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DISTRIBUTED COMPUTING ON 

BEOWULF CLUSTERS 

 

ABSTRACT 

 

Building low cost Beowulf style clusters by using tens or hundreds of PCs is a 

popular method to achieve higher computing capacities. To gain advantages of such 

a computing platform, a load balancing scheme is needed for transparent distribution 

of loads of individual computers throughout the whole cluster in a scalable and 

efficient manner.  

 

In this thesis a scalable cluster architecture and a load balancing model for 

heterogeneous Beowulf cluster environments are presented. For scalability issues the 

system relies on a hierarchically centralized architecture. To have general purpose 

characteristics the proposed load balancing model offers some dynamic and 

customizable properties in its design. For this purpose, multiple user defined load 

indices are considered in load calculations like CPU utilization, memory usage, 

network bandwidth capacity, etc. along with their combinations. In addition, the load 

distribution policy is based on customizable adaptive load threshold values that 

dynamically adjust the load distribution decisions according to the system state.  

 

The thesis details the design, implementation and performance evaluations of 

proposed models. 

 

 

Keywords : beowulf, cluster, load balancing, heterogeneous, adaptive, dynamic, 
hierarchical 
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BEOWULF KÜMELERĐ ÜZERĐNDE 

DAĞITIK ĐŞLEM YÜRÜTME 

 

ÖZ 

 

Daha yüksek işlem kapasitesi elde etmek amacıyla onlarca, hatta yüzlerce kişisel 

bilgisayarı (PC) kullanarak düşük maliyetli Beowulf tipi kümeleri oluşturmak son 

yıllarda eğilim kazanmıştır. Bu tür bir işlem platformunun avantajlarından 

faydalanabilmek için işi kümenin içindeki bilgisayarlar arasında etkin bir biçimde ve 

saydam olarak paylaştıracak, ölçeklenebilir özellikte bir yük dengeleme modeli 

gerekmektedir. 

 

Bu tezde, heterojen yapıdaki Beowulf kümeleri için tasarlanan ölçeklenebilir bir 

küme mimarisi ile bu mimari üzerine inşa edilmiş bir yük degeleme modeli 

sunulmaktadır. Ölçeklenebilir bir yapı için sistem hiyerarşik olarak 

merkezileştirilmiş bir mimari üzerine yapılandırılmıştır. Genel amaçlı kullanım 

özelliği kazandırmak amacıyla, önerilen yük dengeleme modeli, tasarımında bazı 

dinamik ve uyarlanabilir unsurlar barındırmaktadır. Bu amaçla, yük değerleri 

hesaplamasında, CPU durumu, bellek kullanımı, ağ arabirim bantgenişliği gibi farklı 

kombinasyonlarda birden çok yük endeksi hesaplamaya dahil edilebilmektedir. Buna 

ek olarak yük dağıtım modeli işleyişi, değiştirilebilir tarzda tasarlanmış ve sistemin 

anlık durumuna göre yük dağıtma kararlarını dinamik olarak değiştirebilen 

uyarlanabilir yük eşik değerlerine dayandırılmıştır. 

 

Tez içerisinde, önerilen modellerin tasarım, uygulama ve performans 

değerlendirmeleri detayları ile yer almaktadır. 

 

 

Anahtar sözcükler: beowulf, küme, yük dengeleme, heterojen, uyarlanabilir, 
dinamik, hiyerarşik 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Area of Research 

 

Cluster computing is a technology of connecting multiple computers together to 

behave like a single computer. Clustering is generally used for high performance 

parallel processing, load balancing and high availability.  

 

Clustering is almost as old as mainframe computing. From the earliest days, 

developers wanted to create applications that needed more computing power than a 

single system could provide. Then applications that could take advantage of 

computing in parallel were develeoped to run on multiple processors at once. 

Clusters can also enhance the reliability of a system, so that failure of any one part 

would not cause the whole system to become unavailable. 

 

After the mainframes, mini-computers and technical workstations were also 

connected in clusters. These systems used special hardware and special interconnect 

hardware and communications protocols. The challenge with these special clusters is 

that the hardware and software tend to be very expensive, and vendors may stop 

support of the product. Some vendors proposed open clusters built on their operating 

systems and commodity hardware. Although neither of these proposed clustering 

environments were deployed, the idea of using off-the-shelf hardware to build 

clusters was underway. Now many of the largest clusters in existence are based on 

standard PC hardware, often running Linux. 

 

Networks of Workstations (NOW) technology has been introduced to be a viable 

replacement for conventional supercomputers performing trillions of calculations per 

second (Castanegra, Cheng, & Fatoohi, 1994). Linux based Beowulf clusters built on 

that concept were used in some areas requiring high performance computing (HPC) 

where parallel computers run some specialized applications allowing scientific 

institutions and enterprises to perform computations, modeling, rendering, 
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simulations, visualizations and other sorts of tasks that a few years ago were limited 

to very large computer centers (Sterling, Becker, Dorband, Savarese, Ranawake, & 

Packer, 1995). They were widely used than any other type of parallel computer 

because of their low cost, flexibility, and accessibility (Dongarra, Sterling, Simon, & 

Strohmaier, 2005). While usually clusters are constructed by tightly-connected 

computers, they are also adapted to utilize the idle time of nondedicated loosely 

coupled workstations (Soria, Pérez-Segarra, & Oliva, 2002). 

 

A Beowulf cluster is a distributed system consisting of inexpensive computers, 

built from off-the-shelf components, connected together cheaply, usually in an 

Ethernet network infrastructure (Meredith, Carrigan, Brockman, Cloninger, 

Privoznik, & Williams, 2003). It enables leveraging the investment already made in 

PCs and workstations. In addition, it is relatively easy to increase the computing 

capacity by simply adding new PCs to the network.  

 

The use of clusters for the purpose of load balancing is a very popular subject. 

Due to their massively parallel nature, clusters were generally used to solve complex 

computational problems in many areas like 3D modelling, neural networks and 

biology. These clusters require specialized parallel applications designed for the 

problem, like those written using the MPI (Walker, & Dongarra, 1996) or PVM 

(Sunderam, Geist, Dongarra, & Manchek, 1994) libraries. The factor that 

differentiates load balancing approach from the others is the lack of a single parallel 

program that runs on each node of the cluster. Instead, there is a load balancing 

component, usually called the distributed task scheduler, that usually runs a specific 

algorithm to distribute the workload across the nodes of the cluster. Ideally, the load 

distribution scheme tries to balance the workload among the machines in the cluster, 

decreasing response times and increasing overall throughput  (Shivaratri, Krueger, & 

Singhal, 1992).  

 

The explicit software design requirement of parallel applications running on 

Beowulf clusters is sometimes a problem. Since it is the job of the software to 

distribute the work by dividing it to subproblems to be executed in a parallel manner 



 3 

on different nodes of the cluster, a program written in nondistributed style has to be 

converted into a distributed application with an embedded load distribution 

mechanism to run on a Beowulf cluster (Adams, 2005). The concept of load 

balancing in clusters was suggested to solve this issue and hide the load distribution 

details from the application and its programmer. In this concept, instead of a parallel 

application, usually a middleware component or subsystem, the distributed 

scheduler, as in PANTS (Claypool, & Finkel, 2002) and CONDOR (Thain, 

Tannenbaum, & Livny, 2005) isolates the distributed resources from applications and 

transparently distributes the workload throughout the cluster. 

 

In order for a cluster to be scalable, it must ensure that each server is fully 

utilized. The standard technique for accomplishing this is load balancing. The basic 

idea behind load balancing is that by distributing the load proportionally among all 

the servers in the cluster, the servers can each run at full capacity, while all requests 

receive the lowest possible response time. In a web server scenario, load-balancing 

refers to the technique of routing user requests over a certain number of networked 

computers, so as to keep the average usage of any system's resource approximately 

the same within that network that acts as a functional unit.  

 

In distributed systems, an attempt to distribute workload equally involves very 

high computational overheads. Most of the work is spent on collecting global state. If 

the applications considered demonstrates a pattern of frequent communication and 

synchronization, this global state changes rapidly, making load balancing unviable. 

Furthermore, if the grain size of the transfered work is not big enough to amortize the 

load balancing overheads, load balancing is not preferable even if the balancer 

algorithm guarantees accurate decisions based on global system state. In these 

situations, an alternative to distributing workload equally, is to ensure that all nodes 

are busy. Reducing idle times, and thereby the total program execution time is a far 

more preferable objective than attempting to distribute the workload equally. This 

strategy is called load sharing. Most systems implement load sharing rather than load 

balancing. These two terms are now being used interchangeably. 
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In general, clusters can provide both high availability and scalability for important 

computer applications such as business, medical and scientific applications. Much 

research has gone in to clustering technology over recent years, and quite a few 

solutions exist to provide load balancing services. 

 

1.2 Scope of Research 

 

The research presented in this thesis primarily addresses the problem of building 

scalable cluster architectures and utilizing the capacity of resources of such systems 

by efficient distribution of loads through these resources. The cluster components are 

ordinary independent personal computers with similar architectures but different 

hardware specifications (CPU, memory, disk, network interface, etc.) running Linux 

operating system. These computers are connected via a high speed  (such as ethernet) 

local or campus area network and they can communicate with each other directly by 

a common network and transport protocol supporting unicast and multicast 

communication methods (like UDP/IP). 

 

The research focuses on the arrangement of the computing resources and load 

distribution techniques on general purpose Beowulf clusters rather than those 

designed for running specialized applications to solve specific problems. For this 

reason, task types, patterns or their behaviours are not considered. Besides the 

organization of data storage (central or distributed file systems and directory 

structures, replication of data, etc.) is not in the scope of this research. 

 

1.3 Research Objectives 

 

The aim of the project is designing a load balancing model for Beowulf style 

cluster systems. The model to be designed targets some benefits to cluster systems. 

Some of these are:  

 

• Scalability: Cluster systems are scalable in that performance can be 

increased beyond that of a single node by adding more nodes to the cluster. 
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This is a great advantage in that if the load that is needed to share expands 

beyond expectation, simply extra hardware is added to the cluster to increase 

its capacity. The system should handle tens to hundreds of nodes effectively 

with reasonable and foreseeable overhead. 

 

• Availability: It is a measure of how well a computer system can 

continuously deliver services to clients. Because of the failover features of 

most modern cluster technology, it is much more likely that the cluster will 

be available to offer services to its clients, as it is unaffected by most failures 

in individual parts of the cluster. The other nodes will each have to deal with 

the small increase in traffic that they will experience because of the failure of 

one node, but the result is usually not catastrophic.  

 

• Manageability/Flexibility: Cluster management systems offer 

software to inspect the overall status of the cluster, to perform manual load 

balancing and set parameters for automatic load balancing and to perform 

rolling upgrades of software.  

 

• Lower total cost of ownership: Because of the reduction on 

downtime that cluster-based load balancing provides, the cost of 

administrative support for the system and also the amount of money that is 

lost through downtime is reduced. 

 

There are some considerations for the design of the model. These are: 

 

• Heterogeneous resources:  Heterogeneous cluster systems are 

multiprocessor systems that may have nodes of dissimilar types. Design 

freedom can lead to heterogeneity as machines can have; 

 

 • Different processor speeds,  

 • Different memory sizes, 

 • Different I/O speeds, 
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 • Different network interface speeds. 

 

 The heterogeneity may even include nodes that have processors of dissimilar 

 architectures, which have distinct instruction sets, byte orderings, and 

 different operating systems, but this type of heterogeneity is not scope of this 

 research.  

 

• Dynamic loads: the system has a dynamic nature, that is the load 

balancing scheme makes the load distribution decisions at runtime, without 

any prior knowledge about the load patterns (task types, their submission 

times, nodes to be submitted, etc.). 

 

 As to be discussed in the next chapter, dynamic load distribution algorithms 

 use system state information (the loads at nodes), at least in part, to make the 

 load distribution decisions, which static algorithms make no use of such 

 information.  

 

• Adaptivity of operations: The model has adaptive characteristics, 

meaning that the load distribution scheme adjusts its activities with respect to 

the current state of the system. Moreover the level of adaptivity can be 

adjusted by customizing some parameters of the system according to needs. 

 

 Adaptive load distribution systems adapt their activities by dynamically 

 changing the parameters of the algorithm to suit changing of the system state. 

 For example, an adaptive system may adjust its activities at high system load 

 states to prevent imposing extra overhead. 

 

• Load indices: The system considers combination of multiple load 

indices to calculate the load levels of the nodes. Moreover the selection of the 

load indices is a customizable process. Hence, it is configurable according to 

needs that more than one load index can be selected to be involved load 

calculations with different importance factors (weights). 
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 Load is the demand or usage of some system resource. The load metric is  

 used to determine if a node is “free" or “busy". In other words, the load 

 metric is used to decide if the machine should attempt to lessen it's load by 

 transferring tasks, or take on more load by accepting tasks from other 

 machines in the cluster. 

 

 A load index of a node can be comprised of a number of things;  

 

 • CPU queue length,  

 • CPU usage, 

 • Idle process run time,  

 • CPU load average,  

 • Average response time,  

 • Memory usage, 

 • Memory page-fault rate,  

 • I/O queue length,  

 • I/O service time,  

 • I/O blocks read/written, 

 • Network bandwidth utilization, 

 • Context switching, 

 • Interrupts, 

 • Task arrival rate, 

 • etc. 

 

1.4 Outline of the Thesis 

 

Chapter 2 discusses some theoretical and background information around the area 

of research. In Chapter 3 the design of hierarchically layered the cluster architecture 

and its fault tolerant management model is described. Chapter 4 presents the load 

balancing model in detail. The experiments and their results about measuring the 

performance of the models are discussed in Chapter 5. Finally, Chapter 6 contains 

some concluding remarks and suggestions for future work. 
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CHAPTER TWO 

RELATED WORK 

 

2.1 Cluster Computing  

 

2.1.1 History of Clustering 

 

The computing industry is one of the fastest growing industries and it is fueled by 

the rapid technological developments in the areas of computer hardware and 

software. The technological advances in hardware include chip development and 

fabrication technologies, fast and cheap microprocessors, as well as high bandwidth 

and low latency interconnection networks. Software technology is also developing 

fast. Operating Systems, programming languages, development methodologies, and 

tools, are now available. This has enabled the development and deployment of 

applications catering to scientific, engineering, and commercial needs (Baker, & 

Buyya, 1999). 

 

From the earliest days, developers wanted to create applications that needed more 

computing power than a single system could provide. Then came applications that 

could take advantage of computing in parallel, to run on multiple processors at once 

(Harbaugh, 2004). The main reason for creating and using parallel computers is that 

parallelism is one of the best ways to overcome the speed bottleneck of a single 

processor. In addition, the price performance ratio of a small cluster-based parallel 

computer as opposed to a minicomputer is much smaller and consequently a better 

value. In short, developing and producing systems of moderate speed using parallel 

architectures is much cheaper than the equivalent performance of a sequential 

system. In addition, clusters can enhance the reliability of a system, so that failure of 

any one part would not cause the whole system to become unavailable. 

 

The taxonomy of cluster systems is based on how their processors, memory, and 

interconnect are laid out. The most common systems are (Baker, & Buyya, 1999):  

 

• Massively Parallel Processors (MPP)  
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• Symmetric Multiprocessors (SMP)  

• Cache-Coherent Nonuniform Memory Access (CC-NUMA)  

• Distributed Systems  

• Clusters  

 

Table 2.1 shows a modified version comparing the architectural and functional 

characteristics of these machines (Hwang, & Xu, 1998).  

 

Table 2.1 Key characteristics of scalable parallel computers 

 

 

An MPP is usually a large parallel processing system with a shared-nothing 

architecture. It typically consists of several hundred processing elements (nodes), 

which are interconnected through a high-speed interconnection network/switch. Each 

node can have a variety of hardware components, but generally consists of a main 

memory and one or more processors. Special nodes can, in addition, have peripherals 

such as disks or a backup system connected. Each node runs a separate copy of the 

operating system.  
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SMP systems have from 2 to 64 processors and can be considered to have 

shared-everything architecture. In these systems, all processors share all the global 

resources available (bus, memory, I/O system); a single copy of the operating system 

runs on these systems.  

 

CC-NUMA is a scalable multiprocessor system having a cache-coherent 

nonuniform memory access architecture. Like an SMP, every processor in a 

CC-NUMA system has a global view of all of the memory. This type of system gets 

its name (NUMA) from the nonuniform times to access the nearest and most remote 

parts of memory.  

 

Distributed systems can be considered conventional networks of independent 

computers. They have multiple system images, as each node runs its own operating 

system, and the individual machines in a distributed system could be, for example, 

combinations of MPPs, SMPs, clusters, and individual computers.  

 

At a basic level a cluster is a collection of workstations or PCs also called NOWs 

(Networks of Workstations) that are interconnected via some network technology 

(Baker, & Buyya, 1999). For parallel computing purposes, a cluster will generally 

consist of high performance workstations or PCs interconnected by a high-speed 

network. A cluster works as an integrated collection of resources and can have a 

single system image spanning all its nodes. Such a cluster can provide fast an reliable 

services to computationally intensive applications. 

 

In the 1980s, it was believed that computer performance was best improved by 

creating faster and more efficient processors. This idea was challenged by parallel 

processing, which in essence means linking together two or more computers to 

jointly solve some problem. Since the early 1990's there has been an increasing trend 

to move away from expensive and specialised propriety parallel supercomputers 

towards networks of workstations. Among the driving forces that have enabled this 

transition has been the rapid improvement and availability of commodity 
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high-performance components for workstations and networks. These technologies 

are making networks of computers (PCs or workstations) an appealing vehicle for 

parallel processing and this is consequently leading to low-cost commodity 

supercomputing (Baker, & Buyya, 1988).  

 

Clusters built with off-the-shelf hardware are generally AMD or Intel-based 

servers, networked with gigabit Ethernet, and using Infiniband, MyriNet, SCI, or 

some other high-bandwidth, low-latency networks for the interconnect; the inter-

node data transfer network. Linux is becoming the cluster OS of choice, due to its 

similarity to UNIX, the wide variety of open-source software already available, as 

well as the strong software development tools available.  

 

The use of parallel processing as a means of providing high performance 

computational facilities for large-scale and grand-challenge applications has been 

investigated widely. Until recently, however, the benefits of this research were 

confined to the individuals who had access to such systems. The trend in parallel 

computing is to move away from specialized traditional supercomputing platforms, 

such as the Cray/SGI T3E, to cheaper, general purpose systems consisting of loosely 

coupled components built up from single or multiprocessor PCs or workstations. 

This approach has a number of advantages, including being able to build a platform 

for a given budget which is suitable for a large class of applications and workloads.  

 

The use of clusters to prototype, debug, and run parallel applications is becoming 

an increasingly popular alternative to using specialized, typically expensive, parallel 

computing platforms. An important factor that has made the usage of clusters a 

practical proposition is the standardization of many of the tools and utilities used by 

parallel applications. Examples of these standards are the message passing library 

MPI and parallel virtual machine PVM. In this context, standardization enables 

applications to be developed, tested, and even run on NOW, and then at a later stage 

to be ported, with little modification, onto dedicated parallel platforms where 

CPU-time is accounted and charged.  
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The following list highlights some of the reasons NOW is preferred over 

specialized parallel computers (Baker, & Buyya, 1999) :  

 

� Individual workstations are becoming increasingly powerful. That is, 

workstation performance has increased dramatically in the last few years and 

is doubling every 18 to 24 months. This is likely to continue for several years, 

with faster processors and more efficient multiprocessor machines coming 

into the market.  

 

� The communications bandwidth between workstations is increasing 

and latency is decreasing as new networking technologies and protocols are 

implemented in a LAN.  

 

� Workstation clusters are easier to integrate into existing networks than 

special parallel computers.  

 

� Typical low user utilization of personal workstations.  

 

� The development tools for workstations are more mature compared to 

the contrasting proprietary solutions for parallel computers, mainly due to the 

nonstandard nature of many parallel systems.  

 

� Workstation clusters are a cheap and readily available alternative to 

specialized high performance computing platforms.  

 

� Clusters can be easily grown; node's capability can be easily increased 

by adding memory or additional processors.  

 

Clearly, the workstation environment is better suited to applications that are not 

communication-intensive since a LAN typically has high message start-up latencies 

and low bandwidths. If an application requires higher communication performance, 
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the existing commonly deployed LAN architectures, such as Ethernet, are not 

capable of providing it.  

 

2.1.2 Beowulf Clusters 

 

Beowulf is a project to produce parallel Linux clusters from off-the-shelf 

hardware and freely available software. Conceived in 1994 at the Goddard Space 

Flight Center, there are now dozens of Beowulf-class systems in use in Government 

and at Universities worldwide. Many of these organisations have joined to form a 

Beowulf consortium who actively share information and software for Beowulf 

systems. Some members include: Caltech, Los Alamos National Laboratory, Oak 

Ridge National Laboratory, Sandia National Laboratory, Duke, Oregon, Clemson 

and Washington Universities, The US National Institute of Health (NIH), as well as 

DESY in Germany, Kasetsart University in Thailand. NAS, Goddard Space Flight 

Center, Ames and various NASA sites and divisions have built major Beowulf 

systems. Other small systems have also been built at the University of Southern 

Queensland and the University of Adelaide amongst many other sites (Dickson, 

Homic, & Villamin, 2000) . 

 

The original Beowulf parallel workstation prototyped by NASA combined sixteen 

486DX PC’s with dual Ethernet networks, 0.5 GByte of main memory, and 20 

GBytes of storage, and providing up to eight times the disk I/O bandwidth of 

conventional workstations. Since the Beowulf design uses commodity hardware 

components and freely available systems software, NASA’s project has 

demonstrated how the price/performance ratio of this route is attractive for many 

academic and research organisations. 

 

One of the most difficult tasks in designing and commissioning a Beowulf cluster 

is tracking the cost/performance benefits from the multitude of different possible 

configuration options.  

 

Broadly the design choices in order of importance for performance are: 
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1. Processor/Platform (eg PC, iMac, Alpha, O2,...) 

2. Network infrastructure (Ethernet, Fast Ethernet, Myrinet, SCI,...) 

3. Disk configuration (Diskless, EIDE or SCSI interface...) 

4. Operating system (Linux or Solaris or other...) 

 

The biggest advantage of a Beowulf cluster over massively parallel processors 

(MPPs) or supercomputers is the cost. Since inexpensive personal computers are 

used as nodes, a powerful Beowulf system can be built without spending a fortune. 

This cost advantage of ten can be as much as an order of magnitude over commercial 

systems of comparable capabilities. Another advantage of a Beowulf cluster is 

scalability. A wide range of system sizes is possible from a small number of nodes 

connected by a single low cost hub to system incorporating topologies of many 

hundreds of processors. These systems can be easily expanded over time as 

additional resources become available or extended requirements drive system size 

upward. The Beowulf is affordable, powerful, scalable, and easily expandable 

(Hawick, Grove,  & Vaughan, 1999). 

 

2.1.3 A General Cluster Architecture 

 

A cluster is a type of parallel or distributed processing system, which consists of a 

collection of interconnected stand-alone computers working together as a single, 

integrated computing resource.  A computer node can be a single or multiprocessor 

system (PCs, workstations, or SMPs) with memory, I/O facilities, and an operating 

system. A cluster generally refers to two or more computers (nodes) connected 

together. The nodes can exist in a single cabinet or be physically separated and 

connected via a LAN. An interconnected (LAN-based) cluster of computers can 

appear as a single system to users and applications. Such a system can provide a 

cost-effective way to gain features and benefits (fast and reliable services) that have 

historically been found only on more expensive proprietary shared memory systems. 

The typical architecture of a cluster is shown in Figure 2.1 (Baker, & Buyya, 1999). 
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Figure 2.1 A general cluster architecture. 

 

The following are some prominent components of cluster computers:  

 

• Multiple High Performance Computers (PCs, Workstations, or SMPs)  

• State-of-the-art Operating Systems (Layered or Micro-kernel based)  

• High Performance Networks/Switches (such as Gigabit Ethernet and 

Myrinet)  

• Network Interface Cards (NICs)  

• Fast Communication Protocols and Services (such as Active and Fast 

Messages)  

• Cluster Middleware (Single System Image (SSI) and System 

Availability Infrastructure)  

o Hardware (such as Digital (DEC) Memory Channel, hardware 

DSM, and SMP techniques)  

o Operating System Kernel or Gluing Layer (such as Solaris MC 

and GLUnix) 

o Applications and Subsystems  

� Applications (such as system management tools and 

electronic forms)  

� Runtime Systems (such as software DSM and parallel 

file system)  
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� Resource Management and Scheduling software (such 

as LSF (Load Sharing Facility) and CODINE (COmputing in 

DIstributed Networked Environments)) 

• Parallel Programming Environments and Tools (such as compilers, 

PVM (Parallel Virtual Machine), and MPI (Message Passing Interface))  

• Applications  

o Sequential 

o Parallel or Distributed  

 

The network interface hardware acts as a communication processor and is 

responsible for transmitting and receiving packets of data between cluster nodes via a 

network/switch. Communication software offers a means of fast and reliable data 

communication among cluster nodes and to the outside world. Often, clusters with a 

special network/switch like Myrinet use communication protocols such as active 

messages for fast communication among its nodes. They potentially bypass the 

operating system and thus remove the critical communication overheads providing 

direct user-level access to the network interface.  

 

The cluster nodes can work collectively, as an integrated computing resource, or 

they can operate as individual computers. The cluster middleware is responsible for 

offering an illusion of a unified system image (single system image) and availability 

out of a collection on independent but interconnected computers. Programming 

environments can offer portable, efficient, and easy-to-use tools for development of 

applications. They include message passing libraries, debuggers, and profilers. It 

should not be forgotten that clusters could be used for the execution of sequential or 

parallel applications. 

 

2.1.4 Types of Clusters 

 

Clusters offer the following features at a relatively low cost (Baker, & Buyya, 

1999) :  
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� High Performance  

� Expandability and Scalability  

� High Throughput  

� High Availability  

 

Cluster technology permits organizations to boost their processing power using 

standard technology (commodity hardware and software components) that can be 

acquired/purchased at a relatively low cost. This provides expandability--an 

affordable upgrade path that lets organizations increase their computing power--

while preserving their existing investment and without incurring a lot of extra 

expenses. The performance of applications also improves with the support of 

scalable software environment. Another benefit of clustering is a failover capability 

that allows a backup computer to take over the tasks of a failed computer located in 

its cluster. Clusters are classified into many categories based on various factors as 

indicated below (Baker, & Buyya, 1999).  

 

1. Application Target - Computational science or mission-critical applications.  

� High Performance Clusters (HPCs)  

� High Availability (HA) Clusters  

� Load Balancing (LB) Clusters 

 

2. Node Ownership - Owned by an individual or dedicated as a cluster node.  

� Dedicated Clusters  

� Nondedicated Clusters  

 

The distinction between these two cases is based on the ownership of the nodes in 

a cluster. In the case of dedicated clusters, a particular individual does not own a 

workstation; the resources are shared so that parallel computing can be performed 

across the entire cluster. The alternative nondedicated case is where individuals own 

workstations and applications are executed by stealing idle CPU cycles. The 

motivation for this scenario is based on the fact that most workstation CPU cycles 

are unused, even during peak hours. Parallel computing on a dynamically changing 
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set of nondedicated workstations is called adaptive parallel computing. In 

nondedicated clusters, a tension exists between the workstation owners and remote 

users who need the workstations to run their application. The former expects fast 

interactive response from their workstation, while the latter is only concerned with 

fast application turnaround by utilizing any spare CPU cycles. This emphasis on 

sharing the processing resources erodes the concept of node ownership and 

introduces the need for complexities such as process migration and load balancing 

strategies. Such strategies allow clusters to deliver adequate interactive performance 

as well as to provide shared resources to demanding sequential and parallel 

applications. 

 

3. Node Hardware - PC, Workstation, or SMP.  

� Clusters of PCs (CoPs) or Piles of PCs (PoPs)  

� Clusters of Workstations (COWs)  

� Clusters of SMPs (CLUMPs)  

 

4. Node Operating System - Linux, Windows, Solaris, AIX, etc.  

� Linux Clusters (e.g., Beowulf)  

� Solaris Clusters (e.g., Berkeley NOW)  

� Microsoft Clusters (e.g., HPVM)  

� AIX Clusters (e.g., IBM SP2)  

� HP-UX clusters  

 

5. Node Configuration - Node architecture and type of OS it is loaded with.  

� Homogeneous Clusters: All nodes will have similar architectures and 

run the same OSs.  

� Heterogeneous Clusters: All nodes will have different architectures 

and run different OSs.  

 

6. Levels of Clustering - Based on location of nodes and their count.  
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� Group Clusters (#nodes: 2-99): Nodes are connected by SANs 

(System Area Networks) like Myrinet and they are either stacked into a frame 

or exist within a center.  

� Departmental Clusters (#nodes: 10s to 100s)  

� Organizational Clusters (#nodes: many 100s)  

� National Metacomputers (WAN/Internet-based): (#nodes: many 

departmental / organizational systems or clusters)  

� International Metacomputers (Internet-based): (#nodes: 1000s to many 

millions)  

 

Individual clusters may be interconnected to form a larger system (clusters of 

clusters) and, in fact, the Internet itself can be used as a computing cluster. The use 

of wide-area networks of computer resources for high performance computing has 

led to the emergence of a new field called Metacomputing.  

 

2.2 Load Balancing In Distributed Systems 

 

2.2.1 The Concept of Load Distribution 

 

A distributed system consists of a collection of autonomous computers connected 

by a local area communication network. Users submit tasks at their host computers 

for processing. As Figure 2.2 shows, the random arrival of tasks in such an 

environment can cause some computers to be heavily loaded while other computers 

are idle or only lightly loaded. Load distributing improves performance by 

transferring tasks from heavily loaded computers, where service is poor, to lightly 

loaded computers, where the tasks can take advantage of computing capacity that 

would otherwise go unused (Shivaratri, Krueger, & Singhal, 1992). 
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    Figure 2.2 A system without load distribution (Shivaratri, Krueger, & Singhal, 1992). 

 

If workloads at some computers are typically heavier than at others, or if some 

processors execute tasks more slowly than others, the situation shown in Figure 1 is 

likely to occur often. The usefulness of load distributing is not so obvious in systems 

in which all processors are equally powerful and have equally heavy workloads over 

the long term. However, Livny and Melman (1982) have shown that even in such a 

homogeneous distributed system, at least one computer is likely to be idle while 

other computers are heavily loaded because of statistical fluctuations in the arrival of 

tasks to computers and task-service-time requirements. Therefore, even in a 

homogeneous distributed system, system performance can potentially be improved 

by appropriate transfers of workload from heavily loaded computers (senders) to idle 

or lightly loaded computers (receivers). 

 

A widely used performance metric is the average response time of tasks. The 

response time of a task is the time elapsed between its initiation and its completion. 

Minimizing the average response time is often the goal of load distribution. 



 21 

A key issue in the design of dynamic load-distributing algorithms is identifying a 

suitable load index. A load index predicts the performance of a task if it is executed 

at some particular node. To be effective, load index readings taken when tasks 

initiate should correlate well with task-response times. Load indexes that have been 

studied and used include the length of the CPU queue, the average CPU queue length 

over some period, the amount of available memory, the context-switch rate, the 

system call rate, and CPU utilization. Researchers have consistently found significant 

differences in the effectiveness of such load indexes — and that simple load indexes 

are particularly effective. For example, Kunz (1991) found that the choice of a load 

index has considerable effect on performance, and that the most effective of the 

indexes we have mentioned is the CPU queue length. Furthermore, Kunz found no 

performance improvement over this simple measure when combinations of these 

load indexes were used. It is crucial that the mechanism used to measure load be 

efficient and impose minimal overhead. 

 

2.2.2 The Classification of Distributed Scheduling 

 

The operating system and management of the concurrent processes constitute 

integral parts of the parallel and distributed environments. One of the biggest issues 

in such systems is the development of effective techniques for the distribution of the 

processes of a parallel program on multiple processors. The problem is how to 

distribute (or schedule) the processes among processing elements to achieve some 

performance goal(s), such as minimizing execution time, minimizing communication 

delays, and/or maximizing resource utilization (Shirazi, Husson, & Kavi, 1995).  

Process scheduling methods are typically classified into several subcategories 

(Casavant, Kuhl, 1988) as depicted in Figure 2.3. 
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Figure 2.3 Classification of scheduling methods (Casavant, Kuhl, 1988). 

 

a) Local Versus Global: At the highest level, we may distinguish between local 

and global scheduling. Local scheduling is involved with the assignment of processes 

to the time-slices of a single processor. Since the area of scheduling on single-

processor systems, as well as the area of sequencing or job-shop scheduling, has been 

actively studied for a number of years, this taxonomy will focus on global 

scheduling. Global scheduling is the problem of deciding where to execute a process, 

and the job of local scheduling is left to the operating system of the processor to 

which the process is ultimately allocated. This allows the processors in a 

multiprocessor increased autonomy while reducing the responsibility (and 

consequently overhead) of the global scheduling mechanism. Note that this does not 

imply that global scheduling must be done by a single central authority, but rather, 

we view the problems of local and global scheduling as separate issues, and (at least 

logically) separate mechanisms are at work solving each. 
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b) Static Versus Dynamic: The next level in the hierarchy (beneath global 

scheduling) is a choice between static and dynamic scheduling. This choice indicates 

the time at which the scheduling or assignment decisions are made. 

 

In the case of static  scheduling, information regarding the total mix of processes 

in the system as well as all the independent subtasks involved in a job or task force, 

is assumed to be available by the time the program object modules are linked into 

load modules.  Hence, each executable image in a system has a static assignment to a 

particular processor, and each time that process image is submitted for execution, it 

is assigned to that processor. A more relaxed definition of static scheduling may 

include algorithms that schedule task forces for a particular hardware configuration. 

Over a period of time, the topology of the system may change, but characteristics 

describing the task force remain the same. Hence, the scheduler may generate a new 

assignment of processes to processors to serve as the schedule until the topology 

changes again. 

 

c) Optimal Versus Sub optimal: In the case that all information regarding the 

state of the system as well as the resource needs of a process are known, an optimal 

assignment can be made based on some criterion function. Examples of optimization 

measures are minimizing total process completion time, maximizing utilization of 

resources in the system, or maximizing system throughput. In the event that these 

problems are computationally infeasible, suboptimal solutions may be tried. Within 

the realm of suboptimal solutions to the scheduling problem, we may think of two 

general categories. 

 

d) Approximate Versus Heuristic: The first is to use the same formal 

computational model for the algorithm, but instead of searching the entire solution 

space for an optimal solution, we are satisfied when we find a "good" one. We will 

categorize these solutions as suboptimal-approximate. The assumption that a good 

solution can be recognized may not be so insignificant, but in the cases where a 

metric is available for evaluating a solution, this technique can be used to decrease 
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the time taken to find an acceptable solution (schedule). The factors which determine 

whether this approach is worthy of pursuit include: 

 

• Availability of a function to evaluate a solution. 

• The time required to evaluate a solution. 

• The ability to judge according to some metric the value of an optimal 

solution. 

• Availability of a mechanism for intelligently pruning the solution 

space. 

 

The second branch beneath the suboptimal category is labeled heuristic. This 

branch represents the category of static algorithms which make the most realistic 

assumptions about a priori knowledge concerning process and system loading 

characteristics. It also represents the solutions to the static scheduling problem which 

require the most reasonable amount of time and other system resources to perform 

their function. The most distinguishing feature of heuristic schedulers is that they 

make use of special parameters which affect the system in indirect ways. Often, the 

parameter being monitored is correlated to system performance in an indirect instead 

of a direct way, and this alternate parameter is much simpler to monitor or calculate. 

For example, clustering groups of processes which communicate heavily on the same 

processor and physically separating processes which would benefit from parallelism 

directly decreases the overhead involved in passing information between processors, 

while reducing the interference among processes which may run without 

synchronization with one another. This result has an impact on the overall service 

that users receive, but cannot be directly related (in a quantitative way) to system 

performance as the user sees it. Hence, our intuition, if nothing else, leads us to 

believe that taking the aforementioned actions when possible will improve system 

performance. However, we may not be able to prove that a first-order relationship 

between the mechanism employed and the desired result exists (Casavant, Kuhl, 

1988). 
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e) Optimal and Suboptimal Approximate Techniques: Regardless of whether a 

static solution is optimal or suboptimal-approximate, there are four basic categories 

of task allocation algorithms which can be used to arrive at an assignment of 

processes to processors. 

 

• Solution space enumeration and search. 

• Graph theoretic. 

• Mathematical programming. 

• Queueing theoretic. 

 

f) Dynamic Solutions: In the dynamic scheduling problem, the more realistic 

assumption is made that very little a priori knowledge is available about the resource 

needs of a process. It is also unknown in what environment the process will execute 

during its lifetime. In the static case, a decision is made for a process image before it 

is ever executed, while in the dynamic case no decision is made until a process 

begins its life in the dynamic environment of the system. Since it is the responsibility 

of the running system to decide where a process is to execute, it is only natural to 

next ask where the decision itself is to be made. 

 

g) Distributed Versus Nondistributed: The next issue (beneath dynamic 

solutions) involves whether the responsibility for the task of global dynamic 

scheduling should physically reside in a single processor (physically nondistributed) 

or whether the work involved in making decisions should be physically distributed 

among the processors. Here the concern is with the logical authority of the decision-

making process. 

 

h) Cooperative Versus Noncooperative: Within the realm of distributed 

dynamic global scheduling, we may also distinguish between those mechanisms 

which involve cooperation between the distributed components (cooperative) and 

those in which the individual processors make decisions independent of the actions 

of the other processors (noncooperative). The question here is one of the degree of 

autonomy which each processor has in determining how its own resources should be 
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used. In the noncooperative case individual processors act alone as autonomous 

entities and arrive at decisions regarding the use of their resources independent of the 

effect of their decision on the rest of the system. In the cooperative case each 

processor has the responsibility to carry out its own portion of the scheduling task, 

but all processors are working toward a common system wide goal. In other words, 

each processor's local operating system is concerned with making decisions in 

concert with the other processors in the system in order to achieve some global goal, 

instead of making decisions based on the way in which the decision will affect local 

performance only. As in the static case, the taxonomy tree has reached a point where 

we may consider optimal, suboptimal-approximate, and suboptimal-heuristic 

solutions. The same discussion as was presented for the static case applies here as 

well (Casavant, Kuhl, 1988). 

 

In addition to the hierarchical portion of the taxonomy already discussed, there are 

a number of other distinguishing characteristics which scheduling systems may have. 

The following sections will deal with characteristics which do not fit uniquely under 

any particular branch of the tree-structured taxonomy given thus far, but are still 

important in the way that they describe the behavior of a scheduler. In other words, 

the following could be branches beneath several of the leaves shown in Fig. 2 and in 

the interest of clarity are not repeated under each leaf, but are presented here as a flat 

extension to the scheme presented thus far. It should be noted that these attributes 

represent a set of characteristics, and any particular scheduling subsystem may 

possess some subset of this set. Finally, the placement of these characteristics near 

the bottom of the tree is not intended to be an indication of their relative importance 

or any other relation to other categories of the hierarchical portion. Their position 

was determined primarily to reduce the size of the description of the taxonomy. 

 

2.2.3 Components of A Load Distribution Algorithm 

 

Typically, a dynamic load distributing algorithm has four components: a transfer 

policy, a selection policy, a location policy, and an information policy (Shivaratri, 

Krueger, & Singhal, 1992). 
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a) Transfer policy: A transfer policy determines whether a node is in a suitable 

state to participate in a task transfer, either as a sender or a receiver. Many proposed 

transfer policies are threshold policies. Thresholds are expressed in units of load. 

When a new task originates at a node, the transfer policy decides that the node is a 

sender if the load at that node exceeds a threshold T1. On the other hand, if the load 

at a node falls below T2, the transfer policy decides that the node can be a receiver 

for a remote task. Depending on the algorithm, T, and T2 may or may not have the 

same value. 

 

Alternatives to threshold transfer policies include relative transfer policies. 

Relative policies consider the load of a node in relation to loads at other system 

nodes. For example, a relative policy might consider a node to be a suitable receiver 

if its load is lower than that of some other node by at least some fixed value. 

Alternatively, a node might be considered a receiver if its load is among the lowest in 

the system. 

 

b) Selection policy: Once the transfer policy decides that a node is a sender, a 

selection policy selects a task for transfer. Should the selection policy fail to find a 

suitable task to transfer, the node is no longer considered a sender. The simplest 

approach is to select one of the newly originated tasks that caused the node to 

become a sender. Such a task is relatively cheap to transfer, since the transfer is 

nonpreemptive. A selection policy considers several factors in selecting a task: 

 

1) The overhead incurred by the transfer should be minimal. For example, a small 

task carries less overhead. 

 

2) The selected task should be long lived so that it is worthwhile to incur the 

transfer overhead. 

 

3) The number of location-dependent system calls made by the selected task 

should be minimal. Location-dependent calls are system calls that must be executed 
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on the node where the task originated, because they use resources such as windows, 

the clock, or the mouse that are only at that node. 

 

c) Location policy: The location policy's responsibility is to find a suitable 

"transfer partner" (sender or receiver) for a node, once the transfer policy has decided 

that the node is a sender or receiver. A widely used decentralized policy finds a 

suitable node through polling: A node polls another node to find out whether it is 

suitable for load sharing. Nodes can be polled either serially or in parallel (for 

example, multicast). A node can be selected for polling on a random basis, on the 

basis of the information collected during the previous polls, or on a nearest neighbor 

basis. An alternative to polling is to broadcast a query seeking any node available for 

load sharing. In a centralized policy, a node contacts one specified node called a 

coordinator to locate a suitable node for load sharing. The coordinator collects 

information about the system (which is the responsibility of the information policy), 

and the transfer policy uses this information at the coordinator to select receivers. 

 

d) Information policy: The information policy decides when information about 

the states of other nodes in the system is to be collected, from where it is to be 

collected, and what information is collected. There are three types of information 

policies: 

 

1) Demand-driven policies: Under these decentralized policies, a node collects the 

state of other nodes only when it becomes either a sender or a receiver, making it a 

suitable candidate to initiate load sharing. A demand-driven information policy is 

inherently a dynamic policy, as its actions depend on the system state. Demand-

driven policies may be sender, receiver, or symmetrically initiated. In sender-

initiated policies, senders look for receivers to which they can transfer their load. In 

receiver-initiated policies, receivers solicit loads from senders. A symmetrically 

initiated policy is a combination of both: Load-sharing actions are triggered by the 

demand for extra processing power or extra work. 
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2) Periodic policies: These policies, which may be either centralized or 

decentralized, collect information periodically. Depending on the information 

collected, the transfer policy may decide to transfer tasks. Periodic information 

policies Generally do not adapt their rate of activity to the system state. For example, 

the benefits resulting from load distributing are minimal at high system loads 

because most nodes in the system are busy. Nevertheless, overheads due to periodic 

information collection continue to increase the system load and thus worsen the 

situation. 

 

3) State-change-driven policies: Under state-change-driven policies, nodes 

disseminate information about their states whenever their states change by a certain 

degree. A state-change-driven policy differs from a demand-driven policy in that it 

disseminates information about the state of a node, rather than collecting information 

about other nodes. Under centralized state-change driven policies, nodes send state 

information to a centralized collection point. Under decentralized state-change driven 

policies, nodes send information to peers. 

 

2.2.4 Load Distribution Algorithms 

 

2.2.4.1 Sender-initiated algorithms. 

 

Under sender-initiated algorithms, load-distributing activity is initiated by an 

overloaded node (sender) trying to send a task to an underloaded node (receiver) 

(Shivaratri, Krueger, & Singhal, 1992). 

 

Transfer policy: Each of the algorithms uses the same transfer policy, a threshold 

policy based on the CPU queue length. A node is identified as a sender if a new task 

originating at the node makes the queue length exceed a threshold T. A node 

identifies itself as a suitable receiver for a task transfer if accepting the task will not 

cause the node's queue length to exceed T. Selection policy. All three algorithms 

have the same selection policy, considering only newly arrived tasks for transfer. 
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Location policy: The algorithms differ only in their location policies, which we 

review in the following subsections.  

 

a) Random: One algorithm has a simple dynamic location policy called random, 

which uses no remote state information. A task is simply transferred to a node 

selected at random, with no information exchange between the nodes to aid in 

making the decision. Useless task transfers can occur when a task is transferred to a 

node that is already heavily loaded (its queue length exceeds). An issue is how a 

node should treat a transferred task. If a transferred task is treated as a new arrival, 

then it can again be transferred to another node, providing the local queue length 

exceeds T. If such is the case, then irrespective of the average load of the system, the 

system will eventually enter a state in which the nodes are spending all their time 

transferring tasks, with no time spent executing them. A simple solution is to limit 

the number of times a task can be transferred. Despite its simplicity, this random 

location policy provides substantial performance improvements over systems not 

using load distributing. 

 

b) Threshold: A location policy can avoid useless task transfers by polling a node 

(selected at random) to determine whether transferring a task would make its queue 

length exceed T. If not, the task is transferred to the selected node, which must 

execute the task regardless of its state when the task actually arrives. Otherwise, 

another node is selected at random and is polled. To keep the overhead low, the 

number of polls is limited by a parameter called the poll limit. If no suitable receiver 

node is found within the poll limit polls, then the node at which the task originated 

must execute the task. By avoiding useless task transfers, the threshold policy 

provides a substantial performance improvement over the random location policy.  

 

c) Shortest: The two previous approaches make no effort to choose the best 

destination node for a task. Under the shortest location policy, a number of nodes 

(poll limit) are selected at random and polled to determine their queue length. The 

node with the shortest queue is selected as the destination for task transfer, unless its 

queue length is greater than or equal to T. The destination node will execute the task 
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regardless of its queue length when the transferred task arrives. The performance 

improvement obtained by using the shortest location policy over the threshold policy 

was found to be marginal, indicating that using more detailed state information does 

not necessarily improve system performance significantly. 

 

Information policy: When either the shortest or the threshold location policy is 

used, polling starts when the transfer policy identifies a node as the sender of a task. 

Hence, the information policy is demand driven. 

 

Sender-initiated algorithms using any of the three location policies cause system 

instability at high system loads. At such loads, no node is likely to be lightly loaded, 

so a sender is unlikely to find a suitable destination node. However, the polling 

activity in sender-initiated algorithms increases as the task arrival rate increases, 

eventually reaching a point where the cost of load sharing is greater than its benefit. 

At a more extreme point, the workload that cannot be offloaded from a node, 

together with the overhead incurred by polling, exceeds the node's CPU capacity and 

instability results. Thus, he actions of sender-initiated algorithms are not effective at 

high system loads and cause system instability, because the algorithms fail to adapt 

to the system state.  

 

2.2.4.2 Receiver-initiated algorithms 

 

In receiver-initiated algorithms, load distributing activity is initiated from an 

underloaded node (receiver), which tries to get a task from an overloaded node 

(sender) (Shivaratri, Krueger, & Singhal, 1992).  

 

Transfer policy: The algorithm's threshold transfer policy bases its decision on 

the CPU queue length. The policy is triggered when a task departs. If the local queue 

length falls below the threshold T then the node is identified as a receiver for 

obtaining a task from a node (sender) to be determined by the location policy. A 

node is identified to be a sender if its queue length exceeds the threshold T. 
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Selection policy: The algorithm considers all tasks for load distributing, and can 

use any of the approaches discussed before. 

 

Location policy: The location policy selects a node at random and polls it to 

determine whether transferring a task would place its queue length below the 

threshold level. If not, then the polled node transfers a task. Otherwise, another node 

is selected at random, and the procedure is repeated until either a node that can 

transfer a task (a sender) is found or a static poll limit number of tries has failed to 

find a sender. A problem with the location policy is that if all polls fail to find a 

sender, then the processing power available at a receiver is completely lost by the 

system until another task originates locally at the receiver (which may not happen for 

a long time). The problem severely affects performance in systems where only a few 

nodes generate most of the system workload and random polling by receivers can 

easily miss them. The remedy is simple: If all the polls fail to find a sender, then the 

node waits until another task departs or for a predetermined period before reinitiating 

the load distributing activity, provided the node is still a receiver. 

 

Information policy: The information policy is demand driven, since polling starts 

only after a node becomes a receiver. 

 

Receiver-initiated algorithms do not cause system instability because, at high 

system loads, a receiver is likely to find a suitable sender within a few polls. 

Consequently, polls are increasingly effective with increasing system load, and little 

waste of CPU capacity results. 

 

Under the most widely used CPU scheduling disciplines (such as round-robin and 

its variants), a newly arrived task is quickly provided a quantum of service. In 

receiver-initiated algorithms, the polling starts when a node becomes a receiver. 

However,  these polls seldom arrive at senders just after new tasks have arrived at the 

senders but before these tasks have begun executing. Consequently, most transfers 

are preemptive and therefore expensive. Sender-initiated algorithms, on the other 

hand, make greater use of nonpreemptive transfers, since they can initiate load-
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distributing activity as soon as a new task arrives. An alternative to this receiver-

initiated algorithm is the reservation algorithm. Rather than negotiate an immediate 

transfer, a receiver requests that the next task to arrive be nonpreemptively 

transferred. Upon arrival, the "reserved" task is transferred to the receiver if the 

receiver is still a receiver at that time. While this algorithm does not require 

preemptive task transfers, it was found to perform significantly worse than the sender 

initiated algorithms. 

 

2.2.4.3 Symmetrically initiated algorithms 

 

Under symmetrically initiated algorithms, 10 both senders and receivers initiate 

load-distributing activities for task transfers. These algorithms have the advantages 

of both sender and receiver  initiated algorithms. At low system loads, the sender-

initiated component is more successful at finding underloaded nodes. At high system 

loads, the receiver-initiated component is more successful at finding overloaded 

nodes. However, these algorithms may also have the disadvantages of both sender 

and receiver-initiated algorithms. As with sender-initiated algorithms, polling at high 

system loads may result in system instability. As with receiver initiated algorithms, a 

preemptive task transfer facility is necessary. A simple symmetrically initiated 

algorithm can be constructed by combining the transfer and location policies 

described for sender-initiated and receiver-initiated algorithms (Shivaratri, Krueger, 

& Singhal, 1992). 

 

2.2.4.4 Adaptive algorithms 

 

A stable symmetrically initiated adaptive algorithm. The main cause of system 

instability due to load sharing in the previously reviewed algorithms is indiscriminate 

polling by the sender's negotiation component. The stable symmetrically initiated 

algorithm uses the information gathered during polling (instead of discarding it, as 

the previous algorithms do) to classify the nodes in the system as sender/overloaded, 

receiver/underloaded, or OK (nodes having manageable load). The knowledge about 

the state of nodes is maintained at each node by a data structure composed of a 
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senders list, a receivers list, and an OK list. These lists are maintained using an 

efficient scheme: List-manipulative actions, such as moving a node from one list to 

another or determining to which list a node belongs, impose a small and constant 

overhead, irrespective of the number of nodes in the system. Consequently, this 

algorithm scales well to large distributed systems (Shivaratri, Krueger, & Singhal, 

1992). 

 

Initially, each node assumes that every other node is a receiver. This state is 

represented at each node by a receivers list containing all nodes (except the node 

itself), and an empty senders list and OK list.  

 

Transfer policy: The threshold transfer policy makes decisions based on the CPU 

queue length. The transfer policy is triggered when a new task originates or when a 

task departs. The policy uses two threshold values — a lower threshold and an upper 

threshold—to classify the nodes. A node is a sender if its queue length is greater than 

its upper threshold, a receiver if its queue length is less than its lower threshold, and 

OK otherwise. 

 

Location policy: The location policy has two components: the sender-initiated 

component and the receiver-initiated component. The sender-initiated component is 

triggered at a node when it becomes a sender. The sender polls the node at the head 

of the receivers list to determine whether it is still a receiver. The polled node 

removes the sender node ID from the list it is presently in, puts it at the head of its 

senders list, and informs the sender whether it is currently a receiver, sender, or OK. 

On receipt of this reply, the sender transfers the new task if the polled node has 

indicated that it is a receiver. Otherwise, the polled node's ID is removed from the 

receivers list and is put at the head of the OK list or the senders list based on its 

reply.  

 

Polling stops if a suitable receiver is found for the newly arrived task, if the 

number of polls reaches a poll limit (a parameter of the algorithm), or if the receivers 

list at the sender node becomes empty. If polling fails to find a receiver, the task is 
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processed locally, though it may later be preemptively transferred as a result of 

receiver-initiated load sharing. The goal of the receiver-initiated component is to 

obtain tasks from a sender node. The nodes polled are selected in the following 

order: 

 

1) Head to tail in the senders list. The most up-to-date information is used first. 

2) Tail to head in the OK list. The most out-of-date information is used first in the 

hope that the node has become a sender. 

3) Tail to head in the receivers list. Again, the most out-of-date information is 

used first. 

 

The receiver-initiated component is triggered at a node when the node becomes a 

receiver. The receiver polls the selected node to determine whether it is a sender. On 

receipt of the message, the polled node, if it is a sender, transfers a task to the polling 

node and informs it of its state after the task transfer. If the polled node is not a 

sender, it removes the receiver node ID from the list it is presently in, puts it at the 

head of the receivers list, and informs the receiver whether the polled node is a 

receiver or OK. On receipt of this reply, the receiver node removes the polled node 

ID from whatever list it is presently in and puts it at the head of its receivers list or 

OK list, based on its reply. Polling stops if a sender is found, if the receiver is no 

longer a receiver, or if the number of polls reaches a static poll limit. 

 

Selection policy: The sender-initiated component considers only newly arrived 

tasks for transfer. The receiver-initiated component can use any of the approaches 

discussed before. 

 

Information policy: The information policy is demand driven, as polling starts 

when a node becomes either a sender or a receiver.  

 

At high system loads, the probability of a node's being underloaded is negligible, 

resulting in unsuccessful polls by the sender-initiated component. Unsuccessful polls 

result in the removal of polled node IDs from receivers lists. Unless receiver-initiated 
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polls to these nodes fail to find senders, which is unlikely at high system loads, the 

receivers lists remain empty. This scheme prevents future sender-initiated polls at 

high system loads (which are most likely to fail). Hence, the sender-initiated 

component is deactivated at high system loads, leaving only receiver-initiated load 

sharing (which is effective at such loads). At low system loads, receiver-initiated 

polls are frequent and generally fail. These failures do not adversely affect 

performance, since extra processing capacity is available at low system loads. 

 

In addition, these polls have the positive effect of updating the receivers lists. 

With the receivers lists accurately reflecting the system's state, future sender-initiated 

load sharing will generally succeed within a few polls. Thus, by using sender-

initiated load sharing at low system loads, receiver-initiated load sharing at high 

loads, and symmetrically initiated load sharing at moderate loads, the stable 

symmetrically initiated algorithm achieves improved performance over a wide range 

of system loads and preserves system stability.  

 

2.2.4.5 A stable sender-initiated adaptive algorithm 

 

This algorithm uses the sender-initiated load-sharing component of the previous 

approach but has a modified receiver-initiated component to attract future 

nonpreemptive task transfers from sender nodes. An important feature is that the 

algorithm performs load sharing only with nonpreemptive transfers, which are 

cheaper than preemptive transfers. The stable sender initiated algorithm is very 

similar to the stable symmetrically initiated algorithm. In the following, we point out 

only the differences (Shivaratri, Krueger, & Singhal, 1992).  

 

In the stable sender-initiated algorithm, the data structure (at each node) of the 

stable symmetrically initiated algorithm is augmented by an array called the state 

vector. Each node uses the state vector to keep track of which list (senders, receivers, 

or OK) it belongs to at all the other nodes in the system. For example, state 

vector[nodeid] says to which list node i belongs at the node indicated by nodeid. As 

in the stable symmetrically initiated algorithm, the overhead for maintaining this data 
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structure is small and constant, irrespective of the number of nodes in the system. 

The sender-initiated load sharing is augmented with the following step: 

 

When a sender polls a selected node, the sender's state vector is updated to show 

that the sender now belongs to the senders list at the selected node. Likewise, the 

polled node updates its state vector based on the reply it sent to the sender node to 

reflect which list it will belong to at the sender. 

 

The receiver-initiated component is replaced by the following protocol: 

 

When a node becomes a receiver, it informs only those nodes that are 

misinformed about its current state. The misinformed nodes are those nodes whose 

receivers lists do not contain the receiver's ID. This information is available in the 

state vector at the receiver. The state vector at the receiver is then updated to reflect 

that it now belongs to the receivers list at all those nodes that were misinformed 

about its current state. There are no preemptive transfers of partly executed tasks 

here. The sender initiated load-sharing component will do any task transfers, if 

possible, on the arrival of a new task. The reasons for this algorithm's stability are the 

same as for the stable symmetrically initiated algorithm (Shivaratri, Krueger, & 

Singhal, 1992). 
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CHAPTER THREE 

THE CLUSTER INFRASTRUCTURE MODEL 

 

There can be tens to hundreds of computers in a Beowulf cluster. A subsystem is 

needed to manage the nodes in a scalable manner to provide a stable and reliable 

distributed computing system. The cluster infrastructure model (CIM) was designed 

with this objective. CIM is responsible for maintaining the components of the cluster 

by keeping the records of active nodes, checking their health and isolating failed 

nodes. CIM also serves as an information service for the distributed load balancing 

model by collecting the state information from the nodes. 

 

3.1 CIM Architecture 

 

CIM is designed as a hierarchically centralized model. There are three 

components in CIM. On the top there is a Cluster Manager (CM) which constructs 

the cluster and manages the resources and components of the whole cluster. It does 

its job via a number of  low level managers called Node Managers. A Node Manager 

(NM) is responsible for managing a discrete subset of the nodes of the cluster. A 

Node (N) represents a single processing unit, a worker of the cluster, such as an 

independent workstation. Each N has its own resources like memory, CPU, disk, etc. 

to be managed. CM assigns each joined N to a an NM. To manage Ns in a scalable 

manner, CM determines the number of NMs according to the number of Ns. As 

number of Ns increases CM employs new NMs. The hierarchically centralized 

architecture of CIM is shown in Figure 3.1. 
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Figure 3.1 CIM architecture. 

 

3.2 Communication in CIM 

 

CM, NMs and Ns are communicated with point-to-point and also multicast 

messages. Each NM has a multicast group consisting of its Ns. Also CM has a 

multicast group that has members of NMs. Group communications are performed by 

these multicast groups. Multicast group structure is shown in Figure 3.2. 

 

Figure 3.2 Multicast groups in CIM. 
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3.3 Fault Tolerance in CIM 

 

The CM is responsible for the health of the cluster. NMs are responsible for the 

health of its group of Ns. If a N is communicated with its NM with some reason in a 

specific time interval called Heartbeat-time, the NM knows that its N is alive. For 

this reason, a N, that is not communicated with its NM in Heartbeat-time interval, 

sends an Heartbeat (HB) message to tell NM that it is alive. By this way NM checks 

the health of its Ns. NM sends a CheckAlive message to a suspected N, which is not 

communicated with it in Heartbeat-time period to reply immediately with a HB 

message. When NM doesn’t get a reply, it understands that the N is dead, and 

immediately informs CM to remove it from the cluster.   

 

In a similar way, CM checks aliveness of NMs. An NM sends HB message to CM 

if it is not communicated with it in HB-time period. CM waits a reply to its 

CheckAlive message sent to a suspected NM. CM promotes an N (the backup NM) 

as the new NM of the group of a dead NM. Each NM has a backup NM in its group. 

Also CM has a backup which checks the health of the CM. If the backup CM 

determines that the CM is dead, it promotes itself as the new CM.  

 

Generally the backup NM is the second N in the group and the backup CM is the 

second NM in the cluster. As shown in figure 3, CM, NM, and N components are 

considered as processes or threads running on a workstation of the cluster. The first 

workstation runs the CM, an NM, and an N processes at the same time. If that 

workstation crashes, all running N, NM and CM processes are dead as well. 

Considering this situation, second NM which is running on a different workstation is 

chosen as backup of CM. Similarly the workstation running the first N of a node 

group also has the NM of that group, so the second N is chosen as the backup NM.  
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Figure 3.3 Backup structure of CIM. 

 

3.4 Formal Protocol Design of CIM 

 

The CIM protocol is designed using finite state machines (FSM). In a FSM; 

states, incoming events and outgoing events are defined. Then operations performed 

in occurance of incoming events at related states are described in an event-state table. 

After that the state transition diagram is generated which shows state changes 

according to occurance of incoming events. Finally pseudocodes are generated by 

using designed FSMs.  

 

CM, NM and N components are designed as different modules, so their FSM are 

designed separately. In implementation these modules can be separate processes or 

threads.  
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3.4.1 Finite State Machines 

 

3.4.1.1 Cluster Manager 

 

Incoming Events:    Outgoing Events: 

1   StartCM_msg_received  HB_msg_sent 

2   Startup_timeout   CheckAlive_msg_sent 

3   NMOK_msg_received   StartNM_msg_sent 

4   HB_msg_received   AddN_msg_sent 

5   HB_timeout    SPLIT_msg_sent 

6   Ncrash_msg_received   NewCM_msg_sent 

7   NJoin_msg_received 

8   Split_timeout    States: 

9   NAdded_msg_received  Startup 

10 CheckAlive_timeout   Ready 

11 Split_condition_occured  CrashDetect 

12 CheckAlive_msg_received  Split 

13 Activity_timeout 

 

Table 3.1 Event-state table of CM module 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

NULL a - - - - - - - - - - - - 

Startup - b c d 0 0 0 - 0 - - m m 

Ready - - - d e f g - i - j m m 

CrashDetect - - - k 0 0 0 - 0 l - m m 

Split - - h d 0 f 0 n 0 - - m m 

 

-:  ignore_event 

0: postpone_event 

a:send_NewCM_multicast_msg 

   start_startup_timer 

    start_Activity_timer 

    state=Startup 

    b: not P0: send_NewCM_msg 

   start_startup_timer 

    P0: state=Ready 

c: P1: stop_startup_timer 

          state=Ready 

d:mark_Active_flag_for_sender_NM 
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e:send_CheckAlive_msg_to_timedout_NM 

    start_CheckAlive_timer 

    state=CrashDetect 

f:  remove_crashed_N_from_system 

g: send_AddN_msg_to_selected_NM 

h:  P1: stop_Split_timer 

    send_startNM_msg_to_selected_N 

    state=Ready 

 

i:   Add_N_to_system 

j:   send_Split_multicast_msg 

     start_Split_timer 

     state=Split 

k:  stop_CheckAlive_timer 

     mark_NMActive_flag_for_senderNM 

     state=Ready 

l:   remove_NM_from_system 

     send_StartNM_msg_to_selected_N 

     state=Ready 

m:  send_HB_msg 

n:  not P2: send_Split_multicast_msg 

                 start_Split_timer 

           P2: state=Ready 

 

P0: max_newCM_msg_sent_count reached 

P1: Number of NMs sent NMOK_msg = NMcount  

P2: max_Split_msg_sent_count reached 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 State transition diagram of CM module 
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CM starts initially in a NULL state. First, it sends a NewCM multicast message to 

inform NMs its awareness, and waits replies with NMOK messages from them in 

Startup state. It also gets current cluster information by these messages. When all of 

NMs return replies, CM starts its normal operation in Ready state. When an 

HB_timeout event occurred which means it is not communicated with an NM in 

HB_time period, checks NM aliveness by sending a CheckAlive message and waits a 

HB message in CrashDetect state. CM returns to Ready state if it receives an HB 

message or CheckAlive timeout occurred. In latter case it decides that the NM is 

dead and promotes the N that is backup of dead NM as the new NM of that group.  

 

When CM receives a Njoin message, it selects the NM with having the least 

number of Ns and sends an AddN message containing the address of the new N to 

that NM. When it receives Nadded message it adds this N to cluster database. 

 

CM turns to Split state when it decides a new NM is needed in the system for 

scalability issues  because of an increase in the number Ns in the cluster. CM selects 

the last joined N as the new NM. In this state CM calculates split-count, which is the 

number of Ns that is to be transferred from the groups to the new group and sends it 

to NMs with a SPLIT multicast message and starts the new NM. NMs transfer their 

Ns to the new NM’s group. The formula of split-count calculation is : 

 

# of Ns 

       Split count = 

# of NMs * (# of NMs+1) 

 

CM waits replies to its SPLIT message with NMOK messages from NMs to know 

the completion of SPLIT operations and returns to Ready state. 

 

The pseudocode of CM module is in Appendix A. 
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3.4.1.2 Node Manager 

 

Incoming Events:    Outgoing Events: 

1   StartNM_msg_received  HB_msg_sent 

2   Startup_timeout   CheckAlive_msg_sent 

3   NOK_msg_received     StartCM_msg_sent  

4   HB_msg_received   NAdded_msg_sent 

5   HB_timeout    NMUpdate_msg_sent 

6   AddN_msg_received   NMOK_msg_sent 

7   Split_msg_received   NAccepted_msg_sent 

8   NewCM_msg_received  NewNM_msg_sent 

9   CheckAlive_timeout   NCrash_msg_sent 

10 NewN_timeout     

11 NMUpdate_timeout   Event: 

12 CheckAlive_msg_received  Startup  

13 Activity_timeout   Ready 

      NCrashDetect 

      CMCrashDetect 

      NewN 

      Split 

 

Table 3.2 Event-state table of NM module 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

NULL a - - - - - - - - - - - - 

Startup - b c d 0 0 0 0 - - - p p 

Ready - - - d e f g h - - - p p 

NCrashDetect - - - i 0 0 0 0 j - - p p 

CMCrashDetect - - - r 0 0 0 0 s - - p p 

NewN - - k d 0 0 0 0 - l - p p 

Split - - m d 0 0 0 0 - - n p p 
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-:  ignore_event 

0:  postpone_event 

a:  send_NewNM_multicast_msg 

    start_startup_timer 

    start_Activity_timer 

    state=Startup 

b: not P0: send_NewNM_msg 

                start_startup_timer 

    P0: state=Ready 

c: P1: stop_startup_timer 

          state=Ready 

d:mark_NMActiveflagforsenderN/CM 

e:send_CheckAlivemsgTotimedoutN/CM 

    start_CheckAlive_timer 

    

state=NCrashDetect/CMCrashDetect 

f:  send_NAccepted_msg_to_new_N 

    start_NewN_timer 

    state=NewN 

g: send_NMUpdate_multicast_msg 

    start_NMUpdate_timer 

    state=Split 

h: send_NMOK_msg 

i:  stop_CheckAlive_timer 

    

mark_NMActive_flag_for_sender_N 

    state=Ready 

j:  remove_crashed_N 

    send_NCrash_msg_to_CM 

    state=Ready 

 

 

r:  stop_CheckAlive_timer 

    mark_NMActive_flag_for_CM 

    state=Ready 

s:  send_startCM_msg 

    state=Ready 

k: stop_NewN_timer 

    Add_node 

    send_NAdded_msg_to_CM 

    state=Ready 

l: state=Ready 

m: not P2:   

mark_NUpdated_Flag_for_sender_N 

           P2: stop_NMUpdate_timer  

send_NMOK_msg_to_CM 

             State=Ready 

n:  not P3: 

send_NMUpdate_multicast_msg 

        start_NMUpdate_timer 

 

           P3: send_NCrash_msg_to_CM 

      send_NMOK_msg_to_CM 

             State=Ready 

p:  send_HB_msg 

 

P0: max_newNM_msg_sent_count 

reached 

P1: Number of Ns sent NOK_msg = 

Ncount 

P2: Number of Ns sent NOK_msg = 

SplitCount 

P3: max_NMUpdate_msg_sent_count 

reached 
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Figure 3.5 State transition diagram of NM module. 

 

When NM starts, it sends NewNM multicast message to its group to inform its Ns 

its awareness and turns to Startup state. When all Ns relies with a NOK message NM 

turns to Ready state and starts its normal operation. NM turns to NCrashDetect state 

if HB_timeout occurred and sends a CheckAlive message. It returns to Ready state if 

N replies with an HB message received or Alive_timeout occurred. In the latter case 

it removes this dead N and informs CM that its N is dead with a NCrash message.  

 

If NM is the backup of CM, it can turn to CMCrashDetect state when it is not 

communicated with CM in HB_time interval and sends a CheckAlive message to 

CM. If CM does not reply with a HB message in CheckAlive time interval, NM 

decides that it is dead and promotes itself as the new CM. 
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If NM receives a AddN message, it joins the new N to its group and sends a 

NAccepted message to it to inform its awareness and gives necessary data about the 

group and the cluster and turns to NewN state. When the new N replies with a NOK 

message, NM sends NAdded message to CM and returns to Ready state. 

 

When NM receives SPLIT message it sends NMUpdate multicast message to its 

group which contains a number that indicates the Ns to be transferred (calculated as: 

# of Ns in group - split-count. Ns whose Ids are greater than this number will be 

transferred). When Ns reply with NOK messages NM sends NMOK message to CM 

and returns to Ready state. 

 

The pseudocode of NM module is in Appendix A. 

 

3.4.1.3 Node 

 

Incoming Events:    Outgoing Events: 

1   StartN_msg_received   HB_msg_sent 

2   Startup_timeout   Alive_msg_sent 

3   NAccepted_msg_received  NJoin_msg_sent  

4   CheckAlive_msg_received  NOK_msg_sent 

5   NMUpdate_msg_received    

6   NewNM_msg_received  States: 

7   Activity_timeout   Startup 

      Ready 

 

Table 3.3 Event-state table of N module 

 1 2 3 4 5 6 7 

NULL a - - - - - - 

Startup - b c - - - - 

Ready - - - d e f d 
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-:  ignore_event 

a:  send_NJoin_multicast_msg 

     start_Startup_timer 

     State=Startup 

b:  send_NJoin_multicast_msg 

     start_Startup_timer 

c:  stop_Startup_timer 

     send_NOK_msg 

     start_Activity_timer 

     State=Ready 

d:  send_HB_msg 

e:  Update_NM_info 

     Send_NOK_msg_to_old_N 

f:   Update_NM_info 

     Send_NOK_msg_to_new_N 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 3.6 State transition diagram of N module. 
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overhead of N process effects all of the workstations so the whole cluster. As a result 

N is designed as a simple module to cause as low as possible overhead. 

 

When N starts, it sends a NJoin message to CM and turns to Startup state. It turns 

to Ready state when NAccepted message is received and starts its normal operation.  

 

When N receives a NMUpdate message, it checks its ID with split-count in the 

message. If its ID is greater than split-count, it changes its group information with 

the new data in the message, so the N is transferred to a new group. 

 

The pseudocode of N module is in Appendix A. 

 

3.4.2 Message And Time Analysis 

 

3.4.2.1 Joining A Node 

 

The flow of messages for the operation of joining a node to the cluster is shown in 

Table 3.4. The operation is completed by transmission of 5 messages and the time 

required for this operation is 5t with t representing the time to transmit one message. 

Note that the operation does not depend on the size of cluster and is not effected by 

the change in the number of Ns or NMs. 

 

Table 3.4 Message flow for N join operation 

    Message From To Time 

1. NJoin N CM t  

2. AddN CM NM t 

3. NAccepted NM N t 

4. NOK N NM t 

5. NAdded NM CM t 
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3.4.2.2 Node Crash Detection and Removal 

 

The flow of messages for the operation when a node crash occurs is shown in 

Table 3.5. The crash detection operation starts with a Heartbeat timeout event and 

stops with CheckAlive timeout event. The removal operation is completed by sending 

the NCrash message to CM. The detection and removal operation is completed by 

the transmission of 2 messages and the duration of the operation is HB+CA+t. Note 

that the operation does not depend on the size of cluster and is not effected by the 

change in the number of Ns or NMs. 

 
Table 3.5 Message flow for N crash detection and removal operation 

Message From To Time Event 

- - - Heartbeat_time (HB) HB_timeout occured 

1.CheckAlive NM N  t  

- - - CheckAlive_time (CA) CheckAlive_timeout occured 

2.NCrash NM CM  t  

 

 

3.4.2.3 Node Manager Crash Detection and Recovery 

 

The flow of messages for the operation when a node manager crash occurs is 

shown in Table 3.6. The crash detection operation starts with a Heartbeat timeout 

event and stops with CheckAlive timeout event. The recovery operation starts by the 

CM with a StartNM message and then the new NM sends a multicast NewNM 

message to its group. The operation is completed by the receipt of NOK messages 

from the Ns in the group. message to CM. The number of messages transmitted 

during this operation is 3+N/NM where N/NM represents the number of Ns in the 

group of the crashed NM. The time spent for this operation is HB+CA+3t. Note that 

the operation depends on the size of a group and the transmission of the number of 

messages is effected by the change in the number of Ns in a group. 
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Table 3.6 Message flow for NM crash detection and recovery operation 

Message From To Time Event 

1. - - - HB  HB_timeout occured 

2.CheckAlive CM NM t  

    - - - CA  CheckAlive_timeout occured 

3. StartNM CM NM t  

4. NewNM NM MulticastGroup t  

5. NOK Ns in 

group 

NM  t   

 

3.4.2.4 Cluster Manager Crash Detection and Recovery 

 

The flow of messages for the operation when a cluster manager crash occurs is 

shown in Table 3.7. The crash detection operation starts with a Heartbeat timeout 

event and stops with CheckAlive timeout event. The recovery operation starts by the 

promotion of backup NM as the new CM and then the new CM sends a multicast 

NewCM message to NMs in the cluster. The operation is completed by the receipt of 

NMOK messages from the NMs to the CM. The number of messages transmitted 

during this operation is 2+NM where NM represents the number of NMs in the 

cluster. The time spent for this operation is HB+CA+2t. Note that the operation 

depends on the size of the cluster and the transmission of the number of messages is 

effected by the change in the number of NMs in the cluster. 
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Table 3.7 Message flow for CM crash detection and recovery operation 

Message From To   Time  Event 

1. - - - HB  HB_timeout occured 

2.CheckAlive NM CM t  

- - - CA CheckAlive_timeout occured 

3. - - - - StartCM 

4. NewCM CM MulticastCluster t  

5. NMOK NMs in 

cluster 

CM  t   

 

3.4.2.5 Cluster Split and Starting a New NM 

 

The flow of messages for the operation for a split operation is shown in Table 3.8. 

Split operation is started by the CM by sending a Split multicast message. Upon 

receiving this message NMs send multicast NMUpdate messages to their groups. 

Then CM starts the new NM by sending a StartNM message to the new NM. After 

that the new NM sends a multicast NewNM message to its new group. The operation 

ends by the NOK messages from Ns of the new group. The number of messages sent 

during the operation and spent time is : 

 

Split operation: 

Messages : 1+NM+NM*s 

s: split-count = N/(NM*(NM+1)) 

Time : 4t 

 

Start of New NM :  

Messages : 2+NM*s  

Time : 3t 

 

Total: 

Messages: 3+NM*(2*s+1) 

Time: 6t 
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The operation depends on the size of the cluster and the transmission of the 

number of messages is effected by the change in the number of NMs and Ns in the 

cluster. 

 

Table 3.8 Message flow for a split operation 

Message From To   Time 

1.Split CM MulticastCluster t 

2.NMUpdate NM MulticastGroup t 

3.NOK Ns NM t 

4.NMOK NMs CM t 

5. StartNM CM N t 

6. NewNM NM MulticastGroup t  

7. NOK Ns in group NM t 
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CHAPTER FOUR 

THE LOAD BALANCING MODEL 

 

4.1 System Architecture 

 

The load balancing model is placed on top of the CIM architecture. CIM is 

designed as a hierarchically centralized model containing three components. On the 

top there is a Cluster Manager (CM) which constructs the cluster and manages the 

resources and components of the whole cluster. It does its job via a number of  low 

level managers called Node Managers. A Node Manager (NM) is responsible for 

managing a discrete subset of the nodes of the cluster. A Node (N) represents a 

single processing unit, a worker of the cluster, such as an independent workstation. 

CM assigns each joined N to a an NM. To manage Ns in a scalable manner, CM 

determines the number of NMs according to the number of Ns. As number of Ns 

increases CM employs new NMs. So, the Ns are grouped by a number of NMs. Each 

group is called by its NM (e.g., NM group 1, NM group 2, etc.) 

 

The load balancing model inherits the CIM architecture and its components. Each 

N has its own resources like memory, CPU, disk, etc., so the load balancing model 

should distribute the workload among the Ns of the cluster. To balance the workload 

in a scalable manner, the hierarchically layered architecture is used as local and 

global load sharing concepts as shown in Figure 4.1.  

 

In local load sharing, the distribution of workload is performed among the group 

of Ns of an NM group. This type of distribution is called “local” because it involves 

a subset of the Ns belonging to the same NM. Local load sharing can also be called 

as partial load balancing, as it distributes the partial workload (workload in an NM 

group) of the whole cluster. Local load sharing can be performed in more than one 

NM group in parallel at the same time. NMs are responsible for running the local 

load sharing scheme in their groups. 
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As its name reminds, global load sharing scheme aims to distribute the workload 

of the whole cluster. In global load sharing, the system tries to balance workload 

between NM groups, so load distribution is performed on Ns belonging to different 

NM groups. CM is responsible for determining the need for the global load sharing, 

and then tell NMs to run it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Hierarchical architecture of  load balancing model. 

 

4.2 Messaging Infrastructure 

 

Communication architecture of the load balancing model is based on the CIM 

messaging infrastructure. Group messaging is based on multicasting. Each NM has a 

multicast group containing their Ns. CM also has a multicast group that has all NMs 

as members. Multicast group structure is shown in Figure 4.2. Point to point 

messaging is also allowed when necessary, such as in load transfers. 

 

 

 

 

 

CM 

NMs 

Ns 

local load sharing 

global load sharing 

local load sharing 
local load sharing 
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 Figure 4.2 Multicast groups in load balancing model. 

 

4.3 Load Balancing Algorithm 

 

As discussed in section 3.1, the load balancing scheme hierarchically consists of 

two parts: local and global load sharing. The algorithms for these parts are described 

in terms of load balancing algorithm concepts as mentioned in section 2. Both parts 

are in the class of adaptive load balancing algorithms. 

 

4.3.1 Local Load Sharing 

 

In local load sharing, each NMs try to distribute workload of their groups among 

their Ns. To determine whether load sharing is needed, NM collects load information 

from its Ns. Using these information NM calculates some adaptive threshold values. 

Using these values NM determines whether load distribution is needed and which Ns 

are involved in load transfer. Load is transferred from heavily loaded Ns to lightly 

loaded Ns. 

 

Transfer Policy: Based on its knowledge about the load states of its Ns, NM 

calculates threshold values based on average load of its group and determines if a 

balancing is needed. 

 

CM Multicast Group 
CM 

NM

N

NM
NM

N N

N

NM1 Multicast 

 Group 

NM2 Multicast Group NM3 Multicast Group 
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Selection Policy : Task selection for transfer is a complicated task. To avoid high 

overheads, firstly jobs that has not been started yet are selected to transfer. This type 

of load transfers are called non-preemptive. If more fine-grade balancing is desired 

tasks that are in execution can be selected for migration which is called preemptive 

task transfers.  

 

Location Policy : By using calculated threshold values, NM selects a pair of Ns 

to start task transfer. Ns that have load values greater than upper threshold are 

selected as sender, ones that fall below lower threshold become receivers for task 

transfers. Task transfer is then performed from sender to receiver Ns. 

 

Information Policy : The information needed for the algorithm is the local load 

values of Ns. In this model, Ns periodically report their load states to their NM. NM 

uses these information in other policies of load balancing for making decisions. 

 

4.3.2 Global Load Sharing 

 

While local load sharing scheme distributes workload of group of Ns, global load 

sharing tries to share the load between groups. Thus global load sharing involves 

sharing of load between Ns that are in different groups. Global load sharing scheme 

completes partially balanced state of local load sharing groups to a globally shared 

state of the whole system. In this scheme, CM collects load state information of NM 

groups from NMs. With these information, CM determines whether the global load 

sharing is needed and if so informs NMs to start it. NM of sender and receiver 

groups, select suitable Ns and start task transfer. 

 

Transfer Policy: Based on its knowledge about the load states of  NM groups, 

CM calculates threshold values based on average load of the whole system and 

determines if a balancing is needed. 
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Selection Policy : As in local load sharing, to avoid high overheads, non-

preemptive task transfers are preferred. Preemptive transfers provide better balancing 

ratios but cause much more overhead to the system.  

 

Location Policy : With calculated threshold values, CM determines sender and 

receiver NMs and informs all NMs about its decisions. Then a sender NM selects a 

receiver NM and requests a task transfer. After receiver NM accepts the request, both 

NMs select a pair of Ns for task transfer. Ns that have load values greater than upper 

threshold is selected as sender, ones that fall below lower threshold become receivers 

for task transfers. Task transfer is then performed from sender to receiver Ns. 

 

Information Policy : The information needed for the global load sharing 

algorithm is the average load values of NM groups. In this model, NMs periodically 

report the load states of their groups to CM. CM uses these information in other 

policies of load balancing for decision making. 

 

4.3.3 Load Information 

 

The most important input of the load balancing algorithm is the load information. 

So, it is important to collect the correct load values from the Ns of the system. To 

determine the current load value of a N, one or more load indices can be calculated. 

Typical load indices are CPU load average, memory usage, I/O queue length, 

network bandwidth utilization, etc.  

 

The load balancing model is designed for using multiple load indices at the same 

time as desired. By using configured load indices, each N calculates its load value 

(L). This single load value is used as N’s current load state and reported to NM. To 

compute the load value, each load index (li) is given a percentage weight (wi). The 

weight of a load index specifies its degree of importance effect over the load value. 

The load value is computed as; 

 



 60 

1

n

i i

i

L l w
=

=∑  

     

Also, each load index has a threshold value (ti). If the value of a load index 

reaches or exceeds its threshold, then it directly effects the computed load value 

regardless of its weight and weights of other indices are reduced. This protects the 

usage of a single resource exceeding its capacity while others are low. In this case 

the load value is computed as; 
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If more than one index reaches its threshold, then the most important one is taken 

as threshold exceeded index. 

 

For example consider a system in which load balancing scheme is configured 

having load indices as average CPU usage and memory usage with equal weights. At 

a certain time when the CPU usage of a N is as high as 90% while memory usage is 

very low such as 20%, the computed load index gives a moderate load value of 55%. 

But this N should be considered as highly loaded, since its CPU capacity is almost 

consumed totally. Configuring the CPU load index having a threshold value of 80%, 

as the value 90% exceeds the threshold it directly effects the load value computation, 

so N’s load value  becomes 92% (90 for CPU usage + 10% of  20 for memory usage, 

since its weight is reduced to 10%). 

 

4.3.4 Load Sharing Thresholds 

 

In transfer policy and location policy, the load balancing algorithm determines 

whether a balancing operation is needed and which parts will be involved in load 

transfers as senders and receivers. Adaptive load sharing thresholds are used for this 

purpose. They are adaptive, since their values are regulated according to the load 

level of the system. For example, the load of the system is high when the most of the 
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Ns are heavily loaded, and the thresholds are increased to prevent useless task 

transfers. Also, in case of a very low load levels, system does not need load sharing, 

so thresholds are be set to appropriate values to protect the system from ineffective 

task transfers. In that mean, adaptivity of load sharing thresholds are sensitivity of 

the load balancing algorithm. 

 

The calculation of the load thresholds is a customizable task. It can be changed, its 

sensitivity can be customized according to the needs and expectations from the load 

balancing algorithm. In this project, two threshold values named sender threshold 

(TS) and receiver threshold (TR) to select senders and receivers. Members (Ns or NM 

groups) with load values exceeding TS are selected as senders and members having 

lower load values than TR are treated as receivers. Thresholds computations are based 

on average load values:  

Average Load:
1
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4.4 Formal Protocol Design of Load Balancing Model 

 

The protocol of load balancing model is designed using finite state machines 

(FSM). In a FSM; states, incoming events and outgoing events are defined. Then 

operations performed in occurance of incoming events at related states are described 

in an event-state table. After that the state transition diagram is generated which 

shows state changes according to occurance of incoming events. Finally pseudocodes 

are generated by using designed FSMs.  
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Based on the CIM, CM, NM and N components are designed as different modules 

in load balancing model too, so their FSMs are designed separately. In 

implementation these modules can be separate processes or threads. 

 

4.4.1 Finite State Machines 

 

4.4.1.1 Cluster Manager 

 

Incoming Events:    Outgoing Events: 

1 StartCM_msg_received   GlobalLoadInfo_msg_sent 

2 NMLoadInfo_msg_received   

3 GlobalBalancing_condition_occurred States: 

      Ready 

 

Table 4.1 Event-state table of CM module 

 1 2 3 4 

NULL a - - - 

Ready - b c d 

 

-: ignore_event   c: Calculate_thresholds & Specify_Receivers  

a: Initialize_info          Send_GlobalLoad_Info_multicasticast_Msg 

    state=Ready   d: Update_global_load_info 

b: Update_global_load_info 

    Check_GlobalBalancing 

 

 

 

 

 

 

 

 Figure 4.3 State transition diagram of CM module. 

 

Ready 

StartCM 

NMLoadInfo_msg 

GlobalBalancing_Condition 
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When CM starts with a StartCM message in CIM protocol, the load balancing 

module of CM also starts which has a single-state FSM. CM, collects load values of 

NM groups by NMLoadInfo messages sent by NMs. CM calculates sender and 

receiver threshold values to classify NM groups, and when it decides a global load 

sharing is needed, it multicasts a GlobalLoadInfo message to NMs to start global 

load sharing. Threshold values and receiver NM addresses are contained in that 

message. 

 

CM waits replies to its SPLIT message with NMOK messages from NMs to know 

the completion of SPLIT operations and returns to Ready state. 

 

When CM starts with a StartCM message, the load balancing module of CM also 

starts. CM, collects load values of NM groups by NMLoadInfo messages sent by 

NMs. CM calculates sender and receiver threshold values to classify NM groups, and 

when it decides a global load sharing is needed, it multicasts a GlobalLoadInfo 

message to NMs to start global load sharing. Threshold values and receiver NM 

addresses are contained in that message. 

 

The flowchart of CM module is in Appendix B. 

 

4.4.1.2 Node Manager 

 

Incoming Events:    Outgoing Events: 

1 StartNM_msg_received   TransferLoad_msg_sent 

2 NLoadInfo_msg_received  GlobalLoadTransfer_Request_msg_sent 

3 LocalBalancing_condition_occurred GlobalLoadTransfer_Accepted_msg_sent 

4 GlobalLoadInfo_msg_received  GlobalLoadTransfer_Rejected_msg_sent 

5 GlobalLoadTransfer_Request_msg_received NMLoadInfo_msg_sent 

6 GlobalLoadTransfer_Accepted_msg_received  

7 GlobalLoadTransfer_Rejected_msg_received States: 

8 GlobalLoadTransfer_Timeout   Ready 

9 Activity_timeout     GlobalLoadTransfer 

10 NCrashMsgReceived 
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Table 4.2 Event-state table of NM module 

 1 2 3 4 5 6 7 8 9 10 

NULL a - - - - - - - - - 

Ready - b d e g - - - k l 

GlobalLoadTransfer - c - f h i j j k l 

 

-: ignore_event      

a: Initialize_info     

    state=Ready 

b: Update_local_load_info 

    Check_LocalBalancing 

c: Update_local_load_info 

d: Calculate_thresholds & Specify_Sender&Receivers 

    Send_TransferLoad_msg_to_senderN 

e: Update_GlobalLoadInfo 

    P0: Take_a_receiverNM_from_ReveiverNMs_list 

          Send_GlobalLoadTransfer_Request_msg_to_receiverNM 

          Start_GlobalLoadTransfer_timer 

          state=GlobalLoadTransfer 

f: Update_GlobalLoadInfo 

g: not P1: Send_GlobalLoad_transfer_Reject_msg_to_senderNM 

    P1: Choose_suitable_receiverN 

          Send_GlobalLoadTransfer_Accepted_msg_to_senderNM 

h: Send_GlobalLoad_transfer_Reject_msg_to_senderNM 

i: Stop_GlobalLoadTransfer_timer 

    Choose_suitable_SenderN 

    Send_TransferLoad_msg_toSenderN 

    state=Ready 

j:  Stop_GlobalLoadTransfer_timer 

    not P2: Send_GlobalLoadTransfer_Request_msg_to_receiverNM 

          Start_GlobalLoadTransfer_timer 



 65 

    P2: state=Ready 

k: send_NMloadInfo_msg_to_CM 

l: Update_local_load_info 

 

P0: Global_SenderLoadThreshold_exceeded 

P1: Global_ReceiverLoadThreshold_exceeded 

P2: End_of_ReceiverNMs_List 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 State transition diagram of NM module. 

 

When NM starts with a StartNM message in CIM protocol, the load balancing 

module of NM also starts. NM collects load states of its Ns by NloadInfo messages. 

It calculates average load of its group, and also the threshold values to classify sender 

and receiver Ns. If it decides to run local load sharing, NM sends a TransferLoad 

message to sender N. This message contains the receiver N address. 

 

NM reports load state of its group to CM by putting it in HeartBeat messages that 

are sent to inform its aliveness in CIM protocol. When NM receives a 

GlobalLoadInfo message, it compares global load sharing threshold values with its 

load state and realize that whether it is a sender, sends a 

GlobalLoadTransfer_Request message to a receiver NM address selected from the 

receivers list contained in the GlobalLoadInfo message. If that transfer request is 

unsuccessful (if request is timed out or rejected), it continues load requests by 

selecting another receiver NM address from the receivers list. If request is accepted, 

GlobalLoadInfo_msg 

GlobalLoadTransfer_Request_msg 

GlobalLoadInfo_msg 

NLoadInfo_msg 

GlobalLoadTransfer_Reject_msg 

GlobalLoadTransfer_timeout 

LocalBalancingCondition 

 

Ready 

 

GlobalLoad

Transfer 

StartNM 

NLoadInfo_msg GlobalLoadInfo_msg GlobalLoadTransfer_Request_msg 

GlobalLoadTransfer_Accepted_msg 

GlobalLoadTransfer_timeout 

GlobalLoadTransfer_Reject_msg 
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it sends a TransferLoad message to a selected sender N address to start global load 

transfer. 

 

Upon receiving a GlobalLoadTransfer_Request message, NM checks to see if it is 

a receiver by comparing its current load state with global load sharing threshold 

values, and if so selects a N for receiving load and sends its address to sender NM 

via a Global_loadTransfer_Accepted message. 

 

The flowchart of NM module is in Appendix B. 

 

4.4.1.3 Node 

 

Incoming Events:    Outgoing Events: 

1 StartN_msg_received   LoadTransfer_msg_sent 

2 TransferLoad_msg_received  LoadTransfer_OK_msg_sent 

3 LoadTransfer_msg_received  LoadTransfer_timeout 

4 LoadTransfer_OK_msg_received NloadInfo_msg_sent 

5 LoadTransfer_timeout   States: 

6 Activity_timeout    Ready 

      LoadTransfer 

Table 4.3 Event-state Table of N module 

 1 2 3 4 5 6 

NULL a - - - - - 

Ready - b c - - f 

LoadTransfer - - - d e f 

 

-: ignore_event     d: stop_LoadTransfer_timer 

a: Initialize_info         state=Ready 

    state=Ready      e: state=Ready 

b: select_task_to_transfer    f:  calculate_local_load_value     

    send_LoadTransfer_msg_to_receiverN      

send_NloadInfo_msg_to_NM 
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    start_LoadTransfer_timer 

    state=LoadTransfer 

c: get_task_info 

    send_LoadTransfer_OK_msg_to_senderN 

 

 

 

 

 

 

 

 

           Figure 4.5 State transition diagram of N module. 

 

When N starts with a StartN message in CIM protocol, the load balancing module 

of N also starts. N reports its load state to CM by putting it in HeartBeat messages 

that are sent to inform its aliveness in CIM protocol. When it receives a 

TransferLoad message, selects a task to transfer and sends a LoadTransfer message 

to receiver N contained in TransferLoad message. If N receives a LoadTransfer 

message, its gets the task information and informs sender N about the success of the 

task transfer by sending LoadTransfer_OK message. 

 

The flowchart of N module is in Appendix B. 

 

4.4.2 Message and Time Analysis 

 

4.4.2.1 Local Load Sharing 

 

The flow of messages for a local  task transfer operation is shown in Table 4.4. 

Operation starts with a TransferLoad message from NM to the sender N. Then 

sender N sends a LoadTransfer message to the receiver N. The operation ends with a 

LoadTransferOK message. Hence the operation is completed with 3 messages in 3t 

LoadTransfer_msg 

LoadTransfer_OK_msg 

Activity_timeout 

LoadTransfer_timeout  

Ready 

 

LoadTransfer 

StartN 

Activity_timeout TransferLoad_msg 
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unit time were t is the time spent to transfer a message. This operation is not effected 

by the size of the cluster. 

 

 
Table 4.4 Message flow of a local load transfer operation 

    Message From To Time 

1. TransferLoad NM N t  

2. LoadTransfer N (sender) N (receiver) t 

3. LoadTransfer_OK N (receiver) N (sender) t 

 

4.4.2.2 Global Load Sharing 

 

The flow of messages for a global task transfer operation is shown in Table 4.5. 

Operation starts with a GlobalLoadInfo multicast message from CM to NMs. Then a 

sender NM sends a GlobalLoadTransfer_Request message to a receiver NM. Upon 

receiving a reply with a GlobalLoadTransfer_Accepted message, the sender NM 

sends TransferLoad message to the sender N. The operation is completed by the 

sender and receiver Ns ends with the transmission of TransferLoad and 

LoadTransferOK messages. During a global load transfer operation is completed 

with 6 messages in 6t unit time were t is the time spent to transfer a message. Hence 

the messaging in this operation is not effected by the size of the cluster. 

 
Table 4.5 Message flow of a local load transfer operation 

    Message From To Time 

1. GlobalLoadInfo CM NMs t  

2. GlobalLoadTransfer_Request NM NM t 

3. GlobalLoadTransfer_Accepted NM NM t 

4. TransferLoad NM N t 

5. LoadTransfer N N t 

6. LoadTransfer_OK N N t 
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CHAPTER FIVE 

THE IMPLEMENTATION 

 

5.1 The Implementation of CIM 

 

5.1.1 Multithreaded Process Architecture 

 

In CIM, each component (CM, NM, and N) is designed as a separate autonomous 

module. This autonomy is implemented by developing a multithreaded architecture. 

A single CIM process runs on each workstation of the cluster. On the workstation 

that performs CM role, runs the CM module thread within the CIM process. 

Similarly, each NM workstation runs a NM module thread, and workstations running 

N threads are the nodes of the cluster. 

 

Each module also contains helper threads. A messenger thread receives a message 

from the message queue and feeds the module thread for processing. Another helper 

thread, called multicast receiver listens the multicast group port, receives and then 

puts multicast messages to the module thread’s message queue. Similarly, the unicast 

receiver thread is responsible for listening the unicast port and receiving point-to-

point messages. There is also a sender thread that is responsible for packing and 

sending both unicast and multicast messages to the network. These helper threads are 

stateless and blocking threads. This means they simply sleep waiting for a message 

(on a network port or a queue), wakeup when available, serve and then sleep again. 

These helpers prevent blocking of the module thread. By this implementation the 

module thread is free for running, such as processing events, performing its internal 

operations, preparing messages for sending and so on. 

 

The main thread of the CIM process is responsible for maintaining the module 

threads, such as starting and stopping them when necessary. The multithreaded 

topology of the CIM implementation is shown in Figure 5.1. 
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Figure 5.1 Multithreaded architecture of  CIM process. 

 

The protocol of CIM was designed formally with finite state machines (FSMs). 

States, events, event-state tables and state transition diagrams describe the operation 

of a module. Module implementations are performed using these FSMs. Thus 

module threads are stateful and event-based. The module is always in a specific state, 

and when an event occurs, it performs predefined operations on that state, and 

transits to another state according to the results of the operation, or stays in the 

current state. An event can be an arrived unicast or multicast message, a timeout 

occurance, or a result of an internal function running periodically or on a specific 
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situation. All these events, states, operations and state transitions were defined in 

FSM. 

 

5.1.2 Thread Implementation, Communication, Synchronization and Timers 

 

The implementation of CIM protocol is developed on Linux operating system 

using standard (GNU) C programming language. Threads are implemented using 

Posix Threads (pthreads) library which is also available in Linux environment.  

 

Since threads are in a shared memory environment, which means threads 

belonging to the same process can reach the whole process memory scope, there is 

no need an IPC mechanism (PIPEs, etc.) which is time-consuming operations 

causing overhead. For intra-thread communication, FIFO (first in first out) queue 

structures are designed as shown in Figure 5.2. Every module thread has an input 

message queue that is controlled by messenger helper threads. Received messages 

are put those queues by receiver helper threads, and read by messenger thread and 

fed to the module one by one. Message sender thread also has a local input queue. 

Messages to be sent are put on this queue by a module thread, then read and sent by 

the sender thread. 

 

 

       Figure 5.2 FIFO queue structure. 
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Since these FIFO queue structures can be naturally reachable by more than one 

thread at the same time, a synchronization and critical section access mechanism 

should be employed to prevent conflicts. For this purpose a semaphore structure is 

designed and implemented. Although standard POSIX semaphore library can be 

used, it is generally designed for inter-process synchronization, and for thread 

synchronization condition variable structures available in posix thread library is 

recommended for performance and reliability. A semaphore mechanism is designed 

using these condition variables as shown in Figure 5.3. Each FIFO queue is protected 

by semaphores. Besides, threads can be blocked on an empty queue for a message 

ready to be read, or on a full queue for an available space to be written. Semaphores 

are also used for other thread synchronization purposes, such as blocking a thread on 

a situation and waiting for another thread completing its operation. 

 

int semaphore_down (Semaphore * s) 

{ 

 pthread_mutex_lock(&(s->mutex)); 

if (s->value<1) pthread_cond_wait(&(s->cond),&(s->mutex)); 

   s->value--; 

 pthread_mutex_unlock(&(s->mutex)); 

  return (1); 

} 

 

int semaphore_up (Semaphore * s) 

{ 

 pthread_mutex_lock(&(s->mutex)); 

 s->value++; 

 if (s->value<=1) pthread_cond_signal(&(s->cond)); 

 pthread_mutex_unlock(&(s->mutex)); 

  return (1); 

} 

 
Figure 5.3 Semaphore structures. 

 

Timers are also important in protocol design. To generate some timeout events a 

timer mechanism is used. Timer mechanism should be in millisecond granularity. 

One solution is using a system interrupt called SIGALRM. When set, process is 

interrupted and a defined subroutine is called at timeout situation by the system, then 

the process continues where it is interrupted. With this mechanism a millisecond 
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based timer structure is implemented, and by this structure multiple timers can be set 

at the same time by the threads of the process. 

 

5.1.3 Implementation of Communication 

 

Network communication in CIM protocol is based on Internet Protocol (IP). The 

connectionless transport protocol UDP is used for point-to-point communication, and 

IP Multicast is used for multicast communication. Considering performance and low 

latencies, in reliable network environments connectionless protocols are suitable for 

transmitting small stand-alone messages in asynchronous communication. 

 

Network communication operations are kept out of the module threads and 

performed by helper threads. Since these are blocking operations this separation 

brings freedom to operations of modules while providing implementation modularity 

and simplicity. UcastReceiver thread is responsible for receiving unicast messages 

and forwards them to destination modules by putting them into their FIFO queues. 

For this purpose, the thread binds, blocks and listens a specific UDP port. Similarly, 

McastReceiver thread receives incoming multicast messages by binding to a 

specified multicast group IP address, and listening a specific port. Message sending 

operations are performed by UMcastSender helper thread. A module that has a 

unicast or multicast message to be sent puts the message into the FIFO queue of 

UMcastSender and continues its operation. UMcastSender takes the message from 

the queue and sends them in a unicast or multicast IP packet to the specified 

destination. Standard BSD socket library available in Linux environment was used 

for network communication implementation. 

 

A message is transferred in a standardized message structure. The message 

structure is shown in Figure 4. Source and destination address is a specific address 

structure which contains IP address and module ID that defines the module (each 

CM,NM or N modules in the system have an assigned globally unique module ID). 

Module type specifies the destination module as CM, NM or N. Retransmit counter 

is used for specifying a retransmitted message in case of a failure and prevents 



 74 

processing of duplicate messages. Message type defines the message contained in the 

data section. 

 

 

 

 

 

 

Figure 5.2 Message structure in CIM protocol. 

 

Since messages can contain different data types and structures, each message type 

has a predefined structure. Hence the data section of a message is interpreted by 

using message type field. As an example, the structure of message type 

“NACCEPTED” that is sent by an NM to N as an acceptance to the cluster can be: 

 

 typedef struct st_naccepted 

{ 

 _address mcastaddr; 

 unsigned int mid; 

} m_naccepted; 

 

When sending this type of message, it is first put into the data section of  standard 

message structure and then sent. Upon receiving, the message type is read and data is 

put into the “m_naccepted” message structure. 

 

5.2 The Implementation of Load Balancing Model 

 

As CIM, the protocol of load balancing model was designed using FSMs too. The 

implementation of the load balancing model was integrated to the implementation of 

CIM. CM, NM and N components are designed as different modules in load 

balancing model. However in implementation, these components are embedded in 

CIM modules. Hence the same multithreaded architecture as depicted in Figure 5.1 

 

source destination module 
type 

message 

type 

retransmit 

counter 

DATA 
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was not changed. The only addition to the implementation is that the module threads 

in CIM also run CM, NM a N modules of the load balancing module. 
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CHAPTER SIX 

EXPERIMENTS AND EVALUATION OF RESULTS 

 

6.1 Tests For CIM 

 

The program code of CIM protocol was written with C language for Linux 

environment and compiled on a  kernel version 2.6.3 Mandrake Linux 10.0 (x86) 

operating system. Since there are not sufficient resources yet for construction of a 

real cluster environment (tens or even hundreds of workstations are needed), a single 

machine was used in simulation. For simulation, multiple Ns, NMs and a CM 

module thread virtually representing different workstations, run on this machine in a 

single CIM process. The machine was a PC with Intel Celeron 1.7 Ghz processor and 

256MB memory. 

 

Tests that will show performance and scalability properties are performed. The 

performed tests are; joining N to the cluster, failure of N, NM and CM, employing a 

new NM (split operation). Clusters of different sizes (different number of Ns and/or 

NMs) were tested. Number of NMs vary from 2 to 16, and total number of Ns vary 

from 8 to 256 while number of Ns in a NM group vary from  4 to 32. 

  

6.1.1 Joining A N To The Cluster 

 

In this test, time requirements for N join request and acceptance sequence is 

measured. The join operation starts with the NJOIN message of N. CM gets the 

message and forwards it to a NM that it selects. Upon receiving NM sends a 

NACCEPTED message to N. N responds this message with a NOK message, and at 

last NM informs CM about the completion of the operation with a NADDED 

message. The number of messages sent during the join operation is constantly 5. Test 

results of this operation are in Table 6.1. Measured values are in millisecond. Tests 

show that N join times are around 20 msec and are not effected by the size and shape 

of the cluster. 
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Table 6.1 Results of  N join test 

# of Ns in a NM group  

4 8 16 32 

2 22 19 17 19 

4 18 17 23 23 

6  16 17 20 

8  21 21 25 

 

# 

of 

NMs 

16  20 27  

 

6.1.2 N Crash Test 

 

In this test, a randomly selected N thread is stopped instantly, and the operation 

taken by the cluster is watched. In normal operation, N sends a Heartbeat message 

when it did not communicate with NM in a certain time interval (Activity time) to 

inform its aliveness. If N dies, then it will not send Heartbeat messages and NM 

realizes this situation and sends a CHECKALIVE message to that N and waits an 

immediate reply within a CheckAlive time period. Since N died, when this period is 

over, NM removes that N from the cluster and informs CM about this operation. The 

number of messages sent during this operation is constant and 2. The time 

measurements are shown in Table 6.2. In table CheckAlive time period is shown as 

CA. Tests show that the detection and removal operation is around CheckAlive time 

period and is not effected by the size and shape of the cluster. 

 

Table 6.2 Results of  N crash test 

# of Ns in a NM group  

4 8 16 32 

2 CA+0 CA+0 CA+1 CA+1 

4 CA+0 CA+0 CA+0 CA+3 

6  CA+0 CA+3 CA+2 

8  CA+0 CA+0 CA+0 

 

# of 

NMs 

16  CA+2 CA+2  
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6.1.3 NM Crash Test 

 

In this test, a randomly selected NM thread is stopped instantly, and the operation 

taken by the cluster is watched. In normal operation, NM sends a Heartbeat message 

if it didn’t not communicate with CM in a certain time interval (Activity time) to 

inform its aliveness. If  NM dies, then it will not send Heartbeat messages and CM 

realizes this situation and sends a CHECKALIVE message to that NM and waits an 

immediate reply within a CheckAlive time period. Since NM died, when this period 

is over, CM removes that NM from the cluster and promotes the backup of died NM 

as the new NM of that group. When the new NM wakes up, it sends a NEWNM 

multicast message to its group. Upon receiving this message Ns of that group 

responds it with NOK messages. The number of messages sent during the detection 

and promotion of new NM is constant and 2. During the start of the new NM, single 

multicast message is sent, but number of unicast messages depends on the number of 

Ns in a group. 

 

The time measurements are shown in Table 6.3, and amount of sent messages in 

Table 6.4. The first sub columns below the labels are for detection and removal, the 

second ones are for start of the new NM. In tables CheckAlive time period is shown 

as CA, and volumes of sent multicast messages are shown with an “m” at the end. 

Tests show that the detection and promotion operation is around CheckAlive time 

period and is not effected by the size and shape of the cluster. The time required for 

start of the new NM mainly depends on the size of the group. The time changes by 

the size of the cluster are ignored since it is caused by performing the tests in a single 

machine. 
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Table 6.3 Results of  NM crash test 

# of Ns in a NM group  

4 8 16 32 

2 CA+2 46 CA+2 70 CA+2 96 CA+2 134 

4 CA+1 52 CA+1 83 CA+1 105 CA+0 145 

6   CA+2 83 CA+2 110 CA+0 169 

8   CA+1 85 CA+1 100 CA+4 170 

 

# 

of 

NMs 

16   CA+0 96 CA+2 100   

 

Table 6.4 Volumes of transmitted messages of  NM crash test 

# of Ns in a NM group  

4 8 16 32 

2 2 1m+4 2 1m+8 2 1m+16 2 1m+32 

4 2 1m+4 2 1m+8 2 1m+16 2 1m+32 

6   2 1m+8 2 1m+16 2 1m+32 

8   2 1m+8 2 1m+16 2 1m+32 

 

# 

of 

NMs 

16   2 1m+8 2 1m+16   

 

6.1.4 CM Crash Test 

 

In this test, CM is stopped instantly and the operation taken by the cluster is 

watched. In normal operation, CM sends a Heartbeat message if it didn’t not 

communicate with its backup NM in a certain interval (Activity time) to inform its 

aliveness. If  CM dies, then it will not send Heartbeat messages and backup NM 

realizes this situation and sends a CHECKALIVE message to CM and waits an 

immediate reply within a CheckAlive time period. Since CM died, when this period 

is over, backup NM promotes itself as the new CM. When the CM thread is activated 

it sends a NEWCM multicast message to its group. Upon receiving that message, 

NMs responds it with NMOK messages. The number of messages sent during the 

detection and promotion of new CM is constant and 2. During the start of the new 

CM single multicast message is sent, but number of unicast messages depends on the 

number of NMs. 
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The time measurements are shown in Table 6.5, and amount of sent messages in 

Table 6.6. The first sub columns below labels are for detection and removal, the 

second ones are for start of the new CM. In tables CheckAlive time period is shown 

as CA, and amount of  multicast messages are shown with an “m” at the end. Tests 

show that the detection and promotion operation is around CheckAlive time period 

and is not effected by the size and shape of the cluster. The time required for start of 

the new CM mainly depends on the number of NMs in the cluster. The time changes 

by the number of Ns are ignored since it is caused by performing the tests in a single 

machine. 

 

Table 6.5 Results of  CM crash test 

# of Ns in a NM group  

4 8 16 32 

2 CA+1 38 CA+1 36 CA+2 35 CA+0 43 

4 CA+2 60 CA+1 62 CA+2 63 CA+0 64 

6   CA+2 79 CA+0 81 CA+2 81 

8   CA+1 105  CA+4 103 CA+8 100 

 

# 

of 

NMs 

16   CA+0 127 CA+3 127   

 

Table 6.6 Volumes of transmitted messages of  CM crash test 

# of Ns in a NM group  

4 8 16 32 

2 2 1m+2 2 1m+2 2 1m+2 2 1m+2 

4 2 1m+4 2 1m+4 2 1m+4 2 1m+4 

6   2 1m+6 2 1m+6 2 1m+6 

8   2 1m+8 2 1m+8 2 1m+8 

 

# 

of 

NMs 

16   2 1m+16 2 1m+16   

 

6.1.5 Split Operation Test 

 

Split operation is started by CM when it is necessary to employ a new NM and 

construct a new group in cluster. In this operation, CM sends a SPLIT multicast 
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message to the top group. When an NM receive this message, it sends a 

NMUPDATE message to its group. Upon receiving this message Ns respond it with 

NOK messages. When all NOK messages are received, NM sends a NMOK message 

to CM to inform completion of the operation. After all NMOK messages are 

received, CM promotes a selected N as the NM of the new group. When the new NM 

thread is activated, it sends a NEWNM multicast message to its group. Upon 

receiving this message Ns of that group responds it with NOK messages.  

 

The time measurements are shown in Table 6.7, and amount of sent messages in 

Table 6.8. The first sub columns below labels are for SPLIT and NMUPDATE 

sequences, the second ones are for start of the new NM. In tables volume of  sent 

multicast messages are shown with an “m” at the end. Tests show that the split 

operation depends on the size of the cluster. As the number of Ns and NMs grows, 

the time requirement and message counts increases. The time required for start of the 

new NM mainly depends on the number of Ns of the new group. 

 

Table 6.7 Results of  split operation test 

# of Ns in a NM group  

4 8 16 32 

2 89 22 107 39 192 50 247 58 

4 91 32 148 36 225 37 372 56 

6   183 31 292 38 495 68 

8   235 44 415 51 655 69 

 

# 

of 

NMs 

16   376 38 740 117   

 

Table 6.8 Volumes of transmitted messages of  split operation test 

# of Ns in a NM group  

4 8 16 32 

2 3m+15 1m+6 3m+27 1m+13 3m+51 1m+26 3m+99 1m+53

4 5m+16 1m+7 5m+30 1m+13 5m+56 1m+27 5m+110 1m+54

6   7m+37 1m+15 7m+71 1m+30 7m+138 1m+61

8   9m+46 1m+16 9m+87 1m+33 9m+169 1m+66

 

# 

of 

NMs 

16   17m+81 1m+20 17m+154 1m+41   
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6.1.6 Summary of Test Results 

 

The tests show the following results: 

 

• N join and failure operations are simple and performance is not 

effected by the size of the cluster, hence they are not a scalability issue. 

 

• NM failover operation is handled by effecting only the group where 

problem occurs and isolated from other parts of the cluster. the operation does 

not cause scalability problems. 

 

• CM failover operation is handled in the management group so Ns are 

not effected. Operation does not have scalability problems. 

 

• Split operation and constructing a new group is a process that effects 

the whole cluster. Tests show that amount of message transmits and operation 

times increase as the cluster grows. Considering the message sizes and 

volume increase ratio, split operation is not a dramatic scalability issue on a 

fast and reliable network environment. Besides, the time period of operation 

is effected mainly by the simulation environment since tests are performed on 

a single machine environment. 

 

6.2 Tests For Load Balancing Model 

 

The implementation of the load balancing model was tested on a simulation 

environment. The tests performed aim as a proof of efficiency and scalability of the 

model, observation of its  functionality and performance, while discovering possible 

improvements. 

 

The program code of CIM protocol was written with C language for Linux 

environment and compiled on a  kernel version 2.6.3 Mandrake Linux 10.0 (x86) 

operating system. Since there are not sufficient resources yet for construction of a 
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real cluster environment (tens or even hundreds of workstations are needed), a single 

machine was used in simulation. For simulation, multiple Ns, NMs and a CM 

module thread virtually representing different workstations, run on this machine in a 

single CIM process. The machine was a PC with Intel Centrino Duo 1.8 Ghz 

processor and 1GB memory. 

 

In simulation two load indices was used with equal weights of 0.5: cpu utilization 

and memory utilization. Then the calculated load value of a N is: 

 

L = lcpu x 0.5 + lmemory x 0.5 

 

As load index thresholds, 0.8 was set for both indices. That means when a load 

index value exceeds 80%, that load index effects directly to calculated load value 

regardless of its weight to prevent resource overflow. 

In this environment, each N was assigned a set of resources at startup randomly 

from a resource table. The resource table is shown in Table 6.9. The resource table 

was used to simulate the heterogeneity of Ns.  

 
Table 6.9 Heterogeneous resources used in tests 

Resource ID Cpu Memory 

0 1 128 

1 1 256 

2 1.5 256 

3 1.5 512 

4 2 256 

5 2 512 

 

Since we assumed that task arrival times, rates and durations were not known at 

runtime, each N was submitted randomly selected tasks from a task table, at random 

times dynamically. The execution duration for each task was also a random time 

from 20 seconds to 100 seconds. Each task has a specific resource usage. The cpu 

usage of a task represents its  average cpu consumption on a base computer which 
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has resources as resource ID 0, whereas memory usage represents absolute memory 

consumption while the task is running. Task table is shown in Table 6.10.  

 

Table 6.10 List of task profiles used in simulations 

Task ID Cpu 

consumption 

Memory 

consumption 

0 15 8 

1 13 12 

2 15 11 

3 12 18 

4 17 17 

5 8 9 

6 10 20 

7 8 16 

8 15 7 

9 6 13 

 

In simulations, non-preemptive task transfers were considered. So, tasks that are 

newly submitted and  not started were involved in task transfers. 

 

In tests, the load balancing model run on clusters with 2,4 and 6 NMs having 4, 8, 

16 Ns. In the tests, some load balancing metrics and runtime load state values was 

measured over a time period. The measured values were: 

 

• Average load values of Ns, NMs and the cluster 

• LA, TR and TS values calculated by NMs and CM 

• Ratio of locally executed tasks (tasks that run on submitted Ns) 

• Ratio of locally transferred tasks (tasks that run on different Ns in a 

NM group, other than where they are submitted) 

• Ratio of globally transferred tasks (tasks that were sent to other Ns 

that belong to other NM groups) 
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• Ratio of globally imported tasks (tasks that were received from other 

Ns that belong to other NM groups) 

 

In Figure 4, the amount of load submitted to the cluster systems during tests are 

shown (cluster  names represent their sizes, e.g. 2x8 cluster has 2 NMs each having 8 

Ns). The volume of tasks submitted were proportional to the number of Ns clusters 

had. 

  Figure 6.1 Tasks submission rates for different cluster sizes.  

 

6.2.1  Test 1: 2x8 Cluster 

 

In this test a 2 NMs with 8 Ns cluster was constructed on which local and global 

load balancing operations measured. The test results in Figures 6.2-6.3 show that 

local load balancing scheme was able to keep load levels of highly utilized Ns 

around TS levels by transferring their submitted tasks to the Ns that have low load 

and prevented overloading. NMs adjusted the TR and TS threshold values around load 

averages to specify load senders and receivers. This also prevented moderately 

loaded  (close to the average) Ns to be involved in load transfers that cause useless 

task transfers. So, task transfers were performed from highly loaded Ns through 

lightly loaded Ns. As the graphs in Figure 6.4-6.5 show, Ns mainly run local tasks 

and average task transfer rates were kept low, avoiding transfer overheads. 
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Figure 6.2 Local load values of NM1 group. 
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 Figure 6.3 Local load values of NM2 group. 
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      Figure 6.4 Ratio of locally executed and transferred tasks. 
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         Figure 6.5 Rates of locally transferred tasks by time period. 

 

As seen in Figure 6.6 both NM groups are highly loaded, so global load sharing 

module had less chance to find receiver NM group. Therefore, as shown in  Figure 

6.7-6.9 although global load transfer rates are very low, few load transfers were 

performed from NM1 to NM2 which had less load then the other. 
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      Figure 6.6 Global load values. 
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             Figure 6.7 Ratio of locally executed and globally transferred tasks. 
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    Figure 6.8 Rates of globally exported tasks by time period. 
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             Figure 6.9 Rates of globally imported tasks by time period. 

 

6.2.3 Test 2: 4x8 Cluster 

 

In this test a 4 NMs with 8 Ns cluster was constructed and load balancing 

operations are measured. The test results were shown in Figures 6.10-6.15. The 

results show similar results with previous test. The local load balancing model was 

able to keep load levels of highly utilized Ns around TS levels. TR and TS threshold 

values were adjusted according to the load values. This prevented moderately loaded 

Ns to be involved in load transfers that would cause useless task transfers. Again, 

average task transfer rates were kept low. 
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      Figure 6.10 Local load values of NM1 group.  
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         Figure 6.11 Local load values of NM2 group. 
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         Figure 6.12 Local load values of NM3 group. 
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         Figure 6.13 Local load values of NM4 group. 
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    Figure 6.14 Ratio of locally executed and transferred tasks.  
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       Figure 6.15 Rates of locally transferred tasks by time period.  

 

Figure 6.16-6.19 show the global load balancing operation results. Group load 

levels are around average cluster load. Global task transfers are mainly performed 

through highly load groups like NM2 and NM1 to the receiver groups NM3 and 

NM4. The task transfer rates were below %5. 
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  Figure 6.16 Global load values.  

 

 

0%

20%

40%

60%

80%

100%

NM1 NM2 NM3 NM4

Globaly imported

Globaly exported

Localy executed

 

  Figure 6.17 Ratio of locally executed and globally transferred tasks.  

 

0,00

2,00

4,00

6,00

8,00

10,00

12,00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NM1

NM2

NM3

NM4

Average

 

          Figure 6.18 Rates of globally exported tasks by time period.  

 % 

 time (min) 

 % 

 time (min) 



 93 

 

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NM1

NM2

NM3

NM4

Average

 

       Figure 6.19 Rates of globally imported tasks by time period.  

 

6.2.4  Test 3: 6x8 Cluster 

 

In this test a 6 NMs with 8 Ns cluster was constructed and local load balancing 

operations are measured. The test results were shown in Figures 6.20-6.31. The 

comments of the previous tests can also be stated for these results. While local load 

sharing policy distributes the load inside the groups, global load sharing policy 

transfers more load to NM3 group which has less load than others. Again, the global 

task transfer rates were around %5. 
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      Figure 6.20 Local load values of NM1 group.  
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      Figure 6.21 Local load values of NM2 group. 
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      Figure 6.22 Local load values of NM3 group.  
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 Figure 6.23 Local load values of NM4 group.  
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 Figure 6.24 Local load values of NM5 group.  
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         Figure 6.25 Local load values of NM6 group. 
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     Figure 6.26 Ratio of locally executed and transferred tasks. 
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             Figure 6.27 Ratio of locally executed and transferred tasks. 
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 Figure 6.28 Global load values. 
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             Figure 6.29 Ratio of locally executed and globally transferred tasks.  
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             Figure 6.30 Rates of globally exported tasks by time period.  
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           Figure 6.31 Rates of globally imported tasks by time period.  

 

6.2.5  Test 4: 4x16 Cluster 

 

In this test a 4 NMs with 16 Ns cluster was constructed and local load balancing 

operations are measured. The test results for local load balancing are shown in 

Figures 32-37. The results show that the local load sharing policy tries to bring load 

values closer to the average load, by limiting sender and receiver N load values  

around threshold values. This also reduces task transfer rates, since the model does 

not try to equalize load levels. Task transfer rates were almost same low levels as in 

the other tests, which proves the scalability of the system.   
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       Figure 6.32 Local load values of NM1. 
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        Figure 6.33 Local load values of NM2. 
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       Figure 6.34 Local load values of NM3. 
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       Figure 6.35 Local load values of NM4. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NM1 NM2 NM3 NM4

Localy transferred

Localy executed

 

               Figure 6.36 Ratio of locally executed and transferred tasks.  
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            Figure 6.37 Rates of locally transferred tasks by time period.  
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Global load sharing policy brought the group load levels closer to the average 

around Ts and Tr values. Figures 38-41 shows the results of global policy. NM4 

group which has least load received more tasks than the others. The top senders were 

NM2 and NM3. Similar to the former tests the average task transfer rate was around 

3%. 
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 Figure 6.38 Global load values.  
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  Figure 6.39 Ratio of locally executed and globally transferred tasks. 
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 Figure 6.40 Rates of globally exported tasks by time period.  
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 Figure 6.41 Rates of globally imported tasks by time period.  

 

6.2.6 Test 5: 4x16 Cluster without Global Load Sharing 

 

To see the effect of global load sharing, the 4x16 cluster test were performed 

again with global policy disabled. Since the local policy was active, load levels 

inside groups were adjusted around threshold levels as shown in Figure 6.42-6.45. 
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       Figure 6.42 Local load values of NM1 group.  
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       Figure 6.43 Local load values of NM2 group.  
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      Figure 6.44 Local load values of NM3 group.  
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       Figure 6.45 Local load values of NM4 group.  

 

Figure 6.46 shows the group load values. Comparing this graph with Figure 6.38, 

the importance of global load sharing policy can be proven. With global policy, 

average cluster load were around %70 whereas without it the load level arises to 

%80, stating that the global load sharing policy distributes the loads of higher groups 

through groups that have less load levels and utilizes the efficient use of the cluster 

resources. 
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       Figure 6.46 Global load values. 
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6.2.7 Test 6: 4x16 Cluster without Load Sharing 

 

To show the effect of load balancing model, the 4x16 test performed again with 

the same set of task pattern and the same resources but without the local and global 

load sharing policies. Figure 6.47-6.50 show the load levels inside groups. Some Ns 

were overloaded while there are lightly loaded Ns with the absence of local load 

sharing policy.  
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                Figure 6.47 Local load values of NM1 group. 
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 Figure 6.48 Local load values of NM2 group. 
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 Figure 6.49 Local load values of NM3 group. 
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 Figure 6.50 Local load values of NM4 group. 

 

Figure 6.51 shows the unbalanced state of the cluster. As a result, the cluster 

resources were not efficiently utilized without the load balancing model. 
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 Figure 6.51 Global load values. 
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6.2.8 Evaluation of Results 

 

Figure 6.52 and 6.53 show average task transfer rates per minute and percentage 

of transferred tasks over the totals  measured for both local and global load sharing 

policies. As naturally expected, task transfer rates increased with the growth of the 

cluster and with the increasing load. Global load transfers also increased by the 

addition of new NMs to the cluster. Note that local transfer rates are always higher 

than global transfer rates since independent local load sharing processes run 

simultaneously within the groups of Ns, while global load sharing runs on the upper 

level among NMs. Due to the adaptive threshold mechanism, we do not expect such 

differentiations as transfer rates on their percentages. In fact, test results confirms the 

expectations. While local transfer ratios fell below %10, global transfer percentages 

did not exceed %5, as seen in the Figure 6.53.   
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  Figure 6.52 Task transfer rates. 
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  Figure 6.53 Task transfer percentages. 
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As a load distribution policy, the designed model is expected to reduce the 

unbalanced state of the cluster system. To measured the imbalace in load states, we 

calculated standard deviations of load values for both global and local load sharing 

processes. The results are shown in Figure 6.54. To compare the effect of the model 

on distribution of load, we also run the cluster submitting the same load pattern with 

load balancing policy disabled. The values shown as an example in the graph as 

“4x16nolb” are such results of a 4x16 cluster without load balancing.  Comparing the 

results with those with load balancing enabled, it can be seen that the model reduces 

the load imbalance from about %19 to %9 locally and %7 to %2 in global load 

values. Although the results of other cluster types are generally close to each other, 

there are some slight differences in deviations. Use of nonpreemptive load transfers  

and dynamic nature of task submissions are main causes to these differences. 

Moreover, the threshold calculation method has a major effect on load levels. Since 

we used a threshold mechanism based on average distances, the load distribution 

policy tried to cause the load levels closer to the mean in some boundries 

(thresholds) instead of strictly equalizing them. Such a policy was avoided since it 

would have caused higher task transfer rates with extra overhead. The average 

distance values are shown in Figure 6.55. It can be seen that these results are closer 

to each other than those in standard deviations. 
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         Figure 6.54 Standard deviation of load values. 
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  Figure 6.55 Average distances of load values. 

 

Graphs plotting global load values and thresholds during runtime in Figure 6.56 

show the effect of threshold mechanism more clearly. On the first graph that shows 

measurements on a 4x16 cluster without load balancing we see the spread of load 

values between %50 and %90. When load balancing enabled,  values were shrunk 

towards the average and load interval narrowed to %60-80 around sender and 

receiver thresholds. 

 

Figure 6.56 Global load values without (I) and with (II) global load sharing.  

 

Finally, we show graphs of local load sharing policy for a 4x16 cluster in Figure 

6.57. Graphs I and III shows the load levels of Ns for two groups without load 

balancing. Comparing these values to the corresponding measurements of those with 

load balancing enabled (graphs II and IV respectively) we see how the local load 

sharing shapes the load levels of Ns around the averages (shown by the dotted lines). 

With the help of load sharing and load index thresholds load levels of Ns with 

exceeding the limits were smoothed by task transfers through lightly loaded Ns. 
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Figure 6.57 Local load values without (I,III) and with (II,IV) local load sharing.  
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CHAPTER SEVEN 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

The research area of this thesis was about scalable Beowulf style clusters and 

efficient load distribution in these systems. A Beowulf cluster was defined as the 

cluster computing technology that connects tens to hundreds of personal computers 

together in such a way that they behave like a single computer which was a popular 

strategy for implementing parallel processing applications.  

 

During researches it became clear that to build a stable and scalable cluster system 

an infrastructure that manages nodes of the cluster was needed. The Cluster 

Infrastructure Model (CIM) was designed for this purpose. In short, CIM is the 

foundation of the cluster system which is responsible for maintaining the components 

of the cluster by keeping the records of active nodes, checking their health and 

isolating failed nodes. Besides its this primary function, by its communication 

structure CIM also served an information service for the distributed load balancing 

model by collecting the state information from the nodes. 

 

In researches it was seen that central policies could make more efficient load 

distribution decisions since the central controller had the complete knowledge about 

the whole cluster. However, they did not scale well on large clusters. On the other 

hand, distributed policies suffered from complexity and lack of complete knowledge 

to make most suitable decisions. To utilize the advantages of both techniques and 

avoid their disadvantages a hierarchically centralized architecture was designed.  

 

To manage nodes of the cluster in a scalable manner, the system was 

hierarchically divided into a number of groups and these groups are under the control 

of node managers. On the upper level in the hierarchy there was a cluster manager as 

the leader of the node managers. CIM defined this structure with its communication 

and fault tolerance.  
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The cluster infrastructure model was implemented on Linux platform and tested 

on a simulation environment. The tests that were performed to evaluate the 

performance, stability and scalability of the model were joining a node to the cluster, 

removing a crashed node, replacing a dead node manager and cluster manager. Test 

results shown that the hierarchically layered model scales well on different size of 

clusters and its fault tolerance keeps the system stable in case of component failures. 

 

The load balancing model was designed over the CIM. The hierarchical 

architecture of CIM also provided a scalable architecture for the load balancing 

model. By the hierarchical architecture parallel load distribution processes run at the 

lower level within groups and load distribution among them were organized on the 

upper layer. While local load distribution processes inside groups partially shared the 

loads inside groups, the global load distribution process completed the operation by 

distributing the loads among groups. The information needed for load distribution 

decisions are carried also via the health checking (heart-beat) messages of CIM by 

eliminating extra messaging requirement. 

 

Support for heterogeneity of resources were provided by considering relative 

capacities for resources of the nodes. Moreover, the use of weighted multiple load 

indices that were taken into account to determine the load value of a node. This 

method provided a customizable and flexible model for a general purpose cluster. 

The load index thresholds were used to prevent resource overloading. 

 

The dynamic sender and receiver threshold calculation method was used to add 

adaptivity property to the load balancing model. The threshold calculation method 

was designed as a customizable property. 

 

Load index types, their weights, threshold calculation methods are customizable 

parts of the model that can be adjusted according to needs. 

 

The load balancing model was implemented as a separate module integrated to the 

CIM. Some experimental tests were performed with different sizes of clusters to 



 112 

show the performance, efficiency and scalability of the designed model. The 

performed tests have shown how adaptive load threshold values shape the load levels 

around averages and avoid useless task transfers by successfully excluding 

moderately loaded members from source and destination selections.  

 

There are some areas of possible future research, such as: 

 

• Use of different threshold calculation methods to observe the changes 

in the sensitivity of the load distribution algorithm and also its overhead, e.g. 

using standard deviation instead of average distance.  

 

• Testing of applications that require additional load index types other 

than CPU utilization and memory usage (like network usage, i/o queue 

length, etc.). 

 

• Support for preemptive task transfers, that have been avoided so far 

because of their overhead and complexity, for applications where more 

aggressive load balancing is required. 

 

• Implementing the model over a real cluster environment and testing it 

with a realistic problem. 
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APPENDICES 

 

Appendix A - Pseudocodes of CIM Modules 

 

A.1 Pseudocode of CM Module 

 

Program ClusterManager 
{ 

 Initialize_variables 
 sendmsg(ClusterMulticastAddr,NewCM) 
 msg_count=1 

 reply_count=0 
 start_timer(Startup) 
 start_timer(Activity) 
 state=Startup 

  
 Loop Forever 
 { 

   wait_event 
   Case (event) 
 Startup_timeout: 
  if msg_count<max_NewCM_msg_sent_count 

sendmsg(ClusterMulticastAddr,NewCM) 
   msg_count=msg_count+1 
   start_timer(Startup) 

  else 
   state=Ready 
 NMOK_msg_received: 
  set_NM_info 

  if reply_count=NMCount 
   stop_timer(Startup) 
   state=Ready 
 Heartbeat_msg_received: 

  active[sender_NM]=1 
  if state=CrashDetect 
   stop_timer(CrashDetect) 

   state=Ready 
 Heartbeat_timeout: 
  if state=Ready 
   sendmsg(timedout_NM,CheckAlive) 

   start_timer(CheckAlive) 
  state=CrashDetect 
 else 

  postpone_event 
 CheckAlive_timeout: 
  remove(timeout_NM) 
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  sendmsg(backupN,StartNM) 
  state=Ready 
 CheckAlive_msg_received: 

  sendmsg(sender_NM,Heartbeat) 
 Ncrash_msg_received: 
  if state=Ready or Split 
   remove(crashedN) 

  else 
   postpone_event 
 NJoin_msg_received: 

  if state=Ready 
   sendmsg(selectedNM,AddN) 
  else 
   postpone_event 

 NAdded_msg_received: 
  if state=Ready 
   Add(N) 

  else 
   postpone_event 
 Split_condition_occurred: 
  if state=Ready 

   sendmsg(ClusterMulticast_addr,Split) 
   start_timer(Split) 
   msg_count=1 

   state=Split 
 Split_timeout: 
  if msg_count<max_Split_msg_sent_count 

sendmsg(ClusterMulticastAddr,Split) 

   msg_count=msg_count+1 
   start_timer(Split) 
  else 
   state=Ready 

 Activity_timeout: 
  sendmsg(backup_NM,Heartbeat) 
   End Case 

 } 

 

A.2 Pseudocode of NM Module 

 

Program NodeManager 
{ 
 Initialize_variables 

 sendmsg(GroupMulticastAddr,NewNM) 
 msg_count=1 
 reply_count=0 

 start_timer(Startup) 
 start_timer(Activity) 
 state=Startup 
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 Loop Forever 
 { 

   wait_event 
   Case (event) 
 Startup_timeout: 
  if msg_count<max_NewNM_msg_sent_count 

sendmsg(ClusterMulticastAddr,NewNM) 
   msg_count=msg_count+1 
   start_timer(Startup) 

  else 
   state=Ready 
 NOK_msg_received: 
  if state=Startup 

   set_N_info 
   if reply_count=NCount 
    stop_timer(Startup) 

    state=Ready 
  if state=NewN 
   stop_timer(NewN) 
   Add(N) 

   sendmsg(CM,NAdded) 
   state=Ready 
  if state=Split 

   if NOK_msg_count=split_count 
   stop_timer(NMUpdate) 
    sendmsg(CM,NMOK) 
    state=Read   

 Heartbeat_msg_received: 
  active[sender_N]=1 
  if state=NCrashDetect or CMCrashDetect  
   stop_timer(CrashDetect) 

   state=Ready 
 Heartbeat_timeout: 
  if state=Ready 

   if N_timedout 
    sendmsg(timedout_N,CheckAlive) 

  state=NCrashDetect 
   if CM_timedout 

    sendmsg(CM,CheckAlive) 
   state=CMCrashDetect 
   start_timer(CheckAlive) 

 else 
  postpone_event 
 CheckAlive_timeout: 
  if state=NCrashDetect 

   remove(crashed_N) 
   sendmsg(CM,NCrash)  
  if state=CMCrashDetect 
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   StartCM 
  state=Ready 
 CheckAlive_msg_received: 

  sendmsg(sender_N or CM,Heartbeat) 
 AddN_msg_received: 
  if state=Ready 
   sendmsg(new_N,NAccepted) 

   start_timer(NewN) 
   state=NewN 
  else 

   postpone_event 
 NewN_timeout: 
  state=Ready 
 NewCM_msg_received: 

  if state=Ready 
   sendmsg(CM,NMOK) 
  else 

   postpone_event 
 Split_msg_received: 
  if state=Ready 
   sendmsg(GroupMulticast_addr,NMUpdate) 

   start_timer(NMUpdate) 
   msg_count=1 
   state=Split 

  else 
   postpone_event 
 NMUpdate_timeout: 
  if msg_count<max_NMUpdate_msg_sent_count 

sendmsg(GroupMulticastAddr,Split) 
   msg_count=msg_count+1 
   start_timer(NMUpdate) 
  else 

   sendmsg(CM,NCrash) 
   sendmsg(CM,NMOK) 
   state=Ready 

 Activity_timeout: 
  sendmsg(timedout_N or CM,Heartbeat) 
   End Case 
 } 

 

A.3 Pseudocode of N Module 

 

Program Node 
{ 
 Initialize_variables 

 sendmsg(ClusterMulticastAddr,NJoin) 
 start_timer(Startup) 
 start_timer(Activity) 
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 state=Startup 
  
 Loop Forever 

 { 
   wait_event 
   Case (event) 
 Startup_timeout: 

sendmsg(CMMulticastAddr,NJoin) 
  start_timer(Startup) 
 NAccepted_msg_received: 

  stop_timer(Startup) 
  set_group_info 
  sendmsg(NM,NOK) 

start_timer(Activity) 

  state=Ready 
 CheckAlive_msg_received: 
  sendmsg(NM,Heartbeat) 

 NMUpdate_msg_received: 
  sendmsg(NM,NOK) 
  Update_NM_info 
 NewNM_msg_received: 

  Update_group_info 
  sendmsg(NM,NOK) 
 Activity_timeout: 

  sendmsg(NM,Heartbeat) 
   End Case 
 } 
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Appendix B - Flowcharts of Load Balancing Modules 

 

B.1 Flowchart of CM Module 
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B.1 Flowchart of CM Module (continued) 
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B.1 Flowchart of CM Module (continued) 
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B.1 Flowchart of CM Module (continued) 
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B.2 Flowchart of NM Module 

 

 A B C 



 126 

A B C 

B.2 Flowchart of NM Module (continued) 
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B.2 Flowchart of NM Module (continued) 
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B.2 Flowchart of NM Module (continued) 
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B.2 Flowchart of NM Module (continued) 
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B.2 Flowchart of NM Module (continued) 
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B.3 Flowchart of N Module 
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Event=NewNM_messagereceived
Update group Info

send_message(NMOK,NM)
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B.3 Flowchart of N Module (continued) 


