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MACHINE LEARNING BASED FUSION OF DIFFERENT SEGMENTATION

TECHNIQUES FOR LIVER VISUALIZATION FOR ENHANCED

ACCURACY AND SENSITIVITY

ABSTRACT

Medical imaging is a vital resource in medicine, improving quality, sensitivity, and

objectiveness of diagnosis by providing unique information. Medical image analysis

tools provide segmentation capabilities to focus on a specific structure of interest.

Thus, segmentation methods play a crucial role to support a variety of imaging

operations such as diagnosis, structural analysis, treatment and surgery planning.

The liver is one of the abdomen organs with the highest imaging demand. This

situation increases the need for the segmentation of the liver. Despite the various

segmentation methods in the literature, the success of them developed up to the last

decade is now outperformed by Deep Learning Models (DMs). However, DMs‘

effectiveness is highly dependent to user experience, specific design procedures, and

the data characteristics. Besides, DMs tend to overfit to the training data due to the

fundamentals of their designs. Thus, the reproducibility of analytical studies

involving DMs are still limited. To eliminate all problems of DM based segmentation

methods; fusion of multiple segmenters can be used as an alternative approach.

In this thesis, novel studies on creating new benchmark platforms for segmentation

methods, analysis and adaptation of ensemble methods to medical image segmentation

applications, and designing of a new ensemble method are presented. It is expected

that the findings and proposed solutions in this thesis will help to remove barriers

between academic studies and their implementations in real-world applications. (This

work is supported by TUBITAK ARDEB-EEEAG under grant number 116E133 and

TUBITAK BIDEB-2214 International Doctoral Research Fellowship Programme.)

Keywords: Classifier ensembles, abdominal imaging, image segmentation, medical

imaging challenges
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KARACİĞERDE BAŞARIMI VE DUYARLILIĞI GELİŞTİRİLMİŞ

BÖLÜTLEME İÇİN FARKLI YÖNTEMLERİN MAKİNA ÖĞRENMESİ

TABANLI EN İYİLENMİŞ FÜZYONU

ÖZ

Tıbbi görüntüleme, sağladığı anatomik veriler sayesinde kliniklerde kullanılan

önemli bir araçtır. Tıbbi görüntü analiz araçları istenilen yapıya odaklanmak için

segmentasyon yöntemleri sağlarlar. Bu yöntemler; tanı, anatomik yapı analizi, cerrahi

planlama gibi çeşitli işlemlerinde çok önemli bir role sahiptir.

Karaciğer, görüntüleme ve segmentasyon talebi en yüksek olan organlarından

biridir. Literatürdeki çeşitli segmentasyon yöntemlerine rağmen, artık Derin Öğrenme

Modelleri (DM’ler), geliştirilen diğer yöntemlerden çok daha başarılı sonuçlar

üretmektedir. Bununla birlikte, DM’lerin etkinliği büyük ölçüde kullanıcı

deneyimine, özel tasarım prosedürlerine ve veri özelliklerine bağlıdır. Ayrıca, DM’ler

tasarımları gereği eğitim verilerine oturma eğilimindedir. Bu nedenle, DM’leri içeren

çalışmaların tekrarlanabilirliği hala sınırlıdır. DM tabanlı segmentasyon

yöntemlerinin sorunlarını ortadan kaldırmak için; farklı segmentasyon metotlarının

füzyonu alternatif bir yaklaşım olarak kullanılabilir.

Bu tezde, segmentasyon yöntemleri için yeni karşılaştırma platformlarının

oluşturulması, füzyon yöntemlerinin tıbbi görüntü segmentasyonu uygulamalarına

analizi ve adaptasyonu, ve yeni bir topluluk yönteminin tasarlanması ile ilgili yeni

çalışmalar sunulmaktadır. Bu tezde elde edilen bulguların ve önerilen çözümlerin

akademik çalışmalar ile bunların gerçek hayattaki uygulamaları arasındaki engelleri

ortadan kaldırmaya yardımcı olması hedeflenmektedir. (Bu çalışma, TÜBİTAK

ARDEB-EEEAG tarafından 116E133 numaralı proje ve TÜBİTAK BIDEB-2214

Uluslararası Doktora Araştırma Burs Programı kapsamında desteklenmiştir.)

Anahtar kelimeler: Sınıflandırıcı topluluklar, abdominal görüntüleme, görüntü

bölütleme, tıbbi görüntüleme yarışmaları
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challenge ................................................................................... 46

Table 3.3 Results of teams using semi-automatic methods ............................... 49

Table 3.4 Results of teams using automatic methods....................................... 49

Table 3.5 Quantitative analysis of OR operator in three group; FN, FP and Total

number of voxels ........................................................................ 53

Table 3.6 Quantitative analysis of AND operator in three group; FN, FP and Total

number of voxels ........................................................................ 54

Table 3.7 Statistics about CHAOS CT and MRI dataset................................... 57

Table 3.8 Metrics results of segmentations in Fig.3.12. In many conditions marked

bold (except Seg 3 and Seg 4), DICE metric is not sensitive for the different

segmentation errors ..................................................................... 66

Table 3.9 Metrics results of segmentations in Fig.3.13. In all cases

MSSD/Hausdorff distance have same value. Thus, it is not possible to

distinguish the different segmentation errors with single metric usage .. 67

Table 3.10 Details of metrics and threshold values in the CHAOS challenge. ∆

represents longest possible distance in the 3D image ......................... 68

Table 3.11 Pre-processing, post-processing operations, and participated tasks in the

CHAOS challenge....................................................................... 74

Table 3.12 Brief comparison of participating methods in the CHAOS challenge.... 75

Table 3.13 CHAOS challenge submission statistics for on-site and online sessions 78

Table 3.14 Metric values and corresponding scores of submissions. The given values

represent the average of all cases and all organs of the related tasks in the

test data (The best results are given in bold)..................................... 81

Table 4.1 Specifications of CHAOS CT and 3DIRCADB1 datasets ................... 94

xv



Table 4.2 Metric results of the individual segmenters and the ensemble methods on

CHAOS train data to examine overfitting. The circle marker indicates

results where the overfitting (calculated by the difference of training and

testing performances) was not found to be significant...................... 108

Table 4.3 Metric results of the individual segmenters and the ensemble methods on

CHAOS test data to examine segmentation accuracy. The best value in

each column is bold................................................................... 109

Table 4.4 Metric results of the individual segmenters and the ensemble methods on

3DIRCADB1 training data to examine overfitting. The circle marker

indicates results where the overfitting (calculated by the difference of

training and testing performances) was not found to be significant..... 109

Table 4.5 Metric results of the individual segmenters and the ensemble methods on

3DIRCADB1 test data to examine segmentation accuracy. The best value

in each column is bold ............................................................... 110

Table 4.6 Overfitting magnitude for the CHAOS dataset. Large overfitting

corresponds to blue color and small overfitting, to red color. Each column

(metric) is scaled individually ..................................................... 111

Table 4.7 Overfitting magnitude for the 3DIRCADB1 dataset. Large overfitting

corresponds to blue color and small overfitting, to red color. Each column

(metric) is scaled individually ..................................................... 111

Table 4.8 DICE: Statistical comparison between individual DMs and ensembles.

Bullet means that the ensemble wins; circle means that the DM wins; line

means that no statistical difference. .............................................. 114

Table 4.9 RAVD: Statistical comparison between individual DMs and ensembles.

Bullet means that the ensemble wins; circle means that the DM wins; line

means that no statistical difference ............................................... 114

Table 4.10 ASSD: Statistical comparison between individual DMs and ensembles.

Bullet means that the ensemble wins; circle means that the DM wins; line

means that no statistical difference ............................................... 115

xvi



Table 4.11 MSSD: Statistical comparison between individual DMs and ensembles.

Bullet means that the ensemble wins; circle means that the DM wins; line

means that no statistical difference ............................................... 115

Table 5.1 Quantitative Comparison of the Accuracy for 6 Seeds .................... 125

Table 5.2 Comparison of the Computational Time (seconds) for 6 Seeds.......... 127

Table 5.3 Parameters of rotations applied on the dataset ................................ 130

Table 5.4 Metric results on VEELA training data for the individual segmenters and

the ensemble methods to examine overfitting. The circle marker indicates

results where the overfitting was not found to be significant ............. 134

Table 5.5 Metric results on VEELA test data for the individual segmenters and the

ensemble methods to examine segmentation accuracy. The best value in

each column is marked bold........................................................ 134

Table 5.6 Overfitting magnitude for the VEELA dataset. Large overfitting

corresponds to blue color and small overfitting, to red color. Each column

(metric) is scaled individually ..................................................... 135

Table 5.7 DICE: Statistical comparison between individual DMs and ensembles.

Bullet means that the ensemble wins; circle means that the DM wins; line

means that no statistical difference ............................................... 136

Table 5.8 RAVD: Statistical comparison between individual DMs and ensembles.

Bullet means that the ensemble wins; circle means that the DM wins; line

means that no statistical difference ............................................... 136

Table 5.9 ASSD: Statistical comparison between individual DMs and ensembles.

Bullet means that the ensemble wins; circle means that the DM wins; line

means that no statistical difference ............................................... 136

Table 5.10 MSSD: Statistical comparison between individual DMs and ensembles.

Bullet means that the ensemble wins; circle means that the DM wins; line

means that no statistical difference ............................................... 137

xvii



CHAPTER ONE

INTRODUCTION

Due to the continuous increase of the human population, the demand for medical

imaging applications is increasing. In the light of these needs, the capabilities of

medical imaging devices are constantly increasing. Owing to technological

advancements in medical imaging technologies, detailed and accurate information of

the human anatomy can be provided by modalities such as Computed Tomography

(CT) and Magnetic Resonance Imaging (MR). Thus medical imaging is a

fundamental resource in medicine. The methods in medical image analysis are often

used for improving understanding of anatomy, thereby promoting diagnosis and

treatment preparation. Modern techniques providing more comprehensive and

insightful examinations need larger data. Besides, the rich content of medical images

makes them hard to interpret and analyze. Therefore, computer algorithms are widely

used to process medical images in order to accelerate analyses as well as improving

their accuracy.

For all these reasons, the need for medical image processing tools (i.e. software)

is becoming vital. Such tools should include essential features to help and automate

particular parts of the workflow in radiology such as diagnosis, volume measurements,

tissue quantification, pathology location, surgery, and/or treatment planning. One of

the most used features offered by medical imaging tools is segmentation. Segmentation

can be defined as separating an image into relevant divisions (Shapiro & Stockman,

2001). Such divisions might refer to specific types of tissues, pathologies, or other

biologically important structures in medical images.

1.1 A General Overview of Medical Image Segmentation Literature

For several years, segmentation has become an important research field. The

segmentation of various structures or organs in the human body is needed in clinical

applications. Recent studies show that segmentation became the most researched area

1



of biomedical image processing and accounted for around 70.0% of all

research (Maier-Hein et al., 2018). While several image segmentation methods are

available for computer vision, some of them are uniquely tailored for medical image

analysis. One of them is called the atlas-based segmentation method which uses

several manually labeled medical images. These labels are summed and extrapolated

to create single atlas (Gee et al., 1993). For different sizes of data, this method needs

image registration to adjust images. In shape-based segmentation methods, a shape of

reference is altered by some features in the images especially along borders. The

deformation of the shape continues to fit a new object. Active Shape Models (Cootes

et al., 1995) is one of the most popular shape-based segmentation techniques. On the

other hand, the deformation of a reference shape can be controlled by integral error

metrics such as in Active contour models (Goldenberg et al., 2001).

Recent improvements in Machine Learning (ML) have changed the segmentation

studies as well as other fields. On the last decade, Deep Learning-based segmentation

methods, specifically Deep Learning Models (DM), has clearly outperformed

traditional segmentation methods (Zhou et al., 2017; Kavur et al., 2020b). DMs

automate the majority of the stages performed by users in other image segmentation

methods. For example, they automatically create feature maps to classify the targets.

Despite feature extraction followed by classification-based segmentation in traditional

ML approaches, once a DM is trained, it can be used to segment new unseen data in

the light of the features automatically obtained during the training session.

Accordingly, the need for big data of DMs is higher than other segmentation methods.

Another key requirement of DMs is the high level of user experience.

Implementations of DMs are distinctly harder than other segmentation methods. The

intuitiveness of the traditional segmentation methods are higher compared to DMs.

On the other hand, DMs need tailored fine tuning for the specific data. Another

drawback of DMs is that they tend to overfit to the training data. Overfitting decreases

the generalization capabilities of DMs when they are used for unseen data. All of

these disadvantages make the implementation of DMs developed in academic studies

to real-life tasks harder.
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1.2 Liver Segmentation Literature

Many of the organs in the human abdomen such as liver, kidneys, spleen, pancreas,

prostate need to be segmented in clinical routines. Segmentation of the liver is one of

the most requested tasks due to the liver’s several clinical operations such as volumetric

measurements (Lu et al., 2017), tumor detection (Li et al., 2018; Chlebus et al., 2018;

Christ et al., 2016; Vorontsov et al., 2019), diagnosis (Moghbel et al., 2018), disease

detection (Bal et al., 2018), surgery planning as well as treatment planning (Yang et al.,

2018). As segmentation of other structures in the human body, DMs have dominated

the methods for liver segmentation. However, the availability of extensively annotated

abdomen image datasets limits the capabilities of DMs.

1.3 A Review of Grand-Challenges

The continuous requirement for new data and increasing competition between

scientific studies around the world have made the grand challenges on biomedical

imaging very important. In the past, it was possible to make a study and to publish its

outcomes with private data and self-evaluation. However, nowadays the proposed

algorithms should prove their success on open benchmark platforms with public

datasets. Thus, challenges are now very vital organizations for academic studies ever

than before. On the other hand, while the number of competitions organized is

increasing every day, there are gaps in the literature regarding making these

competitions fairer and more convenient. Fortunately, new studies and regulations for

these deficiencies are now being studied (Reinke et al., 2018a; Maier-Hein et al.,

2019).

1.4 Literature on Ensembles and Classifier Fusion

Results of many grand challenges clarified that DMs dominated the segmentation

studies in medical imaging (Kavur et al., 2020b; Kamnitsas et al., 2017; Zhou et al.,
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2017). In so many recent medical imaging challenges related with abdomen organ

segmentation, participants used variations of proposed DMs such as Deepmedic,

U-Net, V-Net, Dense V-Networks, etc. (Kamnitsas et al., 2016; Ronneberger et al.,

2015; Milletari et al., 2016; Gibson et al., 2018). However, there are still fundamental

problems in these studies. As explained before, the lack of reproducibility and

generalization due to overfitting and requirement for big data are two main obstacles

for DM studies. Here an alternative approach may help to overcome these problems:

fusion/ensemble of multiple classifiers. Classifier ensembles are being used for years

for many fields such as pattern recognition (Kuncheva, 2014; Oza & Tumer, 2008;

Rokach, 2010). Adaptation of these techniques in the medical image segmentation

problem can reduce overfitting and extensive training need of DMs. For example, the

reports of some grand challenges on medical imaging revealed that the winner

algorithms use ensembles (Kamnitsas et al., 2018; Isensee et al., 2019). Although

ensemble methods such as STAPLE (Warfield et al., 2004) have been studied in the

literature, there are no sufficient studies such as their application to deep learning

techniques.

1.5 Thesis Statement and Contributions

In this thesis, the problem of liver segmentation is addressed from several different

perspectives. Novel studies on creating broadly annotated abdomen image data,

creating extensive benchmark platforms to compare state-of-the-art segmentation

methods, extensively analyzing classifier ensemble methods to eliminate problems of

DMs, and offering a new fusion method for more accurate and robust liver

segmentation. All these studies helped to analyze the weak points of existing

segmentation methods, to improve their weaknesses, and to develop more robust

methods. The main contributions in this thesis can be described as:
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1.5.1 Creating a new public dataset for abdomen imaging

Our literature researches showed that there are only a few publicly available

datasets for academic studies about abdomen imaging. Due to the high costs of

processing and annotating, these volumetric data sets only include a few tens of

images (Heimann et al., 2009; Bilic et al., 2019; Menze et al., 2015). This amount of

data may be inadequate for convenient examinations of DMs. Therefore, in the scope

of this thesis two novel datasets have been prepared and donated to scientific studies.

The first dataset contains abdomen CT scans of 40 patients with annotation of livers.

The second dataset includes abdomen MRI scans with T1-DUAL and T2-SPIR

sequences of 40 patients. The liver, both kidneys, and spleen were annotated in this

unique data. According to our knowledge, this dataset is the only set that covers four

abdomen organs acquired by MRI scans. The details of both sets are presented in

Section 3.4.2.

1.5.2 Organizing grand challenges on abdomen organ segmentation

After creating unique datasets, the second topic was organizing new grand

challenges on the abdomen organ segmentations. Our literature analyses revealed that

the challenges for abdomen organ segmentation may be considered as outdated. Also,

there was not any kind of challenge for medical image segmentation in Turkey.

Therefore two challenges have been organized. The first challenge was a nation-wide

organization and it is called "Karaciğer Bölütleme Algoritmaları Yarışıyor!". The task

for this challenge was the segmentation of the liver from CT scans. 11 teams from

different universities participated. The details of this challenge are presented in

Section 3.3 as well as its results in Section 3.3.4.

The second challenge, CHAOS - Combined (CT-MR) Healthy Abdominal Organ

Segmentation, is an international event. CHAOS has started in conjunction with the

IEEE International Symposium on Biomedical Imaging (ISBI), 2019, in Venice, Italy.

Now it is an online challenge where more than 1500 participants have been registered
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to the challenge. Unlike other abdomen challenges, CHAOS has five competitive tasks

to push DMs to their limits. These tasks use CT and MRI data as single or combined.

This makes the CHAOS challenge is the first challenge that uses abdomen MRI scans in

various tasks. According to our knowledge, the CHAOS challenge is the most popular

abdomen segmentation challenge in the world. The details and discussions can be

found in Section 3.4 and 3.4.7.

1.5.3 Adapting fusion methods to segmentation of liver problem

Although the success of the fusion/ensemble methods has been proven in many

fields (Kuncheva, 2014; Zhang & Ma, 2012; Rokach, 2010), it has not been used in

medical image segmentation yet. In this section, appropriate ensemble methods for

liver segmentation in the literature have been examined. These methods were then

applied to the probability maps (Chen et al., 2020) produced by DMs with their vanilla

style. In other words, the publicly available DMs were used as their downloaded native

versions. Thus, there was no need to make heavy optimizations, parameter tuning, and

domain adaptation. Our results showed that it is possible to achieve similar scores

with the ensemble of multiple DMs as heavily optimized single DM. Also, classifier

ensembles showed less overfitting than individual DMs.

After the discovery of DMs’ potentials, a new fusion method has been designed

for liver segmentation problem. This new combiner is called Logit combiner which

was inspired by adaptation linear regression methods for mapping purposes (Hilbe,

2009). The control parameter of the mapping has improved segmentation accuracy.

All studies in this chapter were done by using two public datasets. The evaluation

results and their statistical significance are discussed in Chapter 4 and Section 4.6

1.5.4 Adapting fusion methods to segmentation of liver veins problem

The promising results obtained from the fusion approach for liver segmentation

have created motivation for looking for a harder problem. While this thesis was
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proposed, vessel segmentation from CT angiography images was not planned before.

Since there is not yet sufficient solution in the area of vascular segmentation of the

liver, it was decided to prolong the study.

Here instead of using different base DMs, the ensemble of the same DM used with

rotated volumes has been used due to the shape and complexity of the liver vessel tree.

Our findings showed that individual DMs are not ready to segment the vascular tree

in the liver yet. Therefore, using classifier fusion seems like a requirement beyond a

preference for this task. Again ensemble methods improved the overall accuracy while

eliminating overfitting of DMs. The ensemble design and the results are presented in

Section 5.3.5.

To sum up, all contributions of the thesis, bringing new data to the literature,

analysis of the existing segmentation methods proposed so far and creating new

methods to overcome the deficiencies of existing methods have been achieved. With

these contributions, it is expected that the obstacles between academic studies about

organ segmentation and their real-life applications will be overcome.

The thesis is organized as follows. Chapter 2 introduces the abdomen of the human

body, medical imaging modalities, medical image processing techniques, analysis of

all organ segmentation methods from past to present. Chapter 3 describes two

organized grand challenges in biomedical image analysis. Chapter 4 includes the

fusion of different methods for the segmentation of the liver as well as designed new

fusion methods. Chapter 5 extends the ensemble approach to a harder and novel

problem: segmentation of the liver veins from CT angiography. Finally, Chapter 6

contains discussion of the results and final thoughts.
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CHAPTER TWO

BACKGROUND

2.1 Abdomen of Human Body

The abdomen area of the human body is located between thorax and pelvis. It

contains vital organs for digestive, exocrine, defecation, endocrine systems. The liver,

kidneys, spleen, pancreas, stomach, colons with an attached appendix, and gallbladder

are placed together in the abdomen. Besides, main blood vessels such as the aorta and

vena cava are located from top to bottom in the abdominal region and provide blood

flow to these critical organs. Illustrations from different views are presented in Figures

2.1, 2.2, 2.3.

Figure 2.1 Anterior view of human abdomen (Gilroy, 2013)
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Figure 2.2 Sagital view of human abdomen (Gilroy, 2013)

Figure 2.3 Axial view of human abdomen (Netter, 2018)
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In the abdomen many organs are connected to each other. The gallbladder is

attached to the liver. The liver and the pancreas work closely via ducts in digestive

and endocrine systems. The peritoneum, that is a membrane, is located in the

abdomen to wrap abdomen organs. The peritoneum holds abdomen organs together.

The part of the aorta in the abdominal cavity is the biggest vein in this region. Aorta

begins from the hearth, passes through the thorax area and it reaches to the abdomen.

Abdomen aorta passes through the posterior wall of the abdomen. The second-largest

vein, inferior vena cava (IVC), is placed just near of the aorta. IVC is located parallel

to the aorta. The both veins are responsible for transmitting and receiving blood from

vital abdomen organs.

2.1.1 Liver and Blood Vessels in the Liver

The liver is the largest gland in the body. The liver is a wedge-shaped organ

located on the right side of the abdominal cavity. The average weight of the liver is

1.5 kg (Kumar et al., 2010). The liver is responsible for many vital processes in the

human body such as protein synthesis, secretion of biochemicals for digestions,

excretion of hormones, detoxification of many metabolites, regulation of glycogen

storage, decomposition of red blood cells. The liver is an external digestive organ that

produces bile, (a substance that includes cholesterol and bile acids), and an alkaline

compound that helps to break down fat.

There are multiple veins inside the liver as shown in Figure 2.4. Portal vein and

hepatic artery are two large blood vessels that carry out blood circulation from the

entire gastrointestinal tract and aorta respectively. The structure of these two main

blood vessels separates the liver into lobes. A thin, dense, fibroelastic connective tissue

layer (known as Glisson’s capsule) which extends from the fibrous capsule covering

the whole liver keeps the lobules together.

Due to its role in many essential systems in the human body, the liver is a crucial

organ. Unfortunately, there is no human-made alternative to compensate for the liver’s
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Figure 2.4 Overview of the veins inside of the liver (Netter, 2018)

functions. In other words, the diseases in the liver have to be cured in order to keep the

human body functional and healthy. That is why there are many treatment and surgical

operations for the liver. These operations have to be handled very carefully because of

the complexity of the liver. This makes the liver is one of the most scanned organs in

medical imaging.

2.1.2 Kidneys and Spleen

There are other essential organs in the abdominal cavity such as kidneys and spleen

shown in Figure 2.5. Kidneys are located left-back and right-back side of the spine in

a pair. The left kidney lies behind the diaphragm and the back of the spleen. The right

kidney lies slightly behind the diaphragm and the back of the liver. The right kidney

is marginally lower than the left one, while the left kidney is more vertical than the

right, because of the irregularity in the abdominal cavity created by the liver. Kidneys
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Figure 2.5 Axial view of kidneys, spleen and other abdominal organs (Netter, 2018)

are a relatively smaller organ than the liver. Each adult kidney has an average of 129

g (range, 79-223 g) (Molina & DiMaio, 2012). The primary function of the kidneys

is in the urinary system for excreting wastes in the blood. Kidneys are also directly

or indirectly responsible for keeping acid-base balance and blood pressure stability as

well as managing of electrolytes. Besides, the kidneys have a role in the production of

many hormones.
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The spleen is in the left upper abdominal quadrant. Spleen is also a large organ in

the abdomen with an average weight of 139 g (range, 43-344 g) (Molina & DiMaio,

2012). Spleen primarily serves as a blood filter. It is responsible for the regeneration

of iron in the blood. This makes spleen is a crucial organ for regulating red blood cells.

Spleen also has roles in the immune system with producing antibodies.

2.2 Medical Imaging Systems for Abdomen

Since Wilhelm Conrad Roentgen discovered X-rays in 1895 by, the capabilities of

medical imaging systems have expanded tremendously. Current imaging technologies

and techniques enable the processing of anatomical and physiological details from

the human body. Medical imaging systems can be considered as a chain operation

from the acquisition of the image to processing them in order to extract information.

Digital image processing methods have critical importance for further detailed analysis

of radiology experts. Experts may need various details derived from the images in

order to plan treatments, surgeries, and other operations.

Nowadays, there are many modalities for abdomen imaging in clinical usage.

Computer Tomography (CT) and Magnetic Resonance Imaging (MRI) can be

considered the most commonly used techniques. Such approaches utilize various

features of the human body to collect data and to turn them into images. For example,

CT can be explained as a combination of multiple X-ray scans from different angles.

On the other hand, MRI uses completely different features which are proton density

and relaxation mechanisms. Many different scanning protocols are created such as

injection of contrast agents during the scan.

Each modality has advantages and disadvantages against other ones. For instance,

an abdomen CT scan of an adult human takes less than 30 seconds while MRI for the

same region may need 20 minutes. Nonetheless, CT may cause effects of radiation

emission in the body due to the usage of X-rays. MRI does not have such an effect on

the body because it uses electromagnetic waves.
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Both CT and MRI are capable of creating 3-dimensional images of the targeted

region in the human body. In the following subsections, details of CT and MRI are

explained.

2.2.1 Computer Tomography (CT)

CT uses multiple X-ray scans from different angles as mentioned previously. Radon

transform which was created by Johann Radon in 1917 constitutes the fundamentals of

CT imaging. Godfrey Hounsfield developed the first successful CT scanner in 1967.

He adapted the algebraic reconstruction (ART) technique of Allan McLeod Cormack.

Figure 2.6 Photo of a modern CT scanner (Wikimedia Commons, 2020)

The attenuation of X-rays into the human body creates slice images of the target

location. Rotation of the X-ray tube 360◦ around the body creates multiple angular

projections. These projections are called sinogram and they are used to construct a

3-dimensional image of the target region with the help of ART. ART makes possible for

the reconstruction of an image from a sequence of angular projections. In 1979, Allan

McLeod Cormack and Godfrey Hounsfield were shared Nobel Prize for Physiology or

Medicine.

As many modalities, CT scanners are evolved during time. The first CT scanners
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were using 360◦ rotated X-ray tubes. Now, new techniques such as helical scanning

developed and CT scans are faster with using lower X-ray beams. These innovations

made CT scans safer without occupying much time. Increasing the acquisition speed

is not important for patient comfort, but also gives CT scans availability of

eliminating the artifacts caused by patient movements and activities inside of the body

(such as breathing, digesting). Such advances in CT imaging have a significant

impact on the capabilities of volumetric applications. These 3-D imaging and image

processing techniques will be explained in “Medical Image Processing” section.

The intensity values of different tissues are defined as Hounsfield values.

Hounsfield values have lower-range (between -1000 and 1900 for organic elements in

the body) which makes a dynamic range of CT images smaller. This range is enough

for distinguishing of hard tissues from soft ones. That is why CT can create

high-contrasted images for hard tissues in the body such as bones. On the other hand,

it may not create detailed images of soft tissues due to the intensity range limitations.

One way to overcome this problem is by using more X-ray beams. However, the

dosage and energy of X-ray beams should be taken carefully to make CT safe.

2.2.2 Magnetic Resonance Imaging (MRI)

MRI is a relatively new technique for medical imaging with respect to CT.

Developments of MRI contain the study of several pioneers who led to the

development of nuclear magnetic resonance (NMR) beginning in the early 20.

century. In September 1971, MR imaging was discovered by Paul C. Lauterbur. He

created a method to translate spatial knowledge through an NMR signal utilizing

magnetic field gradients. The first full-body MRI scanner was developed by John

Mallard and his team at the University of Aberdeen, Scotland in 1973. On 28 August

1980. This MRI scanner was used to produce the first clinically usable image of a

patient’s internal tissue. Peter Mansfield also improved the methods used in the

collection and analysis of MR images. Peter Mansfield and Paul C. Lauterbur were

given the Nobel Prize in Physiology and Medicine in 2003.
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MRI utilizes a strong magnetic field to coordinate the body’s hydrogen atoms,

which are made mostly of water and therefore contain hydrogen. Unlike CT that uses

radiation, MRI uses a powerful and constant magnetic field about 1.5 or 3 Tesla (B0)

to arrange the hydrogen atoms in the body. The main source of hydrogen atoms is

water which is the main molecule in the human body. B0 keeps magnetic moments of

hydrogen atoms steady and aligned parallel with the direction of the field. External

and smaller but precisely targeted magnetic field M is the second key element in the

MRI scanner. M is created by Radiofrequency (RF) coils. This external magnetic

field is turned on and off to create pulses during the MRI scan. While M is being

applied, the alignment of magnetic moments of hydrogen atoms in a specific small

area changes. This is called excitation. When M is turned off, the alignment of

magnetic moments suddenly come back parallel to B0. This is called relaxation. The

time period between excitation and relaxation creates a signal which is received by

the antennas on the scanner. These signals are unique for different atoms/molecules.

This specification is used to create a contrast for different tissue types in the target

region. That is how it is possible to construct images from anywhere in the body

without using an X-ray or any other beam. Iterative utilization of this technique in

small subareas of the target region creates a 3-dimensional image.

Unlike CT, MRI is capable of high-contrasted and detailed images for soft tissues.

The technology behind MRI has the ability of more precise acquisition than CT scans.

Therefore it is possible to obtain high contrast between different soft tissues of the

body. Despite the time drawback of MRI scans, it is the most preferable way for

scanning of soft tissues.

Another advantage of MRI is the capability of obtaining different types of images

with different parameters (excitation-relaxation times, the magnitude of magnetic

pulses, etc.) via a single scanner. These protocols create different sequences during

the same scan session. This feature of MRI scans makes possible to obtain

high-contrasted images of almost all different types of tissues in the human body.

Repetition Time (TR) is the period between consecutive pulse sequences added to the

same slice. Time to Echo (TE) is the interval between the transmission of the RF
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pulse and the reception of the echo signal. The duration of TE and TR determines the

sequence type.

T1-weighted and T2-weighted sequences comprise the most widely used MRI

series. Using short TE and TR periods, T1-weighted images are produced. The

contrast and luminance of the image is primarily determined by the tissue

characteristics of T1. T1 images can be considered as a proton energy diagram within

the body’s fatty tissues. Conversely, by using longer TE and TR times, the

T2-weighted images are generated. T2 photos are a proton-energy diagram of the

body’s fatty and water-based tissues. Fatty tissue can be differentiated from

water-based tissue by comparing with the T1 images. For example a tissue that is

bright on the T2-weighted images but dark on the T1-weighted images is fluid-based

tissue. To reflect the dominant image contrast of spin-density, double echo pulses are

preferred in T2-weighed images as shown in Figure 2.7.

Figure 2.7 Comparison of pulse sequences for T1 and T2 images (Hesselink, 2020)

2.3 Clinical Usage of Acquired Medical Images

After imaging from any modality, the use of these images in the clinic begins. At

this stage, it is necessary to study and analyze the images. This step is performed

by experts, specifically radiologists. Radiologists need to display the images from

many aspects. They need to filter images, change displaying properties and obtain

3-dimensional data from 2-dimensional slices if the region of interest on the human

body is a volumetric area such as the abdomen. With the help of some tools (software),
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radiologists can obtain a 3-dimensional volume image without doing extra work.

After sorting out images, experts may need additional operations on the image to

see suppressed information from the images. Images are handled to maximize the

most critical aspects in order to highlight details of importance prior to the show. At

this stage there may be single or multiple cascade operations (Selvi et al., 2015)

depending on the desired information and the modality. All operations at this step are

examined under “Medical Image Processing” section. All operations under medical

image processing must be handled very carefully. Otherwise, the primary information

inside of the data may be overlooked or there may be pseudo-information that can

mislead experts during analysis. The details of medical image processing and

commonly used techniques are explained in the following section.

2.3.1 Medical Image Processing

Medical image processing techniques are adapted methods from digital image

processing for clinical aspects. Methods in digital image processing can be used to

derive essential and important information from the image required to carry out

measurements or other analysis. The most common analyses are planning treatments,

surgeries, and other surgical operations.

There are many advanced algorithms in digital image processing branch. However,

it is not possible to adapt all of them to medical image processing by reason of

protecting original information in the image data. Therefore the techniques in medical

image processing tools are limited. In the following sections of this chapter, the most

common techniques (from simple to advanced) are briefly explained.

2.3.1.1 Windowing, Filtering, and Multi Planar Reconstruction

Windowing: Nowadays all of the screens attached to the computers, phones, TVs,

etc. have a digital panel. Almost all of these panels have an 8-bit color range. In other
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words, they are capable of displaying 28 = 256 intensity levels for each color channel.

On the other hand, images acquired from some modalities such as X-ray, CT, MRI

have more than 8-bit data. This means that it is not possible to show all the information

inside of the images at the same time. Although there are some special displays (such

as 16-bit panels), sometimes experts need to suppress irrelevant information in the

image to focus on the region of interest. Windowing is an easier approach to handle

this problem. Windowing gives the opportunity to the users to emphasize the preferred

region in image histogram while suppressing the unwanted areas. Radiologists usually

adjusts window level and window width values with mouse shortcuts to use windowing

effectively.

Filtering: After adjusting display parameters with windowing, experts may need to

study out detailed information that is not seen clearly. Here the suppressed information

can be strengthened with filtering techniques. In signal processing, a filter is a system

or mechanism that eliminates any unnecessary components from the signal. The filter

can be the total or partial removal of any component of the signal. Filters can be defined

on spatial or frequency domains. Correlations can be eliminated for some elements and

not for others. For example, windowing can be classified as a basic filtering method.

However, filters may have complicated designs.

Multi Planar Reconstruction (MPR): As explained before, modalities that are

capable of imaging a volume of interest save the data as a 2-dimensional image series.

These images can be considered as slices and stacked together to create a volumetric

image data. Although the original images are acquired from only one direction (axial,

coronal, or sagittal), it is possible to examine 3-dimensional data from different angles

of interest. This procedure is called Multi Planar Reconstruction (MPR). MPR gives

users the opportunity of displaying non-acquired orthogonal orientations like acquired

ones. MPR reorders voxels to create images of the desired view.

MPR is one of the most preferred image processing methods for daily clinical usage.

Experts have the capability of examining volumetric data from infinite possible angles.

An arbitrary plane can be selected by the expert at some oblique angle. All medical

19



image processing techniques are also available for use on reconstructed MPR images.

2.3.1.2 Image Segmentation

Image segmentation is the method of splitting an image into diverse and meaningful

segments. In other words, segmentation means masking a group of pixels/voxels from

the whole image to focus on a region of interest. In general, these pixels/voxels belong

to a structure such as an object or an organ. Hence examination of the target object

is getting easier with segmentation operation. Experts can analyze the target structure

more in-depth. They can make measurements on it such as width/length measurements

or volume calculation. They can also use the segmented object for visualization.

Suppose that the input is a 3D image A = {a{i, j,k}}, where i = 1, ...,R, j = 1, ...,C and

k = 1, ...,K, where R is the number of rows of pixels, C is the number of columns of

pixels, and K is the number of slices in the 3D volume. We introduce probability map

P = {p{i, j,k}}, where the indices vary in the same intervals, and p{i, j,k} ∈ [0,1] is the

probability that a voxel with coordinates (i, j,k) belongs to class “foreground”. Denote

the ground truth as G = {g{i, j,k}}, where g{i, j,k} ∈ {0,1} is zero if the voxel is labelled as

background by the expert radiologist or 1 if the voxel is labelled as foreground.

Segmentation is the most used and studied medical image processing operation

(Maier-Hein et al., 2018; Guo & Ashour, 2019). It is possible to classify segmentation

methods in digital image processing into different categories. One of the most

common categorizations is defining them as manual, semi-automatic, and

fully-automatic.

Manual segmentation is segmenting the target structure(s) by hand with a

preliminary software (Starmans et al., 2020). Manual segmentation by experts

guarantees the precision of the segmentation. Although it is the safest way to handle

the segmentation process, it may be tremendously time-consuming depending on the

region of interest and the modality. For example, an abdomen CT scan of an adult

patient with 1mm slice thickness can produce more than 200 2-D images with
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512x512 resolution. Segmenting the liver from these slices can take several hours to

complete. Another drawback of manual segmentation is that the accuracy and

precision of the results are strictly dependent on the conditions of the operator. These

conditions can be physical conditions of the environment or experience of the

operator. Manual segmentation is generally handled by drawing borders of the

targeted structure. After that, the area inside of the borders is filled by image

processing methods to obtain a mask of segment(s).

Semi-automatic image segmentation approaches also need user input (Fischer

et al., 2010). However, there are some tools available to make segmentation reliable

and fast. The most common method is selecting the start point(s) of the segmentation

algorithm manually. After that, the proposed algorithm starts segmenting target

objects with defined methods such as region growing and fast marching. After the

segmentation finished, the outputs may need some post-processing operations such as

removing over-segmented areas or completing miss-segmented regions. Despite the

need for user supervision, semi-automatic methods may reduce the effort and time

significantly.

Fully-automatic segmentation methods do not need any user supervision or

interaction (Moghbel et al., 2018). However, their generalization capabilities are

limited to pre-defined structures. The main reason for this drawback is that

fully-automatic methods use multiple cascaded methods to construct segmentation

masks. Before the last decade, generalization abilities, success, and performance of

the fully-automatic methods were behind the semi-automatic algorithms. However,

along with major developments in the machine learning area, this situation is

changing in favor of fully-automatic methods (Kavur et al., 2020b). This development

will be discussed in the following sections/chapters of the thesis.
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2.4 Metrics for Evaluation of Segmentation Accuracy

2.4.1 Sørensen–Dice coefficient (DICE)

DICE is an overlapping-based metric. Assume that VS eg represents the voxels in a

segmentation result, VRe f represents the voxels in the ground truth. Both are 3D binary

segmentation mask image. DICE generates values between [0−1] scale (the larger, the

better). DICE coefficient is calculated as

DICE =
2 | VS eg∩VRe f |

| VS eg | + | VRe f |
(2.1)

where | . | denotes cardinality:

| V |=
N∑

i=1

vi (2.2)

where V is 3D volumetric binary object, N is total number of voxels, and vi ∈ {0,1}

2.4.2 Volumetric Overlap Error (VOE)

Volumetric Overlap Error uses the intersection of two objects, reference VRe f and

segmentation VS eg. The volume in the intersected zone is divided by the volume of

union:

VOE =
| VS eg∩VRe f |

| VS eg∪VRe f |
×100 (2.3)

Here VS eg ∩ VRe f and VS eg ∪ VRe f symbolize the number of voxels in the

intersection and union of the segmented and reference (Ground Truth) objects. An

ideal segmentation gets value of 100 while zero grade is calculated if there isn’t any

intersection between two objects.
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2.4.3 Relative absolute volume difference (RAVD)

The whole volume difference between the segmentation and ground truth is divided

by the whole volume of the reference object. Average of the division is converted to

percent value (Eq.2.4).

RAVD =
abs(| VS eg | − | VRe f |)

| VRe f |
×100 (2.4)

An whole accurate segmentation gets RAVD value of 0. Higher errors get higher

RAVD values. The disadvantage of this metric is that any segmentation with same

volume with reference may get 0 because the metric does not use any topological

value. That is why many different error calculation metrics should be preferred.

2.4.4 Average symmetric surface distance (ASSD)

ASSD uses symmetric surface distance (SSD) to compare two volumes. Let a

distance measure for a voxel x from a set of voxels A to be defined as:

d(x,A) = min
y∈A

d(x,y) (2.5)

where d(x,y) is the Euclidean distance of the voxels incorporating the real spatial

resolution of the image. To calculate symmetric surface distances border voxels that

are the voxels at the shell of the 3D object are used. First, the border voxels of the

segmented object (Bseg) and reference (Bre f ) are determined. Then for each voxel in

these sets, the closest voxel in the other set is determined as shown in Figure 2.8. All

these distances are stored, for all border voxels from both reference and segmentation.

The average of all the distances, d(x,y), gives the averages symmetric absolute

surface distance as shown in Eq.2.6.
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Figure 2.8 Illustration of symmetric surface (Hausdorff) distance

AS S D =
1∣∣∣Bseg

∣∣∣+ ∣∣∣Bre f
∣∣∣ ×

 ∑
x∈Bseg

d(x,Bre f ) +
∑

y∈Bre f

d(y,Bseg)

 (2.6)

ASSD is 0 for a perfect segmentation. There is no upper limit.

2.4.5 Root mean square symmetric surface distance (RMSSD)

RMSSD is identical to ASSD but retains the square distances among points on edge

of the two objects. After averaging the squared values, the root is extracted and gives

the symmetric RMS surface distance:
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RMS S D =

√
1∣∣∣Bseg

∣∣∣+ ∣∣∣Bre f
∣∣∣ ×

√ ∑
x∈Bseg

d2(x,Bre f ) +
∑

y∈Bre f

d2(y,Bseg) (2.7)

This value is 0 for a perfect segmentation without any highest limit.

2.4.6 Maximum symmetric surface distance (MSSD)

Here only the highest voxel distance is used instead of applying average or RMS.

In some studies, MSSD is called Hausdorff Distance.

MS S D = max
(

min
x∈Bre f ,y∈Bseg

d(x,y)
)

(2.8)

This value is 0 for a perfect segmentation without any highest limit.

2.5 Organ Segmentation Methods for Abdomen Imaging

In previous sections, segmentation methods in medical image processing were

briefly explained. Also, they were categorized as traditional way (manual,

semi-automatic, and fully-automatic). However, it is necessary to separate image

segmentation methods into different classes now. In the last decade, the advancements

in machine learning, specifically deep learning are changing the fundamentals of

image segmentation solutions as well as many other fields. It is possible to be said

that developments in the medical image segmentation field are dominated by Deep

Learning based methods. Therefore new categories were preferred. These are Image

Processing-based Segmentation Methods and Deep Learning-based Segmentation

Methods.

25



2.5.1 Image Processing-based Segmentation Methods

These segmentation methods depend on developed algorithms in the computer

vision field for image processing. These algorithms can be used alone or together to

segment the targeted structure. The common factor of these methods is that they are

using one or multiple features to perform segmentation. These features can be ready

for use or they are extracted by a series of operations. The overview of these

algorithms is well explained in Song & Yan (2017). The summary of them is

presented in Figure 2.9.

Manual
Segmentation

Thresholding-based 
segmentation

Region-based
 segmentation

Clustering-based
 segmentation

Feature extraction and 
classi�cation-based 

segmentation

Segmentation
Algorithms

Edge-based
 segmentation

Figure 2.9 Commonly used image processing-based segmentation methods

2.5.1.1 Classifiers

Another approach for image segmentation is classifying the structures inside of

the image. This classification uses algorithms from the pattern recognition field. In

pattern recognition, the information which is used for classification is called features.

These features can be pre-defined ones in the image or they are “extracted” by feature

extraction strategies. Feature extraction was a widely studied field before the machine

learning era. The features can be extracted not only from the spatial domain but also

from different domains such as frequency domain. The feature spaces may be one or

multiple dimensional (Alpaydin, 2014).
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After obtaining features, the main part of the classifiers is performed. The

classification algorithms try to find the best and the optimal way to “separate” the

features in order to classify the data. The most common way is searching similarity

between a group of objects. That is how they can divide feature space into meaningful

parts and perform classification procedures.

Medical image segmentation classifiers are commonly supervised methods. That

means they need training data to adjust classifier parameters. Also, they need an unseen

data, called test data to evaluate their performance.

2.5.1.2 Clustering

Clustering algorithms work very similarly to classification algorithms but the main

difference is that they do not need training steps. They are looking for a similarity

between objects. That is why clustering methods can be defined as fully-automatic

methods.

K-means algorithm is one of the most commonly used clustering algorithms

(Pelleg & Moore, 1999). K-means tries to separate feature space into “K” parts. The

only user-defined parameter is the number of the classes, “K”. Classes are defined by

elements with the closest mean in the same cluster. The generalized version of

K-means is the fuzzy C-means algorithm which uses fuzzy set theory. Another

popular method for clustering is the Expectation-Maximization (EM) algorithm. EM

is an iterative method. Firstly, EM tries to “expect” the clusters. Then, it computes the

posterior probabilities. Finally, it modifies clusters to “maximize” posterior

probabilities.

2.5.1.3 Artificial Neural Networks

Although Artificial Neural Networks (ANNs) are a subbranch of the machine

learning field (Goodfellow et al., 2016), their utilization in the image processing field
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is as classifiers for feature space. Hence they are explained under the image

processing-based segmentation methods section.

The design of ANNs are based on the implementation of real neurons with a very

simple mathematical model. There are several artificial neurons inside of the ANN

system. These neurons are fully connected inside of the “layers”. The learning

process is handled by a training session that needs training data. Each connection in

the ANN has a unique weight. These weights are the places where the information is

“stored” in the trained ANN. After the training session, trained ANNs can be used to

classify unseen data. ANNs’ capability of storage depends on their size, more clearly

the number of neurons/connections. More connections hold more data but they

increase time and memory needs. The design and implementation of ANNs from

scratch can be complicated depending on their design. However, there are some

useful publicly available tools/libraries to use them on a specific problem in an easy

way.

2.5.2 Deep Learning-based Methods

Deep learning (DL) is part of a wider class of methods in machine learning

(Goodfellow et al., 2016). The fundamentals of DL are based on ANNs. Therefore

they need to be trained with dedicated data. After that, they are ready to use on

unseen data.

DL has different frameworks such as deep neural networks (DNNs), convolutional

neural networks (CNNs), and recurrent neural networks (RNNs). CNNs and RNNs

can be considered as subclasses of DNNs. Applications of DL architectures are widely

used in medical image analysis as well as computer vision, voice recognition, audio

processing, natural language processing, machine translation, bioinformatics, etc. DL

has gained huge popularity in literature by surpassing alternative methods in different

fields, notably in the field of medical image analysis (Greenspan et al., 2016; Shin

et al., 2016).
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DNNs use numerous layers to derive features from the raw data. The key difference

between ANNs and DNNs is the number of layers between input and output. The

number of hidden layers describes “depth” of the model. Since there is no absolute

definition of the layer size to separate ANNs and DNNs, it is not possible to make a

definition. However, an ANN with three or more layers is called DNN (Albawi et al.,

2017). A simple illustration of ANN and DNN is presented in Figure 2.10.

Figure 2.10 Architecture of an (a) ANN and (b) DNN (Nielsen, 2019)

DNNs have the capability of storing huge information inside of the structure.

However such amount of information does not always mean successful classification.
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Overfitting is the biggest problem in DNN and Dnn related studies. Simply,

overfitting is defined as too much learning from the train data. In other words, the

system perfectly adjusts itself to the train data. This causes losing the generalization

capability of the system. As a result, the system fails to perform on a new, unseen

data. Overfitting makes impossible for utilization of the proposed DL system on

real-life data even it performs very successfully on train data.

RNNs’ design is based on ANNs. However, there is an important difference. ANNs

can only accept inputs with a fixed size of vectors while RNNs do not have such a

limitation. RNNs are configured to take a set of inputs with no fixed size limit. Besides,

RNNs uses previous outputs of the system to be used as inputs. Therefore RNNs have a

memory of past decisions. The decision of RNNs is affected by the previously learned

information in the past stages. That means RNNs can learn not only during training

sessions but also even generating outputs for test data. The mainly used fields of RNNs

are in speech recognition, handwriting recognition, and natural language processing.

On the other hand, it is not preferred for image segmentation applications.

CNNs can be defined as a modified version of DNNs to reduce overfitting. A DNN

has fully connected neurons. That means every neuron in a single layer is connected

to all neurons in the next layer. This design is one of the important factors that causes

overfitting. CNNs also have additions to the loss function to ensure regularization.

Regularization adds additional conditions (or information) to the system to reduce

overfitting.

Another key difference of CNNs is the usage of convolution operation instead of

matrix multiplication between layers. Using convolution gives CNNs the opportunity

of using hierarchical pattern information in data. Besides, it makes possible to store

complex patterns in single ones which also reduces overfitting.

Working principle of a typical CNN in an image segmentation application can be

explained in the following stages:

1. Tensors are generated by input image
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2. Convolutional layers convolve the tensors

3. The results are passed to activation function

4. Pooling applied the results and passes its result to the next layer.

5. All steps are repeated according to the design of CNN

6. The final tensor is flattened and classified by a fully connected layer.

7. The result of the final layer defines the output of the CNN.

Tensors are multi-dimensional matrices which are constructed by multiple images.

The size of a typical tensor is created by (number of images) x (image width) x (image

height) x (image depth).

In convolutional layers, the tensors are convolved by kernels. Kernels store the

learned information. In other words, the memory of the CNN is inside of their kernels.

During training progress, a cost function is calculated via reference data in the train

data. With the help of the values of the cost function, kernels are updated to perform

better segmentation in the next epoch.

The results are transformed into the activation layer. The choice of activation

function depends on the application of CNN. For example Rectified Linear Unit

(ReLU) are widely used in computer vision applications (such as segmentation) due

to elimination of less relevant signals. Softmax is another popular activation function

that gives probability distribution because it maps each output in such a way that the

total sum is 1. Therefore it is often used in the final layer of a neural network-based

classifiers. Sigmoid functions are used for the logistic regression problems. After the

activation function, pooling layers are used to downsize the tensors. The shrinking of

the information into smaller tensor reduces overfitting.

As mentioned before, the proposed image segmentation methods are dominated by

DL-based methods in the last decade. Hence many various system designs have

different advantages and disadvantages to each other. In the following sections, the
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most widely-used and successful DL-based solutions in the medical image

segmentation field will be explained.

2.5.2.1 U-Net

One of the first CNN designed for the segmentation of biomedical images is U-Net.

The first theoretical architecture of U-Net was created by Long and Shelhamer (Long

et al., 2015). In 2015, the first usage of U-Net in the biomedical imaging field is the

segmentation of neuronal patterns in electron microscopic slices (Ronneberger et al.,

2015). U-Net is the most popular CNN design in medical image processing due to

its capability of operating with fewer training data than other models without losing

segmentation precision.

The name ‘U-Net’ comes from the shape of the architecture (Figure 2.11). The

network consists of two main parts, which are compression and decompression. The

layers of the compression part make the right arm of the ‘U’ shape. They perform

repeated convolution operations. ReLU and a max-pooling operation follow each

convolution. That is how spatial information is shrinking while preserving the most

important information. The decompression part, forming the right arm of the ‘U’

shape, collects feature maps from each stage of the compression part. Upsampling is

applied at each stage of decompression to match the final resolution. Segmentation is

handled by a final layer. Due to the huge popularity of U-Net, there are variously

modified versions of it in literature.

2.5.2.2 DeepMedic

DeepMedic uses a combination of 3D CNN architecture with a fully connected

Random Field (Kamnitsas et al., 2016). Deepmedic was initially built to segment brain

lesions from MRI scans. It won BraTS 2017 and ISLES 2015 challenges (Kamnitsas

et al., 2017).
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Figure 2.11 Architecture of U-Net (Ronneberger et al., 2015). Multi-channel feature maps (with

channel numbers on the top) are represented by blue boxes while copied feature map are represented by

whiteboxes

To use multi-scaling characteristics for organ segmentation, DeepMedic uses a

dual 3D CNN pathway with 11 layers shown in Figure 2.12. DeepMedic comprises

the simultaneous training of one network that uses the full-resolution image and

another network on the down-sampled version of the image. The feature maps

coming from the two paths are concatenated at the final stage. Deepmedic relies on a

3D fully-connected Conditional Random Field (CRF) for post-processing. This

approach is used for clearing false positive background voxels wrongly labeled as

foreground. Deepmedic also uses cross-entropy as a loss function (LCE) in Eq 2.9.

Lce =

R∑
i=1

C∑
j=1

K∑
k=1

g{i, j,k} log
(
p{i, j,k}

)
−

(
1−g{i, j,k}

)
log

(
1− p{i, j,k}

)
(2.9)
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Figure 2.12 Architecture of DeepMedic (Kamnitsas et al., 2017). Multi-channel feature maps in normal

and low resolution channels are represented by boxes

2.5.2.3 V-Net

V-Net has been designed for volumetric segmentation of the prostate from MR scans

(Milletari et al., 2016). Like U-Net, the name of V-Net is coming from its architecture

that has a V-shape (Figure 2.13). The design of V-Net was inferred by U-Net with

slight architectural differences.

Figure 2.13 Architecture of V-Net (Milletari et al., 2016)
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The left part of V-Net handles compression for extracting features. At each iteration,

the resolution is reduced by a pre-determined stride. The right part of V-Net handles

the decompression of the feature maps until reaching the original resolution of the

input image. V-Net segments the target object from the volumetric data using directly

3D convolutions instead of 2D convolutions for each slice.

The loss function based on the DICE overlap coefficient and it is created for

medical image segmentation. If the target organ has a relatively small volume against

the whole volume, the training process can get stuck in a local minimum of the

standard DICE loss function. V-Net uses a modified DICE loss which is defined by a

gradient of the DICE score with respect to the predicted voxels. This loss metric

amplifies the performance of the system according to its creators. The DICE loss

formula is presented in Eq. 2.10 taken from reference article (Milletari et al., 2016).

∂D
∂p j

= 2

g j
(∑N

i p2
i +

∑N
i g2

i

)
−2p j

(∑N
i pigi

)
(∑N

i p2
i +

∑N
i g2

i

)2

 (2.10)

where N = R×C×K, p is the probability map of the network, g is the ground truth.

2.5.2.4 Dense V-Networks

Dense V-Networks have been designed for the automatic segmentation of

abdominal organs from CT image series (Gibson et al., 2018). The most distinctive

feature of Dense V-Networks is three dense feature blocks at each encoding stage.

Dense V-Networks use a fully convolutional neural network architecture (Figure

2.14). The convolution process contains 3D convolution, batch normalization, and

rectified linear unit. There are three dense feature blocks with different resolutions. At

each stage of dense feature blocks, strided convolution is applied to compute feature

maps. As a result, there are three future maps for different resolutions. In order to

decrease the number of feature maps, convolution is applied for each resolution. At

the final stage, future maps that have lower resolutions are upsampled and all maps are

added.
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Figure 2.14 Architecture of Dense V-Networks (Gibson et al., 2018)

Dense V-Networks uses probabilistic DICE score (pDICEl) (Eq. 2.11) for

calculating the loss function (loss (p, )). The function is the weighted sum of L2

regularization (also called least-squares error (LSE)) shown in Eq. 2.12.

pDICE(p,g) =

(
min(p,0.9) ·g

‖g‖2 + ‖min(p,0.9)‖2

)
(2.11)

where p is probability map of segmentation, g is the ground truth.

loss (p) =
∑
∀W

w2

40
− pDICE(p,g)) (2.12)

where w ∈ W are kernel values. Note: the Eq. 2.11 and Eq. 2.12 were taken from

reference article (Gibson et al., 2018).

2.5.3 Classifier Ensembles (Fusion)

Classifier ensembles (or fusion of classifiers) are an alternative way to improve the

accuracy of any system that has a classification step. It is an efficient way to produce

improved outcomes by integrating multiple results from different models to obtain a

consistent final outcome (Kuncheva, 2014; Oza & Tumer, 2008; Rokach, 2010;

Zhang & Ma, 2012). Classifier ensembles have been used most respected grand

challenges such as Imagenet (Deng et al., 2009) and Kaggle (Google Inc, 2020) that

the winner algorithms use ensembles of deep learning architectures (Huang et al.,
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2017). Object detection (Razinkov et al., 2018), aerial scene classification (Dede

et al., 2019), video classification (Zheng et al., 2019), and diagnosis and prediction in

commercial systems (Ma & Chu, 2019; Zhang et al., 2017) are other popular topics

where ensembles were used.

The integration of ensemble methods in the proposed segmentation solutions can

be handled in different ways. A reasonable number of ensemble members are the

most commonly preferred approach. Another approach is using multiple DMs as

ensemble inputs. The training of the DMs can be done individually (Kamnitsas et al.,

2017; Warfield et al., 2004) or at the same time (Ma & Chu, 2019; Zheng et al., 2019).

Another ensemble method for DMs is using the outputs of the same DM with

different training stages (Dede et al., 2019). The members in the ensemble design can

be different/individual methods. These kinds of ensemble strategies are called a

heterogeneous ensemble. On the other hand, using the same method with different

parameters and/or training strategies is called a homogeneous ensemble. For example,

separating training data for K-fold cross-validation, training multiple DMs with the

same model on a different portion of the data, and the ensemble of their results can be

used as a homogeneous ensemble. Another approach is using a combination of

multiple DM results obtained by stopping in different local minima during training.

This strategy is called “snapshot ensembling” (Huang et al., 2017; Dede et al., 2019).

The undertrained condition of DMs eliminates problems coming from overfitting to

data. Here, diversity helps to create superior results than a typical train-test strategy of

DMs.

Common ensemble methods can be explained as majority vote (Ortiz et al., 2016),

average (Kamnitsas et al., 2018; Maji et al., 2016; Codella et al., 2017), product and

more (Warfield et al., 2004; Ju et al., 2018). Besides basic methods, there are some

advantaged ensemble rules such as STAPLE (Warfield et al., 2004) that uses the

expectation-maximization method. Another category of ensemble rules is trained

combination rules such as stacked generalization, Bayes models, and “super

learner” (Ju et al., 2018).
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Studies, where the same data are used by many different systems, provide the

necessary information for the analysis of ensemble potentials. At the end of public

challenges, the capabilities of DM ensembles in medical imaging are

presented (Prevedello et al., 2019). In this kind of analysis, all or just top of the

proposed algorithms are combined through basic ensemble methods (such as majority

voting). Usually the final result outperforms individual results (Menze et al., 2015;

Jimenez-del-Toro et al., 2016; Bilic et al., 2019; Kamnitsas et al., 2018; Kavur et al.,

2020b). However such results can be misleading if the sum of the challenge results is

affected by the “peeking” problem that is explained in Section 3.1.1.

The success potential of classifier ensembles has led these methods to be preferred

in the field of medical image processing as well as in many other fields. Several

ensembles have been particularly proposed for the segmentation of medical

images (Kamnitsas et al., 2017). Especially the ensemble of multiple DMs is getting

more popular (Ju et al., 2018; Codella et al., 2017). The article of Liver Tumour

Segmentation Benchmark (LiTS) challenge (Bilic et al., 2019), reveals some probable

need for ensemble strategy to create a generalized segmenter for medical images. In

this article, the winner models were analyzed and the following important facts were

emphasized:

1. Although many successful DM designs were proposed in the LiTS17 challenge,

it is not quite possible to recommend certain DM design as well as its parameters,

training strategies, modifications, and so on. The proposed models do not have

strict, proven guidelines. In other words, their success is coming from rough

ideas. The main reason for this is that researching possible choices for each task

requires, long training times and computational power.

2. Another problem is only a few of the proposed DMs have a 3D architecture for

working with volumetric image series. Other DMs process volumetric images

slice-by-slice which increases computational costs. On the other hand, 3D

models can have many more parameters than 2D ones.

3. In general, an ensemble of multiple DMs outperforms individual DMs. However,
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the time costs of designing and fine-tuning individual DMs is one of the biggest

drawbacks of preferring ensemble approaches.

Due to the notices in this study (Bilic et al., 2019), the ensemble methods that

seemed simple should actually be handled very carefully. The computational cost and

the time for tuning individual DMs can be reduced with smart design choices. For

example, keeping ensemble methods and usage of individual DMs as simple as

possible is a preferable way. Also, the advantages of ensembles against individual

models must be analyzed carefully before proposing an ensemble method.
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CHAPTER THREE

GRAND CHALLENGES IN THE BIOMEDICAL IMAGE ANALYSIS

3.1 Introduction

Many sophisticated methods are being proposed for organ segmentation problems

due to the necessity of robust segmenters in clinical usage. Besides, there has been

tremendous progress in deep learning (DL) in many fields of science in recent years.

These developments in DL studies are continuously adopted to organ segmentation

solutions as expected. Thanks to the capabilities provided by DL methods, the

theoretical successes of DL-based segmenters increase more than ever.

On the other hand, despite the success of previous algorithms was surpassed by

DL, it is difficult to analyze the effects of DL parameters on the performance without

making comprehensive evaluations. For this reason, comparative analyses have

become an essential mechanism to explain systems better. To find the most successful

among the many recommended DMs, it is necessary to push the methods to their

limits. New data with new tasks are useful methods to handle this mission.

The methods for comparing the efficiency of various segmentation techniques in

medical imaging are very crucial in clinically important tasks (Ayache & Duncan,

2016). Providing a new dataset to create a new benchmark platform has gained

significance in the analysis of proposed algorithms (Simpson et al., 2019). These

benchmark platforms, namely grand challenges, report the results in a methodical

way (Kozubek, 2016). Therefore grand challenges in biomedical image analysis are

getting more important than ever. For example, there are specific websites for hosting

grand challenges such as grand-challenge.org (van Ginneken & Kerkstra, 2015). This

site currently includes more than 200 challenges in biomedical image analysis.

While the impact factor of grand challenges is increasing, the design of the

challenges has a major effect on the true potential of such contests (Reinke et al.,

2018b). For example, the decisions on ground truth generation, evaluation metrics,
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ranking, criteria, and construction of the datasets must be handled very carefully in

order to make challenge results significant. In the literature, these issues have been

studied in detailed reviews (Maier-Hein et al., 2018; Reinke et al., 2018a) to enhance

the quality of challenges. New challenges are being designed to solve the flaws of the

current ones and provide new data to the field of interest. The majority of challenges

are one-time events. In addition, some of them are continuously updated (Menze

et al., 2015) while some of them are repeated after some time (Staal et al., 2004).

3.1.1 Peeking problem

In addition to problems in grand challenges, there is an underestimated problem

called ‘peeking’. Peeking is optimizing the proposed system by fine-tuning parameters

and modifying designs on the ‘test data’. Peeking is done by making several iterative

evaluations on the test data showing in Figure 3.1. Here, there is even no need for

direct access to ground truths of test data. The results of each submission are used to

optimize the system.

After this stage, the test data becomes a kind of validation data indirectly. Peeking
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Validation on 
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data
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tuning

Development stage

Evaluation 

(on test data) Final Score
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Training on 
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Peeking cycle + Evaluation stage

Submission
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Additional
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Figure 3.1 Comparison of a proper study (in green) and peeking attempts (in red)
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can mask the true capabilities of proposed systems especially DMs. In other words, a

DM which gives very accurate segmentation results on specific data/challenge may be

ineffective for other datasets. Considering the main reason for creating such

segmenters is to solve problems in radiology, the promising results in specific datasets

may not mean anything for real-world utilization. Surprisingly peeking is an

underestimated problem in many challenges. It is one of the biggest reasons for the

obstruction between academic studies in machine learning and their real-world

implementations.

In the following sections of this chapter, the overview of previous abdomen related

challenges are introduced in 3.2 Related Work. After that, the two organized challenges

(national and international), are presented in detail in Sections 3.3 and 3.4.

3.2 Related Work

It has been revealed through a detailed literature review that current challenges with

abdominal organs focus significantly and tumor/lesion classification tasks from CT

scans. However, there were only a few challenges that included the abdominal MRI

series. This is an expected situation since because CT is preferred more than MRI in

abdominal imaging. On the other hand, the recent advances in MRI technology make

it an alternative method for a detailed analysis of the abdominal region. Significant

improvements in MRI technology in terms of resolution, dynamic range, and speed

make a joint analysis of both CT and MRI possible (Hirokawa et al., 2008).

Currently, there exist 9 international challenges (rather than CHAOS) focusing on

abdominal organs (van Ginneken & Kerkstra, 2015). The summary of these

challenges is presented in Table 3.1. SLIVER07 (Heimann et al., 2009; van Ginneken

et al., 2007) can be considered the most important challenge because of being the

pioneering one. In 2007, SLIVER07 has one task with is the segmentation of the liver

from abdomen CT images. A comparative analysis of a number of liver segmentation

algorithms was conducted under many obstacles, such as patient orientation
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differences or tumors and lesions. In 2008, the same team created a new challenge,

“3D Liver Tumor Segmentation Challenge (LTSC08)” (Deng & Du, 2008). They

expanded the task of SLIVER07 to segment liver tumors from the abdomen CT scans.

Shape 2014 and 2015 challenges (Kistler et al., 2013) targeted on liver segmentation

from CT data. There are also such challenges that focus on multiple organs as well as

abdomen ones. Anatomy3 challenge (Jimenez-del-Toro et al., 2016) is one of these

challenges that provided a broad benchmark opportunity. It covers the segmentation

of the left/right lung, urinary bladder, and pancreas in addition to the liver. Some

challenges target both liver and tumors in the liver at the same time. LiTS - Liver

Tumor Segmentation Challenge (Bilic et al., 2019) focuses on the segmentation of

liver and liver tumors from CT scans. Pancreatic Cancer Survival Prediction (Guinney

et al., 2017) covers a rare task that is the segmentation of pancreas cancer tissues in

CT scans. Among with liver, kidneys are also highly examined organs in medical

imaging. KiTS19 challenge (Weight et al., 2019) has the task of kidney tumor

segmentation from CT data. Some abdomen related challenges use different

modalities such as whole slice images. PAIP 2019 challenge (Choi et al., 2019)

targets detecting liver cancer from these images.

Besides the challenges with local organizers, there are also important ones

organized by the community of multiple scientists around the world. Medical

Segmentation Decathlon (MSD) (Simpson et al., 2019) is one of these. MSD was

organized in 2018 and focused segmentation of several organs/structures from

multiple diverse datasets. The targeted areas are liver parenchyma, hepatic vessels and

tumors, spleen, brain tumors, hippocampus, and lung tumors. The dataset of MSD

includes both CT and MRI scans. These multiple modalities are used to evaluate the

performance of proposed methods along with repeatability, reproducibility, and

generalizability of the algorithms. MSD is a successful challenge to reveal important

factors of DL-based methods and to push the methods into their boundaries.
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Table 3.1 Overview of challenges that have upper abdomen data and task

Challenge Task(s) Structure (Modality) Organization

SLIVER07 Single model

segmentation

Liver (CT) MICCAI 2007,

Australia

LTSC08 Single model

segmentation

Liver tumor (CT) MICCAI 2008,

USA

Shape 2014 Building

organ model

Liver (CT) Delémont,

Switzerland

Shape 2015 Completing

segmentation

Liver (CT) Delémont,

Switzerland

Anatomy3 Multi-model

segmentation

Kidney, urinary bladder,

gallbladder, spleen, liver, and

pancreas (CT and MRI for all

organs)

VISCERAL

Consortium,

2014

LiTS Single model

segmentation

Liver and liver tumor (CT) MICCAI 2017,

Canada

MSD Multi-model

segmentation

Liver (CT), liver tumor (CT),

spleen (CT), hepatic vessels in

the liver (CT), pancreas and

pancreas tumor (CT)

MICCAI 2018,

Spain

KiTS19 Single model

segmentation

Kidney and kidney tumor (CT) MICCAI 2019,

China

PAIP 2019 Detection Liver cancer (Whole-slide

images)

MICCAI 2019,

China

CHAOS Multi-model

segmentation

Liver, kidney(s), spleen (CT,

MRI for all organs)

ISBI 2019,

Italy

3.3 “Karaciğer Bölütleme Algoritmaları Yarışıyor!” Challenge

Our research has shown that there is no recent challenge for the healthy liver

segmentation problem in Turkey although challenges are very important events today.
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It was decided to organize a new challenge to examine the up-to-date methods in

segmentation algorithms and to bring new data to the literature. Therefore the first

challenge in biomedical image analysis field in Turkey, "Karaciğer Bölütleme

Algoritmaları Yarışıyor!" was organized. The challenge was organized under the

supervision of the Turkish Medical Informatics Association (TURKMIA) at the

Bioİzmir building in Dokuz Eylul University Medical School Campus, İzmir, Turkey.

This was the first competition about liver segmentation in Turkey. In addition, since

2007, there was not any challenge specially focused on healthy liver segmentation in

the world. The most famous competition was organized in MICCAI 2007, "3D

Segmentation in the Clinic: A Grand Challenge, on October 29, 2007" (Heimann

et al., 2009). The idea of organizing a challenge was inspired by that grand challenge.

The challenge was organized nationwide and a one-time event. It was announced

three months before. The participants registered to the challenge one month before the

challenge day. After completing registration, the train set was shared with participants.

3.3.1 Aims and Data Information

The challenge has a single task: segmentation of healthy liver from CT images. The

reason for this choice is that we want to examine the interest in a subject that has not

been organized for many years.

The challenge data contains abdomen CT scans of 20 patients. The dataset includes

healthy abdomen organs without any tumors, lesions, etc. The datasets were collected

from the Department of Radiology, Dokuz Eylul University Hospital, Izmir, Turkey.

CT image series were obtained at the portal phase during the injection of the contrast

matter. At this stage, liver parenchyma reaches the biggest volume because of blood

circulation inside of the organ from the portal vein. With the help of the contrast agent,

the portal veins can be seen in detail. This protocol is one of the most performed liver

CT imaging for both liver and veins. The details of the data are presented in Table 3.2.

Each image slice in the patient sets was annotated manually in order to guarantee
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Table 3.2 Statistics about dataset in "Karaciğer Bölütleme Algoritmaları Yarışıyor!" challenge

Number of sets (Train + Test) 10 + 10

Spatial resolution of files 512 x 512

Number of files in all sets [min-max] [78 - 264]

Average number of files in a set 90

Total files in the whole dataset 1207

X space (mm) [min-max] [0.59 - 0.79]

Y space (mm) [min-max] [0.59 - 0.79]

Slice thickness (mm.) [min-max] [2.0 - 3.2]

the quality of annotation. The number of cases in the data was divided equally (10+10)

for train and testing stages. Train data was shared as anonymized DICOM images and

their annotations (ground truth). Test data was shared with only anonymized DICOM

images.

3.3.2 Participants

Eleven different teams have participated in the challenge. They are from; Boğaziçi

University, İstanbul Technical University, Yıldız Teknik University, Middle East

Technical University, Hacettepe University, Eskişehir Osmangazi University, Bursa

Uludağ University, Abdullah Gül University, Celal Bayar University, and Dokuz

Eylül University. The cities of participants are shown in Figure 3.2.

In the competition day, all teams were informed about the rules of the challenge.

After that, the whole dataset was shared with all teams at the same time and the

competition started. Teams were free to use any kind of segmentation methods and

tools. Also, there was no strict rule on the number of members in each team. The

challenge lasted seven hours. Eight of eleven teams delivered results. The other three

could not finish the segmentation of all sets. However, they were allowed to send their

results after the challenge. Their grades were not included in the rating of the

competition but they are valuable for further analysis of various segmentation results.
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Figure 3.2 Distribution of universities participating in the challenge

3.3.3 Evaluation

After collecting the results from teams, their performances were evaluated.

Selecting the proper evaluation metric(s) is the most critical point in these kinds of

competitions. In literature, some metrics compares the two 3D objects to analyze how

similar they are. On the other hand, none of them are sufficient alone (Taha &

Hanbury, 2015). In order to overcome this problem, we determined to use five

different performance metrics at the same time. Their average gives the final grade of

the segmentation. This approach was also used previous segmentation challenges in

the world (Heimann et al., 2009). The five different performance metrics are:

1. Volumetric overlap error (VOE)

2. Relative volume difference (RAVD)

3. Average symmetric surface distance (ASSD)

4. Root mean square symmetric surface distance (RMSD)

5. Maximum symmetric surface distance (MSSD)

The calculated error metrics were not used according to their value. To get proper

analysis, their values are mapped between 0-100 points as other grand challenges.
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However, our segmentation challenge has a different approach for evaluating the results

at this point. In SLIVER07, the thresholds had a very narrow band. In other words,

only very successful results could obtain a grade. Otherwise, they will be evaluated

as zero points. Unlike SLIVER07, we extended the threshold limits wider because the

main goal of the challenge is obtaining many different segmentation results with many

different algorithms. The mapping thresholds are explained below:

1. VOE: The threshold for mapping is determined as 50%. If a VOE of result has

lower than 50%, the score will be 0. If it is higher than 50% the score will be the

same as calculated.

2. RAVD: The values higher than 10 get a grade of 0. The RAVD values between 10

and 0 are mapped between 50 and 100 score range. Since lower RAVD represents

higher performance the mapping calculation from actual value to score has an

inverse proportion.

3. ASSD: The values greater than 10 gets a grade of 0. The values between 10 and 0

are mapped between 50 and 100 score range. Again there is a inverse proportion

between ASSD and scores.

4. RMSSD: The values greater than 15 gets a grade of 0. The values between 15

and 0 are mapped between 50 and 100 score range.

5. MSSD: The values greater than 50 gets a score of 0. The values between 50 and

0 are mapped between 50 and 100 score range.

After calculating case results from submissions, their average over the test data

determines the final scores of the participants. All results and analyses of the

challenge are discussed in Section 3.3.4.

3.3.4 Results

"Karaciğer Bölütleme Algoritmaları Yarışıyor" challenge was a one time and

on-site event. The test set was shared with participants on the challenge day. After six
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hours, eight of eleven teams made submissions. Segmentation results were evaluated

according to the metrics that explained in Section 3.3.3. In order to make fairer

analysis, results of automatic segmentation and semi-automatic segmentations

examined individually. Hence, results were divided into semi-automatic methods and

automatic methods as presented in Table 3.3 and 3.4.

Table 3.3 Results of teams using semi-automatic methods

Team Name Grade

Team 3 - Boğaziçi University 72.57

Team 11 - Uludağ University 56.14

Team 5 - Abdullah Gül University 48.97

Table 3.4 Results of teams using automatic methods

Team Name Grade

Team 1 - İstanbul Technical University Vision Lab 79.68

Team 4 - Middle East Technical University MM LAB 79.47

Team 8 - Yıldız Technical University 55.05

Team 7 - Hacettepe University 37.56

Team 6 - Osmangazi University 20.89

Team 3, the winner of the category of the semi-automatic algorithm used an

algorithm based on the active contours method. This is a traditional algorithm for

segmentation problem but it generated satisfying results. On the other hand, all teams

in the automatic segmentation category used Deep Learning algorithms with a

variation of U-Net (Ronneberger et al., 2015) model. This is a very interesting

outcome because all the teams came from different universities with the same base

DM. Hopefully, this situation gives us a very rare chance to examine the deep

learning methods under different optimizations.

In order to observe the differences properly, the analyzes were handled via both

qualitative and quantitative evaluation methods. First, all results of segmentation
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algorithms were summed cumulatively to obtain a heatmap. The values were mapped

to the virtual color scheme for qualitative examination. One of the examples can be

seen in Figure 3.3.

Figure 3.3 Colored heatmap of all segmentation algorithms on a sample slice

Figure 3.3 was colored according to two different color maps. The first color map

that has greenish colors, represents inside of the ground truth mask. In this area, we

want to examine True Positive (TP) performance of segmentation algorithms. Since

the inside of the liver is not homogeneous, segmentation results have different

characteristics. For example, a segmentation algorithm that is sensitive to intensity

changes of voxels can miss the veins inside of the liver. In figure 3.3, it can be clearly

observed that nearly half of the segmenters have some issues at vein regions.

On the other hand, a second reddish color map was chosen to explore situations

of segmenters outside of the ground truth. This area is related to False Positive (FP)

value of segmentation results. FP area has very critical importance for maximum error

margin.

In addition to examining all segmenters, we also wanted to analyze semi-automatic

results and automatic results separately. The qualitative analysis example of the two

groups are presented in Figure 3.4 and 3.5.
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The comparison between Figure 3.4 and 3.5 reveals that Deep Learning-based

automatic approaches have lower FP results except for one submission. In addition,

they performed more successfully on heterogeneous structures in the liver such as

veins inside of the parenchyma tissue.

After qualitative analysis, the results were examined quantitatively. Again the

results were analyzed into three different sections; All segmentation results, automatic

segmentation results, and semi-automatic segmentation results. The results were

merged via logic OR operator. The meaning of OR operator is summing all results

together and it gives the complementarity of different of results. After that FN and FP

numbers of voxels were count. Unsegmented voxels show the regions that none of the

segmentation algorithm could find. The results were presented in Table 3.5.

According to qualitative and quantitative analyses, it can be clearly observed that

automatic and semi-automatic methods complete their results and decrease FN error

if they are summed. The summation of their results covers almost all voxels inside the

liver. The percentage of FN voxels is under 0.3% in all sets. However, the situation of

FP voxels tells another story. The segmentation results of all methods show

complementing behavior inside the liver while they dramatically increase FP voxels.

Figure 3.4 Colored heatmap of semi-automatic segmentation algorithms on a sample slice

51



Figure 3.5 Colored heatmap of automatic segmentation algorithms on a sample slice

Therefore, the evaluation of these results with metrics used in our liver segmentation

challenge gives a result of zero points almost every set. Hereby, the summation of all

results cannot be used as an ensemble solution.

In addition to complementary analyses, diversity of results with AND operator was

calculated to analyze the intersection of all results. The results are presented in Table

3.6. Table 3.6 shows that segmentation methods have a diverse characteristic. This

causes two results. The first outcome is the diversity of results is very effective while

trying to decrease false-positive (FP) voxels that belong to outside of the liver. Another

outcome of the OR operator is that this diversity dramatically increases false negative

(FN) voxels that are inside the liver.

To sum up, despite a small size of the event, "Karaciğer Böltüleme Algoritmaları

Yarışıyor" challenge has attracted the medical imaging teams at national level. Since

it was one time and on-site challenge, there was not any possibility for peeking.

Therefore the impartiality of the results could be validated. The results revealed an

important truth about organ segmentation analysis: Up to this challenge,

semi-automatic segmentation methods generated more precise and accurate results

than automatic ones. Automatic segmentation methods, generally needed additional
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Table 3.5 Quantitative analysis of OR operator in three group; FN, FP and Total number of voxels

All Results Automatic Results Semi-Automatic Results

Set FN Voxels FP Voxels FN Voxels FP Voxels FN Voxels FP Voxels All Voxels

1 2 1662601 643 629442 27 1407447 2086084

2 175 967416 941 259452 5540 893253 1159488

3 175 2579244 13658 630565 565 2469255 1351846

4 2069 3276054 14604 1205892 5865 3067914 2377134

5 662 5516280 20184 633903 2160 5333218 2214195

6 3729 4269658 27506 1159656 7408 4057793 2572660

7 2066 2208197 11998 1016063 27882 1889581 1495046

8 251 3058514 882 1515891 13419 2840737 1907329

9 434 3646886 25954 761290 1225 3500360 1608064

10 815 1810019 18931 726851 2119 1569483 2157990

11 434 2186193 7915 684263 782 1925671 1514495

12 2158 3288102 27380 1223672 3683 2933552 1940596

13 1661 2331382 43136 800343 1773 2151439 1877030

14 9 3560787 6767 875526 271 3403366 2019476

15 884 2737363 13039 934882 1400 2499171 1788934

16 13 3739378 2401 659399 325 3623870 1788285

17 453 2246968 33164 759332 919 1834653 1622016

18 152 2644044 5447 720631 5236 2579218 2436574

19 1176 3790495 32109 1025182 3000 3595310 2073975

20 210 7301275 15594 1136240 511 7152412 2368338

post-processing to obtain clinically acceptable results. However, the tremendous

developments in machine learning, specifically DL, has changed the situation.

"Karaciğer Bölütleme Algoritmaları Yarışıyor" challenge shed light on the

developments in this field and constituted the main motivation of our next contest, the

CHAOS challenge. All analyzes made from the challenge results were compiled and

published in Kavur et al. (2020b). The experience obtained during this challenge

made possible to design more sophisticated and different tasks in the CHAOS

challenge.
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Table 3.6 Quantitative analysis of AND operator in three group; FN, FP and Total number of voxels

All Results Automatic Results Semi-Automatic Results

Set FN Voxels FP Voxels FN Voxels FP Voxels FN Voxels FP Voxels All Voxels

1 945070 5 488781 894 760987 1096 2086084

2 634303 0 271008 503 580302 21 1159488

3 732750 177 408931 1205 601994 1330 1351846

4 1693867 514 1466430 2755 790809 21285 2377134

5 1071209 447 733280 1214 742672 2804 2214195

6 1831292 274 903207 4261 1625700 2160 2572660

7 910377 313 534426 2485 751089 4065 1495046

8 1463873 16 1015110 835 1414284 222 1907329

9 954982 195 916518 381 409433 8435 1608064

10 1624076 277 1017123 810 1332932 930 2157990

11 994169 423 612560 4407 753398 2742 1514495

12 1471657 145 722448 2458 1343178 811 1940596

13 1428023 8 1089869 47 1053893 422 1877030

14 1004651 90 654437 1658 750820 3161 2019476

15 897802 196 625249 1880 682405 829 1788934

16 938185 486 314994 1237 860777 4210 1788285

17 1207797 235 800154 1811 969828 1780 1622016

18 1230673 4 517836 5064 1147755 136 2436574

19 1308655 303 957166 4208 997995 1739 2073975

20 1289932 260 670869 1939 1023226 1577 2368338

3.4 The CHAOS Challenge

The popularity of "Karaciğer Bölütleme Algoritmaları Yarışıyor!" challenge

showed us the potential of the challenges on abdomen imaging. Therefore, it was

decided to organize an international challenge with extended data.

Many previously organized challenges for the abdomen organ segmentation

focused on the segmentation of single organs from a single modality, especially CT.

On the other hand, the researches presented in Section 3.2 revealed that the aims of

abdomen organ segmentation challenges should be improved due to huge progress on

Deep Leaning studies. More specifically, the traditional abdomen organ-related
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challenges are not powerful enough to deeply analyze state-of-the-art algorithms. In

addition, there is a new trend in deep learning studies to create a single solution for

multiple clinical needs. Therefore, DMs working with multi-modal and/or

cross-modality are recent, but not well-studied topics (Cerrolaza et al., 2019). In order

to gain awareness on these topics, CHAOS - Combined (CT-MR) Healthy Abdominal

Organ Segmentation challenge was designed. The challenge has on-site and online

sections. The on-site session of the challenge has been organized in conjunction with

the IEEE International Symposium on Biomedical Imaging (ISBI), 2019, in Venice,

Italy as a one-time event. After that, the online submission system was enabled to

give the opportunity of participating in the challenge from all around the world.

Unlike traditional abdomen imaging challenges, CHAOS contains unpaired

abdominal CT and MR data from patients with healthy organs. Five individual tasks

have been proposed to deeply investigate the effectiveness of up-to-date methods in

many aspects. The data and the benchmark platform will provide a continuous

resource.

3.4.1 Aims and Tasks

The aim of the CHAOS challenge is to create a benchmark platform to deeply

analyze state-of-the-art segmentation solutions for abdomen images. To serve this

purpose, different data and tasks have been designed in the competition. Unlike single

modality and single task challenges, CHAOS brought new kinds of goals to the field

such as multi-organ segmentation from multiple modalities. Multi-organ based

activities involve a comprehensive description of complex and adaptive abdominal

anatomy. Hence, new efficient computer and machine learning models are needed in

this developing field. CHAOS was designed to improve the field by addressing new

DL ideas for multi-modal segmentation and cross-modality segmentation. The

emphasis is on the segmentation of multiple organs from unpaired modalities: CT and

MR. The overall aim of CHAOS is distributed into five different and complementary

tasks, which demand the participating systems to have a higher generalization and
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translation capabilities. With these tasks, CHAOS offers the participants different

design options for segmentation algorithms:

Task 1: Liver Segmentation from CT and MRI aims the use of a single algorithm

capable of segmenting liver from multiple modalities, CT, and MRI. In other words, the

proposed system can be to handle ‘cross-modality’ images. According to researches,

(Valindria et al., 2018) cross-modality systems will be used more preferably due to

huge improvements in deep learning studies.

Task 2: Liver Segmentation from CT is the most studied and a typical

segmentation task. It focuses on segmentation liver from CT image series. Although

it is a relatively easy task, the performance on vein and low gradient borders of the

liver is still challenging because liver segmentation algorithms making the most

mistakes in those regions.

Task 3: Liver Segmentation from MRI targets the same problem with Task 2 but

on different modality. The systems need to segment liver from MRI image series. Since

MRI series have two sequences (detail will be presented in the following sections), it is

a more challenging task than Task 2. In addition, the low resolution of the MRI images

makes accurate segmentation harder.

Task 4: Segmentation of abdominal organs from CT-MRI is the most

complicated task of the challenge. It combines both cross-modality and multi-organ

segmentation in a single task. A single solution needs to handle 1) segmentation of

liver from CT series, 2) segmentation of four abdominal organs (liver, kidneys, and

spleen) from the MRI series.

Task 5: Segmentation of abdominal organs from MRI is the widened version of

Task 3 with multiple organ segmentation aims from MRI scans. Here, an algorithm

needs to segment the liver, both kidneys, and spleen at the same time.

The tasks were designed for the replication of the real-world needs of physicians.

For example, a single system (i.e. software for clinical usage) can be designed for

cross-modality (both CT and MRI data). On the other hand, participants can prefer
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classical approaches, such as designing a segmentation system for only one modality

and one organ. The ensemble done by hand or manually of individual models

working on specific modality is not allowed. However, the ensemble of different

solutions for MRI sequences (T1-DUAL and T2-SPIR) is valid in all MRI-included

tasks. More details are published on the CHAOS challenge website

(https://chaos.grand-challenge.org/).

3.4.2 Data Information and Details

As mentioned in previous sections, the CHAOS challenge contains abdomen scans

from two different modalities: CT and MRI. In total, the whole data consist of 80

patients’ images. 40 of them belong to CT data while the other 40 are in MRI data. All

organs of interest (liver, kidneys, spleen) in the images are in healthy condition. The

source of all images is Dokuz Eylul University Hospital, Department of Radiology,

Izmir, Turkey. The technical details of the data are summarized in Table 3.7.

Table 3.7 Statistics about CHAOS CT and MRI dataset

Specification CT MR

Number of patients (Train + Test) 20 + 20 20 + 20

Number of sets (Train + Test) 20 + 20 60 + 60*

Spatial resolution of files 512 x 512 256 x 256

Number of files in all sets [min-max] [78 - 294] [26 - 50]

Average number of files in a set 160 32x3*

Total files in the whole dataset 6407 3868x3*

X space (mm) [min-max] [0.54 - 0.79] [0.72 - 2.03]

Y space (mm) [min-max] [0.54 - 0.79] [0.72 - 2.03]

Slice thickness (mm.) [min-max] [2.0 - 3.2] [4.4 - 8.0]

* MRI sets have 3 different pulse sequences. For each patient T1-DUAL (in) and

(oppose) phases (registered) and T2-SPIR phase are acquired.
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3.4.2.1 Dataset 1: Abdomen CT images

The CT data is the extension of the same dataset in our previous challenge,

"Karaciğer Bölütleme Algoritmaları Yarışıyor!". Therefore, the CT data has similar

characteristics explained in Section 3.3.1. The CT database includes images of 40

different patients. The scans were acquired at the portal venous phase. In this phase,

first, a contrast agent is injected into the patient. Then, the scan starts 70-80 seconds

after injection. As explained in Section 3.3.1, portal vein of the liver reaches

maximum blood supply. Therefore, the portal veins are highly enlarged. It becomes

easier to analyze portal veins due to the effect of the contrast agent. The portal phase

is one of the most used abdomen CT scanning protocols in clinics for the liver and

vessel segmentation. The CT data was acquired via three different CT scanner. They

are Philips SecuraCT with 16 detectors, Philips Mx8000 CT with 64 detectors, and

Toshiba AquilionOne with 320 detectors. Each case in the CT data has the same

patient orientation and alignment with the following specifications:

• Similar range of Hounsfield values of neighbor organs,

• Different Hounsfield ranges for inferior vena cava and portal veins across data

sets because of the contrast agent,

• Important variations in the shape of anatomical structures across patients,

• 15% of the data includes atypical shapes of the liver (i.e. abnormal volume or

location of the liver).

To sum up, the CT dataset in the CHAOS challenge has very similar specifications

with in real life utilization. Hence, the algorithms must be designed to handle these

problems (shown in Figure 3.6) in advance.

3.4.2.2 Dataset 2: Abdomen MR images

MRI dataset contains 120 cases from two individual MRI sequences as follow:
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Figure 3.6 Sample images from CHAOS CT dataset. (a) very low contrast difference and unclear

boundary between the heart and the liver; (b) unclear boundary due to partial volume effects between

the right kidney and the liver; (c) contrast enhanced vascular tissues inside the liver parenchyma; (d)

relatively less enhanced vessels compared to (c) (Kavur & Selver, 2019)

• T1-DUAL in- and oppose- phase images from 40 patients,

• T2-SPIR from 40 patients.

The scans were performed for routine clinical examination. Different gradient and

radiofrequency parameter pairs were used to obtain different sequences. As same as

the CT dataset, MRI data contains not tumors or lesions in the target organs. The MRI

scans were obtained via a 1.5T Philips MRI scanner. The technical specifications of

the dataset are presented in Table 3.7.

This dataset has two modified versions of T1 and T2 sequences that are widely used

ones in daily clinical routine. The properties and differences of T1 and T2-weighted

images were explained in Section 2.2.2. In this data set, images obtained by T1-DUAL
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and T2-SPIR, specific versions of T1 and T2 sequences.

SPIR (Spectral Pre-Saturation Inversion Recovery) provides for a synthetic image

series which utilizes a T2-weighted contrast method. The pre-saturation pulse shall

be employed individually to each slice selection gradient for selective suppression of

fat protons. SPIR needs delicate calibration adjustment and a very uniform magnetic

field. Therefore SPIR is used for liver scanning because it is easier to examine the liver

with suppression of the fat tissue in the parenchym. Since there is fat content between

abdomen organs, the borders of the organs appear more clearly with darker intensity

values. The veins in the liver can also be detected because they seem hyper-intense.

The neighbor abdominal organs and structures are more detachable from each other.

Another significant feature to the SPIR is its modest sensitivity to patient movement.

This feature minimizes the artifacts which reduce the quality of the scans in abdominal

examinations.

Figure 3.7 Samples of abdominal MRI images from T2-SPIR sequence (Kavur & Selver, 2019)

T1-DUAL is a series of fat suppression with in-phase and oppose or out-phase,

which incorporates the disparity between water and fat protons. In-phase and

oppose-phase images come from two signal acquisitions from two phases of the

protons. By using this information to determine the Time of Echo, fat suppression is

obtained by the difference between related water and fat signal frequencies. This

series is very useful in recognizing the substance of fat in structures especially

lesions. Because T1-DUAL is a T1-weighted sequence, the identification of tissues

and blood with high protein content is very compelling. This series also assists in

assessing the amount of liver fat. The edge of the structures appears to be dark in

oppose-phase scans, because of the rapid switch in the load of water and fat which

blocks the acquired signal. This T1-DUAL feature is also preffered for the algorithms
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for boundary detection.

Figure 3.8 Samples of abdominal MRI images from T1-DUAL (in-phase) sequence (Kavur & Selver,

2019)

3.4.3 Annotation of the dataset

Annotation is one of the most prolonged stages in challenge design. The quality of

annotations has a direct role in both the training and testing of algorithms. There are

different approaches to handle this step. The most commons ones, manually

(slice-by-slice), semi-automatically (with help of a segmentation tool), crowdsourcing

(from a service such as Amazon Mechanical Turk). In the CHAOS challenge, the

most precise but most difficult method was preferred as a manual annotation. The

data was annotated by three different radiology experts who have 10, 12, and 28 years

of experience, respectively.

Sometimes even experienced radiologists may have different decisions for ground

truths. To achieve consistency, the experts reached consensus over critical regions. For

example, inferior vena cava (IVC) was excluded if it is not completely inside of the

liver as shown in Figure 3.9.

The annotation step took more time than expected due to manual segmentation.

However, this hand-crafted data has very valuable references considering crucial

effects of annotations over algorithm design, validation, and evaluation.
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Figure 3.9 In CHAOS dataset, partial IVC regions (marked with of yellow dashes) were excluded

3.4.4 Challenge Setup and Distribution of the Data

To give adequate data containing wide variability, the training data were chosen to

include both the challenges determined throughout the database ( i.e. for CT scans,

partial volume effects or for MRI scans, bias fields, abnormal liver forms) (Figures

3.10 and 3.11).

The images are distributed as DICOM file series as original format after

anonymization of the files. All patient-related information was erased in order to

follow privacy rules. The ground truths in the training data are also included as image

PNG series to match the original order of the DICOM file series. One of the

important aims of the challenges is to provide data for long-term academic studies.

Thus, CHAOS data is available free with its DOI number via the zenodo.org webpage

under CC-BY-SA 4.0 license (Kavur et al., 2019). It is expected that this data will be
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Figure 3.10 Examples of challenges from the training data of the CT database. (a) Unclear boundary

between the liver and the heart. (b) Liver has three disconnected components on a single slice (c)

Atypical liver shape, which causes unclear boundary with the spleen (d) Varying Hounsfield range and

non-homogeneous liver parenchyma due to the injection of contrast media (Kavur & Selver, 2019)

Figure 3.11 Examples of challenges from the training data of the second database (abdominal MRI) (a)

sudden changes in planar view and unclear boundary (spleen-left kidney). Effect of bias field in (b)

T1-DUAL, and (c) T2-SPIR (Kavur & Selver, 2019)
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used not only for the CHAOS challenge but also for other scientific studies such as

cross-modality works, medical image synthesis from different modalities, and so on.

Data is already used for development in some prestigious studies such as Dou et al.

(2020).

3.4.5 Evaluation

Evaluation of the CHAOS challenge has two main stages. First, the segmentations

are evaluated by selected metrics. After that their results are converted to scores.

Finally, the submissions are ranked by their scores.

3.4.5.1 Metrics

There is no standardization of metric(s) to evaluate the segmentation efficiency.

The majority of segmentation related studies only use a single metric or multiple

metrics with similar properties. However, there are significant findings that show

these approaches may not enough for a proper and complete evaluation (Maier-Hein

et al., 2018; Yeghiazaryan et al., 2015). The error margin in medical imaging is very

strict in comparison with segmentation applications in different fields. Therefore

using multiple and diverse metrics guarantees fair evaluation. Hence, a similar

approach within "Karaciğer Bölütleme Algoritmaları Yarışıyor!" challenge followed.

Four widely-used and proven segmentation metrics (Maier-Hein et al., 2018) were

preferred in the CHAOS challenge. These are:

• DICE coefficient (DICE)

• Relative absolute volume difference (RAVD)

• Average symmetric surface distance (ASSD)

• Maximum symmetric surface distance (MSSD)
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These metrics are capable of analyzing the segmentation in terms of overlapping,

volumetric, and spatial differences. Details of all metrics were presented in Section

2.4.

In addition, we prepared two experiments for the uncover drawbacks of two most

popular segmentation evaluation metrics (DICE and MSSD/Hausdorff distance) in

literature (Maier-Hein et al., 2018) to demonstrate that using single metric may fail

the evaluation. The figures containing different segmentation scenarios and results of

them are presented in Figure 3.12, 3.13 and Table 3.8, 3.9.

Figure 3.12 From top-left: 1) A sample slice from CHAOS CT data. 2) Its ground truth. 3) Segmentation

result of an algorithm. 4-9) Syntactically manipulated version of (3) for DICE metric experiment
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Table 3.8 Metrics results of segmentations in Fig.3.12. In many conditions marked bold (except Seg 3

and Seg 4), DICE metric is not sensitive for the different segmentation errors

Image DICE RAVD ASSD MSSD

Seg 1 0.985 0.159 2.99 53.731

Seg 2 0.986 0.729 1.313 53.731

Seg 3 0.972 2.412 3.731 53.731

Seg 4 0.782 55.701 16.128 53.731

Seg 5 0.974 2.023 3.58 53.731

Seg 6 0.985 6.449 3.632 53.731

Figure 3.13 Syntactically manipulated segmentation results of (3) in Fig.3.12 for MSSD/Hausdorff

distance metric experiment
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Table 3.9 Metrics results of segmentations in Fig.3.13. In all cases MSSD/Hausdorff distance have same

value. Thus, it is not possible to distinguish the different segmentation errors with single metric usage

Image DICE RAVD ASSD MSSD

Seg 1 0.985 0.159 2.99 53.731

Seg 2 0.986 0.729 1.313 53.731

Seg 3 0.972 2.412 3.731 53.731

Seg 4 0.782 55.701 16.128 53.731

Seg 5 0.974 2.023 3.58 53.731

Seg 6 0.955 6.449 3.632 53.731

3.4.5.2 Scoring System and Ranking

After calculating metrics, there are two widely-used approaches for ranking the

submissions with multiple metrics. They are “rank then aggregate” and “aggregate

than rank”. In “rank then aggregate” method, the submissions are ranked using

individual metrics. In other words, each submission has multiple rankings coming

from individual metrics. After that, the mean of multiple rankings determines the final

rank of the submission. Here, there is a possibility that multiple submissions will

receive the same rank. The second approach, “aggregate than rank” uses inverse steps.

First, the metrics results of the submission are converted to the same scale (score),

then the mean of all scores determines the final score of the submission. After all,

submissions are ranked via their final score. This is a more preferable way of ranking.

The only important step is, scaling different metrics outputs to the same intervals.

In CHAOS, “aggregate than rank” was used approach as our previous challenge.

The values of each metric have been converted to [0,100] range. Here, higher values

represent better segmentations. The thresholds for the transformations are obtained by

the intra- and inter-user similarities among ground truths coming from our radiology

experts. Since the values of thresholds have a very crucial effect on ranking, using the

values from real-life utilization is preferred again (Maier-Hein et al., 2018). Two
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manual segmentations performed by the same expert on the same CT data set at

different times resulted in liver volumes of 1491 mL and 1496 mL. The volumetric

overlap is found to be 97.21%, while RAVD is 0.347%, ASSD is 0.611 (0.263 mm),

and MSSD is 13.038 (5.632 mm). A similar analysis for the segmentation of the liver

from MRI was performed. By using these values, thresholds were determined. The

metrics and scoring system were summarized in Table 3.10.

Table 3.10 Details of metrics and threshold values in the CHAOS challenge. ∆ represents longest

possible distance in the 3D image

Metric name Best value Worst value Threshold

DICE 1 0 DICE >0.8

RAVD 0% 100% RAVD <5%

ASSD 0 mm ∆ ASSD <15 mm

MSSD 0 mm ∆ MSSD <60 mm

As our previous challenge, zero points are given for the metric results out of

thresholds. Other values in the range of thresholds are scaled to [0,100] range. The

average scores determine the case (patient image set) score. The average of all case

scores generates the final score of the submission. If a case does not have a score due

to missing data, the zero point is given for this case. These zero points are also used

for the final score. In other words, missing cases are penalized. The code for all

metrics (in MATLAB, Python, and Julia) is available at

https://github.com/emrekavur/CHAOS-evaluation.

3.4.6 Methods of Participants

CHAOS challenge gave us a unique opportunity to examine up-to-date and

sophisticated methods in abdomen organ segmentation. In this section, participants’

algorithms in the on-site challenge session are briefly explained to compare their

solutions. In addition, there are three selected methods from the online challenge

session. The reason for selecting these three submissions is that they have valuable

approaches and already won other challenges.
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Since peeking can dramatically impact the results as explained in Section 3.1.1,

here all explained methods were validated that there was no peeking attempt. All

methods have proper development stages. They are fully automatic methods that use

different DM architecture in order to handle challenge tasks. After the explanations of

the methods, their approaches can be compared via Table 3.11 and 3.12. All results

and discussions of the CHAOS challenge are presented in Section 3.4.7.

3.4.6.1 OvGUMEMoRIAL

OvGUMEMoRIAL team participated in all tasks in the challenge. The DM that

OvGUMEMoRIAL designed is based on U-Net architecture (Ronneberger et al.,

2015). However, they modified it with an adaptation of attention U-Net (Abraham &

Khan, 2019). Here they preferred soft attention gates from the reference design. Input

images are the multi-scaled matrix for more accurate feature extraction. At each scale

level, they used Tversky loss as a loss function. The most significant alteration in the

DM is Parametric ReLU. Parametric ReLU has more parameters than the typical

ReLU function. The additional parameter is called “coefficient of leakage” which is

also trained with CNN. They used Adam optimizer in the training sessions. 120

epochs with 256 batch sizes are used for the training of the DM.

3.4.6.2 ISDUE

Team ISDUE participated in all tasks in the challenge. The design has three main

blocks.

1. Prior encoder( fencp) and prior decoder(gdec) in a convolutional auto encoder

network.

2. Imitating encoder( fenci) and imitating decoder(gdec) in a segmentation hourglass

network.
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3. In order to enhance gdec a U-Net module was added to the system. The

enhancement is handled by ordering decoding stage for accurate localization.

The autoencoder (1) is tuned by the DICE loss function. Optimization is handled

by Adam optimizer with a learning rate of 0.001. Blocks (2) and (3) are optimized

individually. The loss function is regularized DICE los. To train each model, 2400

iterations are performed in a single batch. Also, random translation and rotation

operations while training is used for data augmentation.

3.4.6.3 Lachinov

Team Lachinov focused on the Tasks that have a single organ (tasks 1,2,3). The

design of the DM is based on 3D U-Net (Ronneberger et al., 2015). There are also skip

connections between encoder and decoder blocks. A residual network is preferred in

the encoder block to improve the training process. Unlike many DMs that use batch

normalization (Ioffe & Szegedy, 2015), the proposed DM uses group normalization

(Wu & He, 2018). Random mirroring, 90 degrees rotation in random directions, and

intensity shift are used for data augmentation.

3.4.6.4 IITKGP-KLIV

IITKGP-KLIV made submissions for all tasks. In other words, they need to carry

out multi-modality segmentation using a single system. Therefore, they adapted the

multi-task adversarial learning strategy to SUMNet (Nandamuri et al., 2019) that used

a base network model. There are two complementary segmenters (C1 and C2) to

handle adversarial learning. Also, there is a single discriminator (D) network in the

model.

C1 is trained by feedback from the SUMNet encoder that offers modality-specific

functionality. The C2 classifier is responsible for determining the class labels of the

chosen segmentation maps. Cross entropy loss is used during training of C2 and
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segmentation network. C1 and D are trained by the cross-entropy loss function. In the

optimization stage, Adam optimizer is preferred. The developed model is capable of

processing all modalities (CT, MRI T1-DUAL In Phase, MRI T1-DUAL Oppose

Phase, and MRI T2-SPIR) in the challenge.

3.4.6.5 METU_MMLAB

METU_MMLAB participated in MRI related tasks: 1,3,5. U-Net is used as the

base framework as other methods in the challenge. Besides, they integrated a

Conditional Adversarial Network (CAN) in the model. Before each convolution,

batch normalization is done in order to keep vanishing gradients and improve

selectivity. In addition, instead of typical ReLU, parametric ReLU with a trainable

leakage parameter is used to retain the negative values using.

The benefit of adding CAN to the model is to enhance accuracy around sharp edges

around the organs. This brings a new loss function. The loss function is used for the

regularization of parameters for spinous edges. After the segmentation is finished, 3D

connected component analysis is used to eliminate small artifacts in the results.

3.4.6.6 PKDIA

PKDIA made submissions to all tasks in the challenge. The proposed model uses

conditional generative adversarial networks (GAN) approach. Here the encoder is

made of cascade-connected pre-trained encoder-decoder networks in the standard

U-Net (Ronneberger et al., 2015) model. The encoder part of U-Net is replaced by

VGG-19, a bigger network. To sum up, the difference between the proposed model

and standard U-Net are: 1) 64 channels are produced by the first convolutional layer

instead of 32 channels in U-Net. 2)The number of channels amplified until 512 after

max-pooling steps (it is 256 in U-Net). 3) 4 cascade convolutional layers used after

the second max-pooling step (2 in U-Net). 4) Adam optimizer is used during training.

The loss function is determined as Fuzzy DICE score.
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3.4.6.7 MedianCHAOS

MedianCHAOS focused on only Task 2. Their approach is using the ensemble of

multiple networks. For this purpose, the final segmentation is calculated by the mean of

five individual CNNs. These five different models are 1) DualTail-Net, 2) TernausNet

(U-Net with VGG11 architecture (Iglovikov & Shvets, 2018)), 3) LinkNet34 (Shvets

et al., 2018), 4) ResNet-50, 5) SE-Resnet50.

DualTail-Net consists of a single encoder, 2 connected parts in the decoder, and a

central block between them. Downsampling is handled by the max-pooling operation

as usual. However, the max-pooling indexes are stored for each feature map to be

reused while the upsampling step. The first part in the encoder has four blocks which

are the central block of the U-Net model. The second part has three blocks. The

two parts in decoder worked simultaneously. The feature maps are concatenated after

upsampling steps. The final layers have 1× 1 convolution and the sigmoid activation

function to create a segmentation map.

TernausNet, LinkNet34, ResNet-50, and SE-Resnet50 are widely used models that

are explained clearly in their references. All models use the same Adam optimizer

during the training stage. The loss functions of DualTail-Net and LinkNet34 networks

are DICE loss while the others are average of DICE loss and binary cross-entropy.

There is no pre- or post-processing in the system.

3.4.6.8 Mountain

Team Mountain participated in Tasks 3 and 5. They used a 3D model that uses

U-Net in Han et al. (2019) as base architecture. This U-Net model has a different

encoder part than the original U-Net in Ronneberger et al. (2015). The difference is

that there is a residual block at each scale level in the encoder part. The other difference

is the instance normalization (Ulyanov et al., 2017) instead of batch normalization.

The reason for this choice is the robustness of instance normalization to changes of

intensity in the image.
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The summation of all levels in the decoder generates the output. Here, two

networks (NET1 and NET2) following the model referred to above with separate

channels and rates are used. NET1 is responsible for determining the organ roughly.

It creates a mask of the region of interest where the organ and neighbor structures are

located. Thus the spatial size can be decreased to improve performance and reduce

computational cost/time. The output of NET1 is the input of NET2 which makes final

segmentation. In both networks, Adam optimizer and DICE loss are preferred. For

augmentation of data; rotation, deformation, and scaling are used.

3.4.6.9 CIR_MPerkonigg

CIR_MPerkonigg team targetted Task 3 in the challenge. Since there are multiple

MRI sequences, the IVD-Net from Dolz et al. (2018) is adapted. IVD-Net has dense

connections in the encoder part. However, these connections are not used because they

do not bring any improvements according to trials. Also, residual convolutional blocks

(He et al., 2016) are included.

The optimization method is selected as Adam optimizer. For regularization, the

Modality Dropout (Li et al., 2016) method is adapted. Here modalities are omitted

with a certain probability. That is how overfitting on specific modalities are prevented.

Data augmentation is preferred to increase the number of images during training. The

methods are elastic transformations, histogram shifting, affine transformations, and

adding Gaussian noise.

3.4.6.10 nnU-Net

nnU-Net The nnU-Net team participated in Tasks 3 and 5 in the challenge. The

developed model (Isensee et al., 2019) has been used in many challenges before and

has been the first place in Medical Segmentation Decathlon (MSD) in 2018,(Simpson

et al., 2019) as well as CHAOS Tasks 3 and 5.
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Briefly, nnU-Net uses the ensemble of multiple networks. These networks are

slightly modified variants of U-Net models with different parameters. First, all five

networks are trained. Then the system selects three of them by using cross-validation

on the training cases. In other words, the final results are an average of three 3D

U-Nets (“3d_fullres” configuration of nnU-Net).

Table 3.11 Pre-processing, post-processing operations, and participated tasks in the CHAOS challenge

Team Pre-process Post-process Tasks

OvGUMEMoRIAL Training with resized images

(128×128). Inference:

full-sized.

Threshold by 0.5 1,2,3,4,5

ISDUE Training with resized images

(96,128,128)

Threshold by 0.5. Bicubic

interpolation for refinement.

1,2,3,4,5

Lachinov Resampling 1.4×1.4×2

z-score normalization

Threshold by 0.5 1,2,3

IITKGP-KLIV Training with resized images

(256×256), whitening.

Additional class for body.

Threshold by 0.5 1,2,3,4,5

METUMMLAB Min-max normalization for CT Threshold by 0.5. Connected

component analysis.

1,3,5

PKDIA Training with resized

images: 256×256

MR, 512×512 CT.

Threshold by 0.5. Connected

component analysis.

1,2,3,4,5

MedianCHAOS LUT [-240,160] HU range,

normalization.

Threshold by 0.5. 2

Mountain Resampling 1.2×1.2×4.8,

zero padding. Training with

resized images: 384×384×64.

Rigid register MR.

Threshold by 0.5. Connected

component analysis for

selecting/eliminating some of

the model outputs.

3,5

CIRMPerkonigg Normalization to zero mean

unit variance.

Threshold by 0.5. 3

nnU-Net Normalization to zero mean

unit variance, Resampling

1.6×1.6×5.5

Threshold by 0.5. 3, 5
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Table 3.12 Brief comparison of participating methods in the CHAOS challenge

Team Details of the method Training strategy

OvGUMEMoRIAL

(P. Ernst,

S. Chatterjee,

O. Speck,

A. Nürnberger)

•Modified Attention U-Net,

employing soft attention gates and

multiscaled input image pyramid for

better feature representation is used

(Abraham & Khan, 2019).

• Parametric ReLU activation is used

instead of ReLU, where an extra

parameter, i.e. coefficient of leakage,

is learned during training.

• Tversky loss is computed for the

four different scaled levels.

• Adam optimizer is used, training

is accomplished by 120 epochs with

a batch size of 256.

ISDUE

(D. D. Pham,

G. Dovletov,

J. Pauli)

• The proposed architecture consists of

three main modules:

i. Autoencoder net composed of a

prior encoder fencp , and decoder gdec;

ii. Hourglass net composed of an

imitating encoder fenci , and decoder

gdec;

iii. U-Net module, i.e. hunet, which is

used to enhance the decoder gdec by

guiding the decoding process for better

localization capabilities.

• The segmentation networks are

optimized separately using the

DICE-loss and regularized by

Lsc with weight of λ = 0.001.

• The autoencoder is optimized

separately using DICE loss. •

Adam optimizer with an initial

learning rate of 0.001, and 2400

iterations are performed to train

each model.

Lachinov

(D. Lachinov)

• 3D U-Net, with skip connections

between contracting/expanding paths

and an exponentially growing number

of channels across consecutive

resolution levels (Lachinov, 2019).

• The encoding path is constructed by

a residual network for efficient

training.

• Group normalization (Wu & He,

2018) is adopted instead of batch (Ioffe

& Szegedy, 2015) (# of groups = 4).

• Pixel shuffle is used as an

upsampling operator

• The network was trained with

ADAM optimizer with learning rate

0.001 and decaying with a rate of

0.1 at 7th and 9th epoch.

• The network is trained with batch

size 6 for 10 epochs. Each epoch

has 3200 iterations in it.

• The loss function employed is

DICE loss.
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Table 3.12 continues

Team Details of the method Training strategy

IITKGP-KLIV

(R. Sathish,

R. Rajan,

D. Sheet)

• To achieve multi-modality

segmentation using a single framework,

a multi-task adversarial learning strategy

is employed to train a base segmentation

network SUMNet (Nandamuri et al.,

2019) with batch normalization.

• Adversarial learning is performed by

two auxiliary classifiers, namely C1 and

C2, and a discriminator network D.

• The segmentation network and

C2 are trained using cross-entropy

loss while the discriminator D and

auxiliary classifier C1 are trained by

binary cross-entropy loss.

• Adam optimizer. Input is the

combination of all four modalities,

i.e. CT, MRI T1 DUAL In and

Oppose Phases, MRI T2 SPIR.

METU_MMLAB

(S. Özkan,

B. Baydar,

G. B. Akar)

• A U-Net variation and a Conditional

Adversarial Network (CAN) is

introduced. • Batch Normalization is

performed before convolution to prevent

vanishing gradients and increase

selectivity. • Parametric ReLU to

preserve negative values using a

trainable leakage parameter.

• To improve the performance

around the edges, a CAN is

employed during training (not as

a post-process operation). • This

introduces a new loss function

to the system which regularizes

the parameters for sharper edge

responses.

PKDIA

(P.-H. Conze)

• An approach based on Conditional

Generative Adversarial Networks

(cGANs) is proposed: the generator is

built by cascaded pre-trained

encoder-decoder (ED) networks

extending the standard U-Net

(Ronneberger et al., 2015) (VGG19,

following (Conze et al., 2019)), with 64

channels generated by first convolutional

layer.

• After each max-pooling, channel

number doubles until 512. The

auto-context paradigm is adopted by

cascading two EDs (Yan et al., 2019):

the output of the first is used as features

for the second.

• Adam optimizer with a learning

rate of 10−5 is used.

• Fuzzy DICE score is employed as

a loss function.

• Batch size was set to 3 for CT and

5 for MR scans.
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Table 3.12 continues

Team Details of the method Training strategy

MedianCHAOS

(V. Groza)

• Averaged ensemble of five different

networks is used. The first one is

DualTail-Net that is composed of an

encoder, central block and 2 dependent

decoders.

• Other four networks are U-Net variants,

i.e. TernausNet (U-Net with VGG11

backbone (Iglovikov & Shvets, 2018)),

LinkNet34 (Shvets et al., 2018), and two

with ResNet-50 and SE-Resnet50.

• The training for each network was

performed with Adam.

• DualTail-Net and LinkNet34

were trained with soft DICE loss

and the other three networks were

trained with the combined loss:

0.5*soft DICE + 0.5*BCE (binary

cross-entropy).

Mountain

(Shuo Han)

• 3D network adopting U-Net variant in

(Han et al., 2019) is used. Two nets, i.e.

NET1 and NET2, adopting (Han et al.,

2019) with different channels and levels.

NET1 locates organ and outputs a mask

for NET2 performing finer segmentation.

• Adam optimizer is used with the

initial learning rate = 1× 10−3, β1 =

0.9, β2 = 0.999, and ε = 1×10−8.

• DICE coefficient was used as the

loss function. Batch size was set to

1.

CIRMPerkonigg

(M. Perkonigg)

• For joint training with all modalities,

the IVD-Net (Dolz et al., 2018) (which is

an extension of U-Net (Ronneberger

et al., 2015)) is used with a number of

modifications: (i) dense connections

between encoder path of IVD-Net are not

used since no improvement is achieved.

(ii) training images are split.

•Moreover, residual convolutional

blocks (He et al., 2016) are used.

• Modality Dropout (Li et al.,

2016) is used as the regularization

technique when the training is

performed using multiple modalities

which help to decrease over-fitting

on certain modalities.

• Training is done by using Adam

optimizer with a learning rate of

0.001 for 75 epochs.

nnU-Net

(F. Isensee,

K. H. Maier-Hein)

• An internal variant of nnU-Net (Isensee

et al., 2019), which is the winner of

Medical Segmentation Decathlon (MSD)

in 2018 (Simpson et al., 2019), is used.

• Ensemble of five 3D U-Nets

(“3d_fullres” configuration), which

originate from cross-validation on the

training cases. Ensemble of T1 in and

oppose phases was used.

• T1 in and out are treated as

separate training examples, resulting

in a total of 60 training examples for

the tasks.

• Task 3 is a subset of Task 5,

so training was done only once

and the predictions for Task 3 were

generated by isolating the liver.
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3.4.7 Results

The CHAOS challenge has started as a part of the IEEE International Symposium

on Biomedical Imaging (ISBI) on April 11, 2019, Venice, Italy. The training dataset

was shared globally three months prior to ISBI 2019. The test dataset was provided

24 hours prior to the challenge. At the end of the session, the submitted results were

analyzed and the winners were declared. After the on-site event, both training and test

datasets were uploaded on zenodo.org website (Kavur et al., 2019). Then, the online

submission system was opened on the challenge website.

The total submission numbers are presented in Table 3.13. According to the table,

the tasks with more typical aims are more popular as predicted. In the following

sections, the top results in the tasks are reviewed according to their popularity. Thus,

the scores achieved for more conventional approaches (Tasks 2, 3, and 5), guided the

discussions of multi-modality/organ concepts (Tasks 1 and 4).

Table 3.13 CHAOS challenge submission statistics for on-site and online sessions

Task 1 Task 2 Task 3 Task 4 Task 5 Total

On-site (ISBI 2019) 5 14 7 4 5 35

Online 27 312 91 22 120 572

On the challenge website, there are two individual scoreboards, one for the on-site

and one for online submissions. We prepared detailed analyses on these results. The

majority of the results in this section are coming from all on-site results among with

some remarkable results from online submissions. The reason for this choice is that

we would like to guarantee the fairness of the results here. In other words, there was

no ‘peeking’ attempt on these results. Therefore, it is possible to use them to guide

researches in the medical imaging field. In the following tables and figures, each team

has a unique color code to make following their results easy while reading.

All case results of submission are used to generate box plots of them in Figure 3.14

while individual scores of cases in the tasks are presented in Figure 3.15. Also all
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metric results and scores are presented in Table 3.14. These tables and plots give us

the opportunity of analyzing the distribution, mean, and median of the submissions

which is not possible with using just average task scores.

Figure 3.14 Box plot of results for each task. White diamonds represent the mean values of the scores.

Solid vertical lines inside of the boxes represent medians. Separate dots show scores of each individual

case (Kavur et al., 2020a)
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(a) (b) (c)

(d) (e) (f )

(g)

Figure 3.15 Distribution of the methods’ scores over the cases in test data (Kavur et al., 2020a)
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3.4.7.1 CT Liver Segmentation (Task 2)

This task contains one of the most researched segmentation methods for the liver.

Hence, it offers a proper chance to assess the effectiveness of the methods with the

previous strategies. The contrast agent in the portal veins may create difficulty for

segmenters. However, Table 3.14 and Figure 3.14b shows that the models reached the

highest scores as expected in this task.

In this task, two submissions have outstanding segmentation accuracy. Team

MedianCHAOS was the winner of the challenge with its 6th submission

(MedianCHAOS6). Their score is 80.45 ± 8.61. Method of MedianCHAOS uses the

ensemble strategy of multiple sub-networks whose performance is illustrated in

Figure 3.15c. Following this, PKDIA placed first in the online session with

82.46±8.47 points. When we examine the metrics in more detail, DICE scores of both

submission is very high (PKDIA:97.79 ± 0.43, MedianCHAOS:97.55 ± 0.42). ASSD

scores show similar performance with 0.89 ± 0.36mm for PKDIA and 0.90 ± 0.24mm

for MedianCHAOS. However, the results of RAVD and MSSD metrics have poor

values than the other two metrics. On the other hand, this situation can be considered

the same for all submissions.

If we compare results of this task with outcomes from our previous challenge

(Kavur et al., 2020b), again DMs have outperformed semi-automatic approaches such

as active contours, robust static segmenter, and watershed. Thus, the results of

CHAOS Task 2 approve our findings in our first challenge. The performance of the

top methods reached inter-expert level in terms of DICE and ASSD metrics. On the

other hand, there is still a need for improvements for RAVD and MSSD which are

related to maximum error margins. Despite huge developments, DMs may have still

local problems such as near inferior vena cava shown in Figure 3.16.
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Lachinov
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MedianCHAOS4

MedianCHAOS1

Figure 3.16 Top left: Example image from CHAOS CT set, case 35, slice 95. Top right: borders of

segmentation results on ground truth mask. Bottom: zoomed onto inferior vena cava (IVC) region

(marked with dashed lines on the top right image) respectively. Since the contrast between liver tissue

and IVC is relatively lower due to timing error during the CT scan, algorithms mostly mistakes here.

On the other hand, many of them are quite successful at the other regions of the liver

3.4.7.2 MRI Liver Segmentation (Task 3)

Despite the dominance of CT scans in abdominal imaging, the drawbacks of MRI

are being eliminated day-by-day. Still, segmentation from MRI scans is a relatively

harder problem than Task 2. Not having standardized values for tissues compared to

CT (pre-defined Hounsfield units) makes segmentation from MRI scans more difficult.

Another disadvantage of MRI against CT is the lower resolution with higher slice
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thickness. Because of these problems, the scores in Task 3 are lower than Task 2

even though they both target the same organ: liver. Details of the scores are shown in

Figures 3.14c and 3.15d.

Team PKDIA was the winner of the task with a 70.71 ± 6.40 score. In addition,

this score has the least standard deviation over all individual case scores. Therefore, it

is possible to say that, the method of PKDIA has precise outputs over different cases.

In other words, this method can be considered as ‘robust’ for this task. For example,

team CIR_MPerkonigg has higher scores than PKDIA in particular cases, but overall

its performance is less successful.

Model based on nnU-Net is the winner of the online session of the challenge with

75.10 ± 7.61 score. If we compare two winners against all metrics, DICE

(PKDIA:0.94 ± 0.01 and nnU-Net:0.95 ± 0.01) and ASSD (PKDIA:1.56 ± 0.68mm

and nnU-Net:1.32 ± 0.83mm) scores are remarkable. On the other hand, there is a

similar situation for RAVD and MSSD as expected. In addition to the toughness of

these metrics, low resolution and higher spacing of the MR data cause higher spatial

errors.

The results revealed that the gap between interactive models and DMs is getting

closer to segmentation from MRI scans. It can be said that there is a significant

potential for DMs in this type of task. Further developments on DL studies as well as

MRI technology will make reaching accurate segmentation results possible in the

future.

3.4.7.3 CT-MR Liver Segmentation (Task 1)

This task combines all difficulties in Tasks 2 and 3 with its cross-modality data. A

single solution must handle all problems in various modalities to obtain useful

segmentations. Figure 3.14a presents mean score distributions of the task. Also,

scores for CT and MRI can be analyzed from Figure 3.15a-b separately. The first

inference from the figures is that DMs trained on single modalities achieve
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significantly better performance than DMs trained on cross-modality data. Given the

difficulties of the task, these results are not surprising.

The on-site session of this task was won by team OvGUMEMoRIAL with

55.78±19.20 score. In contrast with their promising DICE score (0.88 ± 0.15), the

other metrics have relatively fair performance. Since OvGUMEMoRIAL participated

in all tasks in the challenge, we can compare their results in single modality tasks

(Tasks 2 and 3) with Task 1. The interesting fact is that their score (55.78 ± 19.20) in

this task higher than their MRI segmentation score in Task 3 (41.15 ± 21.61). This

disproves that cross-modality studies always perform poorly than single modality

studies. A further important deduction comes from team PKDIA. Despite their

remarkable results in Task 1 and Task 2, their performance dropped critically. This

fact shows that additional solutions are needed to develop in cross-modality problems

even if successful performances on individual modalities.

Even though the ranking of the challenge is handled via mean case scores, it is

important to analyze the distribution of the individual case scores. In this way, we can

focus on generalization capabilities and using them in real-life applications. For

instance, there is an noticeable case in Figure 3.14a. The winner submission of

OvGUMEMoRIAL has fair performances than the second winner method, ISDUE if

we focus on the standard deviation of the case scores. Considering scattering of the

scores shown in Figures 3.15a and 3.15b, the results of ISDUE are more precise (but

less accurate) than results of OvGUMEMoRIAL especially on CT data. Another

ranking method based on the standard deviation of the cases can generate different

scoreboards in the task.

Since cross-modality segmentation is a newly developing area, it is not possible

to compare these findings with other studies yet. However, all analyses reveal that

DMs have significant performances to solve problems in this field despite having less

accurate results than single modality data. Additional studies in the feature may solve

these problems.
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3.4.7.4 Multi-Modal MR Abdominal Organ Segmentation (Task 5)

Task 5 is the extended version of Task 3 over four abdominal organs; liver,

kidneys, and spleen. Task 5 explores how DMs help on develop more comprehensive

anatomical models that lead to tasks involving multiple organs. DMs can accurately

reflect the complex and versatile abdominal anatomy by integrating inter-organ

relationships through the internal hierarchical method of extracting features. As

previously explained tasks, two successful teams share the first place on-site and

online sessions. The on-site winner was PKDIA with a score of 66.46 ± 0.81 and the

online winner was nnU-Net with a score of 72.44 ± 5.05. The DICE results seem to

be almost similar for nnU-Net and PKDIA if the ratings of individual metrics are

compared to Task 3. It is an important finding since instead of only one, all four

organs are segmented in this task. Another model, Mountain, has almost exactly the

same average score in Task 3 and Task 5 that is worthy of mention as well.

With respect to RAVD, the drop in performance is evidently higher than DICE. The

decreased performance of DICE and RAVD is partially offset by better MSSD and

ASSD performance. It should be remembered that the liver in Task 3 and the other

organs in Task 5 can usually be considered to be comparatively simpler to examine

than other abdominal structures. However, the important finding here is that single and

multiple organ segmentation does not significantly change the performance of DMs.

Even the current versions of DMs have a promising performance for the problem of

segmentation of multiple structures. General comparison of all DMs in this task are

presented in Figure 3.17.

3.4.7.5 CT-MR Abdominal Organ Segmentation (Task 4)

This task was designed to push DMs to their boundaries to analyze the last

sophisticated developments in the Deep Learning field. Since it combines all

difficulties of multiple organ segmentation and cross-modality learning, this is the

most difficult task in the CHAOS challenge. Hence, it is no surprise that the scores are
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Figure 3.17 Illustration of ground truth and all results in the task 5. (The image was taken from CHAOS

MR set, case 40, slice 15. White lines on the results represent borders of ground truths)

the lowest (Figure 3.15e-f). On the other hand, any high score is also worthwhile

considering the toughness of the task.

The task was won by team ISDUE with 58.69 ± 18.65 score at the on-site session.

The findings indicate that the performance of their model was spreaded CT and MR

data consistently. Two convolutionary encoders in their model can be thought to boost

performance on cross-modality data. These encoders can compress anatomical details.

The second most successful submission came from team PKDIA with a score of 49.63

± 23.25. The performance on CT data can be considered unsatisfactory with respect

to the success of MRI sets in conjunction with the situation on Task 1. This shows
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that the training procedure of their CNN might not be effective. Transfer learning and

a pre-trained weights approach are perhaps not successful in a variety of ways in the

encoder part of the system. With the average ranking, OvGUMEMoRIAL has reached

the third place and has balanced score distributions between CT and MR data. In terms

of generalization, their approach can be considered as efficient because of not having

outlier results.

In combination with the results of Tasks 1 and 5, CNNs are shown better

segmentation efficiency on single-modality tasks by their current strategies and

architectures. This could be regarded as a normal outcome, as the effectiveness of

CNNs depends heavily on the coherence and homogeneity of the data. The use of

multiple modalities produces a significant variation in the results. On the other hand,

the findings also show that, if suitable models are developed, CNNs have great

potential for cross-modality studies.

To sum up, the results of the CHAOS challenge are presented with important

analyses and reviews. The unregistered multi-modality (CT-MR), multi-sequence

(T1-DUAL in / oppose, and T2-SPIR), public, and novel data set were created for five

challenging tasks. A substantial range of well known and state-of-the-art

segmentation methods was evaluated.

Except for one, the alteration of the U-Net as a primary or supportive system has

been employed by all teams. Nevertheless, while there is the same basic CNN

structure, the high variance between the scores also relies on several parameters in

DMs. While many common algorithmic characteristics can be extracted from

well-performed models, it is not easy to interpret and/or explain why a specific model

works better or not. As stated before, these analyzes are practically beyond the

bounds of possibility on a heterogeneous number of models produced by various

participants. In addition, choices in the ranking method may have significant

consequences for the reporting results (Maier-Hein et al., 2018).

In conclusion, the major findings display some significant results:
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1. DMs have surpassed definitely semi-automatic techniques for the segmentation

of liver from CT scans. Inter-expert alternation in DICE and volumetry has been

achieved, but more improvements in distance metrics are still required which are

vital in evaluating surgical error allowances.

2. Task 2 (liver segmentation from CT scans), has received more than 300

submissions since the beginning of the challenge. Quantitative and qualitative

analyzes indicate that CNNs have almost accomplished clinically acceptable

results. Given the excellent outcomes for single modality segmentation studies,

it can be inferred that some minimal optimizations, particularly in the

post-processing stage, can create clinically acceptable segmentation.

Therefore, it can be considered that Task 2 solutions have become saturated. It

may not be beneficial for the effort to establish minor improvements. We

recommend that researchers should concentrate more on applying their models

for real-world applications rather than trying to achieve minimum score

improvements. Reducing computational costs, improving generalization, and

creating easy to implement solutions are remaining problems of DMs for

real-world utilization.

3. Taking into account the segmentation of the liver from MRI, the participating

DMs were closely good for DICE but lacked efficiency for distance-based metrics

such as ASSD, MSSD.

4. The performance of DMs is increased compared with liver segmentation if we

consider all four abdominal organs. Nevertheless, it is difficult to know if this

change can be applied to the segmentation of multi structures because the liver

can be considered the most complex one to segment.

5. Segmentations from cross-modality is yet a difficult task for DMs. Further studies

are necessary to implement them in clinical usage.

6. The most challenging problem remains the segmentation of multiple structures

from cross-modality. Including the spatial and/or topological features or adding

shape models in the loss functions can be used in DM designs.
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7. Despite using the same base DM (U-Net), the decisions on design stages can

tremendously change the segmentation accuracy. Therefore it is not still possible

to suggest a single DM solution for all problems. One exception can be

considered as using ensembles of multiple models. 3 of 5 tasks winner methods

used an ensemble of multi DMs. Therefore, ensembles can be regarded as a

solution for the drawbacks of segmentation problem.
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CHAPTER FOUR

FUSION OF DIFFERENT METHODS FOR SEGMENTATION OF THE

LIVER

4.1 Introduction

Outcomes of CHAOS showed one more time the weakness of the DMs for creating

reproducible and general solutions. Even using the same base model in the design

stage, the segmentation performances are distributed widely. Even the methods

regarded as state-of-the-art, are actually prepared for specific data with performing

many iterative training sessions. DMs need to be carefully designed, tuned, and

trained with consuming extensive time. That is why there are many proposed DM

based solutions in the literature but very few of them have real-life implementations.

In other words, unfortunately, the success of theoretically the best DMs over limited

data may not mean any sense for solving real-world problems in the medical image

processing field.

An example of the generalization problem in DMs can be considered the design of

a race car that can reach very high speeds only on specific tracks. However, such a car

is not suitable for general use. On the other hand, a car that cannot reach such high

speeds but can operate in all conditions is a more valuable vehicle for the general

human population. The main goal of this thesis is the same as this example: Creating

a reachable and generalized solution with a reasonable sacrifice of performance.

Therefore, we created a model to use the potential of DMs without making huge

design efforts. We decided to include four well-studied DMs for medical image

segmentation with their default (vanilla-style) designs and parameters. In other

words, multiple DMs were collected from their source and they were not modified.

Thus, the need for high expertise on DL is not required. It eliminates any parameters

from being modified, the structure changed or a new training strategy planned. We

tried previously proposed ensemble methods in the literature (Kuncheva, 2014). After

that, we developed a unique ensemble strategy for this problem to reach more
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accurate segmentation results.

This section is structured as follows: the first two datasets that were used for design

and testing are presented. Then the previous ensemble methods in the literature, as well

as our solution, are explained. Finally, the results of our proposed ensemble strategies

are discussed in Section 4.6 in the last chapter of the thesis.

4.2 Datasets

The target of the study is selected as segmentation of the liver from CT scans. This

is the same target as Task 2 in the CHAOS challenge. The reason for this choice is that

the studies in this area are the most popular ones. Therefore, it will be possible to make

further analyses and comparisons with other methods due to the high competition in

this field.

We carried out the study on two publicly accessible datasets that were released at

different times. They have specific properties that are used to show the accuracy of

the proposed algorithms. The first set is the CT part of the CHAOS data. Since the

details are explained in Section 3.4.2, there is no additional description for this dataset

in this section. The second dataset is called 3DIRCADB1. The details of this data

are explained in the following section. Comparison of both sets are summarized in

Table 4.1.

4.2.1 3DIRCADB1 Data

3DIRCADB1 (3D Image Reconstruction for Comparison of Algorithm Database)

(IRCAD, 2009) contains CT abdominal scans of 20 patients. In comparison to CHAOS

CT data, in 75% of cases, hepatic cancers are found in the liver. Clinical professionals

annotated the data for reference segmentations. All structures included in the liver were

used as a segmentation target, except for tumors. 3DIRCADB1 was split 50%-50% for

training and testing.
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Table 4.1 Specifications of CHAOS CT and 3DIRCADB1 datasets

3DIRCAD CHAOS

Number of 3D image sets (train and test) 20 (10 + 10) 40 (20 + 20)

Spatial resolution of files 512 x 512 512 x 512

Number of files (slices) in all cases

[min–max]
[74 – 260] [78 – 294]

Average number of files in the cases 141 160

Total number of files in the dataset 2823 6407

X space (mm) [min–max] [0.56 – 0.87] [0.54 – 0.79]

Y space (mm) [min–max] [0.56 – 0.87] [0.54 – 0.79]

Slice thickness (mm) [min–max] [1.60 – 4.00] [2.00 – 3.20]

4.3 Ensemble Members

It is possible to use any segmentation method in the community process. For

example, the usage of fully automatic and semi-automatic approaches is possible.

Besides, combining both semi-automatic and full automatic methods would reach the

highest success because the ensemble of them will tolerate errors of other methods.

However, we did not choose to use semi-automatic approaches. The reasons for these

decisions are 1) after the tremendous developments in the Deep Learning field, Deep

Learning-based segmenters clearly outperformed interactive segmentation methods,

2) using semi-automatic methods will significantly reduce reproducibility and

generalizability of the proposed method. However, our target is to improve these

features. Hence, only fully automatic methods, specifically DMs, were used as

ensemble members.

Even though using more diverse ensemble members can improve the accuracy, there

are not so many possible DMs for medical image segmentation in the literature. The
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base segmentation frameworks were selected from the most popular and well-studied

DMs: U-Net, DeepMedic, V-Net, Dense V-Networks. The details of these models

were explained in Section 2.5.2. All of these DMs were directly downloaded from

their original source. They were used with their default parameters (vanilla style) on

both datasets. Then, the inference stage was handled by individual DMs on test data.

Each of them generated probability maps with the same size as the input image. These

probability maps have distribution in the range of [0,1] that indicates the location of

the target structure(liver). The values closer to 1, show that the probability of finding

a voxel belongs to the liver is higher than finding a voxel from background class. An

example set of probability maps coming from four models in this thesis is presented in

Figure 4.1. Also the ensemble strategy is illustrated in Figure 4.2.

4.4 Ensemble Methods

There are various ensemble strategies for various data and tasks (Rokach, 2010;

Kuncheva, 2014). The main factor for selecting an ensemble method is the size and

diversity of data as well as the segmentation target of interest. Some of the ensemble

methods require training for defined parameters while some of them do not need

training. There are also more complex ensemble methods like AdaBoost that progress

the fusion method while training of various independent segmenters.

The biggest drawback of developing an ensemble method is small data size. Where

big data is available, it is possible to train and test non-intersecting subsets that ensure

fine-tuning and avoid overfitting. However, this kind of approach is very hard to

implement on small data. Despite many contributions for open datasets in the medical

imaging field, the size of available datasets is very small with respect to other fields

such as pattern recognition. Therefore, it is very challenging to develop an advanced

and generalizable ensemble method in medical image segmentation studies. If the

training is necessary for the method, the number of parameters should be limited. Due

to the relative scarcity of data sets containing medical images, attention was paid to

choosing the ensemble methods to be used in this study from methods that can work
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(a)

(c) (d)

(b)

Figure 4.1 Probability maps for an example segmentation coming from (a) U-Net, (b) DeepMedic, (c)

V-Net, and (d) Dense V-Networks

simpler but effectively.

In addition to the limitations on the data size, there are other reasons for keeping

ensemble methods as simple as possible. First, heavily tuned advanced ensembles

come with overfitting problems. In other words, the proposed method would fit the

specific data. Overfitting problems would significantly reduce the reproducibility of

the results. Secondly, implementations of simple methods are straightforward and do

not need advanced expertise. Again, this fact will improve the reproducibility of the

ensemble strategies by different scientists.
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Figure 4.2 The proposed ensemble strategy for segmentation of whole liver

The formula of simple ensembles is defined as:

µliver(x) = F(p1(x), ...pL(x)) (4.1)

where µliver(x) is the support for the hypothesis that a given voxel x belongs to class

liver, p1, . . . , pL indicate probability maps created by the various segmenters for every

voxel in the data. Such values determine how likely the voxel is from the class (here

background and liver). L is the number of individual classifiers, and F is the

combination function.

Five ensemble strategies are used in this thesis:

1. Majority Voting

2. Average combiner

3. Product combiner

4. Min/Max combiner

5. Logit Combiner

Methods 1-4 are the most popular ensemble approaches that have already been

studied in detail (Kuncheva, 2014). However, to the best of our knowledge, there is no
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such a study to examine them from different perspectives for problem of liver

segmentation. In this thesis, adaptation of ensemble methods in the medical image

segmentation domain is handled in comprehensive way. The last method, “Logit

Combiner”, was specifically developed for the medical image segmentation problem

in this thesis. The details of the ensemble methods are presented in the next section.

4.4.1 Majority Voting

Majority Voting is one of the most common strategy for classifier ensemble

(Grofman et al., 1983). A majority vote is getting more than half of the votes to make

a decision. Assume that, decisions are discrete values such that

µliver(x) = [d1(x), . . . ,dL(x)] ,di(x) ∈ {0,1}. Value di(x) = 0 indicates that segmenter i

labels voxel x as background, and di(x) = 1 indicates that segmenter i proposes a label

“liver” for this voxel. Then the majority vote combiner labels x as “liver” if:

L∑
i=1

di(x) ≥ 0.5L (4.2)

This is called ‘simple majority voting’ if number of class is 2. In this case, a decision

is determined by any vote of more than 50% support. On the other hand, steps of a

generalized majority vote for any number of class are summarized below:

1. Find class labels of each individual classifiers

2. Calculate number of votes for each class

3. Assign the labels according to votes for each class

4. Repeat 1-3 if there are more than single objects of interest (such as multiple organ

segmentation)

Despite the meaning of the majority is more than half, there are different majority

criteria that use the agreement of different portions such as 60%, 70%. A general

formula for any majority criteria is expressed below:
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wc1, i f

∑L
i=1 di,c ≥ α.L

wc2 otherwise
(4.3)

where the values of d sum up to 1 for each segmenter, wc1 is class, wc2 is another

class, L is number of ensemble members, and α is the threshold between 0 < α ≤ 1.

If α = 0.5 + ε, the formula becomes simple majority. If α = 1, the formula represents

unanimity voting. In other words, the decision is taken by agreement of all ensemble

members.

The accuracy of majority voting can be calculated by the probability of correct

decision. If the classifiers are independent, the probability of the method is:

Pma j =

L∑
m=bL/2c+1

(
L
m

)
pm(1− p)L−m (4.4)

Here, we assume that L is the number of ensemble members, p is the probability of

true labels coming from each ensemble member, m is the number of ensemble members

that make the correct decision. m must be greater at least half of the ensemble members

(bL/2c+ 1) in order to create a correct decision.

If we assume that the probability of correct decision coming from each classifier is

higher than 0.5 (p > 0.5), the Equation 4.4 shows that the accuracy of majority voting

is increased by number of independent results:

If L→∞, then Pma j→ 1 (4.5)

The equation above shows that the number of ensemble members has an important

impact on the decision of majority voting.

In the case of two segmentation classes (such as background and liver in this

thesis), the majority voting method uses binary masks as discrete input data.

Therefore majority voting can be implemented on probability maps of CNNs after

thresholding them. CNNs’ probability maps are thresholded by 0.5 (or defined
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criteria) to create segmentation masks. Then, the final decision of each voxel is

determined by the decision of multiple DMs.

4.4.2 Average combiner

Average combiner is produced from the generalized mean combiner (Eq.4.6)

which uses continuous data, specifically probability maps, for classifier ensemble.

That means, unlike majority voting, the probability maps of individual models are not

thresholded and original values of probability maps from CNNs ([p1, ...pL]) can be

used.

The generalized mean combiner is defined by (Dubois & Prade, 1985) as:

P j(α) =

1
L

L∑
i=1

(pi, j)α


1
α

(4.6)

where i is index of ensemble member, j is class number. If α = 1, the formula is

called simple average combiner. The probability map of average combiner (P_ave j) is

calculated by:

P_ave j =
1
L

L∑
i=1

pi, j (4.7)

The combined probability map is thresholded by 0.5. For each voxel, if P_ave j >

0.5 the class foreground (P f ) is assigned to that voxel. Otherwise, the voxel belongs

to the class background (Pb).

4.4.3 Product combiner

Product combiner also uses native probability maps of individual DMs. The formula

can be derived from Eq. 4.6 if α→ 0:
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lim
α→0

P j(α) = lim
α→0

1
L

L∑
i=1

(pi, j)α


1
α

ln
(
lim
α→0

P j(α)
)

= ln

 lim
α→0

1
L

L∑
i=1

(pi, j)α


1
α



lim
α→0

(
ln

(
P j(α)

))
= lim
α→0

ln 1
L

L∑
i=1

(pi, j)α


1
α

= lim
α→0


ln

(
L∑

i=1

1
L

(
pi, j

)α)
α



(4.8)

If we apply L’Hôpital’s rule to Equation 4.8, we obtain:

d
dα

ln L∑
i=1

1
L

pαi, j

 =

∑L
i=1

1
L pαi, j ln pa

i, j∑L
i=1

1
L pαi, j

lim
α→0

∑L
i=1

(
1
L pαi, j ln pi, j

)
∑L

i=1

(
1
L pαi, j

) =

∑L
i=1

(
1
L ln pi, j

)
L
L

=
1
L

L∑
i=1

(
ln pi, j

)

= ln

 L∏
i=1

pi, j


1
L

(4.9)

Applying exp function on both side of the Equation 4.9 gives the final formula of

product combiner shown in Equation 4.10.
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P j =

 L∏
i=1

(pi, j)


1
L

(4.10)

Instead of using product, the formula is converted to summation via logarithm to

reduce computer memory needs. Hence logarithm of the Equation 4.10 is used.

P j =
1
L

L∑
i=1

log(pi) (4.11)

Then, prior probability of class P j0 is subtracted to normalize process. This

probability can be calculated as the proportion of class voxels in all images. After

these calculations, support for class foreground (P f ) and background (Pb) are

calculated by:

P f = − log(p f 0) +

L∑
i=1

log(p f i) (4.12)

Pb = − log(1−Pb0) +

L∑
i=1

1− log(pbi) (4.13)

Finally, the classes are assigned by values. The voxel values of P f > Pb are decided

as foreground and the vise versa.

4.4.4 Minimum and Maximum combiners

Minimum and maximum combiners also use native probability maps of individual

DMs. The formulas of Pmax and Pmin can be derived from Eq. 4.6 if α→ +∞ and

α→−∞.

Suppose that pk, j is the biggest element in [p1, j, p2, j, ..., pL, j]. Then:
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lim
α→∞

(
ln

(
P j(α)

))
= lim
α→∞


ln

(
L∑

i=1

1
L

(
pi, j

)α)
α



= lim
α→∞

ln
(
pk, j

)
+

ln
(

L∑
i=1

1
L

(
pi, j
pk, j

)α)
α



= ln
(
pk, j

)
+ lim
α→∞


ln

(
L∑

i=1

1
L

(
pi, j
pk, j

)α)
α



(4.14)

If we apply exp on both side in Eq.4.14, we obtain:

lim
α→∞

(
ln

(
P j(α)

))
= ln

(
pk, j

)

lim
α→∞

(
P j(α)

)
= pk, j

Pmax = max{p1, j, p2, j, ...., pL, j}

(4.15)

Similarly if α→−∞, in Eq.4.14 and 4.15 then:

Pmin =
1

max{p1, j, p2, j, ..., pL, j}

Pmin = min{p1, j, p2, j, ...., pL, j}

(4.16)

In two-class segmentation applications (background and one foreground), the

minimum and the maximum combination rules are identical (Kuncheva, 2014).
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Figure 4.3 Logit function between [0,1]

Therefore one of them is used in this study. In this combiner, we calculate P f and Pb

by

P f = min{p1, j, p2, j, ...., pL, j} (4.17)

and

Pb = min{1− p1, j,1− p2, j, ....,1− pL, j} (4.18)

Again, the voxel values of P f > Pb are decided as foreground and the vise versa.

4.4.5 Logit Combiner

Unlike the other four combiners, logit combiner was created specifically

segmentation of liver problems during this thesis. In literature, several attempts have

been made to adapt linear regression methods to map the output between a target

range. Joseph Berkson used the logarithm of odds in 1944 and named this function

logit, the "logistic unit" abbreviation. The plot of the logit function is shown in Figure

4.3

104



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

=0.25
=0.50
=1.00
=1.50
=2.50

g(
p)

p
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One of the common usages of logit is in Deep Learning studies. The last layer

of CNNs, which are responsible for segmentation tasks, can base on logit function to

make predictions from (−∞,+∞) range to (0,1). The idea of this mapping was adapted

to our combiner approach as explained in Equation 4.19.

logit(p) = log(p)− log(1− p)

= log
(

p
1− p

) (4.19)

g(p) =

(
log

(
p

1− p

))α
(4.20)

if 0 < α < 1

g(p) =
pα

pα+ (1− p)α
(4.21)

The α parameter determines the transformation of the function. α slightly but

effectively changes the transformation of distributions as shown in Figure 4.4.
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As it was mentioned at the beginning of this chapter, it is not possible to make

tuning of multiple parameters in complex combiner designs due to the small size of

available data. Therefore, it was paid attention to the formula to be concise and to

contain only one trainable parameter: α.

α is used for fine-tuning during the ensemble in order to use the full potential of

probability maps coming from different DMs. The whole training sets are used for

validation of α values from [0,3] interval with 0.1 steps. In other words, 30 different α

values are tried and their final scores overall training cases are calculated. According

to the scores, the α = 0.5 is determined as the most effective value.

4.5 Evaluation

After the implementation of all ensemble methods, finally, the result of both

individual DMs and ensemble strategies are examined in detail. The analyzes do not

only contain metrics values but also statistical comparisons between individual DMs

and ensemble for each metrics in both databases.

The same evaluation strategy in the CHAOS challenge was used. Since it was

determined that these metrics performed effective and successful evaluation during

the challenge, the same ones were used:

• DICE coefficient (DICE)

• Relative absolute volume difference (RAVD)

• Average symmetric surface distance (ASSD)

• Maximum symmetric surface distance (MSSD)

For both the individual DMs and the ensembles methods, all metrics were

calculated. In addition, the statistical significance of the results was examined to test
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our hypothesis: ensembles are better than individual segmenters. The statistical

significance test protocol is explained below:

Suppose that we are looking for statistical significance of two methods, A and B. x

and y are the vectors that have elements from x ∈ A and y ∈ B. x and y are called paired

samples if they represent the same element. For example, x represents a metric score

of a method while y represents the same metric score from another method. If x and

y represent same metrics but for different groups of objects, they are called non-paired

samples.

The statistical significance is calculated for paired and non-paired samples by:

• Paired samples: Here we want to reveal that how x and y are significantly

different. First, the Lilliefors test is run in order to check the normality of the

difference of x− y. If it is normal, which means normality cannot be rejected at

the 0.05 level, the paired t-test is applied to correlate means. If it is not normal,

the Wilcoxon signed-rank test is applied.

• Non-paired samples: The normality of x and y is inspected first. If x and y are

both normal, the 2-sample t-test is applied. Otherwise, the Wilcoxon rank-sum

test (Mann–Whitney U test) is run.

The results of metrics and their significance against each other reveal the potential

of ensemble systems. These findings are presented in Section 4.6 with various tables

and illustrations.

4.6 Results

The ensemble members explained in Section 4.4, which are four different DMs,

were downloaded from their original source. After that, they were trained with native

parameters in source codes. Then, the generated probability maps by their outputs

were used for both further analyses and inputs for ensemble methods.
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After completing all experiments, the evaluation strategy mentioned in Section 4.5

was applied. According to these metrics, the performance of both individual DMs and

ensemble methods tested in two steps:

1. Testing methods on train data to investigate overfitting.

2. Testing methods on test data to investigate segmentation performances.

DMs and ensemble methods are trained and tuned on train data explained in Section

4.4. In the first evaluation step, these methods were inferred on the train data. It

is obvious that the results will be very high, but these can be used to examine the

overfitting problem of algorithms. The second evaluation stage is a typical way to

analyze the segmentation performance of methods. All individual DMs and ensemble

methods were performed on test data. Metrics of the results were calculated by the

same metrics with the CHAOS challenge. A full set of results is provided in Tables 4.2

– 4.5 showing the mean results for both CHAOS and 3DIRCADB1 datasets.

Table 4.2 Metric results of the individual segmenters and the ensemble methods on CHAOS train data

to examine overfitting. The circle marker indicates results where the overfitting (calculated by the

difference of training and testing performances) was not found to be significant

DICE RAVD ASSD MSSD

U-Net 0.935 ◦14.800 3.903 54.650

Deepmedic 0.984 1.115 1.709 67.078

V-Net 0.948 ◦3.824 1.656 42.972

Dense V-networks 0.932 3.039 2.289 ◦78.118

Majority Vote 0.976 2.401 0.746 11.043

Average 0.981 1.003 0.637 11.621

Product 0.975 ◦3.493 0.888 12.581

Min-Max 0.978 1.208 0.811 11.559

Logit 0.979 0.956 0.611 10.906
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Table 4.3 Metric results of the individual segmenters and the ensemble methods on CHAOS test data to

examine segmentation accuracy. The best value in each column is bold

DICE RAVD ASSD MSSD

U-Net 0.811 54.842 14.253 104.515

Deepmedic 0.951 3.058 7.174 141.473

V-Net 0.879 17.434 6.146 104.189

Dense V-networks 0.886 7.702 4.492 113.139

Majority Vote 0.952 4.235 1.719 28.517

Average 0.953 3.839 1.956 30.676

Product 0.946 6.867 2.121 32.696

Min-Max 0.937 6.094 2.311 35.052

Logit 0.962 4.215 1.701 27.499

Table 4.4 Metric results of the individual segmenters and the ensemble methods on 3DIRCADB1

training data to examine overfitting. The circle marker indicates results where the overfitting (calculated

by the difference of training and testing performances) was not found to be significant

DICE RAVD ASSD MSSD

U-Net 0.903 19.336 ◦7.414 ◦69.760

Deepmedic 0.987 0.265 0.440 83.998

V-Net 0.964 2.795 1.027 17.048

Dense V-networks 0.970 1.162 0.946 ◦53.298

Majority Vote 0.978 2.524 0.644 10.372

Average 0.982 1.491 0.568 17.951

Product 0.982 ◦1.589 0.616 19.238

Min-Max 0.980 1.139 0.625 18.236

Logit 0.983 1.375 0.509 11.056
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Table 4.5 Metric results of the individual segmenters and the ensemble methods on 3DIRCADB1 test

data to examine segmentation accuracy. The best value in each column is bold

DICE RAVD ASSD MSSD

U-Net 0.672 74.923 66.869 172.513

Deepmedic 0.903 10.231 5.581 143.340

V-Net 0.826 19.004 9.547 95.222

Dense V-networks 0.900 8.881 9.953 113.306

Majority Vote 0.889 14.275 3.350 72.675

Average 0.920 6.736 3.338 75.057

Product 0.917 6.847 3.655 73.921

Min-Max 0.905 9.296 4.298 75.903

Logit 0.932 6.091 3.144 71.972

4.6.1 Ensemble segmenters show less overfitting than individual DMs

Overfitting problem of DMs can be seen comparing Tables 4.2 and 4.4 with

Tables 4.3 and 4.5. The average training results are superior to the average testing

results, not only for individual DMs but also for individual ensembles as expected.

Overfitting in deep models also directly affects the results of the ensemble methods.

Additional analyses have found that 8 of 64 differences at the 0.05 level are not

statistically important. These 8 insignificant differences are pointed with a circle

marker in Tables 4.2 and 4.4.

The results in Tables 4.2 – 4.5 reveal that ensembles does not have better metric

values, but also they are unaffected by overfitting problem. In order to illustrate this,

two tables (Table 4.6 and 4.7) were prepared for both datasets. These tables show

overfitting magnitude calculated by training value minus testing value. Positive results

for DICE mean better training values. Negative values for the remaining metrics point

that the training value is better since the lower values of these measures are superior.
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Table 4.6 Overfitting magnitude for the CHAOS dataset. Large overfitting corresponds to blue color and

small overfitting, to red color. Each column (metric) is scaled individually

DICE RAVD ASSD MSSD

U-Net 0.1238 -40.0423 -10.3499 -49.8649

Deepmedic 0.0329 -1.9436 -5.4651 -74.3951

V-Net 0.0695 -13.6101 -4.4899 -61.2170

Dense V-networks 0.0463 -4.6631 -2.2030 -35.0205

Majority 0.0237 -1.8338 -0.9726 -17.4741

Average 0.0268 -2.8366 -1.3186 -19.0548

Product 0.0281 -3.3736 -1.2328 -20.1146

Min-Max 0.0381 -4.8866 -1.4997 -23.4931

Logit 0.0283 -3.2790 -1.1152 -19.9933

Table 4.7 Overfitting magnitude for the 3DIRCADB1 dataset. Large overfitting corresponds to blue

color and small overfitting, to red color. Each column (metric) is scaled individually

DICE RAVD ASSD MSSD

U-Net 0.2320 -55.7723 -59.4755 -101.4027

Deepmedic 0.0830 -10.1691 -4.3534 -102.9930

V-Net 0.1406 -16.2087 -7.9385 -77.7407

Dense V-networks 0.0714 -7.6161 -8.0785 -53.1059

Majority 0.0896 -11.9168 -2.7082 -42.3905

Average 0.0626 -5.2867 -2.4555 -55.8543

Product 0.0614 -2.9921 -2.4300 -52.8161

Min-Max 0.0738 -6.7472 -3.0785 -57.2058

Logit 0.0616 -5.0802 -2.3179 -52.5097
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Besides, the color-coded values for all metric are presented in Tables 4.6 and 4.7.

Red colors show minor overfitting while blue colors show major overfitting. According

to Tables 4.6 and 4.7, the blue color indicates at the tops, the individual DMs are more

vulnerable to overfitting than the ensembles.

4.6.2 Ensemble segmenters offer better results than individual DMs

The superiority of ensembles can be clearly observed by Tables 4.3 and 4.5 in the

most cases according to four different metric results. In addition, the significance

of these results are analyzed in Tables 4.8 – 4.11. These 8 different tables show the

statistical significance between individual DMs and ensemble methods for four metrics

and two datasets. The significance level is determined as 0.05. The values in the tables

again confirm the preferability of ensembles against individual methods.

After showing that fusion/ensemble methods are more successful, the question of

which method is more preferable was also examined. Two glyph plots in Figures 4.5

and 4.6 show the comparison of ensemble methods. The cumulative test performance

of all metrics was used to create these two plots. The DICE values were reversed

to make all metrics results have the same distribution (smaller values indicate better

results). All scores were mapped between 0.0 and 1.0. They were marked on the edges

of the plots. The smallest area represents the most successful ensemble method in

glyph plots. In Figures 4.5 and 4.6, the most preferable ensemble is the Logit ensemble.

It is followed by majority voting in Figure 4.5 and average combiner in Figure 4.6.

However, majority voting has a bad performance in Figure 4.6 with its large area. The

plots show that the average based methods such as Logit combiner and simple average

combiner perform the best segmentation.

Besides with glyph plots, the values in Tables 4.8 – 4.11 support the fact that Logit

and average combiners are the most successful ones. These analyses indicate that the

designed Logit combiner can be recommended for the ensemble of DMs with

vanilla-style parameters.
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Figure 4.5 Glyph plot of the four ensemble methods for the CHAOS dataset. The spokes are the four

metrics. Small-area ensembles are preferable
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Figure 4.6 Glyph plot of the four ensemble methods for the 3DIRCADB1 dataset. The spokes are the

four metrics. Small-area ensembles are preferable
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Table 4.8 DICE: Statistical comparison between individual DMs and ensembles. Bullet means that the

ensemble wins; circle means that the DM wins; line means that no statistical difference.

CHAOS dataset

Majority Average Product Min/Max Logit

U-Net • • • • •

Deepmedic − − − ◦ −

V-Net • • • • •

Dense V-Networks • • • • •

3DIRCADB1 dataset

Majority Average Product Min/Max Logit

U-Net • • • • •

Deepmedic − − − − −

V-Net • • • • •

Dense V-Networks − − − − •

Table 4.9 RAVD: Statistical comparison between individual DMs and ensembles. Bullet means that the

ensemble wins; circle means that the DM wins; line means that no statistical difference

CHAOS dataset

Majority Average Product Min/Max Logit

U-Net • • • • •

Deepmedic ◦ − ◦ − −

V-Net − • − − •

Dense V-Networks − • − − −

3DIRCADB1 dataset

Majority Average Product Min/Max Logit

U-Net • • • • •

Deepmedic − − − − •

V-Net − • • • •

Dense V-Networks − − − − −
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Table 4.10 ASSD: Statistical comparison between individual DMs and ensembles. Bullet means that

the ensemble wins; circle means that the DM wins; line means that no statistical difference

CHAOS dataset

Majority Average Product Min/Max Logit

U-Net • • • • •

Deepmedic • • • • •

V-Net • • • • •

Dense V-Networks • • • • •

3DIRCADB1 dataset

Majority Average Product Min/Max Logit

U-Net • • • • •

Deepmedic − • • − •

V-Net • • • • •

Dense V-Networks − • − − •

Table 4.11 MSSD: Statistical comparison between individual DMs and ensembles. Bullet means that

the ensemble wins; circle means that the DM wins; line means that no statistical difference

CHAOS dataset

Majority Average Product Min/Max Logit

U-Net • • • • •

Deepmedic • • • • •

V-Net • • • • •

Dense V-Networks • • • • •

3DIRCADB1 dataset

Majority Average Product Min/Max Logit

U-Net • • • • •

Deepmedic • • • • •

V-Net • − − − •

Dense V-Networks • • • • •
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In conclusion, the capabilities of DMs in their native versions were analyzed as

well as the potential of their ensembles. Despite the remarkable success of DMs, their

vanilla style versions are far away from the heavily optimized ones. It was revealed that

DMs need to be revised comprehensively for specific problems and data. In addition,

DMs are prone to overfitting. Small variations in parameters and/or minor differences

in design can significantly alter the results produced by DMs. Therefore, DMs can

produce remarkable outputs as a result of the intense efforts of the experts. On the

other hand, our experimental findings verified and also demonstrated that overfitting

can be reduced by using even simple ensemble methods. We showed this onto two

publicly accessible datasets.

Fascinated by the progress of DMs in medical segmentation, we have explored the

ability of ensemble of segmenters based on DMs consisting of state-of-the-art

publicly accessible DMs. In general, the segmentation accuracy of ensemble methods

has been tested with the various metrics suggested in the literature. Our finding is that

the performance of individual vanilla style DMs can be boosted by using ensemble

approaches without making huge efforts.

On the other hand, it has been observed that the accuracy of the ensemble methods is

sensitive to the accuracy of ensemble members. To eliminate this, normally ensembles

are based on the same members with different training data. However, it is not feasible

in the medical image analysis field due to the lack of data. The ensemble studies

that use different models can be optimized using calibration. Therefore a calibration

parameter can improve segmentation accuracy. The performance of the Logit combiner

proves this situation. Even a single parameter (α) can improve segmentation accuracy.

Logit combiner reached the best accuracy out of five ensemble rules. This indicates that

the development of more effective ensemble methods may be a positive way forward.
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CHAPTER FIVE

SEGMENTATION OF ABDOMINAL AORTIC PATHS AND LIVER VEINS

FROM CT ANGIOGRAPHY

5.1 Introduction

The importance of the liver was explained in Section 2.1.1 as well as its

segmentation from medical images in Section 4.1. Segmentation of the whole liver is

the primary stage for further analyses. One of the most demanded examination in

clinics is extracting vein structures of the liver via segmentation. As mentioned in

Section 2.4, the vein system in the liver is too complex with so many branches.

Therefore these structures need to be examined by invasive methods such as

angiography. These methods provide liver venous systems with angiographic control.

Angiography has a significant role in diagnostics of hypertension in the portal vein,

lesions, abdominal trauma, and hepatic venous occlusion. Also, angiography of the

liver may show a hypervascular tumor(s). However invasive angiographic methods

can be tough.

The alternative to direct hepatic angiography is computed tomography angiogram

(CT angiogram) (Winter & Auer, 2012). In this method, the contrast agent is injected

into the patient with the synchronization of an abdomen CT scan. The images acquired

with a pre-defined delay to catch the flow of contrast agent in veins. Even small defects

can be sensitively detected with CT angiogram. Besides, blockages in veins can be

identified.

In addition with liver veins, segmentation of abdomen aorta is another important

operation in clinics. The problems such as abdominal aortic aneurysm (AAA) (shown

in Fig. 5.1) may restrict surgical operations in the liver. Therefore segmenting vessel

tree of the liver as well as the abdomen aorta can be used together in radiology

department.

Identifying of veins in the liver also is a necessary process to classify the liver into
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Figure 5.1 (a) 3D aorta with AAA and outgoing celiac vessels (1, 2), renal vessels (3, 4), iliac arteries (5,

6), aneurysm neck (7) and aneurysm (8). 2D cross sectional CTA images for well-organized acquisition

showing departure of vessels at celiac region (b) vessel 1, (c) vessel 2, and renal arteries (d) vessel 3, (e)

vessel 4 (Selver & Kavur, 2015)

Couinaud lobes shown in Figure 5.2. Couinaud classification splits the liver into eight

segments that perform individually. In other words, there are independent blood flow

and drainage in these segments. Each segment has a section of the hepatic artery, portal

vein, and bile duct in the middle (Shepherd & Turmelle, 2017).

Figure 5.2 Overview of Couinaud lobes of the liver (Jones, 2019)

The right hepatic venous separates the right lobe into the front (anterior) and back

(posterior) parts. The center hepatic vein separates the organ into the left-right parts.
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This left-right surface places between the inferior vena cava and the gallbladder. The

portal vein separates the liver in the vertical direction (up-down)

To sum up, the segmentation of veins of the liver and abdomen aorta are used for

many clinical examinations. It is the preliminary stage to decide Couinaud lobes as

well as detecting so potential abnormalities in the liver venous system and abdomen

vessels. In this chapter, first, a novel method was developed to segment abdomen aorta

via pairwise geodesic distance fields. The method was published (Selver & Kavur,

2015) and all details are available in the article. Then, the ensemble methods were

examined whether the same methods with whole liver segmentatios could be used for

liver vein segmentation problem. Due to the difficulty of this problem, fewer methods

have been proposed in the literature comparing to the segmentation of the whole liver.

5.2 Segmentation of Abdominal Aortic Paths Using Pairwise Geodesic Distance

Fields

Segmentation of arteries exiting from aorta (i.e. celiac, renal, iliac) is used to

prepare liver transplant surgery. Also it is important to decide the graft ’s location

prior to aortic aneurysm surgery. With help of minor user input such as adding seed

points at the edges of the target vessels can be used to extract aorta and neighbor

vessels. The algorithms can detect the proper path between these seed points. In the

proposed algorithm, Geodesic Distance (GD) was used to connect seed points.

Geodesic distance (GD) can be described as the route between two image nodes

based on specified limitations. These limitations force the route to remain in a subset

of the image, which is called Geodesic Mask (GM). If S is a connected set containing

pixels α at (x1, y1) and β at (x2, y2) (i.e. S is GM), then GD between α and β, DS (α,β),

can be calculated as:

DS (α,β, ) = min {L (P) |p1 = α, pl = β and P ⊆ S } (5.1)

where, L(P) is the length of a path P=(p1, p2, . . . pl) between all achievable paths
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connecting α and β and included in S. Using GD, value of a Propagation Function (PF)

at pixel ψ is defined as:

PFS (ψ) = max { DS (ψ,σ) | σεS } ∀ψεS (5.2)

This expression matches to the minimum of distance of the geodesic paths starting

from ψ and included in S. Based on these statements, a geodesic path can be found for

two pixels α and β in a connected region S using Soille (2003):

1. Calculate PFS and select pixels satisfying maxyεS PFS (y). Here, the assumption

is that there are only two pixels (i.e. α, β) giving this condition (Otherwise,

procedure must be adopted).

2. Compute GD Functions (GDF),GDFS (α) and GDFS (β), using a proper

algorithm, such as Euclidean GD Soille (1994).

3. Compute the sum of GDFS (α) (Fig. 2.a) and GDFS (β) (Fig. 2.b), that is equal to

GDFS (α, β) (i.e. PGDF) (Fig. 2.c).

4. Along the searched path, GDFS (α, β) is minimal. Therefore, application of a

regional minimum search algorithm to GDFS (α,β) gives the geodesic path linking

α to β.

This method was proposed in Soille (1994) for 2D data. However it was not

optimized for 3D data before. The practicality of this approach to the detection of the

lumen route has still not been analyzed.

5.2.1 Insertion of Vessel Nodes

Adding seed points within the renal and iliac vessels involves the position of small

vessels of interest. As a commonly used technique in clinic, Multiplanar

Reconstruction (MPR) is the easiest way of restoration that is constructed by piling

the initial image slices. Since whole volumetric data is used, it is possible to achieve
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any necessary plane, thereby allowing easy 2D viewing of the vessels. The algorithm

can then be started by inserting nodes in the vascular segment (branches) that the user

wishes to integrate via the MPR interface.

5.2.2 Generation of the Geodesic Mask (GM)

Generation of GM has a key role in precision and efficiency. Through removing

other anatomical structures, GM must be built as close as possible to the aorta. All

large vessels will be operated at the same time. Therefore, rooted arteries and their

connections to the aorta must be limited for the development of a GM to maintain its

connectedness.

Due to the acquisition is performed with injection of the contrast agent, the

thresholding can be used a suitable GM generation technique. In the optimal case

where the processing timing and modality parameters are well organized, the volume

data histogram consists of one single peak for an aorta.

By reason of inhomogeneous scattering of contrast matter, in routine clinical

procedure vessels may not be properly enhanced, often resulting in smaller hills of

volume histograms. In fact, a broader variety of Hounsfield values must also be

preserved to avoid specific vascular details being lost. This involves a challenging

task which is resolved through the automatic version of the hill-based approach

proposed by Papamarkos & Gatos (1994) and by regulating the connectivity of

specified points to further change the threshold range. Their bi-level thresholding

method has the following steps:

1. Hill clusters by iterative cell scan, depending on the location of the histogram

peaks, when the gray level in each cell is halved in each iteration

2. Histogram fitting via real rational functions over a altered linear rational

approximation method Papamarkos (1989) which provide both computational

cost and less error,

121



3. The multilevel threshold amounts are calculated as the global minimum values,

which are detected by golden search method Press et al. (1986), of rational

functions (found in Step 2).

4. Two level threshold values are calculated between different threshold values by

choosing clustered hills composed of nodes added by the physician.

5. Perform a 3D connected component analysis to control if user added nodes are

inside of the result. If not extend two-level threshold at the route determined by

searching gray values at the vicinity of the non-included node(s).

5.2.3 Calculation of Pairwise Geodesic Distance Functions (PGDFs) and

Geodesics in 3D

3D-PGDFs are determined between the seed-point pairs introduced by the user after

the GM calculation shown in Fig. 5.3. As in the 2D case, 3D-PGDF is chosen in

pairs rather than generating PGDF at the same time by all seed points. As stated

before, the large number of GDFs that construct PGDF via cumulative sum (PGDF=∑M
i=1 GDFS (xi) ) increases as a result of simulations that show small vessels by PGDF

decreases.

Approximated equidistant geodesics are calculated by the following steps after

building of 3D-PGDF, :

1. Compute PGDF(i.e. GDFS (α,β)) using user inserted seed pairs α at (x1,y1,z1)

(i.e. GDFS (α)) and β at (x2,y2,z2) (i.e. nDFS (β)) inside GM.

2. Calculate modulus of the PGDF by N (i.e. PGDF mod N). Save quotients of

modulus operation which constitute an integer matrix having the same size as

PGDF. The thickness and the amonut of geodesics in GM is determined.

3. The set of voxels having the value of the smallest quotient gives the distorted

geodesic (DG) connecting α and β. Each of the sets of quotient values forms

other geodesics.
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Figure 5.3 3D-CGDF which is suitable for gradient search as it is monotonically increasing from seed 1

to seed 2, (b) 3D-PGDF Selection of the geodesics represented inside blue region provide a path between

seed 1 and seed 2. Path becomes more robust at aneurysm neck if turquoise region is also used (Selver

& Kavur, 2015)

The number of geodesics for a PGDF depends on the selection of modulus

parameter, N. If PGDF constitutes values between PGDFmin and PGDFmax, then the

number of geodesics inside GM is equal to

q = (PGDFmax−PGDFmin) mod N where q ∈ Z+ (5.3)

5.2.4 Path Extraction Using Enhanced PGDFs

The path between seed pairs are obtained by using a thinning algorithm to the DG

after obtaining enhanced PGDF. A fast image thinning method in ITK library was

used for 3D thinning (Ibáñez et al., 2003). The application and result of the proposed

algorithm are presented in Section 5.1. Besides these results were published in our

article (Selver & Kavur, 2015).
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5.2.5 Results

In 12 CTA datasets from 12 different patients in 4 different modalities, the

proposed lumen path extraction procedure was tested. The first data set has ideal

image characteristics. The images was acquired by a CT scanner with a 16-row

detector (Philips Mx8000) with a slice thickness (ST) of 3.2 mm. Images were

selected by a PACS specialist at the Dokuz Eylül University of Medicine School,

Izmir, Turkey.

The remaining data sets were obtained from acquisitions which represent the daily

clinical practice challenges and are addressed in this study. 6 data sets have been

acquired with a 320-row CT scanner (Toshiba Aquilion One) with 3.0 mm ST. 4 data

sets have been acquired with a 64-row CT scanner (Toshiba Aquilion) with 5.0 mm

ST. These data sets were chosen from regular clinical acquisitions from the PACS of

Gúlhane Faculty of Medicine in Ankara, Turkey. The efficiency of the proposed

method for ST values of 3.0 and 5.0 mm defines the clinical usefulness of the process,

as these are the most typical ST values used in clinical practice. A single dataset

obtained from the 320-row detector CT scanner with 0.8 mm ST. This data set is

analyzed to check the output of the proposed system at low ST values. A total of 2758

DICOM image slices were analyzed, all of which have 512 x 512 pixels.

The ground truth data was built slice-by-slice manual aorta delineation by an

experienced radiologist who has been practicing abdominal aortic aneurysm graft

injection surgery at Gülhane Medicine Faculty, Ankara, Turkey for more than 10

years. Another 2 experts conducted the insertion of user identified seed points. Using

the developed MPR interface, 6 points were inserted into the departing vessels for

each data set from aorta to liver, spleen, kidneys (right / left), and iliac arteries (right /

left). The insertion of seed points procedure was repeated 5 times at different dates to

analyze the dependency of the proposed method to seed points. Thus, experiments for

various sets of user implanted seeds is replicated 5 times for each dataset.

In order to evaluate performance of the proposed method three metrics were used:
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Figure 5.4 Results of the compared algorithms for the same seed points (a), (d) lumen path found by

subvoxel MSFM, (b) (e) lumen path found by 3-D FM, (c), (f) seed points generated by the proposed

method (Selver & Kavur, 2015)

percentage of correct classification (CC), sensitivity (SE), specificity (SP). To compare

performance two well studied methods were applied to the same dataset under same

conditions. These methods are 3D fast marching (3D-FM) (Peyre, 2004) and subvoxel

multi-stencil fast marching (MSFM) Kroon (2009). All results are presented in Table

5.1 and Fig. 5.4.

Table 5.1 Quantitative Comparison of the Accuracy for 6 Seeds

3D-PGDF 3D-FM Subvoxel MSFM

Dataset CC SE SP CC SE SP CC SE SP

1 99.80 85.09 99.97 99.78 81.55 99.98 99.79 87.80 99.99

2-7 99.85 70.62 99.98 99.73 65.23 100 99.85 73.36 100.00

8-11 99.78 72.90 99.98 99.80 69.88 99.99 99.83 75.97 100.00

12 99.75 72.36 99.89 99.78 68.32 99.96 99.83 72.48 100.00

All 99.81 72.75 99.97 99.75 68.39 99.99 99.83 75.76 100.00

The results reveal that, while the suggested 3D-PGDF based approach outperforms

3D-FM, subvoxel MSFM performs the best in all metrics. These three approaches
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indicate very similar consistency at both CC and SP speeds. However, when

considering SE their performance shows significant differences. Sensitivity, which

tests the proportion of positive currently known as such, determines how well the

region’s that algorithm executes segmentation tasks within the aortic region. The

better results for Subvoxel MSFM are attributed to its ability to extract the center line

whereas the suggested technique and 3D-FM merely remove a direction within the

lumen. Nonetheless, in an typical SE, 3D-PGDF performs 4.17% over 3D-FM.

Despite having the best output metrics, subvoxel MSFM not only takes a

considerably long period to complete the cycle, but also demonstrates high timing

variation (i.e. see last column of Table 5.2. 3D-FM is the fastest algorithm of all and

takes approximately 3.5 times less time compared to subvoxel MSFM. Our technique

takes nearly 1.7 times as much time as 3D-FM but reveals less variation at the

moment. As a result , we can conclude that using the proposed algorithm for path

generation and seeding on a performance-computational complexity basis shows a

performance in-between the benchmark techniques.

In consideration of these important vessels’ limited scale and high curvature, seed

points plays a major role, as most algorithms are initialized by these seeds. The

proposed approach works in-between these systems as opposed to effective

comparison approaches. The proposed algorithm, in particular, is quicker than the

high-precision approach ( i.e., subvoxel MSFM) and more precise than the

fast-gradient based technique (i.e. 3D-FM).

Therefore, we conclude that the suggested approach provides an alternative to

3D-FM and subvoxel MSFM subvoxel, having high accuracy in a reasonable time

than 3d-FM techniques. Moreover, the standard deviation from the experiment

indicates that, as opposed to the 3D-FM and subvoxel MSFM techniques, the

technique suggested is less influenced by the location of the original seeds introduced

by the specialist.
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Table 5.2 Comparison of the Computational Time (seconds) for 6 Seeds

3D-PGDF 3D-FM Subvoxel MSFM

Dataset Mean Std. Mean Std. Mean Std.

1 248.82 6.40 143.01 9.95 708.60 41.12

2 243.60 24.80 140.32 38.75 560.30 85.59

3 205.32 37.20 118.52 62.40 479.75 60.63

4 211.87 25.40 116.02 59.89 444.92 66.36

5 218.90 37.24 120.90 57.89 463.62 81.14

6 273.18 19.80 157.23 33.17 473.57 33.02

7 345.46 27.60 256.62 46.66 526.51 42.41

8 179.22 24.86 103.93 40.04 327.38 49.21

9 148.78 24.45 97.56 24.97 295.21 67.25

10 126.58 31.14 67.93 35.61 298.02 59.79

11 191.40 21.07 110.34 35.44 266.95 45.18

12 203.58 3.60 117.75 6.14 657.90 33.17

All 216.39 23.63 129.18 37.58 458.56 55.41

5.3 Segmentation of Liver Veins via Fusion of Different Methods

5.3.1 Liver Vein Dataset

The problem of having fewer data sets in the medical imaging area compared to

other fields has been mentioned before. In addition, the number of datasets containing

the vessels in the liver is even less. As a result of our qualitative analyzes on a small

number of datasets, we observed that the vessels in many published datasets were

not annotated precisely. Since the vessels are complex and small in some areas, their

correct marking is more difficult than other structures. Therefore, in many datasets,

the vessels are annotated by some semi-automatic tools. However, the quality and

accuracy of annotations are directly proportional to the capacities of these tools. Even

in some popular databases in literature, clinically flawed markings such as missing

parts and miss-/over-segmentation have been seen. In this study, we are introducing a
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specific dataset that includes handcrafted annotation of liver vessels.

To overcome problems about annotations, a unique dataset that contains liver

vessels have been created for the studies in our department. This dataset is called

Vessel Extraction and Extrication for Liver Analysis (VEELA). It contains the same

images in the CHAOS CT set with annotations of vessels inside the liver. Both portal

and hepatic veins were annotated manually. According to our knowledge, there is not

such an open dataset with handcrafted segmentation masks. Although the annotations

of the vessels have taken more time than planned, the resulting ground truth mask will

guarantee the precise segmentation evaluation. After the worldwide popularity of the

CHAOS challenge and its dataset, a new challenge involving the segmentation of the

liver vascular system is planned with this set in the future. Therefore, this set has not

been published openly yet. It is only available for internal studies in our department at

the moment. The technical specifications of this set are as same as CHAOS CT set

presented in Table 3.7. Besides, a sample case is also presented in Figure 5.5

5.3.2 Ensemble Members

The structure of vessels has important differences than the whole liver as can be

seen from Figure 5.5. These are:

1. Liver has a concave shape while vessel trees are convex.

2. Size of the liver is relatively bigger than vessels.

3. Vessels have both bigger and smaller regions while the liver has homogeneous

size.

These features of the vessels above make segmentation of them much harder.

Therefore, a unique strategy needed to be developed. If the vascular tree is examined

from a single direction like whole liver segmentation procedures, it is determined that

small vessels in some areas have just 3-4 voxel size. Due to this smallness, the

segmentation of these extreme structures can be very difficult. However, if these small
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structures can be examined from other angles, it can be seen that they have much

larger areas in the cross-sections.

A different method has been developed to solve the problems arising from the

angle of examination. Here, in addition to original data, four rotated versions of the

data applied to the same DM were used to create ensemble members. Our proposed

ensemble procedure is using the results of DMs, trained independently with each

other with rotated data. In other words, a homogeneous ensemble approach was

preferred unlike heterogeneous ensemble strategy in whole liver segmentation

problem. Our strategy is illustrated in Figure 5.6.

The reason for using a single DM is that the performance of ensembles is

Figure 5.5 A sample case from VEELA dataset. Hepatic artery(red) and portal vein(green) on axial CT

image and 3D visualizations in different angles
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Original data DeepMedic

Rotated data (1) DeepMedic

Rotated data (2) DeepMedic

Rotated data (3) DeepMedic

Rotated data (4) DeepMedic

Ensemble 
Methods

Result

Figure 5.6 The proposed ensemble strategy for segmentation of liver veins

Table 5.3 Parameters of rotations applied on the dataset

Rotation Plane Degree

Rot1 X-Z 45◦

Rot2 X-Z 135◦

Rot3 Y-Z 45◦

Rot4 Y-Z 135◦

correlated with the performance of ensemble members. Since the segmentation of

liver vessels is a harder problem than segmentation of the whole liver, the most

successful DM was used to improve the average performance of ensemble members.

Therefore the base CNN was selected as DeepMedic (Kamnitsas et al., 2016, 2017).

The main reason is that robustness of DeepMedic against difficult areas is higher than

other models according to the results in Section 4.6. To summarize,

E = {DAxial,DRot1,DRot2,DRot3,DRot4} are the ensemble members as shown in Figure

5.6. The details of the rotations are presented in Table 5.3. The affine matrix for

transformations are presented in Equations 5.4-5.7. Also, the rotation planes are

illustrated in Figure 5.7.
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ARot1 =



0.707 −0.500 0.500 0.000

0.500 0.856 0.146 0.000

−0.500 0.146 0.854 0.000

0.000 0.000 0.000 1.000


(5.4)

ARot2 =



−0.707 −0.500 0.500 0.000

0.500 0.146 0.854 0.000

−0.500 0.854 0.146 0.000

0.000 0.000 0.000 1.000


(5.5)

ARot3 =



0.854 −0.500 0.146 0.000

0.500 0.707 −0.500; 0.000

0.146 0.500 0.854 0.000

0.000 0.000 0.000 1.000


(5.6)

ARot4 =



0.146 −0.500 0.853 0.000

0.500 −0.707 −0.500 0.000

0.854 0.500 0.146 0.000

0.000 0.000 0.000 1.000


(5.7)

5.3.3 Ensemble Methods

Again care was taken to the simplicity of the ensemble methods. Therefore, the

same ensemble methods with whole liver segmentation in Section 4.4 were performed.

They are Majority Voting, Average combiner, Product combiner, Min/Max combiner,

and Logit Combiner. Since the explanations of these methods are given in detail in

Section 4.4, new explanations are not included in this section.
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Axial Plane
(Original)

Rot 1 Rot 4Rot 3Rot 2

Figure 5.7 Illustration of different rotations from different views
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5.3.4 Evaluation

The same evaluation strategy with CHAOS challenge and "Fusion of different

methods for segmentation of the liver" sections was used for evaluation. Thus,

consistency and cohesion are provided in the evaluation of all the studies presented in

this thesis.

In order to keep the evaluation process compact, hepatic arteries and portal veins

are considered as a single class. In other words, both individual CNNs and ensemble

methods have only two class targets: all veins in the liver and background.

In addition to the evaluation of segmentation, statistical significances are

calculated for paired and non-paired samples as explained in Section 4.5. The results

of metrics and their significance against each other reveal the potential of ensemble

systems. These findings are presented in Section 5.3.5 with various tables and

illustrations.

5.3.5 Results

The positive results of using ensemble methods for segmentation of liver

encouraged us to apply this strategy to a more complicated and less popular problem:

segmentation of liver veins from CT angiography. The same analyses with the

previous section (4.6) have been performed. The segmentation accuracies have been

evaluated as well as their statistical significance. Also, the overfitting problem was

examined in the previous section. The following tables, figures, and discussions were

presented by the analyses on the VEELA dataset explained in Section 5.3.1.

Comparison of Table 5.4 with Table 5.5 shows the overfitting problem of

individual segmentations still exists for vein segmentation. Again overfitting in DMs

directly affects the results of the ensemble methods. The consistency in the results of

the liver and its vein segmentation shows that the overfitting problem does not depend

on the type of segmentation target. Overfitting magnitude, presented in Table 5.6,
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again supports the findings in whole liver segmentation.

Table 5.4 Metric results on VEELA training data for the individual segmenters and the ensemble

methods to examine overfitting. The circle marker indicates results where the overfitting was not found

to be significant

DICE RAVD ASSD MSSD

DeepMedic Axial ◦ 0.834 8.702 3.170 91.687

DeepMedic Rot 1 0.796 10.379 4.796 96.298

DeepMedic Rot 2 0.795 10.812 ◦ 4.099 95.593

DeepMedic Rot 3 0.792 10.533 4.262 97.865

DeepMedic Rot 4 0.795 10.351 4.335 96.245

Majority Vote 0.913 7.999 1.640 75.806

Average 0.924 6.777 1.200 71.038

Product 0.911 7.540 1.565 73.020

Min-Max 0.924 7.971 1.417 74.950

Logit 0.926 6.481 1.278 69.909

Table 5.5 Metric results on VEELA test data for the individual segmenters and the ensemble methods to

examine segmentation accuracy. The best value in each column is marked bold

DICE RAVD ASSD MSSD

DeepMedic Axial 0.714 16.902 5.370 177.687

DeepMedic Rot 1 0.664 25.274 3.069 152.791

DeepMedic Rot 2 0.664 25.585 3.615 161.270

DeepMedic Rot 3 0.705 21.623 2.375 179.027

DeepMedic Rot 4 0.672 25.496 3.109 162.213

Majority Vote 0.820 39.657 1.926 104.285

Average 0.826 13.081 1.831 102.131

Product 0.857 16.097 1.897 116.950

Min-Max 0.830 21.561 1.782 117.281

Logit 0.876 11.470 1.877 99.150
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Table 5.6 Overfitting magnitude for the VEELA dataset. Large overfitting corresponds to blue color and

small overfitting, to red color. Each column (metric) is scaled individually

DICE RAVD ASSD MSSD

DeepMedic Axial 0.3170 -38.5777 -3.0324 -151.5513

DeepMedic Rot 1 0.2853 -21.6107 -1.4302 -107.7594

DeepMedic Rot 2 0.2665 -20.2772 -1.0357 -110.5563

DeepMedic Rot 3 0.2786 -20.4994 -1.3302 -107.3145

DeepMedic Rot 4 0.2831 -23.1188 -2.3688 -102.1495

Majority 0.2380 -19.6891 -1.2913 -112.7926

Average 0.2646 -22.5956 -0.9401 -118.2879

Product 0.2277 -18.6504 -1.0803 -114.9142

Min-Max 0.2546 -24.4913 -1.0453 -125.8247

Logit 0.2170 -14.8510 -0.6385 -98.9364

On the other hand, there is a significant difference in Table 5.4 and Table 5.5 with

Table 4.2 and Table 4.3. Here, the segmentation accuracy of DMs can be considered

as insufficient. In other words, the vanilla style of DMs may not have the capability

of vein segmentation. Performances are poor even testing with the train data presented

in Table 5.4. Therefore, if a single DM will be used for this problem, it is necessary

to make huge efforts for tuning the system and developing tailored designs. On the

other hand ensemble, segmenters offer better results than individual DMs again. This

superiority of ensembles has been analyzed in terms of their significance. They are

presented in Tables 5.7 – 5.10.

Tables 5.7 – 5.10 show that the statistical significance of results are less than whole

liver segmentation problem. However, it is still the same that, ensembles outperform
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Table 5.7 DICE: Statistical comparison between individual DMs and ensembles. Bullet means that the

ensemble wins; circle means that the DM wins; line means that no statistical difference

Majority Average Product Min/Max Logit

DeepMedic Axial − ◦ − • •

DeepMedic Rot 1 • − − − −

DeepMedic Rot 2 • − − − •

DeepMedic Rot 3 − − − − −

DeepMedic Rot 4 − − − − −

Table 5.8 RAVD: Statistical comparison between individual DMs and ensembles. Bullet means that the

ensemble wins; circle means that the DM wins; line means that no statistical difference

Majority Average Product Min/Max Logit

DeepMedic Axial − − ◦ − •

DeepMedic Rot 1 − ◦ − • −

DeepMedic Rot 2 − ◦ − ◦ −

DeepMedic Rot 3 − ◦ − − −

DeepMedic Rot 4 − ◦ − • •

Table 5.9 ASSD: Statistical comparison between individual DMs and ensembles. Bullet means that the

ensemble wins; circle means that the DM wins; line means that no statistical difference

Majority Average Product Min/Max Logit

DeepMedic Axial − • − • •

DeepMedic Rot 1 − − − − −

DeepMedic Rot 2 − − • − •

DeepMedic Rot 3 ◦ − − − •

DeepMedic Rot 4 − • − − −
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Table 5.10 MSSD: Statistical comparison between individual DMs and ensembles. Bullet means that

the ensemble wins; circle means that the DM wins; line means that no statistical difference

Majority Average Product Min/Max Logit

DeepMedic Axial − • − − •

DeepMedic Rot 1 − − • • −

DeepMedic Rot 2 − − • − •

DeepMedic Rot 3 − − − − −

DeepMedic Rot 4 • − • − •

the individual methods. Average combiner showed the least significant results for

different metrics. It is followed by the average combiner. Although the lower

significance of Logit combiner in this problem comparing with whole liver

segmentation, it is still the most significant fusion strategy according to the Tables 5.7

– 5.10.

To determine which ensemble method is the most preferable, again glyph plot of

them has been generated. The glyph plot in Figure 5.8 shows the Logit combiner has

the most accurate performance over other methods. The balanced error distribution of

Logit combiner on four metrics also supports its robustness. The plots again indicate

that the average based methods such as logit combiner and simple average combiner

have higher segmentation accuracy.

To sum up, the effectiveness of the DMs and their ensembles have been examined

by a much more tough problem in this section. Segmentation of liver veins from CT

angiography is still pushing the DMs to their boundaries. Since very few solutions

have been proposed in the literature for this problem, there is no definite anticipation

of whether this problem can be solved by DMs alone. However, even if there is a

solution by single DM, it is an undeniable fact that it will require much more complex

designs, longer development processes, and more processing power. On the other
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Majority Average Product Min/Max Logit

DICE

RAVD

ASSD

MSSD

Figure 5.8 Glyph plot of the four ensemble methods for the VEELA dataset. The spokes are the four

metrics. Small-area ensembles are preferable

hand, our analyses revealed that the power of ensemble strategies can help to reduce

these drawbacks. Ensembles can be adapted for the segmentation of liver vessels

problem to reduce overfitting and to boost segmentation accuracy. Considering their

lower performance for the segmentation of liver veins comparing with the whole liver,

further strategies for developing novel fusion methods can be studied.

According to the success of Logit combiner against other ones, the further

ensemble method designed to handle this problem should include calibration.

However, there is a certain fact that this problem has not been sufficiently studied yet.

Understanding the potentials of various methods plays an important role in solving

the problem of liver vein segmentation. To enrich the level of understanding, further

studies such as organizing a new challenge for liver vein segmentation is planned.

The overall conclusion of this section is that there is still the need for further studies

to achieve better segmentation results for liver vein segmentation. Our findings show

that ensemble strategies will play an important role in these studies.
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CHAPTER SIX

CONCLUSIONS

In this thesis, segmentation in medical image analysis is discussed from different

perspectives. The studies focused on creating new challenges to enrich level of

information in abdomen image segmentation field and adapting classifier ensemble

methods to segmentation of the liver and its vein. Also, a new ensemble method, that

outperformed former methods, has been developed. The contributions of the studies

in this thesis can be summed as:

• Instead of focusing only on the development of more successful segmentation

methods, we went down to the root of the problem and examined all the newest

methods in the present as well as in the past. For these purposes, considerable

time was spent on preparing new data and not only for creating benchmarking

systems but also other scientific works in the literature.

• The first medical image segmentation challenge was held in Turkey. Then,

CHAOS, the most popular challenge in its field (with more than 1500

participants and 550 submissions), was organized. The CHAOS challenge data

(Kavur et al., 2019) has reached more than 3,226 single views, 3,159 unique

downloads, and 14,066 total downloads when this thesis was written.

The CHAOS challenge was designed not only to examine current deep learning

developments but also to measure their capabilities in potential matters such as

segmentation in cross-modality data in the future. In this way, it is aimed at the

information presented in this thesis will guide many further studies.

• The analyses coming from our challenges were used to exploit underestimated

problems of them analysis. According to our knowledge, it is the first time

peeking problem was widely discussed in a challenge study. The feedback that

we had from our article reviewers acclaims the importance of this problem. It is

planned to expand the sensitivity to this problem as well as developing new

analytical tools to prevent it.
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• Unlike so many studies that only present just the pros of DMs, the provided

snapshot of the current state-of-the-art abdomen organ segmentation methods

revealed the cons of DMs. Although it is an indisputable fact that future

segmentation methods will be based on DMs, ensemble methods are also

expected to be integrated into these solutions. As the studies in this thesis show,

integration methods can solve the problems of DMs such as reproducibility and

eliminate the obstacles between their academic studies and real-life applications.

In this way, it may be possible to solve real-life problems with DMs, which is the

main purpose of science. It is hoped that the studies in this thesis will facilitate

the application of DMs to real-life problems through methods of fusion of the

results.

• In addition to using DMs as independent input blocks and combining them with

simple rules can be used to eliminate problems of DMs, also there is no need

to have an individual design for specific problems. The general message for this

analysis is that there is an alternative way to reach promising segmentation results

via DMs without having high programming skills.

• A new ensemble method (Logit combiner) has been designed and implemented

on medical image segmentation problem. Applying a transformation to the

output of DMs increased segmentation accuracy as well as reduced overfitting.

Although it is not possible to use complex but successful ensemble methods

such as bagging, boosting due to the limited amount of the data, training a few

parameters can be used as indicated in this thesis.

In future, it is planned to apply integration methods to more challenging problems

rather than healthy liver segmentation in light of the results in this thesis. The studies

on the segmentation of liver veins are the first attempt for this purpose in this thesis. It

is expected to integrate fusion approaches to further studies on different organs such as

the brain and different modalities such as fMRI. To enrich the knowledge in this field,

a novel challenge will be held.
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