObjectType

 Figure 4.10 Drag Drop Encapsulation

Object class interface. Drag and Drop

operations encapsulates any instance of

object by using this class

When user right clicks on toolbox, a context menu is shown to allow user to

choose toolbox items:

Figure 2.11 Choose Toolbox Items

context menu

After clicking “Choose Toolbox Items…” a dialog box is shown which includes a list

of assemblies in Global Assembly Cache (GAC). Each computer where the common

language runtime is installed has a machine-wide code cache called the global

assembly cache. The global assembly cache stores assemblies specifically designated

to be shared by several applications on the computer. Assemblies deployed in the

global assembly cache must have a strong name. When an assembly is added to the

global assembly cache, integrity checks are performed on all files that make up the

assembly. The cache performs these integrity checks to ensure that an assembly has

not been tampered with, for example, when a file has changed but the manifest does

not reflect the change.

30

Figure 2.12 GAC Enumeration is available in Weendigo

Accessing GAC is not possible within Microsoft .NET Framework built in

classes. GAC enumeration in Weendigo is accomplished by making native calls to

“fusion.dll” with a full native and managed interface and enumeration mapping. Here

is a list of used enumerations:

• ASM_NAME_PROPERTY

• NameDisplayFlags

• CacheFlags

The list of interfaces implemented is given below:

• IAssemblyCache

• IAssemblyEnum

• IAssemblyName

“AssemblyInfo” struct and “GAC” sealed class is also implemented.

31

 Figure 4.13 Cache Flags enumeration

 Figure 4.14 Name Display Flags enumeration

 Figure 4.15 Assembly name property enumeration

32

 Figure 4.16 IAssemblyEnum

interface

 Figure 4.17 IAssemblyCache

interface

 Figure 4.18 IAssemblyName interface

33

 Figure 4.19 AssemblyInfo struct

 Figure 4.20 GAC class interface

After enumerating global assembly cache, gathered data from different interface

are collected in a single class named as “GACComponent”. This class intended to

use for any purposes. In Weendigo any instance of this class maps to single row in

assembly list. The whole list is represented in a single instance single class named as

“GACComponentCollection”.

Also, there is support for adding assemblies to toolbox by clicking browse button

displayed in Toolbox Items dialog. Weendigo Toolbox is a container for components

implemented BaseDisplayObject and Weendigo IDE is a container for Weendigo

Toolbox. Weendigo Toolbox allows developers to built their own components and

distribute assembly files. When a film designer wants to use this component, adding

assembly to toolbox will be enough. Thus proves that Weendigo has an extensible

framework.

34

GACComponent
Sealed Class

Fields

buildNumber

componentName

fullPath

majorVersion

minorVersion

qualifiedName

revisionNumber

Properties

BuildNumber

FullPath

FullyQualifiedName

MajorVersion

MinorVersion

Name

RevisionNumber

VersionString

Methods

BuildName

BuildPath

BuildQualifiedName

BuildVersion

GACComponent (+ 1 overload)

 Figure 4.21 GACComponent class

interface

35

GACComponentCollection
Sealed Class

Fields

alList

Properties

Count

CurrentCacheFlags

this

Methods

GACComponentCollection

GetEnumerator

IEnumerable<GACComponent>.GetEnumerator

Populate

Nested Types

ComponentEnumerator
Class

Fields

cCol

index

Properties

Current

IEnumerator.Current

Methods

ComponentEnumerator

Dispose

MoveNext

Reset

IEnumerator<GACComponent>

IEnumerable<GACComponent>

 Figure 4.22 GACComponentCollection class interface

4.4 Property Window

Weendigo serves a properties window that enable users to view and change the

design-time properties of selected objects that are located in editors and designers.

This properties window can also be used to edit and view file, project, and solution

properties. This Properties Window is available from the View menu.

36

The Properties window displays different types of editing fields, depending on the

needs of a particular property. These edit fields include edit boxes, drop-down lists,

and links to custom editor dialog boxes. Properties shown in gray are read-only.

There are two views of properties window available to use in Weendigo IDE.

• Categorized: Lists all properties and property values for the selected

object, by category. You can collapse a category to reduce the number of

visible properties. When you expand or collapse a category, you see a plus

(+) or minus (-) to the left of the category name. Categories are listed

alphabetically.

• Alphabetic: Alphabetically sorts all design-time properties and events for

selected objects. To edit an undimmed property, click in the cell to its right

and enter changes.

Also there is a description pane which is intended to show the property type and a

short description of the property. A sample property window items are displayed in

the figure 2.23

Property window enumerates an object’s public properties and information shown

in property window must be explicitly set by using custom attributes. For instance,

Center Point public property of BaseDisplayObject is given below:

[Browsable(true),

 Bindable(false),

 ReadOnly(false),

 Category("Apperance"),

 DesignOnly(false),

 Description("Object Center Position for current frame"),

 DisplayName("Center Point")]

public virtual Point3D CenterPoint

{

get { return objectCenter; }

set { objectCenter = value; }

}

37

Code snippet given above shows that this object has a property named as

CenterPoint and encapsulates objectCenter private member. Browsable attribute

accepts a boolean value. If true, this property will be shown in property window,

otherwise not. Bindable attribute accepts a bolean value. It is reserved for future use,

which is intended to bind 3D objects using information gathered from a data source

like a database. ReadOnly attribute accepts a boolean value. If true, this property will

be shown in gray and will be read only by the definition. Category attribute accepts a

string. This string specifies the name of the category in which to group the property

when displayed in Property Window. Description attribute accepts a string. This

string specifies a description when displayed in Property Window. This string is

shown in “Description Pane”. DisplayName attribute accepts a string. This string

specifies the property name when displayed in Property Window.

Figure 4.23 Property Window Properties

38

Point3D is defined as a serializable struct. In addition, this struct has a built in

TypeConverter which is used by Property Window to show any instance of Point3D.

Point3D struct definition is given below:

[Serializable, TypeConverter(typeof(Point3DConverter))]

public struct Point3D

{

}

Point3D
Struct

Fields

Empty

v

Properties

Length

Vector

X

Y

Z

Methods

Clone

ConvertColor

Equals

GetHashCode

operator -

operator !=

operator *

operator / (+ 1 overload)

operator +

operator <

operator ==

operator >

Point3D (+ 1 overload)

SetFromColor

ToString

 Figure 4.24 Point3D class interface

Point3D encapsulates a vector inside, and has operator overloading

implementations. Considering Property Window, this class implementation is out of

scope. Point3DConverter is a class inherits from TypeConverter class. When

property window wants to display a property in type of Point3D, related a new

39

instance TypeConverter class is initiated and displayed in Property Window.

Point3DConverter class details are given below:

Point3DConverter

TypeConverter

Class

Methods

CanConvertFrom

CanConvertTo

ConvertFrom

ConvertFromString

ConvertTo

GetProperties

GetPropertiesSupported

 Figure 4.25 Point3D Converter class

interface

This class implementation is given below:

public class Point3DConverter : TypeConverter

{

public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType)

{

if (sourceType.Equals(typeof(String)))

return true;

return base.CanConvertFrom(context, sourceType);

}

public override object ConvertTo(ITypeDescriptorContext context,

System.Globalization.CultureInfo culture, object value, Type destinationType)

{

if (destinationType.Equals(typeof(String)))

return value.ToString();

return base.ConvertTo(context, culture, value,destinationType);

 }

public override bool CanConvertTo(ITypeDescriptorContext context, Type destinationType)

{

if (destinationType.Equals(typeof(String)))

40

return true;

return base.CanConvertTo(context, destinationType);

}

public override object ConvertFrom(ITypeDescriptorContext context,

System.Globalization.CultureInfo culture, object value)

{

if (value is String)

{

return ConvertFromString(value.ToString());

}

return base.ConvertFrom(context, culture, value);

}

public override bool GetPropertiesSupported(ITypeDescriptorContext context)

{

return true;

}

public override PropertyDescriptorCollection GetProperties(ITypeDescriptorContext context,

object value, Attribute[] attributes)

{

return TypeDescriptor.GetProperties(value, new Attribute[] {

BrowsableAttribute.Default});

}

public static new Point3D ConvertFromString(string value)

{

string[] strArr = value.Split(';');

try

{

return new Point3D(float.Parse(strArr[0]), float.Parse(strArr[1]),

float.Parse(strArr[2]));

}

 catch (Exception)

 {

 throw new InvalidCastException(value);

 }

 }

 }

41

There are built in type converters for types like Color. When a color is shown in

property grid a type converter and a type editor is initiated automatically to show and

allow user to edit.

Figure 4.26 Color Type Convertor user interface

4.5 Timeline Track Bar

A timeline is a description of a series of events in chronological order,

chronological arrangement of occurrences. While we are talking about designing a

3D animation film, it is required to have track bar to control movie over a timeline.

Weendigo has a built in timeline track bar allow user to review or modify the timing

in the active scene.

Weendigo timeline track bar enables user to perform following actions inside a

scene:

• Set the scene length of the active scene including extending and shortening

scene. A scene length is set to 60 by default.

• Seek to a specific time to edit the object properties at this specific time.

Currently, sensitivity of timeline is limited with the units of seconds.

42

Weendigo timeline track bar is implemented as a control and embedded into

Weendigo IDE. Class details are given below for clarity.

 Figure 4.27 Timeline Trackbar Class interface

This implementation is very close general track bar implementation. Additionally

it has a duration string relying above of the timeline track bar.

43

Figure 4.28 Weendigo Timeline track bar has a duration string relying at the top.

As a requirement for a fully integration with Weendigo IDE, Weendigo timeline

track bar exposes a toolbox object compatible with Weendigo Toolbox. Additional

to these implementations, “TimeSpanUIEditor” which inherits UITypeEditor is

implemented to able user to view and modify duration in the property window. Class

details of “TimeSpanUIEditor” is given below;

 Figure 4.29 TimespanUIEditor

class interface

Weendigo timeline track bar has the following properties that are enumerated by

Weendigo IDE:

• Data

o Current Time: active time of the current scene.

o Scene Duration: total duration of the scene.

o Scene Length: Equivalent to “Scene Duration” property it is the

total length of the scene length. But the time is in the units of

seconds.

4.6 Resource Management

Textures, icons, mesh files are commonly used resources in Weendigo

implementation. Thus requires a management ability to coordinate and provide a

caching mechanism for a resource access. In weendigo access to any resource

44

managed using a single class. Also icons used in Weendigo design editor are

managed. But this management is done automatically by Microsoft .NET

Framework.

Textures and mesh files are loaded to memory after the first load request. This

loading is done only once for a file using whole execution life cycle. Thus means

unloading these files are not done unless the application is closing. There are

different types of resources managed by Weendigo. A list of these resources is given

below:

• Textures

• Effects

• Fonts

• Meshes

Resources are cached in a class implemented with Singleton design pattern.

ResourceCache class holds references of instances load demanded objects. Each of

these resources can be easily identified with a string. For instance, a file based object

can be identified by its full path. By the way, a font can be identified by its name.

Each of these objects is stored in hash tables with their unique identifiers. When a

texture file is demanded to load, file is loaded to memory at first demand and added

to texture cache with its full path. Afterwards when a request is demanded to access

this file, file is not read and loaded to memory again. Cached copy is returned to

callee. By the way, this means Weendigo does not have a support to handle changes

on a resource at run time due to performance reasons. “ResourceCache” class details

are given below for clarity:

45

ResourceCache
Class

Fields

effectCache

fontCache

localObject

textureCache

Properties

Current

Methods

CreateCubeTextureFromFile

CreateCubeTextureFromFileEx

CreateEffectFromFile (+ 1 overload)

CreateFont (+ 1 overload)

CreateTextureFromFile

CreateTextureFromFileEx

CreateVolumeTextureFromFile

CreateVolumeTextureFromFileEx

OnCreateDevice

OnDestroyDevice

OnLostDevice

OnResetDevice

ResourceCache

 Figure 4.30 Resource Cache class interface

Only device reset and lost events forces to empty and reload cached items.

Additionally, icons used in weendigo design editors are cached and managed by

Microsoft .NET Framework. Microsoft .NET Framework has a built in support for

resource management. All icons are used in Weendigo editor is sized at 16x16. Only

one bitmap image is used to access these icons. Thus, forces us to extract relevant

images at run time.

All Microsoft .NET Framework managed resources are referenced using their

indexes. Whole picture is given below with a zoom (200%):

Figure 4.31 Icons in Weendigo Editor

46

This image consists of fourteen 16x16 images. Image descriptions are given

below consecutively:

• Properties Window Image

• Solution Explorer Window Image

• Delete Image

• Close Project Menu Image

• View Scenario Image

• Save Menu & Toolbox Image

• Compile Project Menu Image

• Toolbox Window Image

• Play Movie Image

• Play Scene Image

• New Weendigo Solution Image

• Weendigo Solution Image (in Solution Explorer Window)

• Weendigo Scene Image (in Solution Explorer Window)

• Save as Image

Each of these images are extracted at run time and managed by Microsoft .NET

Framework. As seen in the figure above, whole image has a pink layer. This is

required to use color keying. Pink is used as a chroma key in this implementation. A

chroma key is the removal of a color (or small color range) from one image to reveal

another image "behind" it. The removed color becomes transparent. This technique is

also referred to as "color keying", "colour-separation overlay" ("CSO").

The principal subject is photographed / filmed against a background having a

single color or a relatively narrow range of colors, usually in the blue, green or pink

(in this case pink). When the phase of the chroma signal corresponds to the

preprogrammed state or states associated with the background color(s) behind the

principal subject, the signal from the alternate background is inserted in the

composite signal and presented at the output. When the phase of the chroma signal

deviates from that associated with the background color(s) behind the principal

47

subject, video associated with the principal subject is presented at the output. This

process is commonly known as "keying", "keying out" or simply a "key."

The best known example is television weather broadcasts, where the

meteorologist is filmed in front of a flat, evenly colored green or blue screen. The

background color is removed electronically, and replaced with a weather map which

the meteorologist points to (by glancing at monitors’ off-camera). The meteorologist

must not wear clothing with any color close to the background color, or else part of

the clothing will be replaced with the background video.

Blue is used for weather maps and movie special effect because it is

complementary to human skin tone and therefore is easier to key out. However, in

many instances green has become the favored color because digital cameras retain

more detail in the green channel and it requires less light than blue. Although green

and blue are used most often, any color can be used. Occasionally a magenta

background is used.

With better imaging and hardware many companies are avoiding the confusion

often experienced by weather presenters by lightly projecting a copy of the CSO

image onto the CSO blue/green background. This allows the presenter to accurately

point and look at the map without referring to the monitors.

Figure 4.32 A sample snapshot of commonly used icons

48

4.7 Weendigo Docking Library

The Dock is a graphical user interface feature first introduced in the NeXTSTEP

and OPENSTEP operating systems, and radically changed and refined in Mac OS X,

where it behaves more like the Apple Newton's Newton OS Dock. Windows does not

have a native dock equivalent, but many applications like Microsoft Visual Studio

.NET have built in docking feature inside with a limited usage. Weendigo has an

important built in library inside to serve complex graphical user interface in

Weendigo Design Editor.

There are too many features implemented in Weendigo Docking Library but

several features are included and used in Weendigo editor. The rest of these features

are reserved for further releases. Following features are included and used in current

version:

• Auto Hide Panels

• Tab page support for Panels

• Floating forms and panels

• MDI support for tab pages

Menu Bar

Toolbar

Top Pane

L
ef

t
P

an
e

Content Pane

R
igh

t P
ane

Bottom Pane

Status Bar

Table 4.1 Weendigo User Interface Structure

49

Menu bar, status bar, and the toolbar is visible unless marked as invisible by user.

Other panes including top, right, bottom, left and content pane are logical panes

therefore they are invisible. There three floating form inside weendigo design editor.

They are given below:

• Solution Explorer

• Toolbox

• Property Window

All of these forms are embedded inside floating forms. Thus allows user to re-

dock, move all of these controls to any pane. Also content pane contains a tabbed

page control which allow user to switch between them easily. It has similar features

with MDI forms.

Graphical computer applications with a Multiple Document Interface (MDI) are

those whose all windows reside under a single parent window (usually with the

exception of modal windows), as opposed to all windows being separate from each

other (single document interface). In the usability community, there has been much

debate over which interface type is preferable. Generally SDI is seen as more useful

in cases where users work with more than one application.

The disadvantage of MDI usually cited is the lack of information about the

currently opened windows: In order to view a list of windows open in MDI

applications, the user typically has to select a specific menu ("window list" or

something similar), if this option is available at all. With an SDI application, the

window manager's task bar or task manager displays the currently opened windows.

In Weendigo implementation "tabs" to show the currently opened windows in an

MDI application is preferred. By the way, sometimes this approach is called as

"tabbed document interface" (TDI). When tabs are used to manage windows,

individual ones can usually not be resized.

50

In the Weendigo implementation, the panes are referred as “hot zones” and

implemented in “HotZone” class under “Weendigo.Controls.Docking” namespace.

This class has virtual method declaration; nevertheless it is not defined as an abstract

class as these methods are not defined as pure virtual. This class details are given

below for clarity:

HotZone
Class

Fields

_dragWidth

_hotArea

_newSize

Properties

HotArea

NewSize

Methods

ApplyChange

DrawIndicator

DrawReversible

HotZone

RemoveIndicator

UpdateForMousePosition

 Figure 4.33 Hotzone class interface

Floating hot zones are implemented in one of the inheritor of “HotZone” class

called as “HotZoneFloating”. This class allows floating forms to be added. These

zones might include zero or more docked controls inside them. While this zones are

dragging and being dropped this class instance behaves as a container. This class has

implementation of predefined virtual methods and behaves different which is an

expected result of polymorphism. This class details are given below:

51

HotZoneFloating

HotZone

Class

Fields

_drawPos

_drawRect

_offset

_redocker

Methods

ApplyChange

CalculateFloating…

DrawIndicator

HotZoneFloating

RemoveIndicator

UpdateForMouse…

 Figure 4.34 HotZoneFloating

class

Another inheritor of HotZone class is “HotZoneReposition” this implementation

allows reposition child controls in a given order. Order is set by using “Position”

enumeration. This class details are given below:

 Figure 4.35 HotZoneReposition class interface

52

Also for tabbed grouped controls “HotZoneTabbed” class is implemented as a

inheritor of “HotZone” in order to suspend layout in Weendigo Editor.

 Figure 4.36 HotZoneTabbed class

Each control in these zones must be a window to provide abstraction and provide

a fully integration. Therefore “Window” class is implemented which is an inheritor

of “ContainerControl”. Container control allows adding controls and behaves as a

host for all child controls. These classes’ details are given below for clarity:

53

Window

ContainerControl

Class

Fields

_autoDispose

_contentCaption

_floatingCaption

_fullTitle

_manager

_minimalSize

_parentZone

_redockAllowed

_state

_windowDetails

_zoneArea

Properties

AutoDispose

DockingManager

FullTitle

MinimalSize

ParentZone

RedockAllowed

State

WindowDetails

ZoneArea

Window

ContainerControl

Class

Methods

HideDetails

NotifyAutoHideIm…

NotifyCloseButton

NotifyContentGot…

NotifyContentLos…

NotifyFullTitleText

NotifyHideButton

NotifyShowCaptio…

OnDetailInserted

OnDetailRemoving

OnDetailsClearing

OnFullTitleChanged

PropogateNameV…

RecordRestore

ShowDetails

Window

WindowDetailGot…

WindowDetailLos…

Events

FullTitleChanged

 Figure 4.37 Window class interface

Each instance of this class must have a valid reference of Docking Manager. This

control is similar to windows forms by the way these control must be added to an

existing zone.

Window Content is an inheritor of Window class. This class intended to ease use

of window class. There are several useful implementations like disposing itself when

there is no child controls. As these class have events and consuming system

resources these a nice feature for an application. Also this class has a functionality to

bring it self to top among other instances in the same zone. This class details are

given below:

54

WindowContent

Window

Class

Fields

_contents

_style

Properties

Contents

Methods

BringContentToFront

OnContentChanged

OnContentInserted

OnContentRemoved

OnContentRemoving

OnContentsClearing

Suicide

WindowContent

 Figure 4.38 Window Content

class interface

Auto hiding and pinning window contents is an important feature to allow user to

customize designer items layout according to their habits. This feature is

implemented as a component but this component is not intended to be use as a

toolbox item. Therefore, toolbox support is disabled by overriding toolbox attributes

inside class declaration. This class is an inheritor of panel control in windows forms.

Any instance of this class automatically docks itself as a requirement. This auto hide

panel is always hidden until some contents are added. When the main Weendigo

editor window is resized there are some special actions to be taken. This action

forces to invalidate and reconstruct this control. It is not a functionality requirement,

it just prevents drawing artifacts. Also each instance of these auto panels adds itself

to the main application filtering list. Only mouse events are filtered when this form is

activated and contains focus on controls inside this panel and the panel is visible.

Additionally, this class has a nested class inside. This class is a host panel and

performs its own paintings to serve the functionality of hiding and showing panel at

run time. It might have more than one child control inside. But there must be at least

one child control. Otherwise object might be constructed and will not be visible until

55

a child control is added. Auto hide panel and this nested class of auto host panel class

details are given below:

AutoHidePanel

Panel

Class

Methods

AddContent

AddContentIntoTabStub

AddContentsAsGroup (+ 1 overload)

AutoHidePanel

BringContentIntoView

ContainsContent

CreateTimers

DefineRectangles

KillDisplayedWindow

MonitorControl

MonitorPanel

OnContainerResized

OnDismissTick

OnPageAutoHide

OnPageClicked

OnPageClose

OnPageContextMenu

OnPageOver

OnPagesLeave

OnPaintBackground

OnPanelEnter

OnPanelLeave

OnSlideTick

OnSystemColorsChanged

PreFilterMessage

PropogateNameValue

RemoveContent

RemoveDisplayedWindow

RemoveShowingWindow

RestoreObjectForContent

SetFocusToWCT

StartDismissTimer

StartSlideTimer

StopDismissTimer

StopSlideTimer

TabStubForContent

UpdateContentSize

Nested Types

IMessageFilter

 Figure 4.39 Auto Hide Panel class interface

56

Whole of docking operations are managed by a single class. Only one instance of

this class is used during runtime, but it has a built in support for multiple instances.

This is why this class is not implemented using singleton design pattern. A Form can

cause the child controls to be reordered after the initialization but before the “Form

Load” event. Therefore this class hooks into the event and force the auto hide panels

to be ordered back into their proper place to handle this activity. This class has the

ability to load window layout from a configuration file and store it in a configuration

file. This class details are given below:

 Figure 4.40 Docking Manager class interface

There are several Win32 native API calls made in docking manager. All of these

calls are collected inside classes according to related library. GDI32 class contains

calls made to gdi32.dll and User32 class contains calls made to user32.dll.

57

Figure 4.41 It is possible to add a numerous of content panel inside content zone. Titles are

scrolled when needed.

Figure 4.42 Any panel can be dragged and docked into another zone, virtual result is shown

at then time of dragging

58

4.8 Dialog Management

Dialogs used in Weendigo are managed by a single controller. This provides a

valuable flexibility that allows you customize user dialogs whenever you want.

Dialogs used in Weendigo are managed via single class implemented using singleton

design pattern. As weendigo design, it is not a requirement to be thread safe for this

class implementation. Weendigo interacts with a single user at a time therefore only

one user dialog can be shown. It is not feasible to show multiple dialog boxes

simultaneously. All of the dialogs including splash form are handled inside this class

implementation. Class details are given below for clarity:

DialogManager
Class

Fields

current

isRunning

splashFrm

synObject

Properties

AssemblyFilter

Current

ProjectDefaultExtension

SceneDefaultExtension

SceneFilter

WeendigoFilter

Nested Types

MessageBeepType
Enum

Default

Ok

Error

Question

Warning

Information

DialogManager
Class

Methods

CloseSplashScreen

ConfirmClosePage

ConfirmRemoveSolutionItem

CreateProjectDialog_CheckFile

CreateSceneDialog_CheckFile

DialogManager

DoSplash

menuItem_Click

MessageBeep

ShowChooseAssemblyDialog

ShowChooseToolboxItemDialog

ShowCompileErrors

ShowCompileErrorsInView

ShowCreateProjectDialog

ShowCreateSeceneDialog

ShowError (+ 1 overload)

ShowOpenProjectDialog

ShowOpenSceneDialog

ShowScenario

ShowSplashScreen

ShowToolboxContextMenu

Nested Types

 Figure 4.43 Dialog Manager class interface

59

Dialog box usage is summarized in below.

• Confirm Dialogs: prompts a question to user with choices accept, decline

and cancel. There are several cases in usage, for instance as user closing a

design page, a confirmation is required.

• Information Dialogs: display an information about user request like

compile result of a scene.

• Splash Screen: shown at startup, creates a new thread and allows required

operations to be completed in a background thread, yields CPU to perform

this operations.

• Open Dialogs: displays a file dialog box to open an existing file. There

are several cases in usage, for instance as user demands to load an existing

project.

• Save Dialogs: displays a file dialog box in save mode to save some data

on a non existing file. There are several cases in usage, for instance as user

demands to create a new project.

• Context Menu: display a context menu according to the selected object.

Context menus are especially useful on user right clicks.

• Message Beep: plays a waveform sound. This functionality is a wrapper

for Win32 message beep. After adding the play sound request to queue,

Win32 message beep function returns control to the calling function and

plays the sound asynchronously. If it cannot play the specified alert sound,

then attempts to play the system default sound. If it cannot play the system

default sound, the function produces a standard beep sound through the

computer speaker. Also users can disable the warning beep by using the

Sound Control Panel application. This functionality is useful especially in

usage of dialog boxes to warn user about an operation is being performed.

60

CHAPTER FIVE

SCENARIO MANAGEMENT

A scenario (from the Italian, that which is pinned to the scenery) is a brief

description of an event or a series of events, an outline of entrances, exits, and action

describing the plot of a play that was literally pinned to the back of the scenery. A

scenario is also an account or synopsis of a projected course of action, events or

situations. Scenario development is used in policy planning, organizational

development and, generally, when organizations wish to test strategies against

uncertain future developments. Scenario management has an important factor on the

film appreciation.

5.1 Scenario (Game) Engine

Although there is no need for a game engine in order to run a 3D animation video

properly. There is a need for an engine to manage scenario. Infact, the game engine

embedded in Weendigo behaves like a rule based engine and scenario steps are rules

and entire scenario inside a scene represents a flow. This is why this engine is called

as game engine.

A game engine is the core software component of a computer or video game or

other interactive application with real-time graphics. It provides the underlying

technologies, simplifies development, and often enables the game to run on multiple

platforms such as game consoles and Microsoft Windows. By the way, Weendigo

game engine performs object attribute mapping objects in scene based on predefined

scenario.

Weendigo game engine is not a common game engine it is specific for a 3D

animation film. A 3D animation film requires a robust graphics engine. Game engine

does not perform too much operation. Most of the CPU time is consumed by

graphics engine. During Weendigo graphics engine and game engine integration tests

and individual graphics engine CPU usage rate for the graphics is approximately 98

61

% of over all CPU usage. Hence this is a visual application this result is expected and

acceptable.

In the main message loop of the Weendigo application, arbitrary calls are made to

game engine and graphics engine. Game engine controls scene flow by the time.

There are two type of times in Weendigo:

• Application time

• Elapsed time

Application time is time elapsed from the beginning, elapsed time is time elapsed

since last frame. Also this value is used to calculate frame per second. But these

times are important for the game engine. Application time equals to video time,

elapsed time is used to be notified scene changes. If the absolute value of application

time and the absolute value of the application time minus elapsed time differs, scene

has to be changed.

Interpolation of object properties such as position and velocity (this can be also

referred as acceleration) is done by Scenario Manager in the units of seconds. But the

interpolation of object properties is done by game engine. As this directly depends on

underlying hardware specifications and working process simultaneously, it is not

guessable during at design time.

Also there is a darken scene algorithm for each scene passes. Thus forces game

engine to wait scene pass and be aware of scene pass algorithm. Darken scene

algorithm is implemented in graphics engine, game engine has no idea on what is

being done between scene passes, but the game engine has to know to wait it. Game

engine class details are given in the figure below.

Game engine has another important duty; managing camera. Because graphics

engine does not know which objects are being displayed, game engine calculates the

bounding box and decides camera’s best position. Mostly, camera management is

62

implemented as a graphics engine feature. By the way using this approach will let

user to manage camera position and angles at design time in further versions of

Weendigo.

Graphics engine served in Pneuma is an abstract class and has exposed interfaces.

These interfaces are both implemented in a single class called “SceneView”. This

class does not perform too much things inside. But this class is the only way to

access graphics engine. This class may be considered as a façade of the graphics

engine.

There is another important class like game engine called Pneuma application. This

class is implemented using singleton design pattern like game engine class. This

class instantiates game engine and graphics engine and initializes video. Details of

these classes are given in the figure below:

 Figure 5.1 Pneuma Application

class interface

63

 Figure 5.2 SceneView class interface

64

 Figure 5.3 GameEngine class interface

5.2 Scene Design User Interface

Weendigo has an interface that enables users to design a movie scene. Specify

object properties, runtime and design time positions with a simple drag and drop

operation. Users are able to cut / copy / paste / delete objects like modifying a text in

a text document.

65

Weendigo compatible objects (any object inherits from BaseDisplayObject) are

enumerated in Weendigo Toolbox. User drags and drops these components on a

scene. A scene is an object inherits from BaseDesignView. Using same programming

semantic, also cut / copy / paste / delete operations on these objects are possible.

Whenever user right clicks on an object that inherits from BaseDisplayObject,

Weendigo IDE will automatically show a popup context menu like following figure.

User is free to choose any of these operations.

Figure 5.4 Standard text based operations are also available for Weendigo Objects

Embedding an object that inherits from BaseDisplayObject is not supported (also

not required) this is why “Paste” operation is disabled, as seen in the figure above.

By the way, whenever user right clicks on scene background, Weendigo will show a

popup context menu like following:

66

Figure 5.5 Also weendigo objects can be pasted inside same scene. Weendigo will

initiate a new instance which is clonned version of the original one.

If Weendigo Clipboard (which differs from Microsoft Windows Clipboard object)

contains an object inherits from BaseDisplayObject “Paste” operation in this popup

context menu is enabled, otherwise it will be disabled by default. When user chooses

“Paste” operation in this case a new object will be added to scene that inherits from

“StaticObject”. All of the properties including private members of object will be

copied to a new instance of object. However, because of the requirement of each

object must have a unique name inside a scene; newly initiated object have a

different name. Object will be renamed by adding a counter value as a suffix for the

copied object name. Also, all of these operations can be done dragging object with

Ctrl key is pressed. Additionally, these operations can be done by using “Ctrl + X”,

“Ctrl + C”, “Ctrl + V”, “Ctrl + Del”.

As a programming perspective, all of these operations are done using XML

serialization. For instance, loading a scene from a file is done by XML de-

serialization. A scene is defined with “FilmScene” Class details are given in below:

67

FilmScene
Class

Fields

background

sceneDuration

sceneFrames

sceneName

sceneObjects

scenePath

Properties

Background

Duration

FrameCount

Frames

Name

Objects

Path

this (+ 1 not shown)

Methods

ClearObjects

FilmScene (+ 1 overload)

GatherLastState

GatherNextFrame

RebuildFrames

 Figure 5.6 Film Scene class interface

A FilmScene is built up from a “SceneFrame” collection and “SceneObject”

collection. Scene Object directly maps to an instance of BaseDisplayObject at design

time. SceneObject contains required information to build objects at runtime. This

class details are given below:

68

SceneObject
Class

Fields

centerPosition

filePath

objectLocation

objectName

objectSize

objectText

objectType

scaleFactor

velocity

visible

Properties

CenterPosition

CenterPositionString

DesignTimeLocation

DesignTimeLocationString

DesignTimeSize

DesignTimeSizeString

ObjectName

ObjectPath

ObjectType

ScaleFactor

Text

Velocity

VelocityString

Visible

Methods

SceneObject

 Figure 5.7 Scene Object class interface

As shown in the figure above, this is an entity class that means it only holds data

does not operate on it.

69

SceneFrame
Sealed Class

Fields

frameIndex

frameObjects

Properties

Index

Objects

this

Methods

SceneFrame (+ 1 overload)

Nested Types

FrameObject
Class

Fields

centerPosition

objectName

objectText

scaleFactor

velocity

visible

Properties

CenterPosition

CenterPositionString

ObjectName

ScaleFactor

Text

Velocity

VelocityString

Visible

Methods

Clone

CreateFromDisplayObject

FrameObject

ICloneable.Clone

FrameObjectCollection

CollectionBase

Sealed Class

Properties

this (+ 1 not shown)

Methods

Add

Clone

Contains

ICloneable.Clone

IndexOf

Insert

Remove

ICloneable

ICloneable

 Figure 5.8 Scene Frame class interface

70

These classes are used to transfer data between design time and runtime. Xml

Serialized version of an instance is given below for clarity:

<?xml version="1.0"?>

<Scene xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" Name="Scene1" Duration="5"

Path="D:\Workspace\documents\test1\mslogo\Scene1.scn">

<Background Color="255;0;0;0" Stencil="0" Z-Depth="1" ClearFlags="Target, ZBuffer" />

<Objects>

 <Object CenterPosition="0;0;0" Velocity="0;0;0" ScaleFactor="2" Visible="true"

Path="crypt.x" Name="StaticObject" DesignTimeLocation="123;98" DesignTimeSize="105;28"

Assembly="Weendigo.PNeuma.StaticObject" />

 <Object CenterPosition="8;1;-15" Velocity="0;0;0" ScaleFactor="1" Visible="true"

Path="mslogo.x" Name="StaticObject1" DesignTimeLocation="218;209" DesignTimeSize="105;28"

Assembly="Weendigo.PNeuma.StaticObject" />

 </Objects>

 <Frames>

 <Frame Index="1">

 <Objects />

 </Frame>

 <Frame Index="2">

 <Objects />

 </Frame>

 <Frame Index="3">

 <Objects />

 </Frame>

 <Frame Index="4">

 <Objects />

 </Frame>

 <Frame Index="5">

 <Objects />

 </Frame>

</Scene>

Saving a scene state in Weendigo UI, performs XML Serialization on active

scene.

71

5.3 Scene Compilation

Compilation is the process of translating text written in a computer language into

another computer language that is meaningful for a computer. Generally output of

compilation process is either assembly language or machine language. Lexical

analyzing, preprocessing, parsing, and semantic analysis, code optimizations, code

generation are the steps of a compilation process. Compilation may include many or

all of these operations. Nevertheless these operations are not enough for a tool to

create 3D animation films. The missing operation in this process flow is logical

analyzing.

Lexical analysis is a scanning process that breaks statements into formerly

predefined tokens. For instance, following statement will be broken into identifiers

and operators tokens.

These statement will be tokenized like following:

Static analysis organizes produced tokens into syntax tree that describes structure.

Only syntax errors are handled in this process. Syntax analysis uses grammars. There

is just one grammar for a language. Here is the syntax tree of the previous example;

result= a + b * c / d

result = a + b * c / d

72

 Figure 5.9 Syntax tree of given example

Semantic analysis is the process of intermediate code generation and validates

meaning. Type and error checking is done at this step. After this step, a code

optimization step might occur. Machine independent code optimizations are

performed to improve efficiency. By the way, finding optimal code is NP

(Nondeterministic polynomial time) complete problem.

Code generation process translates intermediate code to real machine code.

Memory management, register allocation, instruction selection, and instruction

scheduling are the sub processes.

Generating a 3D animation movie needs additional compilation process which

was not done in the whole of these steps. Compilers could not catch runtime errors.

In fact, this is possible to detect at design time. For instance, an animated object

should have a valid mesh file name. If not, it is certain that we will have a run time

error. Due to cost of testing a 3D animation film, a 3D animation film tool should

handle these design time errors. Weendigo has a capability to compile each object

independently and inform user on these design time errors. In most cases, this could

Assign

Exp

Exp Exp

Exp Exp

Exp Exp

ID =

+

*

/

ID

ID

ID ID

73

be done by compiler. But there is not any compiler have built in support for this

facility. Consider following code snippet:

using(StreamReader sr = File.OpenText(“C:\\input.txt”))

{

// Do something

}

Compiler can easily perform a check on whether a valid text file named as

“input.txt” exists under drive lettered as “C”.

Every scene in a Weendigo project is designated with a SceneEditorWindow

which’s details are given in figure 3.10.

Each file under the active project can have only one SceneEditorWindow

instance. However, there can be different views for a scene. For example, a visual art

designer might want to have a Camera view to have different perspectives. Every

time, when user builds solution “CompileScene” method of each

“SceneEditorWindow” instance is called by Weendigo IDE.

Inside “SceneEditorWindow” ’s “CompileScene” method. All visible views are

compiled independently. This is done by calling “CompileView” method of each

instance which is inherited from “BaseDesignView”. Class details of

“BaseDesignView” are given in figure 3.11.

74

 Figure 3.10 Scene Editor Window class interface

75

 Figure 5.11 Base Design View class interface

Inside “CompileView” of an instance “BaseDesignView”, each object is compiled

by calling “BaseDisplayObject”’s “IsObjectValid” method.

For clarity, Weendigo Static Object’s compilation conditions are given below:

• A file name should be specified for mesh object.

• Specified filename must exist under Weendigo Media Path.

• Specified filename must be a valid X File which is the only mesh file type
supported by Weendigo IDE.

76

If any of these conditions are not met, a compiler error generated but compilation

process is not broken. After whole projects compilation, all errors are reported user

like following screen.

Figure 5.12 Compiler Errors are displayed in a dialog box and contains detailed information on error

Weendigo compiler complains that the object named as “StaticObject1” in Scene1

has a file name which is not exists under the Weendigo Media Path.

Weendigo support any components developed with a Microsoft .NET compatible

language. Additionally Weendigo compiles project against design time problems.

This is not a required feature for a tool to create 3D animation films, but this is a nice

to have feature.

5.4 Scenario Manager

A scenario (from the Italian, that which is pinned to the scenery) is a brief

description of an event or a series of events, an outline of entrances, exits, and action

describing the plot of a play that was literally pinned to the back of the scenery. A

scenario is also an account or synopsis of a projected course of action, events or

situations. Scenario development is used in policy planning, organizational

development and, generally, when organizations wish to test strategies against

uncertain future developments. Scenario management has an important factor on the

film appreciation.

77

Scenario management is similar to project management. Scenario management

has familiar steps with Software Development Life Cycle (SDLC). Before starting a

project, project manager has to define the subject and give a brief description on

what are the expectations and focus points. It is hard to guess what are the

requirements and costs of this project during this step. The project manager has to

define project scope and prepare a draft project plan to estimate project cost. After

retrieving the approval of sponsor, project scope is circumscribed and role players

are chosen. Project manager finalizes project plan defining each tasks in details and

maps these tasks to resources. These resources are staff assigned to this project in

software projects. At this time, all milestones are defined and it is clear to evaluate

project status at a specific time. In software projects, sometimes everything does not

go well and there can be latency in times. Fortunately, in scenario management there

is no doubt if an entry will occur at a specific time. Scenario management differs

from project management at this point.

Current version of Weendigo has a sensitivity limited at a second while managing

the scenario. By the way, a human eye is capable to interpret twenty four frames at a

second. Thus means if you prepare a scene with twenty four frame and play this

sequentially in a second. You will gather a movement. Weendigo covers these

sequentially order and lets scenario manager to define the object positions in a time

interval. Interpolation between two arbitrary seconds is done by Weendigo

automatically. This will save time on designing a movie and lets scenario manager to

concentrate on whole scenario instead of time frames. For instance, following

illustration shows a movement of an object in the twenty four frames.

78

Figure 5.13 Movement of an object in twenty four frames

79

First image has a red ball positioned nearly left bottom corner and moved to right

and up by two pixels at each time frame. Assume that you have an application that

representing each image arbitrarily from starting first indices to the twenty fourth

one. The time to show each image is must set to 1/24 seconds approximately 42

milliseconds. You will see that the red ball is moving to the right corner smoothly.

Here is a sample code snippet:

for (int index = 0; index < this.ImageList1.Images.Count; index++)

{

 this.pictureBox1.Image = this.ImageList1.Images[index];

 System.Threading.Thread.Sleep(41);

}

Note that 41 millisecond is used as a delay interval, because of using an algorithm

like this. We should loose 1 millisecond between thread switches according to

underlying operating system and hardware performance.

Familiar with this, scenario manager in weendigo must decide ach object position

according to timeline. Nowadays, most of computer video has prepared with thirty

frames at a second for best view. A more sensitive frame count at a second is useless

and not need since human eye capability.

Scenario management is done in a separate project named as “Scenario Manager”.

All classes used in scenario management are derived by BaseCrew abstract class.

The class diagram is given below:

80

 Figure 5.14 Class diagram of the classes used in scenario management

• Virtual Art Designer is not implemented yet. It is reserved for future

versions and intended to manage special visual effects.

• Light Manager is not implemented yet. It is reserved for future versions

and intended to manage lights on each scene.

• Director is implemented to manage all other crews and also itself.

• Script Writer is implemented to manage scenario according to user

decisions at design time.

• Sound Manager is not implemented yet. It is reserved for future versions

and intended to manage sounds used in video and synchronize sounds with

video.

BaseCrew is an abstract class and enforces inheritors to implement a method to do

their tasks. This class details are given below for clarity:

81

Figure 5.15 Base Crew class

interface

ScriptWriter is the class to extract frames from an existing scenario. This

extraction process involves linearly interpolation of each object between time

intervals. This interpolation is not specific for positioning objects also includes

velocity interpolation which is also known as acceleration. ScriptWriter class details

are given below. Note that this class implemented using singleton design pattern.

 Figure 5.16 Script Writer class interface

Director class loads scenario, builds frame scenes and manages all other crews.

By the way, there is only one crew ScriptWriter which is available to use.

A film is built up film scenes and a film scene is built up role players and scene

environment which is known as scenery. In weendigo implementation, a film is

described with a collection of film scenes. A film scene contains film scene frames.

Each film scene frame has the scene object references.

82

A scene object is implemented inside SceneObject class. Any design time object

(Weendigo Static Object, Weendigo Animation Object, Weendigo Text Object) is

mapped to a single instance of this class. Any instance of this object contains over all

information in design time, object size, position, type and any other feature. This

class details are given in the figure below.

A series of scene objects are defined in SceneObjectCollection class. This class

inherits CollectionBase class and allow add or remove scene objects at run time. This

class details are given in the figure below.

A scene frame contains references for the objects in scene and what changes will

be done on them. A scene frame contains scene frame object list and scene frame

objects. This object is an entity object and does not perform any modification.

83

SceneObject
Class

Fields

centerPosition

filePath

objectLocation

objectName

objectSize

objectText

objectType

scaleFactor

velocity

visible

Properties

CenterPosition

CenterPositionString

DesignTimeLocation

DesignTimeLocationString

DesignTimeSize

DesignTimeSizeString

ObjectName

ObjectPath

ObjectType

ScaleFactor

Text

Velocity

VelocityString

Visible

Methods

SceneObject

SceneObjectCollection

CollectionBase

Class

Properties

this (+ 1 not shown)

Methods

Add

Contains

IndexOf

Insert

Remove

SceneFrame
Sealed Class

Fields

frameIndex

frameObjects

Properties

Index

Objects

this

Methods

SceneFrame (+ 1 overload)

Nested Types

 Figure 5.17 Scene Frame, Scene Object, and Scene Object Collection class interfaces

Frame Object contains references for the objects inside a scene frame and new

calculated values for their common properties which are set at design them. Frame

object collection is a class to hold a series of frame object and allow add or remove at

run time. Frame object and frame object collection classes implements IClonable

interface to support cloning. Clone operation is an important need for extracting

whole frames and frame object from an optimized scenario.

Film Scene, Scene Frame Collection, Frame Object and Frame Object Collection

class details are given below for clarity.

84

SceneFrameCollection

CollectionBase

Sealed Class

Properties

this

Methods

Add

Contains

IndexOf

Insert

RebuildFrames

Remove

FilmScene
Class

Fields

background

sceneDuration

sceneFrames

sceneName

sceneObjects

scenePath

Properties

Background

Duration

FrameCount

Frames

Name

Objects

Path

this (+ 1 not shown)

Methods

ClearObjects

FilmScene (+ 1 overload)

GatherLastState

GatherNextFrame

RebuildFrames

FrameObjectCollection

CollectionBase

Sealed Class

Properties

this (+ 1 not shown)

Methods

Add

Clone

Contains

ICloneable.Clone

IndexOf

Insert

Remove

ICloneable

FrameObject
Class

Fields

centerPosition

objectName

objectText

scaleFactor

velocity

visible

Properties

CenterPosition

CenterPositionString

ObjectName

ScaleFactor

Text

Velocity

VelocityString

Visible

Methods

Clone

CreateFromDisplayObject

FrameObject

ICloneable.Clone

ICloneable

Figure 5.18 Scene Frame Object, Film Scene, Frame Object, Frame Object Collection class interfaces

85

All of these objects are serializable from an xml document and each scene file is

serialized to these objects to construct a film scene. Additionally it is possible to

view scene at design time but modifying XML serialized is not permitted. Designing

scene using Weendigo editor is more simple and recommended for referential

integrity between scene objects and frame objects. User must choose Play � View

Scenario to view scenario in XML form at design time.

Figure 5.19 Active scenario can be viewed via choosing View Scenario from Play menu.

86

CHAPTER SIX

PNEUMA

Pneuma is the name of the graphics engine embedded in Weendigo

implementation to provide abstraction on graphics implementation details. Therefore,

Pneuma performance and success affects directly Weendigo performance and

success.

6.1 Pneuma Design

A graphics engine is the core component of a computer or video game or other

interactive application with real-time graphics. It provides the underlying

technologies, simplifies development, and often enables the application to run on

multiple platforms. A graphics engine only deals with rendering process. Rendering

is the final process of creating the actual 2D image or animation from the prepared

scene. Hence Weendigo is a tool to create 3D animation films; graphics engine is the

one of the core components. Pneuma has the meaning of vital spirit; this is why

Weendigo Graphics engine is called as Pneuma.

Most often, graphics engines are built upon a graphics API such as Direct3D or

OpenGL which provides a software abstraction of the GPU or video card. Pneuma is

built on Microsoft DirectX API. One of the important requirements of a graphics

engine is performance. Graphics engines are generally compared with their

performances on a specific hardware. Each lines of code become important, when we

are talking about performance like graphics engines. Graphics hardware

manufactures are designing their own graphics engine which is specific for the

hardware they are producing. Currently, these kinds of products not ready for sale.

Also, this would be an unwanted approach if each defines their standards. There must

be consortium to define these graphics engine’s standards like W3C (World Wide

Web Consortium).

87

Weendigo implementation contains a software graphics engine design as used to

be. By the way, algorithms used in graphics engines are generally same. By the way,

graphics engines differ with their design. Class design and programming language

decision becomes more important. Weendigo is fully implemented with Microsoft

C# 2.0. There is no exception for graphics engine. Implementing graphics engine in

native C++ (might using naked functions for performance considerations) and

exposing a managed interface for interaction with graphics engine is an approach.

But this brings interoperation and marshalling cost.

The relation between objects can be defined using the following approaches in

UML standards:

• Association

• Aggregation

• Composition

• Generalization

Generalization can be done by using inheritance but dynamic dispatch and

dynamic types cost too much effort at run time. A method becomes “virtual” at the

highest level in the hierarchy in which it is declared as virtual. If static dispatch is

used, the compiler can determine at compile time which function definition will be

used where. The compiler can hard code this definition (or link to it) into object

code. If dynamic dispatch is used, the runtime has to do a query when the method is

call since it can not tell what method is being called. Dynamic dispatch involves

overhead which may be non-trivial, especially for classes that are used a lot.

Graphics engine classes are called frequently. And the call count of render method

in a time interval is tightly related with the performance. Graphics engine main class

is implemented with using the whole approaches given above by considering

performance issues. Main class is implemented with singleton design pattern which

guarantees there is no other instance in the process scope.

88

In Pneuma implementation an event based (delegated) approach is used. A

graphics engine should be able to detect and report device lost events. A device lost

event is fired when rendering target is lost generally render target window lost focus.

An event is fired when device lost, this implemented in Direct3D. By the way, while

considering performance, raising an event could be costly. An event is already fired,

raising another event would increase this cost. To overcome this cost, delegates are

used. An interface called “IDeviceCreation” is defined. Also calling render and

frame move methods at runtime could be costly. Using same approach an interface

called “IFrameworkCallback” is defined.

 Figure 6.1 IDeviceCreation and IFrameworkCallback interfaces

A built in device handler and device event argument class are already defined for

reporting device events to multiple recipients.

 Figure 6.2 DeviceEventHandler delegate and DeviceEventArgs class interfaces

Also for the render target window a standard Win32 window callback function is

defined as follows:

89

 Figure 6.3 WndProcCallback

delegate interface

Also a graphics engine should have a timer. This timer usually used for measuring

statistical data. But also used for reporting the time consumed between calls. This

consumed time is important for a game application and in this case, this is important

for Weendigo to prepare scene for the moment according to predefined scenario.

Data needed by timer is defined as follows:

 Figure 6.4 TimerData interface

“FrameworkTimer” class is defined to measure consumed time using

“TimerData” struct. This timer has a generic interface like Windows based timers.

Same operations are supported like start, stop, advance, and reset. This class details

are given below for clarity:

90

FrameworkTimer
Class

Fields

baseTime

isTimerStopped

isUsingQPF

lastElapsedTime

stopTime

ticksPerSecond

Properties

IsStopped

Methods

Advance

FrameworkTimer (+ 1 overload)

GetAbsoluteTime

GetElapsedTime

GetTime

Reset

Start

Stop

 Figure 6.5 Framework Timer class interface

Although related Pneuma classes are implemented with using singleton design

pattern. Pneuma needs to hold too much information thus make Pneuma classes

stateful contrast design pattern which requires classes to be stateless. Device

information and callback method references are hold in a single class called

“D3DFrameworkData”. This class contents are built up at startup time and minor

changes are done at runtime except device events (device lost events, switch between

full screen and windowed mode, etc). This class details are given below for clarity

(note that there is not any method, this class does nothing only holds graphics

engine’s state):

91

 Figure 6.6 D3Dframework Data class interface

92

 Figure 6.7 D3DFrameworkData class interface (continued)

Main operations are done in D3DFramework sealed class. Also some statistical

data is stored in this class and available for use Weendigo IDE like frame stats, FPS

and movie stats. Class details are given below for clarity:

93

D3DFramework
Sealed Class

Fields

CmdAdapter

CmdConstantFrame

CmdForceHardware

CmdForceHwVp

CmdForceRef

CmdForceSwVp

CmdFullscreen

CmdHeight

CmdNoErrorBoxes

CmdPureHwVp

CmdQuitAfterFrame

CmdStartx

CmdStarty

CmdWidth

CmdWindowed

DefaultSizeHeight

DefaultSizeWidth

DefaultStartingSize

isDisposed

isShutdownInProgress

lastDisplayedMessage

MinimumWindowSizeX

MinimumWindowSizeY

MinWindowSize

State

toggleMaximized

TrueIntPtr

WindowClassName

Properties

AppStillIdle

BackBufferSurfaceDescription

CanAutomaticallyChangeMonitor

ClientRectangle

Device

DeviceCaps

DeviceSettings

DeviceStats

DialogDefaultBGColor

ExitCode

FPS

FrameStats

IsAnyDialogInScene

IsD3DSettingsDialogShowing

IsDeviceResetInProgress

IsIgnoringSizeChanges

IsNotifiedOnMouseMove

IsOverridingFullScreen

IsShowingMsgBoxOnError

IsWindowed

MovieStats

PresentParameters

Window

WindowClientRectangle

WindowDeviceFullscreen

WindowDeviceWindowed

WindowFocus

WindowForm

Methods

Events

Nested Types

 Figure 6.8 D3DFramework class interface

94

 Figure 6.9 D3DFramework class interface

95

Inside Render3DEnvironment method, some preconditioned checks are done.

Here is a list of the preconditions:

• Device resetting is in progress,

• Device is lost or rendering is paused

• Render target window is active (if window is minimized or paused yields
CPU time to other processes)

There might be several exceptions raised in this method. One of the important one

is DriverInternalErrorException which reports graphics driver has an internal error.

This exception can be raised when Present method of device called which forces

graphics card to flush memory to screen. When this exception is thrown the

application can do one of the following:

• End, with the pop-up window saying that the application cannot continue
because of problems in the display adapter and that the user should contact
the adapter manufacturer.

• Attempt to restart by calling Device.Reset, which is essentially the same path
as recovering from a lost device. If Device.Reset throws the
DriverInternalErrorException, the application should end immediately with
the message that the user should contact the adapter manufacturer.

Pneuma attempts the path of resetting the device.

6.2 Hardware Enumeration

A 3D application’s performance is measured mostly with its performance and

reality. Underlying hardware specification directly affects application performance.

By the way, using hardware in a best way will lead application to gather best

performance and view. Microsoft DirectX provides a hardware abstraction layer, all

interaction between applications and hardware is performed via this layer.

Nevertheless, detecting underlying hardware and deciding best configuration must be

done by application as a preliminary obligation due to mentioned performance

reasons.

96

Hardware enumeration is a time consuming and asynchronous process.

Enumerating and retrieving capabilities of hardware is implemented with using

asynchronous callbacks. This callback method calls uses Microsoft DirectX to query

device information. Following hardware properties and capabilities can be queried

using DirectX API:

• Adapter Count: number of display adapters installed on the system.

• Adapter Identifier: description of the physical display adapters present in
the system.

• Adapter Display Mode: the currently in use display mode of the adapter.

• Adapter Mode Count: number of display modes available on this device.

• Adapter Modes: query the device to determine whether the specified adapter
supports the requested format and display modes

• Adapter Monitor: the handle of the monitor associated with device.

• Device Multisampling Capability: if a multisampling technique is available
with device.

• Device Capabilities: device specific additional capabilities.

Detecting these capabilities are representing these capabilities are implemented

using several classes. Sorting available display modes is done with

DisplayModeSorter class. This class implements IComparer interface using

templates in C# 2.0. Simply compares two distinct display modes by using width and

height information. If the first one is a larger display mode returns 1, if the second on

is a larger display mode return -1, if both are equal returns 0. Simple class definition

is given below;

 Figure 6.10 Display Mode

Sorter class interface

97

And here is the class implementation:

public class DisplayModeSorter : IComparer<DisplayMode>, IComparer

{

#region IComparer<DisplayMode> Members

/// <summary>

/// Compare two display modes

/// </summary>

public int Compare(DisplayMode d1, DisplayMode d2)

{

if (d1.Width > d2.Width) return +1;

if (d1.Width < d2.Width) return -1;

if (d1.Height > d2.Height) return +1;

if (d1.Height < d2.Height) return -1;

if (d1.Format > d2.Format) return +1;

if (d1.Format < d2.Format) return -1;

if (d1.RefreshRate > d2.RefreshRate) return +1;

if (d1.RefreshRate < d2.RefreshRate) return -1;

 // They must be the same, return 0

 return 0;

 }

 #endregion

 #region IComparer Members

 public int Compare(object x, object y)

 {

 if (x is DisplayMode && y is DisplayMode)

 {

 return Compare((DisplayMode)x, (DisplayMode)y);

 }

 throw new WeendigoException("Only DisplayMode is supported");

 }

 #endregion

 }

Adapter information is defined with the class AdapterInformation. Any instance

of this class describes an adapter which contains a unique adapter ordinal that is

installed in the system.

98

Figure 6.11 EnumAdapterInformation

class interface

Device information is defined with the class DeviceInformaiton. Any instance of

this class describes a Direct3D device that contains a unique support device type.

Figure 4.12 EnumDeviceInformation

class interface

A depth/stencil buffer format that is incompatible with a multisampling type is

defined with the class EnumDepthStencilMultisampleConflict.

Figure 4.13 EnumDepthStencilMultisampleConflict

class interface

99

EnumDeviceSettingsCombo is the class describing device settings that contain a

unique combination of adapter format, back buffer format, and windowed that is

compatible with a particular Direct3D device and the application.

EnumDeviceSettingsCombo
Class

Fields

AdapterFormat

adapterInformation

AdapterOrdinal

BackBufferFormat

depthStencilConflictList

depthStencilFormatList

deviceInformation

DeviceType

IsWindowed

multiSampleQualityList

multiSampleTypeList

presentIntervalList

 Figure 6.14 EnumDeviceSettingsCombo

class interface

Pure hardware enumeration is done with the class HardwareEnumeration which is

implemented using singleton design pattern. This class enumerates available

Direct3D adapters, devices, modes, etc. This class definition is given below for

clarity:

100

HardwareEnumeration
Sealed Class

Fields

adapterInformationList

allowedFormats

backbufferFormatsArray

depthStencilPossibleList

deviceCreationInterface

deviceTypeArray

isHardwareVertexProcessing

isMixedVertexProcessing

isPostPixelShaderBlendingRequired

isPureHardwareVertexProcessing

isSoftwareVertexProcessing

maximumHeight

maximumRefresh

maximumWidth

minimumHeight

minimumRefresh

minimumWidth

multisampleQualityMax

multiSampleTypeList

presentIntervalList

 Figure 6.15 Hardware Enumeration class interface

D3DFramework
Sealed Class

Methods

BuildOptimalDeviceSettings

BuildValidDeviceSettings

FindAdapterFormat

FindValidDeviceSettings (+ 1 overload)

FindValidResolution

GetAdapterOridinalFromMonitor

PrepareDevice

PrepareSettingsDialog

RankDeviceCombo

ShowSettingsDialog

UpdateDeviceSettingsWithOverrides

Nested Types

 Figure 6.16 D3Dframework class interface

101

Pneuma framework directly uses this enumeration classes and types to find valid

device settings. Building optimal device settings is the process to find out the

minimum settings to view the scene with the possible best view. For instance, display

mode is set 640x480 for full screen mode, and for the windowed mode this setting is

set to active windows display mode.

Finding valid device settings is the process of interpreting current device settings

whether that can be visible on the underlying hardware such as display modes and

refresh rates. This method finds the best combination of the followings:

• Adapter Ordinal

• Device Type

• Adapter Format

• Back Buffer Format

• Windowed

Given what is available on the system and the match options combined with the

device settings input. This combination of settings is encapsulated by the

EnumDeviceSettingsCombo class.

Settings Dialog is prepared using these classes and types. If user changes any of

the settings displayed to the user, and clicks “OK”; first of all these settings are

tested and applied then.

Following settings are displayed to the user and available to set by user at

runtime:

• A list of display adapters available to use

• Render device (Hardware, Reference, Software)

• Windowed mode

o Clip to device when window spans across multiple monitors

• Full screen mode

102

• Adapter Format

• Resolution

• Refresh Rate

• Back Buffer Format

• Depth Stencil Format

• Multisample Type

• Multisample Quality

• Vertex Processing

• Present Interval

Figure 6.17 Direct 3D Setting at the time of playing movie

6.3 Common Controls in 3D Environment

One of the common problems of game and 3D application development is using

user controls in a 3D environment. Hence 3D application requires too much CPU and

considering performance, most of the 3D applications are developed using low level

103

programming languages like C, C++ and assembly. It is hard to implement a user

control like drop down menu with this low level programming languages. There are

several pseudo remedies for this problem. One of the commonly used one is

developing user interface with a high level programming language and interoperating

these two programming language. Thus requires knowledge of two distinct

technologies and also interoperation cost can not be ignored.

In Pneuma implementation, it is a requirement to serve a framework for user

interaction. Perhaps, there is no need to have a user control in a movie but it is

important to have a preview of movie and controlling 3D graphics card settings and

facilitate these settings to gather best view.

Weendigo 3D user controls are implemented in C# under “Weendigo.PNeuma”

namespace. BaseControl is the name of the abstract base class which has the

common properties of a user control. This class is the base class of all Weendigo

controls and has the following properties:

• CanHaveFocus, ability to gather focus

• ControlType, One of the supported control types

• Height, height of the control in the units of pixels.

• Hotkey, a key-combination to activate, user, or identify this control can be
different for each instance of same user control type.

• ID, unique identifier of the control inside a parent control

• IsEnabled, specifies or determines whether this control is functional. When
set to false, the control appears dimmed, preventing any input from being
entered in this control to be processed.

• IsVisible, visibility of this control, effects child controls recursively

• Left, left position of the control inside parent control in the units of pixels

• Parent, reference to parent control which hosts this control inside.

• Top, top position of the control inside parent control in the units of pixels

• UserData, control specific user data

• Width, width of the control in the units of pixels.

104

Class details are given below for clarity:

 Figure 6.18 Base Control abstract class interface

A list of built in supported user controls are given below:

• Slider has similar interface with track bar control in Win32 environment
allows user to seek some value at specified range.

• List box has similar interface with list box control in Win32 environment. A
list of name value collection is held and rendered, and allows user to choose
one of the listed values.

• Textbox has similar interface with edit box control in Win32 environment,
allows user to edit content with full support mouse and keyboard.

• Label has similar interface with label control in Win32 environment, has a
read only text.

• Button has similar interface with button in Win32 environment, has a read
only text and handles click and submit events, allows user to trigger some
event.

• Checkbox has similar interface with checkbox in Win32 environment has a
read only associated text and a square which handles click events, allows user
to enable/disable some option.

105

• Radio Button has similar interface with radio button in Win32 environment,
has a read only associated text and a square which handles click event, allows
user to choose one of the option from grouped multiple radio buttons.

• Combo box has a similar interface with combo box control in Win32
environment. A list of name value collection is held and rendered, and allows
user to choose one of the listed values.

• Scrollbar has similar interface with vertical/horizontal scroll bar in Win32
environment, only interact with mouse.

Abstract Class

Button

Label

Class

CheckBox

Button

Class

ComboBox

Button

Class

Label

BaseControl

Class

ListBox

BaseControl

Class

RadioButton

CheckBox

Class

ScrollBar

BaseControl

Class

Slider

BaseControl

Class

TextBox

BaseControl

Class

 Figure 6.19 Class hierarchy between specified controls

Each class details are given below for clarity:

106

Button

Label

Class

Fields

ButtonLayer

FillLayer

isPressed

Properties

CanHaveFocus

Methods

Button

HandleKeyboard

HandleMouse

OnHotKey

RaiseClickEvent

Render

Events

Click

 Figure 6.20 Button

class interface

CheckBox

Button

Class

Fields

BoxLayer

buttonRect

CheckLayer

isBoxChecked

textRect

Properties

IsChecked

Methods

CheckBox

ContainsPoint

HandleKeyboard

HandleMouse

OnHotKey

RaiseChangedEvent

Render

SetCheckedInternal

UpdateRectangles

Events

Changed

 Figure 6.21 CheckBox class

interface

107

ListBox

BaseControl

Class

Fields

border

isDragging

isScrollBarInit

itemList

MainLayer

margin

scrollbarControl

scrollWidth

selectedIndex

selectedStarted

SelectionLayer

selectionRect

style

textHeight

textRect

Properties

CanHaveFocus

NumberItems

Style

this

Methods

AddItem

Clear

GetSelectedIndex

GetSelectedItem (+ 1 overload)

HandleKeyboard

HandleMouse

InsertItem

ListBox

OnInitialize

RaiseContentsChangedEvent

RaiseDoubleClickEvent

RaiseSelectionEvent

RemoveAt

Render

SelectItem

SetBorder

SetScrollbarWidth

UpdateRectangles

Events

ContentsChanged

DoubleClick

Selection

 Figure 6.22 ListBox class interface

108

Slider

BaseControl

Class

Fields

ButtonLayer

buttonRect

buttonX

currentValue

dragOffset

dragX

isPressed

maxValue

minValue

TrackLayer

Properties

CanHaveFocus

Value

Methods

ContainsPoint

HandleKeyboard

HandleMouse

RaiseValueChanged

Render

SetRange

SetValueInternal

Slider

UpdateRectangles

ValueFromPosition

Events

ValueChanged

 Figure 6.23 Slider class interface

Label

BaseControl

Class

Fields

textData

TextElement

Methods

GetTextCopy

Label

Render

SetText

 Figure 6.24 Label

class interface

109

TextBox

BaseControl

Class

Methods

Clear

CopyToClipboard

DeleteSelectionText

FocusText

GetTextCopy

HandleKeyboard

HandleMouse

MsgProc

OnFocusIn

PasteFromClipboard

PlaceCaret

RaiseChangedEvent

RaiseEnterEvent

Render

ResetCaretBlink

SetBorderWidth

SetCaretColor

SetSelectedBackColor

SetSelectedTextColor

SetSpacing

SetText

SetTextColor

TextBox

UpdateRectangles

Events

Changed

Enter

 Figure 6.25 Textbox class

interface

110

ScrollBar

BaseControl

Class

Fields

DownButtonLayer

downButtonRect

end

isDragging

MinimumThumbSize

pageSize

position

showingThumb

start

ThumbLayer

thumbOffsetY

thumbRect

TrackLayer

trackRect

UpButtonLayer

upButtonRect

Properties

PageSize

TrackPosition

Methods

Cap

HandleMouse

Render

Scroll

ScrollBar

SetTrackRange

ShowItem

UpdateRectangles

UpdateThumbRectangle

 Figure 6.26 Scrollbar class interface

111

RadioButton

CheckBox

Class

Fields

buttonGroupIndex

Properties

ButtonGroup

Methods

HandleKeyboard

HandleMouse

OnHotKey

RadioButton

SetChecked

SetCheckedInternal

 Figure 6.27 Radio Button class

interface

ComboBox

Button

Class

Fields

buttonRect

ComboButtonLayer

DropdownLayer

dropDownRect

dropDownTextRect

dropHeight

focusedIndex

isComboOpen

isScrollBarInit

itemList

MainLayer

scrollbarControl

scrollWidth

selectedIndex

SelectionLayer

textRect

Properties

CanHaveFocus

NumberItems

this

 Figure 6.28 Combobox class interface

112

These user controls are implemented as a requirement of Pneuma (graphics

engine). In Weendigo implementation these controls are used while playing prepared

movie, and graphic card settings window, and message boxes used in 3D mode.

First snapshot (Figure 4.29) shows button usage while playing movie. When user

moves mouse over a button, button’s background color is changed to have a 3D

effect. As this snapshot taken, mouse was over Toggle Full Screen button.

Second snapshot (Figure 4.30) shows most of the control’s usage in a 3D

environment. There are eleven combo boxes, two radio buttons, one check box, two

buttons, and twelve labels in this screen. This screen is intended to allow user to

modify Direct3D settings currently in use. If user clicks button labeled as “OK” all

changes are submitted and applied without any confirmation. If user clicks button

labeled as “Cancel” all changes are reverted and nothing done. Third snapshot

(Figure 4.31) shows combo box usage as a drop down menu.

Fourth snapshot (Figure 4.32) shows a confirmation dialog box like Win32

message box which asks a question to user and perform some action according to

user response.

113

Figure 6.29 Button usage in 3D environment

Figure 6.30 Most of the common controls used in a single scene

114

Figure 6.31 Combobox usage

Figure 6.32 A sample confirmation dialog box like Win32 message box

115

6.4 Darken Scene Algorithm

A film consists of scenes added sequentially. Between scene passes there are

different tricks to make this pass as a smooth pass. Common and easiest one of these

passes is darkening old scene and enlightening new scene. Weendigo, accomplish

this smooth pass by using color linear interpolation.

Linear Interpolation is a method that can be used for predicting. Very often

something changes over a period of time: an object might change its position; a

computer graphic image might change its shape; a population might increase. Linear

interpolation allows you to predict an unknown value (position, shape, population,

etc.) if you know any two particular values and assume that the rate of change is

constant.

Linear interpolation assumes:

• that you know two particular values

• that the process is changing at a constant rate

• that you desire to find an unknown data point

Linear interpolation is a continuous process but it has a start and end point.

Interpolation is processed in between these start and end time intervals. We only

know the initial state and final state. Since, state transition is a prediction all

intermediate states are calculated with a linear formula like following:

CurrentState = InitialState + (FinalState – InitialState)*(Delta)

Delta is percentage of processing status. Assume that, as an initial state we have 5,

and target is 20. We want to interpolate 5 through 20 in 100 units of time. It is certain

that after 100 units of time we will have 20. But in any intermediate state we have

different values. Sensitivity is up to your decision. In this example we have

sensitivity in 100 units of time. For this instance, we will have a formula like

following:

116

 CurrentState = 5 + (20-5)*(Time/100)

Thus formula means that after 20 units of time from the beginning, we will have 8

(5 + (20-5)*(20/100)) for this intermediate state. This interpolation process is shown

in the following figure:

0

5

10

15

20

t0 t20 t40 t60 t80 t100

Figure 6.33 Linear Interpolation Graph

Weendigo includes one second for scene pass delay. First half of this second is

consumed for darken scene, and the second half is consumed for enlightening scene.

Background colors for subsequent scenes may differ. Therefore, darken scene and

enlighten scene operation takes place independently. But both have same algorithm.

Linear interpolation is used for calculating new color like following way:

0.5 second is consumed for darken scene, and 0.5 second is consumed for

enlighten scene. Current scene color is interpolated linearly to black. For instance, let

current scene background color be Red (Alpha=255, Red=255, Green=0, Blue=0).

This color will be replaced with color black (Alpha=255, Red=0, Green=0, Blue=0)

in 0.5 seconds. Each color element (Red, Green, and Blue) is interpolated

independently to new color (black) elements.

After 0.5 seconds, current scene background color (black) is interpolated linearly

to new scene color. Let new scene background color be yellow (Alpha=255,

117

Red=255, Green=255, Blue=0). This time interpolation will be performed in 0.5

seconds to new color. Following table shows interpolated color values at 0.05

seconds sensitivity.

Table 6.1 Color Interpolation along time

Time Red Green Blue Color Value Color

0,00 255 0 0 (255; 0; 0)

0,05 229 0 0 (229; 0; 0)

0,10 204 0 0 (204; 0; 0)

0,15 178 0 0 (178; 0; 0)

0,20 153 0 0 (153; 0; 0)

0,25 128 0 0 (128; 0; 0)

0,30 102 0 0 (102; 0; 0)

0,35 77 0 0 (77; 0; 0)

0,40 51 0 0 (51; 0; 0)

0,45 26 0 0 (26; 0; 0)

0,50 0 0 0 (0; 0; 0)

0,55 26 26 0 (26; 26; 0)

0,60 51 51 0 (51; 51; 0)

0,65 77 77 0 (77; 77; 0)

0,70 102 102 0 (102; 102; 0)

0,75 128 128 0 (128; 128; 0)

0,80 153 153 0 (153; 153; 0)

0,85 178 178 0 (178; 178; 0)

0,90 204 204 0 (204; 204; 0)

0,95 229 229 0 (229; 229; 0)

1,00 255 255 0 (255; 255; 0)

Color interpolation has a simple algorithm to implement and use. By the way,

smoothing scene passes requires skills on art and hard to implement. Darken scene is

a simple and generic solution for this complex problem. A more complex and more

artistic choice for scene passes might be blending scenes in a constant time. But this

118

algorithm will increase hardware requirements. But further versions of Weendigo

should allow designer to choose this algorithm as an option.

6.5 Rendering Static Meshes

A static mesh file refers to a non-animated mesh object stored in an X file. X

Files were introduced in Microsoft DirectX 2.0. But methods and interfaces are

available for reading and writing X files since Microsoft DirectX 6.0. As Weendigo

using Microsoft DirectX 9.0 using X files is included by design. X files provide a

template-driven format that enables the storage of meshes, textures, animations, and

user-definable objects. Support for animation sets enables you to store predefined

paths for playback in real time. Instancing and hierarchies are also supported.

Instancing enables multiple references to an object, such as a mesh, while storing its

data only once per file. Hierarchies are used to express relationships between data

records.

The X file format provides low-level data primitives on which applications define

higher-level primitives through templates. Pneuma provides an abstraction on low-

level operations on X files and hides implementation details from Weendigo designer

and Weendigo component developer.

Any object demanded to be compatible with Pneuma must inherit

BaseDisplayObject abstract class. BaseDisplayObject has a reference for Pneuma

framework to gather a valid 3D device when needed. Also BaseDisplayObject class

contains some additional pure virtual method which leaves implementation details to

inheritors. Following figure shows BaseDisplayObject class in a bit details:

119

Abstract Class

Fields

LocalWorldMatrix

objectCenter

objectDestroyed

objectFilePath

objectName

objectRadius

objectScaleFactor

objectVelocity

objectVisible

objectWorldMatrix

pneumaFramework

Properties

CenterPoint

Disposed

Framework

ObjectFilePath

ObjectName

ObjectType

Radius

ScaleFactor

Velocity

Visible

WorldMatrix

Methods

BaseDisplayObject (+ 1 overload)

Dispose

GetObjectType

InitalizeObject

SetName

Events

Renamed

 Figure 6.34 Base Display Object class interface

120

As seen in the figure above BaseDisplayObject has an event named as Renamed.

This event is raised only in design time. When an object is renamed in design time,

this event is raised to resolve name conflicts. IsObjectValid method is used for

Weendigo compilation and not used at run time.

StaticObject class inherits BaseDisplayObject and accepts a file path of mesh file

for rendering at run time.

StaticObject

BaseDisplayObject

Class

Fields

isUsingMeshMaterials

localMemoryMesh

meshMaterials

meshTextures

systemMemoryMesh

viewMatrix

Properties

FilePath

IsUsingMaterials

LocalMesh

NumberMaterials

SystemMesh

Methods

Clone

ComputeBoundingSphere

CreateMaterials

Dispose

FrameMove

GetMaterial

GetTexture

InitalizeObject

IsObjectValid

OnCreateDevice

OnDestroyDevice

OnDeviceDisposing

OnLostDevice (+ 1 overload)

OnResetDevice (+ 1 overload)

Render

ScaleMesh

SetVertexDeclaration

SetVertexFormat

StaticObject

 Figure 6.35 StaticObject class interface

121

Any instance of this class at runtime loads a mesh file (only X files supported).

The mesh file is loaded to system memory initially. Any texture and materials are

loaded in system memory. Each time when device is reset, these objects are copied to

graphic card’s memory to get a better performance. Due to graphics cards has a more

volatile memory than system memory, original copies of these object reside in

system memory during lifetime of the application. After loading mesh file, if any

scale is specified, scale operation is performed using a simple interpolation

algorithm. Modifying contents of vertex buffer in graphics card memory is not a

recommended operation. So all scale operation is performed on system memory.

Also at the time of loading mesh, a bounding sphere is calculated. Radius of this

bounding sphere is used by graphic engine to have a common scene view.

On each frame move, local and global world matrices are calculated. Any

translation and rotation operation is done at this time. These operations allow us to

reposition of objects.

On each frame render, a static object renders itself by using reference pointer of

Pneuma framework. Pneuma framework exposes a valid rendering device.

Rendering of static objects contains two phases. In first phase of rendering operation,

mesh object’s opaque parts which have subsets without alpha are rendered. Non-

opaque parts are rendered at second phase to have alpha blending support. Any

exception raised during rendering mesh object is caught and reported Pneuma

framework. It is Pneuma framework duty to handle and decide what to do with this

exception.

Following figures shows screenshots of static objects rendered by Weendigo.

122

Figure 6.36 Microsoft logo is loaded from a mesh file and rendered according to this mesh file.

Figure 6.37 More complex mesh file is rendered by loading from an X file.

123

As static objects do not have a mesh hierarchy, any animation can only be done by

performing a linear interpolation. Positioning of objects to be rendered in run time is

designed at design time by using Weendigo IDE. A static object has the following

properties that are enumerated by Weendigo IDE:

• Appearance

o Center Point: Position of mesh object

o Scale Factor: Default 1, If modified scales object by extending
vertices with this scale factor

o Velocity: Not used by default. Available for inheritors

• Behavior

o Visible: Render this static object at any frame.

• Data

o File Name: Mesh object file name to be loaded and rendered

o Radius (read only): radius of mesh object

• Design

o Name: Unique object name inside current scene.

o Type (read only): Shows the class name “StaticObject” unless this
class inherited.

124

Figure 6.38 Static Object Properties enumerated by Weendigo

The following screen shot is taken by putting two distinct objects on same scene.

Number of objects can be rendered inside a scene is not limited. But practically it is

limited with the mesh object data amount and your graphics card memory limit since

all objects are loaded to graphics card.

125

Figure 6.39 Crypt is scaled twice to have a scene like above.

6.6 Rendering Animated Meshes

Pneuma includes support to animate a 3D model that has a skeletal structure.

Skinning is an animation technique that takes data organized in a skeletal-mesh

hierarchy and applies geometry blending to transform mesh vertices. The geometry

blending generates smooth surfaces with fewer artifacts.

Direct3D and D3DX can be used to animate meshes. Applications can load X files

containing animation data, then control and render the animated meshes. There are

five skinning techniques:

• fixed-function non-indexed,

• fixed-function indexed,

• software,

• assembly shader,

• HLSL shader

126

Each technique has its advantages and disadvantages, and application developers

should weigh these and choose the appropriate techniques for the needs of their

application. Animation Object in Pneuma framework prefers fixed-function indexed.

Skinning is a popular animation technique that is modeled like a human body.

Skinning uses a set of interconnected bones (or frames) that form a hierarchy.

Moving or rotating the bones causes the mesh surface to move or rotate. The mesh

surface is analogous to the skin of the human body. Each point (or vertex) on the

mesh surface is associated with a number of bones. Its position is determined by the

position of the associated bones. For instance, consider the hierarchy in given below

which describes a human limb:

Figure 6.40 Human limb hierarchy

The skin at the elbow is influenced by the upper arm bone and the forearm bone.

If the upper arm remains stationary and the forearm moves, the elbow skin position is

Clavicle

Upper arm

Forearm

Hand

Finger 5

Finger 1

Finger 2

Finger 3

Finger 4

127

affected; the same is true when holding the forearm stationary and moving the upper

arm. It can be concluded that the skin at the elbow is associated with both the upper

arm and forearm bones. Transforming vertices with multiple matrices are done with

geometry blending. Each matrix has a blending weight ranging from 0 to 1, with the

sum of all blending weights equal to 1. The blending operation is carried out by first

transforming the vertex with each matrix, yielding several transformed vertex

coordinates. Then, these coordinates are interpolated based on the corresponding

blending weights. Vertices can have different blending weights even if they are

influenced by the same bones. This geometry blending allows surfaces to stay

smooth when animated.

Furthermore, any movement by an ancestor bone may affect the skin position. For

instance, if both the upper arm and forearm bones remain stationary (that is, no

rotation), and the clavicle bone moved, the skin between the upper arm bone and the

forearm bone should change position. This explains why the child bones are modeled

in a hierarchy to generate this dependency.

 Figure 6.41 any movement by ancestor bone might affect the skin position

• Left: The character as it is stored on the disk.

• Middle: The bone offset transformation changes the vertex coordinates

from the mesh space to bone space.

• Right: Now that vertices are in bone space, animation transformation can

be performed. In this case, a rotation is applied to the forearm

128

The X file format provides low-level data primitives on which applications define

higher level primitives through templates. Pneuma provides an abstraction on low-

level operations on X files and hides implementation details from Weendigo designer

and Weendigo component developer.

Any object demanded to be compatible with Pneuma must inherit

BaseDisplayObject abstract class. BaseDisplayObject has a reference for Pneuma

framework to gather a valid 3D device when needed. Also BaseDisplayObject class

contains some additional pure virtual method which leaves implementation details to

inheritors.

BaseDisplayObject has an event named as Renamed. This event is raised only in

design time. When an object is renamed in design time, this event is raised to resolve

name conflicts. IsObjectValid method is used for Weendigo compilation and not

used at run time.

AnimationFrame

Frame

Class

Fields

combined

Properties

CombinedTransformationMatrix

 Figure 6.42 Animation Frame class interface

Figure 6.43 Animation Allocation class interface

129

AnimationObject

BaseDisplayObject

Class

Fields

rootFrame

Properties

FilePath

Methods

AnimationObject

Clone

Dispose

FrameMove

FrameRender

GenerateSkinnedMesh

InitalizeObject

IsObjectValid

OnCreateDevice

OnDestroyDevice

OnLostDevice

OnResetDevice

Render

RenderMeshContainer

SetupBoneMatrices (+ 1 overload)

UpdateFrameMatrices

 Figure 6.44 Animation Object class interface

130

AnimationMeshContainer

MeshContainer

Class

Fields

bones

frameMatrices

meshTextures

numAttributes

numInfluences

numPalette

offsetMatrices

Properties

NumberAttributes

NumberInfluences

NumberPaletteEntries

Methods

GetBones

GetFrames

GetOffsetMatrices

GetTextures

SetBones

SetFrames

SetOffsetMatrices

SetTextures

 Figure 6.45 Animation mesh

container class interface

D3DX, an animated mesh is composed from a frame hierarchy. At the very top,

there is a root frame. The root frame has one or more child frames; each child frame

has its own child frames, and so forth.

A frame in the hierarchy is represented by an instance of “AnimationFrame”. In a

hierarchy, some frames will have valid container values, which are the mesh

geometry data. When rendering the mesh, the container is drawn regardless of its

location in the mesh hierarchy. Similar to a frame, an application should define its

own mesh container type like “AnimationMeshContainer”.

Because the two fundamental structures of a frame hierarchy are often derived and

defined by the application itself, the application has to define functions that handle

the allocation and deallocation of the frames and mesh containers.

“AnimationAllocation” is the name of the class intended to provide this.

131

Rendering the animated mesh is a two-step process: setting up the matrices and

the actual rendering. To set up the matrices, AdvanceTime is called first. This

method takes a TimeDelta parameter that indicates how much to advance since the

last call, then it updates the frame hierarchy's transformation matrices with matrices

that correspond to the bone positions at that instance of time. These matrices contain

transformation with respect to their parent frames, consisting of a scaling plus

rotation plus translation transformation. Next step is calling UpdateFrameMatrices.

This function updates the frame hierarchy's combined transformation matrix. The

combined transformation matrix holds the product of all of the ancestor frames'

matrices, including the frame's own matrix. Recall that bones are influenced by their

parent bones, and the parent bones are influenced by the grandparent bones, and so

forth. Combining all influencing matrices makes the combined transformation matrix

absolute, or relative to the world, which is more suitable for rendering.

UpdateFrameMatrices achieves this by recursively traversing the hierarchy tree. For

each frame, it writes the product of the transformation matrix and the parent's matrix

to the combined transformation matrix. Then it calls UpdateFrameMatrices on its

sibling and first child nodes, passing its parent matrix to the sibling and passing its

own combined transformation matrix as the parent matrix for the children. All of

these operations are performed in FrameMove.

The actual rendering, like all other BaseDisplayObject types, starts in Render. The

rendering of the mesh is done by the FrameRender. This function takes a pointer to a

frame node, draws the frame's mesh if one exists, then recursively calls itself again

with the frame's sibling and children. The result is that all mesh containers in the

frame hierarchy will be drawn when the top DrawFrame returns. When a frame holds

a valid mesh container, FrameRender calls the RenderMeshContainer, which is

where the entire mesh rendering takes place.

An animation object has the following properties that can be enumareted by

Weendigo IDE.

132

• Appearance

o Center Point: Position of mesh object

o Scale Factor: Default 1, If modified scales object by extending
vertices with this scale factor

o Velocity: Not used by default. Available for inheritors

• Behavior

o Visible: Render this static object at any frame.

• Data

o File Name: Mesh object file name to be loaded and rendered

o Radius (read only): radius of mesh object

• Design

o Name: Unique object name inside current scene.

o Type (read only): Shows the class name “StaticObject” unless this
class inherited.

133

Figıure 6.46 Animation Object properties are enumerated by Weeendigo

134

Wired and solid rendered of two instances of animation objects is given below.

Note that, model used in these examples is taken from Microsoft DirectX 9.0 SDK

Samples (tiny.x). Each instance of an animated object has a valid property called

Velocity. Velocity determines the animation allocation hierarchy advancing time.

Figure 6.47 Wired rendered of two instances of animation objects

135

Figure 6.48 Solid rendered of two instances of animation objects

6.7 Rendering Text

Rendering a two-dimensional image or animation in a three dimensional

environment is a common problem. In computer graphics world, a common remedy

is using Sprites. A sprite is a two-dimensional image or animation that is integrated

into a larger scene. Displaying a text front of a scene is a common need for a three

dimensional animation film. Weendigo provides a class named as “TextObject” for

this functionality.

Sprites were originally invented as a method of quickly compositing several

images together in two-dimensional video games using special hardware. As

computer performance improved, this optimization became unnecessary and the term

evolved to refer specifically to the two dimensional images themselves that were

integrated into a scene. That is, figures generated by either custom hardware or by

software alone were all referred to as sprites. As three-dimensional graphics became

136

more prevalent, the term was used to describe a technique whereby flat images are

seamlessly integrated into complicated three-dimensional scenes.

More often sprite now refers to a partially transparent two dimensional animation

that is mapped onto a special plane in a three dimensional scene. Unlike a texture

map, the sprite plane is always perpendicular to the axis emanating from the camera.

The image can be scaled to simulate perspective, it can be rotated two dimensionally,

it can overlap other objects and be occluded, but it can only ever be viewed from the

same angle. This rendering method is also referred to as “billboarding”.

Sprites create an effective illusion when:

• the image inside the sprite already depicts a three dimensional object

• the animation is constantly changing or depicts rotation

• the sprite exists only for a short period of time

• the depicted object has a similar appearance from many common viewing
angles (such as something spherical)

• The viewer accepts that the depicted object only has one perspective. (such as
small plants or leaves)

When the illusion works viewers will not notice that the sprite is flat and always

faces them. Often sprites are used to depict phenomena such as fire, smoke, small

objects, small plants (like blades of grass), or special symbols (like "1-Up"). The

sprite illusion can be exposed in video games by quickly changing the position of the

camera while keeping the sprite in the center of the view.

Sprites have also occasionally been used as a special effects tool in movies.

Explosion effects are commonly done by using sprites. By the way, Pneuma exposes

a set of functionality for rendering text in a three dimensional scene using sprites.

As Pneuma has only the ability to render objects derived by Base Display Object,

Text Object inherits BaseDisplayObject. BaseDisplayObject has a reference for

Pneuma framework to gather a valid 3D device when needed. Also

137

BaseDisplayObject class contains some additional pure virtual method which leaves

implementation details to inheritors.

BaseDisplayObject has an event named as Renamed. This event is raised only in

design time. When an object is renamed in design time, this event is raised to resolve

name conflicts. IsObjectValid method is used for Weendigo compilation and not

used at run time.

TextObject class implements BaseDisplayObject abstract class and accepts a

string to display at run time.

TextObject

BaseDisplayObject

Class

Fields

textFont

textSprite

Properties

CenterPoint

Color

FilePath

Position

TextColor

Velocity

Methods

Clone

Dispose

FrameMove

InitalizeObject

IsObjectValid

OnCreateDevice

OnDestroyDevice

OnLostDevice

OnResetDevice

Render

TextObject

 Figure 6.49 Text Object class interface

Any instance of this class, initiates a new instance of

Microsoft.DirectX.Direct3D.Font class and uses this font object to render specified

text. Each frame render, Render method is called. Inside render method a new

138

instance of TextHelper class is initiated and string is drawn specified position.

Velocity property is intended to determine forecolor of the text. Thus enables us to

have a different forecolor at each render.

“TextHelper” class uses specified device and font objects and renders string. By

default, text rendering is done with alpha blending is enabled. There is no need to use

a background for a text object. It automatically blends background by obeying three

dimensional rules. This class implements IDisposable interface. After each frame

render, the resources consumed by this class is collected by garbage collector. Class

details are given below:

TextHelper
Class

Fields

color

lineHeight

point

textFont

textSprite

Methods

Begin

Dispose

DrawTextLine (+ 1 overload)

End

SetForegroundColor (+ 1 overload)

SetInsertionPoint (+ 1 overload)

TextHelper

IDisposable

 Figure 6.50 Text Helper class interface

The following figures show screenshots of text objects rendered by Weendigo

using Pneuma.

139

Figure 6.51 Weendigo also performs interpoloation on text objects

In the figure at left side, shows “Weendigo” and “Pneuma” strings’ initial state.

After a while these text objects start to move like casting titles in a movie. This

simply done by interpolating positions of each text object independently. Fore color

of each text object can independently have different color at each frame. Also,

interpolating fore color is possible. Following figures also exchanges colors between

“Weendigo” and “Pnuema” strings.

Figure 6.52 Weendigo also performs color interpolation on text objects colors

140

A text object has the following properties that are enumerated by Weendigo IDE:

• Appearance

o Color: Text fore color

o Scale Factor: Default 1, If modified scales object by extending
vertices with this scale factor

o Position: a two dimensional point of text to be rendered

• Behavior

o Visible: Render this text object at any frame.

• Data

o Text: text to be rendered. It is possible to render a distinct text for
each time unit.

o Radius (read only): radius of mesh object

• Design

o Name: Unique object name inside current scene.

o Type (read only): Shows the class name “TextObject” unless this
class inherited.

6.8 Scene Background

A 3D film scene is built up with objects including players and other things in

scenery. By the way there is another missing point: environment. In real films, there

is already atmosphere as environment. By the way, in a 3D film scene it is not

possible to fill up scene with objects. In weendigo approach, there is a background

object used in the scene. This background object determines the clear color at

runtime rendering.

As in the rendering process scene is prepared in a back buffer and finally when

the processing is done this back buffer is swapped with the current one. Next frame

started to be prepared then goes on. In Microsoft Direct 3D this times are controlled

using BeginScene(), EndScene(), and Present() methods. As a common approach a

flow like following is done:

141

Begin Scene Statement Block

..

Rendering is done here!

..

End Scene Statement Block

Present Scene Statement Block

Begin Scene statement locks back buffer, and end scene unlocks back buffer.

Since multithread access on same back buffer is not possible. Usually this is not a

requirement on rendering. Present Scene statement flushes back buffer rendering and

forces to swap chain.

Scene object rendering in a 3D environment must be done consecutively from

back to front. And the first thing is done is clearing the scene with a color.

Afterwards scene is rendering process starts. Background object in Weendigo is

subject to control this color and clear parameters and give user the ability to

customize these parameters for each second in the scene. Background object is

implemented in Pneuma with “BackgroundObject” class. Class details are given

below for clarity:

BackgroundObject
Class

Fields

backgroundColor

clearFlags

stencil

zDepth

Properties

BackgroundColor

ClearFlagsString

Flags

Stencil

ZDepth

Methods

BackgroundObject

 Figure 6.53 BackgroundObject

class interface

142

A background object instance is mapped to only one scene. A background object

has the following properties that can be enumerated by Weendigo IDE.

• Appearance

o Background Color: Clear color of the back buffer

o Clear Flags: back buffer clear flags. Target and Z-Buffer is set to
default.

o Stencil: Clear the stencil buffer to this new value which ranges from 0
to 2n - 1 (n is the bit depth of the stencil buffer).

o Z-Depth: Clear the depth buffer to this new z value which ranges
from 0 to 1.

Figure 6.54 Background object properties can be enumareted

143

When user changes the scene background color for a specific time, this change is

not done suddenly. A color interpolation is done by Weendigo automatically.

6.9 Camera Usage

Camera in a 3D environment is an abstract object unlike real world. Camera

object is simulated with 3D projection in a 3D environment. A 3D projection is a

mathematical transformation used to project three dimensional points onto a two

dimensional plane. 3D projection is often the first step in the process of representing

three dimensional shapes two dimensionally in computer graphics, a process known

as rendering. In computer graphics success is scaled how much scene is closed to

real life. Mostly objects used in rendering process determine realism, even though

realistic rendering requires good use of camera.

Data about the objects to render is usually stored as a collection of points, linked

together in triangles. Each point is a set of three numbers, representing its X, Y, Z

coordinates from an origin relative to the object they belong to. Each triangle is a set

of three such points. In addition, the object has three coordinates X, Y, Z and some

kind of rotation, for example, three angles alpha, beta and gamma, describing its

position and orientation relative to a "world" reference frame. Also the observer (or

camera) has a set of three X, Y, Z coordinates and three alpha, beta and gamma

angles, describing the observer's position and the direction in which it is pointing.

The first step is to transform the point's coordinates, taking into account the position

and orientation of the object they belong to. Following four matrices is used for

transformation.

• Object Translation

• Rotation about the x-axis

• Rotation about the y-axis

• Rotation about the z-axis

144

These four matrices are multiplied together, and the result is the world transform

matrix: a matrix that, if a point's coordinates were multiplied by it, would result in

the point's coordinates being expressed in the "world" reference frame.

Note that unlike multiplication between numbers, the order used to multiply the

matrices is significant; changing the order will change the results too. When dealing

with the three rotation matrices, a fixed order is good for the necessity of the moment

that must be chosen. The object should be rotated before it is translated, since

otherwise the position of the object in the world would get rotated around the centre

of the world, wherever that happens to be.

World transform = Translation × Rotation

To complete the transform in the most general way possible, another matrix called

the scaling matrix is used to scale the model along the axes. This matrix is multiplied

to the four given above to yield the complete world transform.

The second step is virtually identical to the first one, except for the fact that it uses

the six coordinates of the observer instead of the object, and the inverses of the

matrixes should be used, and they should be multiplied in the opposite order. The

resulting matrix can transform coordinates from the world reference frame to the

observer's one.

The camera typically looks in its z direction, the x direction is typically left, and

the y direction is typically up. The two matrices obtained from the first two steps can

be multiplied together to get a matrix capable of transforming a point's coordinates

from the object's reference frame to the observer's reference frame.

Camera transform = inverse rotation × inverse translation

Transform so far = camera transform × world transform.

145

The resulting coordinates would be good for an isometric projection or something

similar, but realistic rendering requires an additional step to simulate perspective

distortion. Indeed, this simulated perspective is the main aid for the viewer to judge

distances in the simulated view.

Perspective distortion describes the appearance of a part of the subject as

abnormally large, relative to the rest of the scene. This is especially noticeable when

that part of the scene extends towards the camera. It is affected solely by the distance

between the camera and subject, and the smaller this distance the greater the

perspective distortion. Perspective projection distortion is an error introduced in

drawing when images are created by the use of "projectors". Projectors are imaginary

constructs which aid in the production of real images. These projectors create an

imaginary image where they intersect an imaginary plane of projection. This image

represents the object as seen by the eye from the point of concurrence. The image is

then reproduced onto a planar surface (e.g. paper) by geometric protocols.

There are different types of camera used in computer graphics. Commonly used

ones are described below:

• First Person Camera: is a camera moves and rotates it allows yaw and pitch

but not roll.

• Model Viewer Camera: is a camera that rotates around an object.

• Third Person Camera: is a camera that does not occupy any character, but

typically floats behind and above the main character. It is like a third person

observing the scene.

Although third person camera looks like a third person observing the scene which

seems that it meets the requirements of a 3D animation film. By the way,

determining the main character in each scene is not easy. So this decision could not

be automated and must be done manually. Camera in a 3D animation film needed to

be controlled via person for each frame. By the way, this fact conflicts with the

Weendigo definitions. Weendigo is not a professional tool to create 3D animation

146

films. It makes easier to produce a 3D animation film, but allowing a user to edit

camera position and look position conflicts weendigo easy to use approach.

Fortunately, Weendigo offers a new style of camera which is called as “Scene

Camera”. A Scene Camera is a camera similar to a third person camera and model

viewer camera.

A model viewer camera directly looks to the center point of the model. While it

rotating around the object, model position never changes, only camera position

changes. Following figure illustrates model viewing at a time:

 Figure 6.55 Model viewing camera

A first person camera rotates around its own position; a third person camera

rotates around a focus point. A third person cameras orientation is the direction from

its position to the focus point. The focus point is moved with the focus subject; the

game hero. The cameras position is set to be a certain distance from the focus point.

This distance is the viewing distance.

147

 Figure 6.56 Camera position has to be set a certain distance from focus point

Focus point is calculated by Weendigo using center point and radius of each

visible object in active scene. To accomplish this, a bounding algorithm is built up.

First of all the space needed for each object is calculated. This is done by using

bounding sphere approach. A bounding sphere is a hypothetical sphere that

completely encompasses an object. It is defined by a 3D coordinate representing the

center of the sphere, and a scalar radius that defines the maximum distance from the

center of the sphere to any point in the object.

 Figure 6.57 Bounding Sphere is

calculated for each instance of

objects in scene

148

Each object’s bounding sphere is calculated independently. Then each object is

put in a logical bounding box with their bounding spheres. Nearest and furthest

object positions are determined and a logical bounding box is found. The center of

gravity of this bounding box is the focus point. If there is only one object in scene,

The center of gravity of bounding box equals to the center of gravity of the object.

Figure 6.58 center of gravity of bounding box is

calculated

In Weendigo implementation a base camera class is defined to use for any

purposes. The “SceneCamera” class inherits this base class and implements this

bounding scene is generation. “BaseCamera” and “SceneCamera” class details are

given below for clarity in figure 4.59 .

In further versions of Weendigo, setting camera position and focus point at design

time feature might be added. For future compatibility a design view is defined in

Weendigo, but not implemented yet (CameraDesignView).

149

SceneCamera

BaseCamera

Class

Fields

attachCameraToModel

defaultRadius

isPitchLimited

lastCameraRotation

lastModelRotation

maxRadius

minRadius

modelCenter

modelRotation

radius

rotateCameraButtonMask

rotateModelButtonMask

UpVector

viewArcball

worldArcball

zoomButtonMask

Properties

CameraUpVector

IsAttachedToModel

MaximumRadius

MinimumRadius

Methods

FrameMove

SceneCamera

SetButtonMasks

SetIsPitchLimited

SetModelCenter

SetRadius (+ 1 overload)

SetViewParameters

SetViewQuat

SetWorldQuat

Abstract Class

Fields

aspectRatio

cameraPitchAngle

cameraYawAngle

defaultEye

defaultLookAt

dragRectangle

dragTimer

eye

farPlane

fieldOfView

isClipToBoundary

isEnablePositionMovement

isEnableYAxisMovement

isInvertPitch

isMovementDrag

lookAt

maxBoundary

minBoundary

moveScaler

nearPlane

projMatrix

rotationScaler

rotationVelocity

totalDragTimeToZero

UpDirection

velocity

velocityDrag

viewMatrix

world

Properties

EyeLocation

IsPositionMovementEnabled

LookAtPoint

ProjectionMatrix

ViewMatrix

WorldMatrix

Methods

BaseCamera

ConstrainToBoundary

Reset

SetProjectionParameters (+ 1 overload)

SetViewParameters

SetWindow (+ 1 overload)

UpdateVelocity

 Figure 6.59 Base Camera and Scene Camera class interfaces

150

CHAPTER SEVEN

POST IMPLEMENTATION REVIEW

This chapter includes post implementation review of the project including

benchmark, and security tests Also there exists several common secure software

development issues and tricks implemented in this project.

7.1 Cross Threading Issue

Cross threading is an issue for mechanical engineering. Cross-threading occurs

when the spark plug enters the spark plug hole at an angle. This mangles the existing

threads, pushing them out of alignment with the deeper, intact threads. Since the

cross-threaded threads no longer point the spark plug down the correct axis of the

hole, the spark plug cannot be fully seated. Even if the spark plug is withdrawn and

reinserted, it now engages on the cross-threaded threads – still the same problem. For

the programming perspective, cross threading is a preliminary security issue in

windows forms. For the programming perspective, cross threading is a preliminary

security issue in windows forms. UI thread continues to server user, when another

thread performing a time consuming operation. Since this is an asynchronous

operation, guessing the completion time is not possible in many cases. After

finalization of the time consuming operation, this thread wants to update user

interface and inform user on output of the operation. But allowing this operation can

be abused and makes our application vulnerable Trojan horse attacks.

7.1.1 Cross-threading Vulnerability

For instance, “Troj/Torpig-AE” is an information stealing Trojan for the Windows

platform. The Trojan attempts to steal passwords, as well as logging key-presses and

open window titles to text files and periodically sends the collected information to a

remote user via HTTP. This Trojan attaches itself to explorer.exe. By doing this, it

becomes invisible to user. It is possible to intercept all SSL traffic with trespassing

151

SSL encryption. This Trojan horse is the ancestor of the upcoming security threats.

Trojan performs this interception by modifying the following registry key:

“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon”

As a default this registry key contains “explorer.exe”. Windows automatically

executes value of these key when any user logs in. Trojan appends a new executable

name on this key which is the malicious code for stealing usernames and password.

By default, Microsoft .NET 2.0 performs checks on calling code and calling

thread. Any call from different thread triggers CLR to raise a security exception. This

is an important feature, but it also prevents accessing from different threads in same

application domain and process.

As developing windows applications, there is user interface between your

application and user. Much of the users want, application should perform the task

they requested immediately. But in computers world, it is not possible every time.

Users’ demand might require too much processing or connecting to another computer

using any transmission channel. By the way, users would not accept persuaded with

any reason. After clicking a button in user interface, if our application is blocked till

the operation succeeded, user might think our application is not responding and try to

kill our application. Here is a sample code which will block user interface for twenty

seconds. This operation does not consume CPU, it yields CPU task switching for

twenty seconds. But blocks user interface for three seconds. This sample code

demonstrates blocking call:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

152

using System.Windows.Forms;

namespace CrossThreading

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 }

 private void sampleButton_Click(object sender, EventArgs e)

 {

 System.Threading.Thread.Sleep(20000);

 }

 }

}

This sample code has a simple interface like following:

 Figure 7.1 Cross Threading is a security issue

153

By the way, after clicking button labeled “Do Something”, whole user interface

would be blocked. If user attempts to click elsewhere in the form, our application

would be in a not responding state. Because, main thread of our application is busy

on performing some operation, and will not respond any message passed on this

thread until the operation completion. User should meet a screen like following.

Figure 7.2 Bad progamming practice. User interface is

waiting the operation to be completed to respond user

To overcome this issue, developers prefer creating a new thread for this time

consuming operation and allowing our user interface interact with user. As a best

practice on developing windows based applications creating a thread behind an event

is a reasonable developer behavior. Modifying event handler code and adding a

simple method as shown in the following code snippet will fix this problem:

private void sampleButton_Click(object sender, EventArgs e)

{

System.Threading.Thread th = new System.Threading.Thread(

new System.Threading.ParameterizedThreadStart(DoSomething));

th.IsBackground = true;

th.Start();

}

154

private void DoSomething()

{

System.Threading.Thread.Sleep(20000);

}

By the way, this remedy will introduce cross threading problem if you want to

access any element in the form. As mentioned above, Microsoft .NET Framework

2.0 will block these calls.

Access to Windows Forms controls is not inherently thread safe. If you have two

or more threads manipulating the state of a control, it is possible to force the control

into an inconsistent state. Other thread-related bugs are possible as well, including

race conditions and deadlocks. It is important to ensure that access to your controls is

done in a thread-safe way.

The .NET Framework helps you detect when you are accessing your controls in a

manner that is not thread safe. When you are running your application in the

debugger, and a thread other than the one which created a control attempts to call

that control, the debugger raises an InvalidOperationException with the message,

"Control control name accessed from a thread other than the thread it was created

on."

This exception occurs reliably during debugging and, under some circumstances,

at run time. You are strongly advised to fix this problem when you see it. You might

see this exception when you debug applications that you wrote with the .NET

Framework prior to .NET Framework version 2.0.

Following code, will introduce this problem with using a splash screen which is

intended to inform user that the application loading is in progress. This exception is

not a runtime exception, it only raised at debugging time. But as pointed out before,

this might be abused and your application would be vulnerable any security threat

like Trojan horses.

155

Create a new form named as “SplashForm” which has no control box and any

control except a docked picture box filled with a splash image. Then, create a new

class named “DialogManager” to perform dialog operations. And here is a sample

implementation for DialogManager displaying and closing splash screen:

using System;

using System.Collections.Generic;

using System.Text;

namespace CrossThreading

{

 public sealed class DialogManager

 {

 #region Singleton Implementation

 #region Private Members

 private static DialogManager current;

 private static object synObject = new object();

 #endregion

 #region Property Declarations

 public static DialogManager Current

 {

 get

 {

 if (current == null)

 {

 lock (synObject)

 { // Double Checked Null Design Pattern

 if (current == null)

 current = new DialogManager();

 }

 }

 return current;

 }

 }

 #endregion

 #region Internal Constructor

 internal DialogManager() { }

 #endregion

 #endregion

156

 #region Instance Data

 private SplashForm mySplashForm = null;

 #endregion

 #region Public Methods

 public void ShowSplashScreen()

 {

 mySplashForm = new SplashForm();

 System.Threading.Thread thDoSplash =

 new System.Threading.Thread(

 new System.Threading.ThreadStart(DoSplash)

);

 thDoSplash.IsBackground = true;

 thDoSplash.Start();

 }

 public void CloseSplashScreen()

 {

 mySplashForm.Close();

 }

 #endregion

 #region Private Helpers

 private void DoSplash()

 {

 mySplashForm.ShowDialog();

 }

 #endregion

 }

}

Modify the main application form constructor and application load evens like

following:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

157

namespace CrossThreading

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 DialogManager.Current.ShowSplashScreen();

 InitializeComponent();

 DoSomething();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 DialogManager.Current.CloseSplashScreen();

 Activate();

 }

 private void DoSomething()

 {

 System.Threading.Thread.Sleep(5000);

 }

 }

}

When you build and run this code, everything will work fine. Your splash screen

would be shown till your application raise form load event. After this event, splash

screen will be closed automatically. But when you debug your application, you will

get an “Invalid Operation Exception” complaining on illegal thread calls. Current

windows versions do not raise this exception at run time but upcoming windows

versions starting with Windows Vista (codenamed longhorn), will raise this

exception at run time due to security reasons explained above.

There are two choices you can do, by pass cross threading checks, or fix this

problem. By pass this check can be done by setting

“CheckForIllegalCrossThreadCalls” property to false inside “SplashForm.cs”. But it

is not recommended. And here is the solution for this cumbersome problem:

158

1. Add a new public method to “SplashForm.cs” like following:

 public void ShowModal(ref bool running)

 {

 this.Show();

 while (running)

 {

 Update();

 Application.DoEvents();

 }

 this.Close();

 }

2. Modify “DialogManager.cs” to use newly added method like following:

using System;

using System.Collections.Generic;

using System.Text;

namespace CrossThreading

{

 public sealed class DialogManager {

 #region Singleton Implementation

 #region Private Members

 private static DialogManager current;

 private static object synObject = new object();

 #endregion

 #region Property Declarations

 public static DialogManager Current{

 get{

 if (current == null) {

 lock (synObject){ // Double Checked Null Design Pattern

 if (current == null)

 current = new DialogManager();

 }

 }

 return current;

 }

 }

 #endregion

159

 #region Internal Constructor

 internal DialogManager()

 { }

 #endregion

 #endregion

 #region Instance Data

 private bool isShowingSplashScreen = false;

 private SplashForm mySplashForm = null;

 #endregion

 #region Public Methods

 public void ShowSplashScreen()

 {

 mySplashForm = new SplashForm();

 System.Threading.Thread thDoSplash =

 new System.Threading.Thread(

 new System.Threading.ThreadStart(DoSplash)

);

 isShowingSplashScreen = true;

 thDoSplash.IsBackground = true;

 thDoSplash.Start();

 }

 public void CloseSplashScreen()

 {

 isShowingSplashScreen = false;

 }

 #endregion

 #region Private Helpers

 private void DoSplash()

 {

 mySplashForm.ShowModal(ref isShowingSplashScreen);

 }

 #endregion

 }

}

As given in the code, passing a reference between threads in a shared memory (it

is only possible if both threads are in same process domain) and simply modifying

this reference variable when needed is a resident solution. Also this can be achieved

160

by using delegates and asynchronous method calls. But this is the simplest solution

for cross threading problem. And here is the splash screen of Weendigo:

Figure 7.3 Weendigo splash screen

Weendigo is not just a tool to creating 3D animation films. Additionally, it is a

secure application. All of the security issues are investigated and solved at design

time of the project not after starting development. It is possible to say, Weendigo is

secure by design.

7.2 Dynamic Code Injection

A programming language is a stylized communication technique intended to be

used for controlling the behavior of a machine (often a computer). Like human

languages programming languages have syntactic and semantic rules used to define

meaning. There are different types of classification for programming languages. A

common approach is classifying them either a scripting language or a compiled

161

programming language. Scripting languages are intended to be used for batch and job

control operations. A compiled language is processed once and reduced to a simpler

form that allows it to run faster than a script that has to be reprocessed every time.

Scripting languages run inside another program, and interpreted unlike compiled

programming languages. As these differences pointed out, there is a sharpen line

between both, and have different advantages to each. In some cases we need to

simulate scripting language features in a compiled programming language, which

requires on-the-fly dynamic code generation. As scripting languages are interpreted,

it is easy to generate and execute code for specific cases. Thus, allows an application

to have different attitudes which are determined at run time.

JavaScript is a scripting programming language based on the concept of

prototypes. The language is best known for its use in websites, but is also used to

enable scripting access to objects embedded in other applications. There is a well

known method named “eval” (short term of evaluate) intended to build dynamic

codes. Here is an example usage of “eval” method:

<html>

<script language=javascript>

<!--

function useEval()

{

alert(eval(sampleForm.textfield.value))

}

//-->

</script>

<body>

<form id="sampleForm" name="sampleForm" >

<input type="text" name="textfield" id="textfield">

<input type="button" name="calculateButton" id="calculateButton" value="Calculate"

onclick="javascript:{useEval()}" />

</form>

</body>

</html>

162

When you browse this html code in a browser, you will get a simple user interface

like following:

Figure 7.4 User interface will be

shown when the prior instance code is

browsed in a browser

When you type “new Date()” into input box and click calculate button you will

see a message box showing current date and time information which means you will

get a date time data as a return value of “eval” method. When you type “3*5” into

input box and click calculate button you will see a message box showing “15” which

means you will get an integer data as a return value of “eval” method. During

development process, we do not know anything about return value and

implementation details of eval method. Therefore, we have no idea what eval method

does inside.

7.2.1 Why Weendigo Needs On-the-fly Code Generation?

Weendigo is not just a tool to create 3D animation films also it is a Robust IDE. It

is easy to integrate your own components with Weendigo. Weendigo supports

objects that have inherited from “BaseDisplayObject” abstract class. Inheritors may

have different constructors since they have different needs. It is possible to query

constructor method information using “System.Reflection” namespace. But

instantiating of a new object requires the knowledge of these parameter’s values at

runtime. This is a common problem that you will face if you are designing and

developing an Integrated Development Environment. Therefore, developers must

inform Weendigo with the default parameters which are required to operate on their

objects properly. Weendigo overcomes this problem via the following way:

Weendigo includes an attribute for class declaration, called

ToolboxDescriptorAttribute that enables developers specify the runtime values for

163

their objects. Thus enforce weendigo to have a support for scripting in a compiled

programming language. As this is not a build-in feature in any programming

language, Weendigo simulates this need, by code generation, compiling, linking and

executing specified code snippet. ToolboxDescriptorAttribute has an implementation

like following:

using System;

using System.Collections.Generic;

using System.Text;

namespace SystemFramework

{

 [AttributeUsage(AttributeTargets.Class)]

 public sealed class ToolboxDescriptorAttribute : Attribute

 {

 #region Instance Data

 private string descriptorText;

 private string defaultParameterString;

 private char defaultParameterDelimiter;

 private Type thisType;

 #endregion

 #region Property Declarations

 public string Descriptor

 {

 get

 {

 return descriptorText;

 }

 set

 {

 descriptorText = value;

 }

 }

 public object[] ParameterArray

 {

 get

 {

 string[] strArray= defaultParameterString.

164

 Replace('\'','"').

 Split(defaultParameterDelimiter);

 object[] parameters = new object[strArray.Length];

 int i=0;

 foreach (string str in strArray)

 {

 if (str == "null")

 {

 parameters[i++] = null;

 continue;

 }

 parameters[i++] = DynamicCode.Current.Eval(str);

 }

 return parameters;

 }

 }

 public Type ThisType

 {

 get { return thisType; }

 set { thisType = value; }

 }

 #endregion

 #region Constructor Declarations

 public ToolboxDescriptorAttribute(string pDescriptorText, string pDefaultParameterString)

 {

 descriptorText = pDescriptorText;

 defaultParameterString = pDefaultParameterString;

 defaultParameterDelimiter = ';';

 }

 public ToolboxDescriptorAttribute(string pDescriptorText, string pDefaultParameterString,

char pDefaultParameterDelimiter)

 {

 descriptorText = pDescriptorText;

 defaultParameterString = pDefaultParameterString;

 defaultParameterDelimiter = pDefaultParameterDelimiter;

 }

 #endregion

 }

}

165

It is easy to use this attribute on a class declaration and here is a sample usage:

using SystemFramework;

namespace Weendigo.PNeuma

{

 [ToolboxDescriptor("Weendigo Static Object", "'';1.0f")]

 public class StaticObject: BaseDisplayObject

 {

 //Implementation details are not given for clarity

 }

}

Toolbox enumerates all objects which are inherited from BaseDisplayObject and

have these attribute on class declaration. Constructor parameters are evaluated and

assigned by using this attribute declaration at run time.

7.2.2 What is Code Dom?

Microsoft .NET Framework includes a mechanism called the Code Document

Object Model (CodeDOM) that enables developers of programs that emit source

code to generate source code in multiple programming languages at run time, based

on a single model that represents the code to render.

The System.CodeDom namespace defines types that can represent the logical

structure of source code, independent of a specific programming language. The

System.CodeDom.Compiler namespace defines types for generating source code

from CodeDOM graphs and managing the compilation of source code in supported

languages. Compiler vendors or developers can extend the set of supported

languages.

Language-independent source code modeling can be valuable when a program

needs to generate source code for a program model in multiple languages or for an

uncertain target language. For example, some designers use the CodeDOM as a

166

language abstraction interface to produce source code in the correct programming

language, if CodeDOM support for the language is available.

Microsoft .NET Framework includes code generators and code compilers for C#,

JScript, and Visual Basic.

7.2.3 Weendigo On-the-fly Code Generation

Weendigo includes a sealed class implemented with Singleton design pattern

named as “DynamicCode”. This class has an Eval method JavaScript like, gets a

string parameter and returns evaluate value inside an object. This class

implementation details are given below:

using System;

using System.Collections.Generic;

using System.Text;

using System.CodeDom.Compiler;

using System.Reflection;

namespace SystemFramework

{

 public sealed class DynamicCode

 {

 #region Singleton Implementation

 #region Private Members

 private static DynamicCode current;

 private CompilerParameters defaultCompilerParams = null;

 private static StringBuilder sbStart = new StringBuilder("");

 private static StringBuilder sbEnd = new StringBuilder("");

 private static object synObject = new object();

 #endregion

 #region Property Declarations

 public static DynamicCode Current

 {

167

 get

 {

 if (current == null)

 {

 lock (synObject)

 { // Double Checked Null Design Pattern

 if (current == null)

 current = new DynamicCode();

 }

 }

 return current;

 }

 }

 #endregion

 #region Internal Constructor

 internal DynamicCode()

 {

 sbStart.AppendLine("using System;");

 sbStart.AppendLine("namespace Weendigo.SystemFramework.DynamicCode{");

 sbStart.AppendLine("public class CSCodeEvaluator{");

 sbStart.AppendLine("public object Eval(){");

 sbStart.Append("return ");

 sbEnd.AppendLine(" ;");

 sbEnd.AppendLine("}");

 sbEnd.AppendLine("}");

 sbEnd.AppendLine("}");

 defaultCompilerParams = new CompilerParameters();

 defaultCompilerParams.CompilerOptions = "/t:library";

 defaultCompilerParams.GenerateInMemory = true;

 defaultCompilerParams.ReferencedAssemblies.Add("system.dll");

 }

 #endregion

 #endregion

 #region Public Methods

 public object Eval(string pEvalString)

 {

 CodeDomProvider compiler = null;

 StringBuilder sbSourceCode = new StringBuilder();

 try

168

 {

 compiler = CodeDomProvider.CreateProvider("C#");

 sbSourceCode.Append(sbStart.ToString());

 sbSourceCode.Append(pEvalString);

 sbSourceCode.Append(sbEnd.ToString());

 CompilerResults cr = compiler.CompileAssemblyFromSource(

 defaultCompilerParams,

 sbSourceCode.ToString());

 if (cr.Errors.Count > 0)

 return null;

 Assembly a = cr.CompiledAssembly;

 object dynamicObject =

a.CreateInstance("Weendigo.SystemFramework.DynamicCode.CSCodeEvaluator");

 Type t = dynamicObject.GetType();

 MethodInfo mInfo = t.GetMethod("Eval");

 return mInfo.Invoke(dynamicObject, null);

 }

 finally

 {

 if (compiler != null)

 compiler.Dispose();

 }

 }

 #endregion

 }

}

Eval method simply creates an instance of C# compiler as a first step of the

evaluation process. Then, it merges predefined code required for a standard eval

methods and specified string parameter. It compiles this merged string as a source

code. If compilation succeeded, a dynamic object is created and Eval method is

called by using MethodInfo.Invoke method. Return value of this function is

interpreted as return value of eval method. Here is a sample code generated in

memory by weendigo returning “1.0f”.

using System;

namespace Weendigo.SystemFramework.DynamicCode

169

{

 public class CSCodeEvaluator

 {

 public object Eval()

 {

 return 1.0f;

 }

 }

}

This code is compiled as a binary assembly which has a reference “System.dll”.

By this implementation, Weendigo also achieves scripting in a compiled language

problem which is a common software engineering problem.

7.3 Exception Handling

Exception handling is a programming language construct or computer hardware

mechanism designed to handle the occurrence of some condition that changes the

normal flow of execution. The condition is called an exception. There are a

numerous type of exceptions, but all can be categorized in two main subsets: First

chance exceptions and second chance exceptions. Handle and /or raise exceptions are

developer choice but must be determined at design time.

In general, current state will be saved in a predefined location and execution will

switch to a predefined handler. Depending on the situation, the handler may later

resume the execution at the original location, using the saved information to restore

the original state. For example, an exception which will usually be resumed is a page

fault, while a division by zero usually cannot be resolved transparently.

A piece of code is said to be exception-safe if run-time failures within the code

will not produce ill-effects, such as memory leaks, garbled data or invalid output.

Exception-safe code must satisfy invariants placed on the code even if exceptions

occur. There are several levels of exception safety:

170

• Failure transparency, operations are guaranteed to succeed and satisfy all

requirements even in presence of exceptional situations. (best)

• Commit or rollback semantics, operations can fail, but failed operations

are guaranteed to have no side effects.

• Basic exception safety, partial execution of failed operations can cause

side effects, but invariants on the state are preserved (that is, any stored

data will contain valid values).

• Minimal exception safety, partial execution of failed operations may store

invalid data but will not cause a crash.

• No exception safety, no guarantees are made. (worst)

Usually at least basic exception safety is required. Failure transparency is difficult

to implement, and is usually not possible in libraries where complete knowledge of

the application is not available.

Exceptions can be categorized into two main subsets: First chance exceptions and

second chance exceptions. A first chance exception is non-fatal unless it is handled

correctly by using an error handler. If this problem occurs, the exception is raised

again as a second chance exception. The application is either not in debug mode or

no attached debugger handles a second chance exception, underlying operating

system handles this exception but the application quits.

It is a common practice to use structured exception handling as a signaling

mechanism. Some application programming interfaces register an exception handler

in anticipation of a failure condition that is expected to occur in a lower layer. When

an exception is raised, the handler may correct or ignore the condition rather than

allow a failure to propagate up through intervening layers. This is very useful in

complex environments such as networks where partial failures are expected and it is

not desirable to fail an entire operation just because one of several optional parts

failed. In this case, the exception can be handled so that the application does not

recognize that an exception has occurred.

171

However, if the application is being debugged, the debugger sees all exceptions

before the program does. This is the distinction between the first and second chance

exception: the debugger gets the first chance to see the exception (hence the name).

If the debugger allows the program execution to continue and does not handle the

exception, the program will see the exception as usual. If the program does not

handle the exception, the debugger gets a second chance to see the exception. In this

latter case, the program normally would crash if the debugger were not present.

If you do not want to see the first chance exception in the debugger, you should

disable first chance exception handling for the specific exception code. Otherwise,

when the first chance exception occurs, you may need to instruct the debugger to

pass on the exception to the program to be handled as usual.

Hence Weendigo is a tool to create 3D animation films, raising an exception at

last frame of a two hours length movie is not a desired situation. Weendigo tries to

handle all types of exceptions in a common manner. According to exception

importance Weendigo decides what to do. For instance, when an exception is caught

at design time, weendigo will report this exception to user and prepares a dump that

contains detailed information which will be helpful for Weendigo developer to

overcome this exception.

By the way, if same exception is caught at render time, weendigo will only log

exception details and will not report exception to user unless this exception is a block

to complete rendering operation. Exception details are logged to Windows Event Log

and/or a text file.

Nevertheless, Weendigo is tested with debugging tools to monitor first chance and

second chance exceptions. This is an important requirement for Weendigo, because

rendering a 3D scene needs more memory and in this case a memory leak could be

costly. “Microsoft debugging tools for Windows” is used to monitor first chance and

second chance exceptions. Here is a list of used tools:

172

• ADPlus (adplus.vbs), also known as Autodump+, is a console-based

Microsoft Visual Basic script. It automates the CDB debugger to produce

memory dumps and log files that contain debug output from one or more

processes.

• Application Verifier is a tool for testing user-mode applications. It can

monitor their actions, put them through a variety of stresses and tests, and

report on possible problems or errors in their design.

• Dr. Watson for Windows, drwtsn32.exe, creates memory dump files from

user-mode programs which have crashed

• WinDbg is a user-mode and kernel-mode debugger with a graphical

interface.

7.3.1 ADPlus

ADPlus has two modes of operation:

• Hang mode is used to troubleshoot process that hangs, 100 percent CPU
utilization, and other problems that do not involve a crash. When you use
ADPlus in hang mode, you must wait until the process hangs before you run
the script.

• Crash mode is used to troubleshoot crashes that would normally activate a
postmortem debugger, or any other type of error that causes a program or
service to terminate unexpectedly. When you use ADPlus in crash mode, you
must start ADPlus before the crash occurs. ADPlus can be configured to
notify an administrator or a computer of a crash through the -notify option.

In hang mode, ADPlus immediately produces full memory dumps for all of the

processes that are specified on the command line after the script is finished running.

Each .dmp file created goes into a folder that contains the date/time stamp from when

ADPlus was run, and each file name contains the process name, the process ID, and

the date/time stamp from when ADPlus was run. While the process memory is being

dumped to a file, the process is frozen, with the debugger non-invasively attached to

it. After the memory dump is finished, the debugger detaches and the process

resumes.

173

Each kind of exception (access violation, stack overflow, and so on) can be raised

to a debugger as either a "first chance" or "second chance" exception. First chance

exceptions are, by definition, non-fatal unless they are not handled properly with an

error handler, at which point they are raised again as a second chance exception

(which only a debugger can handle). If no debugger handles a second chance

exception, the application is shut down.

By default, when ADPlus detects a first chance (non-fatal) exception for all types

of exceptions except unknown and EH exceptions, it takes the following actions:

1. Pauses the process to log the date and time that the exception occurred in the

log file for the process that is being monitored.

2. Logs the thread ID and call stack for the thread that raised the exception in

the log file for the process that is being monitored.

3. Produces a uniquely-named minidump file of the process at the time the

exception occurred and then resumes the process.

By default, ADPlus does not produce a unique minidump file for first chance EH

and unknown exceptions because it is quite common for a process to encounter a

significant number of these exceptions, which are usually handled by error handling

code within a process or DLL. In other words, these exceptions are usually handled

exceptions, and they do not become second chance (unhandled) exceptions, which

terminate the process.

When ADPlus detects a second chance (fatal) exception for all types of exceptions

(including EH and unknown exceptions), it takes the following actions:

1. Pauses the process.

2. Logs the date and time that the exception occurred.

3. Logs the thread ID and the call stack for the thread that raised the

exception.

174

4. Produces a full memory dump of the process at the time the fatal exception

occurred.

5. Exits the debugger. This terminates the process.

7.3.2 Application Verifier

Application Verifier requires a utility named AppVerif.exe. This tool can be used

alone or in conjunction with a user-mode debugger.

Application Verifier reports information about the target process in several

different ways:

• By recording information in logs that can be viewed through AppVerif.exe

• By recording information in logs that can be viewed through the debugger

• By raising an exception, causing the application to break into the debugger

and display information about the exception

• By issuing an Application Verifier Stop, causing the application to break

into the debugger and display a status message

Only exception logs are recorded for Weendigo tests. The exception log records

all exceptions that have occurred in the target process.

7.3.3 Dr. Watson

The Dr. Watson for Windows program (drwtsn32.exe) is preinstalled in your

system directory (typically c:\winnt\system32) when Windows is set up. The default

options are set the first time Dr. Watson for Windows runs, which can be either when

an application error occurs or when you run it from the command prompt or the Run

dialog box. To run Dr. Watson, the following command line is generally used:

drwtsn32 -p ProcessID

175

By default, Dr. Watson is set up to save a memory dump file immediately upon

the failure of a user-mode component. By default, this file is named user.dmp. Its

default location depends on the version of Windows that is being used:

• In Windows NT, the default location is the %UserProfile%\Local Settings

folder.

• In Windows 2000, the default location is the

%AllUsersProfile%\Documents\DrWatson folder.

• In Windows XP and later versions of Windows, the default location is the

%AllUsersProfile%\Application Data\Microsoft\Dr Watson folder.

This dump file is as large as the amount of RAM dedicated to the user-mode

process on the system that failed. It includes the contents of the failed user-mode's

memory segment at the time that the error occurred.

As with any user-mode debugging session, symbols for the appropriate

executables and DLLs must exist on the local computer. For non-existed symbol

files, each of them are downloaded from the registered microsoft symbol file web

site which is located at the URL http://msdl.microsoft.com/download/symbols.

7.3.4 WinDbg

WinDbg has ten kinds of debugging information windows. Eight of these are

individual windows that can be visible or invisible: the Debugger Command

window, the Watch window, the Locals window, the Registers window, the Calls

window, the Disassembly window, the Processes and Threads window, and the

Scratch Pad. In addition to these eight individual windows, WinDbg can display any

number of Source windows and Memory windows.

All problems found by these debugging tools are investigated and all found bugs

in Weendigo implementation are fixed. Weendigo guarantees that underlying

implementation is done by considering exception safety rules and it is very close to

176

failure transparency. But the words of “Weendigo is unbreakable” are very

pretentious words. But weendigo is very close to be unbreakable software.

7.4 Performance Issues

The vast majority of graphics applications are CPU-limited on video hardware

with high-performance graphics processing units (GPU). This is sometimes due to

poor use of batching for draw submissions, but more typically this is due to other

graphics systems consuming a large portion of the available CPU cycles. In cases, it

is due to very high fill rate or pixel shader demand in high-resolution settings or on

video cards with lower vertex-shader performance. Because most titles are CPU-

limited, the biggest performance wins come from optimizations made to CPU-

intensive graphics applications. Typically, the AI or physics systems and the

associated collision detection logic are the primary consumer of CPU cycles in well-

behaving Microsoft Direct3D applications especially in game systems. Any work to

improve these systems can improve the overall performance.

Achieving good parallelism with the GPU requires that draw batches contain

enough geometry - and the shader have the right complexity - to keep the video card

busy, while not using so many batches that the command buffer is flooded. On

current generation hardware, it is recommended approximately three hundred or less

draw batch submissions per frame (fewer on lower-end CPUs) to prevent the driver's

processing of the command-buffer from becoming a performance bottleneck. Some

other application programming interface (API) state calls and driver combinations

can result in high CPU cost (driver compiling of shader for example), so it is a highly

recommend routine performance analysis with PIX and other tools.

“PIX” is a tool for analyzing, optimizing, and debugging Direct3D applications.

“PIX” is designed to capture detailed information from an application while it is

running. “PIX” can be configured to gather data such as the Direct3D APIs called,

timing information, and mesh vertices before and after transformations, screenshots,

177

and various statistics. PIX can also be used for vertex and pixel shader debugging

including setting breakpoints and stepping through shader code.

During the development of most PC titles, developers use convenient data

structures and strings for content management. The CPU work required for string

comparison, copying, and other manipulations often has a measurable overhead,

particularly when taking into account the associated cache and memory subsystem

hit. Plans should be made when developing these systems for removing or

minimizing the reliance on string processing once the product enters into the primary

testing and release phases.

Even with the widespread availability of accelerated graphics port (AGP), Modern

video hardware performs well when dealing with static data. High-end cards often

have very large video memories, but this memory cannot be effectively utilized by

dynamic data. While reasonably efficient usage patterns of dynamic vertex

buffers/index buffers can be implemented for dynamic content, many titles overuse

this idiom for what is otherwise static content. Putting as much content into static

resources as possible can greatly reduce the bandwidth overhead of transferring data

to the video card, makes better use of on-board VRAM, and reduces the CPU/cache

overhead involved in processing this content.

PC games have gotten a reputation for long load times, particular when compared

with console titles with strict loading-time requirements. The overhead of opening a

file is usually much higher than developers typically think. With on-demand virus

scanners in widespread use, and the additional functionality of NTFS, opening a file

is a fairly expensive operation. Opening many files at once or opening and closing

the same file repeatedly is therefore a poor method of dealing with file management.

Some graphics applications have attempted to mitigate this performance cost by

doing "file exist" tests before opening a file. The reality is that the "file exists" test on

NTFS requires doing a file open, so this results in paying the cost twice.

178

For games that allow mods (an expression for the act of changing a piece of

software or hardware to do a function that was not designed or authorized by the

original manufacturer) or still include development scaffolding to check for override

data files, the additional checks for these files can add a significant delay to the load

when they are not present. It is recommended that graphics applications only check

for these files when run with a special command-line switch or other mode indicator

so that only those making use of this functionality actually pay the performance cost

of these (often extensive) checks.

Additional performance can be obtained from the file system by appropriate use

of the file system FILE_FLAG_RANDOM_ACCESS and

FILE_FLAG_SEQUENTIAL_SCAN hints, reasonable sized buffers to avoid large

numbers of calls to the OS read/write APIs, asynchronous file I/O, and background

loading threads. It is also recommended using offline (build or install time) data

conversion processes rather than relying on on-load data conversion, as these

typically remain in use even for the final release and impose a significant

performance tax for every user.

A number of issues related to the 32-bit limit on process virtual memory space.

While 2 GB of user virtual address space has been more than adequate historically,

the increased use of large memory-mapped files, custom memory allocations, and

increasing VRAM size (which must be mapped into process space) has started to

cause situations where virtual memory space allocations are failing. These problems

most often appear when the game makes use of a custom memory allocation scheme

that attempts to allocate a large continuous chunk of virtual memory space.

Recommendation is to write allocations such that they request more reasonable sized

portions of the virtual address space (for example, 64 or 256 MB at a time, but not 1

GB) as needed, although care should be taken to not cause further fragmentation. The

advent of 64-bit operating systems and hardware will greatly help these issues in the

long term, but care must be taken on current generation 32-bit systems.

179

As a debugging aid, some developers have been enabling exceptions on the

floating-point unit (FPU) via manipulations of the floating-point control word. Doing

this is highly problematic and will likely cause the process to crash. Just like the

calling convention requires the “ebx” register be preserved, the majority of the

system assumes that the FPU is in a default state, will give reasonable results, and

won't generate exceptions. Drivers and other system components will often compute

results assuming that standard error values will appear in the registers for bad

conditions, and if exceptions are enabled, these will go unhandled and result in

crashes.

Direct3D will set the floating-point unit to "single-precision, round-to-nearest" as

part of initialization, unless the D3DCREATE_FPU_PRESERVE flag is used, in

which case the FP control word is untouched. In any libraries where we need to have

different rounding rules or other behavior - such as dealing with software vertex

shaders or compilation - we save and restore the control word. If the game needs to

make use of non-standard rounding or FPU exceptions, it should save and restore the

FP control word and be sure to not call any external code not proven to be safe from

these problems, including system APIs.

180

CHAPTER EIGHT

CONCLUSION

Weendigo idea has been talked at the year 2003. Weendigo project is planned and

first version is ready to use at the year 2006. Weendigo provides a set functionality to

prepare 3D animation films. An animation film is definitely differs from a computer

game. A comparison between them from a development perspective is given in the

following table.

Table 8.1 Comparison between computer games and animation films

A 3D Game A 3D Film

Designated to execute properly in a PC Output should be a video file

User interaction is important No user interaction is required

Camera can be controlled by user Camera control must be done in design

time

Requires more complex game engine Requires more robust graphics engine

Graphics engine must test underlying

hardware capabilities (user computer

capabilities are not known at design

time)

Underlying hardware capabilities is

important at rendering process

Please, note that only main differences are given.

Most of the roles in game development and animation film development intersect

but additionally an animation film has to have a scenario management and camera

management. An animation film generation project should follow the steps given

below:

• Determination of film subject: definitions of focus points should be

enough whole story definition is not needed.

• Defining requirements: film requirements and main characters should be

defined. A draft scenario should be defined at this step.

181

• Scenario Management: Entire scenario should be completed main

character’s draft appearances must be included.

• Project Planning: Project plan can be defined at this step. Project

manager leads the project team to develop a detail and comprehensive

project plan based on the preliminary project plan and requirements

document

• Character Preparation: Entire animated and non animated characters,

titles, colors, lights, camera positions should be defined at this step.

• Execution: Integrating prepared characters and 3D objects and embedding

whole in a single scene.

• Draft movie generation: After finalizing scene preparation project team

should generate movie and checks to see whether the output movie meets

project requirements and movie is mapping with scenario.

• User Acceptance: a draft version of movie is presented to the project

owner. Minor adjustment can be performed at this step.

• Final movie generation: animation film is generated and ready to

distribute.

As you can see, these steps are covers must of the SDLC process steps. Movie

generation process can be disciplined and controlled by using SDLC. But there is a

missing part of this process. It is need for a tool to manage steps after character

preparation. Weendigo is implemented to meet this need. Current version of

Weendigo might be insufficient to produce an animation like movies listed above. By

the way, Weendigo serves an important Integrated Development Environment to

manage and produce an animated film.

182

REFERENCES

Adams J. (2003). Advanced Animation with DirectX. Boston: Premier Press

IMDB (2006), 3D Animation Movie List, (n.d.), http://www.imdb.com

Kovach, P.J. (2000). Inside Direct 3D, Washington: Microsoft Press

Microsoft Corporation (2005), Best Security Practices in Game Development,

December 2005, http://msdn.microsoft.com/security/

Microsoft Corporation (2005), Crash Dump Analysis, December 2005,

http://www.microsoft.com/whdc/devtools/debugging/default.mspx

Microsoft Corporation (1998), The Direct3D Transformation Pipeline, April 1998,

http://msdn.microsoft.com/directX

Microsoft Corporation (2006), Microsoft DirectX SDK Library, (n.d),

http://msdn.microsoft.com/directX/SDK

Microsoft Corporation (2006), Microsoft Media Format SDK Library, (n.d),

http://msdn.microsoft.com/windowsmedia/techpages/wmformat

Pesce, M. D. (2003). Programming Microsoft DirectShow For Digital Video and

Television, Washington: Microsoft Press

183

APPENDICES

List of 3D animation films (including upcomings) in chronological order

• 1995

o Toy Story

• 1998

o Antz

o A Bug's Life

• 1999

o Toy Story 2

• 2000

o Dinosaur

• 2001

o Shrek

o Final Fantasy: The Spirits Within

o Monsters, Inc.

o Jimmy Neutron: Boy Genius

• 2002

o Ice Age

o Jonah: A VeggieTales Movie

• 2003

o Finding Nemo

• 2004

o Ark

o Homeland (film)

o Shrek 2

o Shark Tale

o Terkel in Trouble (Denmark, "Terkel i knibe")

o The Incredibles

o The Polar Express

• 2005

o The Magic Roundabout (aka Doogle)

184

o Robots

o Valiant

o Madagascar

o Midsummer Dream

o Chicken Little

o Hoodwinked

• 2006

o Doogal

o Ice Age: The Meltdown

o The Wild

o Over the Hedge

o Cars

o Monster House

o Barnyard

o Khan Kluay

o The Ant Bully

o Open Season (Sep. 2006)

o Everyone's Hero (Sept. 2006)

o Flushed Away (Nov. 2006)

o Happy Feet (Nov. 2006)

• 2007

o Meet the Robinsons (est Mar. 2007)

o Teenage Mutant Ninja Turtles (Mar. 2007)

o Foodfight! (est. April 2007)

o Shrek the Third (est. May 2007)

o Surf's Up (est. June 2007)

o Ratatouille (est. June 2007)

o Hood vs. Evil (est. 2007)

o Bee Movie (est. November 2007)

o Happily N'Ever After

• 2008

o 9 (est. 2008)

o Cat Tale (est. 2008)

185

o Kung Fu Panda (est. May 2008)

o Where the Wild Things Are (est. May 2008)

o American Dog (est. Sum 2008)

o Madagascar 2 (est. Fall 2008)

o The Smurfs (est. November 2008)

o Punk Farm (film) (est. 2008)

• 2009

o Rapunzel (est. 2009)

• 20??

o W.A.L.-E

o Toy Story 3

o Shrek 4

o Puss In Boots

