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DETECTION OF EPILEPTIC SEIZURES FROM EEG SIGNALS BY USING 

DAUBECHIES WAVELETS 

 

ABSTRACT 

 

A seizure is a sudden and abnormal activity of brain, caused by disorderly electrical 

discharge of cerebral neurons. One of the most known seizures is recurrent attacks 

namely epileptic seizures which result from uncontrolled discharges of nerve cells. A 

traditional electroencephalogram (EEG) is often helpful to detect this uncontrolled 

process that indicates epilepsy. The visual detection of the seizures is required 

noticeable effort and time, especially in the long recordings, therefore alternative 

methods are needed.  In the literature, there have been various epilepsy detection 

studies using different approaches. However, most of them utilizes patient-specific 

classifiers.  

 

In this study, wavelet-based algorithm is adopted to different classification methods 

for detection of epileptic seizures. To detect the effective frequency intervals of 

epileptic seizure, it is important to reach subbands of signal. Thus, choosing the 

suitable mother wavelet that resembles epileptic seizure is challenging. Consequently, 

ideal order Daubechies (db) wavelet becomes a critical point to achieve best 

performances.  Here, it is selected Daubechies wavelets from db2 to db10 which have 

strong correlation with seizures to decompose the original EEG signal. The algorithm 

is applied on two different datasets. Eventually, the most appropriate eight features are 

used for classification model. Various machine learning algorithms namely, Decision 

Trees, Discriminant Analysis, Naive Bayes, Support Vector Machine (SVM), and k-

Nearest Neighbor are used to differentiate epileptic and non-epileptic groups. The 

results show that db10 gives the best ACC performance of 95.83-100% in beta band 

using SVM classifier. This method can be a good alternative to the traditional 

approaches. 

 

Keywords: Seizure, epilepsy, electroencephalogram, Daubechies wavelet, machine 

learning algorithms 
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DAUBECHIES DALGACIKLARI KULLANARAK EEG SİNYALLERİNDEN 

EPİLEPTİK NÖBETLERİN BELİRLENMESİ 

 

ÖZ 

 

Nöbet, serebral nöronların düzensiz elektriksel boşalmasının neden olduğu, beynin 

ani ve anormal aktivitesidir. En çok bilinen nöbetlerden biri, sinir hücrelerinin 

kontrolsüz boşalmasından kaynaklanan epileptik nöbet olarak adlandırılan tekrarlı 

ataklardır. Geleneksel bir EEG, epilepsiye işaret eden bu kontrolsüz süreci tespit etmek 

için sıklıkla yardımcı olur. Nöbetlerin görsel tespiti, özellikle uzun kayıtlarda, gözle 

görülür bir çaba ve zaman gerektirir, bu nedenle epileptik nöbetleri tespit etmek için 

alternatif yöntemlere ihtiyaç duyulmaktadır. Literatürde farklı yaklaşımların 

kullanıldığı çok sayıda epilepsi tespit çalışması yapılmıştır. Ancak bunların birçoğu 

hastaya özel sınıflandırıcılar kullanmaktadır. 

 

     Bu çalışmada, epileptik nöbetlerin tespiti için dalgacık tabanlı algoritma farklı 

sınıflandırma yöntemlerine uyarlanmıştır. Epileptik nöbetin etkin frekans aralıklarını 

tespit etmek için sinyalin alt bantlarına ulaşmak önemlidir. Bu nedenle epileptik 

nöbetlere benzeyen bir ana dalgacık seçimi zordur. Dolayısıyla, ideal mertebeden bir 

Daubachies (db) dalgacığı, en iyi performansları elde edebilmek için kritik bir nokta 

haline gelir. Burada, orijinal EEG sinyalini ayrıştırmak için nöbetlerle güçlü 

korelasyona sahip olan db2'den db10'a Daubachies dalgacıkları seçilmiştir. Algoritma 

iki farklı veri kümesine uygulanır. Son olarak, sınıflandırma modeli için en uygun 8 

öznitelik kullanılmıştır. Epileptik ve sağlıklı grupları ayırt etmek için Karar Ağaçları, 

Diskriminant Analizi, Naive Bayes, Destek Vektör Makinesi (DVM) ve k-En Yakın 

Komşu (k-NN) olmak üzere çeşitli makine öğrenme algoritmaları kullanıldı. Sonuçlar, 

db10'un DVM sınıflandırıcısını kullanarak beta bandında %95.83-100'lük en iyi ACC 

performansını verdiğini göstermektedir. Bu yöntem geleneksel yaklaşımlara iyi bir 

alternatif olabilir. 

 

Anahtar kelimeler: Nöbet, epilepsi, elektroensefalogram, Daubechies dalgacığı, 

makine öğrenimi algoritmaları 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

 

The seizures happen spontaneously in other words, they can occur at any time 

without any kind of aura. All mammals, including rats, dogs, and cats, are susceptible 

to this disease, therefore the idea that only people are affected is a common mistake. 

It offers no clues as to the cause, a specific gender, age, or period of time for epilepsy. 

It has been estimated that different types of epileptic seizures (ES) are affecting around 

70 million people worldwide. These seizures occasionally induce cognitive disorders 

which can give rise to physical injury to the patient. On the other hand, the people who 

diagnosed has been with epilepsy sometimes experience emotional distress because of 

embarrassment and concern about lack of social status. Another risk factor for epilepsy 

is brain malfunction, which can result in the development of other conditions such as 

brain tumors, Alzheimer's disease, depression, heart disease, sleep disorders, 

migraines, cognitive impairment, and mental decline among other conditions. Epilepsy 

is not just a neurological disorder; it brings other associated diseases with it (Supriya, 

Siuly, Wang, & Zhang, 2020). Moreover, sudden unexpected death is 24-fold more 

likely in people with epilepsy as compared to general.  

 

The emergence of machine learning algorithms makes a great contribution of the 

development to automated epilepsy detection techniques. New algorithms can shorten 

detection time and improve the accuracy rate. The process of manual visual inspection 

and interpretation of EEGs requires tremendous time (hours to a day) and high level 

of technical and analytical skill. Unfortunately, this traditional method is vulnerable to 

the high observer error rate due to being subject to inter-observer variability and high 

prevalence (Yol & TohumoĞlu, 2020). More frequency changes are observed in the 

epileptic EEG segments. Thus, visual examination of these differences is a difficult 

task due to nonstationary characteristics. In this thesis, it is adopted machine learning 

algorithms for wavelet-based techniques by using a sequence of Daubachies wavelets 

to search the best one for all commonly used classification algorithms. 

https://tureng.com/tr/turkce-ingilizce/embarrassment
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In the literature, there are many research using different wavelet types for the 

epileptic seizure classification. The choice of the appropriate wavelet type is a very 

critical point and enhances the performance of the classification. Different sequences 

of Daubechies are proposed with advantages and disadvantages in these studies. 

However, there is no performance comparison of db2, db4, db8 and db10 at the same 

time. That is why we are interested in the following research question: Can we identify 

the most effective Daubechies wavelet among these types, subband, and machine 

learning classifier for detection of epileptic and non-epileptic seizures based on 

patient-free approach. Through study, the performances of chosen Daubechies type, 

classifiers and sub bands have been compared, it has been explored that the beta band, 

Daubachies-10 wavelet and SVM outperform other classifiers. 

 

1.2 Nervous System 

 

Interaction between the physical world and the human body is carried out through 

the nervous system. The Central Nervous System (CNS) and the Peripheral Nervous 

System (PNS) are the two primary parts of the human nervous system. The brain is 

one of the crucial components of the central nervous system which controls and 

regulates all physiological processes as body temperature, blood pressure, breathing, 

thinking, reasoning etc. The human brain is the most advanced of all species. It is 

composed of four primary parts: cerebellum, diencephalon, brain stem, and cerebrum 

which is the largest part (Purves et al., 2001). as shown in Figure 1.1.  Higher thought 

and the special senses are controlled by the cerebrum, smooth body movement is 

coordinated by the cerebellum, and respiration and heart rate are regulated by the brain 

stem. 
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Figure 1.1 Parts of the human brain (Cech, 2011) 

The brain has countless nerve cells (neurons) which responsible for carrying 

electrical impulses named as action potential throughout the body. This 

electrochemical activity of neurons connects them together for receiving or sending 

out information. Intersections called synapses provide this connection.  

 

Figure 1.2 Representation of the communication among two neurons by synapse  (Darbas & Lohrengel, 

2019) 

The above Figure represents how information flows from one neuron to another 

with the help of voltage-gated-sodium-channels. Each nerve cells consist of three basic 

parts: cell body (soma), axon and dendrites. The dendrite is a short part that carry 

impulses towards cell body. The metabolic activity of the neuron occurs in the cell 

body. The axon has a single thread-like structure that carries the impulse away from 
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the cell body to other cells. The chemical impulses known as neurotransmitters are 

converted to electrical signals. Any disruption in this communication can result in 

several brain disorders. 

 

1.3 Seizures 

 

Seizure is excessive electrical discharges of nerve cells that interrupt normal 

function of CNS. They are associated with transient alteration in motor activity, 

consciousness, or sensation and uncontrolled activity of the brain (Bowman, Dudek, 

& Spitz, 2001). The type of seizure depends on part of the brain in which the seizure 

occurs.   

 

Figure 1.3 Classification of seizures according to ILAE  (Angeles, 1981) 

Seizures are classified into 2 main groups; first one is partial seizures which 

originate in one part of the brain. Second one is generalized seizures which are 

involved the whole brain (Davis & Pirio Richardson, 2015) as presented in Figure 1.3. 

In this study, we deal with epileptic seizures using EEG signals. 

Seizures

Partial 

Simple Complex

Generalized

Absence

'petit mal'
Myoclonic

Tonic Clonic

'grand mal'
Tonic

Atonic Clonic
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1.4 Epilepsy 

 

Epilepsy word comes from Greek Word ‘epilambanein’ which means “to seize or 

attack” (Sharmila, Aman Raj, Shashank, & Mahalakshmi, 2018). The uncontrolled 

excessive activity of the CNS is knowns as epilepsy that affects people of all ages. It 

is a well-known chronic neurological condition characterized by recurrent epileptic 

seizures resulting from uncontrolled neuronal discharges in the CNS. The brain has 

millions of nerve cells that control the way we act, think, or feel, by passing electrical 

signals throughout your whole body. If these signals are disrupted, it causes an 

epileptic seizure (Zandi, Javidan, Dumont, & Tafreshi, 2010). All seizures start in the 

brain, and people with epilepsy have repetitive electrical brain activity disturbances. 

About 70 million people suffer from epilepsy in the world (Yaffe et al., 2015; Zandi 

et al., 2010).  

A wide variety of clinical signs have been observed, they may be a brief lack of 

awareness, while there may also be a major motor convulsion(Tohumoglu & Yol, 

2021). The uncontrollable bouts of epilepsy are a defining characteristic. Epileptic 

attacks are accompanied by loss of consciousness, disturbances of autonomic, mental 

functioning, muscle spasms and movement disorders (Pathak, Waheed, & Mirza, 

2016). Epilepsy may be considered incurable; however, it can be controlled with 

medications. If the patients with epilepsy do not respond to the drugs, the surgery can 

be considered as an option. Epilepsy has no sexual, geographical, or social boundaries. 

All ages can be affected but it is generally diagnosed in infancy, childhood, 

adolescence, and old ages. Unknown genetic or biological predisposition, drugs, 

trauma, or tumor can cause epilepsy.  

 

1.4.1 Diagnosis of Epilepsy 

 

One important aspect of epilepsy research is that the earlier diagnosis is made, the 

better result is obtained. Because many patients experience critical morbidity from the 

incorrect diagnosis such as unnecessary parenteral medications, taking these drugs for 

years, and changing their life choices according to wrong diagnosis. All of them lead 

to reduce in quality of life and survival rate. Unfortunately, it is impossible to predict 
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when an epileptic seizure will occur, and we still don't completely understand how 

they process. Therefore, it is vital to recognize and correctly diagnose the kind of 

epileptic seizure in order to effectively treat the condition. Diagnostic tests comprise 

variable methods: accurate pharmacological diagnosis, genetic screening methods, 

blood tests, physical examination are among these options (Fernández, 

Loddenkemper, Gaínza-Lein, Sheidley, & Poduri, 2019; Malmgren, Reuber, & 

Appleton, 2012; Sutton et al., 2020).  

 

Although epilepsy is easy to diagnose, doubts emerge in routine clinical practice. 

EEG is one of the most widely used techniques to identify the nature of seizure and 

confirm a diagnosis. If the initial drugs are insufficient to control seizures, a Magnetic 

Resonance Imaging (MRI) examination may be recommended, or a Computerized 

Tomography (CT) scan if patient is an older adult. There are various neuroimaging 

techniques to monitor brain functions such as EEG, Single Photon Emission Computed 

Tomography (SPECT), Positron Emission Tomography (PET), functional Magnetic 

Resonance Imaging (fMRI) with good spatial resolution. In contrast, EEG has 

relatively poor spatial resolution. However, EEG is very desirable, informative 

approach and the most popular method of them is EEG with the high temporal 

resolution (He, Baxter, Edelman, Cline, & Wenjing, 2015).  

 

Signal processing of EEG is an important tool in the diagnosis of epilepsy. On the 

other hand, visual interpretation is very subjective, making it conceivable for different 

people to have different interpretations of the same recordings. For this reason, 

computer-aided extraction and analysis of EEG signal characteristics are extremely 

helpful in diagnosis (Akbari & Esmaili, 2020; Y. Wang et al., 2021). 

 

1.5 Electroencephalogram 

 

The Electroencephalogram (EEG) is an essential tool for correct diagnosis of 

epilepsy. Interpretation of EEG helps determine the type of seizure which is examined 

by neurologists to detect and classify the patterns of the disease. Since routine EEG is 

economical, harmless, easily accessible, and applicable, it is often preferred diagnostic 
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method for various neurological and psychiatric diseases apart from epilepsy. It may 

also play a role in choice of antiepileptic drugs, documentation of seizures that the 

patient is unaware of, examination of response to treatment, and initial assessment of 

invasive other treatments (Perucca & Tomson, 2011; Wirrell, 2010).  

 

The EEG is painless and noninvasive tool to read electrical activity of the brain. 

The voltage range is between 3-100 μV which is 100 times weaker than 

Electrocardiography (ECG) signals (Kaur & Singh, 2012). The EEG represents the 

electrical activity of the brain and gives information about any abnormalities. The 

frequencies of these signals range from 0.5 to 100 Hz.  Spikes, sharp and polyspike 

waves is generally interpreted as epileptic waveform. EEG have non-stationary 

characteristic and poor signal-to-noise ratio (SNR) (Yan et al., 2016).  

In 1924, it is used in humans by Hans Berger who discovered alpha waves having 

10 Hz (Zeidman, Stone, & Kondziella, 2014). The EEG uses the 10-20 international 

system of electrode placement that gives a brief description of the scalp electrode 

placement. The 10 and 20 numbers represent the distance (approximately 10% or 20%) 

between electrodes as seen in Figure 1.4. The EEG represents the electrical activity of 

the brain and give information about any abnormalities.  

 

Figure 1.4 Left side image and right side images represent the left side of the head and top view of head, 

respectively in the international 10-20 system (Graimann, Allison, & Pfurtscheller, 2010) 

The brain highly sophisticated system that includes billions of interconnected 

neurons. To comprehend the characteristics and dynamics of these neurons, signal 

processing methods are needed. In the biomedical research area, automatic EEG 

https://tureng.com/tr/turkce-ingilizce/evaluation%20of%20response%20to%20treatment
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processing techniques have been utilized since the early 1960s. Therefore, automatic 

detection methods have a substantial advantage including saving of time, rapid 

diagnosis, remote and continuous monitoring, and reduced cost of medical treatment 

over the traditional manual. The EEG analysis methods are divided into time domain, 

frequency domain, time-frequency domain, and nonlinear methods. The ideal method 

is changed according to characteristic of signal. The signal analysis generally consists 

of same steps such as consists of data acquisition, signal pre-processing, feature 

extraction, feature selection, and classification. The most commonly used data is 

electroencephalogram in the data acquisition step.  

 

1.5.1 Frequency Subbands of EEG 

 

In epileptic research studies, original the EEG is commonly decomposed into five 

sub-bands: gamma (30-60 Hz), beta (13-30 Hz), alpha (8-12 Hz), theta (4-8 Hz), and 

delta (0-4 Hz) as shown in Figure 1.5 and 1.6 where L represent decomposition level. 

We extracted features using the wavelet transform because to its superior resolution in 

the time-frequency domain. The subbands provide more specific details about the 

underlying neural processes of the EEG. Due to the fact that certain alterations cannot 

be seen in the original full-spectrum EEG, each sub-band is analyzed independently.  

 

Figure 1.5 Decomposition of a seizure free EEG with 5 levels of details (L=5, db=4) 
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Figure 1.6 Decomposition of an epileptic EEG with 5 levels of details (L=5, db=4) 

Here, EEG signal subband frequencies are defined as; 

 

• Delta (δ) are quite slow rhythms, lower than 4 Hz. They are primarily 

characterized by deep sleep, and pathological conditions such as coma or 

cancers.  

 

• Theta (θ) rhythms: These are oscillations in the 4-8 frequency band, slightly 

faster waves. The rhythms are visualized mainly during drowsiness and in 

children’s temporal and parietal regions.  

 

• Alpha (α) waves are approximately 8-12 Hz and appear mainly in the occipital 

and parietal lobes, the back of the brain. They are generally observed during 

relaxed states of wakefulness or closed eyes. The asynchronism of the alpha 

waves is generally interpreted as increased availability of networks or cortical 

sensory input to the motor command. Several studies on alpha source 

localization showed that alpha oscillations are obtained from thalamocortical 

neurons (Da Silva, Vos, Mooibroek, & Van Rotterdam, 1980; Hughes et al., 

2004; Lőrincz, Kékesi, Juhász, Crunelli, & Hughes, 2009). 

 

• Beta (β): These waves are relatively fast, generally observed in 13-30 

frequency band. These oscillations are generated by the parietal and frontal part 

https://tureng.com/tr/ingilizce-esanlam/asynchronism
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of the cortex, associated with e performance of movements, in the motor areas 

(Pfurtscheller & Neuper, 2001). The most of epileptic seizure activities occur 

at a frequency ranging from 3 to 25 Hz referred to as Beta activity. Thus, 

analysis of beta subband is one of the most used methods in the epileptic 

detection studies. 

 

• Gamma rhythms (γ) consist of all frequencies above 30 Hz. These waves are 

related to various cognitive and motor functions. 

 

1.6 Review on Classification of Epileptic Seizure Using EEG Signal 

 

A comprehensive literature review of epileptic detection methods will be presented 

in this section. In the literature, there are number of studies related with epileptic signal 

analysis based on time-domain, frequency-domain, time-frequency domain. 

Processing of frequency-based signals is not effective by using simple methods, such 

as Fourier transform (FT) that produces spectral features. However, FT assumes that 

the analyzed signal is stationary, so the Fourier transform succeeds in stationary 

signals, the same success cannot be achieved in non-stationary signals. Another 

disadvantage is that FT does not contain any time information. Different strategies 

exist for addressing the non-stationary EEG feature. Over the past decades, different 

methods have resorted to detection and classification epileptic signals.  

 

Empirical Mode Decomposition (EMD) is used to classify epileptic seizures with 

the help of spectral energy, spectral peaks and spectral entropy (Martis et al., 2012). 

Original signal is decomposed into oscillatory components named as Intrinsic Mode 

Functions (IMFs) by using EMD method which is a time series-based transformation, 

successfully gives outcomes to decompose the nonlinear and non-stationary data. 

Despite widespread use of the methods, there are numerous limitations, including the 

need for more mathematical knowledge and the finding of extremal points and mode 

mixing problems. This problem of EMD which causes different oscillations in the 

same mode or the same oscillations in different modes result from the signal 

intermittency. The improved version of EMD is Ensemble Empirical Mode 
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Decomposition (EEMD)(Bizopoulos, Tsalikakis, Tzallas, Koutsouris, & Fotiadis, 

2013), Complete Ensemble Empirical Mode Decomposition (CEEMDAN)  with 

statistical features (Hassan & Haque, 2015), Local Mean Decomposition 

(LMD)(Zhang & Chen, 2016), which is proposed to alleviate this shortcoming. Noise 

assisted sort of EMD is EEMD approach that consists of adding low amplitude white 

noise to signal to provide a true decompositions frame in the time–frequency domain 

(Al-Subari et al., 2015). In the several automatic detection methods, these methods are 

very popular. In their work, researchers of (Yu, Li, Yuan, & Zhou, 2018) propose 

different approaches combining novel LMD and Dictionary Pair Learning (DPL). 

Their approach suggests that their method can be used as potential tool in the clinic 

with sensitivity of 95.89% with specificity of 95.10%. The authors of (Bari & Fattah, 

2020) extract statistical and spectral features from normalized IMFs using the 

CEEMDAN with the reported 100% accuracy. It is combined the Ensemble Empirical 

Mode Decomposition and Least Squares Support Vector Machine to classify the 

seizure and non-seizure EEG with an accuracy of 94.7% (Torse & Khanai, 2021).  

 

The performance of the gamma band in an EEG signal is analyzed using another 

version of the Fourier Transform, namely the Short Term Fourier Transform, which 

analyzes local features using a variable window size (Sameer, Gupta, Chakraborty, & 

Gupta, 2019). The disadvantage of this method is that the used window to obtain 

frequency information is not robust. This drawback is non-negligible issue in terms of 

resolution. While a narrow window provides better time resolution but worse 

frequency resolution, a broader window provides better time resolution but worse 

frequency resolution. Wavelet Transform (WT) plays a vital tool in analysis of non-

stationary signals. Because of transient characteristics of EEG in nature, capture of 

small details and sudden changes in the signals get hard. The flexible analysis of WT 

overcomes these drawbacks. In the wavelet transform, time-domain EEG signals are 

converted to time-frequency localization by means of variable window size.  

 

One of the most extensively utilized methods for epilepsy diagnosis is the Wavelet 

Transform.  In studies of (Adeli, Zhou, & Dadmehr, 2003), wavelets are likened to a 

mathematical microscope. It is considered that the lower order wavelets of the family 

https://www.sciencedirect.com/topics/engineering/spectral-feature
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are too rough to show EEG spikes appropriately. Otherwise, more oscillations are 

observed in the higher order ones and the spiky form of the absence of epileptic seizure 

cannot be represented in their research.  

 

In the time-frequency analysis of epileptic seizure signals, the different types of 

wavelet functions namely Haar, Discrete Meyer, Daubechies, Coiflets, Reverse 

biorthogonal, Symlets, and Biorthogonal are most widely used. One of these wavelets 

is Daubechies wavelet which has been considered as main wavelet to extract time-

frequency features. It is recommended that the best suitable wavelet function is 

Daubechies of order 4 for epileptic EEG signal analysis (Guo, Rivero, Dorado, 

Munteanu, & Pazos, 2011).  

 

The comparative study of wavelet families-Haar, Daubechies (orders 2–10), 

Coiflets (orders 1–10), and Biorthogonal (orders 1.1, 2.4, 3.5, and 4.4) is achieved to 

identify the most appropriate wavelet function for EEG analysis (Gandhi, Panigrahi, 

& Anand, 2011). The features obtained from subbands are fed into Probabilistic Neural 

Network. They notice that the Coiflet of order 1 is the most suitable member of the 

current wavelet families, offering both higher classification accuracy and lower 

computing cost in comparison to Daubechies 2/3. 

 

In some studies, Daubechies 4 is one of the most successful wavelets owing to filter 

lengths. All mother wavelets have different filter lengths. It is important that selection 

of longer wavelet filters’ length should take into account because of higher the 

computational cost (Abbate, DeCusatis, & Das, 2012). On the other hand, different 

wavelet families such as Symlet, Daubechies, and Coiflet wavelets are proposed to 

classify and detect epileptic seizures. There are several elements that determine the 

characteristics of these families, including regularity or symmetry, the number of 

vanishing points, and the length of a wavelet's support. (Ngui, Leong, Hee, & 

Abdelrhman, 2013). 

  

Using Daubechies 2 (db2), Daubechies 4 (db4), and Daubechies 8 (db8), the 

wavelet coefficients are computed in the study of (Orosco, Correa, & Laciar, 2013). 
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Daubechies sequence is mostly used due to better stability and more flexible options 

for weighing boundary problems. The analysis of EEG signals using Daubechies 

Wavelets is introduced in many studies (Ayyad, Saleh, & Labib, 2019; Faust, Acharya, 

Adeli, & Adeli, 2015; Gazalba & Reza, 2017; Gu, Yan, Zhang, Li, & Yu, 2018; Nabil, 

Benali, & Reguig, 2020; L. Wang et al., 2017). One of these studies is achieved by 

(Juárez-Guerra, Alarcon-Aquino, & Gomez-Gil, 2015) In the feature extraction step, 

they use the two types of wavelet transform that is DWT and the Maximal Overlap 

Discrete Wavelet Transform with the Haar, db2 and db4. The computed features as 

mean, absolute median and variance from the Alpha and Delta subbands fed into Feed-

Forward Artificial Neural Networks classifier. Accuracy rate of 93.23 % is achieved 

using whole segments whereas accuracy of 99.26 % is obtained using sub-segments 

for training.  

 

In some research articles, because of the spike-wave pattern characteristic of EEG, 

it is thought that Daubechies-2 wavelet function is appropriate (Fathima, 

Bedeeuzzaman, Farooq, & Khan, 2011; Tong, Aliyu, & Lim, 2018). New family of 

wavelets is constructed with generalized Laguerre polynomial wavelets (Peachap & 

Tchiotsop, 2019). They obtain a scalogram of the signal and CWT coefficients with 

the Laguerre 1-5 wavelets and dimension of features is reduced with the help of 

Principal Component Analysis to extract significant information from data. 

Dimensionality reduced features are classified by using SVM and Artificial Neural 

Network classifiers. The classification rate changes between 95%-100%. The 

researchers of (Ahmad, Singh, & Khan, 2019) achieve the sequential segmentation of 

EEG signals to detect epileptic seizures using Machine Learning. The approximation 

and detail coefficients are obtained by db4 and decomposed to frequency sub-bands. 

They compare the result of the different classifiers including Simple Decision Trees, 

Bagged Trees, Quadratic Discriminant, Subspace k-Nearest Neighbor, Medium 

Gaussian SVM. They observe that Simple Decision Tree has high sensitivity and 

specificity rate in percentage. 

 

The most suitable wavelet function is identified among the wavelet families 

(second, fourth, sixth tenth and twelfth order of Daubechies) in (Anila Glory, 
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Vigneswaran, & Shankar Sriram, 2020). In their classification methodology, the 

entropy-based features (Renyi, Sample, Shannon and Permutation) are extracted by 

employing Bonn University EEG Dataset. Minimum entropy criterion and 

reconstruction criterion are utilized to select the appropriate feature. These relevant 

features are classified using Support Vector Machine (SVM), Artificial Neural 

Network (ANN), Decision Tree (DT) and k-Nearest Neighbor (k-NN) and the result 

are compared. It is found that db10 is optimal basic wavelet function with the highest 

accuracy, sensitivity, specificity rate and improve epileptic detection performance.  

 

It is compared that the performance of discrete wavelet transform (DWT) and 

wavelet packet decomposition (WPD) to classify  normal, generalized epilepsy and 

focal epilepsy (Sairamya, Premkumar, George, & Subathra, 2021). Their attempt to 

combinate of three factors; wavelet coefficient features, decomposition level, and 

selection of mother wavelet. Using DWT and WPD, the acquired from the Karunya 

EEG database are divided into sub-bands. Nine statistical features acquired from each 

subbands are classified using SVM. They use 54 different wavelet types (Bior, Coif, 

Rbio, Haar, db, Sym, Dmey and derivatives). In each situation, the highest 

classification accuracy is attained by the Haar, reverse biorthogonal and wavelet 

member biorthogonal. According to their findings, the best approach for analyzing 

EEG data to diagnose epilepsy is DWT. Furthermore, the best wavelet type for signal 

classification is the mother wavelet rbio1.1, which has the best classification rate. 

 

The authors of (Omidvar, Zahedi, & Bakhshi, 2021) use 5-level decomposition, 

Daubechies 4 (db4) that combine with different statistical and entropy-based features 

(9-11 main features). They use only db4 type of wavelet and did not compare the other 

wavelet types. The classification is performed by SVM and ANN classifiers which 

contain genetic algorithms to select the more suitable features. Two classifiers give the 

100% and 98.7% accuracy rates between seizure and normal classes, and seizure, 

normal, and seizure-free classes.  

 

The authors of (El-Gindy et al., 2021) develop a method for predicting epileptic 

seizures based on several wavelet transform families (Haar, Daubechies (db4, and 
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db8), Symlets (Sym4), and Coifets (Coif)). They use the amplitude, local mean, local 

median, local variance, derivative, and entropy of the wavelet-transformed signals. 

Their results show that db4 gives the high sensitivity of 100% with low average False 

Prediction Rate of 0.0818 h−1 and a high average Prediction Time  of 38.1676 min. 

 

As mentioned above, the different wavelet types are applied with various 

classification algorithms in the literature. In order to more clearly compare its 

effectiveness, we chose the type of Daubechies most frequently used in other studies. 

Selected wavelets namely db2, db4, db8 and db10 that are combined with 8 features is 

tested with 5 different classification methods. In addition to above studies, there are 

many epileptic detection studies that are used Bonn University and Children's Hospital 

Boston–Massachusetts Institute of Technology (CHB-MIT) EEG Database as shown 

in Table 1.1 and Table 1.2. 
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Table 1.1 Comparison of different classifier performances for Bonn University Dataset 

Authors Features Classifier Performance 

metrics (%) 

(Shoeibi et al., 

2022) 

Fuzzy entropy features  ANFIS classifier 

Autoencoders 

ACC: 99.74-99.46 

(Qureshi, Afzaal, 

Qureshi, & 

Fayaz, 2021) 

Temporal-Spectral Features Fuzzy 

Classifiers 

 

ACC: 98.70-99.81 

(Anuragi, 

Sisodia, & 

Pachori, 2021) 

line-length, log-energy-entropy, and 

norm-entropy  

LS-SVM 

SVM  

k-NN 

Ensemble 

Bagged Tree 

ACC: 100 

(Akyol, 2020) Not performed Deep Neural 

Networks  

Stacking 

ensemble 

approach 

ACC: 97.17 

SEN: 93.11 

(Jiang, Chen, & 

Li, 2020) 

symplectic geometry decomposition-

based features 

SVM ACC: 99-100 

(Atal & Singh, 

2020) 

ECT+MGT+NPT+FD+GLCM  Random Forest ACC: 99-98 

(Amin, Yusoff, & 

Ahmad, 2020) 

Discrete Wavelet +Arithmetic 

coding 

k-NN, Naive 

Bayes, MLP, 

and SVM 

ACC: 100 

(Mahjoub, 

Jeannès, Lajnef, 

& Kachouri, 

2020) 

MEMD + Temporal, Non-linear 

features 

SVM ACC: 99.54-98.61 

(Ravi Kumar & 

Srinivasa Rao, 

2019) 

Differential entropy 

Peak magnitude to Root Mean 

Square ratio 

Random Forrest 

Classifier 

SEN: 93.33 

SPE: 96.67 

 

(V. Gupta & 

Pachori, 2019) 

FBSE + WMRPE  LS-SVM ACC: 99.5-97.5 

(Acharya, Oh, 

Hagiwara, Tan, 

& Adeli, 2018) 

Not performed CNN SEN: 95 

SPE: 90 

(Ullah, Hussain, 

& Aboalsamh, 

2018) 

Not performed CNN SEN: 98 

SPE: 98 

 (A. Gupta, 

Singh, & 

Karlekar, 2018) 

Hurst Exponent and ARMA 

Parameter 

SVM SEN: 95 

SPE: 94 

 ACC: 94 

 (Mingyang Li, 

Chen, & Zhang, 

2017) 

Mean 

 Energy 

Standard deviation 

Max value 

NNE  ACC: 98.78  

1enhanced curve let transform (ECT), Modified Graph Theory (MGT), Novel Pattern Transformation 

(NPT), fractal dimension (FD) and Gray Level Co-occurrence Matrix (GLCM), Multilayer Perceptron 

(MLP), multivariate empirical mode decomposition (MEMD), weighted multiscale Renyi permutation 

entropy (WMRPE), Fourier–Bessel series expansion (FBSE), least square support vector machine (LS-

SVM), Neural Network Ensemble (NNE) 
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Table 1.2 Comparison of different classifier performances for CHB MIT Dataset 

Authors Features Classifier Performance 

metrics 

(%) 

(Qureshi et al., 2021) Temporal-Spectral 

Features 
Fuzzy Classifiers ACC: 92.79-99.38 

 
(Anuragi et al., 2021) line-length, log-

energy-entrop, and 

norm-entropy 

LS-SVM 

SVM  

k-NN 

Ensemble Bagged 

Tree 

ACC: 99.84 

(Gómez et al., 2020) Not performed Fully Convolutional 

Neural Networks 

ACC: 98.0 

SPE: 98.3 

(Jiang et al., 2020) symplectic geometry 

decomposition-based 

features 

SVM ACC: 97.17-99.72 

(Choi et al., 2019) Multi-scale 3D-CNN Deep Neural Network  SEN: 89.4 

 

(Tăuţan et al., 2019) Amplitude, skewness, 

kurtosis, entropy, 

maxPSD, maxF, mean 

Gamma, mean Beta, 

mean Theta, mean 

Delta, varPSD 

SVM, RF ACC: 94  

(Kaleem, Gurve, 

Guergachi, & 

Krishnan, 2018) 

signal-derived EMD-

based dictionary 

approach 

SVM  SEN: 94.27 

SPE: 91.55 

ACC: 92.91 

(Tsiouris, Markoula, 

Konitsiotis, 

Koutsouris, & 

Fotiadis, 2018)  

Spectral analysis, 

variation in EEG 

energy distribution 

over the delta, theta, 

and alpha rhythms 

SSM SEN: 88  

(Bhattacharyya & 

Pachori, 2017) 

Empirical Wavelet 

transform, þ joint 

instantaneous 

amplitudes and 

frequencies 

Random Forest SEN: 97.91 

SPE: 99.57 

ACC: 99.41 

(Janjarasjitt, 2017) Mean, Standard 

Deviation 

SVM SEN: 72.99  

SPE: 98.13  

ACC: 96.87 

(Van Esbroeck, 

Smith, Syed, Singh, 

& Karam, 2016) 

Temporal variability 

information 

SVM SEN: 100  

(Orosco, Correa, 

Diez, & Laciar, 2016) 

Spectral and energy 

features  

 

LDA 

 Pattern Recognition 

Neural Network  

SEN: 87.5  

SPE: 99.5 

(Bugeja, Garg, & 

Audu, 2016) 

Magnitude, spectral 

energy variation, and 

relevance frequency 

SVM  

ELM 

SVM: -  

SEN: 97.98  

SPE: 89.90  

ELM: -  

SEN: 99.48  

SPE: 81.39 
2Linear Discriminant Analysis (LDA), Extreme Learning Machine (ELM) 
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1.7 Contribution 

 

Researchers showed that different wavelet types are the most appropriate wavelet 

for use in seizure detection. However, the potential advantages of each wavelet and 

detailed results aren’t compared in detail. Thus, this creates a gap in this area having a 

research importance in the literature. This is the motivation for this study. 

 

The purpose of this study is to find the best effective Daubechies types and sub-

band type to classify the epileptic and nonepileptic EEG signal and understand the 

general perspective of different Machine Learning Algorithms that can be associated 

with feature extraction process. Though Daubechies has shown promising results, it is 

still an open question regarding which wavelet has the differential feature, and also 

which is the best suitable for the classification of epileptic and non-epileptic seizures.  

 

Contextually, 

1. The EEG signal is decomposed in 5-levels decomposition by using db2, db4, 

db8, and db10-WT to extract specific information and eliminate redundant 

data. 

2. Accurate epilepsy diagnosis by integration of time-frequency domain 

characteristics 

3. To combine signal processing algorithms and machine learning techniques. 

SVM, K-NN, Decision Tree, Discriminant Analysis, and Naive Bayes are 

among the classifiers used to extract features and classifying them into several 

categories. 

4. Employing different machine learning algorithms and the performance of each 

algorithm is compared in terms of accuracy, sensitivity, specificity 

5. The experimental results propose low computational burden. It is built highly 

fast, sensible, robust, cost-effective epilepsy detection algorithm that achieves 

the results with high accuracy rate without patient-dependent classification. 

Our algorithm offers more precise detection of epileptic EEGs from 

nonepileptic ones. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

In Figure 2.1, to explain the whole process the block diagram is shown. The 

procedure covers the pre-processing, feature extraction and training-test steps of 

machine learning algorithms and classification of EEG signal for epileptic seizures. In 

the preprocessing, the Wavelet Transform is applied to the signal with the Daubechies 

mother wavelet. The signal subbands are obtained for 5-level. In the feature extraction 

step, eight features are applied to all five subbands. After all features are computed, 

the feature matrix is fed into classifiers. 

 

Figure 2.1 Overall system architecture for EEG signal classification 

 

 



20 

 

2.1 EEG Database  

 

To evaluate the performance of our proposed technique, we apply it to two distinct 

EEG databases: the Bonn University EEG Dataset and the CHB-MIT EEG dataset. 

Unlike The Bonn Dataset, which includes normal, interictal, and ictal EEG recordings, 

the CHB MIT dataset includes long interictal and ictal EEG recordings.  

 

2.1.1 CHB-MIT Dataset 

 

This study utilizes a dataset contributed by Children's Hospital Boston–

Massachusetts Institute of Technology (CHB MIT). Extracranial EEG signals from 23 

children with an intractable seizure are obtained using a standard 10-20 electrode 

placement scheme. Males ranges in age from 3 to 22 years, while girls’ range in age 

from 1.5 to 19 years. To detect their seizures, they are observed for many days 

following the cessation of anticonvulsant medication. Continuous scalp recordings are 

collected with a sampling rate of 256 Hz per second and 16-bit resolution. 

To detect their seizures, they are followed for many days following the cessation of a

nticonvulsant medication. Continuous scalp recordings are collected with a sampling 

rate of 256 Hz per second and 16-bit resolution. In total, each EEG segments consist 

of 91600 sampling points and lasted around 1 hour.  

The EEG database uses in this study is accessible at the Physionet website; 

http://physionet.org/physiobank/database/chbmit/ (Shoeb & Guttag, 2010). In the 

experiment, all patients have experienced 2-14 seizures and the total seizure number 

is 198 seizure events from 23 patients that are listed in Table 2.1. When anti-seizure 

medication is stopped, they are followed for a few days and the continuous scalp 

recordings are taken at a sampling rate of 256 Hz per second and 16-bit resolution to 

identify their seizures. 

 

 

 

 

http://physionet.org/physiobank/database/chbmit/
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Table 2.1 CHB-MIT dataset for 23 subjects 

 

2.1.2 Bonn University Dataset 

 

EEG signals are acquired from an online database available from Epilepsy Center 

of the Bonn University Hospital of Freiburg [5]. There are five groups within this 

database. (A, B, C, D, E). They are single-channel group with 100 samples which are 

23.6 seconds. Each data sample contains 4096 data points, and the sampling frequency 

is 173.61 Hz. In addition, the data are filtered between 0.5-85 Hz. A and B data set is 

obtained from five healthy volunteers. The eyes of the volunteers in A are open while 

the eyes of the volunteers in B are closed. C, D, E are records of five epilepsy patients 

that are described in Table 2.2. During the EEG signal measurement of the C class 

subjects, the electrodes placed on the skull are taken from the moment when they are 

not in a seizure state with the electrode placed across the epileptogenic region. Class 

D subjects are taken with electrodes placed in the epileptogenic region when they are 

not in a seizure state. Class E samples are taken while the patients are having seizures.  

 

 

Cases Gender Age (Years) Total number of 

records 

Number of 

seizures 

chb01 F 11 42 7 

chb02 M 11 36 3 

chb03 F 14 38 7 

chb04 M 22 42 3 

chb05 F 7 39 2 

chb06 F 1.5 18 7 

chb07 F 14.5 19 3 

chb08 M 3.5 20 5 

chb09 F 10 19 3 

chb10 M 3 25 7 

chb11 F 12 35 3 

chb12 F 2 24 13 

chb13 F 3 33 8 

chb14 F 9 26 7 

chb15 M 16 40 14 

chb16 M 7 19 5 

chb17 M 12 21 3 

chb18 M 18 36 6 

chb19 M 19 30 3 

chb20 M 6 29 6 

chb21 M 13 33 4 

chb22 M 9 31 3 

chb23 M 6 09 3 

chb24 F - 22 12 
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Briefly;  

Table 2.2 Clinical data brief of Bonn University 

Data Set A set  

(Z data) 

B set  

(O data) 

C set  

(N data) 

D set  

(F data) 

E set 

 (S data) 

Subjects Health 

individual 

Health 

individual 

Patient with 

epilepsy 

Patient with 

epilepsy 

Patient with 

epilepsy 

Electrode type Surface Surface Intracranial Intracranial Intracranial 

Electrode 

placement 

International 

10-20 systems 

International 

10-20 systems 

Within 

epileptogenic 

zone 

Within 

epileptogenic 

zone 

Within 

epileptogenic 

zone 

State of patient Awake and 

eyes open 

Awake and 

eyes open 

Seizure-free 

(Interictal) 

Seizure-free 

(Interictal) 

Seizure 

activity (Ictal) 

Number of 

segments 

100 100 100 100 100 

Segment 

duration 

23.6 23.6 23.6 23.6 23.6 

 

2.2 Pre-Processing 

 

The processing step is started with raw signal entered into band-pass filter to 

remove artifacts. The boundary of filter is between 0.3 and 60 Hz (CHB MIT dataset).  

0-40 Hz frequency band range gives more significant information for epileptic seizure 

detection. The Bonn dataset is filtered using 40 Hz low pass filter, so it is not applied 

the filter for this dataset. 

 

2.2.1 Channel Selection 

 

The rhythmic activity that occurs during epileptic seizures is not prominent in all 

channels, and the channel varies significantly from patient to patient. Therefore, 

knowing which channel we will work with in feature extraction is an important point. 

In order to identify significant channel that carries rhythmic activity and reduce system 

complexity, using smaller number of channels is contributive step for multichannel 

data.  
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(a) (b) 

  
Figure 2.2 a. All channels of CHB MIT Dataset, b.Selected four channels 

  

As indicated in Figure 2.2, we have chosen four channels, Channels (F3-C3), (C3-

P3), (FP2-F4), and (C4-P4), each of which manifest rhythmic activity. Considering 

these, the following equation is used to average of most effective four channels; 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑𝐸𝐸𝐺[𝑛] =

1

𝑐
(∑ 𝑥𝑖[𝑛])

𝐶

𝑖=1

 (2.1) 

This process is only implemented on CHB MIT database because of 23 channels, 

Bonn Database has the only one channel that have been used.  

          

2.3 Signal Processing 

 

In the signal processing step, original signal is decomposed into detailed 

coefficients with the help db2, db4, db8 and db10.  

 

2.3.1 Wavelet Transforms 

 

In the signal analysis, Fast Fourier Transforms, Wavelet Transform, Power Spectral 

Density are the most applied techniques for time-frequency analysis. In the recent 

years, Wavelet Transform is used in EEG signal processing to analyze EEG signal due 

to the rapidly changing spectral content.  
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To distinguish between different frequencies, a wavelet represented by 𝛹 must be 

oscillatory in some way. Wavelet Transform enables the accurate decomposition of 

complicated information content into elementary form at various scales and positions, 

and subsequent reconstruction. To analyze the time domain 𝑓(𝑡) signal, Continuous 

Wavelet Transform (𝛹𝑓
𝛹

) is used and expressed as Equation 2.2; 

 
𝛹𝑓

𝛹
=

1

√|𝑆|
∫ 𝑓(𝑡)𝛹∗

(
𝑡 − 𝜏

𝑠
)

+∞

−∞

𝑑𝑡 

 

(2.2) 

where 𝛹(𝑡) is referred to as the mother wavelet, 𝜏 and 𝑠 correspondingly indicate the 

translation and scaling parameters. When a complex wavelet is present, the complex 

conjugate is employed, as indicated by the sign *. If translation and scaling are 

discretized, the wavelet transform is called as Discrete Wavelet Transform.  

 

In this study, it is introduced the wavelet analysis-based feature extraction 

technique using Daubechies family. Frequency domain signals of EEG are more 

apparent compared with time-domain signals (Ren & Wu, 2014). As a result of high 

time-frequency resolution, wavelet types are one of the techniques frequently utilized 

in EEG analysis. They are divided into 7 main groups that briefly represented in Figure 

2.3. 

 

Figure 2.3 Wavelet family representation (Al-Qerem, Kharbat, Nashwan, Ashraf, & Blaou, 2020) 
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2.3.1.1 Daubechies Wavelets 

 

Daubechies Wavelets are proposed by Belgian physicist Ingrid Daubechies. dbN 

format is used to abbreviate the Daubechies wavelets, where N is order. The order 

increases its regularity. This wavelet is known for non-symmetric and orthogonal 

attributes, efficient filter implementation. They give remarkable results in epileptic 

detection algorithms due to the previous properties. The maximum number of 

vanishing moments is the most significant characteristic. Daubechies wavelet has 

different forms (e.g., db1 to db10). The vanishing moments are determined by these 

forms. Overlapping windows are utilized in these wavelets, thus all high frequency 

changes are represented by the high frequency coefficient spectrum. Thus it is applied 

to compress and remove noise audio signal processing (Mahmoud, Dessouky, Deyab, 

& Elfouly, 2007). Daubechies wavelets are better adopted natural signals than a flat 

Haar wavelet. Because Haar wavelets cannot capture the high frequencies of the 

epileptic signals effectively. Daubechies wavelet is also known for detecting the 

change in frequency. 

(a) (b) 

  

(c) (d) 

  

Figure 2.4 Representation of Daubechies types 
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In the figure, a, b, c and d are the representation of 2nd of Daubechies wavelet, 4th 

of Daubechies wavelet, 8th order of Daubechies wavelet, 10th of Daubechies wavelet. 

In order to obtain the optimal features which are associated with classifier to acquire 

the highest classification rate, the original EEG signal is decomposed in time-

frequency domain. The original EEG signal is decomposed into frequency sub-bands 

such as alpha, beta, theta, gamma and delta by employing DWT. The wavelet 

coefficients are obtained using second order Daubechies (db2) wavelet and 

a fourth order Daubechies (db4) wavelet, eighth order Daubechies (db8) and tenth 

order Daubechies (db10) as seen in Figure 2.4. The extracted features of each channel 

include mean, kurtosis, skewness, approximate entropy/complexity, root mean 

squared, variance, Lyapunov Exponent /mobility, Mean Absolute Deviation.   

For each channel, the time domain signals are converted to frequency domain 

signals using the Wavelet Transform described as Figure 2.5.  

 

2.3.2 Wavelet Decomposition 

 

The performance of Wavelet Transform (WT) is affected directly by four main 

factors, as follows: decomposition level, frequency band, mother wavelet and selecting 

features by using the WT coefficients. Therefore, it should be noted that the selection 

of an appropriate number of decomposition levels is an important step. In order to 

identify the number of decomposition level, it is needed to handle dominant frequency. 

(a) (b) 

  

Figure 2.5 a. Recordings in the time domain, b. Recordings in the frequency domain 
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If the wavelet coefficient levels and the useful frequency range of the EEG signal are 

well correlated, they can be selected in the next processing steps. In the 0-30 Hz of 

frequency spectrum, EEG signals give meaningful information. Oscillations called 

rhythms of EEG signals in which seen in EEG waves at frequencies lower than 30 Hz. 

At that point, decomposition of the signal such that it optimally correlates within 

significant frequency band. If the decomposition levels are less than five, the 

differentiation of lower rhythmic activities gets hard, this theta and delta rhythms may 

be disappearing. In contrast, the decomposition level that is higher than 5, it does not 

give significant results. By taking into account sampling frequency of dataset and 

above discussion, the most suitable choice for decomposition is five-level 

decomposition in this algorithm. Using 5-level-decomposition transform and 

Daubechies wavelets family of order 2 (db2), order 4 (db4), order 8 (db8) and order10 

(db10), it is obtained the detailed coefficients from D1 to D5 and approximation 

coefficients (A5) at the lower subband. This wavelet decomposition of EEG signal is 

shown in Figure 2.5. 

 

 

Figure 2.6 Schematic representation of the 5th level wavelet decomposition                                     
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The following is a step-by-step process to Wavelet Decomposition: 

• This technique utilizes two digital filters and two downsamplers at each 

level. In the first step, LP represents low pass filter whereas HP is the high 

pass filter. The downsampled outputs of the first high-pass and low-pass 

filters produce, respectively, the level of detail D1 and the approximation 

A1. 

• In the second level, the output of low pass filter (A2) is fed into the filters 

of second step, and this process for the 1-D signal is repeated until level 5 

and the outputs of the filters are ordered as A5, D5, D4, D3, D2, D1.  

 

2.4 Feature Extraction and Selection 

 

The features define some critical properties. In the signal analysis, the feature 

extraction of original signal important. After computing all sub-bands, then it is 

calculated all statistical features including mean value, kurtosis, skewness, 

approximate entropy, root mean squared, variance, Lyapunov exponent, mean absolute 

deviation. In the proposed algorithm, all features are calculated from four detailed 

wavelet coefficients as D1, D2, D3, D4, D5 and one approximation coefficient (A5) 

only. These parameters represent the location and variability of the EEG data. In the 

usage of the wavelet transform with the 5-level decomposition and Daubechies mother 

wavelet, all subband coefficients are computed. 

 

96 samples are randomly chosen out of 120 samples of each feature and used for 

training classifiers, the remaining 24 samples from each feature are employed for the 

testing process. Consequently, for each class feature vectors are 120x8. All these data 

set is obtained from feature extraction are normalized before the classification 

procedure. All normalized data are subjected to cross validation process. A 10-fold 

cross validation is also employed to prevent overfitting during this phase of training. 

Each column of the input data matrix is one feature (totally 8 columns are listed as 

Table 2.3.), and each row represented one observation. To demonstrate the 

effectiveness of the suggested method, two different EEG datasets are compared. 
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Table 2.3 The eight-dimension features for CHB MIT dataset 

EEG 

Signal 

Feature 1 Feature 

2 

Feature 

3 

Feature 

4 

Feature 

5 

Feature 

6 

Feature 7 Feature 

8 

Gamma Complexity Kurtosis MAD Mean Mobility RMS Skewness Variance 

Beta Complexity Kurtosis MAD Mean Mobility RMS Skewness Variance 

Alpha Complexity Kurtosis MAD Mean Mobility RMS Skewness Variance 

Theta Complexity Kurtosis MAD Mean Mobility RMS Skewness Variance 

Delta Complexity Kurtosis MAD Mean Mobility RMS Skewness Variance 

 

 

Table 2.4 The eight-dimension features for Bonn University 

EEG 

Signal 

Feature 

1 

Feature 

2 

Feature 

3 

Feature 

4 

Feature 

5 

Feature 

6 

Feature 7 Feature 

8 

Gamma Entropy Kurtosis MAD Mean LYP RMS Skewness Variance 

Beta Entropy Kurtosis MAD Mean LYP RMS Skewness Variance 

Alpha Entropy Kurtosis MAD Mean LYP RMS Skewness Variance 

Theta Entropy Kurtosis MAD Mean LYP RMS Skewness Variance 

Delta Entropy Kurtosis MAD Mean LYP RMS Skewness Variance 

 

This is convenient to the fact that the approximate entropy and Lyapunov Exponent 

features are found to form time consuming set of features and ineffective for CHB 

MIT dataset.  Both features are eliminated to improve efficiency of the proposed 

method by using feature ranking algorithm. Mobility and Complexity are selected 

instead of using these features in CHB MIT database, list of used features is 

represented in Table 2.4. These selected components are processed by Decision Trees, 

Discriminant Analysis, Naive Bayes, SVM and k-NN.  

 

2.4.1 Mean 

 

In statistical computation, the mean value is the measure of the arithmetic average 

of all values of data. It indicates the sum of all values divided by total number of values. 

Mean is not complicated value which has good estimate of data values. It is expected 

that the mean of seizure data is higher than the seizure free data because of high 

amplitudes.  The mean formula is as given in Eq. 2.3; 
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𝐸 =

∑ 𝑥𝑖
2𝑁

𝑖=1

𝑁
 (2.3) 

 

2.4.2 Kurtosis 

 

The Kurtosis word derives from the Greek Word ‘Kurtos’ that means the data 

dispersion. It is defined as measure of the peakedness and gives information about the 

shape of frequency distribution. The most characteristic of epileptic EEG includes 

spikes, sharps, spike and slow wave complex. Higher values are signature of an 

existing seizure activity whereas lower values refer to normal data without seizure. 

Kurtosis (𝛾2) is the fourth standardized moment and is defined as; 

 𝛾2 =
𝜌4

𝑆4⁄      (2.4) 

where 𝜌4 is the fourth moment about the mean and  𝑆 is the standard deviation. 

 

2.4.3 Skewness 

 

Skewness is a quantify of asymmetry. The skewness is given by; 

                    𝛾1 =
𝜌3

𝑆3                      ⁄  (2.5) 

where 𝜌3 the third moment about the mean and 𝑆3 is the standard deviation. If the 

data is more spread out on the right side of the graph, it means that skewness is a 

positive value. On the contrary, the negative values cause spreading out to the left of 

the mean. It is expected that in optimal symmetric distribution about mean, the 

skewness has zero value. 

 

2.4.4 Approximate Entropy 

 

Approximate Entropy (ApEn) is a complexity index which can measure the 

complexity or irregularity of a specific time series (Ocak, 2009). It is one of the most 

helpful tools to extract information from the biological signal. It has always positive 

value for any time series. Higher ApEn value indicates higher degree of complexity or 

irregularity. It is expected that the regularity of the epileptogenic data set patterns 
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higher than seizure-free EEG. The EEG in those with epilepsy is more regular, 

predictable, and simplified than that of healthy individuals. The regularity of the 

epileptic EEG is higher than normal EEG data. Formally, if a time series contains N 

data points, 𝑦(𝑛) = [𝑦(1), 𝑦(2), … … . , 𝑦(𝑁)], the steps for calculating ApEn are as 

follows: 

1. The definitions of the form m vectors Y(1), Y(2), Y(3),...,Y(N-m+1) are as follows: 

𝑌(𝑖) = [𝑦(𝑖), 𝑦(𝑖 + 1), … … . , 𝑦(𝑖 + 𝑚 − 1)];    𝑖 = 1,2, … . , 𝑁 − 𝑚 + 1 

2. Distance between Y(i) and Y(j) is defined by d[Y(i),Y(j)] which indicates 

represents the highest difference between their scalar components in absolute 

terms 

𝑑[Y(i), Y(j)]= |𝑦(𝑖 + 𝑘 + 1) − 𝑦(𝑗 + 𝑘 − 1)|𝑘=1,2,…𝑒
𝑚𝑎𝑥  

 

3. Determine the number of (j=1,…….,N-m+1,  j≠i) such that d[Y(i), Y(j)] ≤ k, 

represented as Nm(i). Then for i=1,2,…..N-m+1 

 

𝐶𝑘
𝑚(𝑖) =

𝑁𝑚(𝑖)

𝑁 − 𝑚 + 1
, 𝑓𝑜𝑟 𝑖 = 1 … . . 𝑁 − 𝑚 + 1 

 

4.  Figure out the natural algorithm of 𝐶𝑘
𝑚(𝑖) and the find mean value over  

∅𝑚(𝑘) =
1

𝑁 − 𝑚 + 1
∑ 𝑙𝑛𝐶𝑘

𝑚(𝑖)

𝑁−𝑚+1

𝑖=1

 

 

5. As another steps, increase the dimension to m+1. Repeat steps between 1–4 to 

obtain ∅𝑚+1(𝑘) and 𝐶𝑘
𝑚+1(𝑖) 

 

6. Finally, ApEn is computed based on the following formula; 

 𝐴𝑝𝐸𝑛(𝑚, 𝑘, 𝑁) = ∅𝑚(𝑘) − ∅𝑚+1(𝑘) (2.6) 

 

Before computing the value of ApEn, two parameters must be known where these 

are m and k, the embedding dimension, a tolerance window, respectively. (Upadhyay, 

Padhy, & Kankar, 2016).  
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2.4.5 Mean Absolute Deviation 

 

Mean Absolute Deviation (MAD) is one of the parameters to measure statistical 

dispersion.  It is the mean of the absolute deviations of dataset, mathematically is 

expressed as;  

 

𝑀𝐴𝐷 =
1

𝑛
∑|𝑥𝑖 − 𝑧|

𝑝

𝑖=1

 

 

(2.7) 

where 𝑧 is the mean of the distribution with 𝑛 sample points. It is comprehensible 

feature that is more effective for distributions except ideal normal. It gives better 

results compared to standard deviation in realistic conditions where some of the 

determinations are in error (Gorard, 2005).  

 

2.4.6 Lyapunov Exponent 

 

Lyapunov Exponent estimates chaos and complexity of nonlinear dynamic systems 

and spatiotemporal dynamics in epileptic EEG time are characterized. When a system 

becomes unpredictable, it can be mentioned that the system is chaotic and have 

aperiodic dynamics. If Lyapunov Exponent has a positive value, the system becomes 

chaotic. It is possible to detect seizures using chaotic metrics with 90% sensitivity 

(Kannathal, Chee, Er, Lim, & Tat, 2014).  

 

2.4.7 Hjorth’s Parameters 

 

The Hjorth parameters is a set of statistical parameters of a time series proposed by 

Bo Hjorth (1970) that are extensively used in signal processing. These parameters are 

calculated that contain activity, mobility, and complexity in time domain (Türk, Şeker, 

Akpolat, & Özerdem, 2017). They are originally introduced for several online EEG 

analyses (e.g., sleep staging). Otherwise, they are commonly used to detect epileptic 

seizures (Kaushik, Gaur, Sharma, & Pachori, 2022; Tanveer, Pachori, & Angami, 

2018).  
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The first Hjorth parameter, activity, defined as the variance of the EEG amplitudes, 

is the degree of statistical distribution. This value of seizure data is generally higher 

than healthy data. The variance defines as; 

 
   𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =

∑ (𝑥𝑖 − 𝜇)2𝑁
𝑖=1

𝑁
     

 

(2.8) 

 

where 𝑥𝑖 is the signal, 𝜇 represents mean of the signal and N is length of the signal. 

 

Mobility (m) is the second Hjorth parameter that means approximation of 

frequency. This can be represented in mathematical terms as square root of the ratio of 

the activity of the first derivative of the signal divided by the activity of EEG 

amplitudes and defined by the function; 

 

    𝑚 = √
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (

𝑑𝑥𝑖

𝑑𝑡
)

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑥𝑖)
     

 

 

(2.9) 

The next last parameter complexity (c) is defined as an approximation of the signal 

bandwidth. This term can be used to determine the closeness of a time series to original 

sine wave. It is defined as mobility of the first derivative of the signal is divided by the 

mobility of the signal itself; 

 

  𝑐 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (

𝑑𝑥𝑖

𝑑𝑡
)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥𝑖)
    

 

(2.10) 

 

2.4.8 Root Mean Square  

 

One of the time domain features is Root Mean Square (RMS) which is widely 

utilized for analyzing the EEG signal. It has been considered as good signal power 

estimator in frequency bands of biosignals, measures magnitude of the variable 

quantity (Abdul-Latif, Cosic, Kumar, Polus, & Da Costa, 2004; Patel, Chua, Fau, & 

Bleakley, 2009). The mathematical equation of RMS is described in Eq. (2.10); 
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  𝑅𝑀𝑆 = √
1

𝐾
∑ 𝑥𝑖

2

𝐾

𝑖=1

 

 

 

(2.11) 

2.5 Classification 

 

The selected favorable features are utilized for 5 classification methods using 

Decision Trees, Naive Bayes, Discriminant Analysis, SVM, k-NN.  These five 

classifiers run out for different algorithms which are given in Table 2.5. The data is 

trained and tested using randomly selected for defined features. The average accuracy 

percentage of all classifiers is presented in Result and Discussion part. The average 

ACC percentage of each classifier is obtained by dividing summation of all algorithms 

of method results to total number of algorithms of method. The all sensitivity, 

specificity and ACC values of classifiers are represented in Tables 3.5 and 3.6.  

 

Table 2.5 Classification methods with different algorithms used in this study. 

Classifier Algorithm 

Decision Tree  Fine Tree 

Medium Tree 

Coarse Tree 

Discriminant Analysis  Linear Discriminant 

Quadratic Discriminant 

Naive Bayes  Gaussian Naive Bayes 

Kernel Naive Bayes 

Support Vector Machine  Linear SVM  

Quadratic SVM 

Cubic SVM 

k-Nearest Neighbor classifiers  Fine k-NN 

Medium k-NN 

Cosine k-NN 

Cubic k-NN 

Weighted k-NN 

 

In the following subsections, all these classifier methods are explained one by one. 
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2.5.1 Decision Trees 

 

Decision Tree (DT) is a learning algorithm that is one of the most widely used basic 

classification and regression techniques in signal processing. This provides both 

nominal and numerical features. The classification model is similar to tree structure 

that consists of root node, branches, and leaves (Han, Pei, & Kamber, 2011). Internal 

nodes evaluate an attribute while branches store outcomes of each occurrence and the 

classification is taken place by leaves. First of all, the dataset is divided into smaller 

and smaller subsets. Secondly, classify the data completely based on selection of each 

attribute. With the high interpretability, flexibility, and easy debugging decision tree 

has the potential to prediction of heart disease problems (Thenmozhi & Deepika, 

2014), chronic kidney diseases (Chaurasia, Pal, & Tiwari, 2018), sleep apneas (Rohan 

& Kumari, 2021), breast cancer (Venkatesan & Velmurugan, 2015) and epilepsy 

classification (Gifu, 2021; Martis et al., 2012). Even if data is incomplete, it gives 

effective results without scaling and normalization.  

 

Decision tree can have different names according to the number of splits; fine tree, 

medium tree, coarse tree. The maximum number of branches on the medium tree is 

20, and it has a medium number of leaves for making fine differences between the 

classes. Fewer leaves are used to separate the classes by coarse tree. Accordingly, the 

maximum number of splits is determined to be four. In order to draw clearer 

differences between the classes, a fine tree is regarded when there are numerous leaves. 

 

2.5.2 Discriminant Analysis 

 

In the thesis, the two types of Discriminant Analysis namely Linear Discriminant 

Analysis, and Quadratic Linear Discriminant Analysis is used. 

 

2.5.2.1 Linear Discriminant Analysis  

 

Linear Discriminant Analysis (LDA) is supervised algorithm that compares the 

variety of the test data with the defined dataset of LDA. The linear discriminant 
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features is computed by maximizing distance between classes and minimizing distance 

between classes (Subasi & Gursoy, 2010). The main purpose of this procedure, it is 

desired that every class may have a standard submission related with discriminant 

ratings. These ratings demonstrate that it is determined with discriminant complete 

that has the shape; 

   𝐷 = 𝑓1𝐶1 + 𝑓2𝐶2 + ⋯ … . . +𝑓𝑝𝐶𝑝 (2.12) 

 

2.5.2.2 Quadratic Linear Discriminant Analysis  

 

Quadratic Linear Discriminant Analysis (QLDA) is closely related to LDA except 

the covariance matrix. It has assumption that the measurements from each class are 

distributed normally whereas QLDA does not suppose that the covariance of each class 

is identical (Eva & Lazar, 2015). The covariance matrix ∑ 𝑖𝑖 is classified for each class, 

i=1, 2,…….I. 

Quadratic discriminant function: 

    

𝛿𝑖 = −
1

2
log |∑ 𝑖

𝑖

| −
1

2
(𝑥 − 𝜇𝑖)

𝑇 ∑(𝑥 − 𝜇𝑖) + log 𝜋𝑖

−1

𝑖

 

 

 

(2.13) 

 

 

2.5.3 Naive Bayes  

 

Naive Bayes (NB) is a probabilistic classifier that is derived on Bayesian theory. 

Maximum likelihood estimates the occurrence or particular absence of Naive Bayesian 

algorithm (Fielding, 2006). The occurrence probability of an effect C is associated 

with the certainty of an event B that happens before and given using Eq.  

 
 𝑃(𝐶\𝑋) =

𝑃(𝐶) ∗ 𝑃(𝑋\𝐶)

𝑃(𝐶)
 

 

(2.14) 

Where 𝑃(𝐶) is the probability of C occuring, 𝑃(𝑋) is the probability of X occuring, 

𝑃(𝐶\𝑋)is the probability of C given X, 𝑃(𝑋\𝐶)is the probability of X given C.  

 

In multiclass and binary classification, NB is useful, and less training data is 

required. It gives the best results with the datasets including functionality-dependent 
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features or completely independent features. The NB is preferred in many medical 

studies for prediction of heart diseases (Saritas & Yasar, 2019), diabetes diagnosis 

(Choudhury & Gupta, 2019) and classification of human emotion (Oktavia, Wibawa, 

Pane, & Purnomo, 2019)  and epileptic EEG (Sameer & Gupta, 2021).  

 

In Naive Bayes, there are different kinds of models based on the flexibility of the 

model. The parameters of Gaussian Naive Bayes cannot be altered to regulate the 

model's flexibility. With spite of this, in Kernel Naive Bayes, the parameters may be 

modified to see how the classifier predicts predictor distributions. 

 

2.5.4 Support Vector Machine  

 

The Support Vector Machine (SVM) is kernel-based classifier that is designed by 

Cortes and Vapnik in 1995. This method is originally proposed to overcome binary 

classification problems. SVM is more widely used for epileptic seizure detection with 

its accuracy and capability to overcome many predictors. Depending on the flexibility 

of the model, there are six versions of SVM. Although linear SVM only generates 

basic differences within classes, it is not as flexible for multiple model parameters. 

The model flexibility of quadratic and cubic SVM is medium compared to linear SVM. 

This classification is used in many different research areas apart from epilepsy. Some 

of these studies include performance evaluation of dementia prediction (Battineni, 

Chintalapudi, & Amenta, 2019), detection of Alzheimer’s disease (Rabeh, Benzarti, & 

Amiri, 2016) and cervical cancer (Jia, Li, & Zhang, 2020), leukemia diagnosis 

(Vogado, Veras, Araujo, Silva, & Aires, 2018).  
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Figure 2.7 Optimal linear seperating hyperplane 

The main concept of SVM is to develop an optimal hyperplane that separates two 

classes describes as Figure 2.7 in the data. If classes can be separated linearly, 

hyperplanes that have maximum margins might be used to classify them. Otherwise, 

if data cannot be divided linearly, the bigger space (i.e., feature space) is utilized for 

separating them linearly. This conversion is named as kernel function. The Kernel 

approach is utilized by SVM in order to map training data from an input space to a 

feature space that has a higher dimension. For the two-class linear classification 

process (class = -1 for non-epileptic and class = +1 for epileptic), the equations for the 

separating hyperplane are given by; 

 𝐼𝑓              𝜔𝑇 . 𝑥𝑖 + 𝑏 ≥ +1     ,            𝑦 = +1 

 

𝐼𝑓              𝜔𝑇 . 𝑥𝑖 + 𝑏 ≤ +1    ,            𝑦 = −1  

(2.15) 

 

 

(2.16) 

 

where each point of data is assigned to 𝑥𝑖 represents, 𝑦𝑘 ∈  {+1; −1}  represents output 

labels, 𝜔 represents the weight vector and 𝑏 is  constant value (Nkengfack, Tchiotsop, 

Atangana, Louis-Door, & Wolf, 2020). 
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2.5.5 k- Nearest Neighbor 

 

k-Nearest Neighbor (k-NN) is a member of nonlinear classifiers, derived from 

nearest neighbor method which aims to handle both classification and regression 

problems. In the classification algorithm, the distance metric between different feature 

values is calculated and the distance metric (e.g., Euclidean distance) determines the 

similarity between two data points as seen in Figure 2.8. It saves all accessible data 

samples and classifies the new data according to previously known data samples based 

on measured similarity among training and test set. Varieties of k-NN exist based on 

the number of neighbors and nature of class differences. Here, six different model 

types are examined. The number of neighbors is assumed to be one while using Fine 

k-NN, and fine differentiation is provided between the different classes. The medium 

differentiation of classes is achieved by medium K-NN using 10 neighbors. The other 

classifier is Cosine k-NN that utilizes a cosine distance metric with a medium degree 

of separation between the 10 neighboring classes. If the distance metric is cubic, Cubic 

k-NN is another type of k-NN which is used, the number of neighbors is defined to 10, 

and the differentiation between classes is medium. It is referred to as weighted k-NN 

when the k-NN algorithm uses the distance weight between each pair of neighbors as 

a parameter, selects 10 neighbors, and selects those neighbors with medium 

differences. 

 

Figure 2.8 A sample classification of k-NN algorithm 
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The Euclidean Distance (ED) between two points, a and b, with k dimensions is as 

follows; 

 

 √∑(𝑎𝑗 − 𝑏𝑗)
2

𝑘

𝑗=1

 

 

(2.17) 

where  

𝑎𝑗 = 𝑎1, 𝑎2, … … 𝑎𝑘 and 𝑏𝑗 = 𝑏1, 𝑏2, … … 𝑏𝑘 

 

In our experiments, we set k=5 to find nearest neighbors. k-NN is also effective for 

noisy and large data. On the other hand, simple interpretation attitude and multiclass 

capability are among other advantages. The k-NN is very popular in EEG analysis that 

includes major depressive disorders (Saeedi, Saeedi, & Maghsoudi, 2020), emotion 

recognition (Mi Li, Xu, Liu, & Lu, 2018), and epileptic prediction (Savadkoohi, 

Oladunni, & Thompson, 2020) and detection (Choubey & Pandey, 2021). The most 

important feature of this algorithm is that not required to crate model, so fast results 

are obtained.  

 

2.6 Performance Evaluating 

 

Where True Positives (TP) is the number of epileptic cases that are predicted as 

epileptic, False Positives (FP) is the number of epileptic cases, that are predicted as 

non-epileptic, True Negatives (TN) is the number of non-epileptic cases which are 

predicted as non-epileptic and False Negatives (FN) is the number of non-epileptic 

cases that are classified as epileptic by the system. If it is required to show all these 

terms in a single table, they are represented as Table 2.6. 

Table 2.6 Confusion matrix for detection of epileptic seizure 

  Predicted 

Epileptic Non-Epileptic 

 

True 

 

Epileptic True Positive 

(TP) 

False Positive 

(FP) 

Non-Epileptic False Negative 

(FN) 

True Negative 

(TN) 
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Accuracy, sensitivity, and specificity all play a role in the evaluation of 

classifications' performance. The meanings of these metrics are given below; 

Sensitivity is defined as the ratio of the total number of positive cases that are correctly 

classified, also called the true positive rate, as given by the formula; 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸𝑁) = 𝑇𝑃𝑅 =

𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

(2.18) 

 

On the other hand, another performance metric is specificity that also called the true 

negative ratio, is described below; 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑃𝐸) = 𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

(2.19) 

 

The last term ACC is the ratio of number of correct classifications (summation of 

TP and TN) to Total Samples; 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝐶𝐶) =

𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

 

(2.20) 

 

2.6.1 The Receiver Operator Characteristic Curve 

 

To assess the performance of the suggested approach, it is applied to confusion 

matrix to obtain accuracy, sensitivity and specificity, The Receiver Operator 

Characteristic (ROC) curve. It is computed the region under the ROC curve to estimate 

the classifier's ability to discriminate between classes. The probability curve illustrates 

the True Positive Rate (sensitivity) vs the False Positive Rate (specificity) at different 

threshold settings. It is considered as the signal is removed from the noise with the 

help of ROC curve.  
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Figure 2.9 ROC Curve of Decision Tress classifier that associated with db10  

When the Area Under Curve (AUC) is higher, it indicates that the model shows 

better performance when it comes to differentiating between positive and negative 

classes as shown in Figure 2.9.  

 

2.6.2 k-Fold Validation 

 

The robustness of the suggested method is evaluated by 10-fold cross validation 

during the training and testing process. This is the most decent way for estimating the 

performance of a machine learning algorithm on a given dataset.  

 

Figure 2.10 Representation of 10-fold cross validation 
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In this algorithm, the feature matrix is randomly divided into k equal size subsets. 

In testing, one subset is chosen, whereas in training, the other subsets are selected. (R. 

Kumar & Indrayan, 2011). This process is iterated for k times leaving one-fold for 

computation each time that illustrated in Figure 2.10. Overfitting can be avoided by 

performing rotation estimation. In our proposed method, 10-fold cross validation is 

computed for better approximation error. 

 

 In the following chapter, all these classification algorithms run out and their 

performances are given. The results are also compared with the previous studies in the 

literature and discussion is given. 
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CHAPTER 3 

RESULT and DISCUSSION 

 

3.1 Experimental Result 

 

The proposed algorithm is applied to Bonn University and Children's Hospital 

Boston–Massachusetts Institute of Technology datasets in this thesis. Eighty percent 

of samples of each group (i.e., 48 samples of healthy groups and 48 samples of 

epileptic group) are randomly formed as training data. The remaining %20 of samples 

(i.e., 15 samples of healthy groups and 15 samples of epileptic group) are adopted as 

test data. First of all, raw EEG signals are filtered by using a Band-Pass filter and 

divided into five sub-bands using fifth level decomposition. Secondly, the features are 

extracted from wavelet coefficients. These features are used as input to machine 

learning algorithms for the classification of seizures and non-seizure events. 

 

In this section, it is presented the classification performances of the proposed 

algorithm and comparison of the results for a sequence of Daubechies filters (ie.from 

db2 to db10), 5 subbands (gamma, beta, alpha, theta, delta), and 5 different classifiers 

(Decision Trees, Discriminant Analysis, Naive Bayes, SVM, k-NN) utilized for the 

detection of epileptic seizures. The feature matrix is classified by MATLAB 

classification learner box. The average ACC rates provided by the two different 

datasets are given in the below tables. The yellow bold lines represent the highest 

average ACC rates.  

 

3.1.1 Application of Classification Algorithm on CHB MIT Dataset 

 

In this part, the performance of 5 different classifiers such that Decision Trees, 

Discriminant Analysis, Naive Bayes, SVM and k-NN are shown in Table 3.1 for CHB 

MIT dataset in the form of percent average ACC performance. 

 

 

 

 

 



45 

 

 

Table 3.1 Average ACC rates of db filters for 5 subbands on classifiers (in %) 

 
 

DECISION TREES 

 Gamma Beta Alpha Theta Delta Average 

db2  100.00 95.50 95.50 90.90 95.50 95.48 

db4 95.50 95.50 90.90 81.80 95.50 91.84 

db8 86.40 100.00 90.90 77.30 77.30 86.38 

db10 90.90 100.00 95.50 95.50 95.50 95.48 

 

DISCRIMINANT ANALYSIS 

  Gamma Beta Alpha Theta Delta Average  

db2  97.75 97.75 90.95 97.75 97.75 96.39 

db4 97.75 100.00 95.50 95.50 95.50 96.85 

db8 95.45 97.75 93.20 93.20 100.00 95.92 

db10 100.00 97.75 100.00 95.45 100.00 98.64 

 

NAIVE BAYES 

  Gamma Beta Alpha Theta Delta Average 

db2  100.00 100.00 90.95 100.00 95.50 97.29 

db4 100.00 100.00 95.50 95.50 95.50 97.30 

db8 100.00 95.50 90.90 100.00 100.00 97.28 

db10 100.00 100.00 100.00 95.50 97.75 98.65 

 

SVM 

  Gamma Beta Alpha Theta Delta Average  

db2  89.43 100.00 93.97 100.00 100.00 96.68 

db4 100.00 98.50 100.00 100.00 100.00 99.70 

db8 100.00 93.83 95.50 100.00 100.00 97.87 

db10 100.00 100.00 100.00 96.97 100.00 99.39 

 

k-NN 

  Gamma Beta Alpha Theta Delta Average 

db2  95.50 100.00 91.82 100.00 100.00 97.46 

db4 98.20 100.00 100.00 100.00 100.00 99.64 

db8 96.40 95.50 96.40 97.30 100.00 97.12 

db10 100.00 99.10 100.00 99.10 100.00 99.64 

In the above tables, we want to see the characteristic of each type of Daubechies 

along the signal with the average values. Combination of Decision Trees and db10/db2 
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give the best performance as it maintained an ACC of 95.48% according to the Table 

3.1. For the Discriminant Analysis, Naive Bayes, the best performances (98.64%, 

98,65%, respectively) are obtained from db10. The accuracy rates of other Daubechies 

types are slightly lower than db10 (97.29%, 97.30%, and 97.28%, respectively) in 

Naive Bayes classifier. In comparison with the ACC performances of other wavelet 

types, Table 3.1 shows that db4 has the higher ACC performance of 99.70% for SVM. 

The second highest average ACC values of 99.39% is obtained from db10 as other 

classifiers. In the k-NN classifier, db4 and db10 resulted in the best performance with 

an average ACC of 99.64%. Interestingly, the lowest average ACC rates are achieved 

by db8 in all classes except SVM. Even if the best average performance of Decision 

Trees is 95.48%, the combination of db8 and theta-delta subbands associated with 

Decision Trees has the lowest ACC of 77.30%. In the Discriminant Analysis and Naive 

Bayes classifier, combination of db2 and alpha subband has the lowest ACC rate of 

90.95%. Similarly, this combination with the poor ACC performance of 91.82% is 

seen in the k-NN classifier. Consequently, we could say that combination of db2 and 

alpha subband failed to classify epileptic seizures. In the SVM classifier, the lowest 

average ACC rate is associated with combining of db2 and Gamma subbands.  

 

Table 3.2 Average ACC performance of subbands with Daubechies wavelets (in %) 

  db2 db4 db8 db10 

Gamma 96.09 98.20 95.47 98.18 

Beta 98.80 98.80 96.37 99.40 

Alpha  92.75 97.28 93.96 99.10 

Theta  97.88 95.46 93.65 96.99 

Delta 98.20 98.20 95.46 98.80 

In this table, we want to observe the comparison of all subbands versus Daubechies 

wavelets from db2 to db10 in the classification algorithms. It is inferred that db10 gives 

the best result in Beta subband with an average ACC of 99.40%. We can see that the 

second highest ACC rate of 99.10% is achieved by db10 in alpha band. Another 

important point is that the combination of alpha and db2 has the lowest ACC of 

92.75%. On the other hand, we should note that the performances of all Daubechies 

types in beta band is above the ACC rate of 96%. 
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Figure 3.1 Illustration of ACC performances versus 5-subbands 

     The above figure, it is seen that beta band has the highest accuracy rate while alpha 

has the lowest rate. Specifically, max. and min. accuracy are from 92.75 to 99.10% for 

Alpha subband whereas the similar observation of Beta band as from 96.37 to 99.40%. 

The underlying reason is that beta band can capture epileptic characteristics of signal 

compared to other subbands.  

 

Figure 3.2 Distribution of the ACC performances achieved by db2, db4, db8 and db10 
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Each Daubechies wavelet from db2 to db10 and correspondingly computed 

accuracy rates are shown in Figure 3.2. It is seen that db2 has a broader range from 

92.75% to 98.20% than the other Daubechies types. This wider range is interpreted as 

unpredictability and also is not preferred for classification. The narrowest range is 

evaluated for db 10 which shows the best performance from 96.99% to 99.40%.  

 

Figure 3.3 Distribution of ACC performances achieved by 5 classifiers 

Figure 3.3 clearly portrayed that SVM is the most consistent classifier with narrow 

ACC rates among other classifiers. Its ACC values range from 97.35% to 100%. 

Decision Trees classifier is insufficient with the wider ACC values from 86.37% to 

97.75%. 
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Figure 3.4 Comparison between average ACC rates for 5 classifiers in the subbands  

Figure 3.4 gives average ACC rates of each subband in one classifier. In this part, 

we analyze difference between highest accuracy and lowest accuracy of classifiers 

associated with subbands. This difference has also impact algorithm stability. When it 

is obtained high differences, we can say that the classifier is unstable in EEG signal. 

An important other observation is that ACC difference between subbands in limited 

range which can be assumed to be an advantage of proposed method. The lowest 

difference between max.-min. accuracy rate is obtained from Discriminant Analysis 

(highest-lowest average ACC rates are 90.9%, 97.7%, respectively) whereas SVM has 

the highest difference (highest-lowest average ACC rates are 89.43%, 100%, 

respectively) for db2.  

 

When Decision Trees are used, the highest accuracy of 100% is obtained from 

gamma band. The performance of beta band is lower than gamma band in this 

classifier. While using Discriminant Analysis classifier, the lowest accuracy (90.9 %) 

is obtained from alpha band. For the Naive Bayes classifier, gamma, beta, and theta 

band have the highest accuracy rate of 100%. SVM and K-NN have the same highest 

accuracy from beta, theta, and delta. The common subband is the beta which has the 

highest accuracy in the whole classifier except Decision Trees classifiers. It is obvious 
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that alpha band has the insufficient ACC performance with Discriminant Analysis, 

Naive Bayes and k-NN.  

 

Figure 3.5 Comparison between average ACC rates for 5 classifiers in the subbands  

The highest difference is 13.7% from combination of Decision Tree classifier and 

theta subband. As mentioned in Figure 3.5, beta band is regarded as best subband for 

Daubechies 4 with 95.50, 98.50,100% ACC values. At the same time, SVM gives 

worst ACC rate (98.50%) in beta band by using db4.  
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Figure 3.6 Comparison between average ACC rates for 5 classifiers in the subbands  

As can be seen from the table 3.6, The Decision Tree has the highest difference 

between max. and min. ACC rate (77.3% and 100% respectively).  

Beta band shows the most significant difference in this classifier. We also investigate 

that k-NN have the effective ACC performance and the lowest difference between 

min.-max. ACC at the same time. For the CHB MIT dataset, the lowest accuracy rate 

is obtained from Decision Trees classifier with an ACC of 77.3% using db8. Another 

important point is that Decision Trees gives best ACC performances of 100% in the 

beta band. 
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Figure 3.7 Comparison between average ACC rates for 5 classifiers in the subbands  

It is shown in Figure 3.7 that Decision Tree indicates instability and broader average 

ACC range between 90.9% and 100% while k-NN outperforms the other classifiers 

with an average ACC of between 99.1-100% for all subbands. Although the 

combination of K-NN-db10 seems perfect, obtaining an ACC between 99.1-100% 

from all subbands is not reliable. Because frequency oscillations caused by epileptic 

seizures are uncommon in all frequency ranges. SVM with 3.1% difference can be 

accepted as best classifier for db10.  

 

3.1.2 Application of Classification Algorithm on Bonn University Dataset 

 

In this part, the performance of 5 different classifiers such that Decision Trees, 

Discriminant Analysis, Naive Bayes, SVM and k-NN are shown in Table 3.3 for Bonn 

University dataset in the form of percent average ACC performance as Table 3.1. 
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Table 3.3 Average ACC rates of db filters for 5 subbands on classifiers (in %) 

DESICION TREES 

  Gamma Beta Alpha Theta Delta Average 

db2 75.00 100.00 100.00 100.00 100.00 95.00 

db4 100.00 100.00 100.00 91.70 100.00 98.34 

db8 100.00 91.30 100.00 100.00 100.00 98.26 

db10 100.00 100.00 100.00 100.00 100.00 100.00 

DISCRIMINANT ANALYSIS 

  Gamma Beta Alpha Theta Delta Average 

db2 91.70 100.00 95.85 100.00 91.65 95.84 

db4 87.50 95.85 95.85 95.85 95.85 94.18 

db8 97.85 95.70 93.50 95.65 91.30 94.80 

db10 89.60 100.00 97.90 97.90 97.90 96.66 

NAIVE NAYES 

  Gamma Beta Alpha Theta Delta Average 

db2 91.70 100.00 100.00 100.00 100.00 98.34 

db4 91.70 100.00 100.00 91.70 100.00 96.68 

db8 91.35 95.70 95.70 100.00 100.00 96.55 

db10 91.65 95.80 100.00 100.00 100.00 97.49 

SVM 

  Gamma Beta Alpha Theta Delta Average 

db2 94.47 100.00 91.70 97.23 91.70 95.02 

db4 88.90 100.00 100.00 91.70 91.70 94.46 

db8 92.77 97.13 94.23 94.20 100.00 95.67 

db10 98.60 95.83 97.20 98.60 97.20 97.49 

k-NN 

  Gamma Beta Alpha Theta Delta Average 

db2 83.32 98.34 88.32 88.34 90.02 89.67 

db4 83.30 95.02 90.00 90.02 83.30 88.33 

db8 94.82 99.14 95.70 86.98 84.36 92.20 

db10 90.86 100.00 95.80 89.18 86.66 92.50 

As indicated in above Figure, db10 has an improved performances in all classifiers 

except Naive Bayes. Unlike in other cases, the highest ACC performance of 98.34% 

is achieved by db2 in the Naive Bayes classifier. However, the second highest ACC 

performance of 97.49% is obtained from db10. Alike SVM classifier performance on 

the CHB MIT Dataset, the combination of db2 and gamma subband obviously give 

the lowest performance with the Decision Trees on the Bonn University Dataset. The 
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combination of db4 and Gamma subband give the poorest average ACC performance 

in Discriminant Analysis, SVM and k-NN. (87.50%, 88.90%, 83.30%, respectively.) 

The all-average ACC values of Naive Bayes classifiers are above 91.35% compared 

to other classifiers.  

Table 3.4 Average ACC performance of subbands with Daubechies wavelets (in %) 

  db2 db4 db8 db10 

Gamma 86.12 89.44 95.39 94.17 

Beta  95.56 97.79 96.25 98.61 

Alpha  93.89 96.11 95.97 97.76 

Theta 95.56 91.69 93.92 95.83 

Delta 93.90 85.94 93.63 94.71 

When comparing the CHB MIT database, the higher average accuracy rate 

(98.61%) is also obtained from beta in the Bonn database as represented in Table 3.4. 

Similarly, it can be clearly observed that db10 also gives the best results, with an 

average ACC above 94.17%. The combination of db4 and delta subband fails to 

classify the epileptic seizures with an ACC of 85.94%. In both datasets, the best 

Daubechies type is db10 which has the highest average ACC. Thus, db10 is the most 

effective wavelet type for the detection of epileptic seizures according to the Table 3.1 

and Table 3.3.  

 

Figure 3.8 Illustration of ACC performances versus 5-subbands 
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Based on Figure 3.8, the corresponding boxplots are obtained. The boxplots of all 

subbands shown as Fig. that beta subband has maximum performance as compared to 

other subbands for Bonn Dataset. It can be understood that the features pertaining to 

epileptic seizures are most distinguished in beta subband. It proves information that 

seizures in recorded EEG are significant in the frequency range 3-25 Hz (Ahmad et 

al., 2019). Interestingly, the Beta band has been attained a high classification accuracy 

for both databases used. In this dataset, the results of delta and gamma band are slightly 

poor in terms of ACC of 85.94%.  

 

Figure 3.9 Distribution of ACC performances achieved by db2, db4, db8 and db10 

Comparing the results obtained in Figure 3.9, it is obvious that the classification 

accuracy obtained by Daubechies 10 could reach 98.61% which is higher than all other 

wavelet types. Daubechies 2 is associated with insufficient performance, as the 

accuracy range widely from 86.12% to 99.45%. Even though db8 has lower 

performance than db10, it is relatively consistent.  
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Figure 3.10 Distribution of ACC performances for classifiers 

Based on all classifiers as shown in the Figure 3.10, k-NN has the wider ACC rates 

from 86.08% to 98.12%. The most consistent values are achieved by SVM classifiers 

compared to other classifier types. Although it seems that the Naive Bayes has higher 

values than SVM, the wider range of ACC values is seen from 91.60% to 100% 

 

Figure 3.11 Comparison between average ACC rates for 5 classifiers in the subbands  
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Compared to the difference between max. and min. ACC performance seen as 

Figure 3.11, Decision Trees is in broader range with 75%-100%. Naive Bayes and 

SVM attain the same ACC difference. Their classification scores are in the range of 

91.7% to 100%, which shows the potential of this method for epilepsy detection. 

 

Figure 3.12 Comparison between average ACC rates for 5 classifiers in the subbands  

The comparison of the all classifiers in Figure 3.12 shows that k-NN classifier has 

a significant differentiation according to its lowest rate of 83.30% average ACC. In 

the gamma and delta subbands, the lowest rate is found in the k-NN-db4 combination, 

which has an average ACC of 83.3%. Although Decision Tress and Naive Bayes have 

the different ACC performances, they have the same differences between max. and 

min. ACC from 91.7% to 100%.  
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Figure 3.13 Comparison between average ACC rates for 5 classifiers in the subbands  

According to the Figure 3.13, the significant difference is obtained from k-NN with 

84.36%-99.14%. Although beta band gives best performance compared to other 

subbands, combination of beta subband-Decision Trees classifier is prominently lower 

with an ACC performance of 91.3%.  

 

Figure 3.14 Comparison between average ACC rates for 5 classifiers in the subbands  
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Even though the k-NN is resulted with an accuracy of 100% for Beta subband, the 

difference between the max. and min. accuracy rates is quite high as shown in Figure 

3.14. In this algorithm, Decision Tree is not discriminative for Bonn database because 

the accuracy rates of subbands are 100 %. These results are not desired because 

epileptic seizures do not affect all subbands equally.  

 

As a result of the classification on the two datasets, receiver operating characteristic 

curve and confusion matrix are obtained. The SVM classifier performance of Bonn 

Dataset in beta band is represented by the ROC Curve shown in 3.15. According to 

Figure 3.15-3.16, SVM has the ideal value for classification of seizures. Figure 3.17 

and 3.18. shows SVM classifier performance of ROC Curve and confusion matrix in 

beta band for CHB MIT dataset. AUC value is 0.97 that is close to ideal value. 

  

Figure 3.15 ROC Curve of SVM on Bonn EEG 

database    

Figure 3.16 Classification performance of SVM 

on Bonn EEG Database 

 

  

Figure 3.17 ROC Curve of SVM on CHB MIT 

EEG Database         

     Figure 3.18 Classification performance of 

SVM on CHB MIT database                    
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According to the results given in all the tables, db10 wavelet gives its best 

performance when it is associated with SVM which has 97.69 % accuracy. If db10 

wavelet is used with beta subband and when it is classified with SVM, an average 

classification accuracy of 95.83% is achieved along with an average sensitivity of 

97.27% and an average specificity of 94.67% in the Bonn dataset. If db10 wavelet is 

used with beta subband and when it is classified with SVM, an average classification 

accuracy of 100% is achieved along with an average sensitivity of 100% and an 

average specificity of 100% in the CHB MIT dataset. It is observed that SVM classifier 

is ideal classifier with a stable and higher average ACC rate for the two datasets. 

 

It is applied 10-fold cross validation to avoid overlap between test and training 

dataset. Eighty percent of dataset is randomly selected for training set and twenty 

percent of remaining dataset is used to test classifier. This procedure is repeated five 

times to ensure obtaining approximate values without overlap. In this process, it is 

compared only successive results of beta band combination with different classifiers 

and wavelet types. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.19 Combination of Daubechies wavelets and training rate of 20% 

In the figure, option a, b, c and d represent combination of db2 and training rate of 

20%, db4 and training rate of 20%, db8 and training rate of 20%, db10 and training 
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rate of 20%, respectively on CBH MIT dataset. Beta-1 represents average ACC values 

obtained from first iteration. Beta-2 represents average ACC values obtained from 

second iteration. Beta-3 represents average ACC values obtained from third iteration. 

Beta-4 represents average ACC values obtained from forth iteration as shown in Figure 

3.19.  

 

According to the results, the differences between average ACC rates obtained from 

Decision Trees is quite high. The other classifiers have approximated average ACC 

rates at each time. They are generally between 95% and 100% for db2. The closest 

values are obtained from db10 that are between 95.50%-100%. The lowest value is 

81.8% achieved by Decision Trees from db2, db4, db8.  

 

Unlike previous procedure, seventy five percent of dataset is randomly selected for 

training set and twenty five percent of remaining dataset is used to test classifier. This 

procedure is repeated four times.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.20 Combination of Daubechies wavelets and training rate of 25% 

In the above figure, option a, b, c and d represent combination of db2 and training 

rate of 25%, db4 and training rate of 25%, db8 and training rate of 25%, db10 and 

training rate of 25%, respectively on CBH MIT dataset. 
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The most stable values are also obtained from db10 (The ACC ranges of Decision 

Tress, Discriminant Analysis, Naive Bayes, SVM, k-NN are in 96.30%-100, 100%, 

98.15%-100%, 97.53%-100%, 100%, respectively) as described in Table 3.18. The 

highest average ACC values of 100% are achieved by Discriminant Analysis and k-

NN with a db10 in all iteration. The average ACC values of Decision Trees varies in 

the range [92.60%-100] compared to other classifiers. The lowest ACC value is 92.60 

% which is achieved by db8.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.21 Combination of Daubechies wavelets and training rate of 20% 

    All explanations in Figure 3.19 are available for these Figures. Significant 

differences are obtained using Bonn University Dataset. According to the Table 3.21, 

Bonn dataset has wider range from 83.30% to 100%. Decision Trees and k-NN give 

the lowest average ACC of 83.30%,83.32%, respectively. The average ACC values of 

db2 are between 83.30% (obtained from Decision Tress with second and third 

iteration)-100%. The lowest ACC values of db4 are 83.30% achieved by Decision 

Trees, Discriminant Analysis, Naive Bayes and SVM in the third iteration while all 

classifiers give average ACC of %100 in the fifth iteration.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3.22 Combination of Daubechies wavelets and training rate of 25% 

As indicated previous Figure 3.20, all options represent same conditions. The only 

one difference is these options applied on Bonn University Dataset. Figure 3.22 

represents the differences between maximum and minimum average ACC values 

increase with twenty-five percentage training rate. Although Daubechies 10 gives best 

results, the lowest ACC rate (78.25%) is achieved by combination of db10 and Naive 

Bayes classifier. The average ACC range of db2, db4, db8, db10 are 86.70-100%, 

78.66-100%, 87.95-100%, 78.35-100%, respectively. These lower ACC ratios are 

mostly generated by Naive Bayes. In conclusion, with these experiment results of two 

datasets, we can say that combination of twenty-five percentage and Naive Bayes 

classifier is not suitable for Bonn Dataset. 



64 

 

                  

d
b

2

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E

D
es

ic
io

n
 T

re
es

7
5
.0

0
8

0
.0

0
7

1
.4

0
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

D
is

cr
im

in
a

n
t 

A
n

a
ly

si
s

9
1
.7

0
9

2
.8

5
9

2
.8

5
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
5
.8

5
1

0
0

.0
0

9
2
.8

5
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
1
.6

5
1

0
0

.0
0

8
7
.5

0

N
a

iv
e 

B
a

y
es

9
1
.7

0
8

5
.7

0
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

S
V

M
9

4
.4

7
9

0
.4

7
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
1
.7

0
1

0
0

.0
0

8
5
.7

0
9

7
.2

3
1

0
0

.0
0

9
5
.2

3
9

1
.7

0
1

0
0

.0
0

8
5
.7

0

K
N

N
8

3
.3

2
9

3
.1

4
7

9
.2

8
9

8
.3

4
1

0
0

.0
0

9
7
.7

8
8

8
.3

2
1

0
0

.0
0

8
2
.1

4
8

8
.3

4
1

0
0

.0
0

8
1
.4

2
9

0
.0

2
9

6
.6

6
8

5
.2

2

G
a

m
m

a
B

et
a

A
lp

h
a

T
h

et
a

D
el

ta

d
b

4

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E

D
es

ic
io

n
 T

re
es

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
1
.7

0
1

0
0

.0
0

8
5
.7

0
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

D
is

cr
im

in
a

n
t 

A
n

a
ly

si
s

8
7
.5

0
8

4
.5

0
9

1
.6

5
9

5
.8

5
1

0
0

.0
0

9
2
.8

5
9

5
.8

5
1

0
0

.0
0

9
2
.8

5
9

5
.8

5
1

0
0

.0
0

9
2
.8

5
9

5
.8

5
1

0
0

.0
0

9
2
.8

5

N
a

iv
e 

B
a

y
es

9
1
.7

0
8

5
.7

0
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
1
.7

0
1

0
0

.0
0

8
5
.7

0
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

S
V

M
8

8
.9

0
8

4
.9

0
9

4
.4

3
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
1
.7

0
1

0
0

.0
0

8
5
.7

0
9

1
.7

0
1

0
0

.0
0

8
5
.7

0

K
N

N
8

3
.3

0
8

3
.3

0
8

3
.3

0
9

5
.0

2
1

0
0

.0
0

9
1
.4

2
9

0
.0

0
1

0
0

.0
0

8
4
.2

8
9

0
.0

2
1

0
0

.0
0

8
3
.5

6
8

3
.3

0
1

0
0

.0
0

7
5
.0

0

D
el

ta
G

a
m

m
a

B
et

a
A

lp
h

a
T

h
et

a

d
b

8

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E

D
es

ic
io

n
 T

re
es

1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
9
1
.3

0
1
0
0
.0

0
8
4
.6

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0

D
is

cr
im

in
a
n

t 
A

n
a
ly

si
s

9
7
.8

5
1
0
0
.0

0
9
5
.8

5
9
5
.7

0
9
6
.1

5
9
5
.8

5
9
3
.5

0
9
5
.8

5
9
2
.8

5
9
5
.6

5
1
0
0
.0

0
9
2
.8

5
9
1
.3

0
1
0
0
.0

0
8
7
.5

0

N
a
iv

e 
B

a
y
es

9
1
.3

5
8
6
.1

5
1
0
0
.0

0
9
5
.7

0
9
2
.3

0
1
0
0
.0

0
9
5
.7

0
9
1
.7

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0

S
V

M
9
2
.7

7
9
6
.6

7
8
9
.5

3
9
7
.1

3
9
4
.8

7
1
0
0
.0

0
9
4
.2

3
1
0
0
.0

0
9
0
.1

0
9
4
.2

0
9
1
.8

3
9
7
.2

3
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0

K
N

N
9
4
.8

2
9
8
.3

4
9
1
.5

4
9
9
.1

4
9
8
.4

6
1
0
0
.0

0
9
5
.7

0
1
0
0
.0

0
9
2
.3

0
8
6
.9

8
9
7
.7

8
8
0
.8

6
8
4
.3

6
1
0
0
.0

0
7
7
.0

0

G
a
m

m
a

B
et

a
A

lp
h

a
T

h
et

a
D

el
ta

d
b

1
0

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E

D
es

ic
io

n
 T

re
es

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

D
is

cr
im

in
a

n
t 

A
n

a
ly

si
s

8
9
.6

0
9

0
.0

0
9

2
.8

5
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
7
.9

0
1

0
0

.0
0

9
6
.1

5
9

7
.9

0
9

6
.1

5
1

0
0

.0
0

9
7
.9

0
1

0
0

.0
0

9
6
.1

5

N
a

iv
e 

B
a

y
es

9
1
.6

5
8

7
.5

0
1

0
0

.0
0

9
5
.8

0
9

6
.1

5
9

6
.1

5
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

S
V

M
9

8
.6

0
1

0
0

.0
0

9
7
.4

3
9

5
.8

3
9

7
.2

3
9

4
.6

7
9

7
.2

0
1

0
0

.0
0

9
4
.8

7
9

8
.6

0
1

0
0

.0
0

9
7
.4

3
9

7
.2

0
1

0
0

.0
0

9
4
.8

7

K
N

N
9

0
.8

6
9

6
.5

2
8

6
.6

8
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
5
.8

0
1

0
0

.0
0

9
2
.3

0
8

9
.1

8
1

0
0

.0
0

8
2
.2

8
8

6
.6

6
1

0
0

.0
0

7
9
.0

0

G
a

m
m

a
B

et
a

A
lp

h
a

T
h

et
a

D
el

ta

T
ab

le
 3

.5
 C

o
m

p
ar

is
o

n
 o

f 
A

C
C

, 
S

E
N

, 
S

P
E

 p
er

fo
rm

an
ce

s 
fo

r 
B

o
n

n
 U

n
iv

er
si

ty
 D

at
as

et
 



65 

 

              

d
b

2

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E

D
es

ic
io

n
 T

re
es

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
5
.5

0
1

0
0

.0
0

9
1
.7

0
9

5
.5

0
9

0
.9

0
1

0
0

.0
0

9
0
.9

0
8

4
.6

0
1

0
0

.0
0

9
5
.5

0
9

1
.7

0
1

0
0

.0
0

D
is

cr
im

in
a

n
t 

A
n

a
ly

si
s

9
7
.7

5
1

0
0

.0
0

9
5
.8

5
9

7
.7

5
1

0
0

.0
0

9
5
.8

5
9

0
.9

5
8

6
.3

5
9

5
.4

5
9

7
.7

5
9

5
.8

5
1

0
0

.0
0

9
7
.7

5
9

5
.8

5
1

0
0

.0
0

N
a

iv
e 

B
a

y
es

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
0
.9

5
8

3
.9

0
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
5
.5

0
9

1
.7

0
1

0
0

.0
0

S
V

M
8

9
.4

3
1

0
0

.0
0

8
4
.0

7
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
3
.9

7
8

8
.3

7
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

k
-N

N
9

5
.5

0
1

0
0

.0
0

9
1
.7

0
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
1
.8

2
8

4
.8

2
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

G
a

m
m

a
B

et
a

A
lp

h
a

T
h

et
a

D
el

ta

d
b

4

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E

D
es

ic
io

n
 T

re
es

9
5
.5

0
1
0
0
.0

0
9
0
.9

0
9
5
.5

0
1
0
0
.0

0
9
1
.7

0
9
0
.9

0
9
0
.9

0
9
0
.9

0
8
1
.8

0
8
8
.9

0
7
6
.9

0
9
5
.5

0
1
0
0
.0

0
9
1
.7

0

D
is

cr
im

in
a
n

t 
A

n
a
ly

si
s

9
7
.7

5
1
0
0
.0

0
9
5
.4

5
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
9
5
.5

0
9
5
.8

5
1
0
0
.0

0
9
5
.5

0
9
5
.8

5
1
0
0
.0

0
9
5
.5

0
9
5
.8

5
1
0
0
.0

0

N
a
iv

e 
B

a
y
es

1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
9
5
.5

0
9
1
.7

0
1
0
0
.0

0
9
5
.5

0
9
1
.7

0
1
0
0
.0

0
9
5
.5

0
9
1
.7

0
1
0
0
.0

0

S
V

M
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
9
8
.5

0
9
7
.2

3
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0

k
-N

N
9
8
.2

0
1
0
0
.0

0
9
6
.3

6
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0

G
a
m

m
a

B
et

a
A

lp
h

a
T

h
et

a
D

el
ta

d
b

8

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E

D
es

ic
io

n
 T

re
es

8
6
.4

0
8
6
.4

0
8
3
.3

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
9
0
.9

0
1
0
0
.0

0
8
4
.6

0
7
7
.3

0
7
1
.4

0
8
7
.5

0
7
7
.3

0
8
0
.0

0
7
5
.0

0

D
is

cr
im

in
a
n

t 
A

n
a
ly

si
s

9
5
.4

5
1
0
0
.0

0
9
2
.3

0
9
7
.7

5
9
5
.8

5
1
0
0
.0

0
9
3
.2

0
9
5
.4

5
9
1
.3

0
9
3
.2

0
9
2
.3

0
9
5
.8

5
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0

N
a
iv

e 
B

a
y
es

1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
9
5
.5

0
9
1
.7

0
1
0
0
.0

0
9
0
.9

0
8
7
.7

5
9
5
.4

5
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0

S
V

M
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
9
3
.8

3
9
1
.4

3
9
6
.9

7
9
5
.5

0
1
0
0
.0

0
9
1
.7

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0

k
-N

N
9
6
.4

0
1
0
0
.0

0
9
3
.3

6
9
5
.5

0
9
1
.7

0
1
0
0
.0

0
9
6
.4

0
1
0
0
.0

0
9
3
.3

6
9
7
.3

0
1
0
0
.0

0
9
5
.0

2
1
0
0
.0

0
1
0
0
.0

0
1
0
0
.0

0

G
a
m

m
a

B
et

a
A

lp
h

a
T

h
et

a
D

el
ta

d
b

1
0

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E
A

C
C

S
E

N
S

P
E

A
C

C
S

E
N

S
P

E

D
es

ic
io

n
 T

re
es

9
0
.9

0
8

4
.6

0
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
5
.5

0
1

0
0

.0
0

9
1
.7

0
9

5
.5

0
9

1
.7

0
1

0
0

.0
0

9
5
.5

0
1

0
0

.0
0

9
1
.7

0

D
is

cr
im

in
a

n
t 

A
n

a
ly

si
s

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
7
.7

5
1

0
0

.0
0

9
5
.8

5
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
5
.4

5
9

2
.3

0
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

N
a

iv
e 

B
a

y
es

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
5
.5

0
9

1
.7

0
1

0
0

.0
0

9
7
.7

5
9

5
.8

5
1

0
0

.0
0

S
V

M
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
6
.9

7
1

0
0

.0
0

9
4
.8

7
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

k
-N

N
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
9
.1

0
1

0
0

.0
0

9
8
.3

4
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

9
9
.1

0
1

0
0

.0
0

9
8
.3

4
1

0
0

.0
0

1
0
0

.0
0

1
0
0

.0
0

G
a

m
m

a
B

et
a

A
lp

h
a

T
h

et
a

D
el

ta

T
ab

le
 3

.6
 C

o
m

p
ar

is
o

n
 o

f 
A

C
C

, 
S

E
N

, 
S

P
E

 p
er

fo
rm

an
ce

s 
fo

r 
C

H
B

 M
IT

 D
at

as
et

 



66 

 

CHAPTER 4 

CONCLUSIONS 

 

Epileptic seizure detection using EEG signal are discussed in this thesis to 

determine the effective algorithm with higher classification accuracy. In EEG signal, 

there are 5 frequency intervals defined as Gamma (30-60 Hz), Beta (13-30 Hz), Alpha 

(8-12 Hz), Theta (4-8 Hz), and Delta (0-4 Hz). The epileptic seizures are characterized 

by beta band. Furthermore, seizures in recorded EEG are more clear in the range 3-25 

Hz (Khan & Gotman, 2003). The frequency resolution of signal is associated with the 

order of Daubechies wavelet. That is, the higher order means corresponds the higher 

resolution (Luhach, Kosa, Poonia, Gao, & Singh, 2020).  Daubechies wavelets are 

more localized and smoother than Haar wavelet. In our work, db10 is used as a suitable 

mother wavelet in beta subband besides of db2, db4, db8 and it is appropriate to detect 

the epileptic seizures in EEG signal (Anila Glory et al., 2020).  

 

Generally, machine learning algorithms are successful and practical in beta subband 

with Daubechies 10. Specifically, it seen that SVM classifier is more effective to lead 

to desirable results and improved accuracy of detection.  Results are evaluated by 

average accuracy, sensitivity, and specificity metrics. It gives average ACC of 99.39%, 

SEN of 100%, SPE of 99.18% on CHB MIT dataset and give average ACC of 97.49%, 

SEN of 99.12%, SPE of 95.85% on Bonn dataset. Considering these findings, the SVM 

are more successful with db10 in classification of epileptic signals. 

 

In both datasets, the highest ACC rates are obtained beta subband with an average 

ACC of 100%, average SEN of 100%, average SPE of 100% for CHB MIT Dataset 

and an average ACC of 95.83%, average SEN of 97.23%, average SPE of 94.67% for 

Bonn Dataset. An obvious observation is that the beta band outperforms the other 

subbands in both datasets. This concludes that the best outcomes are obtained when 

beta band is used with SVM. 
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Table 4.1 A comparison of various methods performances for epileptic seizure detection 

 
Authors Features Wavelets Classifier Performance 

metrics 

(Acharya, Sree, Ang, 

Yanti, & Suri, 2012) 

Entropies 

Higher Order Spectra 

based features 

db10 Fuzzy 99.7% ACC 

(Xie & Krishnan, 2013) * Haar SVM, k-NN, 

FLD 

99 % ACC 

(Y. Kumar, Dewal, & 

Anand, 2014) 

Fuzzy approximate 

entropy 

db4 SVM 99.65%-95.85% 

ACC 

(Ahammad, Fathima, & 

Joseph, 2014) 

Maximum, Minimum, 

Mean, Standard 

Deviation 

Entropy, Energy 

db2 Linear classifier 84.2% ACC 

98.5% SEN 

(or Rashid & Ahmad, 

2017) 

Statistical features db4 NN 80.0%-100% 

ACC 

(Rajaguru & Prabhakar, 

2017) 

the mean, standard 

deviation, minimum 

approximate 

coefficient value and 

maximum 

approximate 

coefficient 

db2 

db4 

LDA 95.83% ACC 

95.03% ACC 

(Nanthini & Santhi, 

2017) 

mean, median, mode, 

standard deviation, 

skewness, kurtosis, 

maximum, and 

minimum, gray level 

co-occurrence matrix, 

Renyi entropy 

db2 SVM 85-100% ACC 

 

 

 

 

 

 

 

(Tzimourta et al., 2017) energy, entropy, 

standard deviation, 

variance and mean 

db4 SVM 93% SEN 

99% SPE 

(El-Gindy et al., 2021) Local Mean 

Variance 

Median 

Derivative 

Amplitude 

Entropy 

Haar, db4, 

db8, Sym4 

or Coif4 

* 100% SEN 

average FPR of 

0.0818 h−1 

(Omidvar et al., 2021) standard deviation, 

mean, band power, 

Hjorth mobility, 

Hjorth complexity, 

Shannon entropy, log-

energy entropy, 

maximum value, 

kurtosis, Skewness 

and median 

db4 ANN, SVM 98.7-100% ACC 

This study Entropy, Kurtosis, 

LYP, MAD, Mean, 

Mobility, RMS, 

Skewness, Variance 

db2 

db4 

db8 

db10 

Decision Tress 

Discriminant 

Analysis 

K-NN 

Naive Bayes 

SVM 

95.83- 100 % 

ACC 
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In this thesis, the obtained results with the other studies in the literature where have 

used Daubechies wavelets are summarized in above tables. Generally, all studies use 

only one Daubechies wavelet type with one or two classifiers. The strong side of this 

thesis is that the comparison of 5 different classification methods for 5 subbands and 

4 different Daubechies wavelets at the same time. 

 

 In comparison of results, this study highlights in five different machine learning 

algorithms as Decision Trees, Discriminant Analysis, Naive Bayes, SVM and k-NN. 

These are worked out on different dataset, CHB MIT and Bonn University database. 

The ACC performance above 95% as described in Table 4.1. As a result, this study 

compared and summarize better performances other than traditional individuals.  This 

allows improved decision making to assist physicians in the detection of epileptic 

seizures. Additionally, the used algorithms become highly practical, accurate and 

robust under the light of these performances. 

 

As an extension of this study,  

i. The number of features can be increased  

ii. Different databases can be experienced 

iii. A hybrid classification method can be developed to apply for the PNES and 

ES classification if enough data is evaluable by studying together with 

Medical Faculties. 
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