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PAF SCREENING FROM SINUS RHYTHM ECG RECORDS BY 

ENSEMBLE LEARNING 

 

 

ABSTRACT 

 

 

Signal processing has always been of great interest. As the computers can do 

more complex processes, some different and new mathematical formulations are 

adapted to signal processing. Terms such as machine learning have been accepted by 

the literature and some combining methods have been developed. Ensemble learning 

is a combining method of using a combination of different experts to get better 

results in pattern classification. Briefly, ensemble learning is a method whereby 

different classifiers work together. In this study, ensemble learning was used for the 

aim of paroxysmal atrial fibrillation (PAF) screening, i.e. finding whether a person is 

PAF patient or not from his/her ectopic-free electrocardiogram (ECG) records.  Both 

hierarchical and parallel structures of ensemble learning were tried. Dataset used 

consists of ECG records from both PAF patients and non-PAF subjects. To train 

experts, k–fold cross validation and bootstrap sampling methods were used and their 

performances were compared. The best results were obtained by using the 

hierarchical structure of ensemble learning.  

 

Keywords: Signal processing, bagging, bootstrap aggregation, ensemble learning, 

committee machines, k fold cross validation, PAF screening 
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BİRLEŞİK ÖĞRENME KULLANILARAK SİNÜS RİTİM EKG 

KAYITLARINDAN PAF TARAMASI  

 

ÖZ 

 

 

Sinyal işleme her zaman büyük bir ilgiye sahip olmuştur. Bilgisayarlar daha 

karmaşık işlemler yapabildikçe, daha farklı ve yeni matematiksel formüller de sinyal 

işleme konusuna uyarlanmıştır. Makine öğrenmesi gibi terimler literatürce kabul 

görmüş ve bazı birleştirme yöntemleri geliştirilmiştir. Birleşik öğrenme örüntü 

tanımada daha iyi sonuçlar almak için farklı sınıflandırıcıların kombinasyonlarını 

kullanan bir birleştirme metodudur.  Özetle, birleşik öğrenme birçok sınıflandırıcının 

birlikte çalışabildiği bir yöntemdir. Bu çalışmada paroksismal atriyal fibrilasyon 

(PAF) tarama amacıyla, kişinin ektopiksiz elektrokardiyogram (EKG) kayıtlarına 

göre PAF hastası olup olmadığını bulmak için birleşik öğrenme kullanılmıştır.  

Kullanılan veri kümesi PAF hastası ve PAF hastası olmayan kişilerin ECG 

kayıtlarından oluşmaktadır. Hem hiyerarşik hem de paralel yapıda birleşik öğrenme 

yapıları denenmiştir. Uzmanlar eğitilirken k katlamalı çapraz doğrulama ve 

bootstrap örnekleme metotları kullanılmış ve performansları karşılaştırılmıştır. En 

başarılı sonuçlar hiyerarşik yapı ile elde edilmiştir. 

 

Anahtar Sözcükler: Sinyal işleme, birleşik öğrenme, komite makinaları, k katlamalı 

çapraz doğrulama, PAF tanıma 
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CHAPTER ONE  

 INTRODUCTION  

 

1.1 Objective of the Thesis 

 

Atrial fibrillation (AF) is an irregular heartbeat (arrhythmia) that can lead 

to stroke, heart failure and other heart-related symptoms. Atrial fibrillation is the 

most common sustained disorder of cardiac rhythm, which is often associated with a 

high risk of morbidity and mortality from heart failure, stroke and thromboembolic 

complications. According to the duration of episodes, types of AF are categorized as 

paroxysmal AF, persistent AF, longstanding persistent AF, permanent AF, 

nonvalvular AF (January et. al., 2014).  

 

Paroxysmal AF (PAF) is an episode of uncoordinated movement of the atria that 

occurs occasionally and then stops. Episodes can last as short as minutes before 

returning to normal (sinus) rhythm (Marcin, 2013). The PAF usually leads to 

persistent AF in several years. Therefore, it is important to diagnose it in a person 

with PAF. It is easily done by recording the electrocardiogram (ECG) of as person 

during a PAF episode. However, since the PAF episodes could be short, it is usually 

very hard to record the ECG during a PAF attack. This is due to the fact that the 

subject who has this arrhythmic event could not have sufficient time to go to a health 

clinic and get an ECG record. On the other hand, when the ECG of a PAF patient is 

recorded during non-episodic intervals, it is very hard to diagnose the disease from 

this normal sinus rhythm (NSR) ECG signal. Therefore, it would be very helpful to 

construct an automatic computer based system that would diagnose PAF disease 

from episode-free ECG records; i.e. from NSR ECG records. 

 

There have been various studies conducted for the purpose of PAF detection from 

normal sinus rhythm (NSR) ECG records based on different features of ECG signal. 

Indeed, there was a challenge about PAF prediction held in 2001. The challenge was 

organized with the help of Physionet which is a databank for the researchers. And 

the participants tried to predict the PAF disease according to given datasets (train 
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and test sets) (Moody et. al., 2001). According to that challenge, Schreier et. al. 

achieved 82% accuracy and that was the best accuracy. Their approach was based on 

premature P-waves and the accuracy rate of them indicated that abnormal P-waves 

may herald or even trigger PAF (Schreier et. al., 2001). Zong et.al. also participated 

that challenge and their accuracy rate was 80%.  Firstly, they examined the ECG 

records visually, then they used a previously developed automated arrhythmia 

detection algorithm which identifies beat types (normal, atrial premature complex 

(APC), ventricular premature complex, etc.) as well as rhythm types. After 

examining the detected arrhythmia patterns, they found that the number and timing 

of the detected APCs appeared to be of significant value in terms of predicting 

imminent PAF episodes (Zong et. al., 2001). In years after that PAF prediction 

challenge, there were also studies conducted on that dataset. Ros et al. used dataset 

taken from Physionet PAF Prediction Challenge Database (AFPDB) and they used 

22 parameters extracted from P-wave analysis (Ros et. al., 2004). In 2016, I. Hilavin 

worked on the same dataset, and she applied genetic algorithm on the features from 

obtained by analyzing heart rate variabilities (Hilavin, 2016). Another study in PAF 

screening, Martinez et. al obtained ECG records of 46 PAF patients and 53 healthy 

subjects. Then they tried to calculate the variability of P-wave. They found that using 

a decision tree with P-wave area and P-wave arc length achieved 95.42% accuracy to 

discriminate ECG segments of healthy subjects and patients suffering from PAF 

(Martinez et. al., 2012). 

 

Recently new ways of pattern classification have been developed. Ensemble 

learning is one of these new ways. It is a method of using a combination of different 

experts (classifiers) to get better results in pattern classification tasks (Yu et. al., 

2008; Breiman, 1996; Dietterich, 2000). Briefly, ensemble learning is a method 

whereby different classifiers work together. Ensemble is constructed as a structure 

with the aim of compensating for the errors provoked by single classifiers. In this 

thesis study, several PAF screening systems were constructed based on ensemble 

learning using MATLAB software.  
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There are both parallel and hierarchical ensemble structures in literature while 

signal processing (Polikar, 2006). In this thesis, several experiments with both types 

of these structures were conducted and their results were compared. Results of these 

classifiers were combined by a gating network which is based on either averaging or 

majority voting. The data used in this study consists of electrocardiogram (ECG) 

signals recorded from subjects; one group were previously diagnosed with PAF, 

other group consists of subjects without PAF disease.  

 

The features used in this study consist of different heart rate variability (HRV) 

features such as mean RR, std RR, high frequency (HF) peak power, relative HF 

power extracted from the ECG records. HRV has been used extensively to assess 

autonomic control of the heart under various physiological and pathological 

conditions. The analysis of HRV is based on analysis of RR intervals which are 

series of time intervals between heartbeats. Various features have been used to 

analyze HRV. For example, a simple time domain analysis of HRV, such as the 

mean, standard deviation, and root mean square of successive RR interval 

differences have been widely employed in quantification of the overall variability of 

the heart rate. Frequency domain analysis of HRV and non-linear analysis of HRV 

can be also done (Lee et. al., 2008).  

 

1.2 Organization of the Thesis  

 

The thesis is organized as five chapters. Chapter 1 is the introduction part. In this 

part, the objective of this work and organization of the thesis were given. Some of 

the studies finding a place in literature and proposed works of previous studies were 

mentioned.  

 

Chapter 2 is related to physiological background. There is mostly theoretical 

information about human body signals, electrocardiogram, PAF disease and some 

medical terms. 
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In Chapter 3, it is mentioned about methods used in this work. Structures of 

ensemble learning are presented. The classifiers and their algorithms are described. 

Flowcharts of performed experiments are presented. General processes are 

mentioned and performance evaluation is explained. 

 

Chapter 4, the experiments conducted and the results obtained from these 

experiments are presented. These performance results are given in tables. 

 

In Chapter 5, the results obtained in this study are discussed and a conclusion is 

made. Possible future works related to this study are also proposed.  
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CHAPTER TWO  

PHYSIOLOGICAL BACKGROUND 

 

2.1 Electrocardiogram (ECG) 

  

The heart is a hollow muscular tube that consists of four chambers; two upper 

chambers called atria and two lower chambers called ventricles. These chambers are 

organized in a way that right atrium co-works with right ventricle to get CO2 rich 

blood from body and pump it to lungs for the purpose of cleaning whereas left 

atrium cooperates with left ventricle to get O2 rich blood from lungs and pump it to 

the body. As the blood leaves each chamber of the heart, it passes through a valve. 

The heart valves enable that blood flows in only one direction. 

 

The output of the heart per minute (cardiac output) is the vital event required to 

maintain blood flow on the regular basis. In addition to blood volume and contractile 

strength, the heart must continue both relaxation and contraction to perform well. 

This system of perfection is based on a series of electrophysiological events occurred 

within the cardiac tissues that can be observed using a device, which is known as an 

electrocardiogram (ECG). An ECG signal describes heart’s electrical activity. As the 

heart continue to beat, these beats cause small voltage differences (Becker, 2006). 

These differences provide us some information such as heart rate, rhythm, and 

morphology. In general, ECG is recorded by attaching a set of electrodes on body 

surface such as chest, neck, arms, and legs. 

 

A typical ECG wave consists of a P wave, a QRS complex, and a T wave. Figure 

2.1 shows the basic shape of a healthy ECG signal. The P wave reflects the 

sequential depolarization of the right and left atria. It usually has positive polarity, 

and its duration is less than 120 milliseconds. The spectral characteristic of a normal 

P wave is usually considered to be low frequency, below 10–15 Hz. The QRS 

complex corresponds to depolarization of the right and left ventricles. It lasts for 

about 70– 110 milliseconds in a normal heartbeat, and has the largest amplitude of 

the ECG waveforms.  
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Due to its steep slopes, the frequency content of the QRS complex is considerably 

higher than that of the other ECG waves, and is mostly concentrated in the interval 

of 10–40 Hz. The T wave reflects ventricular repolarization and extends about 300 

milliseconds after the QRS complex. The position of the T wave is strongly 

dependent on heart rate, becoming narrower and closer to the QRS complex at rapid 

rates (Wang et. al., 2008). 

 

Figure 2.1 Basic shape of an ECG heartbeat signal (Wang et. al., 2008) 

 

Table 2.1 Summary of events of a cardiac cycle (Becker, 2006)
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Electrocardiogram (ECG) which gives tips about the rhythm and function of the 

heart is an important guide for cardiologists to diagnose several heart diseases. A 

medical doctor may fail to diagnose the arrhythmias due to the dynamic nature of 

ECG signals. A doctor could interpret an ECG signal based on its morphological 

shape and other parameters such as RR interval, PP interval, and QT interval. The task 

of determining fiducial points and computation of parameter is a tedious job for 

doctors. Hence, there is a need for computer aided diagnosis system which can 

achieve a higher recognition accuracy (Thomas et. al., 2015). 

 

2.2 Arrhythmias & Paroxysmal Atrial Fibrillation (PAF) 

 

Arrhythmia can be defined as the any deviation of heart’s rhythm from normal 

operation. The result of arrhythmias may change from nothing to death.  During an 

arrhythmia, the heart can beat too fast, too slow or irregularly. Arrhythmias can be 

classified according to the underlying mechanism or the origin of the arrhythmia. 

Three underlying mechanism of arrhythmias are abnormal impulse initiation, 

abnormalities of impulse propagation and combination of both (Gertsch, 2003). 

Arrhythmias can also be identified according to where they occur in the heart as 

supraventricular or ventricular arrhythmias. Supraventricular arrhythmias include 

arrhythmias caused by atrial tissue. 

 

Atrial fibrillation (AF) is an irregular heartbeat (arrhythmia) that can cause 

to stroke, heart failure and other heart-related symptoms. Atrial fibrillation is the 

commonest sustained disorder of cardiac rhythm, which is often associated with a 

high risk of morbidity and mortality from heart failure, stroke and thromboembolic 

complications. Normally, the heart contracts and relaxes regularly. In atrial 

fibrillation, the upper chambers of the heart (the atria) beat irregularly instead of 

beating effectively to carry blood into the ventricles. If a clot breaks off, enters the 

bloodstream and lodges in an artery leading to the brain, a stroke results. About 15–

20 percent of people who have strokes have this heart arrhythmia (American Heart 

Association, 2017). And the most common symptom of atrial fibrillation is fatigue. 

Increasing age, hypertension, obesity, smoking are such factors which trigger AF.  
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This diagnose is easily done by recording the ECG of a person during a PAF 

episode. For example, it is known that the P wave reflects atrial depolarization. So, a 

distortion in P wave can be the onset of the PAF disease (Thong et.al., 2004). In 

Figure 2.2, an ECG record which owns to a healthy person can be seen while in 

Figure 2.3, an ECG record of a PAF patient is given. When it is looked in Figure 2.3, 

it is seen that there is no P wave. So, this subject can be labelled as PAF patient. 

 

 

 

Figure 2.2 Normal (sinus) rhythm (EpoMedicine, 2016) 

 

 

 

 

Figure 2.3 ECG record of a PAF person (Anumonwo et. al., 2014) 

 

Although the detection of the PAF disease seems easy by looking at ECG records, 

it is very hard in real life. This is because PAF episodes could last very short. Thus, 

it is usually very hard to record the ECG signal during a PAF attack. When the ECG 

of a PAF patient is recorded during non-arrhythmic intervals, it is very hard to 

diagnose the disease. Therefore, it would be very helpful to construct an automatic 

computer based system that would diagnose PAF disease from episode-free ECG 

records. 
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CHAPTER THREE  

METHODS  

 

3.1 HRV Analysis and HRV Features  

 

Heart rate variability analysis (HRV) is generally used for evaluating the effect of 

autonomic nervous system (ANS) on the functioning of the cardiovascular system. 

This effect occurs by adaptively changing the heart rate by regulation of the 

sinoatrial (SA) node. ANS is divided into sympathetic and parasympathetic branches 

and their influences on heart rate (HR) and HRV are quite well understood. Roughly 

speaking, sympathetic activity tends to increase HR and decrease HRV, whereas 

parasympathetic affects in the other way (Tarvainen et. al., 2014; Berntson et. al. 

1997). 

 

HRV is the evaluation of the fluctuations in the time intervals between heart 

beats, known as RR intervals. The importance of HRV is that it can reveal 

information about the autonomic nervous function, sympathetic-parasympathetic 

balance and cardiovascular health (Berntson et. al., 1997; Camm et. al., 1996; Malik 

et. al., 1996).  

 

HRV analysis can be done based on time domain, frequency domain and non-

linear methods. Time domain analysis is the statistical examination of the 

fluctuations in RR intervals and commonly used because of their easy calculation. 

Statistical analysis and geometrical analysis are two branches of time domain HRV 

analysis. Geometrical methods require long-term RR intervals. And short- term RR 

intervals are used in this thesis. The features extracted from time domain value are 

mean RR intervals (mean RR), standard deviation of RR intervals (std RR), standard 

deviation of instantaneous heart rate, root mean square of successive differences 

between RR intervals etc. (Malik et. al., 1995). Mean RR and std RR are used as 

features in this work. Frequency domain methods decompose the total variation of 

the RR interval series into different frequency components, which can be considered 

as markers of different physiological effects (Berntson et. al., 1997; Nattel et. al., 
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2014). Heart has a nonlinear nature and analyzing the nonlinear properties of the RR 

intervals may reveal some information about the complex and nonlinear nature of 

these physiological mechanisms (Huikuri et. al., 2003).  

 

 

Data used in this study were selected heart rate variability (HRV) features taken 

from Hilavin's Ph.D. thesis (Hilavin, 2016). These HRV features were obtained from 

ECG records used for PAF Screening & PAF Detection Challenges provided by 

PhysioBank, which is a comprehensive archive of well-grouped digital recordings of 

physiological signals for use by the biomedical researchers. It currently includes 

databases of multiparameter cardiopulmonary, neural, and other biomedical signals 

from healthy subjects and from patients with a variety of conditions with major 

public health implications, including life-threatening arrhythmias, congestive heart 

failure, sleep apnea, neurological disorders, and aging. PhysioNet is an on-line forum 

for the dissemination and exchange of recorded biomedical signals and open-source 

software for analyzing them. It provides facilities for the cooperative analysis of data 

and the evaluation of proposed new algorithms (Goldberger et. al., 2000). 

 

Data used in the study consists of the following eight HRV features selected by a 

genetic algorithm out of 33 HRV features (Hilavin, 2016).  

 

Mean RR (s): Arithmetic mean value of all RR intervals. For a series with length N, 

the mean is calculated as: 

 

  

Mean RR = RR̅̅ ̅̅ =
1

N
∑ RRi

N

i=1
 

 

(3.1) 
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Std RR (s): Standard deviation of RR intervals which reflect overall variation and 

defined as: 

 

 

SDRR = √
1

N − 1
∑(RRj − RR̅̅ ̅̅ )

2
N

j=1

          (3.2) 

 

HF peak (Hz): HF band peak frequency. This band shows parasympathetic activity 

and is frequently called the respiratory band. During inhalation, the cardiorespiratory 

center inhibits vagal outflow, resulting in speeding up heart rate. Conversely, during 

exhalation, vagal outflow is restored, resulting in slowing heart rate. The magnitude 

of the oscillation is variable, but in healthy people, it can be increased by slow, deep 

breathing (HearthMath Institute Research Staff, 1993). 

 

HF power prc (%): Relative power of HF band. 

 

 
                       HF power prc =

HF power

Total power
x100% 

           

(3.3) 

   

LF power prc (%): Relative power of LF band: 

 

 
LF power prc =

LF power

Total power
x100% 

(3.4) 

 

 

 

A typical heart rate variability records can be seen in Figure 3.1. That record was 

obtained from a healthy person during 15 minutes in resting conditions. (HearthMath 

Institute Research Staff, 1993). 
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Figure 3.1 Typical HRV record (HearthMath Institute Research Staff, 1993) 

 

Sample Entropy (SampEn): Approximate entropy(ApEn) is a method used to 

describe regularity in a time series such as heart rate time series. SampEn is precisely 

the negative natural logarithm of the conditional probability that two sequences 

similar for m points remain similar at the next point, where self-matches are not 

included in calculating the probability. Thus a lower value of SampEn also indicates 

more self-similarity in the time series. In addition to eliminating self-matches, the 

SampEn algorithm is simpler than the ApEn algorithm, requiring approximately one-

half as much time to calculate. SampEn is largely independent of record length and 

displays relative consistency under circumstances where ApEn does not (Richman 

et. al., 2000). 

 

Detrended Fluctuation Analysis (DFA): Detrended fluctuation analysis (DFA), 

which is a well-established method for the detection of long-range correlations in 

time series. detrended fluctuation analysis (DFA) has been established as an 

important tool for the detection of long-range (auto-) correlations in time series with 

non-stationarities (Kantelhardt et. al., 2001).   

 

SD1 (Standard Deviation 1): Poincaré Heart Rate Variability (HRV) plot is a 

graph in which each RR interval is plotted against next RR interval (a type of 

delay map). SD1 is standard deviation of points perpendicular to the axis of line of 

identity. SD2 is standard deviation of points along the axis of line of identity.  
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The axis of both standard deviations, SD1 and SD2, can be seen in the Poincaré 

plot which is given in Figure 3.2. 

 

 
 

Figure 3.2 Poincaré Heart Rate Variability (HRV) plot 

 

 

Figure 3.3 A partition of the data 
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Dimensions of the data are 800x8. It means there are 800 people and 8 features. 

290 of the people are PAF patient, remaining 510 are non-PAF. A section of the data 

which includes the features used in the study can be seen in Figure 3.3. 

 

3.2 Ensemble Learning 

 

Ensemble learning is a method whereby more accurate predictions can be 

obtained. Main idea underlying the ensemble learning is working with more than one 

classifier and increasing the performance of the system. Normally, an ensemble 

structure consists of classifiers (experts) and a combiner. Among the ensemble 

classifiers, neural networks (NNs), support vector machines, fuzzy systems are 

mostly used in pattern recognition. These methods have different advantages and 

disadvantages with respect to each other in solving various problems (Duda et. al, 

1973). K-means, kNN algorithm, artificial neural network, Naive Bayes algorithms 

and support vector machines (SVM) were the classifiers used in the study.  

 

Both experiment-based studies and specific machine learning applications prove 

that although a given classification method could outperform all others for a 

particular problem or for a specific subset of the input data, it is not possible to find a 

single method achieving the best results on the overall problem domain. As for the 

advantages of ensemble learning, it provides better overall performance, could reuse 

existing pattern classification expertise, has heterogeneity, etc.. Heterogeneity 

supplies some advantages that expert classifiers do not need to be of the same type 

and different features can be used for different classifiers. There are also some 

disadvantages of ensemble learning. Most important deficiency is that the method 

needs high computational process (Dietterich, 2000). As a consequence, it can be 

said that the ensemble tries to improve the accuracy and the reliability of the overall 

classification system. Moreover, if a classifier fails, the system can compensate for 

this error (Kotsiantis, 2011).  This idea, compensating failure of a classifier, forms 

the basis of the ensemble learning. 
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When an ensemble is constructed, there are some requirements that should be 

satisfied to improve the success rate. First, the ensemble members should be diverse 

or complementary (Yu et. al., 2008). Diversity can be described as different reactions 

given by different classifiers when the input changes. Second, the classifiers should 

be independent from each other. Benefit of these two criteria is that uncorrelated 

errors of individual classifiers can be compensated by the combined effect. 

According to Breiman’s work, the most significant element is the uncertainty of the 

prediction method. If a small distortion of the learning set can cause significant 

changes in the predictor constructed, then ensemble model can improve the accuracy 

because each new learning set has created a new hypothesis. In addition, bootstrap 

replicates as much as created hypotheses are needed to train the experts. As the 

dimension of data grows, the need for bootstrap replicates also increases (Breiman, 

1996).  

 

There are two types of constructing ensemble systems: static and dynamic 

(adaptive). In static combination, ensemble structures can be designed as hierarchical 

or parallel. These methods were mentioned in T. Dietterich’s work under the 

headings such as manipulating the training examples, manipulating the input 

features, and manipulating the output targets (Dietterich, 2000). The ensemble is 

constructed as a structure to combine highly accurate classifiers instead of the less 

accurate ones. T. Dietterich also mentioned that using local classifiers could be 

interesting (Dietterich, 2000).  

 

There are different ensemble structures in literature (Avnimelech et. al., 1999; 

Zheng et. al.,2010). Some of them are constructed as parallel and hierarchical 

structures. In the hierarchical combination, fast and straightforward sub-problems are 

preferred at first step, then other sub–problems which need more intensive 

calculations are tried to be resolved in later stages.  Classifiers could be placed in a 

sequential or tree-structured shape. These structures of ensemble learning could be 

seen in Figure 3.4 and Figure 3.5. But not all the structures of ensemble learning 

have to follow this hierarchy. There are also studies about ensemble learning 

designed as parallel structure.  
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Much of ensemble learning in the literature fall into this type of ensemble 

learning (Polikar, 2006). Parallel structure of ensemble learning can be seen in 

Figure 3.6. 

 

 

 

Figure 3.4 Hierarchical structure of ensemble learning.  

 

 

 
 

Figure 3.5 Hierarchical structure of ensemble learning tree trend 
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Figure 3.6 Parallel structure of ensemble learning 

 

In much of the studies about ensemble learning, combining process is called as 

gating. Gating networks has the same mission with the combiner seen in Figure 3.6 

and processes done by gating network could be voting, weighting or averaging. 

Some of these networks can be seen in Figure 3.7.  

 

 

 

Figure 3.7 Gating network 
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In a voting network, each classifier has one vote. Then final decision is given 

based on the majority of votes. In a weighting network, different classifiers have 

different weight values. When an input is given to the system, a classifier tries to 

classify this data and the output of the classifier is multiplied by its weight value. 

The outputs of the classifiers are then summed together. When the final decision is to 

be made, it is looked whether summed value is greater than the threshold value or 

not. Deciding a suitable threshold value is another process. 

 

Before deciding which gating type will be used, it can be more fundamental to 

look at training examples. In this study several cross validation methods were used 

to separate the training and test examples from the entire data. One of these cross 

validation methods was bootstrap sampling. There was no need to use bootstrap 

replicate as much as in Breiman’s study, because there was enough data to train 

classifiers. But the number of subspaces still can be increased. K fold cross 

validation was also tried in addition to bootstraps. Different experiments were 

carried out to decide which subsampling or validation method is more successful to 

train the experts. Details about these experiments will be given in next chapters.  

 

When an ensemble is constructed, using uncorrelated classifiers increase the 

success of the system. As the correlated classifiers are used, same mistakes can be 

repeated by different classifiers. There are similarities between ensemble learning 

method and phenomena of daily life. For example, before deciding to enter a serious 

surgery we want to diagnosed by a few doctors. And according to the comments of 

the doctors, ultimate decision is given.  

 

When the final decision of each expert is obtained, gating or combining processes 

must be done. Majority of votes and averaging are among the most widely used 

combination methods. According to Polikar, it is important to point out two issues 

here: first, in the context of ensemble systems, there are many ways of combining 

ensemble members, of which averaging the classifier outputs is only one method. 

Second, combining the classifier outputs does not necessarily lead to a classification 

performance that is guaranteed to be better than the best classifier in the ensemble.  
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Rather, it reduces our likelihood of choosing a classifier with a poor performance. 

After all, if we knew a priori which classifier would perform the best, we would only 

use that classifier and would not need to use an ensemble (Polikar, 2012).  

 

Bagging and Boosting algorithms are the most used and the most known 

ensemble algorithms. Both of these algorithms fall under the headings of 

manipulating the training examples mentioned in T. Dietterich’s work (Dietterich, 

2000). It is known that bagging can significantly reduce the variance, and therefore, 

it is better to be applied to learners who suffered from large variance, e.g., unstable 

learners such as decision trees or neural networks. Boosting can considerably reduce 

the bias in addition to depressing the variance, and hence, on weak learners, boosting 

is generally more effective (Stan et. al., 2015).  

 

3.3 Classifiers 

 

There are different types of classifiers used as experts in ensemble structures. 

These experts are k-means algorithm, kNN algorithm, artificial neural network, 

Naive Bayes algorithm and support vector machines.  

 

3.3.1 k- means Algorithm 

      

Lloyd’s algorithm, often referred as k-means algorithm, is the simplest and most 

commonly used classifier. This algorithm starts with choosing k centers, centroid, 

randomly, these centroids are generally chosen uniformly according to features of 

data, mostly means of data which share same attributions. Each data are assigned to 

the nearest centroid, then each centroid is recalculated with assigned new data. These 

two steps are repeated until prediction rule met.  The k-means algorithm is the most 

widely used partitional classifying algorithm. Its popularity can be associate with 

several reasons. First, it is conceptually simple and easy to implement. Nearly all 

data mining software includes an implementation of it. Second, it is versatile, i.e., 

almost every aspect of the algorithm (initialization, distance function, termination 

criterion, etc.) can be modified.  
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Finally, it is independent that how distribution of data is spread in space. On the 

other hand, k-means has several significant disadvantages. First, it requires the 

number of clusters, k, to be specified a priori. The value of this parameter can be 

determined automatically by means of various cluster validity measures (Celebi et. 

al., 2013). 

 

3.3.2 K nearest neighbor Algorithm 

 

K-nearest-neighbor (kNN) classification is one of the most fundamental and 

simple classification methods and should be one of the first choices for a 

classification study when there is little or no prior knowledge about the distribution 

of the data. K-nearest-neighbor classification was developed from the need to 

perform discriminant analysis when reliable parametric estimates of probability 

densities are unknown or difficult to determine. In an unpublished US Air Force 

School of Aviation Medicine report in 1951, Fix and Hodges (Fix et. al., 1989) 

introduced a non-parametric method for pattern classification that has known the k-

nearest neighbor rule (Peterson, 2009).  

 

In the classification or discrimination problem with two populations, denoted by 

X and Y, one wishes to classify an observation z to either X or Y using only training 

data. The kth-nearest neighbor classification rule is based on simple rule. If 

neighborhood between z and X is greater than the neighborhood between z and Y, z 

is assigned to the class X, otherwise it assigned to the class Y. The first study of this 

method was undertaken by Fix and Hodges,1951 (Fix et. al., 1989). Since then there 

have been many studies into the method’s statistical properties and optimal choice of 

k (Hall et. al., 2008). 
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3.3.3 Artificial Neural Network 

 

An artificial neural network (ANN) is a group of simple units with adjustable 

weight. ANNs are inspired from human neurological system and are composed of 

neuronlike units connected together through input and output paths that have 

adjustable weight. Each neuron takes an input and produces an output signal 

proportional to its weight.  

 

     (3.5) 

      

where xi is the input, wi are the weights, f(.) is the activation function and yi is the 

output of the ith unit. Different functions can be applied as an activation function but 

mostly a sigmoid function is used. 

 

 

 

Figure 3.8 Basic scheme of a neural network 
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Multi-layer perceptrons (MLPs) are the mostly used ANN structures. As the name 

implies, a MLP consists of successive layers, each of which includes a different 

number of processing units. The units in the first layer receive inputs from the 

outside and are fully connected to units in the hidden layer. The units in the hidden 

layer are connected to output layer units. The units in the output layer produce an 

output.  

 

A training phase for ANN means that the values of the connection weights are 

adjusted. Then the network can produce a correct output for new data entered from 

outside. The proper weights are determined under the control of a training algorithm. 

When the best weight is adjusted, the network can be tested on the sample data. 

 

There will be an error function, since entered new data are probably different 

from the training data. As the error rate decreases, it can be said that the network is 

well trained.  

 

Commonly used training functions are summarized:  

 

Gradient Descent with Adaptive Learning Rate (GDALR): In plain gradient descent, 

the learning rate is held fixed during the training phase. However, changing the 

learning rate during the training process is a method that could increase the 

performance of the network (Yu et. al., 2002). 

 

Scale Conjugate Gradient (SCG): This train function seems to perform well both 

pattern recognition and function approximation problems. The train function is 

almost as fast as the Levenberg – Marquardt algorithm (trainlm) on function 

approximation problems.  

 

 

 

 



23 

 

Step size scaling mechanism is used which avoids a time consuming line search 

per learning iteration. This mechanism makes the algorithm faster than any other 

second order algorithms. The scale conjugate gradient (trainscg) function requires 

more iteration to converge than the other conjugate gradient algorithms, but the 

number of computations in each iteration is significantly reduced because no line 

search is performed. 

 

Resilience backpropagation (RP): This training algorithm eliminates the effects of 

the magnitudes of the partial derivatives. In this sign of the derivative is used to 

determine the direction of the weight update and the magnitude of the derivative 

have no effect on the weight update. This function does not perform well on function 

approximation problems. Performance of the function decreases as the error goal is 

reduced. The memory requirements for this algorithm are a little bit smaller than 

other training functions.  

 

Broyden – Fletcher – Goldfarb – Shanno Algorithm (BFG): This algorithm 

approximates Newton's method, a class of hill-climbing optimization techniques that 

seeks a stationary point of a function. For such problems, a necessary condition for 

optimality is that the gradient be zero. This algorithm requires more storage and 

computation than the conjugate gradient methods, but it converges in fewer 

iterations. BFGS have good performance even for non-smooth optimizations and an 

efficient training function for smaller networks. 

 

Levenberg-Marquart (LM) Algorithm: Levenberg-Marquart (trainlm) function is a 

network training function that updates weight and bias values according to 

Levenberg-Marquardt optimization. Trainlm function is often the fastest 

backpropagation algorithm in the Matlab toolbox, and is highly recommended as a 

first-choice supervised algorithm, although it does require more memory than other 

algorithms. 
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There are no significant differences between the correct classification percentage 

for Scale Conjugate Gradient and Levenberg - Marquart function, and, they are in 

acceptable range. The convergence speed of Levenberg - Marquart and Scale 

Conjugate Gradient are higher than other training functions. Considering the sample 

size of input patterns, Levenberg - Marquart suits to larger data set. It converges in 

less number of iterations and in lesser time than the other training functions (Sharma 

et. al., 2014). In this study, more correct predictive and faster train function is 

important instead of memory efficient train functions. So, Levenberg - Marquart 

train function was used in the designed network.  

 

In this study, neural networks were created to determine the people as PAF 

patient or non-PAF. According to this information about training and learning 

functions, Levenberg- Marquart Algorithm was selected to use. Created network was 

a type of multilayer which number of neurons in hidden layer was equal to ten. And 

it has two neurons in output layer. Because of determining the output layer as two, 

the output layer creates two values in this structure of neural network. The reason 

why the output layer has two neurons is to benefit from their weight value while 

averaging their results. Scheme of the network is given in Figure 3.9. Different 

parameters were tried. And results of this different parameters will be given in next 

chapters. 

 

 
 

Figure 3.9 Flowchart of artificial neural network used in this study 
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It is shown that there are eight input, since dimension of data is equal to eight. 

Then there is a hidden layer which weights of network adjust. There is also an output 

layer which is the last layer before the output is created.  

 

3.3.4 Naïve Bayes Algorithm 

 

Naïve Bayes Algorithm has gained bad reputation (Lewis, 1998), and has earned 

the dubious distinction of placing near last in numerous classification papers (Yang 

et. al., 1999). But, it is frequently used because it is fast and easy to implement. 

More successful algorithms can tend to be slower and can need more computational 

cost. Bayesian classifiers assign the most likely class to a given example described 

by its feature vector. Learning such classifiers can be simplified by assuming that 

features are independent.  

 

Basic formulation of probability is given in following formula 3.6. 

 

P(X/C) = ∏ 𝑥𝑖  𝑥 𝑐𝑛
𝑖=1      (3.6) 

 

Where 𝑥𝑖 is a feature vector and c is a class. Despite this unrealistic assumption, 

the resulting classifier known as Naive Bayes is remarkably successful in practice, 

often competing with much more sophisticated techniques. Naive Bayes has been 

used effectively in many applications such as text classification, medical systems, 

and data mining. 

 

 The success of Naive Bayes in the presence of feature dependencies can be 

explained as follows: optimality in terms of classification error is not necessarily 

related to the quality of the fit to a probability distribution (i.e., the appropriateness 

of the independence assumption). Rather, an optimal classifier is obtained as long as 

both the actual and estimated distributions agree on the most-probable class. For 

example, it is proved that Naive Bayes optimality for some problems classes that 

have a high degree of feature dependencies, such as disjunctive and conjunctive 

concepts (Rish, 2001). 



26 

 

3.3.5 Support Vector Machines (SVM) 

 

The algorithm, support vector machines (SVM), is based on the idea that two 

classes can always be separated from each other via a hyperplane. But, the problem 

is more than one hyperplane may be drawn to separate the classes. So, the goal in 

support vector machines is to find the separating hyperplane with the largest margin; 

as the margin is greaten, the generalization of the classifier becomes better (Bosher 

et. al., 1992; Cortes et. al., 1995). Support vector machines are helpful in text 

recognition, classification of images and biological applications (Chen et. al., 2001; 

Gaonkar, 2013; Cuingnet et. al., 2011). 

 

The equations of this algorithm are derived from using vector properties. Let’s 

consider a space where there are points which are wanted to be classified. And let’s 

show these points as symbols of “+” and “-”. Figure 3.10 is given as an example for 

that space. 

 

 

 

Figure 3.10 A space where there are two different classes 
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The vector, 𝑤⃗⃗ , is the vector which is chosen as perpendicular to the median of the 

dashed line. The vector, 𝑢⃗ , is the vector which we do not know its place whether it is 

in positive side of the dashed line or vice versa. To find its place, projection of the 

unknown vector which is same direction with the vector 𝑤⃗⃗  must be calculated. So 

the equation about place of vector 𝑢⃗  can be written as :  

 

 

 w⃗⃗⃗ ⋅ u⃗ ≥ 𝑐 (3.7) 

 

 

In equation 3.7, 𝑢⃗  and 𝑤⃗⃗  are vectors and c is a constant. That dot product in the 

equation gives us the projection onto 𝑤⃗⃗ . As the projection greatens, it can be said 

that the sample is positive. This equation can be arranged like the equation 3.8. 

 

 

 w⃗⃗⃗ ⋅ u⃗ + 𝑏 ≥ 0 (3.8) 

 

 

The equation 3.8 gives us the decision rule for the positive samples where the b is 

a constant. The problem in equation 3.8 is that place of u⃗  and w⃗⃗⃗   are not known. w⃗⃗⃗  

has to be perpendicular to dashed line in Figure 3.10. But, there may be so many 

vector which can be drawn as perpendicular to that line. Because, length of that 

vector is not specified. For overcoming from this problem, let’s examine the 

unknown vector, u⃗ , first. Assume that u⃗ , is a known vector, it is a positive or 

negative sample and let’s show that vector with the symbol of x+⃗⃗⃗⃗  and x−⃗⃗⃗⃗ . In this 

situation the equations can be given as equation 3.9 and 3.10: 

 

 

 w⃗⃗⃗ ⋅  𝑥+⃗⃗ ⃗⃗ + 𝑏 ≥ 1 (3.9) 

  

w⃗⃗⃗ ⋅  𝑥−⃗⃗ ⃗⃗ + 𝑏 ≤ −1 

 

(3.10) 
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The equation 3.9 is the new decision rule for the positive samples. It is greater 

than one because it is known that the sample is a positive sample. In equation 3.10, 

the equation is arranged as less than minus one or equal to minus one due to the 

same reason in equation 3.9. Some arrangements can make these equations more 

convenient mathematically. For doing this, let’s describe a variable 𝑦𝑖 ,where 𝑦𝑖 is 

+1 for the positive samples, -1 for the negative ones. So, the equations, 3.9 and 3.10, 

can be arranged.  

 

 

 yi(x⃗ iw⃗⃗⃗ + b) − 1 ≥ 0 (3.11) 

 

The equation , 3.11, gives us the decision rule for the x⃗ i where the x⃗ i is in a gutter 

alongside of the dashed line in Figure 3.10. Decision rule for the samples is obtained. 

But, the width of the gutter is still unknown. So, another problem is about the width 

of the gutter. Because, in early stages of the topic, there was a sentence about 

margins (width of the gutter) which specifies the goal in support vector machines. 

When we look at Figure 3.11, it may give us an idea to understand about calculations 

of the width.  

 

 

 

Figure 3.11 Vector representation of the width of the gutter 
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In Figure 3.11, there are three vectors. Two of them represent the vectors 𝑥+⃗⃗ ⃗⃗  and 

𝑥−⃗⃗ ⃗⃗ . And the other one, 𝑤⃗⃗ ,  is an unit vector which is perpendicular to dashed line. 

According to the Figure 3.11, an equation about the width can be extracted:  

 

 

 Width = (x⃗ + − x⃗ −) ⋅
w⃗⃗⃗ 

‖w‖
 (3.12) 

 

 

When we look at the equation 3.12, the arrangements can be done. From equation 

3.11, 𝑥 +. 𝑤⃗  and 𝑥 −. 𝑤⃗⃗  ⃗ can be obtained. When the equation is rearranged:  

 

 

 Width = 
2

‖w‖
 (3.13) 

 

 

According to main goal in support vector machines, it is wanted to maximize the 

width between lines which separate the classes. According to equation 3.13, a new 

equation can be written for maximizing the width: 

 

 MAX 
2

‖w‖
   →   𝑀𝐴𝑋 

1

‖w‖
 →  𝑀𝐼𝑁 ‖w‖  →   𝑀𝐼𝑁 

1

2
‖𝑤‖2 (3.14) 

 

 

According to the equation 3.11 and 3.14, it will be tried to find an extremum of a 

function. The method of Lagrange multipliers is a good method to solve this 

problem. Lagrange method comes up in the beginning of 1800s and this method 

named after the Italian mathematician Joseph-Louis Lagrange (Bertsekas, 1999). 

According to the Lagrange multipliers, following equation can be written:  

 

 

 L= 
1

2
‖𝑤‖2 − ∑𝛼𝑖[𝑦𝑖(𝑤⃗⃗ ⋅ 𝑥 𝑖 + 𝑏) − 1] (3.15) 

 

 

https://en.0wikipedia.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvSm9zZXBoLUxvdWlzX0xhZ3Jhbmdl
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When it is tried to solve equation 3.15, following equations can be written: 

  

 

 ⅆ𝐿

ⅆ𝑤
= 𝑤⃗⃗ − ∑𝛼𝑖𝑦𝑖𝑥 𝑖 = 0 

(3.16) 

 

 

 

From equation 3.16, 𝑤⃗⃗  can be written as:  

 

 

 𝑤⃗⃗ = ∑𝛼𝑖𝑦𝑖𝑥 𝑖 (3.17) 

 

 

While interpreting the equation 3.17, this equation tells us that the vector, 𝑤⃗⃗ , is 

the linear summation of the some vectors included in the space. 

 

 

 ⅆ𝐿

ⅆ𝑏
= −∑𝛼𝑖𝑦𝑖 = 0   →    ∑𝛼𝑖𝑦𝑖 = 0  (3.18) 

 

 

The vector, 𝑤⃗⃗ , can be written into equation 3.15. In this situation:  

 

 

 L= 
1

2
∑𝛼𝑖𝑦𝑖𝑥 𝑖∑𝛼𝑗𝑦𝑗𝑥 𝑗 − ∑𝛼𝑖𝑦𝑖𝑥 𝑖 (∑𝛼𝑗𝑦𝑗𝑥 𝑗) − ∑𝛼𝑖𝑦𝑖𝑏 + ∑𝛼𝑖 (3.19) 

 

 

And when Eq. 3.17 and Eq. 3.18 are written into Eq. 3.19, following equation is 

obtained: 

 

 

 
L=∑𝛼𝑖 − 

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖̇𝑦𝑗̇𝑥𝑖

𝑗
𝑖

⋅ 𝑥𝑗 
(3.19) 
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What equation 3.19 says is the optimization depends on the dot product of pairs of 

samples. So, these equations are quietly efficient in linearly separable sampling sets. 

But, in linearly inseparable examples there may be problems. For overcoming this, a 

transformation process is needed. The reason why there is another process can be 

understood better when we look in Figure 3.12.  

 

 

 

Figure 3.12 A space which consists of linearly inseparable samples 

  

When it is looked in Figure 3.12, there is red dashed lines are the lines which 

show the transformation process. Some of the samples are transformed into another 

space, then classifying process continues. The black solid line is the line which 

classify the examples from each other. From the Eq. 3.19, it was found that 

optimization depends only on the dot products of two vectors. After the 

transformation process, dot product is also essential for us. Transformation process  

can be shown with the symbol of phi, “𝜙”. And transformation function is described 

as “k”. In the last situation, the equation can be written as:  

 

 

 𝑘(𝑥𝑖⃗⃗  ⃗, 𝑥𝑗⃗⃗  ⃗) = 𝜙(𝑥𝑖⃗⃗  ⃗) ⋅ 𝜙(𝑥𝑗⃗⃗  ⃗) (3.20) 
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From equation 3.20, the kernel function, “k”, provides the dot product of two 

vectors in another space. And there is no need to know transformation function. 

Most popular kernel functions are linear kernel function and exponential function 

(Min et. al., 2005). In equations 3.21 and 3.22 these kernels can be seen (MIT 

OpenCourseWare, 2014).  

 

 (u⃗ ⋅ w⃗⃗⃗ + 1)n (3.21) 

  

e
−(

‖xi−xj‖

σ
)

 

 

 

(3.22) 

 

3.4 Resampling Methods  

 

Data was composed of 800 people records which some of them are patient and 

some of them not. Both k - Fold Cross Validation (k - Fold CV) and Bagging 

algorithm were used. According to McLachlan, 10-fold cross-validation is 

commonly used, but in general, k remains an unfixed parameter in k- fold CV 

(McLachlan, 2005). In bootstrap samplings, each sampling has a training rate with 

nearly 63%. So, minimizing the difference between training rates of both type of 

cross validation method will be fine for the experiments. If k is chosen as five 

instead of ten which is common, then the training rate will be 80%. Therefore, k is 

chosen as five in this study, while using k – Fold CV. Since k was chosen as five, 

creating five Bootstrap replicates for Bagging algorithm was determined. In general, 

at the time choosing the parameter, important point is that separated training set must 

have enough number of examples for training the classifier. Because, accurate results 

can not be expected from a classifier which is trained badly.  After dividing by five, 

training data consist of 640 people, and the test data consists of 160 people. In each 

part which contains 160 people, there are 58 people with PAF disease, and 102 

people who are healthy people. It was also created five bootstrap replicates to 

perform bagging algorithm. For bootstrap replicates, selection rate of them were 

64.53%, 61.09%, 65.63%, 62.34%, 60% respectively.  
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3.4.1 k – Fold Cross Validation 

 

In k – fold cross validation, data is divided into parts – folds. k-1 folds are 

allocated as training data, and one different fold is specified as test data. This process 

continues until each fold is tested.  Advantage of this method is that all observations 

are used for both training and test. Another advantage of this method is averaging the 

results of each iteration. In conventional method, there is one result obtained from 

test data. But, it is hard to determine this test data represents the whole data good. Or 

it is unclear the training examples are whether enough for training a classifier. By 

means of k fold cross validation, the challenges caused by conventional method may 

be fixed. 

 

 

 

Figure 3.13 k – Fold Cross Validation Scheme. Where, X1, X2, X3, X4 and X5 are data whose 

dimensions are 160x8 
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In this work, four parts of data were separated for training and one another was 

separated for test. This test data was changed in every iteration. In each iteration, 

gold standardization values - specificity, selectivity, accuracy, positive predictive 

value, negative predictive value -  were obtained. Then average of these values were 

determined as success of the system. In this work, the data were divided into five 

subsamples and one of them was reserved for testing. So that 80% of the data was 

allocated for training in each iteration.   

 

3.4.2 Bootstrap Subsamplings 

 

Another method to divide data into regions is Bootstrap. A “bootstrap” data set is 

one created by randomly selecting n points from the training set D, with 

replacement. (Since D itself contains n points, there is nearly always duplication of 

individual points in a bootstrap data set.) In bootstrap estimation, this selection 

process is independently repeated B times to yield B bootstrap data sets, which are 

treated as independent sets (Duda et. al, 1973). 

 

For a given bootstrap sample, a randomly selected instance in the training set has 

probability 1−(1−1/m)m of being selected at least once. For large m, this is about            

1 − 1/e = 63.2%, which means that each bootstrap sample contains only about 63.2% 

unique instances from the training set. This perturbation causes different hypotheses 

to be built if the classifier is unstable (e.g., neural networks, decision trees) and the 

performance can improve if the results of unstable classifiers are good and not 

correlated; however, Bagging may slightly degrade the performance of stable 

algorithms (e.g., k-nearest neighbor) because effectively smaller training sets are 

used for training each classifier (Breiman, 1996). In this paper, both the classifiers 

ANN and kNN were used. So, there is a chance to see difference of these classifiers, 

when the input changes.  

 

 

 

 



35 

 

Table 3.1 An Example of Bootstrap Replicates Derived from Original Data 

 

Original 

Data 

1 2 3 4 5 6 7 8 9 10 

Iteration - 1 1  3 7 2 3 8 8 7 5 6 

Iteration - 2 6 6 3 4 2 10  8 9 10 6 

Iteration - 3  4 3 7 7 9 1 3 10 5 4 

 

As it is seen from the Table 3.1, randomly chosen data could be unordered or it 

may repeat. Five subsamples from the original data as bootstrap subsample were 

created in this study. And selection rate of each subsample were given in the 

beginning of the chapter. 

 

Two validation methods were used to train artificial neural networks and 

classifiers. One of them, Bootstrap, had a selection rate approximately 63%. And the 

other one had the training data whose selection rate is 80% of the entire data set. As 

the test – training rate and dividing method changed, it is expected to get different 

percentage of success.  

 

3.4.3 Bagging (Bootstrap Aggregation) 

 

Bagging — a name derived from “bootstrap aggregation” — uses multiple 

versions of a training set, each created samples from D with replacement. Each of 

these bootstrap data sets is used to train a different component classifier and the final 

classification decision is based on the average or vote of each component classifier. 

Traditionally the component classifiers are of the same general form - i.e., all hidden 

Markov models, or all neural networks, or all decision trees - merely the final 

parameter values differ among them due to their different sets of training patterns 

(Duda et. al., 1973).  
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A classifier/learning algorithm combination is called unstable if small changes in 

the training data lead to relatively large changes in accuracy. In general, bagging 

improves recognition for unstable classifiers since it effectively averages over such 

discontinuities. The decision rule in bagging - mostly a simple vote among the 

component classifiers - is the most elementary method of pooling or integrating the 

outputs of the component classifiers (Breiman, 1996). 

 

3.5 Performance Evaluation  

 

Success of the experts were evaluated by the following measures: specificity, 

sensitivity, accuracy, positive predictive value (PPV) and negative predictive value 

(NPV). Before using these measures, the terms must be understood such as true 

positive (TP), true negative (TN), false positive (FP) and false negative (FN).  

 

True Positive (TP): If a person is predicted as patient and the person has the disease, 

this prediction is labelled as TP.     

 

True Negative (TN): If a person is predicted as healthy and the person is not patient, 

this prediction is labelled as TN.  

 

False Positive (FP): If a person is predicted as patient but the person has not the 

disease, this prediction is labelled as FP.  

 

False Negative (FN): If a person is predicted as healthy, but the person is patient, 

this prediction is called as FN.     

 

 

Table 3.2 Table of TP, TN, FP, FN (Confusion Matrix) 

 

    Predicted Results 

    Patient (1) Healthy (0)  

Actual 
Patient (1) TP FN 

Healthy (0)  FP TN 
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These terms (TP, TN, FP, FN) are counted. After counting, the standards 

mentioned above specificity, selectivity, accuracy, PPV and NPV can be used.  But 

first, let mention about these standards meaning. 

 

Specifity: Specificity is the probability that a test will label as 'healthy' among people 

who have not the disease. Briefly, specificity indicates how well the test predicts one 

category. Formula of specifity is given as:  

                  

 

Specificity = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 𝑥 100 

(3.7) 

 

     

Sensitivity: Sensitivity is the probability that a test will label as 'patient' among 

people who have the disease. Sensitivity indicates how well the test predicts the 

other category which is not considered by specificity. Formula of sensitivity is given 

as:  

 

Sensitivity = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝑥 100 

(3.8) 

 

     

Accuracy: Accuracy shows us how well the test predicts both category which consist 

of patient and healthy people. As the accuracy increase, we can say the test is well 

trained. Formula of accuracy:  

 

  

Accuracy = 𝑇𝑁 +  𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 𝑥 100 

 

(3.9) 
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Positive Predictive Value (PPV): It means the probability that the disease is present 

when the test is positive. It can be called correctness of positive values. Formula of 

PPV:  

 

Positive Predictive Value  = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑥 100 

 

(3.10) 

 

Negative Predictive Value (NPV): It means the probability that the disease is not 

present when the test is negative. It can be called correctness of negative values. 

Formula of NPV:  

 

 

Negative Predictive Value  = 𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 𝑥 100 

(3.11) 

      

 

Matlab R2015b was used in this study. The matrix-based Matlab language is a 

software to apply computational mathematics. Compared to other programming 

languages, matrix computations and pattern recognition processes are easier in 

Matlab (Duin, 2000).  
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CHAPTER FOUR  

 RESULTS 

 

In this thesis study, both hierarchical and parallel structures were used. The 

dataset was divided into two subsets: training and test datasets. The experts were 

trained on training sets to correctly classify whether the subject is PAF patient or not. 

Then, these experts were evaluated on the test data and their performances were 

obtained. In order to compare different ensembles, different experiments were 

carried out. While interpreting the overall success of the systems, the accuracy 

values were taken into account.  

 

In parallel structures, only artificial neural networks were selected as the experts 

whereas, in hierarchical ones, different types of classifiers were used. To find the 

best parameters to use in experts, various tests were carried out based on both k-fold 

CV and bootstrap techniques. The results for the ANN classifier for different number 

of hidden neurons are given in Table 4.1 and Table 4.2. Based on these results, ten 

hidden neurons were selected for the ANN classifier.   
 

 

 

Table 4.1 Results of ANN with different number of neurons obtained from k - Fold Cross Validation 

 

ANN 

Number of neurons 6 8 10 12 14 

Specificity 95.49 94.00 89.19 79.44 89.70 

Sensitivity 96.58 81.42 93.88 84.42 92.05 

Accuracy 83.52 88.01 90.63 88.60 89.75 

PPV 88.65 96.00 79.31 94.67 85.17 

NPV 91.30 93.99 97.06 94.01 92.85 
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Table 4.2 Results of ANN with different number of neurons obtained from Bootstrap subsamplings 

 

     ANN 

Number of neurons 6 8 10 12 14 

Specificity 95.20 92.55 93.72 88.76 89.69 

Sensitivity 86.19 90.08 93.89 88.48 83.08 

Accuracy 92.43 91.34 93.82 92.10 92.15 

PPV 90.80 85.79 88.65 91.14 87.49 

NPV 86.51 84.99 96.68 89.69 88.39 

 

 

4.1 Ensemble Experiments  

 

4.1.1 Experiment 1 

 

In the first experiment, a parallel structure of ensemble learning was designed. 

Artificial neural networks were used as the experts. Five different neural network 

structures were created for this experiment. Training data were obtained from 

bootstrap samplings. Since creating unique training sets are expected by the 

bootstrap samplings, different results could be obtained from each neural network 

expert. The results of each neural network expert were combined by both voting and 

averaging processes. When the results are evaluated, gold standardization values - 

true positive (TP), true negative (TN), false positive (FP), false negative (FN)- were 

calculated. According to these values, specificity, sensitivity accuracy, PPV and 

NPV values were determined. Flowchart of this experiment is given in Figure 4.1.  

The results of this experiment could be seen in Table 4.3.  
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Figure 4.1 Flowchart of the Experiment 1 

 

In Figure 4.1, X represents the data, and Bootstrap 1, B2, B3, B4, and B5 are the 

replicates derived from the original data via bootstrap subsampling. NN1, NN2, 

NN3, NN4, and NN5 represent the neural network experts.  

 

Table 4.3 Results of Experiment 1 

 

Bagging - ANN 

NN1 

Specificity 88.24 

Sensitivity 79.65 

Accuracy 85.13 

PPV 81.03 

NPV 88.24 

NN2 

Specificity 88.04 

Sensitivity 81.95 

Accuracy 85.88 

PPV 80.35 

NPV 89.03 

NN3 

Specificity 81.59 

Sensitivity 85.83 

Accuracy 81.68 

PPV 76.54 

NPV 90.41 
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Table 4.3 continues 

NN4 

Specificity 89.81 

Sensitivity 78.97 

Accuracy 85.88 

PPV 81.86 

NPV 88.27 

NN5 

Specificity 86.67 

Sensitivity 78.97 

Accuracy 83.88 

PPV 83.58 

NPV 87.45 

Averaging 

Specificity 91.38 

Sensitivity 84.26 

Accuracy 88.75 

PPV 85.27 

NPV 91.04 

Voting 

Specificity 91.18 

Sensitivity 84.14 

Accuracy 88.63 

PPV 84.98 

NPV 91.02 
 

 

According to the results of Table 4.3., NN2 and NN4 have the same accuracy rate 

with 85.88%. However, the accuracy rate of voting and averaging is greater than this 

rate. So, it can be said that there is an improvement in results when the ensemble 

structure is used.  

 

When results of averaging and voting are compared, it is seen that there is no 

significant difference between them.  Normally, the difference between averaging 

and voting is expected to be more considerable. But in this experiment, it is hard to 

see it. This may be caused by using artificial neural networks as the experts. The 

output layer in the neural network structure had two output values, one of them was 

closer to one and the other one was closer to zero. Briefly, summation of these two 

value was equal to one. These values can be explained as the probability of being 

one (patient) or being zero (healthy). But, in this experiment, these probabilities 

happened to be so close to 1 and 0 values so that no difference occurs between 
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averaging and voting. In future works, different classifiers such as fuzzy c - means 

can be used and thus differences can be observed between these two techniques.  

 

4.1.2 Experiment 2 

 

In Experiment 2, the structure of the ensemble and the classifier are the same as in 

Experiment 1.  Contrary to the first experiment, five-fold cross validation is used 

while training the networks. And different results are expected to come up. Then 

these results are combined with averaging or voting. The flowchart of this 

experiment is given in Figure 4.2.  

 

 

 

Figure 4.2 Flowchart of the Experiment 2 
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Table 4.4 Results of Experiment 2 

 

k fold - ANN 

NN1 

Specificity 87.65 

Sensitivity 85.17 

Accuracy 86.75 

PPV 82.48 

NPV 91.31 

NN2 

Specificity 86.06 

Sensitivity 87.93 

Accuracy 86.75 

PPV 81.46 

NPV 92.57 

NN3 

Specificity 88.04 

Sensitivity 89.66 

Accuracy 88.63 

PPV 85.48 

NPV 94.22 

NN4 

Specificity 86.28 

Sensitivity 86.90 

Accuracy 86.50 

PPV 79.63 

NPV 92.29 

NN5 

Specificity 85.47 

Sensitivity 87.64 

Accuracy 86.13 

PPV 80.74 

NPV 92.08 

Averaging 

Specificity 89.20 

Sensitivity 89.31 

Accuracy 89.25 

PPV 85.04 

NPV 93.69 

Voting 

Specificity 89.59 

Sensitivity 89.33 

Accuracy 89.5 

PPV 85.36 

NPV 93.70 
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As can be seen from Table 4.4, among the other neural networks NN3 has the best 

accuracy rate with 88.63%. Similar to the first experiment, accuracy rates of both 

voting and averaging are greater than single neural networks’ performance in this 

experiment, too. However, contrary to first experiment, accuracy rate of voting is 

slightly greater than accuracy rate of averaging.  

 

4.1.3 Experiment 3 

 

In the first two experiments parallel structures of ensemble learning were used. 

Approaches to the ensembles are mostly under this category in literature. There are 

also studies done with the hierarchical structures in literature (Yu et. al., 2003; Yu et. 

al., 2009). In a hierarchical structure, each classifier produces its output according to 

a sequence. Efficient classifiers are used in first stages; then more accurate but 

complex classifiers are used in later stages.  

 

Experiment 3 was designed as hierarchical structure. Main aim of this experiment 

was to divide the data into sub problems. Then these sub problems were tried to be 

classified with classifiers which could get best accuracy rate on that sub problem. 

Division process was done by using k means algorithm which is a clustering 

algorithm. From this aspect, this experiment can remind us divide and conquer 

method. Flowchart of this experiment is given in Figure 4.3. 

 



46 

 

 

 

Figure 4.3 Flowchart of hierarchical structure of ensemble learning where X represents the entire 

data. X1, X2, X3 is obtained from the X by dividing 

 

While dividing, the data were expected to separate three regions, since k was 

selected as three, in k means algorithm. The flowchart, given in Figure 4.3, is the 

ultimate flowchart of the experiment. It is called ultimate, because all combinations 

were tried before deciding which classifier will be used on sub problems. As a result 

of these trials, kNN was assigned on the first sub problem, SVM was assigned on 

second sub problem, and Naive Bayes algorithm was assigned on last sub problem. 

According to sub problems, results of each classifier is given in Table 4.5. In this 

example, accuracy values of the classifiers were enough to determine when a 

classifier will be assigned.  

 

Table 4.5 Results of Classifiers 

 

  

X1 X2 X3 

Accuracy Accuracy Accuracy 

ANN 82.46 84.51 34.38 

KNN 94.74 25.35 71.88 

NB 89.47 88.73 100.00 

SVM 89.47 90.14 75.00 
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According to selected classifiers, specificity, selectivity, accuracy, positive 

predictive value and negative predictive value of final result were calculated. And 

these values are given in Table 4.6. 

 

Table 4.6 Results of Experiment 3 

  

Final Result 

Specificity 91.18 

Sensitivity 98.28 

Accuracy 93.75 

PPV 86.36 

NPV 98.94 

 

According to the Table 4.6, the accuracy rate of this experiment is equal to 

93.75% and this rate is the best accuracy rate when compared with the parallel 

structures. There is information about negative predictive value in Table 4.6. The 

rate of negative predictive value is nearly 99%. When it is thought there are 102 

healthy people in test data, the experiment is quietly successful for detecting the 

healthy people. This rate is also the best negative predictive value obtained in this 

study. According to this result, there is one healthy person misclassified in 

Experiment 3.  

 

As it can be seen from Table 4.6, best accuracy rate is equal to 93.75% among all 

experiments done in this study. It means that if there are 100 people, we can label 

them as PAF-patient or not with the correctness of 93.75%. In each iteration, there 

are 160 people divided for the test. So, 150 of 160 people are labelled correctly. 

According to the same table positive predictive value is equal to 86.36. So it means 

that nearly 50 of 58 people which are patient are labeled as patient. But remaining 8 

patient people are labeled as non-PAF. Negative predictive value is equal to 98.94. It 

means that there are 102 healthy people. 101 of them are labeled as healthy. But one 

people which are not PAF-patient were labeled as PAF patient.  
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CHAPTER FIVE  

CONCLUSION 

 

Although it is very easy to diagnose PAF disease from the ECG recordings taken 

during the arrhythmic event, it is not easy to acquire the ECG signal during a PAF 

episode. This is due to the fact that PAF episodes could come to an end in minutes. 

Therefore, there would be no sufficient time for the subject to go to a health clinic 

and take an ECG record during the episode. Thus it would be very helpful if a 

computer based system that would be able to diagnose PAF disease from 

arrhythmia-free ECG records could be developed. The goal of this thesis is PAF 

screening of subjects based on their arrhythmia-free ECG records. 

 

In this thesis, several different ensemble learning structures was developed to 

create a PAF screening system, which would be expected to be more effective than 

the ones based on only a single classifier. Both hierarchical and parallel types of 

ensemble learning were designed and their results were compared. The hierarchical 

structure of ensemble learning model was more successful than the parallel structure 

with the accuracy value of 93.75%. On the other hand, an accuracy rate of 89.5% 

was obtained by using the parallel structure. This result shows us that better results 

could be obtained as long as better hierarchical structures are constructed.  

 

When an ensemble is constructed, it is expected that there would be an 

improvement in results. In this study, with parallel ensemble structures, highly 

successful results were obtained with the accuracy rate of 89.5%. In the meantime, 

no single neural network classifier was able to achieve that success rate. This result 

proves that the ensemble structures are very successful to compensate for the errors 

rooted from using just one classifier. For compensating the errors, both averaging 

and voting methods were tried in the combiner. In bagging algorithm, the results of 

averaging were more successful than voting. On contrary to this conclusion, voting 

was more successful when k fold cross validation was used. There was little 

difference between averaging and voting for both cross validation methods.  
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Different ensembles using k–fold cross validation and bootstrap resampling 

methods were compared. A rise in performance was seen when k-fold cross 

validation was used instead of bootstrap replicates. This conclusion was contrast to 

Breiman’s study, which states that better results can be obtained by using bootstrap 

sampling as each bootstrap replicate creates a unique hypothesis and these unique 

hypotheses make the neural networks train better. The reason for this contradiction 

could be that in this study neural networks could not have been sufficiently trained. 

This could be caused by using small sized dataset. In addition to size of the dataset, 

bootstrap replicates contain examples which are approximately 63.2% of the entire 

dataset. When k – fold cross validation was used for training, better results were 

obtained. This may be rooted from the training rate of this type of cross validation 

was selected as 80%. 

 

When results of the system designed in this study are compared with similar 

works in the literature, it can be concluded that the performances obtained are 

relatively high. Martinez et. al obtained ECG records of 46 PAF patients and 53 

healthy subjects. Then they calculated the variability of many morphological features 

of P-wave. They found that using a decision tree with P-wave area and they achieved 

95.42% accuracy to discriminate ECG segments of healthy subjects and patients 

suffering from PAF (Martinez et. al., 2012). Ros et al. used only train set of 

Physionet PAF Prediction Challenge Database (AFPDB) and they obtained 92% 

correct classification rate using 22 parameters obtained from P-wave analysis (Ros 

et. al., 2004). In 2016, I. Hilavin worked on this dataset, then she obtained accuracy 

with the rate of 95% by using the best performing classifier, i.e. support vector 

machine (SVM) (Hilavin, 2016).  Martinez’s study was more successful than the 

works of Hilavin and Ros. Results of this study were close to Martinez’s accuracy 

rate by using hierarchical structure of ensemble learning with an accuracy value of 

93.75%.  
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Based on the results of this study, it is hoped that this system can be effectively 

used for PAF screening purposes. As future work, the system can be improved to 

give sufficient results even when the ECG record is obtained from mobile 

measurement devices in relatively noisy conditions. In such a case, an interface can 

also be designed and added so that the system can be easily used by the subjects 

themselves in their home environments.  
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