

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

DISTRIBUTED COMPUTING ON
BEOWULF CLUSTERS

by

Oğuz AKAY

February, 2008

ĐZMĐR

DISTRIBUTED COMPUTING ON

BEOWULF CLUSTERS

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Computer Engineering, Computer Engineering Program

by

Oğuz AKAY

February, 2008

ĐZMĐR

 ii

Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “DISTRIBUTED COMPUTING ON

BEOWULF CLUSTERS” completed by OĞUZ AKAY under supervision of

PROF. DR. ALP KUT and we certify that in our opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Supervisor

Thesis Committee Member Thesis Committee Member

Examining Committee Member Examining Committee Member

Prof.Dr. Cahit HELVACI
Director

Graduate School of Natural and Applied Sciences

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Prof. Dr. Alp Kut, for

his confidence in me, and for his guidance.

I am grateful to Assoc. Prof. Dr. Yalçın Çebi and Asst. Prof. Dr. Ahmet Özkurt

for spending their time for this thesis in term examinations and for their valuable

advises.

I am indepted to my brother, Asst. Prof. Dr. Olcay Akay for his help.

I would like to thank my managers in Astron, Yaşar Holding for supporting my

academic career.

Finally, my special thanks go to my parents and to my wife, Filiz, for their love,

support, and patience during the last six years.

Oğuz AKAY

 iv

DISTRIBUTED COMPUTING ON

BEOWULF CLUSTERS

ABSTRACT

Building low cost Beowulf style clusters by using tens or hundreds of PCs is a

popular method to achieve higher computing capacities. To gain advantages of such

a computing platform, a load balancing scheme is needed for transparent distribution

of loads of individual computers throughout the whole cluster in a scalable and

efficient manner.

In this thesis a scalable cluster architecture and a load balancing model for

heterogeneous Beowulf cluster environments are presented. For scalability issues the

system relies on a hierarchically centralized architecture. To have general purpose

characteristics the proposed load balancing model offers some dynamic and

customizable properties in its design. For this purpose, multiple user defined load

indices are considered in load calculations like CPU utilization, memory usage,

network bandwidth capacity, etc. along with their combinations. In addition, the load

distribution policy is based on customizable adaptive load threshold values that

dynamically adjust the load distribution decisions according to the system state.

The thesis details the design, implementation and performance evaluations of

proposed models.

Keywords : beowulf, cluster, load balancing, heterogeneous, adaptive, dynamic,
hierarchical

 v

BEOWULF KÜMELERĐ ÜZERĐNDE

DAĞITIK ĐŞLEM YÜRÜTME

ÖZ

Daha yüksek işlem kapasitesi elde etmek amacıyla onlarca, hatta yüzlerce kişisel

bilgisayarı (PC) kullanarak düşük maliyetli Beowulf tipi kümeleri oluşturmak son

yıllarda eğilim kazanmıştır. Bu tür bir işlem platformunun avantajlarından

faydalanabilmek için işi kümenin içindeki bilgisayarlar arasında etkin bir biçimde ve

saydam olarak paylaştıracak, ölçeklenebilir özellikte bir yük dengeleme modeli

gerekmektedir.

Bu tezde, heterojen yapıdaki Beowulf kümeleri için tasarlanan ölçeklenebilir bir

küme mimarisi ile bu mimari üzerine inşa edilmiş bir yük degeleme modeli

sunulmaktadır. Ölçeklenebilir bir yapı için sistem hiyerarşik olarak

merkezileştirilmiş bir mimari üzerine yapılandırılmıştır. Genel amaçlı kullanım

özelliği kazandırmak amacıyla, önerilen yük dengeleme modeli, tasarımında bazı

dinamik ve uyarlanabilir unsurlar barındırmaktadır. Bu amaçla, yük değerleri

hesaplamasında, CPU durumu, bellek kullanımı, ağ arabirim bantgenişliği gibi farklı

kombinasyonlarda birden çok yük endeksi hesaplamaya dahil edilebilmektedir. Buna

ek olarak yük dağıtım modeli işleyişi, değiştirilebilir tarzda tasarlanmış ve sistemin

anlık durumuna göre yük dağıtma kararlarını dinamik olarak değiştirebilen

uyarlanabilir yük eşik değerlerine dayandırılmıştır.

Tez içerisinde, önerilen modellerin tasarım, uygulama ve performans

değerlendirmeleri detayları ile yer almaktadır.

Anahtar sözcükler: beowulf, küme, yük dengeleme, heterojen, uyarlanabilir,
dinamik, hiyerarşik

 vi

CONTENTS

 Page

THESIS EXAMINATION RESULT FORM...ii

ACKNOWLEDGEMENTS ..iii

ABSTRACT .. iv

ÖZ... v

CHAPTER ONE - INTRODUCTION ... 1

1.1 Area of Research.. 1

1.2 Scope of Research.. 2

1.3 Research Objectives... 2

1.4 Outline of the Thesis.. 7

CHAPTER TWO – RELATED WORK .. 8

2.1 Cluster Computing... 8

 2.1.1 History of Clustering.. 8

2.1.2 Beowulf Clusters.. 13

 2.1.3 A General Cluster Architecture ... 14

 2.1.4 Types of Clusters ... 17

2.2 Load Balancing In Distributed Systems .. 19

 2.2.1 The Concept of Load Distribution ... 19

 2.2.2 The Classification of Distributed Scheduling .. 21

 2.2.3 Components of A Load Distribution Algorithm...................................... 26

 2.2.4 Load Distribution Algorithms.. 29

 2.2.4.1 Sender-initiated Algorithms ... 29

 2.2.4.2 Receiver-initiated Algorithms .. 31

 2.2.4.3 Symmetrically Initiated Algorithms... 33

 vii

 2.2.4.4 Adaptive Algorithms.. 33

 2.2.4.5 A stable Sender-initiated Adaptive Algorithm................................. 36

CHAPTER THREE - THE CLUSTER INFRASTRUCTURE MODEL 38

3.1 CIM Architecture... 38

3.2 Communication in CIM... 39

3.3 Fault Tolerance in CIM ... 40

3.4 Formal Protocol Design of CIM .. 41

 3.4.1 Finite State Machines... 42

3.4.1.1 Cluster Manager ... 42

3.4.1.2 Node Manager .. 45

3.4.1.3 Node ... 48

3.4.2 Message And Time Analysis ... 50

3.4.2.1 Joining A Node... 50

3.4.2.2 Node Crash Detection and Removal .. 51

3.4.2.3 Node Manager Crash Detection and Recovery................................ 51

3.4.2.4 Cluster Manager Crash Detection and Recovery 52

3.4.2.5 Cluster Split and Starting a New NM... 53

CHAPTER FOUR - THE LOAD BALANCING MODEL 55

4.1 System Architecture... 55

4.2 Messaging infrastructure ... 56

4.3 Load Balancing Algorithm .. 57

 4.3.1 Local Load Sharing.. 57

 4.3.2 Global Load Sharing .. 58

 4.3.3 Load Information ... 59

 4.3.4 Load Sharing Thresholds ... 60

 4.4 Formal Protocol Design of Load Balancing Model.................................... 61

 4.4.1 Finite State Machines... 62

 4.4.1.1 Cluster Manager ... 62

 viii

 4.4.1.2 Node Manager .. 63

 4.4.1.3 Node ... 66

 4.4.2 Message and Time Analysis .. 67

 4.4.2.1 Local Load Sharing .. 67

 4.4.2.2 Global Load Sharing .. 68

CHAPTER FIVE - THE IMPLEMENTATION... 69

5.1 The Implementation of CIM.. 69

 5.1.1 Multithreaded Process Architecture4.3 Load Balancing Algorithm........ 69

 5.1.2 Thread Implementation, Communication, Synchronization and Timers. 71

 5.1.3 Implementation of Communication ... 73

5.2 The Implementation of Load Balancing Model... 74

CHAPTER SIX - EXPERIMENTS AND EVALUATION OF RESULTS......... 76

6.1 Tests For CIM.. 76

6.1.1 Joining A N To The Cluster... 76

6.1.2 N Crash Test .. 77

6.1.3 NM Crash Test ... 78

6.1.4 CM Crash Test ... 79

6.1.5 Split Operation Test ... 80

6.1.6 Summary of Test Results ... 82

6.2 Tests For Load Balancing Model .. 82

 6.2.1 Test 1: 2x8 Cluster ... 85

 6.2.3 Test 2: 4x8 Cluster ... 89

 6.2.4 Test 3: 6x8 Cluster ... 93

 6.2.5 Test 4: 4x16 Cluster ... 97

 6.2.6 Test 5: 4x16 Cluster without Global Load Sharing 101

 6.2.7 Test 6: 4x16 Cluster without Load Sharing ... 104

 6.2.8 Evaluation of Results ... 106

 ix

CHAPTER SEVEN - CONCLUSIONS AND FUTURE DIRECTIONS.......... 110

REFERENCES ... 113

APPENDICES .. 116

 Appendix A - Pseudocodes of CIM Modules

 A.1 Pseudocode of CM Module.. 116

 A.2 Pseudocode of CM Module.. 117

 A.3 Pseudocode of CM Module.. 119

Appendix B - Flowcharts of Load Balancing Modules 121

 B.1 Flowchart of CM Module... 121

 B.2 Flowchart of NM Module .. 125

 B.3 Flowchart of N Module .. 131

 1

CHAPTER ONE

INTRODUCTION

1.1 Area of Research

Cluster computing is a technology of connecting multiple computers together to

behave like a single computer. Clustering is generally used for high performance

parallel processing, load balancing and high availability.

Clustering is almost as old as mainframe computing. From the earliest days,

developers wanted to create applications that needed more computing power than a

single system could provide. Then applications that could take advantage of

computing in parallel were develeoped to run on multiple processors at once.

Clusters can also enhance the reliability of a system, so that failure of any one part

would not cause the whole system to become unavailable.

After the mainframes, mini-computers and technical workstations were also

connected in clusters. These systems used special hardware and special interconnect

hardware and communications protocols. The challenge with these special clusters is

that the hardware and software tend to be very expensive, and vendors may stop

support of the product. Some vendors proposed open clusters built on their operating

systems and commodity hardware. Although neither of these proposed clustering

environments were deployed, the idea of using off-the-shelf hardware to build

clusters was underway. Now many of the largest clusters in existence are based on

standard PC hardware, often running Linux.

Networks of Workstations (NOW) technology has been introduced to be a viable

replacement for conventional supercomputers performing trillions of calculations per

second (Castanegra, Cheng, & Fatoohi, 1994). Linux based Beowulf clusters built on

that concept were used in some areas requiring high performance computing (HPC)

where parallel computers run some specialized applications allowing scientific

institutions and enterprises to perform computations, modeling, rendering,

 2

simulations, visualizations and other sorts of tasks that a few years ago were limited

to very large computer centers (Sterling, Becker, Dorband, Savarese, Ranawake, &

Packer, 1995). They were widely used than any other type of parallel computer

because of their low cost, flexibility, and accessibility (Dongarra, Sterling, Simon, &

Strohmaier, 2005). While usually clusters are constructed by tightly-connected

computers, they are also adapted to utilize the idle time of nondedicated loosely

coupled workstations (Soria, Pérez-Segarra, & Oliva, 2002).

A Beowulf cluster is a distributed system consisting of inexpensive computers,

built from off-the-shelf components, connected together cheaply, usually in an

Ethernet network infrastructure (Meredith, Carrigan, Brockman, Cloninger,

Privoznik, & Williams, 2003). It enables leveraging the investment already made in

PCs and workstations. In addition, it is relatively easy to increase the computing

capacity by simply adding new PCs to the network.

The use of clusters for the purpose of load balancing is a very popular subject.

Due to their massively parallel nature, clusters were generally used to solve complex

computational problems in many areas like 3D modelling, neural networks and

biology. These clusters require specialized parallel applications designed for the

problem, like those written using the MPI (Walker, & Dongarra, 1996) or PVM

(Sunderam, Geist, Dongarra, & Manchek, 1994) libraries. The factor that

differentiates load balancing approach from the others is the lack of a single parallel

program that runs on each node of the cluster. Instead, there is a load balancing

component, usually called the distributed task scheduler, that usually runs a specific

algorithm to distribute the workload across the nodes of the cluster. Ideally, the load

distribution scheme tries to balance the workload among the machines in the cluster,

decreasing response times and increasing overall throughput (Shivaratri, Krueger, &

Singhal, 1992).

The explicit software design requirement of parallel applications running on

Beowulf clusters is sometimes a problem. Since it is the job of the software to

distribute the work by dividing it to subproblems to be executed in a parallel manner

 3

on different nodes of the cluster, a program written in nondistributed style has to be

converted into a distributed application with an embedded load distribution

mechanism to run on a Beowulf cluster (Adams, 2005). The concept of load

balancing in clusters was suggested to solve this issue and hide the load distribution

details from the application and its programmer. In this concept, instead of a parallel

application, usually a middleware component or subsystem, the distributed

scheduler, as in PANTS (Claypool, & Finkel, 2002) and CONDOR (Thain,

Tannenbaum, & Livny, 2005) isolates the distributed resources from applications and

transparently distributes the workload throughout the cluster.

In order for a cluster to be scalable, it must ensure that each server is fully

utilized. The standard technique for accomplishing this is load balancing. The basic

idea behind load balancing is that by distributing the load proportionally among all

the servers in the cluster, the servers can each run at full capacity, while all requests

receive the lowest possible response time. In a web server scenario, load-balancing

refers to the technique of routing user requests over a certain number of networked

computers, so as to keep the average usage of any system's resource approximately

the same within that network that acts as a functional unit.

In distributed systems, an attempt to distribute workload equally involves very

high computational overheads. Most of the work is spent on collecting global state. If

the applications considered demonstrates a pattern of frequent communication and

synchronization, this global state changes rapidly, making load balancing unviable.

Furthermore, if the grain size of the transfered work is not big enough to amortize the

load balancing overheads, load balancing is not preferable even if the balancer

algorithm guarantees accurate decisions based on global system state. In these

situations, an alternative to distributing workload equally, is to ensure that all nodes

are busy. Reducing idle times, and thereby the total program execution time is a far

more preferable objective than attempting to distribute the workload equally. This

strategy is called load sharing. Most systems implement load sharing rather than load

balancing. These two terms are now being used interchangeably.

 4

In general, clusters can provide both high availability and scalability for important

computer applications such as business, medical and scientific applications. Much

research has gone in to clustering technology over recent years, and quite a few

solutions exist to provide load balancing services.

1.2 Scope of Research

The research presented in this thesis primarily addresses the problem of building

scalable cluster architectures and utilizing the capacity of resources of such systems

by efficient distribution of loads through these resources. The cluster components are

ordinary independent personal computers with similar architectures but different

hardware specifications (CPU, memory, disk, network interface, etc.) running Linux

operating system. These computers are connected via a high speed (such as ethernet)

local or campus area network and they can communicate with each other directly by

a common network and transport protocol supporting unicast and multicast

communication methods (like UDP/IP).

The research focuses on the arrangement of the computing resources and load

distribution techniques on general purpose Beowulf clusters rather than those

designed for running specialized applications to solve specific problems. For this

reason, task types, patterns or their behaviours are not considered. Besides the

organization of data storage (central or distributed file systems and directory

structures, replication of data, etc.) is not in the scope of this research.

1.3 Research Objectives

The aim of the project is designing a load balancing model for Beowulf style

cluster systems. The model to be designed targets some benefits to cluster systems.

Some of these are:

• Scalability: Cluster systems are scalable in that performance can be

increased beyond that of a single node by adding more nodes to the cluster.

 5

This is a great advantage in that if the load that is needed to share expands

beyond expectation, simply extra hardware is added to the cluster to increase

its capacity. The system should handle tens to hundreds of nodes effectively

with reasonable and foreseeable overhead.

• Availability: It is a measure of how well a computer system can

continuously deliver services to clients. Because of the failover features of

most modern cluster technology, it is much more likely that the cluster will

be available to offer services to its clients, as it is unaffected by most failures

in individual parts of the cluster. The other nodes will each have to deal with

the small increase in traffic that they will experience because of the failure of

one node, but the result is usually not catastrophic.

• Manageability/Flexibility: Cluster management systems offer

software to inspect the overall status of the cluster, to perform manual load

balancing and set parameters for automatic load balancing and to perform

rolling upgrades of software.

• Lower total cost of ownership: Because of the reduction on

downtime that cluster-based load balancing provides, the cost of

administrative support for the system and also the amount of money that is

lost through downtime is reduced.

There are some considerations for the design of the model. These are:

• Heterogeneous resources: Heterogeneous cluster systems are

multiprocessor systems that may have nodes of dissimilar types. Design

freedom can lead to heterogeneity as machines can have;

 • Different processor speeds,

 • Different memory sizes,

 • Different I/O speeds,

 6

 • Different network interface speeds.

 The heterogeneity may even include nodes that have processors of dissimilar

 architectures, which have distinct instruction sets, byte orderings, and

 different operating systems, but this type of heterogeneity is not scope of this

 research.

• Dynamic loads: the system has a dynamic nature, that is the load

balancing scheme makes the load distribution decisions at runtime, without

any prior knowledge about the load patterns (task types, their submission

times, nodes to be submitted, etc.).

 As to be discussed in the next chapter, dynamic load distribution algorithms

 use system state information (the loads at nodes), at least in part, to make the

 load distribution decisions, which static algorithms make no use of such

 information.

• Adaptivity of operations: The model has adaptive characteristics,

meaning that the load distribution scheme adjusts its activities with respect to

the current state of the system. Moreover the level of adaptivity can be

adjusted by customizing some parameters of the system according to needs.

 Adaptive load distribution systems adapt their activities by dynamically

 changing the parameters of the algorithm to suit changing of the system state.

 For example, an adaptive system may adjust its activities at high system load

 states to prevent imposing extra overhead.

• Load indices: The system considers combination of multiple load

indices to calculate the load levels of the nodes. Moreover the selection of the

load indices is a customizable process. Hence, it is configurable according to

needs that more than one load index can be selected to be involved load

calculations with different importance factors (weights).

 7

 Load is the demand or usage of some system resource. The load metric is

 used to determine if a node is “free" or “busy". In other words, the load

 metric is used to decide if the machine should attempt to lessen it's load by

 transferring tasks, or take on more load by accepting tasks from other

 machines in the cluster.

 A load index of a node can be comprised of a number of things;

 • CPU queue length,

 • CPU usage,

 • Idle process run time,

 • CPU load average,

 • Average response time,

 • Memory usage,

 • Memory page-fault rate,

 • I/O queue length,

 • I/O service time,

 • I/O blocks read/written,

 • Network bandwidth utilization,

 • Context switching,

 • Interrupts,

 • Task arrival rate,

 • etc.

1.4 Outline of the Thesis

Chapter 2 discusses some theoretical and background information around the area

of research. In Chapter 3 the design of hierarchically layered the cluster architecture

and its fault tolerant management model is described. Chapter 4 presents the load

balancing model in detail. The experiments and their results about measuring the

performance of the models are discussed in Chapter 5. Finally, Chapter 6 contains

some concluding remarks and suggestions for future work.

 8

CHAPTER TWO

RELATED WORK

2.1 Cluster Computing

2.1.1 History of Clustering

The computing industry is one of the fastest growing industries and it is fueled by

the rapid technological developments in the areas of computer hardware and

software. The technological advances in hardware include chip development and

fabrication technologies, fast and cheap microprocessors, as well as high bandwidth

and low latency interconnection networks. Software technology is also developing

fast. Operating Systems, programming languages, development methodologies, and

tools, are now available. This has enabled the development and deployment of

applications catering to scientific, engineering, and commercial needs (Baker, &

Buyya, 1999).

From the earliest days, developers wanted to create applications that needed more

computing power than a single system could provide. Then came applications that

could take advantage of computing in parallel, to run on multiple processors at once

(Harbaugh, 2004). The main reason for creating and using parallel computers is that

parallelism is one of the best ways to overcome the speed bottleneck of a single

processor. In addition, the price performance ratio of a small cluster-based parallel

computer as opposed to a minicomputer is much smaller and consequently a better

value. In short, developing and producing systems of moderate speed using parallel

architectures is much cheaper than the equivalent performance of a sequential

system. In addition, clusters can enhance the reliability of a system, so that failure of

any one part would not cause the whole system to become unavailable.

The taxonomy of cluster systems is based on how their processors, memory, and

interconnect are laid out. The most common systems are (Baker, & Buyya, 1999):

• Massively Parallel Processors (MPP)

 9

• Symmetric Multiprocessors (SMP)

• Cache-Coherent Nonuniform Memory Access (CC-NUMA)

• Distributed Systems

• Clusters

Table 2.1 shows a modified version comparing the architectural and functional

characteristics of these machines (Hwang, & Xu, 1998).

Table 2.1 Key characteristics of scalable parallel computers

An MPP is usually a large parallel processing system with a shared-nothing

architecture. It typically consists of several hundred processing elements (nodes),

which are interconnected through a high-speed interconnection network/switch. Each

node can have a variety of hardware components, but generally consists of a main

memory and one or more processors. Special nodes can, in addition, have peripherals

such as disks or a backup system connected. Each node runs a separate copy of the

operating system.

 10

SMP systems have from 2 to 64 processors and can be considered to have

shared-everything architecture. In these systems, all processors share all the global

resources available (bus, memory, I/O system); a single copy of the operating system

runs on these systems.

CC-NUMA is a scalable multiprocessor system having a cache-coherent

nonuniform memory access architecture. Like an SMP, every processor in a

CC-NUMA system has a global view of all of the memory. This type of system gets

its name (NUMA) from the nonuniform times to access the nearest and most remote

parts of memory.

Distributed systems can be considered conventional networks of independent

computers. They have multiple system images, as each node runs its own operating

system, and the individual machines in a distributed system could be, for example,

combinations of MPPs, SMPs, clusters, and individual computers.

At a basic level a cluster is a collection of workstations or PCs also called NOWs

(Networks of Workstations) that are interconnected via some network technology

(Baker, & Buyya, 1999). For parallel computing purposes, a cluster will generally

consist of high performance workstations or PCs interconnected by a high-speed

network. A cluster works as an integrated collection of resources and can have a

single system image spanning all its nodes. Such a cluster can provide fast an reliable

services to computationally intensive applications.

In the 1980s, it was believed that computer performance was best improved by

creating faster and more efficient processors. This idea was challenged by parallel

processing, which in essence means linking together two or more computers to

jointly solve some problem. Since the early 1990's there has been an increasing trend

to move away from expensive and specialised propriety parallel supercomputers

towards networks of workstations. Among the driving forces that have enabled this

transition has been the rapid improvement and availability of commodity

 11

high-performance components for workstations and networks. These technologies

are making networks of computers (PCs or workstations) an appealing vehicle for

parallel processing and this is consequently leading to low-cost commodity

supercomputing (Baker, & Buyya, 1988).

Clusters built with off-the-shelf hardware are generally AMD or Intel-based

servers, networked with gigabit Ethernet, and using Infiniband, MyriNet, SCI, or

some other high-bandwidth, low-latency networks for the interconnect; the inter-

node data transfer network. Linux is becoming the cluster OS of choice, due to its

similarity to UNIX, the wide variety of open-source software already available, as

well as the strong software development tools available.

The use of parallel processing as a means of providing high performance

computational facilities for large-scale and grand-challenge applications has been

investigated widely. Until recently, however, the benefits of this research were

confined to the individuals who had access to such systems. The trend in parallel

computing is to move away from specialized traditional supercomputing platforms,

such as the Cray/SGI T3E, to cheaper, general purpose systems consisting of loosely

coupled components built up from single or multiprocessor PCs or workstations.

This approach has a number of advantages, including being able to build a platform

for a given budget which is suitable for a large class of applications and workloads.

The use of clusters to prototype, debug, and run parallel applications is becoming

an increasingly popular alternative to using specialized, typically expensive, parallel

computing platforms. An important factor that has made the usage of clusters a

practical proposition is the standardization of many of the tools and utilities used by

parallel applications. Examples of these standards are the message passing library

MPI and parallel virtual machine PVM. In this context, standardization enables

applications to be developed, tested, and even run on NOW, and then at a later stage

to be ported, with little modification, onto dedicated parallel platforms where

CPU-time is accounted and charged.

 12

The following list highlights some of the reasons NOW is preferred over

specialized parallel computers (Baker, & Buyya, 1999) :

� Individual workstations are becoming increasingly powerful. That is,

workstation performance has increased dramatically in the last few years and

is doubling every 18 to 24 months. This is likely to continue for several years,

with faster processors and more efficient multiprocessor machines coming

into the market.

� The communications bandwidth between workstations is increasing

and latency is decreasing as new networking technologies and protocols are

implemented in a LAN.

� Workstation clusters are easier to integrate into existing networks than

special parallel computers.

� Typical low user utilization of personal workstations.

� The development tools for workstations are more mature compared to

the contrasting proprietary solutions for parallel computers, mainly due to the

nonstandard nature of many parallel systems.

� Workstation clusters are a cheap and readily available alternative to

specialized high performance computing platforms.

� Clusters can be easily grown; node's capability can be easily increased

by adding memory or additional processors.

Clearly, the workstation environment is better suited to applications that are not

communication-intensive since a LAN typically has high message start-up latencies

and low bandwidths. If an application requires higher communication performance,

 13

the existing commonly deployed LAN architectures, such as Ethernet, are not

capable of providing it.

2.1.2 Beowulf Clusters

Beowulf is a project to produce parallel Linux clusters from off-the-shelf

hardware and freely available software. Conceived in 1994 at the Goddard Space

Flight Center, there are now dozens of Beowulf-class systems in use in Government

and at Universities worldwide. Many of these organisations have joined to form a

Beowulf consortium who actively share information and software for Beowulf

systems. Some members include: Caltech, Los Alamos National Laboratory, Oak

Ridge National Laboratory, Sandia National Laboratory, Duke, Oregon, Clemson

and Washington Universities, The US National Institute of Health (NIH), as well as

DESY in Germany, Kasetsart University in Thailand. NAS, Goddard Space Flight

Center, Ames and various NASA sites and divisions have built major Beowulf

systems. Other small systems have also been built at the University of Southern

Queensland and the University of Adelaide amongst many other sites (Dickson,

Homic, & Villamin, 2000) .

The original Beowulf parallel workstation prototyped by NASA combined sixteen

486DX PC’s with dual Ethernet networks, 0.5 GByte of main memory, and 20

GBytes of storage, and providing up to eight times the disk I/O bandwidth of

conventional workstations. Since the Beowulf design uses commodity hardware

components and freely available systems software, NASA’s project has

demonstrated how the price/performance ratio of this route is attractive for many

academic and research organisations.

One of the most difficult tasks in designing and commissioning a Beowulf cluster

is tracking the cost/performance benefits from the multitude of different possible

configuration options.

Broadly the design choices in order of importance for performance are:

 14

1. Processor/Platform (eg PC, iMac, Alpha, O2,...)

2. Network infrastructure (Ethernet, Fast Ethernet, Myrinet, SCI,...)

3. Disk configuration (Diskless, EIDE or SCSI interface...)

4. Operating system (Linux or Solaris or other...)

The biggest advantage of a Beowulf cluster over massively parallel processors

(MPPs) or supercomputers is the cost. Since inexpensive personal computers are

used as nodes, a powerful Beowulf system can be built without spending a fortune.

This cost advantage of ten can be as much as an order of magnitude over commercial

systems of comparable capabilities. Another advantage of a Beowulf cluster is

scalability. A wide range of system sizes is possible from a small number of nodes

connected by a single low cost hub to system incorporating topologies of many

hundreds of processors. These systems can be easily expanded over time as

additional resources become available or extended requirements drive system size

upward. The Beowulf is affordable, powerful, scalable, and easily expandable

(Hawick, Grove, & Vaughan, 1999).

2.1.3 A General Cluster Architecture

A cluster is a type of parallel or distributed processing system, which consists of a

collection of interconnected stand-alone computers working together as a single,

integrated computing resource. A computer node can be a single or multiprocessor

system (PCs, workstations, or SMPs) with memory, I/O facilities, and an operating

system. A cluster generally refers to two or more computers (nodes) connected

together. The nodes can exist in a single cabinet or be physically separated and

connected via a LAN. An interconnected (LAN-based) cluster of computers can

appear as a single system to users and applications. Such a system can provide a

cost-effective way to gain features and benefits (fast and reliable services) that have

historically been found only on more expensive proprietary shared memory systems.

The typical architecture of a cluster is shown in Figure 2.1 (Baker, & Buyya, 1999).

 15

Figure 2.1 A general cluster architecture.

The following are some prominent components of cluster computers:

• Multiple High Performance Computers (PCs, Workstations, or SMPs)

• State-of-the-art Operating Systems (Layered or Micro-kernel based)

• High Performance Networks/Switches (such as Gigabit Ethernet and

Myrinet)

• Network Interface Cards (NICs)

• Fast Communication Protocols and Services (such as Active and Fast

Messages)

• Cluster Middleware (Single System Image (SSI) and System

Availability Infrastructure)

o Hardware (such as Digital (DEC) Memory Channel, hardware

DSM, and SMP techniques)

o Operating System Kernel or Gluing Layer (such as Solaris MC

and GLUnix)

o Applications and Subsystems

� Applications (such as system management tools and

electronic forms)

� Runtime Systems (such as software DSM and parallel

file system)

 16

� Resource Management and Scheduling software (such

as LSF (Load Sharing Facility) and CODINE (COmputing in

DIstributed Networked Environments))

• Parallel Programming Environments and Tools (such as compilers,

PVM (Parallel Virtual Machine), and MPI (Message Passing Interface))

• Applications

o Sequential

o Parallel or Distributed

The network interface hardware acts as a communication processor and is

responsible for transmitting and receiving packets of data between cluster nodes via a

network/switch. Communication software offers a means of fast and reliable data

communication among cluster nodes and to the outside world. Often, clusters with a

special network/switch like Myrinet use communication protocols such as active

messages for fast communication among its nodes. They potentially bypass the

operating system and thus remove the critical communication overheads providing

direct user-level access to the network interface.

The cluster nodes can work collectively, as an integrated computing resource, or

they can operate as individual computers. The cluster middleware is responsible for

offering an illusion of a unified system image (single system image) and availability

out of a collection on independent but interconnected computers. Programming

environments can offer portable, efficient, and easy-to-use tools for development of

applications. They include message passing libraries, debuggers, and profilers. It

should not be forgotten that clusters could be used for the execution of sequential or

parallel applications.

2.1.4 Types of Clusters

Clusters offer the following features at a relatively low cost (Baker, & Buyya,

1999) :

 17

� High Performance

� Expandability and Scalability

� High Throughput

� High Availability

Cluster technology permits organizations to boost their processing power using

standard technology (commodity hardware and software components) that can be

acquired/purchased at a relatively low cost. This provides expandability--an

affordable upgrade path that lets organizations increase their computing power--

while preserving their existing investment and without incurring a lot of extra

expenses. The performance of applications also improves with the support of

scalable software environment. Another benefit of clustering is a failover capability

that allows a backup computer to take over the tasks of a failed computer located in

its cluster. Clusters are classified into many categories based on various factors as

indicated below (Baker, & Buyya, 1999).

1. Application Target - Computational science or mission-critical applications.

� High Performance Clusters (HPCs)

� High Availability (HA) Clusters

� Load Balancing (LB) Clusters

2. Node Ownership - Owned by an individual or dedicated as a cluster node.

� Dedicated Clusters

� Nondedicated Clusters

The distinction between these two cases is based on the ownership of the nodes in

a cluster. In the case of dedicated clusters, a particular individual does not own a

workstation; the resources are shared so that parallel computing can be performed

across the entire cluster. The alternative nondedicated case is where individuals own

workstations and applications are executed by stealing idle CPU cycles. The

motivation for this scenario is based on the fact that most workstation CPU cycles

are unused, even during peak hours. Parallel computing on a dynamically changing

 18

set of nondedicated workstations is called adaptive parallel computing. In

nondedicated clusters, a tension exists between the workstation owners and remote

users who need the workstations to run their application. The former expects fast

interactive response from their workstation, while the latter is only concerned with

fast application turnaround by utilizing any spare CPU cycles. This emphasis on

sharing the processing resources erodes the concept of node ownership and

introduces the need for complexities such as process migration and load balancing

strategies. Such strategies allow clusters to deliver adequate interactive performance

as well as to provide shared resources to demanding sequential and parallel

applications.

3. Node Hardware - PC, Workstation, or SMP.

� Clusters of PCs (CoPs) or Piles of PCs (PoPs)

� Clusters of Workstations (COWs)

� Clusters of SMPs (CLUMPs)

4. Node Operating System - Linux, Windows, Solaris, AIX, etc.

� Linux Clusters (e.g., Beowulf)

� Solaris Clusters (e.g., Berkeley NOW)

� Microsoft Clusters (e.g., HPVM)

� AIX Clusters (e.g., IBM SP2)

� HP-UX clusters

5. Node Configuration - Node architecture and type of OS it is loaded with.

� Homogeneous Clusters: All nodes will have similar architectures and

run the same OSs.

� Heterogeneous Clusters: All nodes will have different architectures

and run different OSs.

6. Levels of Clustering - Based on location of nodes and their count.

 19

� Group Clusters (#nodes: 2-99): Nodes are connected by SANs

(System Area Networks) like Myrinet and they are either stacked into a frame

or exist within a center.

� Departmental Clusters (#nodes: 10s to 100s)

� Organizational Clusters (#nodes: many 100s)

� National Metacomputers (WAN/Internet-based): (#nodes: many

departmental / organizational systems or clusters)

� International Metacomputers (Internet-based): (#nodes: 1000s to many

millions)

Individual clusters may be interconnected to form a larger system (clusters of

clusters) and, in fact, the Internet itself can be used as a computing cluster. The use

of wide-area networks of computer resources for high performance computing has

led to the emergence of a new field called Metacomputing.

2.2 Load Balancing In Distributed Systems

2.2.1 The Concept of Load Distribution

A distributed system consists of a collection of autonomous computers connected

by a local area communication network. Users submit tasks at their host computers

for processing. As Figure 2.2 shows, the random arrival of tasks in such an

environment can cause some computers to be heavily loaded while other computers

are idle or only lightly loaded. Load distributing improves performance by

transferring tasks from heavily loaded computers, where service is poor, to lightly

loaded computers, where the tasks can take advantage of computing capacity that

would otherwise go unused (Shivaratri, Krueger, & Singhal, 1992).

 20

 Figure 2.2 A system without load distribution (Shivaratri, Krueger, & Singhal, 1992).

If workloads at some computers are typically heavier than at others, or if some

processors execute tasks more slowly than others, the situation shown in Figure 1 is

likely to occur often. The usefulness of load distributing is not so obvious in systems

in which all processors are equally powerful and have equally heavy workloads over

the long term. However, Livny and Melman (1982) have shown that even in such a

homogeneous distributed system, at least one computer is likely to be idle while

other computers are heavily loaded because of statistical fluctuations in the arrival of

tasks to computers and task-service-time requirements. Therefore, even in a

homogeneous distributed system, system performance can potentially be improved

by appropriate transfers of workload from heavily loaded computers (senders) to idle

or lightly loaded computers (receivers).

A widely used performance metric is the average response time of tasks. The

response time of a task is the time elapsed between its initiation and its completion.

Minimizing the average response time is often the goal of load distribution.

 21

A key issue in the design of dynamic load-distributing algorithms is identifying a

suitable load index. A load index predicts the performance of a task if it is executed

at some particular node. To be effective, load index readings taken when tasks

initiate should correlate well with task-response times. Load indexes that have been

studied and used include the length of the CPU queue, the average CPU queue length

over some period, the amount of available memory, the context-switch rate, the

system call rate, and CPU utilization. Researchers have consistently found significant

differences in the effectiveness of such load indexes — and that simple load indexes

are particularly effective. For example, Kunz (1991) found that the choice of a load

index has considerable effect on performance, and that the most effective of the

indexes we have mentioned is the CPU queue length. Furthermore, Kunz found no

performance improvement over this simple measure when combinations of these

load indexes were used. It is crucial that the mechanism used to measure load be

efficient and impose minimal overhead.

2.2.2 The Classification of Distributed Scheduling

The operating system and management of the concurrent processes constitute

integral parts of the parallel and distributed environments. One of the biggest issues

in such systems is the development of effective techniques for the distribution of the

processes of a parallel program on multiple processors. The problem is how to

distribute (or schedule) the processes among processing elements to achieve some

performance goal(s), such as minimizing execution time, minimizing communication

delays, and/or maximizing resource utilization (Shirazi, Husson, & Kavi, 1995).

Process scheduling methods are typically classified into several subcategories

(Casavant, Kuhl, 1988) as depicted in Figure 2.3.

 22

Figure 2.3 Classification of scheduling methods (Casavant, Kuhl, 1988).

a) Local Versus Global: At the highest level, we may distinguish between local

and global scheduling. Local scheduling is involved with the assignment of processes

to the time-slices of a single processor. Since the area of scheduling on single-

processor systems, as well as the area of sequencing or job-shop scheduling, has been

actively studied for a number of years, this taxonomy will focus on global

scheduling. Global scheduling is the problem of deciding where to execute a process,

and the job of local scheduling is left to the operating system of the processor to

which the process is ultimately allocated. This allows the processors in a

multiprocessor increased autonomy while reducing the responsibility (and

consequently overhead) of the global scheduling mechanism. Note that this does not

imply that global scheduling must be done by a single central authority, but rather,

we view the problems of local and global scheduling as separate issues, and (at least

logically) separate mechanisms are at work solving each.

 23

b) Static Versus Dynamic: The next level in the hierarchy (beneath global

scheduling) is a choice between static and dynamic scheduling. This choice indicates

the time at which the scheduling or assignment decisions are made.

In the case of static scheduling, information regarding the total mix of processes

in the system as well as all the independent subtasks involved in a job or task force,

is assumed to be available by the time the program object modules are linked into

load modules. Hence, each executable image in a system has a static assignment to a

particular processor, and each time that process image is submitted for execution, it

is assigned to that processor. A more relaxed definition of static scheduling may

include algorithms that schedule task forces for a particular hardware configuration.

Over a period of time, the topology of the system may change, but characteristics

describing the task force remain the same. Hence, the scheduler may generate a new

assignment of processes to processors to serve as the schedule until the topology

changes again.

c) Optimal Versus Sub optimal: In the case that all information regarding the

state of the system as well as the resource needs of a process are known, an optimal

assignment can be made based on some criterion function. Examples of optimization

measures are minimizing total process completion time, maximizing utilization of

resources in the system, or maximizing system throughput. In the event that these

problems are computationally infeasible, suboptimal solutions may be tried. Within

the realm of suboptimal solutions to the scheduling problem, we may think of two

general categories.

d) Approximate Versus Heuristic: The first is to use the same formal

computational model for the algorithm, but instead of searching the entire solution

space for an optimal solution, we are satisfied when we find a "good" one. We will

categorize these solutions as suboptimal-approximate. The assumption that a good

solution can be recognized may not be so insignificant, but in the cases where a

metric is available for evaluating a solution, this technique can be used to decrease

 24

the time taken to find an acceptable solution (schedule). The factors which determine

whether this approach is worthy of pursuit include:

• Availability of a function to evaluate a solution.

• The time required to evaluate a solution.

• The ability to judge according to some metric the value of an optimal

solution.

• Availability of a mechanism for intelligently pruning the solution

space.

The second branch beneath the suboptimal category is labeled heuristic. This

branch represents the category of static algorithms which make the most realistic

assumptions about a priori knowledge concerning process and system loading

characteristics. It also represents the solutions to the static scheduling problem which

require the most reasonable amount of time and other system resources to perform

their function. The most distinguishing feature of heuristic schedulers is that they

make use of special parameters which affect the system in indirect ways. Often, the

parameter being monitored is correlated to system performance in an indirect instead

of a direct way, and this alternate parameter is much simpler to monitor or calculate.

For example, clustering groups of processes which communicate heavily on the same

processor and physically separating processes which would benefit from parallelism

directly decreases the overhead involved in passing information between processors,

while reducing the interference among processes which may run without

synchronization with one another. This result has an impact on the overall service

that users receive, but cannot be directly related (in a quantitative way) to system

performance as the user sees it. Hence, our intuition, if nothing else, leads us to

believe that taking the aforementioned actions when possible will improve system

performance. However, we may not be able to prove that a first-order relationship

between the mechanism employed and the desired result exists (Casavant, Kuhl,

1988).

 25

e) Optimal and Suboptimal Approximate Techniques: Regardless of whether a

static solution is optimal or suboptimal-approximate, there are four basic categories

of task allocation algorithms which can be used to arrive at an assignment of

processes to processors.

• Solution space enumeration and search.

• Graph theoretic.

• Mathematical programming.

• Queueing theoretic.

f) Dynamic Solutions: In the dynamic scheduling problem, the more realistic

assumption is made that very little a priori knowledge is available about the resource

needs of a process. It is also unknown in what environment the process will execute

during its lifetime. In the static case, a decision is made for a process image before it

is ever executed, while in the dynamic case no decision is made until a process

begins its life in the dynamic environment of the system. Since it is the responsibility

of the running system to decide where a process is to execute, it is only natural to

next ask where the decision itself is to be made.

g) Distributed Versus Nondistributed: The next issue (beneath dynamic

solutions) involves whether the responsibility for the task of global dynamic

scheduling should physically reside in a single processor (physically nondistributed)

or whether the work involved in making decisions should be physically distributed

among the processors. Here the concern is with the logical authority of the decision-

making process.

h) Cooperative Versus Noncooperative: Within the realm of distributed

dynamic global scheduling, we may also distinguish between those mechanisms

which involve cooperation between the distributed components (cooperative) and

those in which the individual processors make decisions independent of the actions

of the other processors (noncooperative). The question here is one of the degree of

autonomy which each processor has in determining how its own resources should be

 26

used. In the noncooperative case individual processors act alone as autonomous

entities and arrive at decisions regarding the use of their resources independent of the

effect of their decision on the rest of the system. In the cooperative case each

processor has the responsibility to carry out its own portion of the scheduling task,

but all processors are working toward a common system wide goal. In other words,

each processor's local operating system is concerned with making decisions in

concert with the other processors in the system in order to achieve some global goal,

instead of making decisions based on the way in which the decision will affect local

performance only. As in the static case, the taxonomy tree has reached a point where

we may consider optimal, suboptimal-approximate, and suboptimal-heuristic

solutions. The same discussion as was presented for the static case applies here as

well (Casavant, Kuhl, 1988).

In addition to the hierarchical portion of the taxonomy already discussed, there are

a number of other distinguishing characteristics which scheduling systems may have.

The following sections will deal with characteristics which do not fit uniquely under

any particular branch of the tree-structured taxonomy given thus far, but are still

important in the way that they describe the behavior of a scheduler. In other words,

the following could be branches beneath several of the leaves shown in Fig. 2 and in

the interest of clarity are not repeated under each leaf, but are presented here as a flat

extension to the scheme presented thus far. It should be noted that these attributes

represent a set of characteristics, and any particular scheduling subsystem may

possess some subset of this set. Finally, the placement of these characteristics near

the bottom of the tree is not intended to be an indication of their relative importance

or any other relation to other categories of the hierarchical portion. Their position

was determined primarily to reduce the size of the description of the taxonomy.

2.2.3 Components of A Load Distribution Algorithm

Typically, a dynamic load distributing algorithm has four components: a transfer

policy, a selection policy, a location policy, and an information policy (Shivaratri,

Krueger, & Singhal, 1992).

 27

a) Transfer policy: A transfer policy determines whether a node is in a suitable

state to participate in a task transfer, either as a sender or a receiver. Many proposed

transfer policies are threshold policies. Thresholds are expressed in units of load.

When a new task originates at a node, the transfer policy decides that the node is a

sender if the load at that node exceeds a threshold T1. On the other hand, if the load

at a node falls below T2, the transfer policy decides that the node can be a receiver

for a remote task. Depending on the algorithm, T, and T2 may or may not have the

same value.

Alternatives to threshold transfer policies include relative transfer policies.

Relative policies consider the load of a node in relation to loads at other system

nodes. For example, a relative policy might consider a node to be a suitable receiver

if its load is lower than that of some other node by at least some fixed value.

Alternatively, a node might be considered a receiver if its load is among the lowest in

the system.

b) Selection policy: Once the transfer policy decides that a node is a sender, a

selection policy selects a task for transfer. Should the selection policy fail to find a

suitable task to transfer, the node is no longer considered a sender. The simplest

approach is to select one of the newly originated tasks that caused the node to

become a sender. Such a task is relatively cheap to transfer, since the transfer is

nonpreemptive. A selection policy considers several factors in selecting a task:

1) The overhead incurred by the transfer should be minimal. For example, a small

task carries less overhead.

2) The selected task should be long lived so that it is worthwhile to incur the

transfer overhead.

3) The number of location-dependent system calls made by the selected task

should be minimal. Location-dependent calls are system calls that must be executed

 28

on the node where the task originated, because they use resources such as windows,

the clock, or the mouse that are only at that node.

c) Location policy: The location policy's responsibility is to find a suitable

"transfer partner" (sender or receiver) for a node, once the transfer policy has decided

that the node is a sender or receiver. A widely used decentralized policy finds a

suitable node through polling: A node polls another node to find out whether it is

suitable for load sharing. Nodes can be polled either serially or in parallel (for

example, multicast). A node can be selected for polling on a random basis, on the

basis of the information collected during the previous polls, or on a nearest neighbor

basis. An alternative to polling is to broadcast a query seeking any node available for

load sharing. In a centralized policy, a node contacts one specified node called a

coordinator to locate a suitable node for load sharing. The coordinator collects

information about the system (which is the responsibility of the information policy),

and the transfer policy uses this information at the coordinator to select receivers.

d) Information policy: The information policy decides when information about

the states of other nodes in the system is to be collected, from where it is to be

collected, and what information is collected. There are three types of information

policies:

1) Demand-driven policies: Under these decentralized policies, a node collects the

state of other nodes only when it becomes either a sender or a receiver, making it a

suitable candidate to initiate load sharing. A demand-driven information policy is

inherently a dynamic policy, as its actions depend on the system state. Demand-

driven policies may be sender, receiver, or symmetrically initiated. In sender-

initiated policies, senders look for receivers to which they can transfer their load. In

receiver-initiated policies, receivers solicit loads from senders. A symmetrically

initiated policy is a combination of both: Load-sharing actions are triggered by the

demand for extra processing power or extra work.

 29

2) Periodic policies: These policies, which may be either centralized or

decentralized, collect information periodically. Depending on the information

collected, the transfer policy may decide to transfer tasks. Periodic information

policies Generally do not adapt their rate of activity to the system state. For example,

the benefits resulting from load distributing are minimal at high system loads

because most nodes in the system are busy. Nevertheless, overheads due to periodic

information collection continue to increase the system load and thus worsen the

situation.

3) State-change-driven policies: Under state-change-driven policies, nodes

disseminate information about their states whenever their states change by a certain

degree. A state-change-driven policy differs from a demand-driven policy in that it

disseminates information about the state of a node, rather than collecting information

about other nodes. Under centralized state-change driven policies, nodes send state

information to a centralized collection point. Under decentralized state-change driven

policies, nodes send information to peers.

2.2.4 Load Distribution Algorithms

2.2.4.1 Sender-initiated algorithms.

Under sender-initiated algorithms, load-distributing activity is initiated by an

overloaded node (sender) trying to send a task to an underloaded node (receiver)

(Shivaratri, Krueger, & Singhal, 1992).

Transfer policy: Each of the algorithms uses the same transfer policy, a threshold

policy based on the CPU queue length. A node is identified as a sender if a new task

originating at the node makes the queue length exceed a threshold T. A node

identifies itself as a suitable receiver for a task transfer if accepting the task will not

cause the node's queue length to exceed T. Selection policy. All three algorithms

have the same selection policy, considering only newly arrived tasks for transfer.

 30

Location policy: The algorithms differ only in their location policies, which we

review in the following subsections.

a) Random: One algorithm has a simple dynamic location policy called random,

which uses no remote state information. A task is simply transferred to a node

selected at random, with no information exchange between the nodes to aid in

making the decision. Useless task transfers can occur when a task is transferred to a

node that is already heavily loaded (its queue length exceeds). An issue is how a

node should treat a transferred task. If a transferred task is treated as a new arrival,

then it can again be transferred to another node, providing the local queue length

exceeds T. If such is the case, then irrespective of the average load of the system, the

system will eventually enter a state in which the nodes are spending all their time

transferring tasks, with no time spent executing them. A simple solution is to limit

the number of times a task can be transferred. Despite its simplicity, this random

location policy provides substantial performance improvements over systems not

using load distributing.

b) Threshold: A location policy can avoid useless task transfers by polling a node

(selected at random) to determine whether transferring a task would make its queue

length exceed T. If not, the task is transferred to the selected node, which must

execute the task regardless of its state when the task actually arrives. Otherwise,

another node is selected at random and is polled. To keep the overhead low, the

number of polls is limited by a parameter called the poll limit. If no suitable receiver

node is found within the poll limit polls, then the node at which the task originated

must execute the task. By avoiding useless task transfers, the threshold policy

provides a substantial performance improvement over the random location policy.

c) Shortest: The two previous approaches make no effort to choose the best

destination node for a task. Under the shortest location policy, a number of nodes

(poll limit) are selected at random and polled to determine their queue length. The

node with the shortest queue is selected as the destination for task transfer, unless its

queue length is greater than or equal to T. The destination node will execute the task

 31

regardless of its queue length when the transferred task arrives. The performance

improvement obtained by using the shortest location policy over the threshold policy

was found to be marginal, indicating that using more detailed state information does

not necessarily improve system performance significantly.

Information policy: When either the shortest or the threshold location policy is

used, polling starts when the transfer policy identifies a node as the sender of a task.

Hence, the information policy is demand driven.

Sender-initiated algorithms using any of the three location policies cause system

instability at high system loads. At such loads, no node is likely to be lightly loaded,

so a sender is unlikely to find a suitable destination node. However, the polling

activity in sender-initiated algorithms increases as the task arrival rate increases,

eventually reaching a point where the cost of load sharing is greater than its benefit.

At a more extreme point, the workload that cannot be offloaded from a node,

together with the overhead incurred by polling, exceeds the node's CPU capacity and

instability results. Thus, he actions of sender-initiated algorithms are not effective at

high system loads and cause system instability, because the algorithms fail to adapt

to the system state.

2.2.4.2 Receiver-initiated algorithms

In receiver-initiated algorithms, load distributing activity is initiated from an

underloaded node (receiver), which tries to get a task from an overloaded node

(sender) (Shivaratri, Krueger, & Singhal, 1992).

Transfer policy: The algorithm's threshold transfer policy bases its decision on

the CPU queue length. The policy is triggered when a task departs. If the local queue

length falls below the threshold T then the node is identified as a receiver for

obtaining a task from a node (sender) to be determined by the location policy. A

node is identified to be a sender if its queue length exceeds the threshold T.

 32

Selection policy: The algorithm considers all tasks for load distributing, and can

use any of the approaches discussed before.

Location policy: The location policy selects a node at random and polls it to

determine whether transferring a task would place its queue length below the

threshold level. If not, then the polled node transfers a task. Otherwise, another node

is selected at random, and the procedure is repeated until either a node that can

transfer a task (a sender) is found or a static poll limit number of tries has failed to

find a sender. A problem with the location policy is that if all polls fail to find a

sender, then the processing power available at a receiver is completely lost by the

system until another task originates locally at the receiver (which may not happen for

a long time). The problem severely affects performance in systems where only a few

nodes generate most of the system workload and random polling by receivers can

easily miss them. The remedy is simple: If all the polls fail to find a sender, then the

node waits until another task departs or for a predetermined period before reinitiating

the load distributing activity, provided the node is still a receiver.

Information policy: The information policy is demand driven, since polling starts

only after a node becomes a receiver.

Receiver-initiated algorithms do not cause system instability because, at high

system loads, a receiver is likely to find a suitable sender within a few polls.

Consequently, polls are increasingly effective with increasing system load, and little

waste of CPU capacity results.

Under the most widely used CPU scheduling disciplines (such as round-robin and

its variants), a newly arrived task is quickly provided a quantum of service. In

receiver-initiated algorithms, the polling starts when a node becomes a receiver.

However, these polls seldom arrive at senders just after new tasks have arrived at the

senders but before these tasks have begun executing. Consequently, most transfers

are preemptive and therefore expensive. Sender-initiated algorithms, on the other

hand, make greater use of nonpreemptive transfers, since they can initiate load-

 33

distributing activity as soon as a new task arrives. An alternative to this receiver-

initiated algorithm is the reservation algorithm. Rather than negotiate an immediate

transfer, a receiver requests that the next task to arrive be nonpreemptively

transferred. Upon arrival, the "reserved" task is transferred to the receiver if the

receiver is still a receiver at that time. While this algorithm does not require

preemptive task transfers, it was found to perform significantly worse than the sender

initiated algorithms.

2.2.4.3 Symmetrically initiated algorithms

Under symmetrically initiated algorithms, 10 both senders and receivers initiate

load-distributing activities for task transfers. These algorithms have the advantages

of both sender and receiver initiated algorithms. At low system loads, the sender-

initiated component is more successful at finding underloaded nodes. At high system

loads, the receiver-initiated component is more successful at finding overloaded

nodes. However, these algorithms may also have the disadvantages of both sender

and receiver-initiated algorithms. As with sender-initiated algorithms, polling at high

system loads may result in system instability. As with receiver initiated algorithms, a

preemptive task transfer facility is necessary. A simple symmetrically initiated

algorithm can be constructed by combining the transfer and location policies

described for sender-initiated and receiver-initiated algorithms (Shivaratri, Krueger,

& Singhal, 1992).

2.2.4.4 Adaptive algorithms

A stable symmetrically initiated adaptive algorithm. The main cause of system

instability due to load sharing in the previously reviewed algorithms is indiscriminate

polling by the sender's negotiation component. The stable symmetrically initiated

algorithm uses the information gathered during polling (instead of discarding it, as

the previous algorithms do) to classify the nodes in the system as sender/overloaded,

receiver/underloaded, or OK (nodes having manageable load). The knowledge about

the state of nodes is maintained at each node by a data structure composed of a

 34

senders list, a receivers list, and an OK list. These lists are maintained using an

efficient scheme: List-manipulative actions, such as moving a node from one list to

another or determining to which list a node belongs, impose a small and constant

overhead, irrespective of the number of nodes in the system. Consequently, this

algorithm scales well to large distributed systems (Shivaratri, Krueger, & Singhal,

1992).

Initially, each node assumes that every other node is a receiver. This state is

represented at each node by a receivers list containing all nodes (except the node

itself), and an empty senders list and OK list.

Transfer policy: The threshold transfer policy makes decisions based on the CPU

queue length. The transfer policy is triggered when a new task originates or when a

task departs. The policy uses two threshold values — a lower threshold and an upper

threshold—to classify the nodes. A node is a sender if its queue length is greater than

its upper threshold, a receiver if its queue length is less than its lower threshold, and

OK otherwise.

Location policy: The location policy has two components: the sender-initiated

component and the receiver-initiated component. The sender-initiated component is

triggered at a node when it becomes a sender. The sender polls the node at the head

of the receivers list to determine whether it is still a receiver. The polled node

removes the sender node ID from the list it is presently in, puts it at the head of its

senders list, and informs the sender whether it is currently a receiver, sender, or OK.

On receipt of this reply, the sender transfers the new task if the polled node has

indicated that it is a receiver. Otherwise, the polled node's ID is removed from the

receivers list and is put at the head of the OK list or the senders list based on its

reply.

Polling stops if a suitable receiver is found for the newly arrived task, if the

number of polls reaches a poll limit (a parameter of the algorithm), or if the receivers

list at the sender node becomes empty. If polling fails to find a receiver, the task is

 35

processed locally, though it may later be preemptively transferred as a result of

receiver-initiated load sharing. The goal of the receiver-initiated component is to

obtain tasks from a sender node. The nodes polled are selected in the following

order:

1) Head to tail in the senders list. The most up-to-date information is used first.

2) Tail to head in the OK list. The most out-of-date information is used first in the

hope that the node has become a sender.

3) Tail to head in the receivers list. Again, the most out-of-date information is

used first.

The receiver-initiated component is triggered at a node when the node becomes a

receiver. The receiver polls the selected node to determine whether it is a sender. On

receipt of the message, the polled node, if it is a sender, transfers a task to the polling

node and informs it of its state after the task transfer. If the polled node is not a

sender, it removes the receiver node ID from the list it is presently in, puts it at the

head of the receivers list, and informs the receiver whether the polled node is a

receiver or OK. On receipt of this reply, the receiver node removes the polled node

ID from whatever list it is presently in and puts it at the head of its receivers list or

OK list, based on its reply. Polling stops if a sender is found, if the receiver is no

longer a receiver, or if the number of polls reaches a static poll limit.

Selection policy: The sender-initiated component considers only newly arrived

tasks for transfer. The receiver-initiated component can use any of the approaches

discussed before.

Information policy: The information policy is demand driven, as polling starts

when a node becomes either a sender or a receiver.

At high system loads, the probability of a node's being underloaded is negligible,

resulting in unsuccessful polls by the sender-initiated component. Unsuccessful polls

result in the removal of polled node IDs from receivers lists. Unless receiver-initiated

 36

polls to these nodes fail to find senders, which is unlikely at high system loads, the

receivers lists remain empty. This scheme prevents future sender-initiated polls at

high system loads (which are most likely to fail). Hence, the sender-initiated

component is deactivated at high system loads, leaving only receiver-initiated load

sharing (which is effective at such loads). At low system loads, receiver-initiated

polls are frequent and generally fail. These failures do not adversely affect

performance, since extra processing capacity is available at low system loads.

In addition, these polls have the positive effect of updating the receivers lists.

With the receivers lists accurately reflecting the system's state, future sender-initiated

load sharing will generally succeed within a few polls. Thus, by using sender-

initiated load sharing at low system loads, receiver-initiated load sharing at high

loads, and symmetrically initiated load sharing at moderate loads, the stable

symmetrically initiated algorithm achieves improved performance over a wide range

of system loads and preserves system stability.

2.2.4.5 A stable sender-initiated adaptive algorithm

This algorithm uses the sender-initiated load-sharing component of the previous

approach but has a modified receiver-initiated component to attract future

nonpreemptive task transfers from sender nodes. An important feature is that the

algorithm performs load sharing only with nonpreemptive transfers, which are

cheaper than preemptive transfers. The stable sender initiated algorithm is very

similar to the stable symmetrically initiated algorithm. In the following, we point out

only the differences (Shivaratri, Krueger, & Singhal, 1992).

In the stable sender-initiated algorithm, the data structure (at each node) of the

stable symmetrically initiated algorithm is augmented by an array called the state

vector. Each node uses the state vector to keep track of which list (senders, receivers,

or OK) it belongs to at all the other nodes in the system. For example, state

vector[nodeid] says to which list node i belongs at the node indicated by nodeid. As

in the stable symmetrically initiated algorithm, the overhead for maintaining this data

 37

structure is small and constant, irrespective of the number of nodes in the system.

The sender-initiated load sharing is augmented with the following step:

When a sender polls a selected node, the sender's state vector is updated to show

that the sender now belongs to the senders list at the selected node. Likewise, the

polled node updates its state vector based on the reply it sent to the sender node to

reflect which list it will belong to at the sender.

The receiver-initiated component is replaced by the following protocol:

When a node becomes a receiver, it informs only those nodes that are

misinformed about its current state. The misinformed nodes are those nodes whose

receivers lists do not contain the receiver's ID. This information is available in the

state vector at the receiver. The state vector at the receiver is then updated to reflect

that it now belongs to the receivers list at all those nodes that were misinformed

about its current state. There are no preemptive transfers of partly executed tasks

here. The sender initiated load-sharing component will do any task transfers, if

possible, on the arrival of a new task. The reasons for this algorithm's stability are the

same as for the stable symmetrically initiated algorithm (Shivaratri, Krueger, &

Singhal, 1992).

 38

CHAPTER THREE

THE CLUSTER INFRASTRUCTURE MODEL

There can be tens to hundreds of computers in a Beowulf cluster. A subsystem is

needed to manage the nodes in a scalable manner to provide a stable and reliable

distributed computing system. The cluster infrastructure model (CIM) was designed

with this objective. CIM is responsible for maintaining the components of the cluster

by keeping the records of active nodes, checking their health and isolating failed

nodes. CIM also serves as an information service for the distributed load balancing

model by collecting the state information from the nodes.

3.1 CIM Architecture

CIM is designed as a hierarchically centralized model. There are three

components in CIM. On the top there is a Cluster Manager (CM) which constructs

the cluster and manages the resources and components of the whole cluster. It does

its job via a number of low level managers called Node Managers. A Node Manager

(NM) is responsible for managing a discrete subset of the nodes of the cluster. A

Node (N) represents a single processing unit, a worker of the cluster, such as an

independent workstation. Each N has its own resources like memory, CPU, disk, etc.

to be managed. CM assigns each joined N to a an NM. To manage Ns in a scalable

manner, CM determines the number of NMs according to the number of Ns. As

number of Ns increases CM employs new NMs. The hierarchically centralized

architecture of CIM is shown in Figure 3.1.

 39

Figure 3.1 CIM architecture.

3.2 Communication in CIM

CM, NMs and Ns are communicated with point-to-point and also multicast

messages. Each NM has a multicast group consisting of its Ns. Also CM has a

multicast group that has members of NMs. Group communications are performed by

these multicast groups. Multicast group structure is shown in Figure 3.2.

Figure 3.2 Multicast groups in CIM.

CM

NMs

N

s

CM

NM1

N1

NM2
NM3

N2 N3

CM Multicast Group

N4

NM1 Multicast Group

NM2 Multicast Group
NM3 Multicast Group

 40

3.3 Fault Tolerance in CIM

The CM is responsible for the health of the cluster. NMs are responsible for the

health of its group of Ns. If a N is communicated with its NM with some reason in a

specific time interval called Heartbeat-time, the NM knows that its N is alive. For

this reason, a N, that is not communicated with its NM in Heartbeat-time interval,

sends an Heartbeat (HB) message to tell NM that it is alive. By this way NM checks

the health of its Ns. NM sends a CheckAlive message to a suspected N, which is not

communicated with it in Heartbeat-time period to reply immediately with a HB

message. When NM doesn’t get a reply, it understands that the N is dead, and

immediately informs CM to remove it from the cluster.

In a similar way, CM checks aliveness of NMs. An NM sends HB message to CM

if it is not communicated with it in HB-time period. CM waits a reply to its

CheckAlive message sent to a suspected NM. CM promotes an N (the backup NM)

as the new NM of the group of a dead NM. Each NM has a backup NM in its group.

Also CM has a backup which checks the health of the CM. If the backup CM

determines that the CM is dead, it promotes itself as the new CM.

Generally the backup NM is the second N in the group and the backup CM is the

second NM in the cluster. As shown in figure 3, CM, NM, and N components are

considered as processes or threads running on a workstation of the cluster. The first

workstation runs the CM, an NM, and an N processes at the same time. If that

workstation crashes, all running N, NM and CM processes are dead as well.

Considering this situation, second NM which is running on a different workstation is

chosen as backup of CM. Similarly the workstation running the first N of a node

group also has the NM of that group, so the second N is chosen as the backup NM.

 41

Figure 3.3 Backup structure of CIM.

3.4 Formal Protocol Design of CIM

The CIM protocol is designed using finite state machines (FSM). In a FSM;

states, incoming events and outgoing events are defined. Then operations performed

in occurance of incoming events at related states are described in an event-state table.

After that the state transition diagram is generated which shows state changes

according to occurance of incoming events. Finally pseudocodes are generated by

using designed FSMs.

CM, NM and N components are designed as different modules, so their FSM are

designed separately. In implementation these modules can be separate processes or

threads.

N2 N3

CM

NM1

N1

NM2

N1

N2 N3

Workstation1

Workstation2 Workstation3

Workstation4

Workstation5 Workstation6

Backup of NM1

Backup of NM2

Backup of CM

 42

3.4.1 Finite State Machines

3.4.1.1 Cluster Manager

Incoming Events: Outgoing Events:

1 StartCM_msg_received HB_msg_sent

2 Startup_timeout CheckAlive_msg_sent

3 NMOK_msg_received StartNM_msg_sent

4 HB_msg_received AddN_msg_sent

5 HB_timeout SPLIT_msg_sent

6 Ncrash_msg_received NewCM_msg_sent

7 NJoin_msg_received

8 Split_timeout States:

9 NAdded_msg_received Startup

10 CheckAlive_timeout Ready

11 Split_condition_occured CrashDetect

12 CheckAlive_msg_received Split

13 Activity_timeout

Table 3.1 Event-state table of CM module

 1 2 3 4 5 6 7 8 9 10 11 12 13

NULL a - - - - - - - - - - - -

Startup - b c d 0 0 0 - 0 - - m m

Ready - - - d e f g - i - j m m

CrashDetect - - - k 0 0 0 - 0 l - m m

Split - - h d 0 f 0 n 0 - - m m

-: ignore_event

0: postpone_event

a:send_NewCM_multicast_msg

 start_startup_timer

 start_Activity_timer

 state=Startup

 b: not P0: send_NewCM_msg

 start_startup_timer

 P0: state=Ready

c: P1: stop_startup_timer

 state=Ready

d:mark_Active_flag_for_sender_NM

 43

e:send_CheckAlive_msg_to_timedout_NM

 start_CheckAlive_timer

 state=CrashDetect

f: remove_crashed_N_from_system

g: send_AddN_msg_to_selected_NM

h: P1: stop_Split_timer

 send_startNM_msg_to_selected_N

 state=Ready

i: Add_N_to_system

j: send_Split_multicast_msg

 start_Split_timer

 state=Split

k: stop_CheckAlive_timer

 mark_NMActive_flag_for_senderNM

 state=Ready

l: remove_NM_from_system

 send_StartNM_msg_to_selected_N

 state=Ready

m: send_HB_msg

n: not P2: send_Split_multicast_msg

 start_Split_timer

 P2: state=Ready

P0: max_newCM_msg_sent_count reached

P1: Number of NMs sent NMOK_msg = NMcount

P2: max_Split_msg_sent_count reached

Figure 3.4 State transition diagram of CM module

CheckAlive_timeout

HB_timeout

Startup

Ready

Crash

Detect

Split

Startup_timeout

Startup_timeout

NMOK_msg

NMOK_msg

StartCM

HB_msg
CheckAlive_msg

HB_msg

HB_msg CheckAlive_msg

HB_msg CheckAlive_msg

NMOK_msg

NMOK_msg

Split_condition

Split_timeout
Split_timeout

HB_msg

CheckAlive_msg

Njoin_msg

NAdded_msg
Ncrash_msg

Ncrash_msg

 44

CM starts initially in a NULL state. First, it sends a NewCM multicast message to

inform NMs its awareness, and waits replies with NMOK messages from them in

Startup state. It also gets current cluster information by these messages. When all of

NMs return replies, CM starts its normal operation in Ready state. When an

HB_timeout event occurred which means it is not communicated with an NM in

HB_time period, checks NM aliveness by sending a CheckAlive message and waits a

HB message in CrashDetect state. CM returns to Ready state if it receives an HB

message or CheckAlive timeout occurred. In latter case it decides that the NM is

dead and promotes the N that is backup of dead NM as the new NM of that group.

When CM receives a Njoin message, it selects the NM with having the least

number of Ns and sends an AddN message containing the address of the new N to

that NM. When it receives Nadded message it adds this N to cluster database.

CM turns to Split state when it decides a new NM is needed in the system for

scalability issues because of an increase in the number Ns in the cluster. CM selects

the last joined N as the new NM. In this state CM calculates split-count, which is the

number of Ns that is to be transferred from the groups to the new group and sends it

to NMs with a SPLIT multicast message and starts the new NM. NMs transfer their

Ns to the new NM’s group. The formula of split-count calculation is :

of Ns

 Split count =

of NMs * (# of NMs+1)

CM waits replies to its SPLIT message with NMOK messages from NMs to know

the completion of SPLIT operations and returns to Ready state.

The pseudocode of CM module is in Appendix A.

 45

3.4.1.2 Node Manager

Incoming Events: Outgoing Events:

1 StartNM_msg_received HB_msg_sent

2 Startup_timeout CheckAlive_msg_sent

3 NOK_msg_received StartCM_msg_sent

4 HB_msg_received NAdded_msg_sent

5 HB_timeout NMUpdate_msg_sent

6 AddN_msg_received NMOK_msg_sent

7 Split_msg_received NAccepted_msg_sent

8 NewCM_msg_received NewNM_msg_sent

9 CheckAlive_timeout NCrash_msg_sent

10 NewN_timeout

11 NMUpdate_timeout Event:

12 CheckAlive_msg_received Startup

13 Activity_timeout Ready

 NCrashDetect

 CMCrashDetect

 NewN

 Split

Table 3.2 Event-state table of NM module

 1 2 3 4 5 6 7 8 9 10 11 12 13

NULL a - - - - - - - - - - - -

Startup - b c d 0 0 0 0 - - - p p

Ready - - - d e f g h - - - p p

NCrashDetect - - - i 0 0 0 0 j - - p p

CMCrashDetect - - - r 0 0 0 0 s - - p p

NewN - - k d 0 0 0 0 - l - p p

Split - - m d 0 0 0 0 - - n p p

 46

-: ignore_event

0: postpone_event

a: send_NewNM_multicast_msg

 start_startup_timer

 start_Activity_timer

 state=Startup

b: not P0: send_NewNM_msg

 start_startup_timer

 P0: state=Ready

c: P1: stop_startup_timer

 state=Ready

d:mark_NMActiveflagforsenderN/CM

e:send_CheckAlivemsgTotimedoutN/CM

 start_CheckAlive_timer

state=NCrashDetect/CMCrashDetect

f: send_NAccepted_msg_to_new_N

 start_NewN_timer

 state=NewN

g: send_NMUpdate_multicast_msg

 start_NMUpdate_timer

 state=Split

h: send_NMOK_msg

i: stop_CheckAlive_timer

mark_NMActive_flag_for_sender_N

 state=Ready

j: remove_crashed_N

 send_NCrash_msg_to_CM

 state=Ready

r: stop_CheckAlive_timer

 mark_NMActive_flag_for_CM

 state=Ready

s: send_startCM_msg

 state=Ready

k: stop_NewN_timer

 Add_node

 send_NAdded_msg_to_CM

 state=Ready

l: state=Ready

m: not P2:

mark_NUpdated_Flag_for_sender_N

 P2: stop_NMUpdate_timer

send_NMOK_msg_to_CM

 State=Ready

n: not P3:

send_NMUpdate_multicast_msg

 start_NMUpdate_timer

 P3: send_NCrash_msg_to_CM

 send_NMOK_msg_to_CM

 State=Ready

p: send_HB_msg

P0: max_newNM_msg_sent_count

reached

P1: Number of Ns sent NOK_msg =

Ncount

P2: Number of Ns sent NOK_msg =

SplitCount

P3: max_NMUpdate_msg_sent_count

reached

 47

Figure 3.5 State transition diagram of NM module.

When NM starts, it sends NewNM multicast message to its group to inform its Ns

its awareness and turns to Startup state. When all Ns relies with a NOK message NM

turns to Ready state and starts its normal operation. NM turns to NCrashDetect state

if HB_timeout occurred and sends a CheckAlive message. It returns to Ready state if

N replies with an HB message received or Alive_timeout occurred. In the latter case

it removes this dead N and informs CM that its N is dead with a NCrash message.

If NM is the backup of CM, it can turn to CMCrashDetect state when it is not

communicated with CM in HB_time interval and sends a CheckAlive message to

CM. If CM does not reply with a HB message in CheckAlive time interval, NM

decides that it is dead and promotes itself as the new CM.

HB_msg

Alive_timeout

HB_timeout
Startup

Ready

N/CM

Crash

Detect

Split

Startup_timeout

Startup_timeout

NOK_msg

NOK_msg

StartNM

HB_msg CheckAlive_msg

HB_msg

HB_msg

CheckAlive_msg

HB_msg

CheckAlive_msg

NOK_msg
NOK_msg

Split_msg

NMUpdate_timeout

Split_timeout

HB_msg

CheckAlive_msg

NewCM_msg

Ncrash_msg

NewN

CheckAlive_msg

AddN_msg

NOK_msg

NewN_timeout

 48

If NM receives a AddN message, it joins the new N to its group and sends a

NAccepted message to it to inform its awareness and gives necessary data about the

group and the cluster and turns to NewN state. When the new N replies with a NOK

message, NM sends NAdded message to CM and returns to Ready state.

When NM receives SPLIT message it sends NMUpdate multicast message to its

group which contains a number that indicates the Ns to be transferred (calculated as:

of Ns in group - split-count. Ns whose Ids are greater than this number will be

transferred). When Ns reply with NOK messages NM sends NMOK message to CM

and returns to Ready state.

The pseudocode of NM module is in Appendix A.

3.4.1.3 Node

Incoming Events: Outgoing Events:

1 StartN_msg_received HB_msg_sent

2 Startup_timeout Alive_msg_sent

3 NAccepted_msg_received NJoin_msg_sent

4 CheckAlive_msg_received NOK_msg_sent

5 NMUpdate_msg_received

6 NewNM_msg_received States:

7 Activity_timeout Startup

 Ready

Table 3.3 Event-state table of N module

 1 2 3 4 5 6 7

NULL a - - - - - -

Startup - b c - - - -

Ready - - - d e f d

 49

-: ignore_event

a: send_NJoin_multicast_msg

 start_Startup_timer

 State=Startup

b: send_NJoin_multicast_msg

 start_Startup_timer

c: stop_Startup_timer

 send_NOK_msg

 start_Activity_timer

 State=Ready

d: send_HB_msg

e: Update_NM_info

 Send_NOK_msg_to_old_N

f: Update_NM_info

 Send_NOK_msg_to_new_N

 Figure 3.6 State transition diagram of N module.

N represents a worker (processor) and its main responsibility is to run jobs

submitted to it. All workstations in the cluster run a N process which means the

Startup

Ready

Startup_timeout

NAccepted_msg

StartN

NMUpdate_msg

CheckAlive_msg

NewNM_msg

 50

overhead of N process effects all of the workstations so the whole cluster. As a result

N is designed as a simple module to cause as low as possible overhead.

When N starts, it sends a NJoin message to CM and turns to Startup state. It turns

to Ready state when NAccepted message is received and starts its normal operation.

When N receives a NMUpdate message, it checks its ID with split-count in the

message. If its ID is greater than split-count, it changes its group information with

the new data in the message, so the N is transferred to a new group.

The pseudocode of N module is in Appendix A.

3.4.2 Message And Time Analysis

3.4.2.1 Joining A Node

The flow of messages for the operation of joining a node to the cluster is shown in

Table 3.4. The operation is completed by transmission of 5 messages and the time

required for this operation is 5t with t representing the time to transmit one message.

Note that the operation does not depend on the size of cluster and is not effected by

the change in the number of Ns or NMs.

Table 3.4 Message flow for N join operation

 Message From To Time

1. NJoin N CM t

2. AddN CM NM t

3. NAccepted NM N t

4. NOK N NM t

5. NAdded NM CM t

 51

3.4.2.2 Node Crash Detection and Removal

The flow of messages for the operation when a node crash occurs is shown in

Table 3.5. The crash detection operation starts with a Heartbeat timeout event and

stops with CheckAlive timeout event. The removal operation is completed by sending

the NCrash message to CM. The detection and removal operation is completed by

the transmission of 2 messages and the duration of the operation is HB+CA+t. Note

that the operation does not depend on the size of cluster and is not effected by the

change in the number of Ns or NMs.

Table 3.5 Message flow for N crash detection and removal operation

Message From To Time Event

- - - Heartbeat_time (HB) HB_timeout occured

1.CheckAlive NM N t

- - - CheckAlive_time (CA) CheckAlive_timeout occured

2.NCrash NM CM t

3.4.2.3 Node Manager Crash Detection and Recovery

The flow of messages for the operation when a node manager crash occurs is

shown in Table 3.6. The crash detection operation starts with a Heartbeat timeout

event and stops with CheckAlive timeout event. The recovery operation starts by the

CM with a StartNM message and then the new NM sends a multicast NewNM

message to its group. The operation is completed by the receipt of NOK messages

from the Ns in the group. message to CM. The number of messages transmitted

during this operation is 3+N/NM where N/NM represents the number of Ns in the

group of the crashed NM. The time spent for this operation is HB+CA+3t. Note that

the operation depends on the size of a group and the transmission of the number of

messages is effected by the change in the number of Ns in a group.

 52

Table 3.6 Message flow for NM crash detection and recovery operation

Message From To Time Event

1. - - - HB HB_timeout occured

2.CheckAlive CM NM t

 - - - CA CheckAlive_timeout occured

3. StartNM CM NM t

4. NewNM NM MulticastGroup t

5. NOK Ns in

group

NM t

3.4.2.4 Cluster Manager Crash Detection and Recovery

The flow of messages for the operation when a cluster manager crash occurs is

shown in Table 3.7. The crash detection operation starts with a Heartbeat timeout

event and stops with CheckAlive timeout event. The recovery operation starts by the

promotion of backup NM as the new CM and then the new CM sends a multicast

NewCM message to NMs in the cluster. The operation is completed by the receipt of

NMOK messages from the NMs to the CM. The number of messages transmitted

during this operation is 2+NM where NM represents the number of NMs in the

cluster. The time spent for this operation is HB+CA+2t. Note that the operation

depends on the size of the cluster and the transmission of the number of messages is

effected by the change in the number of NMs in the cluster.

 53

Table 3.7 Message flow for CM crash detection and recovery operation

Message From To Time Event

1. - - - HB HB_timeout occured

2.CheckAlive NM CM t

- - - CA CheckAlive_timeout occured

3. - - - - StartCM

4. NewCM CM MulticastCluster t

5. NMOK NMs in

cluster

CM t

3.4.2.5 Cluster Split and Starting a New NM

The flow of messages for the operation for a split operation is shown in Table 3.8.

Split operation is started by the CM by sending a Split multicast message. Upon

receiving this message NMs send multicast NMUpdate messages to their groups.

Then CM starts the new NM by sending a StartNM message to the new NM. After

that the new NM sends a multicast NewNM message to its new group. The operation

ends by the NOK messages from Ns of the new group. The number of messages sent

during the operation and spent time is :

Split operation:

Messages : 1+NM+NM*s

s: split-count = N/(NM*(NM+1))

Time : 4t

Start of New NM :

Messages : 2+NM*s

Time : 3t

Total:

Messages: 3+NM*(2*s+1)

Time: 6t

 54

The operation depends on the size of the cluster and the transmission of the

number of messages is effected by the change in the number of NMs and Ns in the

cluster.

Table 3.8 Message flow for a split operation

Message From To Time

1.Split CM MulticastCluster t

2.NMUpdate NM MulticastGroup t

3.NOK Ns NM t

4.NMOK NMs CM t

5. StartNM CM N t

6. NewNM NM MulticastGroup t

7. NOK Ns in group NM t

 55

CHAPTER FOUR

THE LOAD BALANCING MODEL

4.1 System Architecture

The load balancing model is placed on top of the CIM architecture. CIM is

designed as a hierarchically centralized model containing three components. On the

top there is a Cluster Manager (CM) which constructs the cluster and manages the

resources and components of the whole cluster. It does its job via a number of low

level managers called Node Managers. A Node Manager (NM) is responsible for

managing a discrete subset of the nodes of the cluster. A Node (N) represents a

single processing unit, a worker of the cluster, such as an independent workstation.

CM assigns each joined N to a an NM. To manage Ns in a scalable manner, CM

determines the number of NMs according to the number of Ns. As number of Ns

increases CM employs new NMs. So, the Ns are grouped by a number of NMs. Each

group is called by its NM (e.g., NM group 1, NM group 2, etc.)

The load balancing model inherits the CIM architecture and its components. Each

N has its own resources like memory, CPU, disk, etc., so the load balancing model

should distribute the workload among the Ns of the cluster. To balance the workload

in a scalable manner, the hierarchically layered architecture is used as local and

global load sharing concepts as shown in Figure 4.1.

In local load sharing, the distribution of workload is performed among the group

of Ns of an NM group. This type of distribution is called “local” because it involves

a subset of the Ns belonging to the same NM. Local load sharing can also be called

as partial load balancing, as it distributes the partial workload (workload in an NM

group) of the whole cluster. Local load sharing can be performed in more than one

NM group in parallel at the same time. NMs are responsible for running the local

load sharing scheme in their groups.

 56

As its name reminds, global load sharing scheme aims to distribute the workload

of the whole cluster. In global load sharing, the system tries to balance workload

between NM groups, so load distribution is performed on Ns belonging to different

NM groups. CM is responsible for determining the need for the global load sharing,

and then tell NMs to run it.

Figure 4.1 Hierarchical architecture of load balancing model.

4.2 Messaging Infrastructure

Communication architecture of the load balancing model is based on the CIM

messaging infrastructure. Group messaging is based on multicasting. Each NM has a

multicast group containing their Ns. CM also has a multicast group that has all NMs

as members. Multicast group structure is shown in Figure 4.2. Point to point

messaging is also allowed when necessary, such as in load transfers.

CM

NMs

Ns

local load sharing

global load sharing

local load sharing
local load sharing

 57

 Figure 4.2 Multicast groups in load balancing model.

4.3 Load Balancing Algorithm

As discussed in section 3.1, the load balancing scheme hierarchically consists of

two parts: local and global load sharing. The algorithms for these parts are described

in terms of load balancing algorithm concepts as mentioned in section 2. Both parts

are in the class of adaptive load balancing algorithms.

4.3.1 Local Load Sharing

In local load sharing, each NMs try to distribute workload of their groups among

their Ns. To determine whether load sharing is needed, NM collects load information

from its Ns. Using these information NM calculates some adaptive threshold values.

Using these values NM determines whether load distribution is needed and which Ns

are involved in load transfer. Load is transferred from heavily loaded Ns to lightly

loaded Ns.

Transfer Policy: Based on its knowledge about the load states of its Ns, NM

calculates threshold values based on average load of its group and determines if a

balancing is needed.

CM Multicast Group
CM

NM

N

NM
NM

N N

N

NM1 Multicast

 Group

NM2 Multicast Group NM3 Multicast Group

 58

Selection Policy : Task selection for transfer is a complicated task. To avoid high

overheads, firstly jobs that has not been started yet are selected to transfer. This type

of load transfers are called non-preemptive. If more fine-grade balancing is desired

tasks that are in execution can be selected for migration which is called preemptive

task transfers.

Location Policy : By using calculated threshold values, NM selects a pair of Ns

to start task transfer. Ns that have load values greater than upper threshold are

selected as sender, ones that fall below lower threshold become receivers for task

transfers. Task transfer is then performed from sender to receiver Ns.

Information Policy : The information needed for the algorithm is the local load

values of Ns. In this model, Ns periodically report their load states to their NM. NM

uses these information in other policies of load balancing for making decisions.

4.3.2 Global Load Sharing

While local load sharing scheme distributes workload of group of Ns, global load

sharing tries to share the load between groups. Thus global load sharing involves

sharing of load between Ns that are in different groups. Global load sharing scheme

completes partially balanced state of local load sharing groups to a globally shared

state of the whole system. In this scheme, CM collects load state information of NM

groups from NMs. With these information, CM determines whether the global load

sharing is needed and if so informs NMs to start it. NM of sender and receiver

groups, select suitable Ns and start task transfer.

Transfer Policy: Based on its knowledge about the load states of NM groups,

CM calculates threshold values based on average load of the whole system and

determines if a balancing is needed.

 59

Selection Policy : As in local load sharing, to avoid high overheads, non-

preemptive task transfers are preferred. Preemptive transfers provide better balancing

ratios but cause much more overhead to the system.

Location Policy : With calculated threshold values, CM determines sender and

receiver NMs and informs all NMs about its decisions. Then a sender NM selects a

receiver NM and requests a task transfer. After receiver NM accepts the request, both

NMs select a pair of Ns for task transfer. Ns that have load values greater than upper

threshold is selected as sender, ones that fall below lower threshold become receivers

for task transfers. Task transfer is then performed from sender to receiver Ns.

Information Policy : The information needed for the global load sharing

algorithm is the average load values of NM groups. In this model, NMs periodically

report the load states of their groups to CM. CM uses these information in other

policies of load balancing for decision making.

4.3.3 Load Information

The most important input of the load balancing algorithm is the load information.

So, it is important to collect the correct load values from the Ns of the system. To

determine the current load value of a N, one or more load indices can be calculated.

Typical load indices are CPU load average, memory usage, I/O queue length,

network bandwidth utilization, etc.

The load balancing model is designed for using multiple load indices at the same

time as desired. By using configured load indices, each N calculates its load value

(L). This single load value is used as N’s current load state and reported to NM. To

compute the load value, each load index (li) is given a percentage weight (wi). The

weight of a load index specifies its degree of importance effect over the load value.

The load value is computed as;

 60

1

n

i i

i

L l w
=

=∑

Also, each load index has a threshold value (ti). If the value of a load index

reaches or exceeds its threshold, then it directly effects the computed load value

regardless of its weight and weights of other indices are reduced. This protects the

usage of a single resource exceeding its capacity while others are low. In this case

the load value is computed as;

n

i k k

k i

L l l w
≠

= +∑
,

(100)
100

k
k i

i

w
w l

w
= −

− where i il t> .

If more than one index reaches its threshold, then the most important one is taken

as threshold exceeded index.

For example consider a system in which load balancing scheme is configured

having load indices as average CPU usage and memory usage with equal weights. At

a certain time when the CPU usage of a N is as high as 90% while memory usage is

very low such as 20%, the computed load index gives a moderate load value of 55%.

But this N should be considered as highly loaded, since its CPU capacity is almost

consumed totally. Configuring the CPU load index having a threshold value of 80%,

as the value 90% exceeds the threshold it directly effects the load value computation,

so N’s load value becomes 92% (90 for CPU usage + 10% of 20 for memory usage,

since its weight is reduced to 10%).

4.3.4 Load Sharing Thresholds

In transfer policy and location policy, the load balancing algorithm determines

whether a balancing operation is needed and which parts will be involved in load

transfers as senders and receivers. Adaptive load sharing thresholds are used for this

purpose. They are adaptive, since their values are regulated according to the load

level of the system. For example, the load of the system is high when the most of the

 61

Ns are heavily loaded, and the thresholds are increased to prevent useless task

transfers. Also, in case of a very low load levels, system does not need load sharing,

so thresholds are be set to appropriate values to protect the system from ineffective

task transfers. In that mean, adaptivity of load sharing thresholds are sensitivity of

the load balancing algorithm.

The calculation of the load thresholds is a customizable task. It can be changed, its

sensitivity can be customized according to the needs and expectations from the load

balancing algorithm. In this project, two threshold values named sender threshold

(TS) and receiver threshold (TR) to select senders and receivers. Members (Ns or NM

groups) with load values exceeding TS are selected as senders and members having

lower load values than TR are treated as receivers. Thresholds computations are based

on average load values:

Average Load:
1

1 n

A i

i

L L
n =

= ∑

1

1
()

n

R A A i

i

T L L L
r =

= − −∑ for all i AL L< , r = # of members where i AL L<

1

1
()

n

S A A i

i

T L L L
s =

= + −∑ for all i AL L< , s =# of members where i AL L>

4.4 Formal Protocol Design of Load Balancing Model

The protocol of load balancing model is designed using finite state machines

(FSM). In a FSM; states, incoming events and outgoing events are defined. Then

operations performed in occurance of incoming events at related states are described

in an event-state table. After that the state transition diagram is generated which

shows state changes according to occurance of incoming events. Finally pseudocodes

are generated by using designed FSMs.

 62

Based on the CIM, CM, NM and N components are designed as different modules

in load balancing model too, so their FSMs are designed separately. In

implementation these modules can be separate processes or threads.

4.4.1 Finite State Machines

4.4.1.1 Cluster Manager

Incoming Events: Outgoing Events:

1 StartCM_msg_received GlobalLoadInfo_msg_sent

2 NMLoadInfo_msg_received

3 GlobalBalancing_condition_occurred States:

 Ready

Table 4.1 Event-state table of CM module

 1 2 3 4

NULL a - - -

Ready - b c d

-: ignore_event c: Calculate_thresholds & Specify_Receivers

a: Initialize_info Send_GlobalLoad_Info_multicasticast_Msg

 state=Ready d: Update_global_load_info

b: Update_global_load_info

 Check_GlobalBalancing

 Figure 4.3 State transition diagram of CM module.

Ready

StartCM

NMLoadInfo_msg

GlobalBalancing_Condition

 63

When CM starts with a StartCM message in CIM protocol, the load balancing

module of CM also starts which has a single-state FSM. CM, collects load values of

NM groups by NMLoadInfo messages sent by NMs. CM calculates sender and

receiver threshold values to classify NM groups, and when it decides a global load

sharing is needed, it multicasts a GlobalLoadInfo message to NMs to start global

load sharing. Threshold values and receiver NM addresses are contained in that

message.

CM waits replies to its SPLIT message with NMOK messages from NMs to know

the completion of SPLIT operations and returns to Ready state.

When CM starts with a StartCM message, the load balancing module of CM also

starts. CM, collects load values of NM groups by NMLoadInfo messages sent by

NMs. CM calculates sender and receiver threshold values to classify NM groups, and

when it decides a global load sharing is needed, it multicasts a GlobalLoadInfo

message to NMs to start global load sharing. Threshold values and receiver NM

addresses are contained in that message.

The flowchart of CM module is in Appendix B.

4.4.1.2 Node Manager

Incoming Events: Outgoing Events:

1 StartNM_msg_received TransferLoad_msg_sent

2 NLoadInfo_msg_received GlobalLoadTransfer_Request_msg_sent

3 LocalBalancing_condition_occurred GlobalLoadTransfer_Accepted_msg_sent

4 GlobalLoadInfo_msg_received GlobalLoadTransfer_Rejected_msg_sent

5 GlobalLoadTransfer_Request_msg_received NMLoadInfo_msg_sent

6 GlobalLoadTransfer_Accepted_msg_received

7 GlobalLoadTransfer_Rejected_msg_received States:

8 GlobalLoadTransfer_Timeout Ready

9 Activity_timeout GlobalLoadTransfer

10 NCrashMsgReceived

 64

Table 4.2 Event-state table of NM module

 1 2 3 4 5 6 7 8 9 10

NULL a - - - - - - - - -

Ready - b d e g - - - k l

GlobalLoadTransfer - c - f h i j j k l

-: ignore_event

a: Initialize_info

 state=Ready

b: Update_local_load_info

 Check_LocalBalancing

c: Update_local_load_info

d: Calculate_thresholds & Specify_Sender&Receivers

 Send_TransferLoad_msg_to_senderN

e: Update_GlobalLoadInfo

 P0: Take_a_receiverNM_from_ReveiverNMs_list

 Send_GlobalLoadTransfer_Request_msg_to_receiverNM

 Start_GlobalLoadTransfer_timer

 state=GlobalLoadTransfer

f: Update_GlobalLoadInfo

g: not P1: Send_GlobalLoad_transfer_Reject_msg_to_senderNM

 P1: Choose_suitable_receiverN

 Send_GlobalLoadTransfer_Accepted_msg_to_senderNM

h: Send_GlobalLoad_transfer_Reject_msg_to_senderNM

i: Stop_GlobalLoadTransfer_timer

 Choose_suitable_SenderN

 Send_TransferLoad_msg_toSenderN

 state=Ready

j: Stop_GlobalLoadTransfer_timer

 not P2: Send_GlobalLoadTransfer_Request_msg_to_receiverNM

 Start_GlobalLoadTransfer_timer

 65

 P2: state=Ready

k: send_NMloadInfo_msg_to_CM

l: Update_local_load_info

P0: Global_SenderLoadThreshold_exceeded

P1: Global_ReceiverLoadThreshold_exceeded

P2: End_of_ReceiverNMs_List

Figure 4.4 State transition diagram of NM module.

When NM starts with a StartNM message in CIM protocol, the load balancing

module of NM also starts. NM collects load states of its Ns by NloadInfo messages.

It calculates average load of its group, and also the threshold values to classify sender

and receiver Ns. If it decides to run local load sharing, NM sends a TransferLoad

message to sender N. This message contains the receiver N address.

NM reports load state of its group to CM by putting it in HeartBeat messages that

are sent to inform its aliveness in CIM protocol. When NM receives a

GlobalLoadInfo message, it compares global load sharing threshold values with its

load state and realize that whether it is a sender, sends a

GlobalLoadTransfer_Request message to a receiver NM address selected from the

receivers list contained in the GlobalLoadInfo message. If that transfer request is

unsuccessful (if request is timed out or rejected), it continues load requests by

selecting another receiver NM address from the receivers list. If request is accepted,

GlobalLoadInfo_msg

GlobalLoadTransfer_Request_msg

GlobalLoadInfo_msg

NLoadInfo_msg

GlobalLoadTransfer_Reject_msg

GlobalLoadTransfer_timeout

LocalBalancingCondition

Ready

GlobalLoad

Transfer

StartNM

NLoadInfo_msg GlobalLoadInfo_msg GlobalLoadTransfer_Request_msg

GlobalLoadTransfer_Accepted_msg

GlobalLoadTransfer_timeout

GlobalLoadTransfer_Reject_msg

 66

it sends a TransferLoad message to a selected sender N address to start global load

transfer.

Upon receiving a GlobalLoadTransfer_Request message, NM checks to see if it is

a receiver by comparing its current load state with global load sharing threshold

values, and if so selects a N for receiving load and sends its address to sender NM

via a Global_loadTransfer_Accepted message.

The flowchart of NM module is in Appendix B.

4.4.1.3 Node

Incoming Events: Outgoing Events:

1 StartN_msg_received LoadTransfer_msg_sent

2 TransferLoad_msg_received LoadTransfer_OK_msg_sent

3 LoadTransfer_msg_received LoadTransfer_timeout

4 LoadTransfer_OK_msg_received NloadInfo_msg_sent

5 LoadTransfer_timeout States:

6 Activity_timeout Ready

 LoadTransfer

Table 4.3 Event-state Table of N module

 1 2 3 4 5 6

NULL a - - - - -

Ready - b c - - f

LoadTransfer - - - d e f

-: ignore_event d: stop_LoadTransfer_timer

a: Initialize_info state=Ready

 state=Ready e: state=Ready

b: select_task_to_transfer f: calculate_local_load_value

 send_LoadTransfer_msg_to_receiverN

send_NloadInfo_msg_to_NM

 67

 start_LoadTransfer_timer

 state=LoadTransfer

c: get_task_info

 send_LoadTransfer_OK_msg_to_senderN

 Figure 4.5 State transition diagram of N module.

When N starts with a StartN message in CIM protocol, the load balancing module

of N also starts. N reports its load state to CM by putting it in HeartBeat messages

that are sent to inform its aliveness in CIM protocol. When it receives a

TransferLoad message, selects a task to transfer and sends a LoadTransfer message

to receiver N contained in TransferLoad message. If N receives a LoadTransfer

message, its gets the task information and informs sender N about the success of the

task transfer by sending LoadTransfer_OK message.

The flowchart of N module is in Appendix B.

4.4.2 Message and Time Analysis

4.4.2.1 Local Load Sharing

The flow of messages for a local task transfer operation is shown in Table 4.4.

Operation starts with a TransferLoad message from NM to the sender N. Then

sender N sends a LoadTransfer message to the receiver N. The operation ends with a

LoadTransferOK message. Hence the operation is completed with 3 messages in 3t

LoadTransfer_msg

LoadTransfer_OK_msg

Activity_timeout

LoadTransfer_timeout

Ready

LoadTransfer

StartN

Activity_timeout TransferLoad_msg

 68

unit time were t is the time spent to transfer a message. This operation is not effected

by the size of the cluster.

Table 4.4 Message flow of a local load transfer operation

 Message From To Time

1. TransferLoad NM N t

2. LoadTransfer N (sender) N (receiver) t

3. LoadTransfer_OK N (receiver) N (sender) t

4.4.2.2 Global Load Sharing

The flow of messages for a global task transfer operation is shown in Table 4.5.

Operation starts with a GlobalLoadInfo multicast message from CM to NMs. Then a

sender NM sends a GlobalLoadTransfer_Request message to a receiver NM. Upon

receiving a reply with a GlobalLoadTransfer_Accepted message, the sender NM

sends TransferLoad message to the sender N. The operation is completed by the

sender and receiver Ns ends with the transmission of TransferLoad and

LoadTransferOK messages. During a global load transfer operation is completed

with 6 messages in 6t unit time were t is the time spent to transfer a message. Hence

the messaging in this operation is not effected by the size of the cluster.

Table 4.5 Message flow of a local load transfer operation

 Message From To Time

1. GlobalLoadInfo CM NMs t

2. GlobalLoadTransfer_Request NM NM t

3. GlobalLoadTransfer_Accepted NM NM t

4. TransferLoad NM N t

5. LoadTransfer N N t

6. LoadTransfer_OK N N t

 69

CHAPTER FIVE

THE IMPLEMENTATION

5.1 The Implementation of CIM

5.1.1 Multithreaded Process Architecture

In CIM, each component (CM, NM, and N) is designed as a separate autonomous

module. This autonomy is implemented by developing a multithreaded architecture.

A single CIM process runs on each workstation of the cluster. On the workstation

that performs CM role, runs the CM module thread within the CIM process.

Similarly, each NM workstation runs a NM module thread, and workstations running

N threads are the nodes of the cluster.

Each module also contains helper threads. A messenger thread receives a message

from the message queue and feeds the module thread for processing. Another helper

thread, called multicast receiver listens the multicast group port, receives and then

puts multicast messages to the module thread’s message queue. Similarly, the unicast

receiver thread is responsible for listening the unicast port and receiving point-to-

point messages. There is also a sender thread that is responsible for packing and

sending both unicast and multicast messages to the network. These helper threads are

stateless and blocking threads. This means they simply sleep waiting for a message

(on a network port or a queue), wakeup when available, serve and then sleep again.

These helpers prevent blocking of the module thread. By this implementation the

module thread is free for running, such as processing events, performing its internal

operations, preparing messages for sending and so on.

The main thread of the CIM process is responsible for maintaining the module

threads, such as starting and stopping them when necessary. The multithreaded

topology of the CIM implementation is shown in Figure 5.1.

 70

Figure 5.1 Multithreaded architecture of CIM process.

The protocol of CIM was designed formally with finite state machines (FSMs).

States, events, event-state tables and state transition diagrams describe the operation

of a module. Module implementations are performed using these FSMs. Thus

module threads are stateful and event-based. The module is always in a specific state,

and when an event occurs, it performs predefined operations on that state, and

transits to another state according to the results of the operation, or stays in the

current state. An event can be an arrived unicast or multicast message, a timeout

occurance, or a result of an internal function running periodically or on a specific

 71

situation. All these events, states, operations and state transitions were defined in

FSM.

5.1.2 Thread Implementation, Communication, Synchronization and Timers

The implementation of CIM protocol is developed on Linux operating system

using standard (GNU) C programming language. Threads are implemented using

Posix Threads (pthreads) library which is also available in Linux environment.

Since threads are in a shared memory environment, which means threads

belonging to the same process can reach the whole process memory scope, there is

no need an IPC mechanism (PIPEs, etc.) which is time-consuming operations

causing overhead. For intra-thread communication, FIFO (first in first out) queue

structures are designed as shown in Figure 5.2. Every module thread has an input

message queue that is controlled by messenger helper threads. Received messages

are put those queues by receiver helper threads, and read by messenger thread and

fed to the module one by one. Message sender thread also has a local input queue.

Messages to be sent are put on this queue by a module thread, then read and sent by

the sender thread.

 Figure 5.2 FIFO queue structure.

 72

Since these FIFO queue structures can be naturally reachable by more than one

thread at the same time, a synchronization and critical section access mechanism

should be employed to prevent conflicts. For this purpose a semaphore structure is

designed and implemented. Although standard POSIX semaphore library can be

used, it is generally designed for inter-process synchronization, and for thread

synchronization condition variable structures available in posix thread library is

recommended for performance and reliability. A semaphore mechanism is designed

using these condition variables as shown in Figure 5.3. Each FIFO queue is protected

by semaphores. Besides, threads can be blocked on an empty queue for a message

ready to be read, or on a full queue for an available space to be written. Semaphores

are also used for other thread synchronization purposes, such as blocking a thread on

a situation and waiting for another thread completing its operation.

int semaphore_down (Semaphore * s)

{

 pthread_mutex_lock(&(s->mutex));

if (s->value<1) pthread_cond_wait(&(s->cond),&(s->mutex));

 s->value--;

 pthread_mutex_unlock(&(s->mutex));

 return (1);

}

int semaphore_up (Semaphore * s)

{

 pthread_mutex_lock(&(s->mutex));

 s->value++;

 if (s->value<=1) pthread_cond_signal(&(s->cond));

 pthread_mutex_unlock(&(s->mutex));

 return (1);

}

Figure 5.3 Semaphore structures.

Timers are also important in protocol design. To generate some timeout events a

timer mechanism is used. Timer mechanism should be in millisecond granularity.

One solution is using a system interrupt called SIGALRM. When set, process is

interrupted and a defined subroutine is called at timeout situation by the system, then

the process continues where it is interrupted. With this mechanism a millisecond

 73

based timer structure is implemented, and by this structure multiple timers can be set

at the same time by the threads of the process.

5.1.3 Implementation of Communication

Network communication in CIM protocol is based on Internet Protocol (IP). The

connectionless transport protocol UDP is used for point-to-point communication, and

IP Multicast is used for multicast communication. Considering performance and low

latencies, in reliable network environments connectionless protocols are suitable for

transmitting small stand-alone messages in asynchronous communication.

Network communication operations are kept out of the module threads and

performed by helper threads. Since these are blocking operations this separation

brings freedom to operations of modules while providing implementation modularity

and simplicity. UcastReceiver thread is responsible for receiving unicast messages

and forwards them to destination modules by putting them into their FIFO queues.

For this purpose, the thread binds, blocks and listens a specific UDP port. Similarly,

McastReceiver thread receives incoming multicast messages by binding to a

specified multicast group IP address, and listening a specific port. Message sending

operations are performed by UMcastSender helper thread. A module that has a

unicast or multicast message to be sent puts the message into the FIFO queue of

UMcastSender and continues its operation. UMcastSender takes the message from

the queue and sends them in a unicast or multicast IP packet to the specified

destination. Standard BSD socket library available in Linux environment was used

for network communication implementation.

A message is transferred in a standardized message structure. The message

structure is shown in Figure 4. Source and destination address is a specific address

structure which contains IP address and module ID that defines the module (each

CM,NM or N modules in the system have an assigned globally unique module ID).

Module type specifies the destination module as CM, NM or N. Retransmit counter

is used for specifying a retransmitted message in case of a failure and prevents

 74

processing of duplicate messages. Message type defines the message contained in the

data section.

Figure 5.2 Message structure in CIM protocol.

Since messages can contain different data types and structures, each message type

has a predefined structure. Hence the data section of a message is interpreted by

using message type field. As an example, the structure of message type

“NACCEPTED” that is sent by an NM to N as an acceptance to the cluster can be:

 typedef struct st_naccepted

{

 _address mcastaddr;

 unsigned int mid;

} m_naccepted;

When sending this type of message, it is first put into the data section of standard

message structure and then sent. Upon receiving, the message type is read and data is

put into the “m_naccepted” message structure.

5.2 The Implementation of Load Balancing Model

As CIM, the protocol of load balancing model was designed using FSMs too. The

implementation of the load balancing model was integrated to the implementation of

CIM. CM, NM and N components are designed as different modules in load

balancing model. However in implementation, these components are embedded in

CIM modules. Hence the same multithreaded architecture as depicted in Figure 5.1

source destination module
type

message

type

retransmit

counter

DATA

 75

was not changed. The only addition to the implementation is that the module threads

in CIM also run CM, NM a N modules of the load balancing module.

 76

CHAPTER SIX

EXPERIMENTS AND EVALUATION OF RESULTS

6.1 Tests For CIM

The program code of CIM protocol was written with C language for Linux

environment and compiled on a kernel version 2.6.3 Mandrake Linux 10.0 (x86)

operating system. Since there are not sufficient resources yet for construction of a

real cluster environment (tens or even hundreds of workstations are needed), a single

machine was used in simulation. For simulation, multiple Ns, NMs and a CM

module thread virtually representing different workstations, run on this machine in a

single CIM process. The machine was a PC with Intel Celeron 1.7 Ghz processor and

256MB memory.

Tests that will show performance and scalability properties are performed. The

performed tests are; joining N to the cluster, failure of N, NM and CM, employing a

new NM (split operation). Clusters of different sizes (different number of Ns and/or

NMs) were tested. Number of NMs vary from 2 to 16, and total number of Ns vary

from 8 to 256 while number of Ns in a NM group vary from 4 to 32.

6.1.1 Joining A N To The Cluster

In this test, time requirements for N join request and acceptance sequence is

measured. The join operation starts with the NJOIN message of N. CM gets the

message and forwards it to a NM that it selects. Upon receiving NM sends a

NACCEPTED message to N. N responds this message with a NOK message, and at

last NM informs CM about the completion of the operation with a NADDED

message. The number of messages sent during the join operation is constantly 5. Test

results of this operation are in Table 6.1. Measured values are in millisecond. Tests

show that N join times are around 20 msec and are not effected by the size and shape

of the cluster.

 77

Table 6.1 Results of N join test

of Ns in a NM group

4 8 16 32

2 22 19 17 19

4 18 17 23 23

6 16 17 20

8 21 21 25

of

NMs

16 20 27

6.1.2 N Crash Test

In this test, a randomly selected N thread is stopped instantly, and the operation

taken by the cluster is watched. In normal operation, N sends a Heartbeat message

when it did not communicate with NM in a certain time interval (Activity time) to

inform its aliveness. If N dies, then it will not send Heartbeat messages and NM

realizes this situation and sends a CHECKALIVE message to that N and waits an

immediate reply within a CheckAlive time period. Since N died, when this period is

over, NM removes that N from the cluster and informs CM about this operation. The

number of messages sent during this operation is constant and 2. The time

measurements are shown in Table 6.2. In table CheckAlive time period is shown as

CA. Tests show that the detection and removal operation is around CheckAlive time

period and is not effected by the size and shape of the cluster.

Table 6.2 Results of N crash test

of Ns in a NM group

4 8 16 32

2 CA+0 CA+0 CA+1 CA+1

4 CA+0 CA+0 CA+0 CA+3

6 CA+0 CA+3 CA+2

8 CA+0 CA+0 CA+0

of

NMs

16 CA+2 CA+2

 78

6.1.3 NM Crash Test

In this test, a randomly selected NM thread is stopped instantly, and the operation

taken by the cluster is watched. In normal operation, NM sends a Heartbeat message

if it didn’t not communicate with CM in a certain time interval (Activity time) to

inform its aliveness. If NM dies, then it will not send Heartbeat messages and CM

realizes this situation and sends a CHECKALIVE message to that NM and waits an

immediate reply within a CheckAlive time period. Since NM died, when this period

is over, CM removes that NM from the cluster and promotes the backup of died NM

as the new NM of that group. When the new NM wakes up, it sends a NEWNM

multicast message to its group. Upon receiving this message Ns of that group

responds it with NOK messages. The number of messages sent during the detection

and promotion of new NM is constant and 2. During the start of the new NM, single

multicast message is sent, but number of unicast messages depends on the number of

Ns in a group.

The time measurements are shown in Table 6.3, and amount of sent messages in

Table 6.4. The first sub columns below the labels are for detection and removal, the

second ones are for start of the new NM. In tables CheckAlive time period is shown

as CA, and volumes of sent multicast messages are shown with an “m” at the end.

Tests show that the detection and promotion operation is around CheckAlive time

period and is not effected by the size and shape of the cluster. The time required for

start of the new NM mainly depends on the size of the group. The time changes by

the size of the cluster are ignored since it is caused by performing the tests in a single

machine.

 79

Table 6.3 Results of NM crash test

of Ns in a NM group

4 8 16 32

2 CA+2 46 CA+2 70 CA+2 96 CA+2 134

4 CA+1 52 CA+1 83 CA+1 105 CA+0 145

6 CA+2 83 CA+2 110 CA+0 169

8 CA+1 85 CA+1 100 CA+4 170

of

NMs

16 CA+0 96 CA+2 100

Table 6.4 Volumes of transmitted messages of NM crash test

of Ns in a NM group

4 8 16 32

2 2 1m+4 2 1m+8 2 1m+16 2 1m+32

4 2 1m+4 2 1m+8 2 1m+16 2 1m+32

6 2 1m+8 2 1m+16 2 1m+32

8 2 1m+8 2 1m+16 2 1m+32

of

NMs

16 2 1m+8 2 1m+16

6.1.4 CM Crash Test

In this test, CM is stopped instantly and the operation taken by the cluster is

watched. In normal operation, CM sends a Heartbeat message if it didn’t not

communicate with its backup NM in a certain interval (Activity time) to inform its

aliveness. If CM dies, then it will not send Heartbeat messages and backup NM

realizes this situation and sends a CHECKALIVE message to CM and waits an

immediate reply within a CheckAlive time period. Since CM died, when this period

is over, backup NM promotes itself as the new CM. When the CM thread is activated

it sends a NEWCM multicast message to its group. Upon receiving that message,

NMs responds it with NMOK messages. The number of messages sent during the

detection and promotion of new CM is constant and 2. During the start of the new

CM single multicast message is sent, but number of unicast messages depends on the

number of NMs.

 80

The time measurements are shown in Table 6.5, and amount of sent messages in

Table 6.6. The first sub columns below labels are for detection and removal, the

second ones are for start of the new CM. In tables CheckAlive time period is shown

as CA, and amount of multicast messages are shown with an “m” at the end. Tests

show that the detection and promotion operation is around CheckAlive time period

and is not effected by the size and shape of the cluster. The time required for start of

the new CM mainly depends on the number of NMs in the cluster. The time changes

by the number of Ns are ignored since it is caused by performing the tests in a single

machine.

Table 6.5 Results of CM crash test

of Ns in a NM group

4 8 16 32

2 CA+1 38 CA+1 36 CA+2 35 CA+0 43

4 CA+2 60 CA+1 62 CA+2 63 CA+0 64

6 CA+2 79 CA+0 81 CA+2 81

8 CA+1 105 CA+4 103 CA+8 100

of

NMs

16 CA+0 127 CA+3 127

Table 6.6 Volumes of transmitted messages of CM crash test

of Ns in a NM group

4 8 16 32

2 2 1m+2 2 1m+2 2 1m+2 2 1m+2

4 2 1m+4 2 1m+4 2 1m+4 2 1m+4

6 2 1m+6 2 1m+6 2 1m+6

8 2 1m+8 2 1m+8 2 1m+8

of

NMs

16 2 1m+16 2 1m+16

6.1.5 Split Operation Test

Split operation is started by CM when it is necessary to employ a new NM and

construct a new group in cluster. In this operation, CM sends a SPLIT multicast

 81

message to the top group. When an NM receive this message, it sends a

NMUPDATE message to its group. Upon receiving this message Ns respond it with

NOK messages. When all NOK messages are received, NM sends a NMOK message

to CM to inform completion of the operation. After all NMOK messages are

received, CM promotes a selected N as the NM of the new group. When the new NM

thread is activated, it sends a NEWNM multicast message to its group. Upon

receiving this message Ns of that group responds it with NOK messages.

The time measurements are shown in Table 6.7, and amount of sent messages in

Table 6.8. The first sub columns below labels are for SPLIT and NMUPDATE

sequences, the second ones are for start of the new NM. In tables volume of sent

multicast messages are shown with an “m” at the end. Tests show that the split

operation depends on the size of the cluster. As the number of Ns and NMs grows,

the time requirement and message counts increases. The time required for start of the

new NM mainly depends on the number of Ns of the new group.

Table 6.7 Results of split operation test

of Ns in a NM group

4 8 16 32

2 89 22 107 39 192 50 247 58

4 91 32 148 36 225 37 372 56

6 183 31 292 38 495 68

8 235 44 415 51 655 69

of

NMs

16 376 38 740 117

Table 6.8 Volumes of transmitted messages of split operation test

of Ns in a NM group

4 8 16 32

2 3m+15 1m+6 3m+27 1m+13 3m+51 1m+26 3m+99 1m+53

4 5m+16 1m+7 5m+30 1m+13 5m+56 1m+27 5m+110 1m+54

6 7m+37 1m+15 7m+71 1m+30 7m+138 1m+61

8 9m+46 1m+16 9m+87 1m+33 9m+169 1m+66

of

NMs

16 17m+81 1m+20 17m+154 1m+41

 82

6.1.6 Summary of Test Results

The tests show the following results:

• N join and failure operations are simple and performance is not

effected by the size of the cluster, hence they are not a scalability issue.

• NM failover operation is handled by effecting only the group where

problem occurs and isolated from other parts of the cluster. the operation does

not cause scalability problems.

• CM failover operation is handled in the management group so Ns are

not effected. Operation does not have scalability problems.

• Split operation and constructing a new group is a process that effects

the whole cluster. Tests show that amount of message transmits and operation

times increase as the cluster grows. Considering the message sizes and

volume increase ratio, split operation is not a dramatic scalability issue on a

fast and reliable network environment. Besides, the time period of operation

is effected mainly by the simulation environment since tests are performed on

a single machine environment.

6.2 Tests For Load Balancing Model

The implementation of the load balancing model was tested on a simulation

environment. The tests performed aim as a proof of efficiency and scalability of the

model, observation of its functionality and performance, while discovering possible

improvements.

The program code of CIM protocol was written with C language for Linux

environment and compiled on a kernel version 2.6.3 Mandrake Linux 10.0 (x86)

operating system. Since there are not sufficient resources yet for construction of a

 83

real cluster environment (tens or even hundreds of workstations are needed), a single

machine was used in simulation. For simulation, multiple Ns, NMs and a CM

module thread virtually representing different workstations, run on this machine in a

single CIM process. The machine was a PC with Intel Centrino Duo 1.8 Ghz

processor and 1GB memory.

In simulation two load indices was used with equal weights of 0.5: cpu utilization

and memory utilization. Then the calculated load value of a N is:

L = lcpu x 0.5 + lmemory x 0.5

As load index thresholds, 0.8 was set for both indices. That means when a load

index value exceeds 80%, that load index effects directly to calculated load value

regardless of its weight to prevent resource overflow.

In this environment, each N was assigned a set of resources at startup randomly

from a resource table. The resource table is shown in Table 6.9. The resource table

was used to simulate the heterogeneity of Ns.

Table 6.9 Heterogeneous resources used in tests

Resource ID Cpu Memory

0 1 128

1 1 256

2 1.5 256

3 1.5 512

4 2 256

5 2 512

Since we assumed that task arrival times, rates and durations were not known at

runtime, each N was submitted randomly selected tasks from a task table, at random

times dynamically. The execution duration for each task was also a random time

from 20 seconds to 100 seconds. Each task has a specific resource usage. The cpu

usage of a task represents its average cpu consumption on a base computer which

 84

has resources as resource ID 0, whereas memory usage represents absolute memory

consumption while the task is running. Task table is shown in Table 6.10.

Table 6.10 List of task profiles used in simulations

Task ID Cpu

consumption

Memory

consumption

0 15 8

1 13 12

2 15 11

3 12 18

4 17 17

5 8 9

6 10 20

7 8 16

8 15 7

9 6 13

In simulations, non-preemptive task transfers were considered. So, tasks that are

newly submitted and not started were involved in task transfers.

In tests, the load balancing model run on clusters with 2,4 and 6 NMs having 4, 8,

16 Ns. In the tests, some load balancing metrics and runtime load state values was

measured over a time period. The measured values were:

• Average load values of Ns, NMs and the cluster

• LA, TR and TS values calculated by NMs and CM

• Ratio of locally executed tasks (tasks that run on submitted Ns)

• Ratio of locally transferred tasks (tasks that run on different Ns in a

NM group, other than where they are submitted)

• Ratio of globally transferred tasks (tasks that were sent to other Ns

that belong to other NM groups)

 85

• Ratio of globally imported tasks (tasks that were received from other

Ns that belong to other NM groups)

In Figure 4, the amount of load submitted to the cluster systems during tests are

shown (cluster names represent their sizes, e.g. 2x8 cluster has 2 NMs each having 8

Ns). The volume of tasks submitted were proportional to the number of Ns clusters

had.

 Figure 6.1 Tasks submission rates for different cluster sizes.

6.2.1 Test 1: 2x8 Cluster

In this test a 2 NMs with 8 Ns cluster was constructed on which local and global

load balancing operations measured. The test results in Figures 6.2-6.3 show that

local load balancing scheme was able to keep load levels of highly utilized Ns

around TS levels by transferring their submitted tasks to the Ns that have low load

and prevented overloading. NMs adjusted the TR and TS threshold values around load

averages to specify load senders and receivers. This also prevented moderately

loaded (close to the average) Ns to be involved in load transfers that cause useless

task transfers. So, task transfers were performed from highly loaded Ns through

lightly loaded Ns. As the graphs in Figure 6.4-6.5 show, Ns mainly run local tasks

and average task transfer rates were kept low, avoiding transfer overheads.

2x8 4x8 6x8 4x16

0

200

400

600

800

 tasks/min

 86

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

La

Tr

Ts

Figure 6.2 Local load values of NM1 group.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

La

Tr

Ts

 Figure 6.3 Local load values of NM2 group.

 %

 time (min)

 %

 time (min)

 87

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NM1 NM2

Localy transferred

Localy executed

 Figure 6.4 Ratio of locally executed and transferred tasks.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NM1

NM2

Average

 Figure 6.5 Rates of locally transferred tasks by time period.

As seen in Figure 6.6 both NM groups are highly loaded, so global load sharing

module had less chance to find receiver NM group. Therefore, as shown in Figure

6.7-6.9 although global load transfer rates are very low, few load transfers were

performed from NM1 to NM2 which had less load then the other.

 %

 time (min)

 88

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CM

Tr

Ts

NM1

NM2

 Figure 6.6 Global load values.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NM1 NM2

Globaly imported

Globaly exported

Localy executed

 Figure 6.7 Ratio of locally executed and globally transferred tasks.

0

2

4

6

8

10

12

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NM1

NM2

Average

 Figure 6.8 Rates of globally exported tasks by time period.

 %

 time (min)

 %

 time (min)

 89

0

1

2

3

4

5

6

7

8

9

10

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NM1

NM2

Average

 Figure 6.9 Rates of globally imported tasks by time period.

6.2.3 Test 2: 4x8 Cluster

In this test a 4 NMs with 8 Ns cluster was constructed and load balancing

operations are measured. The test results were shown in Figures 6.10-6.15. The

results show similar results with previous test. The local load balancing model was

able to keep load levels of highly utilized Ns around TS levels. TR and TS threshold

values were adjusted according to the load values. This prevented moderately loaded

Ns to be involved in load transfers that would cause useless task transfers. Again,

average task transfer rates were kept low.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

 Figure 6.10 Local load values of NM1 group.

 %

 time (min)

 %

 time (min)

 90

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

 Figure 6.11 Local load values of NM2 group.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

 Figure 6.12 Local load values of NM3 group.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

 Figure 6.13 Local load values of NM4 group.

 %

 time (min)

 %

 time (min)

 %

 time (min)

 91

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NM1 NM2 NM3 NM4

Localy transferred

Localy executed

 Figure 6.14 Ratio of locally executed and transferred tasks.

0

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NM1

NM2

NM3

NM4

Average

 Figure 6.15 Rates of locally transferred tasks by time period.

Figure 6.16-6.19 show the global load balancing operation results. Group load

levels are around average cluster load. Global task transfers are mainly performed

through highly load groups like NM2 and NM1 to the receiver groups NM3 and

NM4. The task transfer rates were below %5.

 %

 time (min)

 92

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CM

Tr

Ts

NM1

NM2

NM3

NM4

 Figure 6.16 Global load values.

0%

20%

40%

60%

80%

100%

NM1 NM2 NM3 NM4

Globaly imported

Globaly exported

Localy executed

 Figure 6.17 Ratio of locally executed and globally transferred tasks.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NM1

NM2

NM3

NM4

Average

 Figure 6.18 Rates of globally exported tasks by time period.

 %

 time (min)

 %

 time (min)

 93

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NM1

NM2

NM3

NM4

Average

 Figure 6.19 Rates of globally imported tasks by time period.

6.2.4 Test 3: 6x8 Cluster

In this test a 6 NMs with 8 Ns cluster was constructed and local load balancing

operations are measured. The test results were shown in Figures 6.20-6.31. The

comments of the previous tests can also be stated for these results. While local load

sharing policy distributes the load inside the groups, global load sharing policy

transfers more load to NM3 group which has less load than others. Again, the global

task transfer rates were around %5.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

 Figure 6.20 Local load values of NM1 group.

 %

 time (min)

 %

 time (min)

 94

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

 Figure 6.21 Local load values of NM2 group.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

 Figure 6.22 Local load values of NM3 group.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

 Figure 6.23 Local load values of NM4 group.

 %

 time (min)

 %

 time (min)

 %

 time (min)

 95

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

 Figure 6.24 Local load values of NM5 group.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N1

N2

N3

N4

N5

N6

N7

N8

 Figure 6.25 Local load values of NM6 group.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NM1 NM2 NM3 NM4 NM5 NM6

Localy transferred

Localy executed

 Figure 6.26 Ratio of locally executed and transferred tasks.

 %

 time (min)

 %

 time (min)

 96

0

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NM1

NM2

NM3

NM4

NM5

NM6

Average

 Figure 6.27 Ratio of locally executed and transferred tasks.

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CM

Tr

Ts

NM1

NM2

NM3

NM4

NM5

NM6

 Figure 6.28 Global load values.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NM1 NM2 NM3 NM4 NM5 NM6

Globaly imported

Globaly exported

Localy executed

 Figure 6.29 Ratio of locally executed and globally transferred tasks.

 %

 time (min)

 %

 time (min)

 97

0,00

5,00

10,00

15,00

20,00

25,00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NM1

NM2

NM3

NM4

NM5

NM6

Average

 Figure 6.30 Rates of globally exported tasks by time period.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NM1

NM2

NM3

NM4

NM5

NM6

Average

 Figure 6.31 Rates of globally imported tasks by time period.

6.2.5 Test 4: 4x16 Cluster

In this test a 4 NMs with 16 Ns cluster was constructed and local load balancing

operations are measured. The test results for local load balancing are shown in

Figures 32-37. The results show that the local load sharing policy tries to bring load

values closer to the average load, by limiting sender and receiver N load values

around threshold values. This also reduces task transfer rates, since the model does

not try to equalize load levels. Task transfer rates were almost same low levels as in

the other tests, which proves the scalability of the system.

 %

 time (min)

 %

 time (min)

 98

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.32 Local load values of NM1.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.33 Local load values of NM2.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.34 Local load values of NM3.

 %

 time (min)

 %

 time (min)

 %

 time (min)

 99

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.35 Local load values of NM4.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NM1 NM2 NM3 NM4

Localy transferred

Localy executed

 Figure 6.36 Ratio of locally executed and transferred tasks.

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20 22 24 26 28

NM1

NM2

NM3

NM4

Average

 Figure 6.37 Rates of locally transferred tasks by time period.

 %

 time (min)

 %

 time (min)

 100

Global load sharing policy brought the group load levels closer to the average

around Ts and Tr values. Figures 38-41 shows the results of global policy. NM4

group which has least load received more tasks than the others. The top senders were

NM2 and NM3. Similar to the former tests the average task transfer rate was around

3%.

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

CM

Tr

Ts

NM1

NM2

NM3

NM4

 Figure 6.38 Global load values.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NM1 NM2 NM3 NM4

Globaly imported

Globaly exported

Localy executed

 Figure 6.39 Ratio of locally executed and globally transferred tasks.

 %

 time (min)

 101

0,00

2,00

4,00

6,00

8,00

10,00

12,00

2 4 6 8 10 12 14 16 18 20 22 24 26 28

NM1

NM2

NM3

NM4

Average

 Figure 6.40 Rates of globally exported tasks by time period.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

2 4 6 8 10 12 14 16 18 20 22 24 26 28

NM1

NM2

NM3

NM4

Average

 Figure 6.41 Rates of globally imported tasks by time period.

6.2.6 Test 5: 4x16 Cluster without Global Load Sharing

To see the effect of global load sharing, the 4x16 cluster test were performed

again with global policy disabled. Since the local policy was active, load levels

inside groups were adjusted around threshold levels as shown in Figure 6.42-6.45.

 %

 time (min)

 %

 time (min)

 102

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.42 Local load values of NM1 group.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.43 Local load values of NM2 group.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.44 Local load values of NM3 group.

 %

 time (min)

 %

 time (min)

 %

 time (min)

 103

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.45 Local load values of NM4 group.

Figure 6.46 shows the group load values. Comparing this graph with Figure 6.38,

the importance of global load sharing policy can be proven. With global policy,

average cluster load were around %70 whereas without it the load level arises to

%80, stating that the global load sharing policy distributes the loads of higher groups

through groups that have less load levels and utilizes the efficient use of the cluster

resources.

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

CM

Tr

Ts

NM1

NM2

NM3

NM4

 Figure 6.46 Global load values.

 %

 time (min)

 %

 time (min)

 104

6.2.7 Test 6: 4x16 Cluster without Load Sharing

To show the effect of load balancing model, the 4x16 test performed again with

the same set of task pattern and the same resources but without the local and global

load sharing policies. Figure 6.47-6.50 show the load levels inside groups. Some Ns

were overloaded while there are lightly loaded Ns with the absence of local load

sharing policy.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.47 Local load values of NM1 group.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.48 Local load values of NM2 group.

 %

 time (min)

 %

 time (min)

 105

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.49 Local load values of NM3 group.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

N13

N14

N15

N16

 Figure 6.50 Local load values of NM4 group.

Figure 6.51 shows the unbalanced state of the cluster. As a result, the cluster

resources were not efficiently utilized without the load balancing model.

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28

CM

Tr

Ts

NM1

NM2

NM3

NM4

 Figure 6.51 Global load values.

 %

 time (min)

 %

 time (min)

 %

 time (min)

 106

6.2.8 Evaluation of Results

Figure 6.52 and 6.53 show average task transfer rates per minute and percentage

of transferred tasks over the totals measured for both local and global load sharing

policies. As naturally expected, task transfer rates increased with the growth of the

cluster and with the increasing load. Global load transfers also increased by the

addition of new NMs to the cluster. Note that local transfer rates are always higher

than global transfer rates since independent local load sharing processes run

simultaneously within the groups of Ns, while global load sharing runs on the upper

level among NMs. Due to the adaptive threshold mechanism, we do not expect such

differentiations as transfer rates on their percentages. In fact, test results confirms the

expectations. While local transfer ratios fell below %10, global transfer percentages

did not exceed %5, as seen in the Figure 6.53.

0

10

20

30

40

50

60

2x8 4x8 6x8 4x16

global

local

 Figure 6.52 Task transfer rates.

0

2

4

6

8

10

2x8 4x8 6x8 4x16

global

local

 Figure 6.53 Task transfer percentages.

 tasks/min

 %

 107

As a load distribution policy, the designed model is expected to reduce the

unbalanced state of the cluster system. To measured the imbalace in load states, we

calculated standard deviations of load values for both global and local load sharing

processes. The results are shown in Figure 6.54. To compare the effect of the model

on distribution of load, we also run the cluster submitting the same load pattern with

load balancing policy disabled. The values shown as an example in the graph as

“4x16nolb” are such results of a 4x16 cluster without load balancing. Comparing the

results with those with load balancing enabled, it can be seen that the model reduces

the load imbalance from about %19 to %9 locally and %7 to %2 in global load

values. Although the results of other cluster types are generally close to each other,

there are some slight differences in deviations. Use of nonpreemptive load transfers

and dynamic nature of task submissions are main causes to these differences.

Moreover, the threshold calculation method has a major effect on load levels. Since

we used a threshold mechanism based on average distances, the load distribution

policy tried to cause the load levels closer to the mean in some boundries

(thresholds) instead of strictly equalizing them. Such a policy was avoided since it

would have caused higher task transfer rates with extra overhead. The average

distance values are shown in Figure 6.55. It can be seen that these results are closer

to each other than those in standard deviations.

0

5

10

15

20

2x8 4x8 6x8 4x16 4x16nolb

Global

Local

 Figure 6.54 Standard deviation of load values.

st.dev.

 108

0

2

4

6

8

10

12

14

16

18

20

2x8 4x8 6x8 4x16 4x16nolb

Global

Local

 Figure 6.55 Average distances of load values.

Graphs plotting global load values and thresholds during runtime in Figure 6.56

show the effect of threshold mechanism more clearly. On the first graph that shows

measurements on a 4x16 cluster without load balancing we see the spread of load

values between %50 and %90. When load balancing enabled, values were shrunk

towards the average and load interval narrowed to %60-80 around sender and

receiver thresholds.

Figure 6.56 Global load values without (I) and with (II) global load sharing.

Finally, we show graphs of local load sharing policy for a 4x16 cluster in Figure

6.57. Graphs I and III shows the load levels of Ns for two groups without load

balancing. Comparing these values to the corresponding measurements of those with

load balancing enabled (graphs II and IV respectively) we see how the local load

sharing shapes the load levels of Ns around the averages (shown by the dotted lines).

With the help of load sharing and load index thresholds load levels of Ns with

exceeding the limits were smoothed by task transfers through lightly loaded Ns.

2 4 6 8 10 12 14 16 18 20 22 24 26 28

40

60

80

100

CM

Tr

Ts

NM1

NM2

NM3

NM4

2 4 6 8 10 12 14 16 18 20 22 24 26 28

40

60

80

100

CM

Tr

Ts

NM1

NM2

NM3

NM4

I II

%

time(min)

avg.dist.

 109

Figure 6.57 Local load values without (I,III) and with (II,IV) local load sharing.

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

I II

III IV

% %

% %

 110

CHAPTER SEVEN

CONCLUSIONS AND FUTURE DIRECTIONS

The research area of this thesis was about scalable Beowulf style clusters and

efficient load distribution in these systems. A Beowulf cluster was defined as the

cluster computing technology that connects tens to hundreds of personal computers

together in such a way that they behave like a single computer which was a popular

strategy for implementing parallel processing applications.

During researches it became clear that to build a stable and scalable cluster system

an infrastructure that manages nodes of the cluster was needed. The Cluster

Infrastructure Model (CIM) was designed for this purpose. In short, CIM is the

foundation of the cluster system which is responsible for maintaining the components

of the cluster by keeping the records of active nodes, checking their health and

isolating failed nodes. Besides its this primary function, by its communication

structure CIM also served an information service for the distributed load balancing

model by collecting the state information from the nodes.

In researches it was seen that central policies could make more efficient load

distribution decisions since the central controller had the complete knowledge about

the whole cluster. However, they did not scale well on large clusters. On the other

hand, distributed policies suffered from complexity and lack of complete knowledge

to make most suitable decisions. To utilize the advantages of both techniques and

avoid their disadvantages a hierarchically centralized architecture was designed.

To manage nodes of the cluster in a scalable manner, the system was

hierarchically divided into a number of groups and these groups are under the control

of node managers. On the upper level in the hierarchy there was a cluster manager as

the leader of the node managers. CIM defined this structure with its communication

and fault tolerance.

 111

The cluster infrastructure model was implemented on Linux platform and tested

on a simulation environment. The tests that were performed to evaluate the

performance, stability and scalability of the model were joining a node to the cluster,

removing a crashed node, replacing a dead node manager and cluster manager. Test

results shown that the hierarchically layered model scales well on different size of

clusters and its fault tolerance keeps the system stable in case of component failures.

The load balancing model was designed over the CIM. The hierarchical

architecture of CIM also provided a scalable architecture for the load balancing

model. By the hierarchical architecture parallel load distribution processes run at the

lower level within groups and load distribution among them were organized on the

upper layer. While local load distribution processes inside groups partially shared the

loads inside groups, the global load distribution process completed the operation by

distributing the loads among groups. The information needed for load distribution

decisions are carried also via the health checking (heart-beat) messages of CIM by

eliminating extra messaging requirement.

Support for heterogeneity of resources were provided by considering relative

capacities for resources of the nodes. Moreover, the use of weighted multiple load

indices that were taken into account to determine the load value of a node. This

method provided a customizable and flexible model for a general purpose cluster.

The load index thresholds were used to prevent resource overloading.

The dynamic sender and receiver threshold calculation method was used to add

adaptivity property to the load balancing model. The threshold calculation method

was designed as a customizable property.

Load index types, their weights, threshold calculation methods are customizable

parts of the model that can be adjusted according to needs.

The load balancing model was implemented as a separate module integrated to the

CIM. Some experimental tests were performed with different sizes of clusters to

 112

show the performance, efficiency and scalability of the designed model. The

performed tests have shown how adaptive load threshold values shape the load levels

around averages and avoid useless task transfers by successfully excluding

moderately loaded members from source and destination selections.

There are some areas of possible future research, such as:

• Use of different threshold calculation methods to observe the changes

in the sensitivity of the load distribution algorithm and also its overhead, e.g.

using standard deviation instead of average distance.

• Testing of applications that require additional load index types other

than CPU utilization and memory usage (like network usage, i/o queue

length, etc.).

• Support for preemptive task transfers, that have been avoided so far

because of their overhead and complexity, for applications where more

aggressive load balancing is required.

• Implementing the model over a real cluster environment and testing it

with a realistic problem.

 113

REFERENCES

Adams, D. A. (2005). Optimal Load Balancing in a Beowulf Cluster. MSc. Thesis in

Computer Science, Worcester Polytechnic Institute.

Baker, M. & Buyya, R. (1999). Cluster Computing At A Glance, High Performance

Cluster Computing, R. Buyya, Ed. Upper Saddle River, NJ: Prentice Hall PTR,

vol. 1, Architectures and Systems, 3-47, chap. 1

Baker, M., & Buyya, R. (1988). Cluster Computing: The Commodity

Supercomputing. Software-Practice And Experience 1 (1), 1-4.

Casavant, T.L., Kuhl, J.G. (1988). A taxonomy of scheduling in general-purpose

distributed computing systems. IEEE Transactions on Software Engineering, vol.

14 (2), 141-154.

Castanegra, K., Cheng, D., & Fatoohi, R. (1994). Clustered Workstations and their

Potential Role as High Speed Compute Processors. NAS Computational Services

Technical Report, NAS Systems Division, NASA Ames Research Center.

Claypool, M., & Finkel, D. (2002). Transparent Process Migration For Distributed

Applications in a Beowulf Cluster. Proc. of the International Networking

Conference.

Dickson, K., Homic, C., & Villamin, S. B. (2000). Putting PANTS On Linux:

Transparent Load Sharing In A Beowulf Cluster. Major Qualifying Project CS-

DXF-9918.

Dongarra, J., Sterling, T., Simon, H., & Strohmaier, E. (2005). High-Performance

Computing: Clusters, Constellations, MPPs, and Future Directions. Computing in

Science and Engineering 7 (2), 51-59.

 114

Harbaugh, L. G., (2004), Building High-Performance Linux Clusters, Sponsored by

Appro. Retrieved September 2006, http://www.idgconnect.com/hardware/servers/

building_high_performance_linux_clusters_sponsored_by_appro/

Hawick, K.A. , Grove, D.A., & Vaughan, F.A. (1999), Beowulf - a New Hope for

Parallel Computing?. DHPC Technical Report DHPC-061, University of

Adelaide

Hwang, K., & Xu, Z. (1998). Scalable Parallel Computing: Technology,

Architecture, Programming. WCB/ McGraw-Hill, NY.

Kunz, T. (1991). The Influence of Different Workload Descriptions on a Heuristic

Load Balancing Scheme, IEEE Trans. Software Eng., Vol. 17 (7) , 725-730.

Livny, M. & Melman, M. (1982). Load Balancing In Homogeneous Broadcast

Distributed Systems, Proc. ACM Computer Network Performance Symp. 11 (1),

47-55.

Meredith, M., Carrigan, T., Brockman, J., Cloninger, T., Privoznik, J., & Williams, J.

(2003). Exploring Beowulf Clusters. Journal of Computing Sciences in Colleges

18 (4), 268 – 284.

Shirazi, B. A., Husson, A. R., & Kavi., K. M. (1995). Scheduling and Load

Balancing in Parallel and Distributed Systems, chapter Introduction to

Scheduling and Load Balancing. IEEE Computer Society Press, Los Alamitos,

CA, 1995.

Shivaratri, N. G., Krueger, P., & Singhal, M. (1992). Load Distributing For Locally

Distributed Systems. IEEE Computer, 25, 33-44.

 115

Soria, M., Pérez-Segarra, C. D., & Oliva, A. (2002). A Direct Parallel Algorithm For

The Efficient Solution Of The Pressure-Correction Equation Of Incompressible

Flow Problems Using Loosely Coupled Computers. Numerical Heat Transfer,

Part B: Fundamentals 41 (2), 117-138.

Sterling, T., Becker, D. J., Dorband, J. E., Savarese, D., Ranawake, U. A., & Packer,

C. V. (1995). A Parallel Workstation for Scientific Computation, Proc. of the 24th

International Conference on Parallel Processing.

Sunderam, V., Geist, G., Dongarra, J., & Manchek, R. (1994). The PVM Concurrent

Computing System: Evolution, Experiences, and Trends. Parallel Computing, 20

(4).

Thain, D., Tannenbaum, T., & Livny, M. (2005). Distributed Computing in Practice:

The Condor Experience, Concurrency and Computation: Practice and Experience

17 (2-4), 323-356.

Walker, D., & Dongarra, J. (1996). MPI: A Standard Message Passing Interface.

Supercomputing, 12 (1).

 116

APPENDICES

Appendix A - Pseudocodes of CIM Modules

A.1 Pseudocode of CM Module

Program ClusterManager
{

 Initialize_variables
 sendmsg(ClusterMulticastAddr,NewCM)
 msg_count=1

 reply_count=0
 start_timer(Startup)
 start_timer(Activity)
 state=Startup

 Loop Forever
 {

 wait_event
 Case (event)
 Startup_timeout:
 if msg_count<max_NewCM_msg_sent_count

sendmsg(ClusterMulticastAddr,NewCM)
 msg_count=msg_count+1
 start_timer(Startup)

 else
 state=Ready
 NMOK_msg_received:
 set_NM_info

 if reply_count=NMCount
 stop_timer(Startup)
 state=Ready
 Heartbeat_msg_received:

 active[sender_NM]=1
 if state=CrashDetect
 stop_timer(CrashDetect)

 state=Ready
 Heartbeat_timeout:
 if state=Ready
 sendmsg(timedout_NM,CheckAlive)

 start_timer(CheckAlive)
 state=CrashDetect
 else

 postpone_event
 CheckAlive_timeout:
 remove(timeout_NM)

 117

 sendmsg(backupN,StartNM)
 state=Ready
 CheckAlive_msg_received:

 sendmsg(sender_NM,Heartbeat)
 Ncrash_msg_received:
 if state=Ready or Split
 remove(crashedN)

 else
 postpone_event
 NJoin_msg_received:

 if state=Ready
 sendmsg(selectedNM,AddN)
 else
 postpone_event

 NAdded_msg_received:
 if state=Ready
 Add(N)

 else
 postpone_event
 Split_condition_occurred:
 if state=Ready

 sendmsg(ClusterMulticast_addr,Split)
 start_timer(Split)
 msg_count=1

 state=Split
 Split_timeout:
 if msg_count<max_Split_msg_sent_count

sendmsg(ClusterMulticastAddr,Split)

 msg_count=msg_count+1
 start_timer(Split)
 else
 state=Ready

 Activity_timeout:
 sendmsg(backup_NM,Heartbeat)
 End Case

 }

A.2 Pseudocode of NM Module

Program NodeManager
{
 Initialize_variables

 sendmsg(GroupMulticastAddr,NewNM)
 msg_count=1
 reply_count=0

 start_timer(Startup)
 start_timer(Activity)
 state=Startup

 118

 Loop Forever
 {

 wait_event
 Case (event)
 Startup_timeout:
 if msg_count<max_NewNM_msg_sent_count

sendmsg(ClusterMulticastAddr,NewNM)
 msg_count=msg_count+1
 start_timer(Startup)

 else
 state=Ready
 NOK_msg_received:
 if state=Startup

 set_N_info
 if reply_count=NCount
 stop_timer(Startup)

 state=Ready
 if state=NewN
 stop_timer(NewN)
 Add(N)

 sendmsg(CM,NAdded)
 state=Ready
 if state=Split

 if NOK_msg_count=split_count
 stop_timer(NMUpdate)
 sendmsg(CM,NMOK)
 state=Read

 Heartbeat_msg_received:
 active[sender_N]=1
 if state=NCrashDetect or CMCrashDetect
 stop_timer(CrashDetect)

 state=Ready
 Heartbeat_timeout:
 if state=Ready

 if N_timedout
 sendmsg(timedout_N,CheckAlive)

 state=NCrashDetect
 if CM_timedout

 sendmsg(CM,CheckAlive)
 state=CMCrashDetect
 start_timer(CheckAlive)

 else
 postpone_event
 CheckAlive_timeout:
 if state=NCrashDetect

 remove(crashed_N)
 sendmsg(CM,NCrash)
 if state=CMCrashDetect

 119

 StartCM
 state=Ready
 CheckAlive_msg_received:

 sendmsg(sender_N or CM,Heartbeat)
 AddN_msg_received:
 if state=Ready
 sendmsg(new_N,NAccepted)

 start_timer(NewN)
 state=NewN
 else

 postpone_event
 NewN_timeout:
 state=Ready
 NewCM_msg_received:

 if state=Ready
 sendmsg(CM,NMOK)
 else

 postpone_event
 Split_msg_received:
 if state=Ready
 sendmsg(GroupMulticast_addr,NMUpdate)

 start_timer(NMUpdate)
 msg_count=1
 state=Split

 else
 postpone_event
 NMUpdate_timeout:
 if msg_count<max_NMUpdate_msg_sent_count

sendmsg(GroupMulticastAddr,Split)
 msg_count=msg_count+1
 start_timer(NMUpdate)
 else

 sendmsg(CM,NCrash)
 sendmsg(CM,NMOK)
 state=Ready

 Activity_timeout:
 sendmsg(timedout_N or CM,Heartbeat)
 End Case
 }

A.3 Pseudocode of N Module

Program Node
{
 Initialize_variables

 sendmsg(ClusterMulticastAddr,NJoin)
 start_timer(Startup)
 start_timer(Activity)

 120

 state=Startup

 Loop Forever

 {
 wait_event
 Case (event)
 Startup_timeout:

sendmsg(CMMulticastAddr,NJoin)
 start_timer(Startup)
 NAccepted_msg_received:

 stop_timer(Startup)
 set_group_info
 sendmsg(NM,NOK)

start_timer(Activity)

 state=Ready
 CheckAlive_msg_received:
 sendmsg(NM,Heartbeat)

 NMUpdate_msg_received:
 sendmsg(NM,NOK)
 Update_NM_info
 NewNM_msg_received:

 Update_group_info
 sendmsg(NM,NOK)
 Activity_timeout:

 sendmsg(NM,Heartbeat)
 End Case
 }

 121

Appendix B - Flowcharts of Load Balancing Modules

B.1 Flowchart of CM Module

A B

 122

B.1 Flowchart of CM Module (continued)

A

B

C D

 123

B.1 Flowchart of CM Module (continued)

C D

E
F

 124

B.1 Flowchart of CM Module (continued)

E
F

 125

B.2 Flowchart of NM Module

 A B C

 126

A B C

B.2 Flowchart of NM Module (continued)

D E

 127

D E

B.2 Flowchart of NM Module (continued)

F G

 128

F

G
B.2 Flowchart of NM Module (continued)

H I

 129

H I

B.2 Flowchart of NM Module (continued)

J K

 130

J K

B.2 Flowchart of NM Module (continued)

 131

B.3 Flowchart of N Module

Start

Initialize variables

start_timer(Activity)

state=STARTUP

multicast_message(NJoin)

start_timer(Startup)

Loop

Event=Startup_timeout

Event=NAccepted_message_received

stop_timer(Startup)

Udate group Info

send_message(NMOK,NM)

start_timer(Activity)

State=READY

Event=CheckAlive_received send_message(Heartbeat,NM)

Event=NMUpdate_message_received
send_message(NMOK,NM)

Update group Info

Event=NewNM_messagereceived
Update group Info

send_message(NMOK,NM)

Wait for Event

multicast_message(NJoin)

start_timer(Startup)
Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

 A B

 132

Event=NewNM_messagereceived
Update group Info

send_message(NMOK,NM)

Event=Activity_timeout
Put Load Info into message

send_message(Heartbeat,NM)

End Loop

No

No

Yes

Yes

Event=TransferLoad_message_receive

d
State=READY

select task to transfer

send_message(LoadTransfer,receiverN)

start_timer(LoadTransfer)

state=LoadTransfer

Event=LoadTransfer_message_receive

d
State=READY

get task info

send_message(LoadTransferOK,senderN)

Event=LoadTransferOK_message_

received
State=LOADTRANSFER

stop_timer(LoadTransfer)

State=READY

Event=LoadTransfer_Timeout State=READY

No

Yes

Yes

No

No

Yes

Yes

No

No

Yes

Yes

No

No

Yes

A B

B.3 Flowchart of N Module (continued)

