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CREATING INTELLIGENT MANAGEMENT SYSTEM FOR TURKEY ON 

ONTOLOGICAL SENSOR DATA 

 

ABSTRACT 

In recent years, sensors have become smaller enough to be used in every system, 

positive developments in the academic environment, and a decrease in prices have 

increased the interest in sensors. Sensor-based systems have spread rapidly to all areas 

of daily life, especially in industrial areas. Massive amounts of raw sensor data from 

sensor-based systems, the area of use of which has increased considerably, pose a 

fundamentally new set of research challenges, including their structuring, sharing, and 

management in a common framework. Although there are many academic studies on 

the integration of sensor data between different sensor-based systems, these studies 

focused on the integration of the data as syntax rather than semantic integration. 

 

Nowadays, the semantic sensor web approach, which enables us to enrich the 

meaning of sensor data in order to provide more advanced access to sensor data and 

add annotations, has been seen by some researchers as a critical technology in solving 

these problems. The grand goal of this thesis is to provide a standard data model for 

heterogeneous sensor data from different platforms by extending the ontology of 

semantic sensor networks. The proposed system was tested using 8 indoor parameters 

collected in the Application and Research Center and Intensive Care Unit within Abant 

Izzet Baysal University. Sensor data collected from selected use-cases were added to 

the proposed framework and an RDF data set was created. Classic machine learning 

algorithms have been implemented on the RDF data set created and compared from 

different angles. 

 

Keywords: Semantic sensor network, ontology modeling, heterogeneous sensor data, 

machine learning, stream data, real-time monitoring, data mining. 
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ONTOLOJİK SENSÖR VERİLERİ ÜZERİNE TÜRKİYE İÇİN AKILLI 

YÖNETİM SİSTEMİ OLUŞTURMA 

 

ÖZ 

Son yıllarda, sensorların her sistemde kullanılabilecek kadar küçülmeleri, akademik 

ortamdaki olumlu gelişmeler ve fiyatların düşmesi sonucu sensorlara duyulan ilgiyi 

arttırmıştır. Sensor tabanlı sistemler Endüstriyel alanlar başta olmak üzere günlük 

yaşamın her alanına hızla yayılmıştır. Kullanım alanı önemli ölçüde artan sensor 

tabanlı sistemlerden elde edilen çok fazla miktarda ham sensor verisi, ortak bir 

çerçevede yapılandırılması, paylaşılması ve yönetilmesi de dahil olmak üzere temelde 

yeni bir dizi araştırma zorlukları ortaya çıkarmaktadır. Sensor verilerinin farklı 

algılayıcı tabanlı sistemler arasında entegrasyonu konusunda bugüne kadar pek çok 

akademik çalışma bulunsa da bu çalışmalar genel olarak verilerin anlamsal 

entegrasyonu yerine sözdizimi olarak entegrasyonuna odaklanmıştır. 

 

Günümüzde, sensor verilerine daha gelişmiş erişim sağlamak ve ek açıklamalar 

eklemek için sensor verilerinin anlamını zenginleştirmemizi sağlayan anlamsal sensor 

web yaklaşımı, bazı araştırmacılar tarafından bu sorunların çözümünde kritik bir 

teknoloji olarak görülmüştür. Bu tezin en büyük amacı anlamsal sensor ontolojisini 

genişleterek farklı platformlardan gelen heterojen sensor verileri için standart bir veri 

modeli sağlamaktır. Önerilen sistem Abant İzzet Baysal Üniversitesi bünyesinde 

bulunan Uygulama Merkezi ve Yoğun Bakım Ünitesinde toplanan sensor verileri ile 

test edilmiştir. Seçilen kullanım durumlarında toplanan sensor verileri önerilen çatıya 

eklenmiş ve RDF veri seti oluşturulmuştur. Oluşturulan RDF veri seti üzerinde klasik 

makine öğrenmesi algoritmaları entegre edilmiş ve farklı açılardan karşılaştırılmıştır. 

 

Anahtar kelimeler: Anlamsal sensor ağı, ontoloji modelleme, heterojen sensor 

verileri, makine öğrenmesi, akış verileri, gerçek zamanlı izleme, veri madenciliği. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Overview 

 

Wireless Sensor Networks (WSNs) are self-configurable systems to sensing 

phenomena in their deployment environment and to transmit data collected from 

different levels of a network to a point where data can be processed and analyzed 

(Radhika & Rangarajan, 2019).  The general purpose of these networks is to observe 

the environment by sensing mechanical, thermal, biological, chemical, optical, and 

other phonemes in the real-world (Hussain, Cebi, & Shah, 2008). WSN's have been 

integrated into many applications since emerging and have become indispensable parts 

of many systems used in the industry (Tubaishat & Madria, 2003).  

 

These networks were used in restricted areas in long years, such as surveillance and 

detection of nuclear, biological, and chemical attacks in the military, tracking of 

vehicles in the logistics area, due to some restrictions and their prices. Besides, they 

have been used partially in dangerous and inaccessible areas such as wildlife 

monitoring, volcanic eruption surveillance, etc.  

 

WSNs have gained great more attention thanks to the developing wireless 

communication technology, the getting more cheapness the price of microprocessors, 

developments in energy supply systems, and sensor sizes becoming ideal for almost 

any application for several decades. They became more attracted in academia and 

industrial areas, due to their widespread nature and their wide deployment especially 

in the IoT, healthcare application, and other emerging fields (Karim & Zeadally, 2016). 

 

1.2 Problem Definition 

 

WSNs provide many advantages over traditional methods in terms of self-

organization, fast transmission, flexibility, and secure data transmission. The ability to 

respond quickly to real-time events with action plans is one of the strengths of these 
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networks (Gungor, Hancke, & Member, 2009). However, the WSN study field has 

some constraints and problems, such as security, effective routing protocols, energy 

consumption, limited lifespan, and equipment costs. Moreover, one biggest challenge 

of WSN is that they are able to collect huge amounts of raw sensor data where they 

are deployed. 

 

The raw data obtained from the sensors are frequently used in informatics and 

industrial fields. Sensor data is the output of a device that detects and responds to 

various phonemes in its physical environment. Generally, this output is used to provide 

information or provide input to another system. The use of sensors in many areas in 

our daily life has caused an exponential increase in the data obtained from the sensors. 

Such an excessive increase in sensor data makes it difficult to store and interpret the 

data (Aktaş, Milli, Lakestani, & Milli, 2020). Also, the lack of neither syntactic nor 

semantic integrity between these sensor data limits their sharing and reusability 

(Henson, Neuhaus, & Sheth, 2009). These inabilities can cause some problems with 

interoperability between disparate sensor networks that may have subtle variations in 

their sensing methods. To address these issues, the studies of the representation of 

sensor data, standardization of sensor data, and storage of sensor data have gained 

speed in recent years worldwide. 

 

In this field, how to stored and interpreted when required this raw data collected by 

sensor nodes is one of the biggest problems to be solved in academia in recent years. 

Moreover, these systems also suffer from problems caused by the Internet 

environment, since these systems have recently become part of the Internet and 

information technologies with IoT studies. Sensors and the WSNs to which they are 

part are generally application-specific and cannot share sensor data with other 

applications, because, data from sensor networks with different operating principles 

are heterogeneous by their nature. Besides, since they are not reusable, they become 

unnecessary data after a certain time. The lack of specific standards of these raw sensor 

data makes it difficult to manage them. 
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The fact that the data received from the sensing networks are such heterogeneous 

and that they do not have a certain standard makes it difficult, to interpret and makes 

it impossible to reuse. Nowadays, some researchers state that the solution to this 

problem is the collation of the data associated with semantic web technologies 

(Barnaghi & Presser, 2010; Janowicz, Bröring, Stasch, & Everding, 2010; Mansour, 

Chbeir, & Arnould, 2019).  The common point of their studies is that for the raw sensor 

data to be application-independent, required the meaning of the data is enriched to 

form a meaning pattern between each other. Therefore, a coherent infrastructure is 

needed to handle sensors of belong to different systems in an interoperable, platform-

independent, and uniform way  (Bröring et al., 2011). The SSW concept has been 

introduced to share, find, and access sensors and data in different applications. 

 

Another common point of these studies that are given above is that data cannot be 

reused due to the lack of a certain standard among data collection applications.  To 

overcome this problem, sensor data need specific standardization. There are two sensor 

data representation standards commonly used by researchers in the literature. These 

standards are the SWE developed by the Open Geospatial Consortium (OGC) 

(Percivall, Reed, & Davidson, 2007) and the Semantic Sensor Network (SSN) 

developed by the World Wide Web Consortium (W3C) (Compton et al., 2011). 

 

1.3 Objectives of This Thesis and Contribution to Literature 

 

The proposed Lightweight Ontological Framework for Heterogeneous Sensor data 

(OF4HeS:Lite) includes multiple objectives and scopes. These objectives may be 

separated into two categories as general and specific objectives. The objectives and 

scope of OF4HeS:Lite are as follows; 

 

1.3.1 General Objectives 

 

OF4HeS:Lite's main goal, is creating a sample ontology that has got a standard data 

model, using existing connections (classes, object properties, data properties, etc.) 

between environmental parameters (Temperature, Humidity, CO2, TVOC, PM2.5, 

PM10, CO, Light Level) and the SSN common data framework. Other objectives are 
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gains related to the collection of data using WSNs, ontological representation of data, 

and interpretation of them.  These objectives are related to data science, data mining, 

machine learning, wireless communication, electromagnetic systems, and embedded 

systems. General achievements and outcomes expected at the end of this study from 

this data model are given following as items. 

i. Since a common data model will be created for sensor data, heterogeneous 

sensor data collected from different systems would be managed on the same 

platform. 

ii. The enormous amount of data from the sensors will be made more meaningful. 

Through this, the sustainability of sensor-based systems will be increased. 

iii. Machine learning algorithms are more successful when structural data are given 

as input. Since proposed sensor ontology is based on a data model, when the 

ontological representation of sensor data is integrated into proactive systems that 

use machine learning algorithms, more meaningful inferences will be able to 

make. 

iv. Since the sensor data is encoded with languages such as RDF and OWL, machine 

to machine (M2M) communication will be provided. 

v. The proposed OF4HeS:Lite is a low-level sensor ontology. It is thought that 

OF4HeS:Lite will guide mid-level and high-level ontologies planned to be done 

next. 

vi. To ensure that the collected sensor data is shared on the internet in appropriate 

formats such as CVS, SQL to enable it to be used by other researchers. 

 

1.3.2 Specific Objectives 

 

The specific objectives of OF4HeS:Lite includes the use-case environments where 

the proposed ontology is implemented. The proposed sensor ontology has been 

implemented on two different platforms to prove that sensor data in many different 

environments can be managed from a common system. The real-world use cases 

selected for this study are (i) Scientific research laboratories and (ii) Medical intensive 

care unit. Specific objectives and outcomes in terms of the use-case context expected 

at the end of this study from this data model are given following. 
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1.3.2.1 Specific Objectives in The Laboratory Environment 

 

Bolu Abant Izzet Baysal University (BAIBU), Scientific Industrial Technological 

Application and Research Center (SITARC) has been chosen as the first use case for 

the proposed sensor ontology to be implemented.  MALDI-TOF, AoxMercury, and 

Chromatography laboratories actively used in SITARC were selected as the 

measurement environment. In these laboratories, microorganism identification, 

proteomics analysis, bacterial count, fatty acid analysis, determination of anion-cation, 

total halogen determination, solid-phase extraction, etc. analyses are frequently 

performed. 

 

In this case study, eight parameters in these laboratories were measured using five 

sensors. Keeping these parameters at the proper levels is extremely important for both 

the analysis to give healthy results. It is also important in terms of the health of the 

staff performing the analysis. The parameters of the laboratory environment previously 

obtained by passive sampling will be monitored in real-time with this proposed study. 

Following benefits will be ensured with this real-time monitoring; 

 

i. When the parameters affected the result of laboratory analysis reach misleading 

levels, and reach unhealthy levels for the analyst, it will be detected, and 

appropriate action plans will be realized. 

ii. As this real-time system replaces passive sampling, time, labor, and cost will be 

saved. 

iii. Moreover, while the increase of some parameters is positive for human health, 

it affects the analysis results negatively, or vice-versa. Therefore, monitoring of 

laboratory environment parameters becomes more complicated. Thanks to the 

ontological rules created in OF4HeS:Lite, these complex situations are planned 

to be overcome. 
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1.3.2.2 Specific Objectives in The Intensive Care Unit 

 

BAIBU Medical School Hospital Intensive Care Unit (MICU) has been chosen as 

the second use case for the proposed sensor ontology to be implemented. The proposed 

system has been established and evaluated in BAIBU MICU as a real-time surveillance 

system. Following benefits will be ensured with this real-time surveillance system; 

 

iv. Providing real-time tracking of IAQ parameters in critical environments such as 

hospitals, and intensive care units. 

v. To ensure that the relevant personnel is automatically informed when the air 

quality level of MICU decreases. 

vi. Facilitating the interpretation of sensor data by hospital staff using data 

visualization software tools. 

vii. To increase the awareness of hospital administrators about the importance of 

their investments in improving the politics of indoor air quality management 

systems. 

viii. To establish a reliable, low cost, controllable, sustainable, computer-based 

indoor air quality management system prototype for hospital administrators. 

 

1.4 Thesis Organization 

 

This chapter, the overview, problem definition, and objectives of the thesis and the 

contribution to the field are stated. The general aim of this section presents a summary 

of exactly why this work was done and the motivation of the thesis. The rest of the 

thesis is given in the following paragraphs. 

 

General information about three important areas used in this study is given in 

Chapter 2 of this thesis. These areas are WSNs, Semantic web technologies, and 

machine learning. This section aims to conduct a detailed examination of these 

academic fields, which have been researched, discussed and subject to this thesis for a 

few last decades. 
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Chapter 3 of this thesis presents a literature survey on WSNs and their challenges, 

SSN, sensor ontology, and machine learning-based prediction algorithms. In addition 

to this aim, this section discusses how other researchers represent sensor data with SW 

and ontologies, the motivation source of this study. 

 

The methods and materials are explained in Chapter 4 of this thesis. This chapter 

includes the following topics: (i) Sensor selections used to collect data, (ii) Creation 

of node designs, (iii) Ontology framework used for modeling proposed sensor 

ontology, (iv) Development environments selection used in the study, (v) Selection of 

the triple store for proposed sensor ontology individuals and triples. 

 

Chapter 5 of the thesis presents, how the proposed sensor ontology is applied to 

real-world usage situations. This chapter includes the following topics: (i) Introducing 

the use-case environments where the study will be implemented, (ii) Deployment of 

sensor nodes, (iii) Gathering of data, the creation of appropriate datasets. The main 

purpose of this section is to clearly show how the proposed sensor ontology is 

implemented in real-world use cases. 

 

In Chapter 6 of the thesis, the comparison of the results of ML methods performed 

on the created data sets and the detection of the most appropriate algorithm on sensor 

ontology data from a variety of perspectives is explained in detail. 

 

Finally, conclusions and discussion of the findings obtained in previous chapters 

are presented in Chapter 7. Also, this chapter contains future directions of the thesis, 

recommendations for more efficient sensor ontology in after studies. 
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CHAPTER TWO 

BACKGROUND 

 

2.1 Overview 

 

In this chapter, the topics that will prepare the infrastructure for the proposed study 

will be discussed in detail. Firstly WSNs, their application areas of them, and their 

many issues will be handled. In addition, the place of SWTs and ontologies, among 

nowadays technologies, the final point that they come and their advantages will be 

presented. Finally, machine learning methods and approaches that would be 

considered to be used on the meaningful sensor data will be discussed to implement 

an effective proactive system. 

 

2.2 Wireless Sensor Networks (WSNs) 

 

WSNs are Micro-Electro-Mechanical Systems (MEMS) that are distributed to any 

medium for a specific purpose, are in constant communication with each other, can 

detect and measure the environment in which they are located. (Geylani, 2018). The 

concept of WSNs is a technology that first appeared in the 1980s and started to become 

very popular with the developments in wireless communication, usage areas of them 

have become quite widespread since they come into first use (Wang, 2010). 

 

Generally, WSNs can contain hundreds or thousands of sensor nodes.  Each sensor 

node in the WSN is capable of transmitting data to each other through the base station 

or Gateway Node and sends the data they collect directly or indirectly (hopping) to the 

collector center. (Ceyhan & Sağiroğlu, 2013). The sensor nodes may be wirelessly 

deployed randomized or in a certain order, into the environment in which they will 

collect the data. In a nutshell, WSNs consist of low-power, low-cost, and 

multifunctional sensor nodes with limited microprocessors and memory capacities, 

which can communicate over a short distance wireless environment (Sezer, Dogdu, & 

Ozbayoglu, 2018). 

. 
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2.2.1 Basic Components of Wireless Sensor Networks 

 

Sensor nodes in WSNs generally have a processing unit that manages the node, a 

communication unit that connects them to the network, and enables them to 

communicate with other nodes, a power unit that feeds the nodes, and different sensors 

according to the desired parameter in the environment  (Akyildiz, Su, 

Sankarasubramaniam, & Cayirci, 2002). In some applications, it can be added to units 

such as a power generator to regenerate the power unit, external memory when more 

memory is needed, and an actuation unit when the sensor node is asked to perform an 

action. The basic components of the nodes are given in Figure 2.1. 

 

 

Figure 2.1 The main components of the sensor nodes 

 

Today, WSNs have been integrated a wide variety of different implementation 

fields for existing and possible applications, thanks to their reliability, self-regulation, 

flexibility, and ease of installation (Zhao, Guibas, & Guibas, 2004).  However, the use 

of WSN continues to become widespread day by day due to the fact that they do not 

want any infrastructure in the environments where they are installed before 

installation, they can operate smoothly after installation, do not require additional 

maintenance have a wide range of application areas. (Cheffena, 2012). 

 



 

 

10 

 

2.2.2 Challenges of WSNs 

 

Although WSNs are technologies that are used and needed in all areas of daily life, 

today they have still some problems that await addressing. Many researchers are 

looking for different solutions to these restrictions in order to provide better service 

for WSNs. Within the scope of this thesis, as explained in Chapter 1 Introduction, some 

solutions are offered on how to make meaning of and interpret a lot of data that is one 

of these restrictions. Some of the restrictions that limit WSNs' providing better service 

and sometimes cause critical problems are described as follows. 

 

2.2.2.1 Safety and Privacy 

 

As with all information technologies, the security of society and people should 

always be the number one priority, in WSNs. They are frequently used in important 

areas that require national security, such as the military and civil environment traffic 

on highways, automation at the factory production stage, and environmental 

monitoring in agriculture. In WSNs, due to the nature of the communication, there is 

the possibility of intrusion and modification of data packets (Özdağ, 2016). Possible 

leakage of information in the WSN can lead to undesirable consequences, such as 

improper use or misuse of information. Therefore, it is imperative to provide security 

in this area so that the network can safely route data in the network to avoid these 

threats (Rani & Kumar, 2017). 

 

2.2.2.2 Harsh Environmental Conditions 

 

WSNs are used in harsh environments such as underwater, underground, etc. to 

getting useful raw sensor information. Generally, they are deployed to remote areas 

where there is little human surveillance. Since WSN nodes use wireless mode for 

communication, they are relatively more resistant to wired systems for remote and 

harsh environments (Hu, Wang, & Wan, 2013). However, nodes are ultimately 

electronic materials and are affected by harsh environmental conditions such as rain, 

wind, temperature. Depending on where they are located, they can sometimes be the 

target of wild animals and insects. Therefore, the sensor nodes that make up the WSNs, 
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and each hardware of the node must have unique features that ensure it withstands 

adverse conditions. 

 

2.2.2.3 Limited Sources 

 

Sensor nodes are small devices that they have only a small amount of memory and 

storage space to process and execute code on them. (Othman & Maga, 2018). Many 

microprocessors used in sensor nodes today have insufficient processing capacities to 

perform complex operations. Considering these limitations, the embedded system 

software that will collect data, transmit it to a gateway, or make the necessary decision 

must be effective and very small. However, in recent sensor-based studies, it is seen 

that the responsibilities and duties of the sensor nodes have increased. In real-time 

applications, in order to react more quickly to a negative scenario, sensor nodes can be 

expected to perform complex analysis and make decisions. In these cases, it may be 

necessary to add external memory and external space to increase the capacity of the 

sensor nodes. (Engel & Koch, 2016; Salle, Idiart, & Villavicencio, 2016).  

 

2.2.2.4 Energy Consumption and Limited Life Span 

 

One of the biggest problems with WSNs is that energy resources are very limited. 

Due to the lack of relevant infrastructure in the environments in which they are located, 

in most cases, maintenance of the nodes in the WSN and energy regeneration processes 

are important problems for the network. One of the most important factors that 

determine the life span of the network in WSNs is energy consumption. Thanks to the 

efficient use of the energies of the nodes, the life of the network can be extended, 

enabling them to perform their duties continuously (Aliyev, 2019). 

 

2.2.2.5 Huge Amount of Raw Sensor Data 

 

The main purpose of sensor nodes is to collect data. The sensors periodically detect, 

process, and transmit data from the surrounding environment to the base station or 

gateway. Depending on the number of nodes in a WSN and the number of various 

sensors integrated on each node, incredible sizes of data can be generated from a single 
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sensor network in a short time (Boubiche, Boubiche, & Toral-cruz, 2018).  In what 

common format and how to store this data produced by the sensor nodes is the main 

subject of this thesis study. The sensor data obtained up to now in previous studies 

included application-specific uses. The integration of them with each other was 

impossible due to the lack of a common framework between the data where different 

sensor-based applications were collected. In this thesis, how to create a common 

framework for raw sensor data in different platforms, how to solve this problem is 

discussed in detail. 

 

Apart from these problems and limitations described above, WSN has other 

problems. These can be listed as follows; Time Synchronization Issues (Ratna & 

Hansdah, 2015), Effective Deployment Issues (Boubrima, Bechkit, & Rivano, 2017), 

Robustness Issues (T. Qiu, Member, Zhao, & Member, 2017), Calibration Issues ( 

Zion & Messer, 2014), Quality of Service Issues (S. Kaur & Mir, 2015), Self-

Management Issues (Das, Misra, Member, Wolfinger, & Obaidat, 2016; Elsayed, 

Elhoseny, Sabbeh, & Riad, 2018), Fault Tolerance Issues (Chouikhi, El, Ghamri-

doudane, & Azouz, 2015; M. Kaur & Garg, 2016), and etc. (Sharma, Bansal, & Bansal, 

2013). While these problems await urgent and effective solutions, they continue to be 

handled in different ways in different studies. 

 

2.3 Semantic Web Technologies and Ontologies 

 

In the last ten years, the web has gained great importance in people's lives with the 

ability to access it from every device from every location and to transfer the vital 

processes of daily life such as finance, marketing, and education to this platform. Data 

on the web has increased day by day due to the fact that the web has such a place in 

daily life. This extraordinary increase has made it difficult to reach the right 

information on the web using classical methods. In all this information confusion, 

machines have been only capable of delivering web content, and they had could not 

understand, interpret, or make logical inferences about them. 
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To address these challenges and to present the solution, the Semantic Web concept 

was raised by Tim Berners-Lee and his team in the late 1990s.  According to Tim 

Berners-Lee's, the SW is an extension of existing web technology where information 

has a well-defined meaning (Berners-lee, Hendler, & Lassila, 2001). Another 

definition of SW is web content that has been described and associated in various ways 

to determine meaning and conditions by adhering to defined grammar and language 

structures (Hebeler, Fisher, Blace, & Perez-Lopez, 2009). 

 

The concept of SW is not a coding language or program, but a layout. It is based on 

the preparation of data in certain formats to enable them to easily understand and 

interpret any data collection on their machines. In other words, the semantic web 

constructs the metadata of information in web content. SW technologies enable the 

classification of dense and irregular data existing in many fields such as marketing, 

distance education, health, finance to become understandable by the computer (Altay 

& Ulaş, 2018). 

 

2.3.1 Semantic Web Standards 

 

Today, most information and documents in the web environment contain a unique 

structure. Only specialized machines can understand and interpret this information set. 

This prevents communication between machines as a whole. In order to overcome all 

these problems and enable the machine to machine communication,  World Wide Web 

Consortium (W3C) creates a cascaded structure in semantic network technology and 

presents a separate data infrastructure at each step, ensuring that the data at each step 

can be read by different machines (Övünç, 2004). Thus, machines can extract the same 

information from the data read in different forms and styles. Technologies such as 

XML, RDF, SPARQL, OWL are used in the creation of Semantic Webs. The layered 

architectural structure created by the W3C organization, chaired by Tim Berners Lee, 

in order to develop a standard in semantic network studies worldwide is presented in 

Figure 2.2. 
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Today, concrete studies on the layers of logic, evidence, and trust at the top have 

only begun to gain momentum. To summarize the duties of these layers that are related 

to each other; 

 

(i) In the logic layer, some special rules are created for the relationships between 

ontologies (Berendt, Hotho, & Stumme, 2002). 

(ii) In the proof layer, the rules created in the logic layer are proved to be correct. 

(iii) In the trust layer, the results of the rules run in the evidence section are evaluated 

and the reliability of these results is discussed. 

 

 

Figure 2.2 Semantic Web Layers (Miller, 2001) 

 

If the rules established in the logic layer based on the relationships between the 

concepts are reliable, more consistent results can be obtained than in a classical search. 

However, when the rules in the logic layer are not reliable, it is possible to list results 

that are not relevant. The relationship in all semantic web layers is the same as in these 

3 layers. In the creation of a useful and robust information frame of a domain, the 

consistency of each step within itself is only possible with the proper preparation and 

presentation of the data in the previous step. 
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2.3.1.1 Universal Resource Identifier (URI) 

 

URI whose standards are determined by W3C is the character set that enables access 

to a resource (document, image, table, file, etc.) in the internet environment. It was 

first created and used by Tim Berners Lee in 1994 using the UNIX directory structure. 

URIs consist of the URL containing the address of the resource defined in another 

location and The Uniform Resource Name (URN) given to permanent objects in this 

location. 

 

2.3.1.2 Extensible Markup Language (XML) 

 

XML was developed by W3C because of, especially deficiencies in the common 

representation of data, data transportation, and accessing data, of Hyper Text Modeling 

Language (HTML) technology. The grand goal in the development of XML is to create 

web content that people and machines can understand. With this feature, besides 

storing data, it also serves as an intermediate format for data exchange between 

different systems (Balmin & Papakonstantinou, 2005). 

 

2.3.1.3 Resource Description Framework (RDF) 

 

RDF is a data markup language that enables data to be defined, structured, and 

presented. RDF is built on existing XML and URI technologies described in previous 

chapters. RDF is a family of W3C specifications and it is also used in knowledge 

management applications. (Punnoose, Crainiceanu, & Rapp, 2012).  

 

A standard RDF file consists of resources, properties, and values components. It 

expresses an entity concept that is evaluated on resources. Properties are a type of 

attribute belonging to the resource, while values represent the value of the resource 

property. Resource and Properties are generally expected to be a URL, while Values 

can be in a URL or classic data type such as integer, string date. The example of RDF 

triple as the graph model is given in Figure 2.3. 
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Figure 2.3 Graphical representation of personal information in RDF format 

 

2.3.1.4 Ontologies 

 

Ontology is the main subject area of philosophy that has been the subject of 

existence until the 1990s. However, in the 1990s, it has become a name that is 

frequently heard as the backbone of SW technologies in the informatics world. 

Ontology is a set of words that enables the information of a domain to be coded in a 

meaningful way, to share and to be used by machines.  

 

Many definitions of ontology have been made and accepted since its emergence as 

an informatics term. In terms of the definition of ontology, the most accepted and used 

definitions in the literature are given below in chronological order. 

• The ontology includes the basic terms and concepts that make up the vocabulary of 

a subject area and the rules for combining the terms and the relationships to be 

defined in order to expand the word string (Neches et al., 1991). 

• According to Gruber, ontology is a clear representation of conceptualization. 

(Gruber, 1995). 

• According to Borst, ontologies are common definitions of a shared 

conceptualization (Borst, 1997). 
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• Ontologies are a new generation technology that provides a common understanding 

of shared formal conceptualizations of certain domains, range, issues that can be 

communicated between people and application systems (Decker et al., 2000) 

• Ontology can be used to describe and specify spatial data semantically and the 

machine in an understandable way (Wang & Kong, 2007). 

• Ontology is the skeleton of knowledge about a particular field (Powel & Hopkins, 

2015). 

 

Since the RDF and RDFS languages are inadequate in some areas to describe 

ontologies, which are the heart of the semantic web, new high-level languages have 

been developed by improving the capabilities of these languages (Ekinci Eser, 2006). 

Ontologies are defined by specialized languages such as RDFS, DAML + OIL, OWL. 

These languages are used to define and diversify ontologies. With ontology languages, 

information is designed not only for users to understand but also for computers to 

process by making sense. 

 

2.3.1.5 Simple Protocol and RDF Query Language (SPARQL) 

 

RDF triples are the basic structure for accessing web content created in accordance 

with RDF standards. If users have an RDF resource, they can access other RDF 

resources using their features. Because RDF triplets establish relationships between 

resources. In this way, users can access the information they need as soon as possible. 

However, accessing information among a huge stack of data on the web wastes both 

time and labor. For this reason, many RDF or OWL query languages have been 

developed to examine or query web content with RDF standards. These are RDQL, 

Squish, Versa, SPARQL, etc. The query language used for querying RDF structures 

very similar to the SQL language. It is also a data access protocol for the semantic 

web. It helps to make inferences by making inquiries on ontologies. 

 

SPARQL is used to extract the RDF graph from the endpoint. Just as SQL provides 

a standard query language in relational database systems, SPARQL provides a 

standardized query language for RDF charts or resources (Segaran, Evans, & Taylor, 
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2009). SELECT is the query type most commonly used by data consumers or 

developers in SPARQL query language. There are ASK, DESCRIBE, and 

CONSTRUCT query types besides the SELECT query type. 

 

2.4 Data Mining Methods and Machine Learning Approaches 

 

Today, advances in the collection and storage of information have led to an 

enormous growth of digital data. The continuation of electronic and digitalization 

efforts clearly shows that the rate of data increase in the digital environment will 

continue in the future. The fact that electronification efforts are being implemented 

almost every day in various fields has caused a great increase in the type of data 

available in digital media. This variety of data covers many areas such as personal 

data, health data, bank data, stock market data, sensor data, social network data, e-mail 

data, electronic marketing data, meteorology data, training course content, security 

data of companies and etc. 

 

As the variety and volume of the stored data increased, it became difficult to infer 

meaningful conclusions from the data. In time, reaching the information that has the 

potential to be useful when it occurs in the data has become a problem that classical 

methods cannot overcome. As long as this data collected does not turn into meaningful 

information, it is worthless. Information contained in bulk in computer environments 

can be transformed into meaningful information by processing with data mining 

methods (Yılmaz, 2009). 

 

Converting data into meaningful information is a process. This is the process of 

obtaining previously unknown but useful information and patterns from large volumes 

of electronic data. Data mining has created a new data analysis method by bringing 

together information technologies, statistics, machine learning, database technologies, 

and other related disciplines (Gemici, 2012). Data mining methods include various 

technical approaches such as summarizing data, clustering, analysis of changes, 

detection of deviations (Vahaplar & İnceoğlu, 2001).  
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For applications that have to use large data heaps, integrating data management 

methods into the application has become a necessity rather than optional. The subject 

area of data mining, which has been studied intensively since its emergence, has been 

defined similarly or differently by many researchers and scientists. In the literature 

widely accepted and many similar definitions of data mining are listed below. 

 

• The discovery of previously unknown and understandable and useful patterns 

of particular importance from large data sets (Büchner, Anand, & Hughes, 2014) 

• Data mining is to obtain information from the data set to be used and to reveal 

it to be used in an understandable structure (Ganesh, 2002). 

• Data mining is the process of revealing hidden information in data stacks 

consisting of many situations and variables and transforming data into decision 

support-based information by using statistical analysis techniques and artificial 

intelligence techniques together (Yılmaz, 2009). 

• The purpose of data mining is to create decision-making models for predicting 

future behavior based on the analysis of past activities (Koyuncugil & Özgülba, 2009). 

• Data mining can also be defined as the finding of information in databases 

(Knowledge-Discovery in Databases) using interdisciplinary techniques of computer 

science (Bı̇lgı̇n & Acun, 2016). 

• Data mining is to extract information from large volumes of data. In other 

words, data mining is the science of discovering unknown patterns, valuable structures, 

and interesting relationships between large and complex data in databases (Coenen, 

2011). 

 

2.4.1 Applications Areas of Data Mining  

 

In today's business life, data mining applications are frequently used in finance, 

marketing management, education, engineering, industry, health, and many 

engineering fields (Ertugrul, Organ, & Savli, 2013). Data Mining (DM) can be easily 

applied in all areas where recording data is valuable for any system. The use of DM in 

areas that allow the creation of large data warehouses within the application makes a 

great contribution to getting more accurate results. More examples will make the 
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information extracted more meaningful. Data mining application areas are presented 

in Figure 2.4. 

 

Figure 2.4 Some application areas where data mining approaches are used most 

 

2.4.2 Data Mining Process 

 

According to the definitions in the literature, DM is the process of obtaining 

meaningful information by using different methods of meaningless large data heaps. 

This process consists of steps independent of each other. Achieving successful results 

is directly related to the success of each step that constitutes this process. 

 

 

Figure 2.5 Presentation of Data Mining basic operation steps 
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Completion or failure of any of these steps is likely to negatively affect the outcome 

of the proposed DM process. These process steps are shown in Figure 2.5. DM 

application steps consist of mini processes, each of which has different methods. A 

proposed potential data modeling implementation process represents a combination of 

methods at these steps. There are numerous methods in the literature that can be 

applied at every step. For this reason, the data mining process to be applied for a dataset 

or case study requires serious work.  These steps are explained in detail below. 

 

2.4.2.1 Defining the Problem 

 

The purpose of the work to be done is the stage in which its scope is determined. In 

other words, it can be called the initial starting point or planning stage of the project. 

The work to be done should be presented in general terms. The data set and parameters 

to be used must be determined. This proposed study is based on 8 different attributes 

including laboratory environment parameters. In this context, the goals of the proposed 

project is to establish a model that will ensure that measures are taken by predicting 

the analysis results and potential situations. 

 

 

2.4.2.2 Collection of Data and Definition of Data Set 

 

This stage covers the determination and collection of parameters suitable for the 

purpose of the proposed modeling. How long this collection process will take and at 

what intervals the data collection will be done should be evaluated within this scope. 

The data may be data collected by other researchers before, or they can be collected 

by the researchers who conducted the study. In the proposed study, 2 different 

environments for which measurements were planned were selected and these 8 

parameters were measured with 5 different sensors. 

 

2.4.2.3 Data Selection 

 

This stage is the step of selecting the most suitable data for the purpose from the 

database. While this step is being executed, it includes removing any attributes that 
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seem unsuitable or worthless from their dataset. It is vital that unnecessary columns 

are not included in the data set, especially in studies that receive their data from other 

researchers. In this study, since the data collection process is a process planned within 

the scope of the project, the parameters and attributes required during modeling were 

collected and no action was required in this step.  

 

2.4.2.4 Preparation of Data (Data Pre-processing) 

 

This section is also called data preprocessing in many sources in the literature. The 

main purpose of data preprocessing is to increase the reliability of the data. Data 

preparation is one of the most critical stages before creating a model. Because how a 

healthy model is created depends on the data being included in the system in a ready 

and clean way. The data preparation process is a process consisting of several steps.  

 

2.4.2.4.1 Formatting the Dataset (Arranging Dataset). In general, most of the 

work done in the field of data mining is the work done by using intermediary programs 

such as RapidMiner, WEKA or by writing their own codes by developers. In both 

ways, it should be ensured that the data given to the system is in certain formats. 

Because these programs support and can handle certain formats. Otherwise, healthy 

results cannot be produced or no results can be produced. For example, the WEKA 

program supports .arff or .csv formats. Therefore, in order for modeling with WEKA, 

it should be ensured that the data set to be studied is in these formats. 

 

2.4.2.4.2 Cleaning the Data Set. Data obtained from different sources may not 

have the desired qualifications. It is important to delete or correct such data in order to 

get real results from the proposed model. Often confused with Outlier detection. In 

outlier detection, the data that may be in the data set but may surprise the model due 

to its very different value is eliminated, while In the Data cleaning stage, the data that 

cannot be in the data set due to the characteristics of the data set are cleaned. Data 

cleaning includes situations such as string type in any row in the data set due to some 

malfunctions in the system or the sensor measurement is outside the sensor range. 
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2.4.2.4.3 Data Integration. In data mining applications, a sufficient number of 

samples should be given as input to the system in order to guarantee healthy and 

consistent results from the model. However, sometimes similar data sets obtained from 

different sources can be combined because there are not enough samples in the data 

set to be worked on or in order to increase the accuracy of the system. As a result, 

although it will cause a slowdown in the performance of the system the more samples 

in the data set, the more likely it is to produce healthier results in the proposed model. 

In order to increase the accuracy of the model in this way, giving the maximum number 

of samples as possible despite an acceptable slowdown in the system performance 

provides many more beneficial results. 

 

2.4.2.4.4 Data Reduction. Sometimes the data may be too much for the proposed 

model to handle. Depending on the parameters given in tree structures such as Decision 

Tree, Random Forest (Maximum Deep, Number of Trees, etc.), having a large number 

of samples for a large number of attributes may reduce the model's output to 

unbearable times. This is not acceptable especially for systems that have to work in 

Real-Time. 

 

There are data reduction methods such as Data Cube, Dimension Reduction, 

Discrete, Sampling in the literature. If the data in the dataset consists of repetitive data 

in most places, one of the solutions is to reduce the data on a row basis to increase the 

performance of the system. In some sources, data reduction is called data 

summarization. The reason for this is that the average of data at certain time intervals 

(such as hourly, daily, and etc.) is entered into the data set as a single value. Although 

the minute data were collected in this proposed study, the hourly averages were added 

to the data set because the data were too repetitive. 

 

2.4.2.5   Transformed Data 

 

This stage is at least as important as the stage of preparing the data for the proposed 

model to reach the information that can be useful within the data stacks. Although the 

process of converting the data into formats that the proposed model can handle more 
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easily in the data preparation section, the data set is not ready for the full 

implementation of the model. In order for the data to be fully ready, it may be 

necessary to deal with the missing rows, eliminate some of the values that may affect 

the model too much, arrange the parameters in the data set the same range, and labeling 

the data according to certain criteria. 

 

2.4.2.5.1 Imputations. Datasets often contain null data due to errors from human 

or machine source. This data is called a missing value in literature. The missing value 

may negatively affect the proposed model depending on its density in the data set. 

Therefore, it is important to fill the missing values with a logical approach, especially 

if approaches that are sensitive to missing values such as Decision Tree and Random 

Forest are to be studied. 

 

In data mining, it is possible to solve the missing value problem with different 

approaches. One of the remedies is to fill in the missing values manually. However, if 

the Missing value is numerically excessive, filling it manually will cause time loss. 

Apart from that, deleting the missing values, accepting them as the average of that 

feature, or accepting zero is one of the most common missing value solutions. Many 

previous studies have shown that deleting or statistically filling missing values causes 

bias and negatively affects the result. 

 

Therefore, imputing data can significantly improve the quality of the data set  

(Yang, Cheng, & Chan, 2017). Recently, many studies have shown that solving 

missing values with classification approaches has positive effects on the result (Abidin, 

Ismail, & Emran, 2018; Deb & Liew, 2016) . In the proposed study, approximately 

90% of the data required to be collected over 45-days and 30-days periods were 

collected in two selected use-cases and recorded. The remaining approximately 10% 

could not be collected for reasons arising from human and devices (sensor, 

microprocessor, communication device, etc.). 
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2.4.2.5.2 Labeling. In classification and regression models, the values that make 

up the dataset are expected to have labels. This labeling process can be done manually 

as well as using some methods. Especially if the attributes to be used in modeling have 

distinct values that are accepted worldwide, it can be said that manual tagging instead 

of clustering methods makes the model results more consistent and meaningful. For 

example, in many studies around the world and according to the WHO, the hourly 

average of PM2.5. value is 25 ppm. It is clear that this value, which is accepted in the 

literature, is more understandable and useful than a different value that can result from 

clustering. 

 

In the proposed study, the reference values of the important parameters determining 

the laboratory air quality were determined by the WHO, EPA, ASHARE.  In this study, 

these reference values were used while classifying the data and labeling them. 

Labeling is an important step to train the model correctly. Therefore, the labeling must 

be done as a result of comprehensive research. Sloppy or incorrectly labeled data can 

negatively affect the result produced by the model (Zhu et al., 2007). 

   

2.4.2.5.3 Normalization. If the average of some parameters with their variants is 

too large or too small than the other parameters, and this great separation will have a 

greater effect on the others in the analysis steps and lower their roles to a significant 

value (Aydemir, 2017). The measuring range of each sensor used in this study is 

different. The measuring range is the total range that the instrument can measure under 

normal conditions. In the literature, there are normalization types such as Z Score 

Normalization, Min.-Max. Normalization, Ratio Transformation. 

 

Absolute distance measuring methods such as Euclidean Distance, and Minkowski 

Distance, include them into the calculation with equal importance, if properties are in 

the same range. When using such distance criteria, calculating the similarity between 

instances without any pre-processing on the data set causes the feature with a large 

variance to have a high effect on the result (Jain, & Murty, 1999). In other words, a 

feature with a large variance dominates the effect of other features on the result. This 

is called Feature Domination. 
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Moreover, feature class labels with high variance may not have a positive 

correlation with the data at the point, that is, it may not have the power to distinguish 

data on the basis of classes. In this case, the classification process will be completely 

wrong. To avoid Feature Domination, (i) all features are shifted to a certain interval.  

(ii) Similarity criteria that are not affected by the feature domination problem such as 

cosine similarity can be used. 

 

2.4.2.5.4 Outlier Detections. The outlier can be defined as any observation on the 

data set that is different from other observations in that data set (Barnett & Lewis, 

1994). In the literature, outlier detection approaches such as Probabilistic, Distance 

Based (Cosine and Euclidean Distance, etc.), algorithmic-based (Neighbor, Neural 

Networks, etc.) are available. Outliers in the data collected by WSN can generally be 

caused by sensor measurement error or some problems arising from data 

communication. Sometimes outliers can arise from human error. Both system-based 

and human-based errors cause the estimation to be biased. Therefore, analyzing the 

collected data and eliminating some inconsistent parts will increase the power of the 

prediction. 

 

2.4.2.6 Determining the Model 

 

Data mining models are examined under two main headings. These models are 

Predictive Models and Descriptive Models (Akpınar, 2000; Zhong & Zhou, 1999).  

These modeling approaches are used for different purposes by using different methods 

and algorithms. There are also models referred to as "Semi-Descriptive", these models 

emerge as a result of using Predictive and Descriptive models together (Aydemir, 

2018). In the modeling phase, it should be decided on what purpose an algorithm 

should be selected. Data mining models are given in Figure 2.6. 
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Figure 2.6 Commonly used data mining approaches 

 

2.4.2.6.1 Predictive Model. In the predictive model approach, new models are 

developed based on the data whose results are known. Using this developed model, 

the results of the new data or the results of similar data sets whose results are unknown 

are estimated. For example, classification approaches are used to detect an anomaly. 

Transactions made by a bank customer through the internet and mobile banking 

channels are recorded. According to the customer's past behavior, a new model is 

created. The customer's new transaction of web and mobile banks is compared with 

the model created. A decision is made by estimating whether this new course of action 

belongs to the customer. 

 

Classifying and regression models are the most widely used data mining techniques 

that are used in predicting the future based on existing data. The difference between 

these two methods is that the estimated dependent variable has a categorical or 

continuous value. Classifying and Regression methods are described below. 

 

Classifying Methods: The process of placing data into a pre-determined appropriate 

group according to its common features is called classification. In order to be placed 
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in the appropriate class, the data must have at least one common feature determined 

with other data in the class. Classification, one of the basic areas of data mining, is 

defined in (Harrington, 2012) as a sub-branch of informatics used in placing an 

unknown data piece into a known group. Classification, which is one of the prediction 

models of data mining, and clustering, which is one of the descriptive models, is 

sometimes confused. The most important feature that separates classification from 

clustering is that class tags are given as input to the system before. In other words, in 

order to establish the classification model, it is necessary to know the predetermined 

situations and the values that the variables take in these cases. The class created by 

these values is called training data. 

 

In classification problems, each element in the output space is called a class, and 

the algorithm that solves the classification problem is called a classifier (Camastra & 

Vinciarelli, 2015). Based on these definitions, a classification process is a process that 

enables us to reach the prediction class from the training class. 

 

The first step in this process is the training set is determined and analyzed. Each 

element in the training set consists of different attributes that contain a label. The most 

suitable model is found according to the distribution of the data in the data set. This 

developed model is evaluated using the test set. In this evaluation, the label attribute 

is estimated by using other attributes that the apple has. There should be two data sets 

to create a classifier model. These are the training set where the label attribute is 

specified and the test set where the label attributes are estimated. With the training set, 

the algorithm is trained and the model is created, the model is validated with test data. 

 

There are numerous classification methods in the literature. There are a variety of 

methods used for classification in data mining, such as NB Classifier, ANN, DT, SVM, 

k-NN algorithm. Apart from these, an artificial bee colony, which is suggested by 

inspired nature, is used in classification in heuristic algorithms such as genetic 

algorithms and ant colony.  
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Regression Methods: While classification algorithms are used to predict a 

categorical variable, regression analysis is used when estimating a continuous variable. 

For example, a classification model may be established for an insurance company to 

distinguish traffic insurance applications as safe and risky according to customer 

profiles. Regression models should be established in order to estimate the effect of a 

marketing firm's advertisements on television, newspaper, and radio on sales. 

 

While classification algorithms are used to predict a categorical variable, regression 

analysis is used when estimating a continuous variable. For example, a classification 

model may be established for an insurance company to distinguish traffic insurance 

applications as safe and risky according to customer profiles. However, regression 

models should be established in order to estimate the continuous effect of a marketing 

firm's advertisements on television, newspaper, and radio on sales.  

 

Regression Analysis is used to make predictions by applying formulas to existing 

data. The function is obtained from existing data using linear or logistic regression 

techniques. New data is used to make predictions by applying the existing function. In 

other words, this method is used to estimate other variables by using variables whose 

values are known. In regression terminology, the variable to be estimated is called the 

"dependent variable" and the variables used to predict the dependent variable are called 

the "independent variable" (Han, Pei, & Kamber, 2011). 

 

2.4.2.6.2 Descriptive Models. In the Descriptive approach, another modeling 

method, they reveal the hidden relationships and patterns between the data that make 

up the dataset. In other words, the patterns within the existing data that can be 

evaluated in decision making are defined. The most well-known methods in this 

modeling approach are clustering and association approaches. Customer profiles 

formed by a newly established company by evaluating the parameters that affect 

consumer purchasing preferences and proposing potential products to the customer 

using these profiles can be given as examples of clustering methods. 
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Likewise, an e-commerce site identifying the products purchased together, 

determining the shopping habits of the customers and using it to design the site in a 

way to encourage the customer to buy more products can be given as an example of 

the association approach. Descriptive modeling approaches that are most used in the 

literature are Clustering and Association Rule Mining Methods. These methods are 

explained below. 

 

Clustering Methods: Clustering is the process of dividing similar data into a 

heterogeneous data set into small groups.  While the similarity of the elements between 

different clusters is less, the similarity between the same cluster elements should be 

high. In other words, a cluster is a collection of data sets that are similar to the data in 

the group it is in, but not similar to the data in the other group. The main purpose of 

clustering methods is to obtain homogeneous groups with similar features from a 

heterogeneous data set. Thus, it may be more efficient to work with homogeneously 

distributed small group data rather than working with a large heterogeneous group of 

data. In Figure 2.7, dividing a dataset consisting of heterogeneous data into more than 

one homogeneous group is represented as a representation. 

 

When determining the set to which an element belongs, each record is compared 

with the existing sets and changes the descriptive value of the set to which it is assigned 

by assigning it to the set closest to it. The process is repeated until all records are 

optimally assigned to clusters. Therefore, clustering is a dynamic process. Unlike 

classification, the number of clusters that will result before clustering is uncertain. The 

number of clusters is determined by the characteristics of the data set. It does not 

require any prior knowledge about clusters before starting the clustering process.  
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Figure 2.7 Division of heterogeneous data set into homogeneous groups 

 

Clustering methods are used for many different purposes in various sectors such as 

statistics, chemistry, biology, sociology, machine learning, and marketing. In our daily 

life, clustering is used in many areas to make business processes more efficient. 

Classification of animals and plants, Classification of chemical elements and 

compounds, classification of vehicles, classification of houses according to certain 

characteristics are examples of clustering in daily life. Clustering methods are used for 

a data mining method in the informatics world, creating user profiles in social media 

sites, determining special marketing strategies in the e-commerce sector, and grouping 

documents on the internet. 

 

Association Rule Mining Methods: Association rules mining are the method used 

to discover patterns that define relationships, in a large data set. The association rules 

method, which is one of the first methods that come to mind when it comes to data 

mining approaches, was first introduced and used by Agrawal, Imielinski, and Swami 

in 1993 (Agrawal, Almaden, & Swami, 1993).  
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Figure 2.8 Association rules mining types 

 

These methods reveal the rules of association with certain probabilities. Association 

rules are an approach that supports future studies by analyzing past data and 

determining association behavior within these data. It is possible to evaluate the types 

of association rules in 4 different categories according to the rule dimension, the scope 

of application, the direction of the relationship, and other association rules. Commonly 

used association rules types are given in Figure 2.8. 

 

Although association analysis rules are used in many areas and applications, the 

most common usage area is market basket analysis. To give a concrete example of the 

association rules; It has been analyzed that 70% of the customers who buy bread and 

olives buy Mineral Water with these products. This analysis can be interpreted as that 

customers who buy these Bread and Olives have a high tendency to buy Mineral 

Water. Bread, Olive, and Mineral Water products must have been purchased together 

many times to detect such a union. Today, the fact that association methods are used 

so frequently in market basket analysis has caused the consumers to be known as 

Recommendation Systems, which offer products with higher purchasing potentials 

even though they do not need them. 
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CHAPTER THREE 

LITERATURE REVIEW  

 

Semantic web technologies were first used on sensor data by Avancha (2004). After 

this work by Avancha, the concepts of semantic unity and enrichment brought to the 

web world by the semantic network began to be used in sensor data. Since 2004, the 

concept of sensor ontology has become widespread day by day. Today, the concept of 

sensor ontology has become a key subject area for the understanding, interpretation, 

and reuse of sensor data, which has increased enormously with the diversification and 

increase of sensor-based automation systems. Moreover, semantic web technologies 

and ontologies suggest an appropriate approach to generate common words for sensor-

based systems and to ensure the interoperability of sensor data from different 

platforms. With the work done so far, it guarantees that semantic web technologies 

and ontologies will be widely used on sensor data in the future. 

 

Both the SWE and the SSN technologies for the definition of sensor data has the 

potential would be useful for possible disaster situations. Yang & Byun propose a 

semantic web-based framework to facilitate disaster management using distributed 

sensors (2020). In this project, to achieve higher efficiency in reasoning, the brain was 

inspired by the mechanisms behind synaptic plasticity. The proposed work focuses on 

the asynchronous spiking nature of sensors and extracts relevant temporal properties 

as seen in the processing of a neuron. In the other words, a scheme using spike-timing 

plasticity is proposed. As a result of their study, the main purpose of the developed 

STDP framework is to ensure the collection, sharing, access, use, and management of 

spatially organized data. Disaster response improves the judgment process by making 

all information available, accessible, and interoperable. The STDP system proposed in 

the study was tested and evaluated in a simulation scenario developed using 

MATLAB. The outputs of this project show that the proposed STDP framework can 

contribute to effective and efficient disaster management for time-constrained 

situations such as disasters, especially with regard to the timely implementation of 

action plans. 
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The fact that sensor networks gain great importance worldwide and are used in 

every application accordingly causes continuous observation data to be produced. 

Wang et al. (2018)  presented a sensor ontology based on SSN ontology to describe 

sensor data obtained from heterogeneous hydrological network resources.  In this 

study, the SSN framework is expanded by integrating time and space ontologies into 

the proposed sensor ontology.  Time ontology of W3C is used for temporal concepts 

and the GeoSparql ontology of OGC is used for spatial concepts. As the last step of 

the extension of SSN ontology, the classes of specific terms belonging to the field of 

hydrology were created and these classes were concretized and ontological reasoning 

rules were determined. Their work was evaluated as a real-world use case in sensor 

data collected in the Yangtze lake, located in the southeast region of Wuhan, China.  It 

has been verified that the study can recognize the various stages of flood events 

through semantic inquiry and knowledge acquisition experiments. Also, semantic 

queries are suggested hydrological sensor ontology can support the querying of 

heterogeneous sources. 

 

In their article, Henson and et. al. (2009) were addressed two different issues for 

the representation of observational data. The first issue is that sensor data has a 

heterogeneous structure. The second issue is that there is no semantic proximity 

between sensor data. These problems may cause prevent interoperability and 

integration of the time series data collected from different sources. There are many 

different ways of representing sensor data nowadays. In other words, the 

representation of sensor data has a heterogeneous structure. Researchers evaluated 

their systems at real-world use cases in order to enhance meaningful their projects. 

Their proposed system was evaluated using sensor data monitored by the Australian 

CSIRO ICT Center. Overall, the researchers presented an ontological representation 

of time series observations in this article. They argued that SW would add a lot of 

value to time series sensor data on the Web (Henson, Neuhaus, & Sheth, 2009) 

. 

Goodwin & Russomanno (2006) proposed a prototype of the SSN system. 

Researchers have emphasized that integration of the raw data before storage of them, 

is necessary to extract more significant information than sensor data. Their ontology-
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based prototype consists of wireless sensing capabilities, that include temperature, 

acceleration, GPS, light, barometer, magnetic field, acoustic measurements, and 

pressure (Goodwin & Russomanno, 2006). At the final of the paper, they argue that 

their prototypes involving the joint management of sensor information are successful 

and the concept of sensor ontology can be used for more complex systems. For future 

work, they are considering adding more sensors to the system, improving the 

accessibility and execution of sensor services. 

 

Huang & Javed (2008) proposed a semantic-based architecture for the identification 

and processing of sensor information. In their paper, researchers emphasized that 

WSNs continuously collect massive amounts of raw data, which are generally only 

processed by customized applications. According to researchers, in order for 

applications and services to be developed independently of specific WSNs, the sensor 

data must be enriched with semantic web technologies and ontologies. Researchers 

carried out a potential fire accident for the use of a case study. They removed 

contextual awareness at the WSN and they provided to use of the sensor data easily 

with semantic web technologies for every application. This allows different consumers 

of the sensor data to provide more valuable services. According to them, 

standardization of semantic web technologies and sensor ontologies can help resolve 

this problem even further, in the future (Huang & Javed, 2008) 

. 

Janowicz & Compton (2010) present an overview of ongoing work to develop an 

ontology model of observation-based data obtained from the WSNs in their article.  In 

the scope of this project, the core classes, relationships, properties, and another 

component of the model that forms the proposed ontology are discussed in detail. 

Stimulus, sensors, observations, observation properties, feature interests, procedures, 

and results of the system were explained by giving a variety of examples. Relations 

between these components were presented successfully in their study. According to 

researchers, the most important issue in sensor representation by semantic web 

technologies is that ontologies can be easily applied to any sensor-based domain. 

Finally, they point out that further studies will focus on documentation and the case to 
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show how to integrate ontologies or how extensions can be developed. In addition to 

other aspects, the relationship between sensors and results requires further study. 

 

The rapid increase of data obtained from sensor-based systems brought the 

difficulty of managing data obtained from different systems in the same framework. 

Moreover, the lack of syntactic or semantic integrity between these sensor data made 

it difficult to share, reuse, and interpret them. Aktaş et al. (2020) have developed a 

standard data model for heterogeneous sensor data from different platforms by 

expanding SSN. The goal of this paper is to create laboratory environment parameters 

sensor ontology (LEPSO). In the proposed study, in 3 laboratories selected as 

measurement areas by the researchers, 8 different environment parameters are 

measured by, 5 different sensors. 

 

A case study was conducted on laboratory environment parameters using real-time 

data collected from BAIBU SITARC. To evaluate the LEPSO sensor ontology, a series 

of semantic queries have been performed by the researchersThe results showed that 

sensor data, which is heterogeneous in nature, provides useful results in sensor-based 

tracking systems when enriched with semantic web technologies and ontologies. In 

addition, this study proves that the proposed semantic sensor ontology has the ability 

to provide a common infrastructure for many sensor-based applications. The proposed 

ontology has been claimed to have the potential to become a more comprehensive 

ontology by adding different platforms, different sensors, different environments such 

as schools and factories. In the next study, it is stated that this ontology is aimed to 

expand the scope of this SSN created by including a hospital's ICU. 

 

Jin & Kim (2018) proposed an e-health system based on a semantic sensor network 

to solve interoperability problems of different platforms and devices. The system they 

recommend includes Expert user, Patient User, e-Health server, e-Health client, and e-

Health device.  They use the IETF YANG modeling scheme to represent information 

from the sensors they use for proposed e-health systems. This modeling scheme helps 

ensure semantic interoperability between devices and express detection data in a user-

friendly way.  According to the YANG modeling principle, the semantic model is 
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designed to include terminologies in the YANG modeling language. Ontology has 

been defined in YANG to create meta-models of E-Health sensors to provide a 

semantic interpretation of detection data in the system. It is argued in the proposed 

approach that e-Health sensors help to automatically configure and query the sensor 

network with semantic interoperability support for the e-Health system. 

 

Semantic web technologies and ontologies propose a suitable approach for 

generating common words for sensor-based systems and to ensure the interoperability 

of sensor data from different platforms. However, these approaches are often not 

accepted by users and system developers based on sensors. This is due to the 

complexity of semantic techniques and the processing time to take longer than 

conventional methods. For the solution of these problems, Bermudez-Edo et al. (2017) 

have suggested IoT-Lite, a light example of SSN. Their ontology is an approach that 

provides interoperability of sensor data on heterogeneous IoT platforms and includes 

minimum concepts and relationships that can respond to most end-user questions in a 

reasonable time. To evaluate the proposed ontology, the researchers compared the 

performance of IoT-Lite with the IoT-A performance that another example of SSN 

ontology.  In addition, in order to have more flexibility in ontologies, they brought the 

concept of dynamic ontology to the Semantic sensor network area. Dynamic Semantic 

sensor ontology usage example, MathML is used to store formulas and literal values. 

To demonstrate the usability of this dynamic approach, a case study was conducted 

using collective traffic data from Aarhus, Denmark. As a result of the case study, they 

proved that this approach provides faster response time. 

 

Kuster et al. (2020) proposed sensor data model that would facilitate data transfer 

and eliminate heterogeneity between different sensor data. They suggested that this 

semantic data model supports urban sustainability close to real-time.  The UDSA 

ontology has the ability to identify various sustainability key performance indicators, 

criteria, themes, and sub-themes in an urban system, as well as sensors and 

observations from perception. A case study was conducted in Wales to demonstrate 

the usability of this proposed sensor data model. A series of competency questions 

have been prepared to assess the reliability of the proposed ontology. In line with these 
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competency questions, they used the SPARQL query language, which allows them to 

query using classes, object properties, and data properties. In general, such a semantic 

model has proven to be effective in this study. 

 

Onal et al. (2017) presented a weather clustering model enriched with semantic web 

technologies that were analyzed with machine learning methods and useful inferences 

were made. Moreover, in this study, the pattern recognition approaches of data mining 

and sensor anomaly detection were implemented in the system. In the evaluation of 

the proposed system, the number of clusters was limited in order to the easier 

interpretation of the results. It was stated that when more than 4 clusters were used in 

the evaluation phase, regions began to disappear, so the maximum k value was chosen 

as 4. The data analysis results show that it is possible to extract meaningful information 

from a relatively complex data set using the proposed system. 

 

Adeleke et. al. (2017) introduced the ML-based estimation system in the SSW using 

stream reasoning in their article. Their model was evaluated in IAQ parameters 

monitoring in order to predict an unhealthy situation for the near future. In this project, 

the sliding window, which uses the Multilayer Perceptron (MLP) model to predict 

PM2.5 pollution conditions, is integrated into their prediction model. The researchers 

tested the proposed ontology-based monitoring model in South Africa. The proposed 

system has been expected to help improve the IAQ, such as schools, and hospitals. 

 

Three different home was selected for implementations of this test. Researchers 

placed sensor units in these three houses. During the test phase, the system tried to 

predict half-hour and one-hour future values of indoor air quality. The system decided 

the appropriate control actions, for implementations by occupants, if necessary. This 

control action was notified to the occupants by text message. Researchers have already 

identified the sliding window approach, which is also used in a number of time-series 

data studies previously, as a method of classification. Moreover, they have tried 5 

different methods as classification algorithms. These are Bayesian Network (BN), 

Multilayer Perceptron (MLP), Decision Table (DT), J48, Random Forests (RF). The 

performance of the classification approaches was evaluated by the ROC method. 
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The data from the sensors were semantically enriched and ontology was created. 

This ontology was queried with the SPARQL query language integrated into the 

Eclipse development environment.  The classifier was trained with the first 36 hours 

of data and a model was created. According to this model, the proposed system 

predicted the half-hour and an hour forecast horizon. The first 6 hours of data were 

removed from the training data and the new 6 hours of data were added to the training 

data. Every time the training data is changed, a new model is created and the 

predictions are updated. As a result of this work, Adeleke et. al.  have successfully 

integrated Semantic Sensor Technologies' stream reasoning framework with machine 

learning algorithms in order to proactive monitoring and control. Moreover, in this 

study, researchers have proven that the short-term prediction of PM2,5 can be 

successfully accomplished by an appropriately trained classifier. 

 

The studies that were most similar to the proposed study in terms of technology and 

scope were evaluated in the third group. Studies under this group have also created a 

semantic-based framework for the definition of sensor information, and classical 

machine learning approaches have been performed on ontological sensor information. 

The biggest purpose of SSN is to create a common identification frame for sensor 

information from different platforms, different domains, and different sensors. 

However, in these studies, the number of platforms, sensors, and domains was limited 

and the capacity of SSN to represent sensor information in different systems, 

platforms, and domains could not be fully utilized. 

 

In the proposed study, 2 different domains, 5 different environments, 4 different 

platforms, 5 different sensors were used and 8 different parameter values were 

measured. In previous studies, machine learning algorithms applied to ontological 

sensor data were limited in number, so in this study, the number of algorithms runs on 

sensor data was increased. Another difference is that many studies focused on either 

regression or binary classification. In this study, regression and binary classification 

approaches are evaluated together. 

 



 

 

40 

 

CHAPTER FOUR 

MATERIALS METHODS 

 

In this part of the proposed thesis, the technical hardware and software materials 

used throughout the study will be introduced. This section is of great importance as 

the materials, methods, and approaches preferred will directly affect the performance 

of the project.  At the same time, cost-effective devices have been preferred in order 

to provide the sustainability of the system and to enable other researchers to perform 

similar studies. In other words, sustainable system design without sacrificing 

performance and accuracy has been the focus of the proposed thesis. 

 

During the thesis work, microprocessors, communication devices, sensors, and 

various circuit components were used for the WSN design. In addition, Arduino IDE 

and Mysensors library are used for the embedded software of the nodes that make up 

the WSN. The controller that used to parse and manage data from sensors, was coded 

using a very commonly used software editor. The core structure of the proposed sensor 

ontology has been developed with the widely used Protege ontology editor. RDF 

database was used for storing the obtained sensor data and RDF query language was 

used for querying. For the analysis of the collected data, the RapidMiner data mining 

platform was used and appropriate prediction models were conducted for ontological 

sensor data. The remainder of this section includes the selection of materials and 

methods mentioned above. 

 

4.1 Types of Hardware Equipment Used for WSN in Proposed Study 

 

Indoor air quality (IAQ) measurement systems are generally integrated into local 

systems by researchers in areas where social health is important such as hospitals, 

schools, workplaces, and public transport vehicles. In this study, indoor air parameters 

data, which will endanger human health and affect the analysis results in critical areas 

such as the MCU and SITARC were collected with the help of WSN. The first step in 

setting up WSN is to design a hardware platform. The basic components to create a 

WSN are generally microprocessors, communication devices, and sensors. The 
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technologies used for hardware equipment and embedded system software used in the 

WSN created for the proposed system are described in detail below. 

 

4.1.1 Microprocessor Board 

 

With the integration of software and hardware technologies into industrial 

automation fields, the need for specially designed integrated electronic cards, which 

are generally used to manage these systems, has increased. Although it was difficult 

to program microcontroller cards in the recent past, with today's developing 

technology, cards that can be easily encoded by standard developers are now being 

developed. Among these microprocessor boards, the developers often prefer 

Raspberry Pi, BeagleBone Black, Msp 430, Freedom Development Boards. 

 

However, in most of the studies carried out today, the most preferred card by the 

researchers is undoubtedly Arduino models. The main reasons why Arduino models 

are preferred so often are that they are cheap and easy to use compared to other boards. 

Arduino Uno is an ATmega328 (Microcontroller, n.d.) based microcontroller board 

manufactured by Atmel. Easy to use and affordable price is the reason to be preferred. 

The pin diagrams of the Arduino UNO and Atmega 328 used in the project are given 

in Figure 4.1. 

 

Arduino is an open-source embedded system development platform that makes it 

easy to use hardware and software together (Baxter, Hastings, Law, & Glass, 2008). 

Arduino Uno was chosen as the microprocessor card in the node designs that make up 

the WSN, as it was deemed sufficient in terms of supply unit and analog-digital pin 

number within the scope of the proposed thesis. 
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Table 4.1 Specification of Arduino Uno R3 development kit (Arduino, n.d.) 

Specification Value and Comment 

Microcontroller ATmega328P –8-bit AVR family microcontroller 

Operating Voltage 5V 

Recommended Input Voltage 7-12V 

Input Voltage Limits 6-20V 

Analog Input Pins 6 (A0 – A5, range of 0V-5V) 

Digital I/O Pins 14 (Out of which 6 provide PWM output) 

DC Current on I/O Pins 40 mA 

DC Current on 3.3V Pin 50 mA 

Flash Memory 32 KB (0.5 KB is used for Bootloader) 

SRAM 2 KB 

EEPROM 1 KB 

Frequency (Clock Speed) 16 MHz 

Weight  25 g 

Serial Pins 0(Rx), 1(Tx) 

 

Arduino board is easily used in many areas from health, agriculture, security 

applications to robotic applications. Each application has its own characteristics. 

Different features and performances can be expected from the microcontroller card for 

each application. Arduino boards differ according to the need for supply, the number 

of digital-analog pins, the communication possibilities, and the physical size. 

 

The most used Arduino models are; Arduino Uno, Nano, Pro Mini, Due, Mega, 

Leonardo, Lilypad, Esplora, etc.  Besides, it is the decisive feature of the choice of this 

card in its compatible operation with many sensors, communication devices on the 

market. Arduino Uno R3 board is the most preferred Arduino board by both developers 

and beginners.  The technical features and specifications of the Arduino Uno R3 card 

used as a microprocessor board in the proposed project are given in Table 4.1. 

 

 

https://components101.com/microcontrollers/atmega328p-pinout-features-datasheet
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4.1.2 Communication Device 

 

After the microprocessor is determined, the selection of a communication device 

compatible with the microcontrollers used to ensure smooth communication of nodes 

is one of the second and important steps of designing a sensor-based system. The most 

important feature of the device that should be selected as a Communication Device is 

its low battery consumption and its ability to provide seamless data transmission to a 

long distance. For these reasons, The nRF24L01 + PA/LNA Single Chip 2.4GHz 

Transceiver was selected and integrated into Arduino Uno R3 for WSN design in the 

proposed system (Nordic Semiconductor [NS], 2008). 

 

Table 4.2 Specifications of the 2.4 GHz nRF24L01+ PA/LNA wireless module (NS, 2008) 

Specification Value and Comment 

Frequency Range 2.4 GHz ISM Band 

Maximum Air Data Rate 2 Mb/s 

Modulation Format GFSK 

Max. Output Power 0 dBm 

Operating Supply Voltage 1.9 V to 3.6 V 

Max. Operating Current 13.5mA 

Min. Current (Standby Mode) 26µA 

Logic Inputs 5V Tolerant 

Communication Range 800+ m (line of sight) 

 

This communication device, developed by the Nordic Company, is a digital radio 

frequency wireless communication chip with low power consumption, which allows 

you to communicate wirelessly at the frequency of 2.4GHz, with both receiver and 

transmitter features. Technical specifications of the nRF24L01 wireless module are 

given in Table 4.2. 

 

The nRF24L01 chip uses a built-in baseband protocol engine called "Enhanced 

ShockBurst" for ultra-low-power wireless applications (NS, 2008). nRF24L01 + 

communicates with microcontrollers via the SPI communication protocol. Since the 
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QFN20 is produced as SMD in a sheath structure, it is very difficult to buy and use 

this chip. Therefore, it is produced and sold as a module in the market. These modules 

are produced based on the reference module design found in the nRF24L01 datasheet. 

The pinout and scheme of the nRF24L01 + module is given in Figure 4.2. 

 

 

Figure 4.2 nRF24L01+ pinout diagram 

 

The technical features and specifications of the nRF24L01 + module as a 

communication device in the proposed project are given in Table 4.2. 

 

4.1.3 Sensors Used in Proposed Project 

 

Sensors are devices that convert physical factors in the environment into electrical 

signals and become an indispensable part of robotic systems today. Sensors act as a 

bridge that connects the physical environment and industrial electrical / electronic 

devices. Within the scope of the proposed study, 8 parameters were measured by 5 

different sensors and given as input to the system. These are DHT22 for temperature 

and humidity measurement, CCS81 to measure CO2 and TVOC, Nova SDS011 to 

measure PM.2.5 and PM10, MQ-7 to measure CO level, and LDR sensors to measure 

light level. 

 

Proper sensor selection is an important issue to achieve project objectives. 

Otherwise, the measurements will not reflect the correctness, and the necessary action 

plans will not be effective. In the proposed project, an effort was made to select the 

most suitable sensor for the sensors selected for the measurement of environmental 

parameters, taking into account features such as error, precision, resolution, stability, 
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range, durability, response time, dimensions, cost. The features to be considered in 

sensor selection are briefly described below. 

 

4.1.3.1 DHT22 Sensor Module 

 

DHT22 is a capacitive and digital sensor that detects the temperature and humidity 

in the environment and can work stably for a long time. Small size and low 

consumption and long transmission distance (20m) make the DHT22 suitable for any 

demanding application situation (T. Liu & Manager, n.d.).  

 

 

Figure 4.3 Pinout diagram of DHT22 humidity and temperature module 

 

DHT22 sensor uses special digital signal acquisition techniques and moisture 

detection technology that guarantee its reliability and stability. It contains an 8-bit 

microprocessor and provides a fast and quality response. Average Response Time is 

less than 2 seconds. With its low power consumption and wide range, it is preferred 

by many researchers, especially in IAQ applications. The DHT22 sensor, whose pinout 

diagram is shown in Figure 4.3. 

 

4.1.3.2 CCS811 Sensor Module 

 

The CCS811 sensor module is a digital gas sensor with low power consumption 

that can detect the CO2 and TVOC value in the environment. It is commonly used in 
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IAQ applications. With the help of a metal oxide (MOX) gas sensor integrated on it, it 

can detect a wide variety of VOCs in the environment (Ams, 2017). Thanks to the 

integrated microcontroller unit MCU, the sensor manages the driving modes and 

measurements itself while detecting all these VOCs. The pinout diagram of the 

CCS811 sensor is shown in Figure 4.4. It is capable of using optimized low power 

modes in restricted supply situations where there is no access to the grid. 

 

Provides an indication of eCO2 level or TVOC without host intervention. Includes 

analog to digital converter (ADC) and I2C interface. When connected to the 

microcontroller, it will return a Total Volatile Organic Compound (TVOC) reading 

and an equivalent carbon dioxide reading (eCO2) over I2C (Ams, 2017).  

 

 

Figure 4.4 Pinout diagram of CCS811 digital CO2 and TVOC module/sensor 

 

4.1.3.3 Nova SDS011 Sensor Module 

 

Using the laser scattering principle, Nova SDS011 can detect airborne particulate 

concentration from 0.3 μm to 10 μm diameters. This module is a highly accurate digital 

sensor with a built-in fan offering easy operation. This sensor module is used in many 

applications thanks to its reliable, stable, and consistent structure (Co, 2015). Another 

reason why it is preferred by the developers is that it can be easily integrated into every 

application thanks to its customized UART output. The pinout diagram of the Nova 

SDS01 sensor module is shown in Figure 4.5. 



 

 

48 

 

 

Figure 4.5 Pinout diagram of Nova SDS011 digital PM module/sensor 

 

Unlike other sensors, one of the most important parameters showing the quality in 

a laser PM sensor is its service life. Because it usually contains laser diodes used to 

analyze dust particles. The quality of this laser diode determines the service life of the 

sensor. The life of the high-quality laser diode inside the Nova PM sensor is 

approximately 8,000 hours. It is recommended to use the default configuration when 

real-time data is needed (such as 1-second interval).  

 

Figure 4.6 Working principle of Nova SDS011 digital PM module/sensor 

 

However, if measurements are to be made at intervals of 1 minute or more, 

activating the sensor's sleep mode is certain to extend the life of the sensor. In addition, 
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activating the sleep mode when it is not needed will prolong the life of the network by 

preventing unnecessary energy consumption, especially in applications where there is 

no possibility to feed on the network. In this proposed thesis, measurements were made 

at 1-minute intervals. All sensors connected to the node were programmed to measure 

once a minute, allowing them to sleep for the remaining time. The operation principle 

of the Nova SDS011 sensor module is given in Figure 4.6.  

4.1.3.4 MQ-7 Sensor Module 

 

In the proposed project, it is planned to use the MQ-7 sensor module developed by 

Sparkfun for CO measurement. The MQ-7 is a long-life, low-cost carbon monoxide 

gas sensor that senses CO at concentrations of 10 ppm to 10,000 ppm and produces 

analog output (Electronics, 2018). Industrial CO detectors can be used as portable CO 

detectors for local gas leak detection. The MQ-7 Carbon Monoxide gas sensor can be 

easily used with micro control cards such as Raspberry Pi, Arduino, which are often 

preferred by developers for automation systems. The pinout diagram of the MQ-7 

sensor module is shown in Figure 4.7. 

 

Figure 4.7 Pinout diagram of the MQ-7 analog CO module/sensor 

 

4.1.3.1 Light Dependent Resistor (LDR) Sensor Module 

 

Light sensors can consist of many parts due to their structures. Perhaps the most 

important of these parts is the light-perceiving component. The light-sensitive resistor 
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(LDR) is a widely used light sensing circuit element. LDR is produced from 

semiconductor and high resistance material due to its structure. Usually, cadmium 

sulfide (CdS) is used as a semiconductor. Two photoconductive cells with spectral 

responses similar to those of the human eye are used (Sunrom Technologies, 2008). 

The connection diagram of the LDR sensor used for light level measurement in the 

proposed project to the MCU is given in Figure 4.8. 

 

 

Figure 4.8 Connection diagram of the LDR sensor to MCU 

 

LDRs provide an output with varying resistance values in the circuits where they 

are in. Since they perform this process with a physical change they receive from the 

external environment, they act as a passive sensor. Cell resistance increases as the light 

intensity decreases, or conversely, as the light intensity increases, the cell resistance 

decreases. The energetic photons (light) falling on it transfer their energy to the 

electrons in the valence electron band (high resistance), allowing them to jump into 

the conductive area.  
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Figure 4.9 The relationship between the LDR internal resistance and the light 

 

In this way, the resistance of the semiconductor material starts to decrease with the 

entanglement of more energetic electrons in the conductive region.  As the decreasing 

light intensity increases, the number of electrons that jump to the conducting band 

increases, and the resistance of the material decreases. There is an inverse proportion 

between the internal resistance of the LDR and the amount of light falling on it. The 

graph of this relationship is given in Figure 4.9. 

 

LDR, also known as a photoresistor, functions almost the same as the photodiode 

and phototransistors found in sensors. However, it is different from these in structure. 

LDR is in passive structure and creates resistance change as a result of light perception; 

Photodiodes and phototransistors also detect light with the help of PN junctions. LDRs 

can generally be used in applications such as smoke detection, automatic lighting 

control, product counting, and burglar alarm systems. 

 

4.2 Embedded Systems and Controller Software Equipment 

 

With the increase in digitalization and electronification activities worldwide, it has 

led to an increase in embedded systems designed to perform a specific process. The 

embedded system is microprocessor-based hardware with software designed to 

perform a specific function.  Examples of embedded systems include ATMs, printers, 
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copiers, air conditioners, medical equipment, floppy disk drives, portable computers, 

game consoles, functional watches, and mobile phones. Within the scope of the 

proposed project, the Arduino IDE platform was used to provide embedded system 

software of sensor nodes. The MySensors library was used to ensure the 

communication and synchronization between the nodes and to integrate the sensors 

used into the embedded software. 

 

4.2.1 Arduino IDE 

 

In the proposed system, the coding of the node microprocessors is made with 

Arduino IDE. Arduino provides an open-source software (IDE) for programming the 

hardware. All Arduino boards and software are fully open source and allow for multi-

platform support (Arduino, n.d.). In other words, different versions can be created by 

modifying the Arduino IDE. The Arduino IDE platform is offered and used without 

any limitations on functionality, operability, or usage. Arduino IDE is preferred in the 

proposed study due to its ease of use, open-source code, and too much documentation. 

The user interface of the Arduino IDE programming editor is given in Figure 4.10. 

 

Figure 4.10 The user interface of the Arduino IDE programming editor 

 

Programming with the Arduino IDE is done with a framework called Wiring. Based 

on the C ++ programming language in 2003, this framework is an open-source 
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programming framework for microcontrollers that started to be developed by 

Hernando Barragán, a graduate student in Italy (Barragán, 2004). Wiring allows you 

to write cross-platform software on a wide variety of microcontroller cards to create 

projects, device interactions, or developers' physical experiences in any field. The 

Wiring framework, which Hernando Barragán created so that designers and artists 

could approach electronics and programming more easily, led to the foundation of 

Arduino in 2005. 

 

All developers who are familiar with the C ++ programming language can learn the 

Arduino IDE program more easily. When any program is written and installed on the 

hardware, the codes written in C ++ framework are compiled by Uploader named 

AVRDude. The codes are converted to the HEX file after if no problems with 

compilation. In the last stage, the program developed by communicating directly with 

the AVR-based microcontroller in a certain protocol and loading the HEX file through 

the USB interface is transferred to the hardware. 

 

 

4.2.2 MySensors Library 

 

There are many libraries written to establish the WSN network used by developers. 

Within the scope of the proposed project, the sensor nodes that will collect the data 

from the environment, the environment measurement software, and the embedded 

system software that will provide communication between them, MySensors library 

was used. MySensors is a free library for wireless IoT devices that allows devices to 

communicate using radio transmitters (MySensors Library, n.d.). The biggest reason 

for choosing the Mysensor library is that the documentation is easy to understand. 

Mysensors library is an open-source API developed by Alexander Budnik. 

 

This library was originally developed for the Arduino platform only. Over time, the 

Mysensor Library has evolved into a framework designed especially for the 

establishment of WSN with microprocessors and communication devices such as 

ESP8266, Raspberry Pi, NRF24L01+, and RFM69, which are widely used by 
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developers. This library has the capacity to create a mesh and tree-like network 

structure supporting 254 nodes at the same time. 

 

The MySensors devices create a virtual radio network of nodes that automatically 

a self-configuration. Each node can transmit messages to other nodes to cover greater 

distances using simple short-range transceivers (MySensors Library, n.d.). In other 

words, if the nodes in the network can reach the Gateway, they send the message 

directly to the Gateway. However, when they cannot reach the gateway due to distance 

and obstacles, a route that enables data to reach the gateway via other nodes that they 

can reach is followed. The Mysensors library provides the following facilities to 

developers. 

• Providing create embedded system software of nodes in the network. (Serial 

Gateway, Repeater Nodes, Sensor Nodes) 

• Ensuring give unique identification to every node in the network, Thus, the 

controller can easily understand from which node the data is sent. 

• Enables give unique identification to every sensor on nodes. Thus, the controller 

can easily understand from which node the data is sent. 

• Providing communication between whole nodes by self-configuration. 

• Allows the nodes to find the shortest path to the gateway automatically. 

• Providing the establishment of a dynamic network using repeater nodes or other 

sensor nodes even if the position of the node changes. 

• Saves power by allowing sensor nodes apart from repeater nodes to operate in 

sleep mode. Thus, it extends the life of the sensor nodes and network. 

• Supports 254 nodes in a single network and every node maybe include 254 

different sensors. This is theoretically mean that 64516 sensors are managed in 

only one network. This number will be enough for many applications. 

• In very large applications such as pipeline monitoring or structure monitoring, 

where the number of sensors or nodes is not sufficient, a parallel radio network 

can be created from the 124 useable channels. 
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4.2.3 Microsoft Visual Studio 

 

In the proposed project, the controller interface has been devised for parsing, 

managing operations of messages from WSN, and real-time recording of sensor data 

into RDF databases. The controller interface is designed using the Visual Studio editor. 

Visual studio code development editor is used to develop console and graphical user 

interface applications along with Windows Forms applications, websites, web 

applications, and web services. (Chowdhury, 2017). The integrated debugger can 

perform both source-level and machine-level inspection. This enables the code editor 

and debugger to support almost all programming languages. With Visual Studio, 

applications can be developed infrequently used programming languages such as C #, 

VB.NET, C / C ++, F #. In the proposed project, the user interface was developed in 

C # programming language. 

 

4.2.4 dotNetRDF Library 

 

DotNetRDF is used for the definition of the proposed sensor ontology. DotNetRDF 

is an open-source RDF API used in Microsoft Visual Studio for implementing 

Semantic Web concept (Mishra & Singh, 2016).  DotNetRDF library was written in 

C# designed to provide a simple but powerful API for working with RDF data (Barbur, 

Blaga, & Groza, 2011). This Library provides a large variety of classes for performing 

all the common tasks from reading & writing RDF data to query over it. The Library 

is designed to be highly extensible and supports for users to add in additional features 

(e.g., custom RDF Triple Stores) as required  (DotNetRDF, 2020). The core classes of 

the Library can be found in the VDS.RDF namespace. All the core classes are based 

either on interfaces or abstract classes to make the library as extensible as possible 

(DotNetRDF, 2020). 

 

4.3 Standardization Studies for Raw Sensor Data 

 

Sensor data has been collected and represented in different formats and methods in 

many studies. In literature, most of the researchers collect and represent sensor data as 

time series observation (Bhandari, Bergmann, Jurdak, & Kusy, 2017; Sharmin et al., 
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2015). Time-series observations are one of the widely used methods of collecting 

sensor data. A time-series data is the measurement of the feature of interest in 

succession over time.  Over time, scientists have recognized the importance of quality 

time-series observations to conduct research and analyze data. For this, the data should 

be structural and cooperate. These similarities between sensor data and time-series 

data include sensor characteristics, measurement methods, data formats, measurement 

units, application area, the evolution of data in time, spatial solutions, etc. 

 

Until today, sensor data may be published as only values on the internet, but 

searching, filtering, reuse, integrating, interpreting, and sharing efficiently these data 

requires more than just the indicate observation results. Sensor data is heterogeneous 

in nature because it is used in different systems with different syntaxes, structures, and 

meanings (Baxter et al., 2008). Moreover, the integration of the sensor data can be 

very challenging, especially when heterogeneous data sources are available in the 

WSN used. For this reason, processing and managing sensor data are getting more 

difficult day by day due to the lack of a specific standard for heterogeneous sensor 

data. 

 

Until today, sensor data may be published as only values on the internet, but 

searching, filtering, reuse, integrating, interpreting, and sharing efficiently these data 

requires more than just the indicate observation results. Sensor data is heterogeneous 

in nature because it is used in different systems with different syntaxes, structures, and 

meanings (Sheth, 1999). Moreover, the integration of the sensor data can be very 

challenging, especially when heterogeneous data sources are available in the WSN 

used. For this reason, processing and managing sensor data are getting more difficult 

day by day due to the lack of a specific standard for heterogeneous sensor data. 

 

The heterogeneity of sensor data causes these data to remain application-specific 

and different sensor-based systems not to be managed under a common infrastructure. 

An intermediate layer that will enable the sensor data to be enriched semantically and 

made more useful regardless of the application is a vital need. Recently, researchers 

claim that semantic perceptron web technologies can enrich raw data obtained from 
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sensors in terms of semantics and fill this middle layer (Haller et al., 2018; J. Liu, Li, 

Tian, Sangaiah, & Wang, 2019; F. Wang, Hu, Zhou, Hu, & Zhao, 2017). 

 

In addition, a common framework is required for sensor-based information systems. 

Sensor data must be defined using URIs and sensor data must be transmitted to 

consumers over HTTP (Patni, Henson, & Sheth, 2010). Besides, sensor data must be 

encoded in machine-readable formats such as RDF and OWL so that it can be easily 

read and processed by machines. However, at this point, the lack of a comprehensive 

and comprehensible standard for the enrichment of sensor data worldwide has been 

the biggest problem in the common manageability and operability of sensor systems. 

 

Sensor data must be standardized so that they can be successfully interpreted, 

application-independent, and reused in a variety of applications. Some standards had 

been developed with the aim of closing this deficiency in the literature. Two different 

standards are mostly used in many studies by researchers for sensor data. These are (I) 

SWE and Observations and Measurements Language (O & M) that was developed by 

the OGC and (ii) Semantic Sensor Network which was developed by W3C. In the 

following chapter, the architecture of both technologies is given briefly and discussed 

which of them more beneficial for this thesis study. 

 

4.3.1 Sensor Web Enablement 

 

The first standardization initiative is SWE and O & M which was developed by the 

OGC. SWE, which is members of the OGC, architecture model was developed as a 

common framework for the be able to implementation of interoperable and scalable 

service-oriented working of heterogeneous sensors data. In web-based sensor 

networks sensor location is usually a critical parameter for sensors end-user or system 

analyzers, and OGC is the world's leading geospatial industry standards organization. 

Moreover, OGC has enabled sensor systems to serve over the web.  

 

The general purpose of SWE is to provide that any sensor, actuator, device, and 

camera accessible from the Internet is accessible and, where applicable, controlled 
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over the Web.  SWE common language or standard is an XML-based model for 

representing raw data obtained from sensor nodes on the Web (Henson et al., 2009).  

 

4.3.2 Semantic Sensor Networks 

 

The second standardization initiative is the Semantic SSN which was developed by 

W3C. Established the SSN-XG in 2011 to fill the interlayer that will provide a 

common representation of the consortium sensor data and set a set of standards for the 

sensor. SSN-XG has done many studies and determined certain standards for semantic 

enrichment of raw sensor data obtained from sensor-based systems. The latest version 

of the SSN, which is still used as a common framework in many studies today, was 

published in 2017 (Lefort, et al. 2017). 

 

W3C is a consortium that determines the web and semantic web standards in the 

world. The SSN that is put forward by W3, ontology can ability integration and high-

level descriptions of sensor observation data. Moreover, this ontology can describe the 

capabilities of sensors that were set up, the measurement processes used, and their 

observations. 

 

SSN has a core ontology called SOSA (Sensor, Observation, Sample, and Actuator) 

that including lightweight but self -contained, for its fundamental classes and 

properties (Compton et al., 2011). SOSA complies with the minimum interoperability 

limits, i.e., the sensor ontologies created with SOSA guarantees its sharing and 

interoperability with all SOSA/SSN ontologies (World Wide Web Consortium [W3C], 

2017).  SOSA/SSN framework modules are shown in Figure 4.11. SSN is a framework 

for providing meaning for sensor observations to provide status awareness. SSN 

enhances the meaning by adding semantic annotations to existing standard sensor 

languages. These additional statements provide more meaningful explanations and 

more access to sensor data than SWE and act as a link mechanism to SWE's gap 

between syntactic XML-based metadata standards and Semantic Web's RDF/OWL-

based metadata standards (Compton et al., 2011). 
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Figure 4.11 Overview of SOSA/SSN framework modules 

 

Along with semantic descriptions, ontologies and rules play an important role in 

interoperability, analysis, and reasoning compared to heterogeneous multimode sensor 

data in SSW (W3C, 2017). The basic classes of SOSA ontology, which constitute the 

core of SSN ontology, the relationships between them are presented in Figure 4.12. 

 

 

Figure 4.12 Overview of the SOSA classes and properties (W3C, 2017) 
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The semantic sensor network is an application-independent framework that must be 

expanded with specific concepts and examples (Calbimonte, Jeung, Corcho, & Aberer, 

2012). SOSA/SSN frameworks are designed to allow its scope to be extended with 

other ontologies and concepts. For example, in an area ontology where geolocation is 

important, the ontology of terms representing location information can be integrated 

to extend the SSN core ontology. In another example, a domain ontology containing 

chemistry-related sensor measurements might import chemistry ontology including 

chemical terminology, classes, and object properties as an example of the expansion 

of the SSN core ontology. 

 

Over time, firstly fundamental concepts, terms, and relations were developed like 

sensors, properties, observation, and systems in SSN and SOSA ontologies. After then 

measuring capabilities, operating and survival restrictions and deployments were 

added in these ontologies (Compton et al., 2011). Finally, SOSA/SSN frameworks 

have been aligned to the DOLCE UltraLite upper ontology (DUL) to interoperate use 

with their ontologies from developers using DUL aligned ontologies. The classes and 

concepts of the SOSA/SSN framework last version published by W3C in 2017 are 

shown in Figure 4.13.  In this figure, the main components, classes, restrictions, and 

properties of SSN and SOSA Ontologies are illustrated together. In the figures, 

components of SSN ontology only are shown in blue, while related components of 

SOSA are shown in green. 

 

Generally, within the framework of SOSA/SSN; deployment, system, platform, 

procedure, etc. conceptual modules that will form the infrastructure of sensor-based 

systems are defined. In addition, SOSA/SSN standards are a framework for defining 

sensors, actuators, sensor measurement capabilities, sensing observations, related 

procedures, observed properties, features of interest, and deployments. The most 

important and most used concepts, classes, properties of the SOSA/SSN framework, 

and the relationships between them are explained in detail below. 

 

The classes and concepts of the SOSA/SSN framework last version published by 

W3C in 2017 are shown in Figure 4.13.  In this figure, the main components, classes, 
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restrictions, and properties of SSN and SOSA Ontologies are illustrated together. In 

the figures, components of SSN ontology only are shown in blue, while related 

components of SOSA are shown in green. 

 

 

Figure 4.13 Overview of the SSN and SOSA classes and properties (W3C, 2017) 

 

 

Generally, within the framework of SOSA/SSN; deployment, system, platform, 

procedure, etc. conceptual modules that will form the infrastructure of sensor-based 

systems are defined. Also, SOSA/SSN standards are a framework for defining sensors, 

actuators, sensor measurement capabilities, sensing observations, related procedures, 

observed properties, features of interest, and deployments. The most important and 

most used concepts, classes, properties of the SOSA/SSN framework, and the 

relationships between them are explained in detail below. 
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Figure 4.14 An overview of the SOSA/SSN from "ssn:Property" perspective 

 

ssn:Property: The type of feature that is interested in. In other words, the aspect of 

a being to make it a being and cannot exist without this property. This Class divide 

into two subclasses named "sosa:ObservableProperty" and "sosa:ActuatableProperty". 

Each parameter measured within the scope of the proposed thesis study is a 

"sosa:ObservableProperty". For this reason, there are 8 "sosa:ObservableProperty". 

An alert subclass has been created under the "sosa: ActuatableProperty" class to inform 

the relevant personnel about the environment status.  An overview of the SOSA/SSN 

classes and properties (Closely related to the property class) from "ssn:Property" 

perspective is given in Figure 4.14. 

 

"sosa:ObservableProperty" is an observable characteristic or property of the 

"FeatureOfInterest" class. "sosa:ObservableProperty"  is a value that can be directly 

measured or observed, such as The humidity and temperature value of an indoor 

environment the height of an object, or the concentration level of gas in the 

environment. Conversely, the value of a house or car is not a property that can be 

directly observed or measured. Their values are only asserted but cannot be measured 

directly. "sosa:ActuatableProperty"  is an actuatable characteristic or property of the 

"FeatureOfInterest" class. A component in the indoor air quality system changing the 
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state of the ventilation system when the ambient conditions are insufficient may be 

given as an example of "sosa: ActuatableProperty". The ability of the ventilation 

system to be opened and closed is its "sosa:ActuatableProperty". 

 

sosa:FeatureOfInterest: For any purpose, an object, feature, or environment in 

which, its "sosa:ObservableProperty" is measured by means of a sensor or whose 

"sosa:ActuatableProperty" is altered by an actuator. For example, when measuring the 

temperature of a room, the temperature level is a "sosa:ObservableProperty". 35 °C is 

the value or result of the "sosa:ObservableProperty".  The automatic ventilation, and 

air conditioning control system in the measured room are a "sosa:FeatureOfInterest" 

for the Actuator.  Within the scope of the proposed thesis, 2 "Sosa:FeatureOfInterest" 

was selected. 

 

ssn:Deployment: Describes where "ssn:System" classes are located in 

"sosa:FeatureOfInterest" to measure any "sosa:ObservableProperty" or manipulate 

situation of any "sosa:ActuatableProperty". In other words, The place where the sensor 

or platforms are placed is called "ssn:Deployment" in SOSA/SSN ontology. 

 

For example, to detect the CO2 level in the environment, the wall where the CCS811 

sensor is placed at the respiratory level of the people can be given as an example of 

"ssn:Deployment". A sufficient number of sensor nodes were placed in MICU, and 

LaEn that were selected as the measurement area. An overview of the SOSA/SSN 

classes and properties from "ssn:Deployment", “sosa:FeatureOfInterest”, and 

“sosa:Platform” perspective (Closely related to these class) is given in Figure 4.15. 

 

sosa:Platform: Sometimes more than one sensor and actuator can be deployed in 

the same location. Then, members of the "ssn:System" class can be gathered on the 

same device to make the system easier to manage and to increase the efficiency of the 

monitoring process. These devices, in which more than one sensor and actuator are 

collected, are called platforms in SOSA/SSN ontology. A vehicle, mobile phone, 

computer, human or animal body, can be a platform for individuals of the "ssn:System" 

class, or it can be in a prototype created by the developer himself. 
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Figure 4.15 An overview of the SOSA/SSN from “sosa:Platform” perspective 

 

In the proposed sensor ontology, there are 4 subclasses of "sosa:Platform" class. 

These are the prototype types of the sensor nodes created within the scope of the study 

(SN-A, SN-B, SN-C, SN-D). Within the scope of the thesis, enough individuals have 

been created from these subclasses.  

 

ssn:System: This class is an abstraction class for ontology concepts that implement 

procedures. A sensor that operates a procedure that measures the ambient temperature 

is that can be given as an example of  "ssn:System" classes. This Class divide into 

three subclasses named “sosa:Sensor”, “sosa:Actuator” and “sosa:Sampler”. In the 

proposed thesis, 5 different sensors and 1 actuator were used. Therefore, 5 subclasses 

of "sosa:Sensor" class were created.  
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Figure 4.16 An overview of the SOSA/SSN from “sosa:Observation” 

 

sosa:Actuation: In SOSA/SSN ontology, an actuation is the concepts that can 

change the state of a "sosa:ActuatableProperty" belonging to "sosa: FeatureOfInterest" 

using "sosa:Procedure". When the temperature in a room falls below a certain degree 

Celsius, the activity to automatically turn off the ventilation system can be given as an 

example of the "sosa:Actuation" class.  Within the scope of the proposed study, only 

one actuator has been defined. An overview of the SOSA/SSN classes and properties 

from "ssn:System", “sosa:Obsevation”, and “sosa:Actuation” perspective (Closely 

related to these class) is given in Figure 4.16. 

 

sosa:Observation: The "sosa:Observation" class is one of the most important 

classes of SOSA/SSN ontology. Measures or calculates the value of a 

"sosa:ObservableProperty" belonging to the selected "sosa:FeatureOfInterest" class 

using "sosa:Procedure". In other words, it is the result of sensor measurement or 

actuator action. The action of measuring the change in the concentration of PM10 in 

the environment with the Nova Pm device can be given as an example of the 

"sosa:Observation" class. Within the scope of the proposed thesis, individuals of 

"sosa:Observation" class were added automatically by the control program. 
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4.4 RDF Triple Database, Data Mining Program, and Ontology Editors 

 

In the proposed thesis, apart from the materials described above, there is a need for 

an ontology editor to expand the SOSA/SSN ontology for the purpose of the study, an 

RDF database to save sensor data as a triple, and a data mining program developed to 

test and compare classical machine learning algorithms in a proactive system design. 

has been heard. Within the scope of the proposed thesis study, which programs, 

database, and editor are used and why these applications are selected are explained in 

detail in the following sections. 

 

4.4.1 Protege Ontology Editor 

 

Today, there are many programs used as ontology editors. Developers' favorite 

editors include Apollo (Apollo, n.d.), OntoStudio (Weiten, 2009), and Semantic Web 

Ontology Overview and Perusal (Swoop) (Kalyanpur, Parsia, Sirin, Grau, & Hendler, 

2006). This proposed sensor ontology was designed with the Protégé ontology editor 

developed by Stanford University. Protégé is a free open source framework that 

provides an interface for users to define ontologies (Musen & Team, 2015). 

 

 

Figure 4.17 The user interface of the protégé ontology creation editor 
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Protégé 5.5.0 editor has the skills of creating classes and subclasses, defining and 

visualizing the relationships between classes in order to expand SSN ontology. 

Protégé’s plug-in architecture can be adapted to build both simple and complex 

ontology-based applications (Stanford Team., 2016). The user interface of the Protégé 

ontology creation editor is given in Figure 4.17 from the classis’s hierarchy 

perspective. 

 

Within the scope of the proposed thesis, the biggest factor in choosing Protégé as 

the ontology creation editor is that there is sufficient documentation on the web and it 

is actively supported by the developers. In addition, Protégé fully supports the W3C's 

latest OWL 2 Web Ontology Language and RDF specifications. Protégé is a Java-

based ontology editor designed to create an extensible and rapid prototype. Developers 

can integrate the output of Protégé with rule systems or other problem solvers to 

construct a wide range of intelligent systems (Musen & Team, 2015). 

 

4.4.2 Apache Jena Fuseki 

 

There are RDF triple stores such as AllegroGraph (Graph, n.d.) and Virtuoso 

(Virtuoso, n.d.), which researchers often prefer in the literature. In the proposed thesis, 

Apache Jena Fuseki (AJF) was chosen as an RDF triple store. AJF is a SPARQL 

server. AJF can run as an operating system service, as a Java web application, and as 

a standalone server (Apache, 2011). 

 

The biggest factor in Apache Jena Fuseki's choice as an RDF triple store is that it 

works compatible with the DotnetRDF library used in the Controller program. Another 

reason is that it is a platform the research team is familiar with compared to other 

Triple Stores. Fuseki is tightly integrated with TDB to provide a robust, transactional 

persistent storage layer, and incorporates Jena's text query (Apache, 2011). The user 

interface of the AJF RDF Triple Store is given in Figure 4.18. 
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Figure 4.18 The user interface of the Apache Jena Fuseki RDF Triple Store 

 

4.4.3 Rapid Miner 

 

In today's data science, ML methods and DM approaches have been integrated and 

widespread in many applications and platforms day by day. The spread of these 

approaches to every field paved the way for potential data mining software and in a 

short time, many programs were recognized by users and adopted by developers. In 

the literature, there are many applications such as Weka (WEKA, n.d.), Tableau 

(Tableau, n.d.), and Knime (KNIME, n.d.) for DM approaches, and ML needs. In the 

thesis study, the integration of classical ML algorithms into the proposed sensor 

ontology was done with Rapid Miner data mining software. The design interface of 

the Rapid Miner development program is given in Figure 4.19. 
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Figure 4.19 The design interface of the Rapid Miner development program 

 

RapidMiner is a client/server architecture-based software platform developed for 

machine learning and data mining needs. It mainly focuses on research and education. 

In this sense, it is possible to qualify RapidMiner as a community founded software. It 

has widespread commercial use as it can also be used for purposes such as rapid 

prototyping and application development. RapidMiner Studio, RapidMiner Server, 

RapidMiner Radoop, and RapidMiner Cloud can be used free of charge by members 

of the community and for academic research.  

 

Within the scope of the proposed thesis, classical machine learning algorithms used 

for a proactive system design and which data processing methods are implemented 

using the Rapidminer data platform on sensor data collected. 
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CHAPTER FIVE 

EXPERIMENTAL SETUP 

 

5.1 Overview of This Section 

 

In this part of the proposed thesis, firstly, the design of the sensor nodes, the 

properties of the WSN installed, and the placement of the sensor nodes in the location 

determined as the measurement area in SITARC and MICU are explained. In order to 

create the ontology of the data collected from the sensor nodes, how the SOSA/SSN 

framework was developed for the proposed thesis study and the criteria by which 

ontological rules are defined will be detailed. Finally, classical ML algorithms that can 

be used for a potential proactive system design will be implemented into ontological 

sensor data and it will be discussed which of these approaches may be more useful on 

ontological sensor data. 

 

In the next section, comparing the results, it will be discussed that the most 

appropriate machine learning approach is more effective on ontological sensor data, 

especially in critical areas such as hospitals, laboratories, and schools. The workflow 

diagram of the proposed system is given in Figure 5.1. The architectural structure of 

the proposed Ph.D. thesis is composed of 5 different layers, each of which has its own 

specific functions and characteristics. These layers are (i) Sensing and WSN Layers, 

(ii) Semantic Web Processing Layer, (iii) Data Processing Layer, (iv) Decision and 

Control Layer, (v) Presentation Layer. These layers are explained following briefly. 

 

5.1.1 Sensing and Wireless Sensor Network Layer 

 

This layer represents the environment where the sensor nodes are deployed and the 

WSN installed. Since the two use cases are considered in this thesis explained in the 

previous section, two different environments are expected. These use cases are 1- 

SITARC, and 2- MICU. Sensing and WSNs Layer includes collecting data of the 

parameters determined from indoor environments selected as measurement 

environment and transmitting them to the Base station via a Gateway node. The created 

sensor nodes are distributed in the measurement area in a way that guarantees the 
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measurement of every parameter for each environment. In other words, the sensors are 

placed in each independent part in the measurement areas, depending on the size, at 

least one of each sensor. 

 

 

Figure 5.1 Flowchart of The Proposed Thesis Study 

 

5.1.2 Semantic Web Processing Layer 

 

This section is the layer where the sensor ontology begins to be created. The transfer 

of data to the ontology created using the SOSA/SSN framework takes place in this 

layer. In this section, first of all, many preliminary procedures such as parsing, 

cleaning, minimizing, and analyzing data transferred from the previous layer are 
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applied. Also, all data pre-processed in this layer receive a unique identity for easier 

access to them (end-user, analyzer, any systems, etc.) consumers. 

 

After all these processes, RDF triples are created by establishing relationships 

between data. These created triples are saved to the local Apache Jena Fuseki Server 

with the help of the dotNetRdf library. When saving these triples, the previously 

expanded SOSA/SSN platform is taken as a metadata framework. Each concept and 

their relationships that are included in this framework are represented in RDF and 

XML data format. When necessary, these data stored in Fuseki are taken back to the 

development environment using SPARQL and transferred to the next layer for 

processing. 

 

5.1.3 Data Processing Layer 

 

This layer is the first part where raw data from WSN is processed for Machine 

Learning (ML) approaches. This data, which is transferred to the redevelopment 

environment using SPARQL, must go through some preliminary processes before 

being used for a proactive system design. The concept of pre-processing of data 

includes processes such as cleaning the data, reducing it if necessary, imputation of 

the data set, determining outliers, and labeling the data. Because the processing of the 

data sets of ML approaches in appropriate formats and after several operations provide 

more accurate and consistent results as output.  

 

5.1.4 Decision and Control Layer 

 

One of the most important layers of the proposed thesis project is the Decision and 

Control Layer. This layer uses the values measured by the sensor nodes to predict the 

near future. First, the current situation is evaluated. The values from the sensor data 

are compared with the globally accepted limit values for the measured parameters. If 

the limit values are exceeded, the necessary control is carried out. Control actions are 

predefined in the proposed doctoral thesis. Other control actions can be added later in 

the project as needed. 
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Control actions correspond to the "sosa:ActuatableProperty" class in the 

SOSA/SSN framework. Control actions can be evaluated under two main headings. 

These are the Action and Alert classes. Actions such as operating the air conditioner, 

opening the vent, or opening the window are considered a member of the "Action" 

class. On the other hand, giving alerts from system software, and sending SMS to staff 

is also a member of the Alert class. However, since the regions selected as use-cases 

are critical regions, the control actions in the Action "sosa:ActuatableProperty" class 

could not be implemented, since permission could not be obtained. 

 

If the incoming sensor data does not exceed the limit values, historical data is 

analyzed and the near future estimation is made for some measured data. Two groups 

of methods were used in the comparison of algorithms in the near future predictions. 

One of them is statistical methods and the other is ML algorithms. However, this part 

of the proposed doctoral dissertation will focus on ML methods. There are many ML 

methods for data analysis and prediction in the literature. However, it is very difficult 

to determine which method will work best for each event and situation. For this reason, 

after collecting the data, many classical ML methods were tried and the results were 

compared to many parameters such as performance, accuracy, and flexibility. These 

tests were performed by the RapidMiner program and algorithms producing the best 

result was used as an estimation algorithm in the proposed thesis. 

 

5.1.5 Presentation Layer 

 

This layer is through which sensor data reaches the end-user. In this layer, users can 

view and analyze data. The presentation and visualization of the data in the system 

involve analyzing the data coming as a result of the ontological query and presenting 

it to the data consumer in graphical or list form by using sorting and filtering methods. 

Especially large data heaps can be very difficult to understand and interpret. Presenting 

the collected data graphically and as a list makes the data easier to understand for 

consumers and increases the interaction between the data. Although the user interface 

in this layer is first thought of as a windows application, it is planned to design web-
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based and mobile-based user interfaces in order to enable data consumers to access 

data from anywhere and from various applications. 

 

5.2 Sensor Nodes Design, and Establishment of WSN 

 

The microprocessor, sensors, and communication device to be used in the study 

were evaluated from perspectives such as cost, suitability to the project, stability, and 

accuracy after extensive research and many trials, and the most suitable materials were 

selected. Within the scope of the proposed thesis, 4 types of sensor nodes were 

designed to fulfill 4 different tasks. These are named as Type A Node (Gateway Node), 

Type B Node (Sensor Node 1), Type C Node (Sensor Node 2), and Type D Node 

(Repeater Node), within the scope of the proposed thesis study. It will be referred to 

like this in the next part of the thesis. Sensor nodes created are shown in Figure 5.2.   

 

 

Figure 5.2 Sensor nodes created to collect data from measurement environments 

 

The sensors used within the scope of the thesis study were placed and distributed 

on two platforms such that the number of parameters is divided into two equal parts. 

There are two reasons why sensors are divided into different platforms. The first is to 

reduce the load on the nodes. Another reason is that the sensors can be flexible when 

they are distributed to the measurement environments. These sensor nodes are 

designed to collect parameter data in SITARC and MICU that may adversely affect 

the results of patients, employees, and laboratory analysis. 
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Type A Sensor Node (Gateway Node): This node is the most important node in 

the network, as it where all data is collected and transmitted to the base station. In 

cases where the Type A sensor node fails to function due to physical obstacles or any 

problem arising from its electronics, or if communication with other nodes is 

interrupted, all data communication in the network stops. That's why the Type A sensor 

node is vital. No sensor was placed on it because it did not make any measurements in 

the environment. 

 

Type B Sensor Node (Sensor Node 1): In the proposed project, 5 different sensors 

are used to measure 8 parameters. These sensors are integrated into the two nodes, 

measuring an equal number of parameters.  

 

 

Figure 5.3 Fritzing-drawn circuit modeling of a Type B sensor node 

 

The DHT22 sensor, which measures the temperature and humidity parameters in 

the environment, and the CCS811 sensor that measure the CO2 and TVOC, are 
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integrated on the Type B Sensor Node. The schematic design of the Type B sensor 

node, prepared with the Fritzing circuit modeling program, is shown in Figure 5.3. 

 

Type C Sensor Node (Sensor Node 2): Another sensor node that makes 

measurements in the environment specified as the use case for the proposed project is 

the Type C sensor node. MQ-7 sensor measuring carbon monoxide, Nova SDS011 

Sensor measuring PM2.5, and PM10 values, and light-dependent resistance (LDR) 

sensor measuring light intensity in the environment are integrated into this node. The 

schematic design of the Type C sensor node, prepared with the Fritzing circuit 

modeling program, is shown in Figure 5.4. 

 

 

Figure 5.4 Fritzing-drawn circuit modeling of a Type C sensor node 

 

Type D Sensor Node (Repeater Node): After the created nodes were placed in the 

measurement environment and WSN was established, a communication problem 

occurred due to the distance and obstacles between some nodes. In order to solve this 

communication problem and to ensure healthy data communication, repeater nodes 

were placed that strengthen the received signal and enable the data received from the 

node to reach the gateway node. The sensors used, the nodes created, the technical 
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infrastructure of this network, the characteristics, and detailed description of this 

system used are available in the previous study of the research team (Aktaş, Milli, 

Lakestani & Milli, 2020). 

 

Arduino Uno was used as a microprocessor in sensor nodes as stated in previous 

sections. While generating the prototypes of the sensor nodes, Arduino Uno R3 

Protoshields were used to get rid of the disadvantages of wiring and modeling on the 

breadboard. The nRF24L01 + is generally a module sensitive to voltage fluctuations. 

One of the disadvantages is that there is no light on the module indicating whether it 

is receiving electricity, so it cannot be determined whether the module is working or 

not. If there is a voltage fluctuation in the installed system, the nRF24L01 + module 

does not work and cannot communicate. To solve the communication problem caused 

by voltage fluctuations and interference between sensor nodes, a capacitor of 10 uF 50 

V was placed between nRF24L01 + GND and VCC pins. Thus, after the sensor nodes 

were distributed in the measurement environment, there was no communication 

problem between the sensor nodes when there was no obstacle and distance problem. 

 

5.3 Use Cases and Deployment of Sensor Nodes into These Area 

 

2 different domains and environments have been chosen to implement the proposed 

system as a real-world use case. The first of these are certain laboratories that are 

actively used in the SITARC of BAIBU and where various physical, chemical, and 

biological analyzes are performed. Another environment chosen as an example of use 

is the patient care rooms used in BAIBU the MICU. 

 

5.3.1 Deployment of Sensor Nodes in SITARC Environment 

 

In SITARC, which is selected as a measurement area, there are more than 10 

academic laboratories used by academic staff to carry out their analyzes. Within the 

scope of the proposed thesis study, due to the limited budget, 3 of these laboratories 

were determined as active measurement areas and sensor nodes were placed. These 

laboratories determined as measurement areas are MaldiTof, AoxMercury, and 

Chromatography. 
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By placing sensor nodes in these average-sized laboratories in a way that there is at 

least one sensor from each sensor in each laboratory, it is ensured that the 8 parameters 

to be measured are also measured. For the measurements in SITARC, a total of 1 Type 

A Node (Gateway), 3 Type B sensor nodes, and 3 Type C sensor nodes were initially 

designed. The Type B and Type C sensor nodes described in Section 5.2 have been 

deployed in these 3 laboratories to be used in this case study. 

 

 

 

Figure 5.5 Deployment of nodes in the SITARC environment 

 

Since one of the objectives of the proposed study is to determine the IAQ to protect 

the health of the analyst, it has been deemed appropriate to deploy the sensor nodes at 

a height of approximately 1.5 meters which is considered as the average breathing 

level. Besides, these sensor nodes have been deployed near laboratory devices and 

tubes where the gas density is expected to be high. The deployment of sensor nodes in 

SITARC to laboratories is given in Figure 5.5. 
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According to the in Figure 5.5, SN_12 and SN_13 nodes have been placed in the 

AoxMercury laboratory. SN_22 and SN_23 sensor nodes were placed in the MaldiTof 

laboratory. Finally, SN_32 and SN_33 sensor nodes were placed in the 

Chromatography laboratory, and sensor measurements were performed. 

 

The SN_11 Gateway Node has been deployed in the AoxMercury laboratory, which 

is in the middle of these three laboratories. Sometimes SN_11 in the AoxMercury 

laboratory and SN_33 nodes in the Chromatography laboratory had problems in 

communication due to the distance and obstacles. Therefore, only one number of 

SN_34 has been placed in the Chromatography laboratory in a location close to SN_11. 

Thus, the interruption of communication between these two sensor nodes was 

prevented. 

 

Inadequate environmental parameters in buildings such as hospitals, schools, etc. 

may cause short and long-term health problems such as fatigue, headache, dizziness, 

respiratory diseases, and cancer in individuals who spend most of their time in 

buildings. However, inadequate environmental conditions in laboratory environments 

not only threaten human health but can also significantly affect some analysis results. 

For example, temperature rise in the Chromatography laboratory significantly affects 

the performance of PM and gas chromatography devices. In the VOC analysis 

performed in this laboratory, the increase in the concentration of TVOC in the 

environment adversely affects the analysis results. Light level, ambient temperature, 

and CO2 parameters are effective in the microorganism culture developed in the 

MaldiTof laboratory. 

 

The number of examples to be given to the effect of the parameters to be measured 

on laboratory analysis results can be increased within the scope of the proposed study. 

In addition to these, there are expensive devices such as a spectrophotometer, Maldi 

Tof/Tof-Ms biotyper system, headspace sampler, thermal desorber, U-Hplc Ecd 

detector in the laboratories to be measured. Increase CO2, temperature, and humidity 

levels in their environment can cause these devices to corrode. This leads to cost losses 

by revealing the need for maintenance in the devices over time. 
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While a particular increase in some parameters in the laboratories is positive for 

human health, it may have adverse effects on the active life of the devices in the 

laboratory and the results of the laboratory analyses. It is ideal for employees to have 

a working temperature between 23 °C and 25 °C. However, this increase in 

temperature causes the organic materials to be deformed more quickly and will directly 

affect the results of the analysis. For example, when identifying microorganisms in the 

MaldiTof laboratory, the maximum average temperature should be almost 18 °C. 

 

Otherwise, the culture gets older quickly and causes the results of the analyses to 

be misleading. Therefore, it becomes more complicated to monitor the parameters in 

the laboratory and to regulate the appropriate environment in a way that does not 

threaten human health, does not affect the results of the analysis, and does not shorten 

the life of the devices. In order to overcome this complex situation, different 

applications and solutions than classical methods are required. In the case study, the 

ontology of the sensor data is created, limits and rules are defined to overcome this 

complex situation. 

 

5.3.2 Deployment of Sensor Nodes in MICU Environment 

 

The second use-case chosen as the measurement area was chosen as the MICU, 

where most of the patients with impaired vital functions and vital risks were given 24-

hour vital support. The measured MICU consists of the main room where the normal 

intensive care patients stay and the isolated room where the patients with more serious 

illnesses are monitored. Within the scope of the proposed thesis, sensor knots were not 

placed in other rooms due to the limited budget. The designed sensor nodes were 

placed in these two rooms, which are critical for the vital activities of the patients. 
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Figure 5.6 Deployment of nodes in the MICU environment 

 

For the MICU use case, a total of 9 sensor nodes were designed, including 1 Type 

A node, 4 Type B Sensor nodes, and 4 Type C Sensor nodes. However, after the sensor 

nodes are created and distributed to the MICU, it has been observed that Type B and 

Type C nodes placed in the isolated room sometimes experience problems in 

communication due to the distance and physical barriers to the Gateway node Type A 

node. Therefore, only one number of SN-D has been placed on the service table which 

is in the middle of the MICU main room, so that the communication between these 

sensors did not break and the data transfer continued. Deployment of nodes in the 

MICU which is selected as a measurement environment is given in Figure 5.6. 

 

In MICU, sensor nodes are positioned around 1.5 meters, which is the human 

respiratory level, just like in SITARC. The node feeds were provided from the care 

units at the head of the patient beds, that is, from the mains electricity via an adapter. 

As can be seen in Figure 5.6, care has been taken to distribute the sensor nodes 

homogeneously to the environment in order to increase the effective area more. SN_41 

sensor node has been deployed in the Control room where the computer is located, in 
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order to avoid confusion during the performance of the controls required to evaluate 

the data. Since the control room is outside the measurement area, Type B and Type C 

sensor nodes are not placed in this room. 

 

SN_42 and SN_43 sensor nodes were located in the patient reception table where 

there is a lot of intensity, especially during the morning control hours. SN_52 and 

SN_53 sensor nodes were placed between the inputs in the MICU main room, which 

has two external inputs. SN_62 and SN_63 sensor nodes were located near the patient 

beds opposite the entrances. Finally, SN_72 and SN_73 sensor nodes were located in 

an Isolated room, where patients with more critical conditions were monitored. 

 

Sensor measurements and wireless communication in WSN were checked for a few 

days after the sensor nodes were placed in the measurement environment. After it was 

understood that there was no problem in sensors and communication, the data 

collection process, which was expected to be an important and long process for the 

thesis study, was initiated. While the data collection process was continuing, the WSN 

system, which was set up periodically, was checked and, if any, its problems were 

resolved. 

 

5.4 Collecting Raw Sensor Data 

 

Since the project budget was insufficient to design 18 separate sensor nodes, the 

measurements made in SITARC and MICU, which were selected as the measurement 

area, were carried out at different date intervals. Thus, within the scope of the proposed 

thesis, a total of 10 different sensor nodes were designed, including 1 Type A Gateway 

Node, 4 Type Sensor Node, 4 Type C Sensor Node and 1 Type D Repeater Node. 

These designed sensor nodes were first placed in SITARC as described in section 5.3.1 

and data collection was performed. When the data collection process in SITARC was 

finished, the sensor nodes were collected and deployed to MICU as described in 

section 5.3.2 and the data collection process was performed there. When, how, and 

how the data are collected and stored in SITARC and MICU selected as measurement 

areas are explained in detail below. 
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5.4.1 Collecting Raw Sensor Data in SITARC 

 

After the sensor nodes were placed in the 3 laboratories of SITARC, and the data 

was sent properly, the data collection process was started on 29.08.2019 at 16:05. Each 

sensor in the installed system is programmed to measure an average per minute and 

send it to the gateway. The hourly average of the collected data was added to Apache 

Jena Fuseki, which is frequently used as a triple database. Jena Fuseki is a SPARQL 

server. Besides, it has been preferred as a triple database in this project as it provides 

a clear user interface for server monitoring and management. 

 

The data collection process has been terminated on 12.10.2019 due to the annual 

maintenance of the devices in the laboratory. A total of 45 days of uninterrupted data 

was collected at the selected measurement sites. Between these dates, each sensor 

made approximately 65,000 measurements, and a total of approximately 1,500,000 

measurements were made. Theoretical and practical training was given twice in the 

first 10 days of September and October in the laboratories specified between the dates 

of measurement, and it was frequently used in 3 laboratories where the measurement 

was made. This situation has been beneficial for the project results in terms of seeing 

what kind of changes may occur in the parameters during the analysis and training in 

the laboratory. 

 

5.4.2 Collect Raw Sensor Data in MICU 

 

After the sensor nodes were placed in the 4 locations in MICU, and the data was 

sent properly, the data collection process was started on 02.03.2020 at 11:03. Each 

sensor in the installed system is programmed to measure an average per minute and 

send it to the gateway like at SITARC. The hourly average of the collected data was 

added to Apache Jena Fuseki like the data gathering process in SITARC.  Jena is a 

SPARQL server and frequently used as a triple database by many researchers. In 

addition, Fuseki has been preferred as a triple database in this project as it provides a 

clear user interface for server monitoring and management as mentioned before. 
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The data collection process carried out at MICU was completed on 01.04.2020 due 

to the measures taken within the scope of the Covid-19 outbreak, which was effective 

across the world. A total of 30 days of uninterrupted data was collected at the 4 

different selected measurement sites. Between these dates, each sensor made 

approximately 43,000 measurements, and a total of approximately 1,400,000 

measurements were made. Within the scope of this project, in the MICU designated as 

the second measurement area, doctor controls were carried out between 09:00 and 

11:00 am every day. In addition, every day between 12:00 and 14:00 is determined as 

visitor hours. These situations have been beneficial in terms of evaluating the results 

of the project to what extent the human density and human activities affect the 

environmental conditions during these hours. 

 

5.5 The Controller Program Design 

 

The user interface designed within the scope of the proposed project can be used 

for data processing, saving, editing, visualization, listing, etc. It is designed to perform 

many operations such as. Its most important function parses the sensor data coming 

from WSNs, saves it to the database, and manages it. Apart from that, the incoming 

sensor data are shown in the interface as both historical data and real-time. In addition, 

data can be filtered according to sensor node number and sensor type or parameter. At 

the top of the user interface, the last data from sensor nodes and their time are 

displayed. This is intended to be immediately detected and reacted when there is a 

delay in any sensor node. 

 

In the middle of the user interface, the graph of the sensor data is plotted real-time. 

However, this section has been canceled during the data collection phase because the 

desired efficiency cannot be obtained from the graphic due to the abundance of sensor 

data and the system has to work for a long time. The edited data are created in the form 

of RDF triples in the background and saved in the RDF database by providing a 

connection to the Fuseki Server database. The Control Unit, which was designed 

within the scope of the thesis study, is given in Figure 5.7. 
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5.6 Ontology Development Process 

 

In the scope of this study, an example of SOSA/SSN, the framework designed by 

W3C for semantic sensor networks, was generated using data collected from the 

SITARC and MICU. In this section, how the SSN framework is developed with special 

concepts and examples and how it becomes suitable for the purpose will be presented. 

The proposed ontology includes classes, individuals, rules, and their relationships in 

laboratory parameters monitoring systems. This proposed ontology framework was 

designed with the Protégé ontology editor developed by Stanford University. Protege 

is a free open-source framework that provides an interface for users to define 

ontologies. Protege 5.5 editor has the skills of creating classes and subclasses, defining 

and visualizing the relationships between classes in order to expand SSN ontology.  

 

The SSN is an application-independent framework which needs to be expanded 

with specific notion and examples. This expansion process includes has been made by 

adding some classes, object property, data property subclasses, and individuals that 

fundamental of ontologies to the SSN core ontology. Some subclasses and individuals 

added to the SSN/SOSA core ontology are explained as follows. Firstly, the 

Laboratory and Hospital classes were added as a subclass of the 

“sosa:FeatureOfInterest” class. In the laboratory environments, since the case study 

was implemented in 3 different laboratories, there are 3 different individuals of this 

Laboratory subclass.  

 

These are MaldiTof laboratory, AoxMercury laboratory, and Chromatography 

laboratory. On the other hand, in hospital environments, since the case study was 

implemented in 2 different rooms, there are 2 different individuals of this hospital 

subclass. These are “IntensiveCareUnit” and “ControlRoom”. Extended and 

developed SSN ontology is given in Figure 5.7 from “sosa:FeatureOfInterest” class 

perspective. The proposed study has been integrated into the 2 different areas 

described above as a real-world use scenario. When this ontology is desired to be 

expanded in terms of its usage area in future studies, the environment to be observed 
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such as a university, school, factory, workplace, etc. should be added to the 

"sosa:FeatureOfInterest" subclass. 

 

 

Figure 5.8 Proposed sensor ontology from “sosa:FeatureOfInterest” perspective 

 

Sensor nodes created previously in different types were added as a subclass of the 

“sosa:Platform” class, which is a concept that includes the standard classes of SSN 

ontology and other assets, especially sensors, actuators, samplers. In the proposed 

ontology, since there are 4 different sensor node types, there are 4 subclasses in 

“sosa:Platform” class. These are SN-A, SN-B, SN-C, SN-D.  Since there are two SN-

A in the proposed project, individuals of this class are AoxMercurySN11, and 

IntensiveCareUnitSN41. Extended and developed SSN ontology is given in Figure 5.8 

from “sosa:Platform” class perspective. 

 

Within the scope of the proposed project, a total of 7 individuals of the SN-B class, 

a total of 7 individuals of the SN-C class, and a total of 2 members of the SN-D class 

were created as seen in Figure 5.9. If a node to the project later to perform a different 

task will be used, simply this node must be added as a subclass to the "sosa:Platform" 

class. However, if an extra node is required to perform the same task, it is necessary 

to add it as an individual of the relevant node. 



 

 

88 

 

 

Figure 5.9 Proposed sensor ontology from “sosa:Platform” class perspective 

 

In the class “ssn:System” of core SOSA/SSN ontology already has classes 

“sosa:Actuator”, “sosa:Sensor”, and “sosa:Sampler”. In the proposed project, within 

the scope of the extension of SSN ontology, 5 sensors and 1 actuator as described in 

Section 4.1.3 were added as subclasses. 

 

Each sensor used in the sensor classes has been named using its own name and the 

number of the node where it is deployed. For example, for the SITARC use case, the 

DHT22 sensor in the MaldiTof laboratory is named DHT22_22. Likewise, in the 

MICU use case, the MQ-7 sensor module deployed in “ControlRoom” is named 

“MQ7_73”. Extended and developed SSN ontology is given in Figure 5.10 from 

“ssn:System” class perspective. 
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Figure 5.10 Proposed sensor ontology from “ssn:System” class perspective 

 

One of the SOSA/SSN core classes, “sosa:Property”, has 2 subclasses. These are 

“sosa:ActuatableProperty” and “sosa:ObservableProperty”. These properties in the 

ontology have been separated and grouped according to their observability and 

actuatability. Actions and alerts are given as an example of “sosa:ActuatableProperty” 

subclass. 

 

Temperature, Humidity, CO2, TVOC, PM2.5, PM10, CO, Light that are parameters 

of wanted to measurement are added to extended SOSA/SSN ontology as individuals 

of “sosa:ObservableProperty” class. When another parameter is wanted to be observed 

and activated, it must be added to the related subclass of “sosa:Property”. Extended 

and developed SSN ontology is given in Figure 5.11 from “sosa:Property” class 

perspective. 
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Figure 5.11 Proposed sensor ontology from “sosa:Property” class perspective 

 

There is no “MeasurementUnit” class in the basic SOSA/SSN ontology. The 

“MeasurementUnit” class was created to avoid unit complexity at the proposed 

ontology. This class specifies the unit of the “sosa:hasSimpleResult” value of the 

individuals of the measured “sosa:Observation” class. Within the scope of the 

proposed project, the units of the parameters measured in laboratories were added as 

individuals of the “MeasurementUnit” class. 

 

Parts per million (ppm) was used as the unit of measurement for PM2.5, PM10, CO2, 

and CO. While Celsius was used as the measurement unit for temperature, parts per 

billion (ppb) was used as the measurement unit for TVOC. Finally, percent was used 

as the unit of measurement light and humidity. Extended and developed SSN ontology 

is given in Figure 5.12 from “MeasurementUnit” class perspective. 
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Figure 5.12 Proposed sensor ontology from “MeasurementUnit” class perspective 

 

If other units will be used in different projects, it is enough to add them to the 

“MeasurementUnit” class. For example, if the temperature is to be measured in Kelvin, 

it should be added to the “MeasurementUnit” class of the Kelvin unit. Thus, it is 

considered that there will be no unit confusion between the values to be measured in 

different projects to be managed under the same framework. Since 

“MeasurementUnit” is the unit of the observed property, “hasMeasurementUnit” 

object property has been created between “sosa:Observation” class. 

 

Finally, the most important class for the proposed ontology among these classes is 

the “sosa:Observation” class. In this study, it was not necessary to add any subclasses 

for this class. However, each value measured by the sensor data is recorded as an 

individual in the observation class by assigning a different id of 32 characters. In this 

way, each observation is ensured that the individual has a unique identity. This allows 

data consumers to access each observation data directly. Each observation has 2 data 

properties called “sosa:hasSimpleResult” and “sosa:resultTime”. The 

“sosa:hasSimpleResult” property is the simple value of the “sosa:Observation”, 

“sosa:Actuation” or “sosa:Sampling” action. The “sosa:resultTime” data property 

shows the time when the “sosa:Observation”, “sosa:Actuation” or “sosa:Sampling” 
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action is completed. Extended and developed SSN ontology is given in Figure 5.13 

from “sosa:Observation”  class perspective. 

 

 

Figure 5.13 Proposed sensor ontology from “sosa:Observation”  class perspective 

 

In the proposed thesis, the changes made within the scope of the original 

SOSA/SSN ontology framework, the added classes, object property, data properties, 

and instances are explained in general. When the original SOSA, SSN, and the 

proposed expanded framework are analyzed numerically after the addition process; 

 

There are 16 classes in the original SOSA framework, and 23 classes in the original 

SSN framework, while 14 more classes were added in the expanded framework and 

there are 37 classes in total. While there are 21 object properties and 2 data properties 

in the SOSA frame, there are 36 object properties and 2 data properties in the SSN 

frame. There are 37 object properties and 2 data properties in total in the extended 

Sensor ontology framework which is proposed within the scope of this thesis. While 

there is no individual in the basic SOSA and SSN frames, within the proposed sensor 

ontology framework, 100 individuals were added and expanded. 
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5.7 Integrating of ML Algorithms on Ontological Sensor Data 

 

In the Experimental Setup section, sensor data were collected in designated indoor 

environments as the first step. Later, these sensor data collected were added 

individually to the Observation Class in the extended SOSA/SSN framework in the 

Apache Jena Fuseki RDF database. As a final step, in this section, ML algorithms and 

data mining approaches have been integrated into the data extracted from the RDF 

database. In this section, many classical ML algorithms have been tried on ontological 

sensor data for a proactive system design. The results of these tried algorithms were 

compared in many ways and it was presented which algorithms could be used in a 

proactive system design for the proposed ontological sensor system, and the results 

were shared with the academic community. 

 

5.7.1 Pre-Processing of Ontological Sensor Data 

 

For a proactive system design, when ML approaches are used, the data created must 

first be prepared for ML algorithms. Preprocessing the data set to be used will likely 

improve performance in most of the implemented algorithms. In this study, ontological 

sensor data includes preprocessing operations, Data Labeling, Imputations, Outlier 

Detection, and Normalization processes. These operations applied to ontological 

sensor data are explained in detail below. The sequence of pre-processing operations 

performed before implementing ML algorithms on the raw sensor data collected from 

SITARC and MICU is given in Figure 5.14. 

 

 

Figure 5.14 The flowchart of implementation in data preprocessing 
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5.7.1.1 Missing Data Imputation 

 

The data collection phase of the proposed thesis study took 45 days in the first use-

case, SITARC. Data acquisition in SITARC was carried out with 15 sensors placed on 

8 sensor nodes. As mentioned earlier in this study, 8 different indoor environment 

parameters were collected in 3 different laboratories in SITARC. Sensor nodes are 

programmed to measure from each sensor every minute and transmit to the Gateway 

node. Therefore, in the SITARC use case, a total of 24 measurements are made per 

minute and given as input to the system. 

 

Approximately 1440 measurement data per hour were taken from the deployed 

sensors. According to this calculation, 34.560 measurements were made with the help 

of sensors per day at SITARC. It is expected that approximately 1.555.200 sensor data 

will be obtained as a result of the 45-day measurement made in SITARC. While these 

collected data are stored in the RDF database, their hourly averages are recorded so 

that the data table is not overloaded. Because too much change in minute data is not 

expected and unnecessary repetitive data may cause the system to slow down. 

 

As all these calculations indicate, when the measurements are completed in the 

laboratories with SITARC, it is expected that there will be approximately 25,920 data 

in the database. However, the total data obtained after 45 days is 23,252 due to the 

malfunction of the devices operating in the system or human error. This number 

corresponds to approximately 89.7% of the data that should be recorded. 

 

It is important to fill in missing values with a reasonable approach, especially if 

approaches sensitive to missing values such as "Decision Tree" and "Random Forest" 

are to be studied. For this reason, data continuity was ensured by filling the 10.3% 

portion that could not be recorded, using well-known and accepted methods in the 

literature. In data mining, it is possible to solve the missing value problem with 

different approaches, for example deleting missing values, accepting them as the 

average of that feature, or accepting zero are some of the most common missing value 

solutions. 
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Deleting or statistically filling missing values may cause bias and negatively affect 

the result. Therefore, unlike these approaches, imputations of the data can significantly 

improve the quality of the data set. Recently, many studies have shown that imputing 

missing values with classification approaches have positive effects on outcomes. 

Comprehensive information on this topic is given in section 2.4.2.5.  Within the scope 

of the study, the missing values in the SITARC dataset were filled by using the K-NN 

algorithm and Gradient Boosted Trees approaches together as a hybrid and the quality 

of the data set was increased. Data imputation was carried out with the RapidMiner 

data processing program. How the missing values in SITARC dataset are filled using 

RapidMiner is given in Figure 5.15. 

 

Figure 5.15 Imputation processing in SITARC with RapidMiner 

 

The data collection phase of the proposed thesis study took 30 days in the second 

use-case, MICU. Data acquisition in the MICU was carried out with 20 sensors placed 

in a total of 10 sensor nodes. In this study, 8 parameters were measured in 2 different 

environments in MICU as mentioned before. Sensor nodes are programmed in MICU 

to measure from each sensor every minute and transmit to the Gateway node, just like 

SITARC. Therefore, in the MICU use case, a total of 32 measurements per minute are 

made and given as input to the system. 

 

Approximately 1920 measurements were made per hour from the deployed sensors. 

According to this calculation, 46,080 measurements were made with the help of 
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sensors per day in MICU. It is expected that approximately 1,382,400 measurements 

will have been made after 30 days of measurement at the MICU. While these collected 

data are saved to the RDF database, their hourly averages are recorded so that the data 

table is not overloaded. Because too much change in minute data is not expected and 

unnecessary repetitive data may cause the system to slow down. 

 

As all these calculations indicate, when the measurements are completed in the two 

environments in the MICU, it is expected that there will be approximately 23,040 data 

in the database. However, the total data obtained at the end of 30 days is 20,355 due 

to the occasional malfunction of the devices operating in the system, power failure, or 

human error. This number corresponds to approximately 88.35% of the data to be 

recorded. Filling the missing values in the data created by the data collected in MICU 

with a reasonable approach will increase the quality of the prediction to be made in the 

future. For this reason, the continuity of data was ensured by filling 11.65% of the 

unrecorded part with well-known and accepted methods in the literature. 

 

 

Figure 5.16 Imputation processing of missing values in MICU with RapidMiner 

 

The data collected in MICU within the scope of the study were filled with a hybrid 

approach as in the first use-case SITARC. This hybrid approach includes the K-NN 

algorithm and the Gradient Boosted Trees algorithms. Data imputation operation was 
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carried out with the RapidMiner data processing program. In Figure 5.16, it is 

schematized how the missing values in the data set consisting of the data collected in 

MICU are filled using RapidMiner. 

 

As seen in Figure 5.15 and Figure 5.16, firstly the attributes (Columns) that need to 

be imputed in both data are selected with the "Select Attribute" component in Rapid 

Miner Studio. The missing values in the data set consisting of the data collected in 

both use-cases were filled by adding two Impute "Missing Value" components. Two 

different approaches, namely K-NN and Gradient Boosted Tree, were used with these 

Impute Missing Value Components, respectively. 

 

Considering the time series data of the K-NN approach, it makes imputations with 

a high accuracy rate. However, the number of consecutive missing values in some parts 

of the data sets created may be higher than the value that is used for neighborhood 

value. Therefore, a hybrid approach has been used to fill all data in the data set 

consistently. Finally, the new datasets created as a result of the imputation process 

were saved to Local Repositor with the "Store" component to be used in later 

operations. The results are also saved in different formats for different purposes with 

the "WriteExcel" and "WriteCvs" components provided by the Rapid Miner studio. 

 

5.7.1.2 Data Labeling Process 

 

The accepted reference values of important parameters that determine indoor air 

quality such as CO2, CO, TVOC, PM2.5, PM10 have been determined by the institutions 

that are accepted worldwide such as WHO, EPA, ASHARE in the literature. In this 

study, these reference values are used while classifying and labeling the data. 

However, while determining the limit values of parameters such as temperature and 

humidity, the past experiences of researchers who made analyses in other research and 

laboratories were used. Although the light level, which is the last parameter measured, 

is effective in many laboratory processes such as bacterial growth, an accepted limit 

value has not been found in indoor air quality literature. 
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According to the WHO, the daily average max values that can be exposed for PM2.5 

and PM10, which 2 of the measured parameters in the scope of the proposed study, are 

25 ppm and 50 ppm, respectively (Krzyzanowski & Cohen, 2008). Studies have shown 

that exposure to PM2.5 and PM10 causes respiratory diseases (H. Qiu et al., 2012; 

Westphal et al., 2013). Moreover, toxicological and epidemiological studies show that 

PM2.5 is particularly harmful because smaller particles are more likely to penetrate 

deeper into the lungs (Feng, Li, Sun, Zhang, & Wang, 2016; Janssen, Fischer, Marra, 

Ameling, & Cassee, 2013; Strandberg-larsen et al., 2016). 

 

CO2 is a colorless, odorless, noncombustible gas that occurs naturally in the 

atmosphere. Outdoor CO2 levels generally range from 350 to 400 ppm. According to 

the WHO, the maximum CO2 level should be 1,000 ppm for human health indoors 

(Krawczyk, Rodero, Gładyszewska-Fiedoruk, & Gajewski, 2016). On the other hand, 

according to the ASHRAE, the maximum CO2 value in indoor areas should be 700 

ppm for humans (Stanke et al., 2007). Ventilation is probably insufficient when the 

CO2 level exceeds the reference value, and people often complain of headache, nose 

and throat discomfort, fatigue, lack of concentration, coma (Hussin, Ismail, & Ahmad, 

2017). Since laboratory work continues for long hours, the analysts will likely be 

exposed to high levels of CO2 for a long time. In order to prevent or minimize the 

complaints of people who have to work in laboratory environments, the maximum CO2 

level that ASHRAE and WHO consider appropriate is selected as the limit in this 

study. 

  

Another parameter measured in this study is TVOC. They are toxins and chemicals 

that can harm the environment and human health. Health effects can range from minor 

eye, nose, and throat irritations to liver and kidney damage or cancer, depending on 

the level of exposure (Zahangeer, Armin, Haque, Halsey, & Qayum, 2018). According 

to Brown, the average hourly TVOC level is a maximum of 500 ppb (Brown, 2008). 

CO is a colorless, non-irritating, odorless, and tasteless toxic gas. The average hourly 

maximum CO level set by the WHO is 35 ppm (World Health Organization[WHO], 

2010). In the case of overexposure above the limit CO levels determined by the WHO, 
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CO poisoning occurs. CO poisoning causes serious problems from headaches, nausea, 

and vomiting to cardiac arrest, respiratory arrest, and coma (Wilbur et al., 2012). 

 

One of the most critical factors affecting the performance of the device in mass 

measurement analysis is temperature. If the temperature is outside the limit values, it 

may cause undesirable conditions in the analysis results. Therefore, the average hourly 

temperature was taken between 18 °C to 22 °C in order to minimize error from the 

analysis results in the laboratories where the measurement was performed. Humidity 

in the environment causes the devices to rust quickly and shorten their life. For this 

reason, the humidity limit values in the environment to be measured should be between 

35%-70%, which is the limit values for human health. A very high light level will 

cause the aging of the sample to be studied, which will adversely affect the analysis 

results. On the contrary, when the light level is too low, the bacterial culture studied 

will develop very slowly. This situation will cause time loss. It was decided that the 

optimum light level in the laboratory to be measured would be 60%-80% by taking 

advantage of the previous experience of the project team performing the analysis. 

 

Table 5.1 Labels and Limit values to be used for the SITARC dataset 

  Excellent 

(5) 

Good 

(4) 

Moderate 

(3) 

Poor 

(2) 

Terrible 

(1) 

Temperature 19-21 18-19 17-18 16-17 <16 

  21-22 22-23 23-24 >24 

Humidity 40-60 30-40 20-30 10-20 <10 

  60-70 70-80 80-90 >90 

CO2 <700 700-900 900-1,100 1,100-1,300 >1,300 

TVOC <40 40-70 70-100 100-150 >150 

PM2.5 <10 10-20 20-30 30-40 >40 

PM10 <20 20-40 40-60 60-80 >80 

CO <25 25-50 50-75 75-100 >100 

Light Nan Nan Nan Nan Nan 

 

The optimum levels of the parameters evaluated within the scope of this study were 

presented above. In other words, considering these optimum levels, the number of 

classes planned to be created in the Data Labeling section can be considered as two 

(For example Good, Poor). However, in order for the proposed system to provide a 

common framework apart from domains that are used within the scope of this study, 
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the rows in the data are divided into 5 different classes. Another factor in the separation 

of rows into so many classes is to push the limits of the models to be tried as a 

prediction approach. Generated classes and their limit values are shown in Table 5.1. 

 

In many studies in the literature, generally, a few parameters and two different 

classes are used, such as “Good” and “Poor” (Adeleke et al., 2017) Since the most 

prominent purpose in this study is to find a suitable estimation algorithm for 

ontological sensor data, the situation for the algorithms to be selected is made a little 

more difficult, 5 different classes are defined for 8 parameters and the limit values are 

determined. The class of an instance is determined by the parameter with the worst 

class value among the parameters that make up that row. Table 5.2 shows how the 

class value of the row is determined. 

 

Table 5.2 Determining the class values of parameters and rows 

Temp. Humidity CO2 TVOC PM2.5 PM10 CO Light Nominal 

22.93 54.16 534.55 20.86 10.66 12.85 27 74.63 Moderate 

23.01 53.78 541.1 21.68 10.09 11.83 27 67.1 Poor 

21.03 42.12 422 2.48 0.88 1.12 21.6 26 Good 

20.99 42.2 417.45 1.71 1.32 1.38 21 4 Excellent 

20.27 50.94 879.46 71.31 5.08 5.78 32.59 78.07 Moderate 

20.31 50.94 554.24 23.08 4.67 5.73 32.8 76.56 Good 

20.25 52.34 1,348.59 142.37 7.58 8.96 37.28 28 Terrible 

20.31 52.3 1,223.55 128.47 7.79 9.22 34.65 28 Poor 

19.66 52.25 1,306.33 138.5 6.53 7.71 255.35 79.43 Terrible 

19.59 55.33 407.04 0.28 3.42 3.73 22.57 26 Excellent 

 

In SITARC, when the rows are classified according to the above rules, it has been 

seen that 65% of the total of 3168 rows of data are at the desired level for the laboratory 

indoor environments. However, in the remaining 35%, timely preparation of necessary 

action plans is vital for laboratory analysis results, and employee health. 
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Figure 5.17 Distribution of lines in SITARC dataset to classes 

 

The experiments reveal that the time laboratory air quality is in the desired range 

when there is no biological analysis and nobody is in the environment. After labeling 

the rows in the dataset created from the data collected in SITARC, their distribution to 

the previously defined classes is given in Figure 5.17. 

 

Table 5.3 Labels and Limit values to be used for the MICU dataset 

  Excellent 

(5) 

Good 

(4) 

Moderate 

(3) 

Poor 

(2) 

Terrible 

(1) 

Temperature 23-25 22-23 21-22 20-21 <20 

  25-26 26-27 27-28 >28 

Humidity 30-70 25-30 20-25 15-20 <15 

  70-75 75-80 80-85 >85 

CO2 <700 700-900 900-1,100 1,100-1,300 >1,300 

TVOC <40 40-70 70-100 100-150 >150 

PM2.5 <10 10-20 20-30 30-40 >40 

PM10 <20 20-40 40-60 60-80 >80 

CO <30 30-50 50-75 75-100 >100 

Light Nan Nan Nan Nan Nan 

 

Since high-temperature values negatively affect the results of laboratory analysis 

studies, the temperature value was kept slightly below normal conditions while 

determining the labels of the measurements made in SITARC. However, during the 

monitoring and treatment of patients in MICU, the temperature values are increased 
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by 2 °C compared to normal indoor temperature conditions due to the lack of clothing 

or thinness. Therefore, while labeling the data in MICU, the values in Table 5.3 were 

taken as the criterion. 

 

In MICU, when the rows are classified according to the above rules, it has been 

seen that 40% and of the total of 2780 rows of data are at the desired level for the 

hospital indoor environments. In addition to this data, approximately 32% of all of the 

data are within reasonable average values. However, in the remaining, approximately 

28%, timely preparation of necessary action plans is vital for hospital staff and 

especially patients who are in the process of monitoring and treatment there. 

According to the results of the collected data, it is seen that the environmental 

conditions at MICU generally worsen in the morning hours that are patient control 

time, and in the afternoon, hours visited by the relatives of the patients. In the other 

remaining times, MICU indoor air quality level was seen that generally healthy. After 

labeling the rows in the dataset created from the data collected in MICU, their 

distribution to the previously defined classes is given in Figure 5.18. 

 

 

Figure 5.18 Distribution of lines in MICU dataset to classes 
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5.7.1.3 Normalization 

 

Many models we will use in the prediction phase use absolute distance 

measurement methods such as Euclidean and Minkowski. Therefore, it may be 

necessary to apply normalization processes to each feature, especially when using 

prediction approaches in multi-attribute data sets. A model inevitably applied without 

normalization will be affected by a high weight attribute even if there is no correlation 

between them. 

 

The measurement ranges, so limit values, of each of the sensors used in this study 

are different. The measuring range is the total range that the instrument can measure 

under normal conditions. Table 5.4 shows the maximum and minimum values that can 

be measured by the sensors used in this study. Since the ranges of the parameters used 

for the proposed prediction models are in very different ranges, a normalization 

approach accepted in the literature must be applied to the dataset before proceeding to 

the model stage. 

 

Table 5.4 Value ranges of measured parameters 

No Sensor Parameter Unit Measurement Range  

1 DHT22 Temperature °C -40 °C-125 °C (± 0.5) 

2 DHT22 Humidity % rh 0%-100% (± 2.5-5) 

3 CCS-811 Carbon Dioxide ppm 400-29,206 ppm 

4 CCS-811 Total Volatile Organic 

Compounds 

ppb 0-32,768 ppb 

5 Nova PM Particular Matter 2.5 ppm 0.0-999.9 ppm 

6 Nova PM Particular Matter 10 ppm 0.0-999.9 ppm 

7 MQ-7 Carbon Monoxide ppm 10-10,000 ppm 

8 LDR Light Level % 0%-100% 

 

As can be seen in Table 5.4, the values of some parameters can be between 0 and 

100, while some parameter values can go up to 10,000. Therefore, it is certain that the 

prediction algorithms will decide according to the parameter with large values. In order 

to prevent this situation and to ensure that the parameters affect the estimation 
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algorithm equally, all parameters were implemented min-max normalization 

approaches. 

 

 

Figure 5.19 The Normalization Process of SITARC and MICU in RapidMiner 

 

The Min-Max method is the most known and used normalization methods. For each 

attribute included in the dataset, the minimum value of that attribute gets transformed 

into 0, and its maximum value gets transformed into 1. Finally, all other intermediate 

values for that feature are shifted to the range [0-1]. The shifting process of parameters 

in MICU and SITARC data sets to range [0-1] is given in Figure 5.19. 

 

In Figure 5.19 given above, the columns to be normalized in both data set used 

within the scope of the project were selected by "Select Attribute". During this 

selection, “DateTime”, “Status_Nominal”, and “Status_Numeric” columns were not 

selected since they will not be subjected to any normalization process. The component 

used for the normalization process of Rapid Miner was taken into the development 

environment and the normalization method was determined as range transformation. 

The minimum value of the Range transformation method is set to 0 while the 

maximum value is set to 1. 

 

The new datasets created as a result of normalization have been saved to Local 

Repositor via the Store component to be used in further operations. The results are also 
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saved in different formats for different purposes with the WriteExcel and WriteCvs 

components provided by the Rapid Miner studio. 

 

5.7.1.4 Outlier Detection 

 

An outlier can be defined as an observation that differs from other observations 

collected in a parameter (column) in the data set. It may be impossible to distinguish 

precisely which value in a data set is the error and which value is the actual 

measurement. However, it is certain that it will affect the result negatively in the 

prediction phase. This Ph.D. Outlier values in the data collected in two media selected 

within the scope of the thesis study were generally caused by sensor measurement error 

or communication between nodes. 

 

Sometimes outliers can be caused by human error. For example, in an environment 

where the light parameter is measured, if someone prevents the sensor from receiving 

light with a physical object, this is a human error that causes the sensor value to deviate 

downward. Both system-based and human-induced errors cause the prediction to be 

biassed and inaccurate. For this reason, analyzing the collected data and eliminating 

some possible inconsistent parts will increase the prediction success of the model used 

in the prediction phase. 

 

In the Rapid Miner Studio development environment, there are operators based on 

different approaches to find outliers in the data. Some of them are Distance-Based 

Outlier Detection Operator, Density-Based Outlier Detection Operator, Local Outlier 

Factor (LOF), and Class Outlier Factor (COF). The detection process of the data in 

datasets created within the scope of the project was carried out in two stages. In the 

first of these, the parameters are evaluated within themselves and the outliers in that 

attribute (Column) have been eliminated. 

  

Firstly Attribute-based outlier detection was performed after the normalization 

process like dataset-based outlier detection. However, it has been noticed that some 

sensor data measure very extreme values due to sensor measurement errors. It is certain 
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that this situation will negatively affect the attribute with extreme values during 

normalization. 

 

 

Figure 5.20 Graphical display of Outliers in CO2 attribute from MICU Dataset 

 

For example, let's assume that the value of the light parameter originating from 

sensor measurement is accidentally measured as 14,345,987. This observatory value 

will be the highest value of that parameter in the normalization phase, that is, it will be 

transformed to 1. Accordingly, the remaining values of the Light parameter, which 

takes a normal value in the range 0-100, will be proportioned and will probably be 

transformed to a value that is very close to the value 0 or 0. In Figure 5.20, outliers 

detected in CO2, which is one of the parameters that make up the MICU dataset, are 

given. 

 

For this reason, attribute-based outlier detection was performed at the very 

beginning of data preprocessing processes in order to prevent the erroneous data from 

affecting normalization and data labeling. Distance-based approaches were used while 

outlier detection was performed from the Attribute perspective. Among the distance-

based approaches, Euclidian Distance, Cosine Distance, and Squared Distance 
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algorithms, which are frequently used in the literature, have been tried. Although there 

is no difference in the result due to the algorithm, the Cosine Distance algorithm has 

been preferred to eliminate the outliers in the datasets. 10 values that constitute 

inconsistency for every parameter has been eliminated. 

 

 

Figure 5.21 Outliers detected on the labels in the SITARC dataset 

 

In the second step of the Outlier detection process, after the class label of each 

transaction (line) has been assigned, outliers are identified and eliminated through this 

class label. While determining outliers, the K-NN neighborhood approach was used (k 

= 10) and a total of 20 observation data were eliminated. The graphic of the outlier 

detection process performed by including all parameters on the label column in the 

SITARC data set is given in Figure 5.21. 

 

5.7.2 Model Selection for Prediction 

 

After preprocessing operations are applied to the created datasets, the last step for 

a proactive system design is to determine the appropriate model for the datasets. There 

are numerous prediction approaches for different situations and different datasets in 

the literature. The main reason for the existence of so many prediction approaches and 

algorithms in the literature is that there is no specific model to guarantee the result for 

each dataset and use-case. In order to be able to say that an algorithm is the best for a 

case study or dataset, it must create a sensitive balance especially in terms of accuracy, 

training time, test duration, flexibility. In other words, it can be quite difficult to predict 



 

 

108 

 

which approach will work better for each different situation and each different use-

case. 

 

 Therefore, many attempts have been made using algorithms frequently used in ML 

applications while determining the prediction algorithm on datasets created from the 

data collected within the scope of this thesis. For ontological datasets created as a result 

of the experiments, the best prediction algorithms were determined and suggested by 

considering the criteria that show the quality of the algorithm used for that dataset, 

such as accuracy, performance, flexibility. Data sets containing sensor data generally 

contain numerical types. Although it may seem easy to understand digital data types, 

finding patterns can be difficult when it comes to large data heaps. Therefore, 

sometimes finding the algorithm that can work optimally for a data set and integrating 

it into the data set becomes more complex than it seems. This section will focus on the 

experiments performed to determine the prediction algorithm, and the classical 

methods used. 

 

When implementing ML algorithms into a dataset, kernel function selection, 

parameter optimization, training data selection, and test data selection are important 

steps that affect the result. While determining the suitable models for the datasets used, 

the Auto Model owned by Rapid Miner has been used and although the algorithms and 

parameters used have been mentioned in detail before, this section is briefly mentioned 

below in order to better understand this section. 

 

5.7.2.1 Naive Bayes Algorithm 

 

The NB technique takes its name from Thomas Bayes and his conditional 

probability theorem. It is one of the oldest supervised learning algorithms among ML 

methods. One of its most important features is its simple operation and speed. The 

algorithm accepts all variables as independent, but this assumption is seldom valid in 

the real world. The performance information of the NB algorithm on the SITARC data 

set is given numerically in Table 5.5. 
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Table 5.5 Performance of Naive Bayes algorithms on SITARC RDF dataset 

Prediction True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
152 5 3 0 0 95.00% 

Prediction 

Poor 
0 48 47 199 37 14.50% 

Prediction 

Moderate 
0 3 60 257 14 17.96% 

Prediction 

Good 
0 0 0 70 10 87.50% 

Prediction 

Excellent 
0 0 0 0 0 0.00% 

Class 

Recall 
100.00% 85.71% 54.55% 13.31% 0.00%  

 

The NB approach was implemented on the SITARC RDF data set and the MICU 

RDF data set, respectively. The accuracy performance of this approach on the specified 

datasets was mediocre values of 36% and 26%, respectively. As seen in Table 5.5 and 

Table 5.6, the performance of the prediction made by the NB algorithm is very low.  

 

Table 5.6 Performance of Naive Bayes algorithms on MICU RDF dataset 

Prediction True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
110 76 140 84 2 26.70% 

Prediction 

Poor 
2 30 33 0 0 46.15% 

Prediction 

Moderate 
0 42 77 184 44 22.19% 

Prediction 

Good 
0 0 0 0 0 0.00% 

Prediction 

Excellent 
0 0 0 0 0 0.00% 

Class 

Recall 
98.21% 20.27% 30.80% 0.00% 0.00%  

 

While this approach can be considered successful in distinguishing the "Terrible" 

and "Good" classes, it has performed poorly in distinguishing the other classes. As a 

result, the use of the NB algorithm in SITARC and MICU ontological datasets 

developed with semantic technologies is definitely not appropriate. In Table 5.6, the 
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performance evaluation of the Naive Bayes algorithm on the SITARC data is given 

numerically. 

 

Some parameters affect all algorithms tested on the dataset more or less than others. 

In the implementation of the Naive Bayes algorithm on the SITARC data, PM2.5 and 

PM10 attributes are the most influential parameter on the result. The parameter that 

affects the result least is TVOC. 

 

5.7.2.2 Generalized Linear Model (GLM) Algorithm 

 

GLM is a method developed by John Nedler and Robert Wedderburn by combining 

various statistical models. This model is a flexible and generalized form of ordered 

linear regression that can classify regardless of the normal distribution of the 

dependent variable. When the GLM model is applied to the SITARC data set, it has 

proven its usability for RDF data sets enriched by using ontologies, providing an 

accuracy rate of 81%. When applied to the GLM model MICU data set, it provided an 

average performance of 58%. 

 

Table 5.7 Performance of GLM algorithms on SITARC RDF dataset 

Prediction True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
0 0 1 0 135 99.26% 

Prediction 

Poor 
0 2 0 28 2 87.50% 

Prediction 

Moderate 
0 84 18 25 3 64.62% 

Prediction 

Good 
23 23 451 3 12 88.09% 

Prediction 

Excellent 
38 1 56 0 0 40.00% 

Class 

Recall 
62.30% 76.36% 85.74% 50.00% 88.82%  

 

GLM is a regression-based method and it is clear that regression-based methods are 

particularly effective in terms of uptime. Therefore, one of the most defining features 

for GLM has been accuracy performance. In Table 5.8, the performance of the GLM 
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algorithm in the classes on the SITARC data set is given numerically. Looking at Table 

5.8, the class that the GLM algorithm is most successful in terms of distinctiveness is 

a "Terrible" class, while the most unsuccessful class is the "Excellent" class. 

 

Table 5.8 Performance of GLM algorithms on SITARC RDF dataset 

Prediction True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
80 1 0 0 0 98.77% 

Prediction 

Poor 
31 80 35 1 0 54.42% 

Prediction 

Moderate 
4 29 63 18 0 55.26% 

Prediction 

Good 
2 28 149 253 41 53.49% 

Prediction 

Excellent 
0 1 1 3 4 44.44% 

Class 

Recall 
68.38% 57.55% 25.40% 92.00% 8.89%  

 

On the other hand, looking at GLM performances in the MICU dataset, it is seen 

that the most successful class is the "Terrible" class in parallel with the SITARC 

dataset. Again, as in the SIATRC dataset, the most unsuccessful class distinction is 

seen as the "Excellent " class in the MICU dataset. In Table 5.8, the performance of 

the GLM algorithm in the classes on the MICU data set is given numerically and the 

discrimination ability on the classes is shown. 

 

5.7.2.3 Logistic Regression (Logit) Algorithm 

 

In logistic regression, as in other regression models, the aim is to establish a model 

with a certain number of variables and with an acceptable error rate. It is preferred for 

multivariate data, especially if the dependent variable is not continuous. The main 

difference between linear regression and logistic regression is to estimate the value of 

the dependent variable in linear regression, while the probability of realization of the 

values that the dependent variable can take is calculated in the logistic regression. 

Therefore, logistic regression takes values between 0 and 1. In addition, linear 
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regression uses the Ordinary Least Squares (OLS) method for estimating, logit uses 

the Maximum Likelihood (MLE) method. 

 

Table 5.9 Performance of Logit algorithms on SITARC RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
4 0 0 0 0 100.00% 

Prediction 

Poor 
1 0 0 0 0 0.00% 

Prediction 

Moderate 
37 57 86 84 13 31.05% 

Prediction 

Good 
112 1 6 4 0 3.25% 

Prediction 

Excellent 
0 0 12 437 51 10.20% 

Class 

Recall 
2.60% 0.00% 82.69% 0.76% 79.69%  

 

After the logit approach is implemented in datasets, it is obvious that logit is the 

most unsuccessful algorithm when the accuracy performance of both data sets is taken 

as the mean. Logit algorithm is highly affected by repetitive data. Although hourly 

averages of sensor measurements are added within the scope of this study, most of the 

time the measured average values can be very close to each other. For this reason, it is 

clearly seen in this thesis study that the logit algorithm is not suitable for data sets 

consisting of time series such as sensor data. In Table 5.9, the accuracy performance 

measurements of the Logit algorithm on the SITARC dataset are given numerically 

from the perspective of classes. 

 

In Table 5.9, it is seen that the capacity of the Logit algorithm to distinguish almost 

all classes in the SITARC dataset is low. Although accuracy performance seems to be 

perfect for the "Terrible" class, only 4 lines (individual) had been selected as members 

of this class in the randomly selected test algorithm. The 4 lines are insufficient to 

comment on the performance of a ML algorithm in the class perspective. In Table 5.10, 

the accuracy performance measurements of the Logit algorithm on the MICU dataset 

are given numerically from the perspective of classes. 
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Table 5.10 Performance of Logit algorithms on MICU RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
29 0 0 0 0 100.00% 

Prediction 

Poor 
62 37 5 0 0 35.58% 

Prediction 

Moderate 
4 76 186 152 6 43.87% 

Prediction 

Good 
11 32 61 129 34 48.31% 

Prediction 

Excellent 
0 0 0 0 0 0.00% 

Class 

Recall 
27.36% 25.52% 73.81% 45.91% 0.00%  

 

In Table 5.10, it is seen that the capacity of the Logit algorithm to distinguish almost 

all classes in the MICU dataset is low, as in the SITARC dataset. Considering the row 

number in the Terrible class together with the row number of the "Terrible" class in 

the SITARC dataset, it is seen that the logit algorithm has a high distinctiveness over 

a single Terrible class on these classes. 

 

5.7.2.4 Fast Large Margin (FLM) Algorithm 

 

Algorithms such as Support Vector Machines that position the decision border in 

order to maximize the distance between two classes are called Large Margin 

algorithms. In other words, data estimated to belong to separate classes are mapped to 

have as clear a distance as possible. This type of linear classifiers can easily work with 

multidimensional data sets. The larger the natural margin between classes, the higher 

the success of the classifier. 

 

As it is understood, the Fast-Large Margin approach is a specialized algorithm 

belonging to the Support Vector Machine family. The average results obtained in the 

implementation of FLM into two ontological sensor data sets created within the scope 

of this thesis study are thought to be better than the average results obtained from many 

other algorithms. While the accuracy performance of FLM on the SITARC data set is 

74%, the accuracy performance on the MICU data set is 63%. Although the FLM 



 

 

114 

 

algorithm failed to be the best algorithm separately for both data sets, it succeeded to 

be the 2nd best algorithm among other applied algorithms in terms of accuracy 

performance on average. Table 5.11 gives the numerical value of the accuracy 

performance of the FLM algorithm on the SITARC data set from the perspective of 

class labels. 

 

Table 5.11 Performance of FLM algorithms on SITARC RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
141 0 0 0 0 100.00% 

Prediction 

Poor 
0 0 0 0 0 0.00% 

Prediction 

Moderate 
0 0 0 0 0 0.00% 

Prediction 

Good 
14 55 107 524 55 69.40% 

Prediction 

Excellent 
0 0 0 0 9 100.00% 

Class 

Recall 
90.97% 0.00% 0.00% 100.00% 14.06%  

 

In Table 5.11, when the performance of the implementation of the FLM algorithm 

on the SITARC data set is evaluated separately on the class labels, the class distinction 

power can be evaluated as very good for "Terrible" and "Excellent" classes, and above 

average for the "Good" class. Class discrimination performance in the SITARC dataset 

of this approach is not possible to evaluate as there is no row to predict for these classes 

due to random selection of test and training set for Good and Poor classes. However, 

the discriminative power of the FLM algorithm for these classes was evaluated in the 

MICU dataset. 

 

In Table 5.12, the numerical value of the accuracy performance of the FLM 

algorithm on the MICU data set is given from the perspective of class labels. 

Considering the performance of implementing the FLM algorithm into the MICU data 

set on class labels separately, the class discrimination power can be evaluated as very 

good for the "Terrible" class, not measurable for the" Excellent" class, and above 

average for the other classes. 
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Table 5.12 Performance of FLM algorithms on MICU RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
87 3 0 0 0 96.67% 

Prediction 

Poor 
18 32 1 0 0 62.75% 

Prediction 

Moderate 
12 84 148 25 0 55.02% 

Prediction 

Good 
0 20 99 250 45 60.39% 

Prediction 

Excellent 
0 0 0 0 0 0.00% 

Class 

Recall 
74.36% 23.02% 59.68% 90.91% 0.00%  

 

In these experiments using the auto model of Rapid Miner Studio data processing 

and ML application, the default parameters applied by many algorithms while using 

the auto model were not changed. However, to improve the results, algorithms working 

on parameters such as parameter SVM and Random Forest were tested with other 

parameters and new comparisons were created. Another algorithm in which the 

parameter is effective is FLM. The C cost parameter used by this approach in 

prediction calculations was evaluated using different values. 

 

The default C parameter that Rapid Miner Studio uses for the SITARC data set is 

0.001. In Figure 5.22, Error Ratings of different values tried for optimum C parameter 

for SITARC data set are given. However, as can be seen from Figure 5.22, it is seen 

that the best C value for the FLM algorithm on the SITARC dataset is 10 and 100. In 

Figure 5.23, Error Ratings of different values tested for optimum C parameter on 

MICU data are given. When these results are taken as reference, it is seen that the best 

C value that can be used for the MICU data of the FLM algorithm is 10. 
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Figure 5.22 The results against different C values in the SITARC dataset 

 

The success of the FLM algorithm certainly increases, even more, when the 

optimization is made other than the C parameter assigned by Rapid Miner Studio in 

the auto model. As a result of operating the C parameter at the optimum level in both 

datasets, the accuracy performance of the FLM algorithm has increased to 85% in the 

SITARC dataset and 65% in the MICU dataset. Although the accuracy rates increase 

after the optimization of the FLM algorithm, it remains in second place in terms of 

accuracy performance when the averages in both data are considered and compared to 

the averages of other algorithms. 

 

Figure 5.23 The results against different C values in the MICU dataset 

 



 

 

117 

 

5.7.2.5 Deep Learning (DL) Algorithm 

 

Deep Learning is an emerging ML technique that has become popular recently. DL 

is closely related to the artificial neural network (ANN). ANN is the general name of 

the algorithms that learn to generalize the whole data set from a small data set by 

modeling the working principles of the human nervous system and the brain. It 

contains mechanisms, like humans that ensure making decisions about situations that 

they have not seen based on their past experiences. In other words, ANN is used to 

model the relationship between input data and output data. DL is a more sophisticated 

and structurally more complex form of ANN. Because DL has more intermediate 

layers, learning is relatively slow compared to ANN and requires more processing 

power. 

 

Within the scope of this thesis study of DL, it is seen that the average results 

obtained in the implementation of two semantically enriched sensor data sets created 

using semantic technologies are better than the average results obtained from other 

algorithms. While the accuracy performance of DL on the SITARC data set is 89%, 

the accuracy performance on the MICU data set is 68%. 

 

Table 5.13 Performance of DL algorithms on SITARC RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
149 2 0 0 0 98.68% 

Prediction 

Poor 
2 42 8 0 0 80.77% 

Prediction 

Moderate 
0 13 87 19 0 73.11% 

Prediction 

Good 
0 0 9 486 23 93.82% 

Prediction 

Excellent 
0 0 0 24 41 63.08% 

Class 

Recall 
98.68% 73.68% 83.65% 91.87% 64.06%  

 

It is the algorithm that provides the best accuracy performance among all algorithms 

in the DL MICU data set. Although it is not the best performing algorithm in the 
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SITARC dataset, it shows approximate accuracy performance value with the Random 

Forest algorithm that provides the best performance. Table 5.13 shows the numerical 

value of the accuracy performance of the DL algorithm on the SITARC data set from 

the perspective of class labels.  

 

When the data in Table 5.13 is taken as reference, the classes in which the DL 

algorithm has the best discrimination power are "Terrible" and "Good" classes, while 

for the "Poor" and "Moderate" classes, it has provided a much higher accuracy 

performance. Although the class determining power of the DL algorithm is the class 

with the weakest "Excellent" class, its accuracy performance is still above average. 

 

Table 5.14 Performance of DL algorithms on MICU RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
82 0 0 0 0 100.00% 

Prediction 

Poor 
29 95 19 0 0 66.43% 

Prediction 

Moderate 
1 52 210 96 0 58.50% 

Prediction 

Good 
0 1 21 172 44 72.27% 

Prediction 

Excellent 
0 0 0 0 2 100.00% 

Class 

Recall 
73.21% 64.19% 84.00% 64.18% 4.35%  

 

In Table 5.14, the numerical value of the accuracy performance of the DL algorithm 

on the MICU data set is given from the perspective of class labels. From both the class 

separation table in the SITARC data set and the class separation table in the MICU 

dataset, it shows that the DL algorithm is an algorithm that might be used on 

ontological sensor data. 

 

Considering the data in Table 5.14, it is certain that the DL algorithm has a high 

performance in distinguishing the "Terrible" class for the MICU data set. It achieved 

higher than average success in distinguishing "Poor" and "Good" classes and close to 

average in distinguishing "Moderate" class. There is an insufficient number of rows in 
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the test class to comment on the distinguishing feature of the DL algorithm for the 

"Excellent" class. 

 

5.7.2.6 Decision Tree (DT) Algorithm 

 

DT is one of the most established algorithms of ML and data mining. It is used in 

both classification and regression analysis. The most important feature of DT is that it 

simplifies and clarifies the decision-making mechanism in any process. It handles the 

decision-making process like a tree structure and its name comes from also this 

characteristic. It recursively divides the search space into subsets according to an 

attribute in each decision node. The division process ends when the data remaining in 

the subset cannot be separated according to any attributes. The lowest node of the tree 

specifies the classes. To establish an optimal DT is often an NP-Complete problem. 

Therefore, it requires applying heuristic ways to establish a good near-optimal DT.  

 

The average results obtained in the implementation of DT into two ontological 

sensor data sets created within the scope of this thesis study were compared separately 

with the averages of the results obtained from other algorithms. As a result of this 

comparison, while the accuracy performance of DT in the first dataset, SITARC, was 

above the average, it was below the average in the other ontological data set, MICU. 

 

Table 5.15 Performance of DT algorithms on SITARC RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
152 1 0 0 0 99.35% 

Prediction 

Poor 
1 49 6 0 0 87.50% 

Prediction 

Moderate 
0 4 84 21 0 77.06% 

Prediction 

Good 
0 0 19 509 59 86.71% 

Prediction 

Excellent 
0 0 0 0 0 0.00% 

Class 

Recall 
99.35% 90.74% 77.06% 96.04% 0.00%  
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Although the parameters in the datasets used and the algorithm applied are the same, 

the fact that they have completely different results is due to the character of the 

datasets. Table 5.15 shows the numerical value of the accuracy performance of the DT 

algorithm on the SITARC data set from the perspective of class labels. 

 

While the accuracy performance of the DT algorithm on the SITARC data set is 

88%, the accuracy performance on the MICU data set is 43%. According to this Table 

5.15, it can be said that the tribe of distinguishing all other classes except the 

"Excellent" class in the SITARC data set of the DT algorithm is high. For the 

"Excellent" class, it is impossible to comment on the aforementioned reasons. Table 

5.16 gives the numerical value of the accuracy performance of the DT algorithm on 

the MICU data set from the perspective of class labels. 

 

While the DT algorithm is implemented with Rapid Miner Studio auto module, 

"Maximal Depth" is given as a default of 20. However, giving "Maximal Depth" as 20 

increases the training and scoring times of Tree algorithms especially. Therefore, for 

the DT algorithm to compete with other algorithms in terms of time, the value of the 

Maximal Depth parameter was set to 10 by sacrificing some accuracy. Thus, the time 

spent by the algorithm in the training and scoring phases has decreased significantly. 

 

Table 5.16 Performance of DT algorithms on MICU RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
152 1 0 0 0 99.35% 

Prediction 

Poor 
1 49 6 0 0 87.50% 

Prediction 

Moderate 
0 4 84 21 0 77.06% 

Prediction 

Good 
0 0 19 509 59 86.71% 

Prediction 

Excellent 
0 0 0 0 0 0.00% 

Class 

Recall 
99.35% 90.74% 77.06% 96.04% 0.00%  
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DT approach is similar to tree-view flowcharts and decision-making processes are 

not very complex. In other words, it can be shown schematically how he arrived at the 

result. For this reason, it is much easier to read and interpret than other data mining 

algorithms. DT algorithms are widely used because of their easy interpretation, 

understandability, fast operation, and high reliability of these algorithms. This basic 

decision support tree, which is formed by interpreting the training data set by the 

algorithm, is used in making decisions at the scoring stage. 

 

 

Figure 5.24 The tree model of the DT algorithm for the SITARC training dataset 

 

Therefore, the homogeneous distribution of randomly selected lines in the training 

data set is vital for the algorithm mechanism to work properly. In Figure 5.24, the tree 

model obtained by the DT algorithm using the training data set from the SITARC data 

set and used to make decisions in the test data set is given. 

 

As seen in Figure 5.24, all DTs consists of the trio of root, branch, and leaf. Each 

of these is called a knot. The main problem for decision tree algorithms is the 

determination of these nodes. The top node is called the root node. The first problem 

in creating the DT template is which attribute will be the root node. In general, the 

attribute that has the most impact on the label should be determined as the root node. 

Subsequent nodes are also created by considering their effects on the label. The 
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decision-maker obtained in Figure 5.24 shows a linear flow. But it doesn't mean that 

DT will be linear for every dataset.  

 

According to Figure 5.24, the root node of this DT has become PM2.5. Looking at 

this root node, when the PM2.5 value in the data set exceeds 0.331, the tendency of the 

corresponding row to have a "Terrible" label has increased. In other words, PM2.5 has 

a great effect on labeling any line as "Terrible". When moving down in DT, at the 

second node, it is seen that CO2 has an effect on the label. As the 3rd node, it is obvious 

that the Temperature attribute has an effect on the label. The rule in this node can be 

expressed as follows; If the temperature value is greater than 0.811, it can be said that 

the row generally has a "Poor" label. In Figure 5.25, the tree model that the DT 

algorithm has obtained using the training data obtained from the MICU data set and 

used to make decisions in the test data is given. 

 

 

 

Figure 5.25 The Tree model of the DT algorithm for the MICU training dataset 
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According to Figure 5.25, the root node of this DT has been CO2. Looking at this 

root node, when the CO2 value in the data set exceeds 0.190, the tendency of the 

relevant row to have a "Terrible" label has increased. In other words, the CO2 attribute 

has a big impact on labeling any line as "Terrible". When moving down in DT, at the 

second node, it is seen that the CO attribute affects the label. The rule in this node can 

be expressed as follows; If the value of the temperature attribute is greater than 0.68, 

it can be said that the line generally has the "Terrible" label. As the 3rd node, it is seen 

that the PM2.5 attribute affects the label. Unlike the DT template obtained from 

SITARC, the DT template obtained from MICU was not branched linearly after the 

5th node. 

 

5.7.2.7 Random Forest (RF) Algorithm 

 

RF is an ensemble learning algorithm that generates multiple decision trees and 

combines the results obtained from these decision trees with the bagging method. It is 

one of the popular algorithms used recently because RF can be applied to both 

regression and classification problems and also achieves good results in these areas. 

Also, since the RF algorithm trains on different data sets for each feature, overfitting 

is reduced. The RF algorithm is preferred because it can find the power of 

distinguishing classes for each feature. 

 

The average results obtained in the implementation of RF into two sensor data sets 

enriched with semantic web technologies created within the scope of this thesis study 

were compared separately with the averages of the results obtained from other 

algorithms. As a result of this comparison, the accuracy performance of RF in the first 

data set, SITARC, achieved the best performance compared to other algorithms, while 

it was far below the average in the other ontological data set, MICU. 

 

Just like the results obtained from the implementation of two datasets with DT, in 

this case where the same parameters are implemented and the same approach is 

implemented, although the parameters in the two datasets are the same, the data clearly 

show that the characteristics of the two datasets are very different from each other. 
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Table 5.17 Performance of RF algorithms on SITARC RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
152 1 0 0 0 99.35% 

Prediction 

Poor 
1 52 1 0 0 96.30% 

Prediction 

Moderate 
0 1 99 17 0 84.62% 

Prediction 

Good 
0 0 9 513 59 88.30% 

Prediction 

Excellent 
0 0 0 0 0 0.00% 

Class 

Recall 
99.35% 96.30% 90.83% 96.79% 0.00%  

 

While the accuracy performance of the RF algorithm on the SITARC data set was 

90%, the accuracy performance on the MICU data set was recorded as 26%. Table 

5.17 gives the numerical value of the accuracy performance of the RF algorithm on 

the SITARC data set from the perspective of class labels. According to the data in this 

table, the ability of the RF algorithm to distinguish all other classes except the 

"Excellent" class in the SITARC data set can be said to be quite high. It is impossible 

to comment on the "Excellent" class due to the aforementioned reasons. 

 

Table 5.18 gives the numerical value of the accuracy performance of the RF 

algorithm on the MICU data set from the perspective of class labels. Considering the 

data in Table 5.18, it can be said that the RF approach has a good discrimination power 

of a single "Terrible" class. On the other hand, its power to distinguish between "Poor" 

and "Moderate" classes is very low. In terms of class discrimination performance in 

the MICU dataset of this approach, it is not possible to evaluate as there is no row for 

the "Good" and "Excellent" classes to be predicted, due to the random selection of the 

test data set as can be seen in Table 5.18. 
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Table 5.18 Performance of RF algorithms on MICU RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
68 4 0 0 0 94.44% 

Prediction 

Poor 
49 130 233 208 13 20.54% 

Prediction 

Moderate 
0 5 15 67 32 12.61% 

Prediction 

Good 
0 0 0 0 0 0.00% 

Prediction 

Excellent 
0 0 0 0 0 0.00% 

Class 

Recall 
58.12% 93.53% 6.05% 0.00% 0.00%  

 

The RF algorithm is also in the Tree algorithms family, and the "Maximal Depth" 

and "Number of Tree" parameters must be given before the algorithm is implemented. 

These parameters set the limits when the RF algorithm mechanism attempts to create 

a model. The given parameters are of great importance in terms of accuracy, training 

time, and scoring time of the RF algorithm. While the RF algorithm is implemented 

with Rapid Miner Studio auto module, the "Maximal Depth" and "Number of Trees" 

values are given as 20 by default. 

 

However, giving the values of the" Maximal Depth" and "Number of Trees" as 20 

increases the training and scoring times of the RF algorithm excessively. Therefore, in 

order for the RF algorithm to compete with other algorithms in terms of time, the value 

of the "Maximal Depth" and Number of Trees" parameter is set to 10 by sacrificing 

little accuracy. Thus, the time spent by the algorithm in the training and scoring phases 

has been significantly reduced. In Figure 5.26, the tree model obtained by the RF 

algorithm using the training data set from the SITARC data set and used to make 

decisions in the test data set is given. 
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Figure 5.26 The Tree model of the RF algorithm for the SITARC dataset 

 

As seen in Figure 5.26, the root node of this tree structure was the Temperature 

attribute. Looking at this root node, when the Temperature value in the data set exceeds 

0.811, the tree branches to the left, and when it is equal to or below this value, the tree 

structure is branched towards the right side. It is seen that the second node PM2.5 

attribute on the right has an effect on the label. The rule in this node can be expressed 

as follows; If the value of the PM2.5 attribute is greater than 0.331, that row can 

generally be said to have the "Terrible" label. In Figure 5.27, the tree model obtained 

by the RF algorithm using the training data obtained from the MICU data set and used 

to make decisions in the test data set is given. 

 

In the tree model created by the RF algorithm shown in Figure 5.27 using the test 

data set in the MICU data set, the root node was CO2. Looking at this root node, when 

the value of the CO2 attribute in the dataset exceeds 0.190, the tendency of the 

corresponding row to have a "Terrible" label has increased. In other words, the CO2 

attribute has a big impact on labeling any line as "Terrible". 
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Figure 5.27 The Tree model of the RF algorithm for the MICU dataset 

 

When the RF algorithm moves down the tree model, it is seen that at the second 

node, the CO is effective on the label. The rule in this node can be expressed as follows; 

If the CO attribute value is greater than 0.069, it can be said to have a "Terrible" label 

in general, just like the previous node. As the node, it is obvious that the PM10 attribute 

has an effect on the label. The rule in this node can be expressed as follows; If the 

PM10 attribute value is greater than 0.8529, it can be said that the line generally has a 

"Terrible" label. 

 

5.7.2.8 Gradient Boosted Trees (GBT) Algorithm 

 

Boosting is a technique used to strengthen weak classifiers. Gradient Boosted Trees, 

like other techniques described earlier, is used both in regression analysis and 

classification but is also an ensemble technique that uses decision trees. As the name 

suggests, the ensemble technique uses the boosting approach, that is, it makes the 

classification sequential rather than independent. Therefore, this technique tries to 
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make better predictions using the mistakes of previous estimators. If the terminate 

criterion is not selected properly, overfitting may be caused, unlike the ensemble 

bagging technique. 

 

The average results obtained in the implementation of GBT into two ontological 

sensor data sets created within the scope of this thesis study were compared separately 

with the averages of the results obtained from other algorithms. As a result of this 

comparison, while the accuracy performance of GBT in the first data set, SITARC was 

above average, it was below the average in the other ontological data set, MICU. 

 

While the accuracy performance of the GBT algorithm on the SITARC data set is 

80%, the accuracy performance on the MICU data set is 34%. Table 5.19 shows the 

numerical value of the accuracy performance of the GBT algorithm on the SITARC 

data set from the perspective of class labels. 

 

Table 5.19 Performance of GBT algorithms on SITARC RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
147 0 0 0 0 100.00% 

Prediction 

Poor 
5 55 22 2 0 65.48% 

Prediction 

Moderate 
0 1 87 53 0 61.70% 

Prediction 

Good 
0 0 1 418 42 90.67% 

Prediction 

Excellent 
0 0 0 53 19 26.39% 

Class 

Recall 
96.71% 98.21% 79.09% 79.47% 31.15%  

 

According to data in Table 5.19, the power of the GBT algorithm to distinguish 

"Terrible" and "Good" classes in the SITARC data set is quite good. The power of 

distinguishing "Poor" and "Moderate" classes is above average. Considering the 

results of implementing the GBT algorithm into the SITARC data, it is seen that the 

ability to distinguish the "Excellent" class is very poor. Table 5.20 shows the numerical 
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value of the accuracy performance of the GBT algorithm on the MICU data set from 

the perspective of class labels. 

 

Table 5.20 Performance of GBT algorithms on MICU RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
70 3 0 0 0 95.89% 

Prediction 

Poor 
47 131 172 113 9 27.75% 

Prediction 

Moderate 
0 5 76 161 36 27.34% 

Prediction 

Good 
0 0 0 1 0 100.00% 

Prediction 

Excellent 
0 0 0 0 0 0.00% 

Class 

Recall 
59.83% 94.24% 30.65% 0.36% 0.00%  

 

According to the data presented in Table 5.20, the GBT algorithm has a high ability 

to distinguish only the "Terrible" class in the MICU data set. The discrimination power 

of the "Poor" and "Moderate" classes was well below the average. Although the 

discriminating power of the "Good" class seems very good, there are not enough rows 

in the test data set for this class to comment on the power of its algorithm to distinguish 

this class. In terms of class discrimination performance in the MICU dataset of the 

GBT approach, it is not possible to make an evaluation, as there is no row for this 

algorithm to be predicted for the "Excellent" class, as can be seen in Table 5.20, due 

to the random selection of the training set. 

 

The GBT algorithm is in the tree algorithm family, just like DT, and the Learning 

Rate parameters as well as the Maximal Depth and Number of Tree parameters must 

be given before the algorithm is implemented. These parameters, like in the RF and 

DT algorithms, set boundaries when the GBT algorithm tries to create a model. The 

given parameters are of great importance in terms of accuracy, training time, and test 

time of the RF algorithm. While the RF algorithm is implemented with Rapid Miner 

Studio auto module, the maximal depth and Number of Trees values are given as 20 

by default. The Learning Rate parameter is given as 0.01. 
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However, giving the values of "Maximal Depth" and "Number of Trees" as 20 

increases the training and test times of Tree algorithms excessively. Therefore, for the 

GBT algorithm to compete with other algorithms in terms of time, the values of the 

"Maximal Depth" and "Number of Tree" parameters were set to 10 by sacrificing little 

accuracy like RF and DT algorithms. 

 

The value of the "Learning Rate" parameter is left as 0.01, which is the default value 

in Rapid Miner Studio Auto Model. Thus, the time spent by the algorithm in the 

training and testing phases has been significantly reduced. In Figure 5.28, the tree 

model obtained by the GBT algorithm using the training data set from the SITARC 

data set and used to make decisions in the test data set is given. 

 

 

Figure 5.28 The Tree model of the GBT algorithm for the SITARC dataset 

 

As shown in Figure 5.28, the root node of this tree structure has been the 

Temperature attribute. Looking at this root node, when the Temperature value in the 
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data set equals 0.811 or passes, the tree branches on the right side, while below this 

value the tree structure is branched towards the left side. In the second node on the 

right, it is seen that the PM2.5 attribute is effective on the label. The rule in this node 

can be expressed as follows; If the value of the PM2.5 attribute is equal to 0.109 or 

greater, it can be said that the tree branches to the left side if it is less than 0.109 while 

the tree branches back to the right. In Figure 5.29, the tree model obtained by the GBT 

algorithm using the training data obtained from the MICU data set and used to make 

decisions in the test data set is given. 

 

Figure 5.29 The Tree model of the GBT algorithm for the MICU dataset 

 

As seen in Figure 5.29, the root node of this tree structure has been the TVOC 

attribute. Looking at this root node, when the TVOC attribute value in the data set is 

equal to or exceeds 0.097, the tree branches to the right, while the tree structure is 

branched to the left when it is below this value. In the second node on the left, it is 

seen that the Humidity attribute is effective on the label. The rule in this node can be 

expressed as follows; If the value of the humidity attribute is equal to or greater than 
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0.347, it can be said that the tree branches to the left side if it is less than 0.347 while 

the tree branches back to the right. In the third node on the left, it is seen that the 

Temperature attribute is effective on the label. The rule in this node can be expressed 

as follows; If the value of the temperature attribute is equal to or greater than 0.649, it 

can be said that the tree branches to the left side if it is less than 0.649 while the tree 

branches back to the right. 

 

5.7.2.9 Support Vector Machine (SVM) Algorithm 

 

In general, it works basically with a similar logic with Logistic Regression. Both 

approaches focus on finding the best line that separates classes in a data set. It is a 

nonparametric classifier that takes no parameters. The algorithm allows the line to be 

drawn to be adjusted in two classes so that it passes from the furthest place to its 

elements. SVM can also classify linear and nonlinear data but generally tries to classify 

the data linearly. 

 

The average results obtained in the implementation of SVM into two sensor data 

sets enriched with semantic web technologies created within the scope of this thesis 

study were compared separately with the averages of the results obtained from other 

algorithms. As a result of this comparison, the accuracy performance of SVM in the 

first dataset, SITARC, was above the average performance when compared to other 

algorithms, while it was below the average in the other ontological data set, MICU. 

 

Just like the results obtained from the implementation of two data sets such as some 

algorithms (GBT, RF, DT, etc.) that have been tried and described before, in this case 

where the same parameters are implemented and the same approach is implemented, 

the difference is that although the parameters in the two data are the same considering 

the results, the data clearly show that the characteristics of the two datasets are very 

different from each other. This situation can be presented as evidence of the 

unpredictable hypothesis of which algorithm will be best for each case and dataset. 
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While the accuracy performance of the SVM algorithm on the SITARC data set 

was 83%, the accuracy performance on the MICU data set was recorded as 45%. The 

numerical value of the accuracy performance of the SVM algorithm on the SITARC 

data set from the perspective of class labels is given in Table 5.21. 

 

According to the data in this table, while the discrimination power of the SVM 

algorithm among the labels that make up the SITARC dataset is very well for the 

"Terrible" and "Good" classes, the discrimination power on the "Poor" and "Moderate" 

classes is well above the average. The power to distinguish the SVM approach from 

the "Excellent" class on this ontological sensor data is well below the average. 

However, considering the results obtained in this data set, in this dataset, it can be said 

that the SVM algorithm is an approach that can be used for proactive system design as 

a prediction model. 

 

Table 5.21 Performance of SVM algorithms on SITARC RDF dataset 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
149 1 0 0 0 99.33% 

Prediction 

Poor 
0 55 10 0 0 84.62% 

Prediction 

Moderate 
0 5 88 16 0 80.73% 

Prediction 

Good 
0 0 3 423 30 92.76% 

Prediction 

Excellent 
0 0 0 90 35 28.00% 

Class 

Recall 
100.00% 90.16% 87.13% 79.96% 53.85%  

 

In Table 5.22, the numerical value of the accuracy performance of the GBT 

algorithm on the MICU data set is given from the perspective of class labels. 

According to the data presented in Table 5.22, the SVM algorithm has a high ability 

to distinguish only the "Terrible" class in the MICU data set. While the power to 

distinguish the "Good" class was slightly above average, the power to distinguish 

between "Poor" and "Moderate" classes was below average. In terms of the class 

discrimination performance of the SVM approach in the MICU dataset, it is not 
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possible to evaluate as there is no row for this class to be predicted, as can be seen in 

Table 5.22 due to the random selection of the test and training set for the “Excellent” 

class. 

 

Table 5.22 Performance of SVM algorithms on MICU RDF dataset. 
 

True 

Terrible 

True 

Poor 

True 

Moderate 

True 

Good 

True 

Excellent 

Class 

Precision 

Prediction 

Terrible 
87 6 0 0 0 93.55% 

Prediction 

Poor 
24 117 174 58 0 31.37% 

Prediction 

Moderate 
0 13 72 137 0 32.43% 

Prediction 

Good 
0 0 4 93 39 68.38% 

Prediction 

Excellent 
0 0 0 0 0 0.00% 

Class 

Recall 
78.38% 86.03% 28.80% 32.29% 0.00%  
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CHAPTER SIX 

EXPERIMENTAL RESULT 

 

6.1 Overview of This Section 

 

In the previous steps of the proposed Ph.D. thesis, two measurement environments 

were selected and 8 different parameters were collected. Then, these data were 

enriched with semantic web technologies, and two different RDF datasets were 

created. Finally, in order to investigate which ML algorithms, have the potential to be 

used for a proactive system design in RDF datasets, classical ML approaches were 

tried in these two different RDF datasets, and the results of experiments were shared 

with the academic community. 

 

In this section, these classical ML algorithms tested on two different RDF datasets 

will generally be compared, and considering the results, it will be decided which 

algorithms will be more suitable for which dataset in terms of accuracy, flexibility, 

and time. In addition, RDF datasets created with data collected from completely 

different environments will be combined and classical ML algorithms will be 

implemented on this combined dataset. At the end of this section, the performance of 

the algorithms implemented on the combined dataset will be discussed in many aspects 

and a conclusion will be drawn. With this result, it is aimed to shed light on the 

academic community about classical ML approaches applied to RDF datasets. 

 

6.2 Performance of Classical ML Algorithms on the SITARC Dataset 

 

When the SITARC RDF dataset enriched with semantic web technologies is 

considered alone, the accuracy performances of the approaches that can be used for 

prediction in this dataset may be possible to summarize as follows; In the SITARC 

ontological sensor dataset, the best algorithm is the RF approach with 90.2% accuracy 

performance. The closest results to the RF approach, DL algorithm with 89.0% 

accuracy, and DT algorithm with 87.7% accuracy have achieved. Each of these 

algorithms is considered that suitable for implementation on the SITARC RDF dataset 

as the prediction model. 
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Apart from these algorithms, which performed well in terms of accuracy criteria, 

SVM, GLM, GBT algorithms provided 82.9%, 81.3%, 80.2% accuracy performance, 

respectively, and proved that they can be used for the SITARC RDF dataset. Among 

the remaining algorithms, FLM provided an above-average performance with an 

accuracy of 74.5%. However, this algorithm is thought insufficient for the prediction 

model, especially when comparing the performance of other algorithms implemented 

on the SITARC dataset. With the last two approaches, NB and LR algorithms, they 

had a very bad performance with 36.5% and 16.0% accuracy values, respectively. 

These two algorithms are thought that considering these results, they cannot be used 

for the SITARC RDF dataset. The accuracy performances of classical ML algorithms 

implemented on the SITARC RDF dataset are given in Figure 6.1.  

 

 

Figure 6.1 Comparison of accuracy of algorithms for SITARC dataset 

 

To be able to say that an algorithm is the best in any dataset, it may not always be 

sufficient to evaluate it only in terms of accuracy. Especially in proactive systems that 

can respond in real-time, Training Time and Scoring Time criteria are as important as 

the accuracy performances of the algorithms, in order to implement the previously 

planned action plans, as soon as possible and to minimize the loss of possible in 

unexpected situations. 
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In order to provide a prediction algorithm that can respond in a reasonable time 

when applied to any dataset, Training Time and Scoring Time criteria can be 

improved, sometimes by sacrificing the accuracy of the algorithm. This improvement 

can generally be done by changing the parameter to be taken by the algorithm or by 

reducing the number of samples. Some of the algorithms implemented on the SITARC 

dataset can work with parameters and some without parameters. When the algorithms 

were first implemented in the SITARC dataset, it was noticed that the Training Time 

and Scoring Time degree of the tree-based algorithms were at a level that could not 

compete with other algorithms. 

 

 

Figure 6.2 Time performance of algorithms implemented in the SITARC dataset 

 

Therefore, some parameters of DT, RF, GBT algorithms, which are in the Tree 

algorithms family, such as Maximal Depth (MD), Number of Trees (NT), have been 

changed. Thus, by compromising the accuracy of these algorithms, it was ensured that 

they could compete with other algorithms in terms both of time as well as accuracy 

performance. The default parameters of these algorithms that given in RMS Auto 

Mode, the parameters that are given manually for this dataset, and the working 

principles of the algorithms are described respectively in terms of the DT algorithm in 

Section 5.7.2.6, RF algorithm in Section 5.7.2.7, and GBT algorithm in Section 5.7.2.8. 

In Figure 6.2, the performances of the algorithms implemented on the SITARC RDF 

dataset in terms of Training Time, Scoring Time, and Total Time are given. 
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Among the algorithms implemented on this dataset, the best approach in terms of 

Training Time was the DT algorithm with 45 ms., while the closest performances to 

this algorithm were shown by NB with 50 ms and RF algorithms with 54 ms. Apart 

from these algorithms, GBT with 94 ms., LR with 148 ms., and FLM algorithms with 

185 ms. showed an above-average Training Time, and they showed that they have the 

potential to be used even if not the best for SITARC dataset enriched with semantic 

web technologies. Finally, SVM with 247 ms., GLM with 251 ms., and DL with 720 

ms. performed a training time far below the average. According to these results, these 

algorithms are thought that they were not suitable for the SITARC dataset in terms of 

Training Time.  

 

However, evaluating only Training Time performance may not be enough, to say 

that an algorithm has a good performance in terms of time. Algorithms implemented 

in the dataset should also be evaluated in terms of Scoring Time, which is another time 

performance indicator.  The time evaluation of the algorithms for sensor data should 

be made by looking at the sum of these two criteria performances. Because, some 

algorithms implemented in the SITARC dataset have better Training Time, while some 

algorithms have better Scoring Time. 

 

When the results of the algorithms implemented in the SITARC dataset are 

considering in terms of Scoring Time, the best algorithm is the DT algorithm with 237 

ms., just like in Training Time performance. Following DT's Scoring Time 

performance, DL with 262 ms. and GBT algorithms with 263 ms., conducted a 

performance close to the DT algorithm. As seen in Figure 6.2, the DL algorithm, which 

is the last algorithm in terms of Training Time performance, can show a performance 

close to the best performance in terms of Scoring Time. Therefore, as mentioned 

before, it is best to look at the Total Time (Training Time + Scoring Time) performance 

for the time performance of an algorithm, especially when working with sensor data 

in an expert system working in real-time. 
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Considering the Scoring Time performance of other algorithms implemented in the 

SITARC dataset, the RF algorithm scored the SITARC test dataset with 353 ms., and 

the GLM algorithm scored with 365 ms. in a reasonable time. Figure 6.2 shows that 

these algorithms can be used for the SITARC RDF dataset in terms of Scoring Time. 

Among the remaining approaches, the LR algorithm obtained 466 ms., and the NB 

algorithm of 479 ms. an average value with Scoring Time performances. However, 

considering Scoring Time among the algorithms applied to the SITARC dataset, the 

worst performances were the FLM algorithm with 533 ms. and SVM with 612 ms. 

These algorithms have been seen obviously that cannot be used for the SITARC RDF 

dataset when compared to the Scoring Time performances of other approaches. 

 

However, due to the reasons explained before, to say that an algorithm is the best 

for a dataset in terms of time, it is necessary to refer to Total Time performances, 

especially in real-time systems (real-time systems where modeling needs to be 

calculated instantaneously). According to the data in Figure 62, when the approaches 

implemented to the SITARC dataset, are compared, in terms of Total Time, the DT 

algorithm has shown the best performance with 21 sec. The algorithms showing the 

closest performance to the DT algorithm in terms of Total Time are the GLM algorithm 

with 22 sec and the NB algorithm with 27 sec. In terms of Total Time criteria, these 

algorithms are considered that may be used in proactive systems as prediction models, 

for the SITARC RDF dataset. 

 

When the results are evaluated in terms of Total Time performance, they showed 

close to the average performance value the GBT algorithm with 31 sec., the DL 

algorithm with 33 sec., and the RF algorithm with 38 sec. after these algorithms. These 

approaches have proven that they can be used for the SITARC dataset if they give very 

good results in terms of accuracy. In terms of Total Time performance, among the 

remaining algorithms, the LR algorithm with 40 sec., and the FLM algorithm with 46 

sec. As seen in Figure 6.2, when the algorithms applied to the SITARC RDF dataset 

are evaluated in terms of Total Time results, the approach with the worst performance 

was definitely the SVM algorithm with a degree of 98 sec. 
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In Figure 6.3, the graph of the correlations between the attributes in the SITARC 

dataset and the result variable is given. These correlation values are actually a 

numerical representation of how effective that attribute has on the result. 

 

 

Figure 6.3 Correlation of the attributes in the SITARC dataset 

 

According to the data in Figure 6.3, it is seen that the attributes that affect the result 

label the most are PM2.5 with 0.365 weight value and PM10 with 0.364 weight value. 

Another attribute that greatly influenced the result was the Temperature parameter 

with a value of 0.314 weight. When previous studies were taken as reference, it was 

predicted that PM2.5 and PM10 attributes would stand out among the parameters of 

indoor air quality. But it was impossible to predict that the temperature parameter 

could affect the result so much. Apart from these attributes, the correlation between 

the result label and the CO2 parameter with 0.186 weight value, and the TVOC 

parameter with 0.185 weight value, remained at an average value. As seen in Figure 

6.3, although the Humidity parameter with 0.135 weight value and the CO parameter 

with 0.121 weight value does not affect the result label much, that the algorithms are 

important parameters in terms of creating a model on the SITARC dataset. Finally, the 

light level parameter with 0.081 weight value does not have a significant effect on the 

result is seen clearly. 
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Algorithms implemented in any dataset comparison of the criteria such as in terms 

of Accuracy, Training Time, Scoring Time, Flexibility, etc. is sometimes maybe not 

enough for selecting the prediction model. Especially if there is more than one 

parameter affecting the result label in the dataset and the result label is classified in 

more than two categories, it may be useful to calculate gain value while comparing 

algorithms to produce more effective solutions in decision-making processes. In the 

proposed thesis study, while the SITARC dataset consists of 8 attributes, the result 

label is divided into 5 different categories to push the limitations of the algorithms. 

 

Therefore, within the scope of the proposed thesis, the algorithms implemented in 

the datasets were evaluated in terms of accuracy and time, as well as in terms of gain 

and loss. Because, in a multi-class dataset such as the SITARC dataset, the predicted 

value is in a class close to the true value is more acceptable than it is in a class far from 

the true value. A cost matrix was created to evaluate algorithms in terms of gain and 

loss. While creating this Cost matrix, the distance of the estimated value from the 

actual values was taken as a reference. An example is given in Figure 6.4 to make the 

matrix used when calculating the gain and loss easier to understand. 

 

 

Figure 6.4 The sample explaining how to create a cost matrix 

 

Suppose it is an example whose real value is given as "Moderate" as seen in Figure 

6.4. If the estimated value is "Moderate", the gain of the algorithm in that example is 

calculated as +1. Any other estimation means a loss for the algorithm. If the predicted 

value is in a neighborhood of the actual value, like "Poor" and "Good" classes, the 

algorithm's loss for that instance is-1. Finally, if the predicted value is in the two 

neighborhoods of the actual value, like "Excellent" and "Terrible" classes, the 

algorithm's loss for that example is taken as-2. Cost Matrix was created using logic in 



 

 

142 

 

this example. Thus, the gain value in Cost Matrix takes a variable value between -4 

and +1. 

 

Table 6.1 Cost matrix referenced when comparing the gain of algorithms 

Cost 
Matrix 

True 
Terrible 

True 
Poor 

True 
Moderate 

True 
Good 

Ture 
Excellent 

Predicted 
Terrible 

1 -1 -2 -3 -4 

Predicted 
Poor 

-1 1 -1 -2 -3 

Predicted 
Moderate 

-2 -1 1 -1 -2 

Predicted 
Good 

-3 -2 -1 1 -1 

Predicted 
Excellent 

-4 -3 -2 -1 1 

 

The gains and costs of incorrect and correct estimates are given in Table 6.1. Losses 

are represented by negative numbers while gains are represented by positive numbers. 

A detailed example is given in Table 6.2 to better understand the use of Cost Matrix 

when comparing the performance of algorithms. 

 

Table 6.2 An Example of cost matrix use 

Actual Label Value Prediction Label Value Cost/Loss Value Accuracy 

Excellent Terrible -4 FALSE 

Excellent Poor -3 FALSE 

Excellent Moderate -2 FALSE 

Excellent Good -1 FALSE 

Excellent Excellent 1 TRUE 

 

According to Table 6.2, for example, if the label value of an instance whose actual 

label value is “Excellent” is estimated as “Excellent” with any classifier, the prediction 

is correct and takes 1 as the gain point. On the other hand, if the classifier labeled the 

same “Excellent” instance as a “Good”, “Moderate”, “Poor”, or “Terrible” the 

classifier takes -1, -2, -3, -4 loss point respectively and this prediction becomes wrong. 

These loss points give the value of the wrong prediction. In some cases, especially 
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multi-label and multi-attribute datasets, it may be more beneficial to choose the best 

performing algorithm by looking at gain rather than accuracy. The gain performance 

of the algorithms implemented in the SITARC RDF dataset is given in Figure 6.5. 

 

 

Figure 6.5 Comparison of gain performance of algorithms for SITARC database 

 

When the performances of the algorithms are compared in terms of gain, it is seen 

that the sum of the costs of NB and LR algorithms is negative, while the remaining 

algorithms are positive. Parallel to the accuracy performance, it is seen in Figure 6.5 

that the RF approach provides the best performance with 932 scores. Following the 

RF algorithm, it is seen that DL with 911 score and DT approaches with 888 score 

come. These 3 algorithms have proven with these scoring their usability for the 

SITARC dataset enriched with semantic web technologies in terms of gain. 

 

Apart from these algorithms, the SVM approach with 801 scores, the GBT approach 

with 758 scores, and the GLM approach with 747 scores achieved an above-average 

gain score in the SITARC dataset. The FLM algorithm with 582 score is considered 

that cannot be used as a prediction approach in a proactive system design in the 

SITARC dataset by obtaining a score close to the average. The remaining NB and LR 

obtained results that were incomparably worse than other algorithms, with -322 and -

681 scores, respectively. 
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When the performances of 9 classical ML algorithms implemented in the SITARC 

RDF dataset are analyzed in terms of Accuracy, Training Time, Scoring Time, Total 

Time, and Gain; The RF, DT, and DL algorithms which are stood out among others. 

These algorithms are thought that they can be used in a proactive system for a 

prediction approach by looking at the above graphs and comments.  Especially, 

although it has provided an accuracy rate of 89%, the DL algorithm should not be 

forgotten to maybe insufficient for a system operated in real-time, in terms of Total 

Time performance. Among the remaining two approaches, the DT algorithm provided 

about two times better performance than the RF algorithm in terms of Total Time. 

Therefore, the project team's recommendation is to use the DT algorithm with a little 

compromise on accuracy in vital processes that require instant analysis in the SITARC 

RDF dataset, and where possible action plans need to be processed quickly. 

 

6.3 Performance of Classical ML Algorithms on the MICU Dataset 

 

First, the results of classical ML algorithms implemented on the SITARC dataset 

are presented above. After that, in order to evaluate the performance of the same 

classical ML algorithms in semantically enriched datasets, the MICU RDF dataset was 

also implemented and compared. As a result of all the comparisons, when the MICU 

RDF dataset enriched with semantic web technologies is considered alone, the 

accuracy performances of the approaches that can be used for prediction in this dataset 

may be possible to summarize as follows; DL approach was the best algorithm in 

MICU ontological sensor dataset with 68.1% accuracy performance. Following this 

algorithm, the FLM algorithm and the GLM algorithm performed above average with 

an accuracy performance of 62.7% and 58.2% respectively. Each of these algorithms 

is partially suitable in implementation on the MICU RDF dataset as the prediction 

model. 

 

As can be seen from the results, the accuracy performance of classical ML 

algorithms in the MICU dataset is lower than the performance in the SITARC dataset. 

The main reason for this difference in accuracy performance is definitely the 
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characteristics of the two datasets. While the classes in the SITARC dataset are 

distinctly different from each other, the classes in the MICU dataset are sometimes 

intertwined and difficult to distinguish. The biggest reasons for this can be listed as the 

disruption of data collection in the MICU environment due to the pandemic, the 

presence of too many people in the environment and errors due to human curiosity, 

and the presence of more imputed values in the MICU dataset than the SITARC 

dataset. 

 

 

Figure 6.6 Comparison of accuracy of algorithms for MICU database 

 

Apart from these algorithms whose value exceeded the average, the LR algorithm 

with 46.2%, the SVM algorithm with 44.8%, and the DT algorithm with 43.1% showed 

a performance close to the average in terms of accuracy performance. However, the 

GBT algorithm with 33.7%, NB with 26.3%, and RF algorithm with 25.8% conducted 

a performance below average in terms of accuracy performance. These algorithms are 

thought that should not be used in the MICU RDF database as a prediction approach. 

The accuracy performances of classical ML algorithms implemented on the MICU 

RDF dataset enriched with semantic web technologies are given in Figure 6.6. 

 

To be able to say that an algorithm is the best in any dataset, it may not always be 

sufficient to evaluate it only in terms of accuracy. Especially in proactive systems that 
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can respond in real-time, Training Time and Scoring Time criteria are as important as 

the accuracy performances of the algorithms, in order to implement the previously 

planned action plans, as soon as possible and to minimize the loss of possible in 

unexpected situations. 

 

In order to provide a prediction algorithm that can respond in a reasonable time 

when applied to any dataset, Training Time and Scoring Time criteria can be 

improved, sometimes by sacrificing the accuracy of the algorithm. This improvement 

can generally be done by changing the parameter to be taken by the algorithm or by 

reducing the number of samples. Some of the algorithms implemented on the SITARC 

and MICU datasets can work with parameters and some without parameters. When the 

algorithms were first implemented in the MICU dataset, it was noticed that the 

Training Time and Scoring Time degree of the tree-based algorithms were at a level 

that could not compete with other algorithms, just like in the SITARC dataset. 

  

Therefore, some parameters of DT, RF, GBT algorithms, which are in the Tree 

algorithms family, such as MD, NT, have been changed, just like in the SITARC 

dataset. Thus, by compromising the accuracy of these algorithms, they could compete 

with other algorithms both in terms of time as well as accuracy performance was 

ensured in MICU dataset. The default parameters of these algorithms that given in 

RMS Auto Mode, the parameters that are given manually for this dataset, and the 

working principles of the algorithms are described respectively in terms of the DT 

algorithm in Section 5.7.2.6, RF algorithm in Section 5.7.2.7, and GBT algorithm in 

Section 5.7.2.8. In Figure 6.7, the performances of the algorithms implemented on the 

MICU RDF dataset in terms of Training Time, Scoring Time, and Total Time are 

given. 

 



 

 

147 

 

 

Figure 6.7 Time performance of algorithms implemented in the MICU dataset 

 

Among the algorithms implemented on the MICU RDF dataset, the best approach 

in terms of Training Time was the NB algorithm with 26 ms., while the closest 

performances to this algorithm conducted the RF algorithm with 38 ms., the DT 

algorithm with 41 ms., the GBT algorithm with 46 ms., and the LR algorithm with 63 

ms. These approaches have shown a timing close to ideal in terms of Training Time, 

showing that they can be used for the MICU dataset. Apart from these algorithms, 

FLM algorithms with 116 ms. and GLM algorithms with 142 ms. show a training time 

close to the average, while they are thought to have the potential to be used even if not 

the best for MICU dataset enriched with semantic web technologies. Finally, 

considering Training Time among the algorithms applied to the MICU dataset, the 

worst performances were the DL algorithm with 478 ms., the SVM algorithm with 967 

ms. These algorithms are thought that they are not suitable for the MICU RDF dataset 

in terms of the Training Time. 

 

However, as mentioned earlier, evaluating only Training Time performance may 

not be enough, to say that an algorithm has a good performance in terms of time. 

Algorithms implemented in the dataset should also be evaluated in terms of Scoring 

Time, which is another time performance indicator. The time evaluation of the 

algorithms for sensor data should be made by looking at the sum of these two criteria 
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performances. In the MICU dataset, just like in the SITARC dataset, some algorithms 

implemented have better Training Time, while some algorithms have better Scoring 

Time.  

 

When the results of the algorithms implemented in the MICU dataset are analyzed 

in terms of Scoring Time, the best algorithm is the DT algorithm with 186 ms., just 

like in Training Time performance in the SITARC dataset. Following DT's Scoring 

Time performance, the NB algorithm with 219 ms., the GBT algorithm with 239 ms., 

the DL algorithm with 244 ms., and the RF algorithm with 252 ms. conducted a 

performance close to the DT algorithm. As seen in Figure 6.7, the DL algorithm, which 

performs well below the average in terms of Training Time performance, can perform 

well above the average in terms of Scoring Time. 

 

The scoring Time performance of the GLM algorithm, which is another approach 

implemented to the MICU dataset, is close to the average value with 323 ms. However, 

while there are much better performances in terms of Scoring time, it is a little unlikely 

that this algorithm will be chosen as the prediction model for a proactive system. 

Considering the performance of other algorithms implemented in the MICU dataset in 

terms of Scoring Time, the LR algorithm with 420 ms. and the FLM algorithm with 

424 ms. scored the MICU test dataset in a below-average time. In terms of Scoring 

Time, these algorithms have been seen obviously that cannot be used for the MICU 

RDF dataset. Finally, considering Scoring Time among the algorithms applied to the 

MICU dataset, the worst performance was the SVM algorithm with 967 ms. This 

algorithm has been thought that cannot be used for the MICU dataset enriched with 

semantic web technologies compared to the Scoring Time performances of other 

approaches. 

 

However, due to the reasons explained before, to say that an algorithm is the best 

for a dataset in terms of time, it is necessary to consider Total Time performances, 

especially in real-time systems. When the approaches implemented to the MICU 

dataset are compared in terms of Total Time, according to the data in Figure 6.7, the 

DT algorithm showed the best performance with 17 sec., just like in the SITARC 
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dataset. The algorithms showing the closest performance to the DT algorithm in terms 

of Total Time are NB with 19 sec., GBT with 20 sec., GLM with 23 sec., and RF with 

24 sec. Considering Total Time, these algorithms are thought that can be used as a 

prediction approach in a proactive system design in the MICU RDF dataset. 

 

When the results were evaluated in terms of Total Time performance, DL with 29 

sec., LR with 37 sec., and FLM with 40 sec. after these algorithms showed a 

performance above the average value. In these approaches, they have proven that if 

they give very good results in terms of accuracy, they can be used for the MICU 

dataset. As seen in Figure 6.7, when the algorithms applied to the MICU RDF dataset 

are evaluated in terms of Total Time results, the approach with the worst performance 

was definitely SVM algorithm with a degree of 158 sec., as in the SITARC dataset. 

 

 

Figure 6.8 Correlation of the attributes in the MICU dataset 

 

In Figure 6.8, the graph of the correlations between the attributes in the MICU 

dataset and the result variable is given. These correlation values are actually a 

numerical representation of how effective that attribute has on the result. According to 

the data in Figure 6.8, unlike the SITARC dataset, the attribute that affects the result 

label the most is TVOC with a value of 0.301 weight and CO2 with a value of 0.300 

weight, respectively. The fact that PM2.5 and PM10 values have so little effect on the 
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result label can be attributed to the fact that an external hepa filter is used in the hospital 

intensive care unit. However, it is up to the managers to decide whether the PM2.5 and 

PM10 levels, which are vital for the health of the patients in a place that has critical 

importance such as an intensive care unit, are sufficient. 

 

One of the other attributes that greatly influenced the result was Temperature with 

a value of 0.153 weight and CO parameters with a value of 0.125 weight. Apart from 

these attributes, with 0.102 weight value, the correlation between the result label and 

the Humidity parameter is slightly below the average. With 0.88 weight value PM10 

and with 0.73 weight value PM2.5 attributes were not affecting the result label much, 

but it is certain that classical ML algorithms are important parameters in terms of 

creating models on the MICU dataset. Finally, it is clearly seen in Figure 6.8 that with 

its 0.63 weight value, the light level parameter does not have a significant effect on the 

result. 

 

 

Figure 6.9 Comparison of gain performance of algorithms for MICU database 

 

Algorithms implemented in any dataset comparison of the criteria such as in terms 

of Accuracy, Training Time, Scoring Time, Flexibility, etc. is sometimes maybe not 

enough for selecting the prediction model. Especially if there is more than one 

parameter affecting the result label in the dataset and the result label is classified in 
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more than two categories, it may be useful to calculate gain value while comparing 

algorithms to produce more effective solutions in decision-making processes.  In the 

proposed thesis, the MICU dataset consists of 8 attributes like the SITARC dataset, 

while the result label is divided into 5 different categories to push the limits of the 

algorithms. 

 

Therefore, within the scope of the proposed thesis, the algorithms implemented on 

the MICU datasets were evaluated in terms of accuracy and time, as well as in terms 

of gain and loss. Because, in a multi-class dataset such as the MICU dataset, the 

predicted value is in a class close to the true value is more acceptable than it is in a 

class far from the true value. A cost matrix was created to evaluate algorithms in terms 

of gain and loss. While creating this Cost matrix, the distance of the estimated value 

from the actual values was taken as a reference. The gain performance of the 

algorithms implemented in the MICU RDF dataset is given in Figure 6.9. 

 

Cost Matrix used for gain calculation in MICU dataset is the same as Cost matrix 

used in SITARC dataset. For this reason, how to create the Cost matrix will not be 

explained again in this section. Required information about Cost Matrix; An example 

is given in Figure 6.4 to make it easier to understand the matrix used when calculating 

the gain and loss. The benefits and costs of incorrect and correct estimates are given 

in Table 6.1. An example is given in Table 6.2 to better understand the use of Cost 

Matrix when comparing the performance of algorithms. 

 

When the performances of the algorithms are compared in terms of gain, it is seen 

that the sum of the costs of NB and RF algorithms is negative, while the remaining 

algorithms are positive. Figure 6.9 reveals that the DL approach provides the best 

performance with 778 scores in parallel with the accuracy performance when the 

performances of algorithms are analyzed in terms of gain. The algorithms following 

the performance of the DL algorithm, are the FLM approaches with 668 scores and the 

GLM approaches with 586 scores. It is thought that these 3 algorithms can be used in 

terms of gain because they are higher than the average value for the MICU dataset 

enriched with semantic web technologies.  
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Apart from these algorithms, the LR algorithm with 340 score, DT algorithm with 

331 score, and the SVM algorithm with 330 score obtained an average gain score in 

the MICU dataset. However, it is obvious that these gain scores are insufficient for the 

prediction model required for a proactive system design. Following these approaches, 

it is certain that the GBT algorithm with a score of 52 points cannot be used as a 

prediction approach in a proactive system design in the MICU dataset.  RF and NB 

algorithms achieved poor results that could not be compared with other algorithms, 

while they obtained -174 and -266 scores, respectively. Experimental results show that 

these algorithms not suitable for the MICU dataset as a prediction model. 

 

When the performances of 9 classical ML algorithms implemented in the MICU 

RDF dataset are analyzed in terms of Accuracy, Training Time, Scoring Time, Total 

Time and Gain; The DL, FLM, and GLM algorithms which are stood out among 

others. These algorithms are thought that they can be partially used in a proactive 

system for a prediction approach by looking at the above graphs and comments. There 

are multiple reasons why the algorithm performances are lower in the MICU dataset 

compared to the SITARC dataset. These reasons will be discussed in Chapter 7 

conclusions. However, it should not be forgotten that although the DL algorithm 

provides the best accuracy score, it may be insufficient for a system operated in real-

time especially the model generation time. 

 

In terms of Total Time, the GLM algorithm provided better timing performance 

than the FLM algorithm among the remaining two approaches. However, the accuracy 

performances of these algorithms are slightly lower than DL. Although the Training 

Time of the DL algorithm is high, experimental results have shown that the 

performance of DL better than the average of the FLM and GLM algorithms when the 

Total Time is examined by closing this gap during the application of the model to the 

dataset. Therefore, the project team's recommendation is to use the DL algorithm, 

which is more reasonable in accuracy performance with little compromise in time, in 

vital processes that require instant analysis in the MICU RDF dataset and where 

possible action plans need to be executed quickly. 
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6.4 Performance of Classical ML Algorithms on the COMBINED Dataset 

 

The results of the experiments performed on the SITARC and MICU dataset and 

the comparison of the results of 9 classical ML algorithms applied are presented 

supported by graphical data from different angles in this section. In addition, the 

SITARC dataset created from the IAQ parameters collected in the laboratory 

environment and the MICU datasets created from the IAQ parameters collected from 

the hospital intensive care unit will be combined and the experiments performed in 

this section have been implemented into this COMBINED RDF ontological sensor 

dataset. 

 

 

Figure 6.10 Schematic representation of the creation of the COMBINED dataset 

 

When determining the appropriate prediction algorithm on datasets enriched with 

semantic web technologies, implementing algorithms that determined previously, in 

different datasets is very important in or order to compare and check results. It is 

thought that testing the approaches in many datasets may be useful in determining the 

most appropriate prediction model. For this reason, a COMBINED RDF dataset was 

created by combining SITARC and MICU datasets to create a different perspective. 

The merging of SITARC and MICU RDF datasets is provided with the Append 
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operator in RMS. Creation of COMBINED dataset in RMS environment is given 

schematically in Figure 6.10. 

 

The append operator was used to create the COMBINED RDF dataset shown in 

Figure 6.10. However, while combining SITARC and MICU datasets, some problems 

arose due to different parameters. These problems were solved by clearing the columns 

that make up the two datasets with the Select Attribute operator without coming to the 

Append operator. The newly created COMBINED RDF dataset was stored in the RMS 

environment with the STORE operator for model selection. In addition, the newly 

created COMBINED RDF dataset was stored in CSV format with the "Write CSV" 

operator and in XSL format with the "Write Excel" operator for use in other 

environments. 

 

The results of classical ML algorithms, which were first implemented on the 

SITARC and MICU dataset, are presented above. After that, the same classical ML 

algorithms were implemented to the COMBINED RDF dataset created by combining 

the semantically enriched SITARC and MICU datasets in order to gain a different 

perspective and enrich the results obtained. Results from this experiment compared 

with each other and analyzed. As a result of all the comparisons, when the 

COMBINED RDF dataset enriched with semantic web technologies is considered 

alone, it may be possible to summarize the accuracy performance of the approaches 

that can be used for estimation for this dataset as follows. 

  

The best algorithm in the COMBINED ontological sensor dataset was the DL 

approach with 79.8% accuracy performance as in the MICU dataset. Following this 

algorithm, the RF algorithm showed an accuracy performance of 79.0%, the DT 

algorithm with 75.4%, and the SVM algorithm with an accuracy of 73.1, showing a 

performance close to the DL approach, which shows the best performance. Each of 

these algorithms is considered that suitable in terms of accuracy performance for the 

prediction model in the COMBINED RDF dataset. 
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Apart from these algorithms at the top ranks, the FLM algorithm with an accuracy 

performance of 69.7%, the GLM algorithm with an accuracy performance of 68.0%, 

and the LR algorithm with an accuracy performance of 61.4% also performed above 

average. Although these algorithms have above average accuracy, they are insufficient 

to be used as a prediction approach in a proactive system design. Among the 

algorithms implemented in the COMBINED dataset, GBT, and NB algorithms 

conducted an accuracy performance of 54.0% and 49.5% respectively. Data in Figure 

6.11 shows that the accuracy performance of these algorithms is well below the 

average performance of all approaches. For this reason, it is thought that these 

approaches should not be used in the COMBINED RDF database, while there are 

algorithms that have better accuracy performances. The accuracy performance of 

classical ML algorithms implemented on the COMBINED RDF dataset enriched with 

semantic web technologies is given in Figure 6.11. 

 

 

Figure 6.11 Comparison of accuracy of algorithms for COMBINED database 

 

To be able to say that an algorithm is the best in any dataset, it may not always be 

sufficient to evaluate it only in terms of accuracy. Especially in proactive systems that 

can respond in real-time, Training Time and Scoring Time criteria are as important as 

the accuracy performances of the algorithms, in order to implement the previously 

planned action plans, as soon as possible and to minimize the loss of possible in 
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unexpected situations. For this reason, the results of ML approaches used in the 

COMBINED dataset, just like in the SITARC and MICU datasets, were compared in 

terms of model creation time, test time, and Total Time, and the results were shared. 

In Figure 6.12, the performances of the algorithms implemented on the COMBINED 

RDF dataset in terms of Training Time, Scoring Time, and Total Time are given. 

 

 

Figure 6.12 Time performance of algorithms implemented in the MICU dataset 

 

In order to provide a prediction algorithm that can respond in a reasonable time 

when applied to any dataset, Training Time and Scoring Time criteria can be 

improved, sometimes by sacrificing the accuracy of the algorithm. This improvement 

can generally be done by changing the parameter to be taken by the algorithm or by 

reducing the number of samples. Just like in SITARC and MICU datasets, some of the 

algorithms implemented on the COMBINED datasets can work with parameters and 

some without parameters. When the algorithms were first implemented in the 

COMBINED dataset, it was noticed that the Training Time and Scoring Time degree 

of the tree-based algorithms were at a level that could not compete with other 

algorithms.  

 

Therefore, some parameters of DT, RF, GBT algorithms, which are in the Tree 

algorithms family, such as MD, NT, have been changed, just like in the SITARC and 
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MICU dataset. Thus, by compromising the accuracy of these algorithms, they could 

compete with other algorithms both in terms of time as well as accuracy performance 

was ensured in COMBINED dataset. 

 

Among the algorithms implemented on the COMBINED RDF dataset, the best 

approach in terms of Training Time was the FLM algorithm with 25 ms., while the 

closest performances to this algorithm were conducted respectively by the DT 

algorithm with 31 ms., the NB algorithm with 36 ms., the RF algorithm with 43 ms., 

and the GBT algorithm with 58 ms. These approaches showed a timing close to ideal 

for the COMBINED dataset in terms of Training Time. This experiment results show 

that they can be used for this dataset.  Apart from these algorithms, GLM algorithms 

with 112 ms. and LR algorithms with 213 ms. showed an above-average Training 

Time, and they showed that they have the potential to be used even if not the best for 

MICU dataset enriched with semantic web technologies.  

 

DL algorithm showed an average performance with a Training Time of 478 ms. 

Although the DL approach has an average performance, it is thought that this algorithm 

can be used as a prediction approach in cases where it can be more successful than 

other algorithms in terms of accuracy. Finally, with a performance above 1,000 ms., 

the SVM algorithm showed a Training Time far below average, showing that it is not 

suitable in terms of the Training Time for the COMBINED RDF dataset. (Values taken 

by SVM and LR algorithms in terms of time criteria are scaled as 1/10 for better 

understanding of the graph.) 

 

However, as mentioned earlier, evaluating only Training Time performance may 

not be enough, to say that an algorithm has a good performance in terms of time. 

Algorithms implemented in the dataset should also be evaluated in terms of Scoring 

Time, which is another time performance indicator. The time evaluation of the 

algorithms for sensor data should be made by looking at the sum of these two criteria 

performances. In the COMBINED dataset, just like in the SITARC and MICU dataset, 

some algorithms implemented have better Training Time, while some algorithms have 

better Scoring Time. This difference is due to the fact that the working principles of 
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the algorithms are completely different from each other. While some algorithms make 

a lot of effort in creating the model, some algorithms take a lot of effort while scoring 

the test dataset. 

 

When the results of the algorithms implemented in the COMBINED dataset are 

checked in terms of Scoring Time, it is seen that the best algorithm is the DT algorithm 

with 199 ms. Following DT's Scoring Time performance, the performance of GBT 

algorithms with 282 ms., DL with 284 ms., and GLM with 289 ms. is listed. As seen 

in Figure 6.12, the DL algorithm, which has an average performance in terms of 

Training Time performance, can perform above average in terms of Scoring Time just 

like in SITARC and MICU datasets. 

  

Scoring Time performance of RF and FLM algorithms, other approaches 

implemented to the COMBINED dataset, is close to the average value with 425 ms. 

and 453 ms., respectively. However, while there are much better performances in terms 

of Scoring time, it is a little unlikely that this algorithm will be chosen as the prediction 

model for a proactive system. The performance of the NB approach, which is another 

algorithm implemented into the COMBINED RDF dataset, is 788 ms. in terms of 

Scoring Time. 

 

This value, which is below the average scoring time performance, is insufficient in 

terms of using the NB algorithm for the COMBINED dataset. Finally, considering 

Scoring Time among the algorithms applied to the COMBINED dataset, the worst 

performances were SVM with performance over 1,000 ms. and LR algorithms with a 

performance above 2,000 ms. Experimental results show these algorithms cannot be 

used for the semantic enriched COMBINED dataset with semantic web technologies 

when compared to the Scoring Time performances of other approaches. 

 

According to the data in Figure 6.12, the DT algorithm has shown the best 

performance with 35 sec., just like the SITARC and MICU datasets when the 

approaches implemented to the COMBINED dataset are compared in terms of Total 

Time. The algorithms showing the closest performance to the DT algorithm in terms 
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of Total Time are the GLM algorithm with 42 sec., the GBT algorithm with 57 sec., 

the DL algorithm with 59 sec., and the NB algorithm with 60 sec. Considering Total 

Time in these algorithms, it is thought that COMBINED can be used as a prediction 

approach for a proactive system design for the RDF dataset. 

 

When the results were evaluated in terms of Total Time performance, they showed 

a performance above the average value of the RF algorithm with 69 sec., the FLM 

algorithm with 88 sec., and the LR algorithm with 91 sec. after these algorithms. In 

these approaches, they have proven that if they give very good results in terms of 

accuracy, they can be used for the COMBINED dataset. As seen in Figure 6.12, when 

the algorithms applied to the COMBINED RDF dataset are evaluated in terms of Total 

Time results, the approach with the worst performance was definitely the SVM 

algorithm with a 488 sec. rating, as in the SITARC and MICU dataset. Even if the 

accuracy of this approach is better than other algorithms, it is thought that it should not 

be used as a prediction model because it would not respond in a reasonable time in a 

real-time system. 

 

 

Figure 6.13 Correlation of the attributes in the COMBINED dataset 

 

In Figure 6.13, the graph of the correlations between the attributes in the 

COMBINED dataset and the result variable is given. These correlation values are 

actually a numerical representation of how effective that attribute has on the result. 

According to the data in Figure 6.13, unlike the SITARC and MICU datasets, the 
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attribute that affects the result label the most is PM10 with a value of 0.267 weight, 

Temperature with a value of 0.262 weight, and PM2.5 with a value of 0.261 weight 

respectively. 

 

One of the other attributes that affect the result at least as much as these attributes 

are CO2 with 0.240 weight value and TVOC with 0.240 weight value. These 5 

attributes had a more significant effect on the COMBINED RDF dataset than other 

attributes and played an important role in determining the characteristics of this 

dataset. Apart from these attributes, the correlation between CO and the result label 

with a value of 0.137 weight was slightly below average. Light Level with 0.80 weight 

value and Humidity attributes with 0.40 weight value does not affect the result label 

very much. However, it is certain that they are important parameters to create models 

on the MICU dataset in classical ML algorithms. 

 

In the COMBINE dataset, there is more than one parameter affecting the result label 

as in the SITARC and MICU datasets. In addition, the result label is classified into 

more than two categories. For these reasons, when determining the prediction 

approach, it may be useful to evaluate and compare algorithms in terms of gain, to 

produce more effective solutions in decision-making processes. In the proposed thesis, 

the COMBINED dataset consists of 8 attributes such as SITARC and MICU datasets, 

while the result label is divided into 5 different categories to push the limits of the 

algorithms. 

 

Within the scope of the proposed thesis, the algorithms implemented into the 

COMBINED dataset were evaluated in terms of gain and loss. Because, in multi-class 

datasets such as the COMBINED dataset, the predicted value is in a class close to the 

true value is more acceptable than it is in a class far from the true value. The gain 

performance of the algorithms implemented in the COMBINED RDF dataset is given 

in Figure 6.13. 
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Figure 6.14 Comparison of gain of algorithms for the COMBINED dataset 

 

A cost matrix was created to evaluate algorithms in terms of gain and loss. While 

creating this Cost matrix, the distance of the estimated value from the actual values 

was taken as a reference. The cost Matrix used for gain calculation in the COMBINED 

dataset is the same as the Cost matrix used in the SITARC and the MICU dataset. For 

this reason, how to create the Cost matrix will not be explained again in this section. 

 

When the performance of the algorithms is examined in terms of gain, Figure 6.14 

clearly are shown that the DL approach provides the best performance with 1,891 score 

as in the MICU dataset and in parallel with the accuracy performance. Following the 

DL algorithm, it is seen that RF approach with 1,839 score, DT approach with 1,737 

score and SVM approach with 1,675 score. It is thought that these 4 algorithms can be 

used in terms of gain performance because they are higher than the average value for 

COMBINED dataset enriched with semantic web technologies.  

 

Apart from these algorithms, the FLM approach with 1,496 points, the GLM 

approach with 1,347 score, and the LR approach with 1,009 score obtained. These 

results scores are close to the average gain score in the COMBINED dataset. However, 

it is obvious that these gain scores are insufficient for the prediction model required 

for a proactive system design. Following these approaches, it is certain that the GBT 
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algorithm with a score of 979 points cannot be used as a prediction approach in a 

proactive system design in the COMBINED dataset, by obtaining a score well below 

the average. Lastly, the NB algorithm obtained 694 scores while obtaining a poor result 

that could not be compared with other approaches. 

 

When the performances of 9 classical ML algorithms implemented in the 

COMBINED RDF dataset are analyzed in terms of accuracy, Training Time, Scoring 

Time, Total Time, and Gain; unlike the SITARC and MICU datasets, there is no 

outstanding approach among implemented algorithms. In many respects, the 

approaches have shown similar results. However, when the experimental results are 

examined in terms of accuracy performance, it is understood that DL, DT, RF, and 

SVM algorithms stand out and can be used for prediction approach in a proactive 

system by looking at the above graphs and comments. 

 

While some algorithm performances in the COMBINED dataset gave lower results 

in terms of accuracy compared to the SITARC dataset, they also gave better results 

compared to the MICU dataset. Although the datasets consist of similar attributes, 

these differences are thought to be due to the dataset characteristics. However, it 

should not be forgotten that although the SVM approach has provided good 

performance in terms of accuracy, the Total Time of this algorithm is very high 

compared to other algorithms, which may be insufficient for a system operated in real-

time. 

 

Likewise, the performance RF approach is insufficient, especially in terms of 

Scoring Time and Total Time, compared to the other two algorithms. Among the 

remaining two approaches, the DT algorithm provided better timing performance 

compared to the DL algorithm in terms of Total Time. However, the accuracy 

performances of these algorithms are slightly lower than DL. In the light of all these 

data, the advice of the project team is to use the DT algorithm with little compromise 

from accuracy in vital processes that need to perform instant analysis in the 

COMBINED RDF dataset, and where possible action plans need to be executed faster. 
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CHAPTER SEVEN 

CONCLUSION AND FUTURE WORK 

 

In the last decade, sensor-based systems have spread rapidly to all areas of daily 

life, especially in industrial areas, as a result of the become smaller so that they can be 

used in every system, developments in the academic environment, and the decrease in 

their prices. Such the widespread use of sensor systems has caused an enormous 

increase in sensor-based data, especially in internet environments. The representation, 

reusability, interpretation, and management of these large-scale sensor data on the 

Internet is still one of the areas that await effective solutions today. 

 

Another difficulty with the sensor data is that the sensor data are generally 

heterogeneous in the data they produce due to different operating principles, different 

hardware, and different purposes. These heterogeneity detection methods may involve 

one or more of the small differences in operating systems, syntax, and data structure. 

In other words, the sensor data produced are generally specific to that system. Sensor 

data obtained within a specific system are not shared with other systems, they are not 

reused and it is very difficult to manage them in a common framework. 

 

In addition to all these, the fact that sensor data is not encoded in a language that 

computers can understand makes sensor data difficult to understand and interpret by 

machines. Recent research in this area has focused on the joint representation and 

management of sensor data under a common roof. In this proposed thesis, a common 

framework has been created to enable machines to interpret sensor data on the Web by 

providing more advanced access and annotations. This system was named Ontology 

Framework for Heterogeneous Sensor Data (OF4HeS:Lite). The infrastructure of this 

common framework consists of the SSN. 

 

In the proposed thesis, OF4HeS:Lite consists of roughly 3 different processing steps 

closely related to each other. Firstly, sensor nodes were created to collect determined 

environment variables. After that, IAQ data were collected in SITARC and MICU 

through these sensor nodes. In the second step, a common sensor ontology was created 
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by using the SSN framework in order to manage these sensor data collected from 

different environments and different platforms under the same roof. In this way, a 

common metadata and representation standard is provided for sensor data. Providing 

common metadata is an important layer to enable machines to better interpret sensor 

data. At the last stage of the proposed thesis, it has been tried to determine which ML 

approach is more effective on semantically enriched sensor data in order to create a 

proactive system design. 

  

The performances of ML approaches may vary according to different situations, 

different samples, and different data sets. However, since the duration and difficulties 

of the training and testing stages may vary, they should be evaluated separately. When 

factors such as performance, scalability, flexibility, accuracy, and precision are 

considered, it is impossible to predict which method or algorithm is more suitable for 

a situation or data set. 

 

To be able to say that an algorithm is the best for a case study or dataset, it must 

create a delicate balance especially in terms of accuracy, training time, test time, 

flexibility. Therefore, in the proposed thesis, careful experiments were conducted to 

determine the best estimation approach in every aspect while modeling for the future 

in RDF datasets encoded with Semantic metadata. For this reason, defining suitable 

prediction approaches for any data set requires a long and demanding experiment 

process that requires attention. The performances of the implemented approaches on 3 

RDF data sets created within the scope of the thesis study are given below from bad to 

good. 

 

A probabilistic based approach, NB is a supervised ML algorithm. This algorithm 

has been used in many studies as a prediction approach. In many studies, although this 

approach has given good results, up to which can be compared with approaches with 

more complex operating principles such as SVM and DL, it also remained far below 

the average in terms of gain and accuracy performance on the RDF datasets used in 

this study. Considering the time performances, it was observed that NB's time periods 

deteriorated with the increase in the number of samples, especially in the COMBINED 
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RDF data set. The experiments conducted in this study showed that the use of the NB 

approach in RDF data sets is not sufficient in terms of both accuracy performance and 

time performance. 

 

Considering the performance of the LR algorithm in the data sets used in this thesis, 

it is obvious that it is one of the worst algorithms in terms of gain and accuracy 

performance, especially in the SITARC data set. It is a remote possibility to use this 

regression-based algorithm as a prediction approach in RDF data sets. Apart from this, 

in terms of time performance, while the LR algorithm achieves a performance close to 

the average value in SITARC and MICU data sets, it is seen that the timing 

performance in the COMBINED data set decreases significantly as the number of data 

increases, just like the NB algorithm. When considered in this respect, it seems 

impossible to use the LR approach as a prediction model. 

 

Within the scope of the thesis, another approach that is implemented on RDF data 

hardnesses is the GBT algorithm which is the tree-based approach. While the GBT 

algorithm performed remarkably only in SITARC dataset in terms of gain and 

accuracy, it performed well below average in other datasets. In total, the gain accuracy 

performance in the 3 data sets was below average. Although this algorithm performs 

better than the average in all 3 data sets in terms of Total Time, which is the most 

important indicator in terms of timing in the Prediction model, it is not possible to use 

it for the RDF data sets used in the study due to the insufficient accuracy rate. 

 

According to the experimental results, the RF algorithm, which is another tree-

based approach, obtained an average value in terms of gain and accuracy in total. 

Although this approach has managed to be the best algorithm in terms of gain and 

accuracy in the SITARC dataset, its performance has significantly decreased in the 

COMBINED dataset, where the number of samples increased, and the MICU dataset 

where the clarity between the labels decreased. Although it has performed better than 

the average value in all three data sets in terms of timing, it is thought that it is a remote 

possibility to use it as a prediction model when all the data sets created within the 

scope of the thesis study are considered when compared with other algorithms. 
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When the results of the algorithms implemented in all three data sets are examined, 

it is seen that the SVM algorithm, which is frequently used as the prediction approach, 

is above average in terms of gain and accuracy performance. However, it is obvious 

that the SVM algorithm performs very poorly in terms of Training Time, Scoring 

Time, and Total Time. Therefore, it is thought that the SVM approach should not be 

used in semantic web technologies in semantically enriched SITARC, MICU, and 

COMBINED datasets, especially in proactive systems where instant decisions need to 

be taken. 

 

When the results of the implemented algorithms are examined in all three data sets, 

as the prediction approach, the FLM algorithm has a similar performance with the DT 

algorithm in terms of gain and accuracy performance. Considering accuracy and gain 

performance, it is considered to be a convenient approach for RDF datasets. However, 

considering the average of the timing performance in 3 data sets, it could not provide 

the performance shown by many algorithms. Therefore, it is thought that this approach 

cannot be used as a prediction approach in RDF data sets, while there are approaches 

that show the same accuracy and provide better timing performance. 

 

Considering the gain and accuracy performances, another approach that performs 

well is the GLM algorithm, which shows a close performance to DT and FLM 

approaches. Although not the best approach, experiments have proven that the GLM 

algorithm, which performs close to the best approach in all 3 data sets, can be used for 

RDF data sets in terms of accuracy and performance.  When evaluated in terms of time 

performances, it has achieved a good performance according to the FLM approach, 

which is one of the algorithms providing similar accuracy, but poor performance 

according to the DT approach. For this reason, it is predicted that the DT approach 

with similar accuracy rates has a better time performance, while the GLM algorithm 

cannot be used. 

 

The last tree-based approach implemented to the created data sets is the DT 

algorithm. This approach provided approximately 70% accuracy performance and a 
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parallel gain performance when averaged over 3 data sets where it was implemented 

in terms of accuracy performance. Considering this gain and accuracy performance it 

demonstrates, it is thought that it can be used for RDF data sets. Considering the 

performance of the DT algorithm in terms of time criteria, it showed an average 

performance in terms of Training Time in all 3 data sets used and showed the best 

performance in 3 data sets in terms of Scoring Time and Total Time. According to the 

results of the Experiment, it is thought that the DT algorithm can be used for RDF data 

sets in terms of both accuracy performance and time performance. 

 

Finally, considering the average accuracy performances of the 3 data sets used 

within the scope of the thesis study, the best approach with a value of approximately 

80% has definitely been the DL algorithm, which has been frequently used as the 

prediction approach recently. However, due to the complexity of the working principle 

of the DL approach, the time performances are often below average. As a result, it is 

thought that it is appropriate to use the DL approach, which has high accuracy but low 

time performance in data sets where the number of samples in the data set is low and 

the need for frequent modeling is not felt. However, it may be more appropriate not to 

use the DT approach to ensure the timely response of the system in large data sets, 

which are frequently modeled. In this case, it may be more appropriate to use faster 

responsive approaches such as DT and GLM, with some compromise on accuracy. 

 

"OF4HeS:Lite" proposed in this study is a low-level sensor ontology that provides 

a better interpretation of sensor data. It is thought that OF4HeS:Lite will guide mid-

level and high-level ontologies planned to be done next. This model proposed in future 

studies can be combined with different domains, different platforms, and different 

systems to expand its scope. With this extended model, sensor data can be used to 

make a common inference. 

 

Although the proposed sensor ontology associates the data semantically, the 

complexity of the semantic techniques often causes the processing times to increase. 

A new model can be created that includes minimum concepts to ensure that the 

proposed semantic systems respond in a reasonable time acceptable to data consumers. 
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Object properties and data properties can be used within the scope of the minimum 

concept. Thus, the number of triples in the RDF database may be reduced and the 

system can be more efficient. 
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