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IMPLEMENTATION AND COMPARISON OF ADVANCED ENCRYPTION 

STANDARD (AES) MODES ON FPGA 

ABSTRACT 

 

System-On-Chip (SoC) is an interesting target platform that includes both 

hardware and software on a single chip which makes an embedded system a typical 

development environment. The main idea for this thesis is to study and implement 

state-of-the-art cryptographic block cipher Advanced Encryption Standard (AES) 

modes of operation on a SoC development environment.  

 

In this thesis implementation and comparison of AES block cipher algorithm 

modes of operation on a Xilinx SoC development platform have been accomplished. 

It consists of two parts, hardware and software and both sections have been 

developed by using Xilinx licensed Embedded Development Kit (EDK). At the 

hardware section the hardware input output interfaces are determined according to 

the requirements of the project and the corresponding hardware is designed. At the 

second section, the software requirements are determined similar to hardware, AES 

and modes of operation is developed by using “C” as the programming language and 

the software is tested by commands entered through serial port. A detailed analysis 

of AES and modes of operation, MicroBlaze soft processor core architecture is 

investigated. Implementation is realized on a soft processor core, MicroBlaze and 

analyzed using mb-gprof profiler (a gprof based profiler). A software intellectual 

property (IP) that is capable of demonstrating all modes of operation including 

electronic code book (ECB), cipher block chaining (CBC), cipher feedback (CFB), 

output feedback (OFB) and counter (CTR) modes is generated and tested with build-

in test application commands and each mode is compared in terms of time taken to 

encrypt-decrypt messages. 

 

Keywords: MicroBlaze, Profiler, AES, Modes of operation. 
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GELĐŞMĐŞ ŞĐFRELEME STANDARDI MODLARININ FPGA ÜZERĐNDE 

GERÇEKLENMESĐ VE KARŞILAŞTIRILMASI 

ÖZ 

 

Sistem-On-Chip (SoC) hem donanım hem de yazılımı tek bir çip üzerinde içeren, 

gömülü bir sistemi tipik bir geliştirme ortamı yapan ilgi çekici bir hedef platformdur. 

Bu tezin ana fikri en son gelişmeleri yansıtan Gelişmiş Şifreleme Standardı 

(Advanced Encryption Standard - AES) blok şifreleme algoritması modlarının bir 

SoC geliştirme ortamında araştırılması ve uygulanmasıdır. 

 

Bu tezde bir Xilinx SoC geliştirme platformu üzerinde Gelişmiş Şifreleme 

Standardı blok şifreleme algoritması modlarının uygulanması ve karşılaştırılması 

yapılmıştır. Çalışma donanım ve yazılım olmak üzere iki kısımdan oluşmaktadır. Her 

iki kısımda Xilinx lisanslı Gömülü Sistem Set (Embedded Development Kit - EDK)’i 

kullanılarak geliştirilmiştir. Donanım kısmında gerekli giriş-çıkış arayüzleri proje 

gereksinimlerine uygun şekilde seçilmiştir. Đkinci kısımda yani yazılım kısmında ise 

benzer şekilde yazılım gereksinimleri belirlenmiş, AES ve çalışma modları “C” dili 

kullanılarak geliştirilmiş ve seri porttan girilen komutlarla test edilmiştir. AES ve 

çalışma modlarının, MicroBlaze soft-core mimarisinin ayrıntılı bir analizi 

yapılmıştır. Uygulama MicroBlaze soft-core mimarisi üzerinde gerçekleştirilmiş ve 

mb-gprof profiler (gprof tabanlı profiler) ile analiz edilmiştir. Elektronik kod kitabı 

(ECB), zincirleme şifre blok (CBC), şifre gizle (CFB), çıkış gizle (OFB) ve sayaç 

(CTR) modları dahil olmak üzere tüm çalışma modlarını gösterme yeteneğine sahip 

bir yazılım fikri mülkiyet (IP) yaratılmış ve dahili test uygulama komutları ile test 

edilerek her mod mesajları şifreleme-çözme sırasında çektikleri süre açısından 

karşılaştırılmıştır. 

 

 

Anahtar sözcükler: MicroBlaze, Profiler, AES, Çalışma Modları. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

Ever since man developed his communication skills, he has embarked on a 

journey of technological developments. These communication skills have been 

developed to such an extent that the information passed must, at times, be secret and 

authenticable. The new conditions of secrecy, authenticity and integrity have given 

rise to a new field of science called cryptology. Cryptology is divided into 

cryptography and cryptanalysis. Cryptography, deals with the art and science of 

encoding and decoding information, whereas, cryptanalysis deals with breaking the 

encoded information (Jayavardhan, 2003). 

 

Cryptography is the study of mathematical techniques related to aspects of 

information security such as confidentiality, data integrity, entity authentication, and 

data origin authentication. Cryptography is not the only means of providing 

information security, but rather one set of techniques. Cryptography describes a 

number of basic cryptographic tools (primitives) used to provide information 

security. Figure 1.1 provides a schematic listing of the primitives considered and 

how they relate. These primitives should be evaluated with respect to various criteria 

such as:  

1. Level of security. This is usually difficult to quantify. Often it is given in 

terms of the number of operations required (using the best methods currently 

known) to defeat the intended objective. Typically the level of security is 

defined by an upper bound on the amount of work necessary to defeat the 

objective. This is sometimes called the work factor. 

2. Functionality. Primitives will need to be combined to meet various 

information security objectives. Which primitives are most effective for a 

given objective will be determined by the basic properties of the primitives. 

3. Methods of Operation. Primitives, when applied in various ways and with 

various inputs, will typically exhibit different characteristics; thus, one 
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primitive could provide very different functionality depending on its mode of 

operation or usage. 

4. Performance. This refers to the efficiency of a primitive in a particular mode 

of operation. (For example, an encryption algorithm may be rated by the 

number of bits per second which it can encrypt.) 

5. Ease of implementation. This refers to the difficulty of realizing the primitive 

in a practical instantiation. This might include the complexity of 

implementing the primitive in either a software or hardware environment. 

 

 
Figure 1.1 A classification of cryptographic primitives (tools) (Schneier, 1996) 
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Microprocessor obsolescence is a major concern for many companies. 

Programmable logic can provide a viable solution to this problem. By using soft core   

microprocessors embedded within a programmable logic device, not only can you   

own the processor core for use in any future devices and platforms, but the design 

can be both flexible and scalable to suit different platforms (Parnell & Bryner, 2004). 

 

An emergent trend is to move from bespoke microprocessors to soft-core 

processors embedded within either FPGAs or ASICs. This trend has been driven by 

the long- term supply uncertainties of companies that provide bespoke 

microprocessors. This uncertainty is due to their inability to take advantage of new 

process technologies and geometries.  

 

Embedded systems have become ubiquitous in recent years stemming from the 

exponential growth in mobile phones, PDAs, portable multimedia devices and smart 

cards. This has lead to a need for strong cryptography to protect users’ identity, 

transactions and allow secure billing. This includes security in both wireless 

communications and authentication. Since embedded systems have limited resources 

then it is essential that the cryptography overhead is as small as possible. The main 

drawback with block ciphers like AES (NIST, 2001) is that they are quite costly to 

implement in software, but have simple hardware realizations using logical bit 

operations and manipulation. Offloading these operations from software to hardware 

using user-defined instructions tightly coupled to a processor leads to considerable 

clock cycle savings. The AES algorithm is specified in many wireless standards as 

the MAC protocol encryption method ((IEEE, 2007) & (IEEE, 2003)). (EnSilica Ltd, 

2010). 

 

As the need for secure data transmission grows, there is a major urgency of 

integrating cryptography into the embedded systems, in order to enable secure and 

reliable data transfer. Embedded systems populate the new generation gadgets such 

as cell phones and smartcards where the encryption algorithms are obviously an 

integral part of the system. Many conditional access vendors such as Nagravision, 

Viaccess, Irdeto requires their conditional access kernel libraries are not visible as a 
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plaintext so forces their partners to use encryption systems with an approved mode of 

operation.  Modes of operation enable the repeated and secure use of a block cipher 

under a single key. A block cipher by itself allows encryption only of a single data 

block of the cipher's block length. When targeting a variable-length message, the 

data must first be partitioned into separate cipher blocks. Typically, the last block 

must also be extended to match the cipher's block length using a suitable padding 

scheme. A mode of operation describes the process of encrypting each of these 

blocks, and generally uses randomization based on an additional input value, often 

called an initialization vector, to allow doing so safely. 

 

This research explored the different cryptographic modes of operation which are 

approved by National Institute of Standards & Technology (NIST) that would enable 

an insertion of the cryptography into the embedded system, specifically on a 

MicroBlaze development environment and analyze time taken on operations with 

mb-gprof profiler tool, made a comparison between each modes of operation with 

regard to error properties and computational complexity. 

 

1.2 Literature Overview 

 

In 2001, the NIST selected Rijndael as the replacement for DES (FIPS 197). 

Flemish for XYZ and pronounced “rain-doll,” Rijndael is an interesting cipher, since 

it works in a completely different way from the previous ciphers. The algorithm is in 

some ways similar to shuffling and cutting a deck of cards. The interstate is laid out 

in a square, and the rows and columns are shifted, mixed, and added in various ways. 

The entries themselves are also substituted and altered. It has a lot of parallel and 

symmetric structure because of the mathematics, which provides a lot of flexibility in 

how it is implemented. However, some have criticized it as having too much 

structure, which may lead to future attacks. Apparently that didn’t bother the NSA 

(National Security Agency) or the NIST. No known cryptographic attacks are 

known, and it works well on a wide variety of processors, doesn’t use bit shifting or 

rotation, and is very fast (Galbreath, 2002).  
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A block cipher mode is an algorithm that features the use of a symmetric key 

block cipher algorithm to provide an information service, such as confidentiality or 

authentication. Currently, NIST has approved nine modes of the approved block 

ciphers in a series of special publications and there are six confidentiality modes 

(ECB, CBC, OFB, CFB, CTR, and XTS-AES), one authentication mode (CMAC), 

and two combined modes for confidentiality and authentication (CCM and GCM). 

 

There are numerous studies implementing AES algorithm in FPGA and/or PC as 

crypto processor but with the lake of all modes of operation support.  

 

A reconfigurable processor implementation is proposed by Yongzhi Fu, Lin Hao 

and Xuejie Zhang. This study is about the implementation of a counter mode AES 

based on the Xilinx Virtex2 FPGA platform whose difference is using a switch 

between MixColumns operation and AddRoundKey operation (Fu, Hao & Zhang, 

2005). 

 

In another study by Alireza Hodjat, David D. Hwang, Bocheng Lai, Kris Tiri and 

Ingrid Verbauwhede (Hodjat & Verbauwhede, 2006) an AES crypto processor, 

which can handle non feedback counter mode of operation is presented. It is reported 

that this implementation can achieve a throughput of 3.84 Gbps at a 330 MHz clock 

frequency. For the implementation of the non-feedback modes of the operation the 

design has a non-pipelined structure. The area efficient AES architecture with 

throughput rate of over 30 Gbits/s is used in the counter mode of operation for the 

encryption of data streams in optical networks. 

 

In another study by Melek Dirayet Başkök (Başkök, 2007), a modeling of AES 

algorithm, which operates in CBC and ECB modes and gives permission to the use 

of file and text based encryption and decryption, has been implemented. In this 

modeling, C++ was chosen as the programming language and implementation is 

realized on PC. 
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In another study by R. W. Ward, Dr. T. C. A. Molteno (Ward & Molteno, 2002), a 

microcontroller with a CPLD to perform Rijndael encryption and decryption using 

the CPLD as a coprocessor for the microcontroller is used. This configuration gives 

improved throughput/power characteristics over using a microcontroller alone. 

Microcontrollers and CPLDs are both relatively low power devices, so such an 

arrangement could be used for encryption and decryption in an embedded device 

where power consumption is an issue. Such a device is likely to be used in an 

environment where some information is lost in transmission; in this study only non-

feedback mode (ECB (Dworkin, 2001)) for encryption is considered. 

 

This thesis is distinguished from others mentioned above in two ways. First, by 

studying and implementing all the NIST approved modes of operations using AES 

algorithm. Second it is generated on a soft processor core, MicroBlaze and “C” is 

chosen as the programming language so that the algorithm related application 

segment is portable to any embedded platform. The main concern of this study is to 

compare and to determine the most efficient mode of operation in terms of 

efficiency, computational complexity and timing. 

 

1.3 Thesis Outline 

 

This thesis is presented in six chapters. In chapter one, an introduction to the 

cryptography and soft processor cores, a literature investigation and studies about 

embedded cryptography together the differences with this thesis is presented. In 

chapter two theoretical aspects of soft processor core, MicroBlaze is given with 

information about Xilinx development tools; Integrated Software Environment (ISE) 

and Embedded Development Kit (EDK). In chapter three AES algorithm is 

investigated in detail. In chapter four approved modes of operation by NIST are 

analyzed. In chapter five implementation and experimental results are illustrated. In 

chapter six conclusion and future work is discussed. 
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CHAPTER TWO 

TECHNOLOGY BACKGROUND & ENVIRONMENT 

 

2.1 Integrated Circuits  

 

2.1.1 System on Chip (SoC) 

 

System on Chip (SoC) refers to devices where all essential parts of a computing 

system have been integrated in a single circuit. A typical SoC includes one (or many) 

processor core(s), an arbitrary number of peripherals, some on-chip memory and a 

bus architecture which interconnects all these devices. The SoC design goal is that 

only one circuit should required for an application. In practice a SoC may also 

contain a large set of I/O interfaces to other circuits, for example memory modules, 

off-chip peripherals, radio transceivers, network interfaces.  

 

As SoCs usually are designed with a limited set of applications in mind, they tend 

to need less processing power than a general purpose computer. While a modern 

work-station operates at clock frequencies in the range of 500 MHz – 3 GHz, the 

SoC CPU might operate at just a few megahertz. An ideal SoC processor core is 

operating at the minimum clock frequency needed to properly perform the desired 

task. By utilizing a low clock frequency the power consumption and chip 

temperature is reduced. This allows SoCs to operate with less cooling devices and 

better battery/power utilization (Magnusson, 2004). 

 

2.1.2 Application Specific Integration Circuit (ASIC) 

 

ASIC is one of the most common chip types. An ASIC may implement simple 

designs as well as large designs such SoCs. An ASIC is designed for a specific 

application therefore it can be customized for reduces power dissipation, less chip 

area or greater clock frequencies. Normally ASICs have low mass production costs 

but non-recurring engineering (NRE) cost of ASICs is high. 
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2.1.3 Field Programmable Gate Array (FPGA) 

 

FPGA is a type of programmable logic devices. FPGA is a generic architecture 

consisting of configurable logic blocks and programmable interconnections. Several 

FPGAs contain enough logic to implement SoCs and other large designs. FPGAs are 

not optimized for a specific application; therefore they may consume more power or 

implement a design less efficient than an ASIC. Price per chip is high however it is 

easy to reprogram, which shortens design cycles and allows early real world tests. 

This makes FPGAs well suited for prototypes and small production volumes. FPGAs 

may also be used for applications which are not of ASIC production quality such as 

first generation of manufacturing where standards and specifications are subject to 

change. 

 

2.2 Processor Cores 

 

A processor core refers to a processor excluding any peripherals it is used with. A 

traditional processor core resides in a dedicated processor chip. In SoC designs, one 

or more processor cores are integrated with peripherals on a single chip. 

 

2.2.1 Soft, Firm and Hard Cores 

 

The terms soft, firm and hard cores are originally ASIC manufacturing related 

words: 

- “Soft Core“ refers to cores delivered as a technology dependent gate-level 

netlist or Hardware Description Language (HDL) source code. 

- “Firm Core” refers to cores delivered as a library element. 

- “Hard Core” refers to cores which has a fixed physical layout and is 

incorporated into the design as a standard cell. 

 

Firm and hard cores mainly apply to ASIC design. Soft cores are commonly used 

with programmable logic as well. 
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2.2.2 Instruction Set Architecture 

 

An Instruction Set Architecture is a definition of how processor should perform an 

instruction. An instruction is a very short and basic command to the processor. 

Reduced Instruction Set Computer (RISC) refers to instruction set architectures with 

all or most of the following properties: 

- Rapid execution of a small instruction set with simple instructions 

- Uniform instruction length 

- All processor registers are general purpose 

- Simple addressing modes 

RISC architectures are commonly used in microcontrollers and SoC cores. 

 

2.2.3 Soft Processors 

 

A soft processor is a “soft core” processor fully described in software, 

usually in an HDL, which can be synthesized in programmable hardware, 

such as FPGAs. A soft-core processor targeting FPGAs is flexible because its 

parameters can be changed at any time by reprogramming the device. 

Traditionally, systems have been built using general-purpose processors 

implemented as Application Specific Integrated Circuits (ASIC), placed on 

printed circuit boards that may have included FPGAs if flexible user logic 

was required. Using soft-core processors, such systems can be integrated on a 

single FPGA chip, assuming that the soft-core processor provides adequate 

performance. Recently, two commercial soft-core processors have become 

available: Nios (Altera Corporation, 2004) from Altera Corporation and 

MicroBlaze (Xilinx Inc., 2008) from Xilinx Inc. Soft processors have recently 

gained a lot of popularity that appears to be especially strong among FPGA 

developers. Reasons of this include: 

- Performance increases (soft cores utilizes FPGA/ASICs better) 

- Increased performance/price ratio on FPGAs 

- Increased availability of both commercial and academic cores, as 

well as open cores. 
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2.3 Xilinx Development Tools 

 

2.3.1 Integrated Software Environment (ISE) 

 

ISE controls all aspects of the design flow. Through the Project Navigator 

interface, all of the design entry and design implementation tools can be accessed. 

The files and documents associated with the projects can also be accessed. Xilinx 

ISE (Xilinx Inc., 2008) is a software tool for synthesis and analysis of HDL designs, 

which enables the developer to synthesize ("compile") their designs, perform timing 

analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, 

and configure the target device with the programmer. 

 

2.3.2 Embedded Development Kit (EDK) 

 

EDK is the development package for building MicroBlaze (and PowerPC) 

embedded processor systems in Xilinx FPGAs. Hosted in the Eclipse IDE, the 

project manager consists of two separate environments: XPS and SDK. 

 

Designers use XPS (Xilinx Platform Studio) to configure and build the hardware 

specification of their embedded system (processor core, memory-controller, I/O 

peripherals, etc.) The XPS converts the designer's platform specification into a 

synthesizable RTL description (Verilog or VHDL), and writes a set of scripts to 

automate the implementation of the embedded system (from RTL to the bit stream-

file.) For the MicroBlaze core, the EDK normally generates an encrypted (non 

human-readable) netlist, but the processor description (written in VHDL) can be 

purchased from Xilinx. 

 

The Board Support Package (BSP) is a collection of files that defines the 

hardware elements of your system for each processor. The BSP contains the various 

embedded software elements, such as software driver files, selected libraries, 

standard I/O devices, interrupt handler routines, and other related features. 

Consequently, it is easiest to have SDK generate the BSP after the hardware system 

is populated with its processors and peripherals and after the address map is defined.  
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As with the hardware assembly, SDK allows you to specify all aspects of software 

platform and manage software applications. The SDK handles the software that will 

execute on the embedded system. Powered by the GNU toolchain (GNU Compiler 

Collection, GNU Debugger), the SDK enables programmers to write, compile, and 

debug C/C++ applications for their embedded system. Xilinx includes a cycle-

accurate instruction set simulator (ISS), giving programmers the choice of testing 

their software in simulation, or using a suitable FPGA-board to download and 

execute on the actual system (Xilinx Inc., 2008). 

 

The tools described in section 2.3.1 and 2.3.2 expedites the design process as in 

Figure 2.1 which shows the simplified flow for an embedded design. 

 

 
  Figure 2.1 Basic Embedded Design Process Flow (Xilinx Inc., 2008) 

 

2.4 The Target System Xilinx MicroBlaze Development Kit Spartan3E 1600E 

 

The target system is a MicroBlaze Development Kit Spartan3E 1600E 

development board which is a SoC board from Xilinx. It consists of many different 

peripherals such as memory controllers, general purpose I/O (GPIO) and bus 

interfaces making it a fitting system in different areas. The MicroBlaze Development 

Kit board highlights the unique features of the Spartan-3E FPGA family and 
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provides a convenient development board for embedded processing applications. The 

board highlights these features (Xilinx Inc., 2007):  

- Spartan-3E specific features 

- Parallel NOR Flash configuration 

- MultiBoot FPGA configuration from Parallel NOR Flash PROM 

- SPI serial Flash configuration  

- Embedded development 

- MicroBlaze 32-bit embedded RISC processor 

- PicoBlaze 8-bit embedded controller 

- DDR memory interfaces 

- 10-100 Ethernet 

- UART 

The Spartan3E 1600E has support for two processors; a Xilinx’s own soft 

processor core MicroBlaze RISC processor and a PicoBlaze 8-bit embedded 

controller. Spartan3E 1600E is no longer available for purchase from Xilinx as of 

December 2010. 

 

2.4.1 Xilinx MicroBlaze Architecture 

 

The soft-core processor used for this project is Microblaze (Parnell & Bryner, 

2004). The MicroBlaze embedded processor soft core is a reduced instruction set 

computer (RISC), 5 stage pipeline, optimized for implementation in Xilinx field 

programmable gate arrays (FPGAs). Figure 2.2 shows a functional block diagram of 

the MicroBlaze core. MicroBlaze uses a big-endian numeric presentation meaning 

the most significant byte is assigned the lowest byte address. Many aspects of the 

MicroBlaze can be configured at compile time owing to the configurable nature of 

FPGAs. Cache structure, peripherals, and interfaces can be customized to the 

application. In addition, hardware support for certain operations, such as 

multiplication, division, and floating-point arithmetic, can be added or removed 

(Barma, 2007). 
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Figure 2.2 MicroBlaze (v7.0d) Core Block Diagram (Xilinx Inc., 2008) 

 

DPLB: Data interface, Processor LocalBus. 

DOPB: Data interface, On-chip Peripheral Bus 

DLMB: Data interface, Local Memory Bus (BRAM only) 

IPLB: Instruction interface, Processor Local Bus 

IOPB: Instruction interface, On-chip Peripheral Bus 

ILMB: Instruction interface, Local Memory Bus (BRAM only) 

MFSL 0...15: FSL master interfaces 

DWFSL 0...15: FSL master direct connection interfaces 

SFSL 0...15: FSL slave interfaces 

DRFSL 0...15: FSL slave direct connection interfaces 

IXCL: Instruction side Xilinx CacheLink interface (FSL master/slave pair) 

DXCL: Data side Xilinx CacheLink interface (FSL master/slave pair) 

Core: Miscellaneous signals for clock, reset, debug, and trace. 

 

General purpose registers, special purpose registers, a 32-bit address bus and a 

pipeline are all features that are fixed on MicroBlaze. The list below consists of some 

additional features that can be added to the MicroBlaze (Xilinx Inc., 2008): 
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- Hardware barrel shifter: A digital circuit that can shift data any number of 

bits in one operation. A vital component in floating point operations  

- Hardware divider: Divide by zero hardware exception can only be 

enabled if the processor is configured with a hardware divider. 

- Instruction and data cache: Consists of both an instruction and a data 

cache.  

- On-chip peripheral bus (OPB) 

- Processor Local Bus (PLB) 

- Local memory bus (LMB) 

- Fast Simplex Link (FSL) 

- Xilinx CacheLink 

 

2.4.1.1 Registers 

 
MicroBlaze provides two kinds of registers, general purpose registers and special 

purpose registers. 

 

General purpose registers; there are 32 general purpose registers divided into three 

categories. Volatile, non-volatile and dedicated (Xilinx Inc., 2008). 

- Volatile registers (caller-save) are temporary registers and do not retain 

their values across function calls. Volatile registers are registers R3-R12, 

R3 and R4 are used for returning values to the caller function. R5-R12 are 

used to pass parameters. 

- Non-volatile registers keep their values across function calls (callee-save). 

Non-volatile register are registers R19-R31. 

- Dedicated registers are the other registers. Registers R14-R17 are used to 

store return addresses from interrupts, sub-routines, traps and exceptions. 

R0 is always value 0 and R1 is used to store the stack pointer. These 

register should not be used for anything else. 

 

Special purpose registers; there are five special purpose registers (Xilinx Inc., 

2008). 
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- Program counters (PC) – A read-only register containing the address of 

the executing instruction. 

- Machine Status register (MSR) – The MSR register holds control and 

status bits for the processor. In the MSR it is possible to enable/disable 

interrupts, exceptions and data and instruction cache. It also contains bits 

for errors such as division by zero and FSL errors. 

- Exception Address Register (EAR) – Stores the full address that caused 

the exception. 

- Exception Status Register (ESR) – Contains exception status bits for the 

processor. 

- Branch Target Register (BTR) – It only exists if the MicroBlaze processor 

is configured to use exceptions. The register stores the branch target 

address for all delay slot branch instructions. 

- Floating Point Status Register (FSR) – Contains status bits for the floating 

point unit. 

- Exception Data Register (EDR) – It stores data read on an FSL link that 

caused an FSL exception. 

- Process Identifier Register (PIR) – It is used to uniquely identify a 

software process during MMU address translation. It is controlled by the 

C_USE_MMU configuration option on MicroBlaze.  

- Zone Protection Register (ZPR) – It is used to override MMU memory 

protection defined in Translation Look-Aside Buffer entries. 

- Translation Look-Aside Registers – It is used to access MMU Unified 

Translation Look-Aside Buffer (UTLB) entries. 

- Translation Look-Aside Buffer Search Index Register – It is used to 

search for a virtual page number in the Unified Translation Look-Aside 

Buffer. 

- Processor Version Register – It is controlled by the C_PVR configuration 

option on MicroBlaze and used to detect processor version. 
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2.4.1.2 Bus Interfaces 

 

MicroBlaze is implemented with Harvard memory architecture; instruction and 

data accesses are done in separate address spaces. Each address space has a 32-bit 

range (that is, handles up to 4-GB of instructions and data memory respectively). The 

instruction and data memory ranges can be made to overlap by mapping them both to 

the same physical memory. The latter is useful for software debugging (Xilinx Inc., 

2008). 

 

Both instruction and data interfaces of MicroBlaze are 32 bits wide and use big 

endian, bit-reversed format. MicroBlaze supports word, halfword, and byte accesses 

to data memory. 

 

MicroBlaze does not separate data accesses to I/O and memory (it uses memory 

mapped I/O). The processor has up to three interfaces for memory accesses: 

- Local Memory Bus (LMB) 

- Processor Local Bus (PLB) or On-Chip Peripheral Bus (OPB) 

- Xilinx CacheLink (XCL) 

 

The LMB memory address range must not overlap with PLB, OPB or XCL 

ranges. 

 

2.4.1.2.1 Local Memory Bus (LMB) The LMB is a synchronous bus used 

primarily to access on-chip block RAM. It uses a minimum number of control 

signals and a simple protocol to ensure that local block RAM are accessed in a single 

clock cycle. All LMB signals are active high (Xilinx Inc., 2008). 

 

2.4.1.2.2 Processor Local Bus (PLB) The PLB is one element of the IBM 

CoreConnect architecture, and is a high-performance synchronous bus designed for 

connection of processors to high-performance peripheral devices. The PLB includes 

the following features (from 64-bit Processor Local Bus, Architecture 

Specifications): 
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- Overlapping of read and write transfers allow two data transfers per clock 

cycle for maximum bus utilization. 

- Decoupled address and data buses support split-bus transaction capability 

for improved bandwidth. 

- Address pipelining reduces overall bus latency by allowing the latency 

associated with a new request to be overlapped with an ongoing data 

transfer in the same direction. 

- Late master request abort capability reduces latency associated with 

aborted requests. 

- Hidden (overlapped) bus request/grant protocol reduces arbitration 

latency. 

- Bus architecture supports sixteen masters and any number of slave 

devices. 

- Four levels of request priority for each master allow PLB 

implementations with various arbitration schemes. 

- Bus arbitration-locking mechanism allows for master-driven atomic 

operations. 

- Support for 16-, 32-, and 64-byte line data transfers. 

- Read word address capability allows slave devices to fetch line data in 

any order (that is, target word-first or sequential). 

- Sequential burst protocol allows byte, halfword, and word burst data 

transfers in either direction. 

- Guarded and unguarded memory transfers allow a slave device to enable 

or disable the pre-fetching of instructions or data. 

 

The PLB is a full-featured bus architecture with many features that increase bus 

performance. Most of these features map well to the FPGA architecture, however, 

some can result in the inefficient use of FPGA resources or can lower system clock 

rates (Xilinx Inc., 2005). 

 

2.4.1.2.3 On-Chip Peripheral Bus (OPB) The OPB is one element of the IBM 

CoreConnect architecture, and is a general-purpose synchronous bus designed for 

17 



 

 

 

 

easy connection of on-chip peripheral devices. The OPB includes the following 

features: 

- 32-bit or 64-bit data bus 

- Up to 64-bit address 

- Supports 8-bit, 16-bit, 32-bit, and 64-bit slaves 

- Supports 32-bit and 64-bit masters 

- Dynamic bus sizing with byte, halfword, fullword, and doubleword 

transfers 

- Optional Byte Enable support 

- Distributed multiplexer bus instead of 3-state drivers 

- Single cycle transfers between OPB master and OPB slaves (not 

including arbitration) 

- Support for sequential address protocol 

- 16-cycle bus time-out (provided by arbiter) 

- Slave time-out suppress capability 

- Support for multiple OPB bus masters 

- Support for bus parking 

- Support for bus locking 

- Support for slave-requested retry 

- Bus arbitration overlapped with last cycle of bus transfers 

 

The OPB is a full-featured bus architecture with many features that increase bus 

performance. However, some features can result in the inefficient use of FPGA 

resources or can lower system clock rates. Consequently, Xilinx uses an efficient 

subset of the OPB for Xilinx-developed OPB devices (Xilinx Inc., 2005). 

 

2.4.1.2.4 Xilinx Cache Link (XCL) Xilinx CacheLink (XCL) is a high performance 

solution for external memory accesses. The MicroBlaze CacheLink interface is 

designed to connect directly to a memory controller with integrated FSL (Fast 

Simplex Link bus provides a point-to-point communication channel between an 
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output FIFO and an input FIFO) buffers , for example, the MPMC. This method has 

the lowest latency and minimal number of instantiations. 

 

 
  Figure 2.3 CacheLink Connections with Integrated FSL Buffers (Xilinx Inc., 2008) 

 

The interface is only available on MicroBlaze when caches are enabled. It is legal 

to use a CacheLink cache on the instruction side or the data side without caching the 

other.  

 

How memory locations are accessed depend on the parameter 

C_ICACHE_ALWAYS_USED for the instruction cache and the parameter 

C_DCACHE_ALWAYS_USED for the data cache. If the parameter is 1, the cached 

memory range is always accessed via the CacheLink. If the parameter is 0, the 

cached memory range is accessed over PLB or OPB whenever the caches are 

software disabled (that is, MSR[DCE]=0 or MSR[ICE]=0). 

 

Memory locations outside the cacheable range are accessed over PLB, OPB or 

LMB (Xilinx Inc., 2008). 

 

2.4.1.2.5 Fast Simplex Link (FSL) MicroBlaze can be configured with up to 16 

Fast Simplex Link (FSL) interfaces, each consisting of one input and one output port. 

The FSL channels are dedicated uni-directional point-to-point data streaming 

interfaces. The FSL interfaces on MicroBlaze are 32 bits wide. A separate bit 

indicates whether the sent/received word is of control or data type. Each FSL 

provides a low latency dedicated interface to the processor pipeline. Thus they are 

ideal for extending the processors execution unit with custom hardware accelerators 

(Xilinx Inc., 2008).  

  

 

19 



 

 

 

 

CHAPTER THREE 

ADVANCED ENCRYPTION STANDARD (AES) 

 

Cryptographic techniques are typically divided into two generic types: symmetric-

key and public-key. Symmetric algorithms, sometimes called conventional 

algorithms, are algorithms where the encryption key can be calculated from the 

decryption key and vice versa. In most symmetric algorithms, the encryption key and 

the decryption key are the same. These algorithms, also called secret-key algorithms, 

single-key algorithms, or one-key algorithms, require that the sender and receiver 

agree on a key before they can communicate securely. The security of a symmetric 

algorithm rests in the key; divulging the key means that anyone could encrypt and 

decrypt messages. As long as the communication needs to remain secret, the key 

must remain secret. 

 

Symmetric algorithms can be divided into two categories. Some operate on the 

plaintext a single bit (or sometimes byte) at a time; these are called stream algorithms 

or stream ciphers. Others operate on the plaintext in groups of bits. The groups of 

bits are called blocks, and the algorithms are called block algorithms or block 

ciphers. A block cipher is an encryption scheme which breaks up the plaintext 

messages to be transmitted into strings (called blocks) of a fixed length and encrypts 

one block at a time (Schneier, 1996).  

 

Not all the primitives (tools) are explained by looking at Figure 1.1, instead the 

ones that AES depends on are explained in this thesis.  

 

3.1 The Origins of AES 

 

The most widely used encryption scheme is based on the Data Encryption 

Standard (DES) adopted in 1977 by the National Bureau of Standards, now the 

National Institute of Standards and Technology (NIST), as Federal Information 

Processing Standard 46 (NIST, 1999). For DES, data are encrypted in 64 bit blocks 
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using a 56 bit key. The algorithm transforms 64-bit input in a series of steps into a 

64-bit output. The same steps, with the same key, are used to reverse the encryption. 

 

In 1999, NIST issued a new version of its DES standard that indicated that DES 

should only be used for legacy systems and that triple DES (3DES) (NIST, 2008) be 

used instead. 3DES has two attractions that assure its widespread use over the next 

few years. First, with its 168-bit key length, it overcomes the vulnerability to brute-

force attack of DES. Second, the underlying encryption algorithm in 3DES is the 

same as in DES. If security were the only consideration, then 3DES would be an 

appropriate choice for a standardized encryption algorithm for decades to come. 

 

The principal drawback of 3DES is that the algorithm is relatively sluggish in 

software. The original DES was designed for mid-1970s hardware implementation 

and does not produce efficient software code. 3DES, which has three times as many 

rounds as DES, is correspondingly slower. A secondary drawback is that both DES 

and 3DES use a 64-bit block size. For reasons of both efficiency and security, a 

larger block size is desirable. 

 

Because of these drawbacks, 3DES is not a reasonable candidate for long-term 

use. As a replacement, NIST in 1997 issued a call for proposals for a new Advanced 

Encryption Standard (AES), which should have security strength equal to or better 

than 3DES and significantly, improved efficiency. In addition to these general 

requirements, NIST specified that AES must be a symmetric block cipher with a 

block length of 128 bits and support for key lengths of 128, 192, and 256 bits. 

 

In a first round of evaluation, 15 proposed algorithms were accepted. A second 

round narrowed the field to 5 algorithms. NIST completed its evaluation process and 

published a final standard in November of 2001. NIST selected Rijndael as the 

proposed AES algorithm. The two researchers who developed and submitted 

Rijndael for the AES are both cryptographers from Belgium: Dr. Joan Daemen and 

Dr. Vincent Rijmen (Stallings, 2005).  
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3.2 Notations and Mathematical Preliminaries 

 

The following parts are mainly derived from (NIST, 2001), (Galbreath, 2002) and 

(Zabala, 2004). Parts contain the conventions, mathematical preliminaries and 

overall architecture AES uses. 

 

3.2.1 Inputs and Outputs 

 

The input and output for the AES algorithm each consist of sequences of 128 bits 

(digits with values of 0 or 1). These sequences will sometimes be referred to as 

blocks and the number of bits they contain will be referred to as their length. The 

Cipher Key for the AES algorithm is a sequence of 128, 192 or 256 bits. Other input, 

output and Cipher Key lengths are not permitted by this standard. 

 

The bits within such sequences will be numbered starting at zero and ending at 

one less than the sequence length (block length or key length). The number “i” 

attached to a bit is known as its index and will be in one of the ranges 0 ≤  i < 128, 0 

≤  i < 192 or 0 ≤ i < 256 depending on the block length and key length (specified 

above). 

 

3.2.2 Bytes 

 

The basic unit for processing in the AES algorithm is a byte, a sequence of eight 

bits treated as a single entity. The input, output and Cipher Key bit sequences 

described in Sec. 3.2.1 are processed as arrays of bytes that are formed by dividing 

these sequences into groups of eight contiguous bits to form arrays of bytes (see Sec. 

3.2.3). For an input, output or Cipher Key denoted by a, the bytes in the resulting 

array will be referenced using one of the two forms, an or a[n], where n will be in 

one of the following ranges: 

Key length = 128 bits, 0 ≤ n < 16;  Block length = 128 bits, 0 ≤ n < 16; 

Key length = 192 bits, 0 ≤ n < 24; 

Key length = 256 bits, 0 ≤ n < 32. 
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All byte values in the AES algorithm will be presented as the concatenation of its 

individual bit values (0 or 1) between braces in the order {b7, b6, b5, b4, b3, b2, b1, 

b0}. These bytes are interpreted as finite field elements using a polynomial 

representation: 

7
7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
0

i

i

i

b x b x b x b x b x b x b x b x b x
=

+ + + + + + + =∑    Eq 3.1 

 
For example, {01100011} identifies the specific finite field 

element 6 5 1x x x+ + + . Some finite field operations involve one additional bit (b8) to 

the left of an 8-bit byte. Where this extra bit is present, it will appear as ‘{01}’ 

immediately preceding the 8-bit byte; for example, a 9-bit sequence will be presented 

as {01} {1b}. 

 

3.2.3 The State 

 

Internally, the AES algorithm’s operations are performed on a two-dimensional 

array of bytes called the State. The State consists of four rows of bytes, each 

containing Nb bytes, where Nb is the block length divided by 32.  

 

In the State array denoted by the symbol s, each individual byte has two indices, 

with its row number r in the range 0 ≤ r < 4 and its column number c in the range 0 ≤ 

c < Nb. This allows an individual byte of the State to be referred to as either sr,c or 

s[r,c]. For this standard, Nb=4, i.e., 0 ≤ c < 4. 

 

At the start of the Cipher and Inverse Cipher described in Sec. 5, the input – the 

array of bytes in0, in1 … in15 – is copied into the State array as illustrated in Figure 

3.1. The Cipher or Inverse Cipher operations are then conducted on this State array, 

after which its final value is copied to the output – the array of bytes out0, out1 … 

out15. 
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   Figure 3.1 State array input & output. 

 

So at the beginning of the Cipher or Inverse Cipher, the input array, in, is copied 

to the State array according to the scheme: 

s[r, c] = in[r + 4c] for 0 ≤ r < 4 and 0 ≤ c < Nb,  Eq3.2 

 

and at the end of the Cipher and Inverse Cipher, the State is copied to the output 

array out as follows: 

out[r + 4c] = s[r, c] for 0 ≤ r < 4 and 0 ≤ c < Nb.  Eq3.3 

 

3.2.3.1 The State as an Array of Columns 

 

The four bytes in each column of the State array form 32-bit words, where the row 

number r provides an index for the four bytes within each word. The state can hence 

be interpreted as a one-dimensional array of 32 bit words (columns), w0...w3, where 

the column number c provides an index into this array. For the example in Figure 

3.3, the State can be considered as an array of four words, as follows: 

0 0,0 1,0 2,0 3,0w s s s s= + + +   1 0,1 1,1 2,1 3,1w s s s s= + + +   Eq3.4 

2 0,2 1,2 2,2 3,2w s s s s= + + +  3 0,3 1,3 2,3 3,3w s s s s= + + +   Eq3.5 

 

3.2.4. Mathematical Preliminaries 

 

All bytes in the AES algorithm are interpreted as finite field elements using the 

notation introduced in Sec. 3.2.2 Finite field elements can be added and multiplied, 

24 



 

 

 

 

but these operations are different from those used for numbers. The following 

subsections introduce the basic mathematical concepts. 

 

3.2.4.1 Addition 

 

The addition of two elements in a finite field is achieved by “adding” the 

coefficients for the corresponding powers in the polynomials for the two elements. 

The addition is performed with the XOR operation (denoted by ⊕ ) - i.e., modulo 2 - 

so that    1 ⊕ 1 = 0, 1 ⊕ 0 = 1, and 0 ⊕ 0 = 0. Consequently, subtraction of 

polynomials is identical to addition of polynomials. Alternatively, addition of finite 

field elements can be described as the modulo 2 addition of corresponding bits in the 

byte. For two bytes { 7 6 5 4 3 2 1 0a a a a a a a a } + { 7 6 5 4 3 2 1 0b b b b b b b b } = { 7 6 5 4 3 2 1 0c c c c c c c c }, 

where each i i ic a b= ⊕  (i.e, 7 7 7 6 6 6 0 0 0, ,...c a b c a b c a b= ⊕ = ⊕ = ⊕ ). For example, the 

following expressions are equivalent to one another: 

 

( 6 4 2 1x x x x+ + + + ) + ( 7 1x x+ + ) = 7 6 4 2
x x x x+ + +        (polynomial notation); 

{01010111} ⊕  {10000011} = {11010100}           (binary notation); 

{57} ⊕  {83} = {d4}                        (hexadecimal notation). 

 

3.2.4.2 Multiplication 

 

In the polynomial representation, multiplication in GF (28) (denoted by ●) 

corresponds with the multiplication of polynomials modulo an irreducible 

polynomial of degree 8. A polynomial is irreducible if its only divisors are one and 

itself. For the AES algorithm, this irreducible polynomial is 

8 4 3( ) 1m x x x x x= + + + + or {01}{1b} in hexadecimal notation. 

 

For example, {57} ● {83} = {c1}, because the resultant polynomial is modulo of 

m(x) and appears as: 7 6 1x x+ + . 
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The modular reduction by m(x) ensures that the result will be a binary polynomial 

of degree less than 8, and thus can be represented by a byte. Unlike addition, there is 

no simple operation at the byte level that corresponds to this multiplication. 

 

3.2.4.2.1 Multiplication by x Multiplying the binary polynomial defined in 

equation (3.1) with the polynomial x results in 

 

8 7 6 5 4 3 2 1
7 6 5 4 3 2 1 0b x b x b x b x b x b x b x b x+ + + + + + +           Eq3.6 

 

The result x ● b(x) is obtained by reducing the above result modulo m(x), 

irreducible polynomial. If  b7 = 0, the result is already in reduced form. If b7 = 1, the 

reduction is accomplished by subtracting (i.e., XORing) the polynomial m(x). It 

follows that multiplication by x (i.e., {00000010} or {02}) can be implemented at the 

byte level as a left shift and a subsequent conditional bitwise XOR with {1b}. This 

operation on bytes is denoted by xtime(). Multiplication by higher powers of x can be 

implemented by repeated application of xtime(). By adding intermediate results, 

multiplication by any constant can be implemented. 

 

For example, {57} ● {13} = {fe} because 

{57} ● {02} = xtime({57}) = {ae} 

{57} ● {04} = xtime({ae}) = {47} 

{57} ● {08} = xtime({47}) = {8e} 

{57} ● {10} = xtime({8e}) = {07}, 

thus, 

 {57} ● {13} = {57} ● ({01} ⊕  {02} ⊕  {10}) 

                                = {57} ⊕  {ae} ⊕  {07} 

                        = {fe}. 
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3.2.4.3 Polynomials with Coefficients in GF (2
8
) 

 

Four-term polynomials can be defined - with coefficients that are finite field 

elements - as: 

3 2 1 0
3 2 1 0( )a x a x a x a x a x= + + +                                               Eq3.7 

which will be denoted as a word in the form [a0, a1, a2, a3]. Note that the polynomials 

in this section behave somewhat different than the polynomials used in the definition 

of finite field elements, even though both types of polynomials use the same 

indeterminate, x. The coefficients in this section are themselves finite field elements, 

i.e., bytes, instead of bits; also, the multiplication of four-term polynomials uses a 

different reduction polynomial, defined below. The distinction should always be 

clear from the context. 

 

To illustrate the addition and multiplication operations, let 

3 2 1 0
3 2 1 0( )b x b x b x b x b x= + + +            Eq3.8   

define a second four-term polynomial. Addition is performed by adding the finite 

field coefficients of like powers of x. This addition corresponds to an XOR operation 

between the corresponding bytes in each of the words – in other words, the XOR of 

the complete word values. 

 

Multiplication is achieved in two steps. In the first step, the polynomial product 

c(x) = a(x) ● b(x) is algebraically expanded, and like powers is collected to give: 

6 5 4 3 2
6 5 4 3 2 1 0( ) ( ) ( )c x a x b x c x c x c x c x c x c x c= + = + + + + + +          Eq3.9  

The result, c(x), does not represent a four-byte word. Therefore, the second step of 

the multiplication is to reduce c(x) modulo a polynomial of degree 4; the result can 

be reduced to a polynomial of degree less than 4. For the AES algorithm, this is 

accomplished with the polynomial x4
 + 1, so that 

4 mod(4)mod( 1)i i
x x x+ =            Eq3.10 
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3.3 Algorithm Specification 

 

For the AES algorithm, the length of the input block, the output block and the 

State is 128 bits. This is represented by Nb = 4, which reflects the number of 32-bit 

words (number of columns) in the State. 

 

For the AES algorithm, the length of the Cipher Key, K, is 128, 192, or 256 bits. 

The key length is represented by Nk = 4, 6, or 8, which reflects the number of 32-bit 

words (number of columns) in the Cipher Key. 

 

For the AES algorithm, the number of rounds to be performed during the 

execution of the algorithm is dependent on the key size. The number of rounds is 

represented by Nr, where Nr =10 when Nk = 4, Nr = 12 when Nk = 6, and Nr = 14 

when Nk = 8. 

 

The only Key-Block-Round combinations that conform to this standard are given 

in Table 3.1.  

 Table 3.1 AES Parameters 

Key Size (Words/Bytes/Bits) 4/16/128 6/24/192 8/32/256 

Plaintext Block Size (Words/Bytes/Bits) 4/16/128 4/16/128 4/16/128 

Number of Rounds 10 12 14 

Round Key Size (Words/Bytes/Bits) 4/16/128 4/16/128 4/16/128 

Expanded Key Size (Words/Bytes) 44/176 52/208 60/240 

 

Figure 3.2 shows the overall structure of AES. The input to the encryption and 

decryption algorithms is a single 128-bit block. In (NIST, 2001), this block is 

depicted as a square matrix of bytes. This block is copied into the State array, which 

is modified at each stage of encryption or decryption. After the final stage, State is 

copied to an output matrix. These operations are depicted in Figure 3.2 (a). 
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Similarly, the 128-bit key is depicted as a square matrix of bytes. This key is then 

expanded into an array of key schedule words; each word is four bytes and the total 

key schedule is 44 words for the 128-bit key (Figure 3.2 (b)). Note that the ordering 

of bytes within a matrix is by column. 

 

So, for example, the first four bytes of a 128-bit plaintext input to the encryption 

cipher occupy the first column of the in matrix, the second four bytes occupy the 

second column, and so on. Similarly, the first four bytes of the expanded key, which 

form a word, occupy the first column of the w matrix. 
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Figure 3.2 AES Encryption (a) and Decryption (b), Overall Structure (Stallings, 2005) 

 

For both its Cipher (Encryption) and Inverse Cipher (Decryption), the AES 

algorithm uses a round function that is composed of four different byte-oriented 

transformations:  

1. Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the 

block. 

2. ShiftRows: A simple permutation. 
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3. MixColumns: A substitution that makes use of arithmetic over GF (28). 

4. AddRoundKey: A simple bitwise XOR of the current block with a portion of 

the expanded key. 

 

3.3.1 The Cipher (Encryption) 

 

At the start of the Cipher, the input is copied to the State array using the 

conventions described in Section 3.2. After an initial Round Key addition, the State 

array is transformed by implementing a round function 10, 12, or 14 times 

(depending on the key length - being 128, 192 or 256 bits), with the final round 

differing slightly from the first Nr -1 rounds. The final State is then copied to the 

output as described in Sec. 3.2. 

 

The Cipher is described in the pseudo code in Figure 3.3. The individual 

transformations - SubBytes(), ShiftRows(), MixColumns(), and AddRoundKey() – 

process the State and are described in the following subsections. 

Figure 3.3 Pseudo code for cipher (NIST, 2001). The various transformations (e.g., SubBytes(), 

ShiftRows(), etc.) act upon the State array that is addressed by the ‘state’ pointer. AddRoundKey() 

uses an additional pointer ( w[ ] ) to address the Round Key.  
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3.3.1.1 SubBytes Transformation 

 

The SubBytes() transformation is a non-linear byte substitution that operates 

independently on each byte of the State using a substitution table (S-box). This        

S-box, which is invertible, is constructed by composing two transformations: 

- Take the multiplicative inverse in the finite field GF (28), the element 

{00} is mapped to itself. 

- Apply the following affine transformation (over GF(2) ): 

'
( 4)mod8 ( 5)mod8 ( 6)mod8 ( 7)mod8i i i i i i ib b b b b b c

+ + + +
= ⊕ ⊕ ⊕ ⊕ ⊕          Eq3.11 

for 0 ≤ i < 8 , where bi is the ith bit of the byte, and ci is the ith bit of a byte 

c with the value {63} or {01100011}. Here and elsewhere, a prime on a 

variable (e.g., b`) indicates that the variable is to be updated with the 

value on the right. 

In matrix form, affine transformation element of the S-box can be expressed as: 

 

Figure 3.4 shows the effect of the SubBytes() transformation on the State. AES 

defines a 16 x 16 matrix of byte values, called an S-box (Figure 3.5) that contains a 

permutation of all possible 256 8-bit values. Each individual byte of State is mapped 

into a new byte in the following way: The leftmost 4 bits of the byte are used as a 

row value and the rightmost 4 bits are used as a column value. These row and 

column values serve as indexes into the S-box to select a unique 8-bit output value. 

For example, the hexadecimal value {95} references row 9, column 5 of the S-box, 

whcich contains the value {2A}. Accordingly, the value {95} is mapped into the 

value {2A}. 
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      Figure 3.4 SubBytes() applies the S-box to each byte of the State. (NIST, 2001) 

Figure 3.5: S-box: substitution values for the byte xy (in hexadecimal format). (NIST, 2001) 

 

3.3.1.2 ShiftRows Transformation 

 

The ShiftRow operation is depicted in Figure 3.6. The first row of State is not 

altered. For the second row, a 1-byte circular left shift is performed. For the third 

row, a 2-byte circular left shift is performed. For the fourth row, a 3-byte circular left 

shift is performed. Figure 3.7 shows an example of ShiftRows. 
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Figure 3.6 ShiftRow transformation 

 

 Figure 3.7 Example of ShiftRow transformations 

 

The shift row transformation is more substantial than it may first appear. This is 

because the State, as well as the cipher input and output, is treated as an array of four 

4-byte columns. Thus, on encryption, the first 4 bytes of the plaintext are copied to 

the first column of State, and so on. Further, as will be seen, the round key is applied 

to State column by column. Thus, a row shift moves an individual byte from one 

column to another, which is a linear distance of a multiple of 4 bytes. Also note that 

the transformation ensures that the 4 bytes of one column are spread out to four 

different columns (Stallings, 2005). 

 

3.3.1.3 MixColumns Transformation 

 
The MixColumns, operates on each column individually. Each byte of a column is 

mapped into a new value that is a function of all four bytes in that column. The 

columns are considered as polynomials over GF (28) and multiplied modulo x4 + 1 

with a fixed polynomial a(x), given by:  

a(x) = {03}x
3 + {01}x

2
 + {01}x + {02}     Eq3.12 

Eq3.12 can be written as a matrix multiplication, let '( ) ( ) ( )s x a x s x= ⊕ ; 
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       Figure 3.8 depicts MixColumn transformation. 

 

Figure 3.9 MixColumn transformation (Stallings, 2005) 

 

The coefficients of the matrix above are based on a linear code with maximal 

distance between code words, which ensures a good mixing among the bytes of each 

column. The mix column transformation combined with the shift row transformation 

ensures that after a few rounds, all output bits depend on all input bits. 

  

In addition, the choice of coefficients in MixColumns, which are all {01}, {02}, 

or {03}, was influenced by implementation considerations. As was discussed, 

multiplication by these coefficients involves at most a shift and an XOR. The 

coefficients in InvMixColumns are more formidable to implement. However, 

encryption was deemed more important than decryption for two reasons: 

1. For the CFB and OFB cipher modes (described in Chapter 4), only 

encryption is used. 

2. As with any block cipher, AES can be used to construct a message 

authentication code, and for this only encryption is used (Stallings, 2005). 
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3.3.1.4 AddRoundKey Transformation 

 

In the AddRoundKey, the 128 bits of State are bitwise XORed with the 128 bits of 

the round key. As shown in Figure 3.8, the operation is viewed as a columnwise 

operation between the 4 bytes of a State column and one word of the round key; it 

can also be viewed as a byte-level operation.  

 

Figure 3.10 AddRoundKey XORs each column of the State with a word from the key schedule 

(Stallings, 2005) 

 

The AddRoundKey transformation is as simple as possible and affects every bit of 

State. The complexity of the round key expansion, plus the complexity of the other 

stages of AES, ensures security. 

 

3.3.2 Key Expansion 

 

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion 

routine to generate a key schedule. The Key Expansion generates a total of Nb (Nr + 

1) words: the algorithm requires an initial set of Nb words, and each of the Nr rounds 

requires Nb words of key data. The resulting key schedule consists of a linear array 

of 4-byte words, denoted [wi], with i in the range 0 ≤ i < Nb(Nr + 1). 

 

The expansion of the input key into the key schedule proceeds according to the 

pseudo code in Figure 3.9. SubWord() is a function that takes a four-byte input word 

and applies the S-box (Sec. 3.3.1.1, Figure 3.4) to each of the four bytes to produce 

an output word. The function RotWord() takes a word [a0,a1,a2,a3] as input, performs 

a cyclic permutation, and returns the word [a1,a2,a3,a0]. The round constant word 



 

 

 

 

array, Rcon[i], contains the values given by [xi-1,{00},{00},{00}], with (xi – 1) 

being powers of x (x is denoted as {02}) in the field GF(28)  (note that i starts at 1, 

not 0). 

 
    Figure 3.11 Pseudo code for AES Key Expansion 

 

From Figure 3.11, it can be seen that the first Nk words of the expanded key are 

filled with the Cipher Key. Every following word, w[i], is equal to the XOR of the 

previous word, w[i-1], and the word Nk positions earlier, w[i-Nk]. For words in 

positions that are a multiple of Nk, a transformation is applied to w[i-1] prior to the 

XOR, followed by an XOR with a round constant, Rcon[i]. This transformation 

consists of a cyclic shift of the bytes in a word (RotWord()), followed by the  

application of a table lookup to all four bytes of the word (SubWord()). 

 

It is important to note that the Key Expansion routine for 256-bit Cipher Keys       

(Nk = 8) is slightly different than for 128- and 192-bit Cipher Keys. If Nk = 8 and i-4 

is a multiple of Nk, then SubWord() is applied to w[i-1] prior to the XOR. 
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The round constant is a word in which the three rightmost bytes are always 0. 

Thus the effect of an XOR of a word with Rcon is to only perform an XOR on the 

leftmost byte of the word. The round constant is different for each round and is 

defined as Rcon[j] = (RC[j], 0, 0, 0), with RC[1] = 1, RC[j] = 2 · RC[j - 1] and with 

multiplication defined over the field GF(28) (Table3.1). From Figure 3.12: (a) to (f) 

AES key expansion is illustrated in graphical form. 

 

 Table 3.2 RCon Values 

j 1 2 3 4 5 6 7 8 9 10 

RC[j] 01 02 04 08 10 20 40 80 1B 36 

 

(a) 

(b) 
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(c) 

(d) 

(e) 
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(f) 
 

Figure 3.12 AES Key Expansion in graphical form, RotWord operation (a), SubWord operation (b), 

For words in positions that are a multiple of Nk(=4), a transformation is applied to w[i-1] prior to the 

XOR, followed by an XOR with a round constant, Rcon[i] (c), Every following word, w[i], is equal to 

the XOR of the previous word, w[i-1], and the word Nk positions earlier, w[i-Nk] ((d), (e), (f)). 

 

The Rijndael developers designed the expansion key algorithm to be resistant to 

known cryptanalytic attacks. The inclusion of a round-dependent round constant 

eliminates the symmetry, or similarity, between the ways in which round keys are 

generated in different rounds. The specific criteria that were used are as follows: 

- Knowledge of a part of the cipher key or round key does not enable 

calculation of many other round key bits 

- An invertible transformation [i.e., knowledge of any Nk consecutive 

words of the Expanded Key enables regeneration the entire  expanded key 

(Nk = key size in words)] 

- Speed on a wide range of processors 

- Usage of round constants to eliminate symmetries 

- Diffusion of cipher key differences into the round keys; that is, each key 

bit affects many round key bits 

- Enough nonlinearity to prohibit the full determination of round key 

differences from cipher key differences only 

- Simplicity of description (Daemen & Rijmen, 2003) 
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The authors do not quantify the first point on the preceding list, but the idea is that 

if you know less than Nk consecutive words of either the cipher key or one of the 

round keys, then it is difficult to reconstruct the remaining unknown bits. The fewer 

bits one knows, the more difficult it is to do the reconstruction or to determine other 

bits in the key expansion (Stallings, 2005). 

 

3.3.3 The Inverse Cipher (Decryption) 

 

The AES decryption cipher is not identical to the encryption cipher (Figure 3.2). 

The sequence of transformations for decryption differs from that for encryption, 

although the form of the key schedules for encryption and decryption is the same. 

This has the disadvantage that two separate software or firmware modules are needed 

for applications that require both encryption and decryption. The decryption 

algorithm has the same sequence of transformations as the encryption algorithm with 

transformations replaced by their inverses (Figure 3.13). The individual 

transformations used in the Inverse Cipher are:  InvShiftRows(),  InvSubBytes(), 

InvMixColumns(), and AddRoundKey().  

Figure 3.13 Pseudo Code for Inverse Cipher (Decryption) 
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3.3.3.1 InvShiftRows Transformation 

 

InvShiftRows() is the inverse of the ShiftRows() transformation. The bytes in the 

last three rows of the State are cyclically shifted over different numbers of bytes 

(offsets). The first row, r = 0, is not shifted. The bottom three rows are cyclically 

shifted by Nb - shift(r, Nb) bytes, where the shift value shift(r,Nb) depends on the 

row number. InvShiftRows affects the sequence of bytes in State but does not alter 

byte contents and does not depend on byte contents to perform its transformation. 

Figure 3.14 illustrates InvShiftRows() transformation. 

 
 Figure 3.14 InvShiftRows() transformation 

 

3.3.3.2 InvShiftRows Transformation 

 

InvSubBytes() is the inverse of the byte substitution transformation, in which the 

inverse Sbox is applied to each byte of the State. This is obtained by applying the 

inverse of the affine transformation (Eq3.11) followed by taking the multiplicative 

inverse in GF(28). InvSubBytes() affects the contents of bytes in State but does not 

alter byte sequence and does not depend on byte sequence to perform its 

transformation.  

 

The inverse S-box used in the InvSubBytes() transformation is presented in        

Figure 3.15. 

42 



 

 

 

 

 
 Figure 3.15 Inverse S-box substitution values for the byte xy (in hexadecimal format). 

 

3.3.3.3 InvMixColumns Transformation 

 

InvMixColumns() is the inverse of the MixColumns() transformation. 

InvMixColumns() operates on the State column-by-column, treating each column as 

a fourterm polynomial as described in Sec. 4.3. The columns are considered as 

polynomials over GF(28) and multiplied modulo x
4
 + 1 with a fixed polynomial        

a
-1

(x), given by; 

a
-1

(x) = {0b}x
3 + {0d}x

2 + {09}x + {0e}          Eq3.13 

This can be written as a matrix multiplication. Let ' 1( ) ( ) ( )s x a x s x−
= ⊕ : 

 

 

3.3.3.4 Inverse of AddRoundKey Transformation 

 

AddRoundKey(), which was described in Section 3.3.1.4, is its own inverse, since 

it only involves an application of the XOR operation. The transformations 

InvAddRoundKey and InvMixColumns do not alter the sequence of bytes in State. If 
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we view the key as a sequence of words, then both InvAddRoundKey and 

InvMixColumns operate on State one column at a time. These two operations are 

linear with respect to the column input. 

 

3.3.5 Implementation Issues  

 

3.3.5.1 Key Length Requirements 

 

An implementation of the AES algorithm shall support at least one of the three 

key lengths specified in Section 3.3.1.1: 128, 192, or 256 bits (i.e., Nk = 4, 6, or 8, 

respectively). Implementations may optionally support two or three key lengths, 

which may promote the interoperability of algorithm implementations. 

 

3.3.5.2 Keying Restrictions 

 

No weak or semi-weak keys have been identified for the AES algorithm, and there 

is no restriction on key selection. 

 

3.3.5.3 Parameterization of Key Length, Block Size, and Round Number 

 

AES explicitly defines the allowed values for the key length (Nk), block size (Nb), 

and number of rounds (Nr). However, future reaffirmations of this standard could 

include changes or additions to the allowed values for those parameters. Therefore, 

implementers may choose to design their AES implementations with future 

flexibility in mind. 

 

3.3.5.4 Implementation Aspects 

 

Implementation variations are possible that may, in many cases, offer 

performance or other advantages. Given the same input key and data (plaintext or 

ciphertext), any implementation that produces the same output (ciphertext or 
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plaintext) as the algorithm specified in this standard is an acceptable implementation 

of the AES. 

 

The Rijndael proposal (Stallings, 2005) provides some suggestions for efficient 

implementation on 8-bit processors, typical for current smart cards, and on 32-bit 

processors, typical for PCs. MicroBlaze is a 32-bit soft processor and suggestions on 

(Stallings, 2005) is strictly followed to meet best performance on implementations. 
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CHAPTER FOUR 

BLOCK CIPHER MODES OF OPERATION 

 

A block cipher algorithm is a basic building block for providing data security. To 

apply a block cipher in a variety of applications, four "modes of operation" have 

been defined by NIST (Dworkin, 2001). In essence, a mode of operation is a 

technique for enhancing the effect of a cryptographic algorithm or adapting the 

algorithm for an application, such as applying a block cipher to a sequence of data 

blocks or a data stream. A cryptographic mode usually combines the basic cipher, 

some sort of feedback, and some simple operations. The operations are simple 

because the security is a function of the underlying cipher and not the mode. Even 

more strongly, the cipher mode should not compromise the security of the underlying 

algorithm. 

 

There are other security considerations: Patterns in the plaintext should be 

concealed, input to the cipher should be randomized, manipulation of the plaintext by 

introducing errors in the ciphertext should be difficult, and encryption of more than 

one message with the same key should be possible.  

 

Efficiency is another consideration. The mode should not be significantly less 

efficient than the underlying cipher. In some circumstances it is important that the 

ciphertext be the same size as the plaintext. 

 

A third consideration is fault-tolerance. Some applications need to parallelize 

encryption or decryption, while others need to be able to preprocess as much as 

possible. In still others it is important that the decrypting process be able to recover 

from bit errors in the ciphertext stream, or dropped or added bits (Schneier, 1996). 

 

A fourth consideration is using an initialization vector. Many modes require an 

initialization block (also known as an initialization vector or salt) to get started. This 

generally adds security but at a cost for both storage and speed. 
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The four modes are intended to cover virtually all the possible applications of 

encryption for which a block cipher could be used. As new applications and 

requirements have appeared, NIST has expanded the list of recommended modes to 

five in Special Publication 800-38A. It specifies five confidentiality modes of 

operation for symmetric key block cipher algorithms, such as the algorithm specified 

in FIPS Pub. 197, the Advanced Encryption Standard (AES) (NIST, 2001). The 

modes may be used in conjunction with any symmetric key block cipher algorithm 

that is approved by a Federal Information Processing Standard (FIPS). The five 

modes—the Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher 

Feedback (CFB), Output Feedback (OFB), and Counter (CTR) modes—can provide 

data confidentiality (Dworkin, 2001). The modes are summarized in Table 4.1 at the 

end of the section and described briefly in the remainder of this section. 

 

4.1 Underlying Block Cipher Algorithm  

 

Special Publication 800-38A (Dworkin, 2001) assumes that a FIPS-approved 

symmetric key block cipher algorithm has been chosen as the underlying algorithm, 

and that a secret, random key, denoted K has been established among all of the 

parties to the communication. The cryptographic key regulates the functioning of the 

block cipher algorithm and, thus, by extension, regulates the functioning of the 

mode. The specifications of the block cipher and algorithms and the modes are 

public, so the security of the mode depends on the secrecy of the key. 

 

A confidentiality mode of operation of the block cipher algorithm consists of two 

processes that are inverses of each other: encryption and decryption. Encryption is 

the transformation of a usable message, called the plaintext, into an unreadable form, 

called the ciphertext; decryption is the transformation that recovers the plaintext from 

the ciphertext (Dworkin, 2001). 
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4.2 Initialization Vectors 

 

Most modes (CBC, CFB, and OFB) require an initialization vector (IV) – that is, a 

random byte array with the length of the cipher’s block. Depending on how the mode 

works, this vector is used as an alternate start to the message or as a dummy 

ciphertext block. Following are some guidelines for using IVs: (Galbreath, 2002) 

- The same IV must be used in the decryption as was used for the 

encryption. 

- The IV does not have to be generated by a secure random source 

(although it certainly can be); timestamps or other semi-unique sources 

can be used. 

- The IV is not a key and can be transmitted or stored in the clear. 

- The same IV can be used for multiple messages, although for transient 

messages a different IV should be used. 

- The null IV—that is, an IV with all zeros—is commonly used to 

minimize bookkeeping, storage, or transmission costs, especially in 

database applications. 

 

The IV need not be secret; however, for the CBC and CFB modes, the IV for any 

particular execution of the encryption process must be unpredictable, and, for the 

OFB mode, unique IVs must be used for each execution of the encryption process.  

 

4.3 Electronic Codebook (ECB)  

 

The simplest mode is the electronic codebook (ECB) mode, in which plaintext is 

handled one block at a time and each block of plaintext is encrypted using the same 

key (Figure 4.1). The term codebook is used because, for a given key, there is a 

unique ciphertext for every b–bit block of plaintext. Therefore, we can imagine a 

gigantic codebook in which there is an entry for every possible b-bit plaintext pattern 

showing its corresponding ciphertext. 
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For a message longer than b bits, the procedure is simply to break the message 

into b-bit blocks, padding the last block if necessary. Decryption is performed one 

block at a time, always using the same key. In Figure 4.1, the plaintext consists of a 

sequence of b-bit blocks, P1, P2,..., PN; the corresponding sequence of ciphertext 

blocks is C1, C2,..., CN. 

ENCRYPT

T=1

K

P1

C1

ENCRYPT

T=2

K

P2

C2

ENCRYPT

T=N

K

PN

CN

...

a) Encryption

DECRYPT

T=1

K

C1

P1

DECRYPT

T=2

K

C2

P2

DECRYPT

T=N

K

CN

PN

...

b) Decryption
 

           Figure 4.1 Electronic Codebook (ECB) Mode; a) Encryption, b) Decryption 

 

The most significant characteristic of ECB is that the same b-bit block of 

plaintext, if it appears more than once in the message, always produces the same 

ciphertext. For lengthy messages, the ECB mode may not be secure. If the message is 

highly structured, it may be possible for a cryptanalyst to exploit these regularities. 

For example, if it is known that the message always starts out with certain predefined 

fields, then the cryptanalyst may have a number of known plaintext-ciphertext pairs 

to work with. If the message has repetitive elements, with a period of repetition a 

multiple of b bits, then these elements can be identified by the analyst. This may help 

in the analysis or may provide an opportunity for substituting or rearranging blocks. 

This is a fundamental problem of ECB mode; to overcome this problem encryption 
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key should be changed regularly and fast. The solution is a technique called chaining 

and applied to CBC mode described in section 4.3. 

 

AES block length is constant, 128 bits, so the code book will have 2128 entries—

much too large to precompute and store. Also every key has a different code book. 

 

In ECB mode, each plaintext block is encrypted independently. It is not 

mandatory to encrypt a file linearly; encryption could be performed the 10 blocks in 

the middle first, then the blocks at the end, and finally the blocks in the beginning. 

This is important for encrypted files that are accessed randomly, like a database. If a 

database is encrypted with ECB mode, then any record can be added, deleted, 

encrypted, or decrypted independently of any other record—assuming that a record 

consists of a discrete number of encryption blocks (Schneier, 1996). 

 

Processing is parallizeable; if multiple encryption processors are valid, they can 

encrypt or decrypt different blocks without regard for each other. 

 

4.4 Cipher Block Chaining (CBC) 

 

CBC mode eliminates security deficiencies of ECB (the dictionary attack) by 

using the contents of the previous block to encrypt the current block. This extra 

overhead adds about 20 to 30 percent to the running time over ECB mode. During 

encryption, each plaintext block is XORed with the previous ciphertext block, and 

the IV is used as the first ciphertext block (Figure 4.2). In this way the last block 

depends on all blocks previous to it. The input to the encryption function for each 

plaintext block bears no fixed relationship to the plaintext block. Therefore, repeating 

patterns of b bits are not exposed. 

 

Chaining adds a feedback mechanism to a block cipher: The results of the 

encryption of previous blocks are fed back into the encryption of the current block. 

Each ciphertext block is dependent not just on the plaintext block that generated it 

but on all the previous plaintext blocks. 
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In CBC encryption, the first input block is formed by XORing the first block of 

the plaintext with the IV. The forward cipher function is applied to the first input 

block, and the resulting output block is the first block of the ciphertext. This output 

block is also XORed with the second plaintext data block to produce the second 

input block, and the forward cipher function is applied to produce the second output 

block. This output block, which is the second ciphertext block, is XORed with the 

next plaintext block to form the next input block. Each successive plaintext block is 

XORed with the previous output/ciphertext block to produce the new input block. 

The forward cipher function is applied to each input block to produce the ciphertext 

block. 

 

In CBC decryption, the inverse cipher function is applied to the first ciphertext 

block, and the resulting output block is XORed with the initialization vector to 

recover the first plaintext block. The inverse cipher function is also applied to the 

second ciphertext block, and the resulting output block is XORed with the first 

ciphertext block to recover the second plaintext block. In general, to recover any 

plaintext block (except the first), the inverse cipher function is applied to the 

corresponding ciphertext block, and the resulting block is XORed with the previous 

ciphertext block. Decryption is similar to encryption, but each block only depends on 

the previous block, not all previous blocks. This way decryption can be done in 

parallel, possibly making it much faster than encryption.  
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                    Figure 4.2 Cipher Block Chaining (CBC) Mode; a) Encryption, b) Decryption 

 

CBC mode has some interesting error properties. First, it is self-synchronizing: A 

dropped block or a block with errors will result in only two plaintext blocks being 

corrupted but this doesn’t extend to bits. If a bit is dropped, the remaining message 

will be completely corrupted. The other property is that a single bit error will corrupt 

the current block but will only change the corresponding bit in the next block; 

thereafter the message is intact. Finally, The IV must be known to both the sender 

and receiver but be unpredictable by a third party. For maximum security, the IV 

should be protected against unauthorized changes. This could be done by sending the 

IV using ECB encryption. One reason for protecting the IV is as follows: If an 

opponent is able to fool the receiver into using a different value for IV, then the 

opponent is able to invert selected bits in the first block of plaintext (Schneier, 1996). 
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In conclusion, because of the chaining mechanism of CBC, it is an appropriate 

mode for encrypting messages of length greater than b bits. In addition to its use to 

achieve confidentiality, the CBC mode can be used for authentication. 

 

4.5 Cipher Feedback (CFB) 

 

The AES scheme is essentially a block cipher technique that uses b-bit blocks. 

However, it is possible to convert AES into a stream cipher, using either the cipher 

feedback (CFB) or the output feedback mode. A stream cipher eliminates the need to 

pad a message to be an integral number of blocks. It also can operate in real time. 

Thus, if a character stream is being transmitted, each character can be encrypted and 

transmitted immediately using a character-oriented stream cipher. 

 

One desirable property of a stream cipher is that the ciphertext be of the same 

length as the plaintext. Thus, if 8-bit characters are being transmitted, each character 

should be encrypted to produce a cipher text output of 8 bits. If more than 8 bits are 

produced, transmission capacity is wasted. 

 

Figure 4.3 depicts the CFB scheme. In the figure, it is assumed that the unit of 

transmission is s bits; a common value is s = 8. The value of s is sometimes 

incorporated into the name of the mode, e.g., the 1-bit CFB mode, the 8-bit CFB 

mode, the 64-bit CFB mode, or the 128-bit CFB mode. As with CBC, the units of 

plaintext are chained together, so that the ciphertext of any plaintext unit is a function 

of all the preceding plaintext. In this case, rather than units of b bits, the plaintext is 

divided into segments of s bits. 
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    Figure 4.3 s-bit Cipher Feedback (CFB) Mode; a) Encryption, b) Decryption (Schneier, 1996) 

 

Considering encryption, the input to the encryption function is a b-bit shift 

register that is initially set to some initialization vector (IV). The leftmost (most 

significant) s bits of the output of the encryption function are XORed with the first 

segment of plaintext P1 to produce the first unit of ciphertext C1, which is then 

transmitted. In addition, the contents of the shift register are shifted left by s bits and 

C1 is placed in the rightmost (least significant) s bits of the shift register. This 

process continues until all plaintext units have been encrypted. 

 

Considering decryption, the same scheme is used, except that the received 

ciphertext unit is XORed with the output of the encryption function to produce the 

plaintext unit. Note that it is the encryption function that is used, not the decryption 

function.  

 

Encryption and decryption steps are virtually identical and that the cipher is only 

used to encrypt. The cipher algorithm is only used to generate a sequence of 
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pseudorandom bits to XOR against the plaintext. Since encryption is only used, this 

mode cannot be used with public key ciphers, because this would allow anyone to 

decrypt in this mode. 

 

CFB mode does not have the same sensitivity to the IV that CBC mode has. A 

single bit change in the IV will cause random bit errors in the first block. Therefore, 

the IV need not be kept secret. Otherwise, the properties for CFB mode are similar to 

CBC mode, except scaled by a factor of b/s. Following are further guidelines for 

CFB mode: 

- Decryption requires b/s previous blocks. 

- Bit error in a ciphertext block will cause corresponding bit errors in the 

plaintext and produce random bit errors in the subsequent b/s blocks. 

- CFB can recover from a dropped block in b/s blocks. 

 

In CFB encryption, like CBC encryption, the input block to each forward cipher 

function (except the first) depends on the result of the previous forward cipher 

function; therefore, multiple forward cipher operations cannot be performed in 

parallel. In CFB decryption, the required forward cipher operations can be performed 

in parallel if the input blocks are first constructed (in series) from the IV and the 

ciphertext. 

 

4.6 Output Feedback (OFB) 

 

The output feedback (OFB) mode is similar in structure to that of CFB, as 

illustrated in Figure 4.4. As can be seen, it is the output of the encryption function 

that is fed back to the shift register in OFB, whereas in CFB the ciphertext unit is fed 

back to the shift register. 

 

In OFB encryption, the IV is transformed by the forward cipher function to 

produce the first output block. The first output block is XORed with the first 

plaintext block to produce the first ciphertext block. The forward cipher function is 
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then invoked on the first output block to produce the second output block. The 

second output block is XORed with the second plaintext block to produce the second 

ciphertext block, and the forward cipher function is invoked on the second output 

block to produce the third output block. Thus, the successive output blocks are 

produced from applying the forward cipher function to the previous output blocks, 

and the output blocks are XORed with the corresponding plaintext blocks to produce 

the ciphertext blocks. For the last block, which may be a partial block of s bits, the 

most significant s bits of the last output block are used for the XOR operation; the 

remaining b-s bits of the last output block are discarded. 

 

In OFB decryption, the IV is transformed by the forward cipher function to 

produce the first output block. The first output block is XORed with the first 

ciphertext block to recover the first plaintext block. The first output block is then 

transformed by the forward cipher function to produce the second output block. The 

second output block is XORed with the second ciphertext block to produce the 

second plaintext block, and the second output block is also transformed by the 

forward cipher function to produce the third output block. Thus, the successive 

output blocks are produced from applying the forward cipher function to the previous 

output blocks, and the output blocks are XORed with the corresponding ciphertext 

blocks to recover the plaintext blocks. For the last block, which may be a partial 

block of s bits, the most significant s bits of the last output block are used for the 

XOR operation; the remaining b-s bits of the last output block are discarded. 

 

OFB mode is similar to CFB mode, except that s bits of the previous output block 

are moved into the rightmost positions of the queue. Decryption is the reverse of this 

process. This is called s-bit OFB. On both the encryption and the decryption sides, 

the block algorithm is used in its encryption mode. This is sometimes called internal 

feedback, because the feedback mechanism is independent of both the plaintext and 

the ciphertext streams (Campbell, 1978). 
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      Figure 4.4 s-bit Output Feedback (OFB) Mode; a) Encryption, b) Decryption (Schneier, 1996) 

 

OFB mode has no error extension. A single-bit error in the ciphertext causes a 

single-bit error in the recovered plaintext. This can be useful in some digitized 

analog transmissions, like digitized voice or video, where the occasional single-bit 

error can be tolerated but error extension cannot. On the other hand, a loss of 

synchronization is fatal. If the shift registers on the encryption end and the 

decryption end are not identical, then the recovered plaintext will be gibberish. Any 

system that uses OFB mode must have a mechanism for detecting a synchronization 

loss and a mechanism to fill both shift registers with a new (or the same) IV to regain 

synchronization. 

 

An analysis of OFB mode ((Gait, 1977), (Davies & Parkin, 1983) & (Jueneman, 

1983)) demonstrates that OFB should be used only when the feedback size is the 

same as the block size. For example 128 – bit AES cipher algorithm in 128 – bit 

OFB mode should be used.  
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OFB mode XORs a keystream with the text. This keystream will eventually 

repeat. It is important that it does not repeat with the same key; otherwise, there is no 

security. When the feedback size equals the block size, the block cipher acts as a 

permutation of m-bit values (where m is the block length) and the average cycle 

length is 2m – 1. For a 128-bit block length, this is a very long number. When the 

feedback size s is less than the block length, the average cycle length drops to around 

2m/2. For a 128 -bit block cipher, this is only 264 - not long enough (Schneier, 1996). 

 

4.7 Counter Mode (CTR) 

 

Although interest in the counter mode (CTR) has increased recently, with 

applications to ATM (asynchronous transfer mode) network security and IPSec (IP 

security), this mode was proposed early on (Diffie & Hellman, 1979). 

 

Block ciphers in counter mode use sequence numbers as the input to the algorithm 

((Kent, 1976) & (Diffie & Hellman, 1979)). Instead of using the output of the 

encryption algorithm to fill the register, the input to the register is a counter. After 

each block encryption, the counter increments by some constant, typically one. The 

sequence of counters must have the property that each block in the sequence is 

different from every other block. This condition is not restricted to a single message: 

across all of the messages that are encrypted under the given key, all of the counters 

must be distinct (Figure 4.5). 

 

In CTR encryption, the forward cipher function is invoked on each counter block, 

and the resulting output blocks are XORed with the corresponding plaintext blocks to 

produce the ciphertext blocks. For the last block, which may be a partial block of u 

bits, the most significant u bits of the last output block are used for the XOR 

operation; the remaining b-u bits of the last output block are discarded. 

 

In CTR decryption, the forward cipher function is invoked on each counter block, 

and the resulting output blocks are XORed with the corresponding ciphertext blocks 

to recover the plaintext blocks. For the last block, which may be a partial block of u 
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bits, the most significant u bits of the last output block are used for the XOR 

operation; the remaining b-u bits of the last output block are discarded. 
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        Figure 4.5 Counter (CTR) Mode; a) Encryption, b) Decryption 

 

In both CTR encryption and CTR decryption, the forward cipher functions can be 

performed in parallel; similarly, the plaintext block that corresponds to any particular 

ciphertext block can be recovered independently from the other plaintext blocks if 

the corresponding counter block can be determined. Moreover, the forward cipher 

functions can be applied to the counters prior to the availability of the plaintext or 

ciphertext data (Dworkin, 2001). (Lipmaa, Rogaway & Wagner, 2000) lists the 

following advantages of CTR mode: 

- Hardware efficiency: Unlike the three chaining modes, encryption (or 

decryption) in CTR mode can be done in parallel on multiple blocks of plaintext 

or ciphertext. For the chaining modes, the algorithm must complete the 
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computation on one block before beginning on the next block. This limits the 

maximum throughput of the algorithm to the reciprocal of the time for one 

execution of block encryption or decryption. In CTR mode, the throughput is 

only limited by the amount of parallelism that is achieved. 

- Software efficiency: Similarly, because of the opportunities for parallel execution 

in CTR mode, processors that support parallel features, such as aggressive 

pipelining, multiple instruction dispatch per clock cycle, a large number of 

registers, and SIMD instructions, can be effectively utilized.   

- Preprocessing: The execution of the underlying encryption algorithm does not 

depend on input of the plaintext or ciphertext. Therefore, if sufficient memory is 

available and security is maintained, preprocessing can be used to prepare the 

output of the encryption boxes that feed into the XOR functions in Figure 4.5. 

When the plaintext or ciphertext input is presented, then the only computation is 

a series of XORs. Such a strategy greatly enhances throughput. 

- Random access: The ith block of plaintext or ciphertext can be processed in 

random-access fashion. With the chaining modes, block Ci cannot be computed 

until the i - 1 prior block are computed. There may be applications in which a 

ciphertext is stored and it is desired to decrypt just one block; for such 

applications, the random access feature is attractive.  

- Provable security: It can be shown that CTR is at least as secure as the other 

modes discussed in this section. 

- Simplicity: Unlike ECB and CBC modes, CTR mode requires only the 

implementation of the encryption algorithm and not the decryption algorithm. 

This matters most when the decryption algorithm differs substantially from the 

encryption algorithm, as it does for AES. In addition, the decryption key 

scheduling need not be implemented.  

 

Table 4.1 summarizes the various modes of the operations. RBE stands for 

random bit errors, SBE is single-bit errors, where a single bit is altered.
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 Table 4.1 Block Cipher Modes of Operation ((Stallings, 2005), (Schneier, 1996) & (Galbreath, 2002)) 
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CHAPTER FIVE 

IMPLEMENTATION OF AES MODES OF OPERATION ON MICROBLAZE 

 

The implementation of creating, testing and analyzing of AES modes of operation 

is performed on target platform described in section 2.4, Spartan3E 1600E 

Microblaze Edition board.  

 

EDK (specifically XPS (Xilinx Inc., 2008)) is used for generation of complete 

hardware embedded processor system project.  During generation any hardware 

related changes such as constraints entry, timing analysis, logic placement and 

routing, and device programming have all been done in EDK environment on behalf 

of ISE, which issues mentioned utilities in the background. XPS maintains hardware 

platform description in a high-level form, known as the Microprocessor Hardware 

Specification (MHS) file. The MHS, an editable text file, and is the principal source 

file representing the hardware component of the embedded system. XPS synthesizes 

the MHS source file into Hardware Description Language (HDL) netlists ready for 

FPGA place and route. The MHS file defines the configuration of the embedded 

processor system and includes information on the bus architecture, peripherals, 

processor, connectivity, and address space (Xilinx Inc., 2008). 

 

XPS creates an analogous software system description in the Microprocessor 

Software Specification (MSS) file. The MSS file, together with software 

applications, are the principal source files representing the software elements of the 

embedded system generated. This collection of files, used in conjunction with EDK 

installed libraries and drivers, and any custom libraries and drivers for custom 

peripherals generated for this project provide allows SDK to compile applications 

generated. The compiled software routines are available as an Executable and 

Linkable Format (ELF) file. Figure 5.1 shows the files and flow stages that generate 

the ELF file. A SDK project is generated for each software application. The project 

directory contains C/C++ source files, executable output file, and associated utility 

files such as the make files used to build the project. Each SDK project directory is 

typically located under the XPS project directory tree for the embedded system that 

62 



 

 

 

 

the application targets. Each SDK project produces just one executable file (Xilinx 

Inc., 2008).  

 
                              Figure 5.1 Stages of ELF File Generation 

 

5.1 Generating the Hardware Platform & XPS Project 

 

Creating an XPS project is described in (Xilinx Inc., 2008) in detail. A project is 

generated at 100MHz DDR clock frequency with cache and barrel shifter enabled. 

Project named “aes_modes_20101031_100MHzDDR_cache_barrel_shifter” and can 

be found in CD-ROM delivery, in the folder “projects”. In the same directory there is 

a system block diagram as in the name “system.png” which is generated by XPS and 

illustrates overall structure of hardware design and there is design report summarizes 

all the hardware features of the project as in the name “system.html”. 
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All the files generated by XPS e.g., MHS, MSS, User Constraints File (UCF) for 

the projects can be found in the “projects” directory, in the specific project 

directories. 

 

Through the hardware development an XPS project is created from scratch with 

the Base System Builder (BSB) following steps described below:  

- Specify the target FPGA device : Spartan-3E 1600E MicroBlaze Dev Board 

- Choose “Reference Clock Frequency” and “Processor Clock Frequency”, 50MHz 

and 100MHz respectively, choose “Debug I/F” with “XMD with S/W debug 

stub”, choose 16KB BRAM memory. 

- Configure cache setup and enable both instruction and data cache allocating 2KB 

cache size. 

- Disable all peripheral interfaces other than “RS232_DTE” and “DDR_SDRAM”.  

- Add “Timer” for further used for profiling (described in the next section). 

Connect timer’s slave PLB bus (SPLB) to MicroBlaze’s SPLB bus. Connect 

timer’s interrupt pin with MicroBlaze interrupt pin.  

- Configure “MicroBlaze” so that it has “Enable Barrel Shifter” in addition to 

default settings. Barrel shifter improves system response by means of time since 

AES algorithm uses shift operations in ShiftRows() part.(see Chapter 3).  

 

Bus interface, port configuration and address mapping of project 

“aes_modes_20101031_100MHzDDR_cache_barrel_shifter” is depicted in Figure 

5.2, Figure 5.3 and Figure 5.4. 
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Figure 5.2 Bus Interfaces of project “aes_modes_20101031_100MHzDDR_cache_barrel_shifter” 

 

 
Figure 5.3 Ports of project “aes_modes_20101031_100MHzDDR_cache_barrel_shifter” 
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Figure 5.4 Address map of project “aes_modes_20101031_100MHzDDR_cache_barrel_shifter” 

 

After hardware platform design entry is setup, the next step is to set up User 

Constraints File (UCF) (Xilinx Inc., 2005). Since a specific development board is 

selected in BSB, the UCF file contains a complete pinout specification for 

connections to the on-board peripherals specified for the design. BSB automatically 

generated UCF file and since no external peripheral is used in the design UCF file 

should not be modified. 

 

The last step is to generate the bitstream (BIT) file that represents the completed 

hardware platform. Hardware generation consists of the following steps: 

- Generating the Netlist 

- Generating the Bitstream. 

 

Generating Netlist calls the platform building tool, Platgen (Xilinx Inc.., 2005), 

which does the following: 

- Reads the design platform configuration Microprocessor Hardware 

Specification (MHS) file 

- Generates a VHDL representation 

66 



 

 

 

 

- Runs the Xilinx Synthesis Technology (XST) 

- Produces the netlist file in Xilinx NGC format 

 

Generating the bitstream runs Platgen to produce the netlist. It then runs the ISE 

implementation tools, which read the UCF file and produce the BIT file containing 

hardware design. Software patterns are not included. 

 

All the steps above is automated by XPS and can be performed from menu item 

“Hardware > Generate Bitstream”. The changes already been made to the timer, 

added its interrupt pin and bus to MicroBlaze’s interrupt pin and bus (SPLB). After 

generating bitstream file, software project is generated. 

 

5.2 Generating the Software Platform & SDK Project 

 

A software platform is a collection of software drivers and the operating system 

on which to build the application. The embedded software platform defines, for each 

processor, the drivers associated with the peripherals included in the hardware 

platform (the board support package), selected libraries, standard input/output 

devices, interrupt handler routines, and other related software features.  

 

For the software platform generation SDK tool is used, SDK provides an 

interactive development environment that allows specify all aspects of the software 

platform and manage software applications. SDK maintains software platform 

description in a high-level form in the Microprocessor Software Specification (MSS) 

file. The MSS file represents the software component of the embedded system. SDK 

compiles applications, including software components specified in the MSS, into 

Executable and Linkable Format (ELF) files. 

 

For purposes in AES modes of operation comparison a project is created as in the 

name “aes_modes_20101031_100MHzDDR_cache_barrel_shifter” in SDK 

environment.  
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SDK is launched in XPS window from “Software > Launch Platform Studio 

SDK”. After Eclipse-based SDK is launched the first thing to do is to assign drivers, 

libraries, and operating systems to the software project. Figure 5.5, Figure 5.6 and 

Figure 5.7 depict software features of the projects.  

 

 
Figure 5.5 Drivers 

 
 

 
Figure 5.6 OS and Libraries 
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Figure 5.7 Software Platform 

 

Software Features: 

- Standalone OS (since XilKernel OS does not support profiler (Xilinx Inc., 

2007)) 

- XilMFS, Xilinx Memory File System to be used for file I/O (Xilinx Inc., 

2006) 

- XMD stub, Debug peripheral to be used for debugging 

- XPS Timer, Timer to be used for profiling 

- XPS UARTLITE, stdin/stdout peripheral, standard RS232 terminal 

 

The software project is generated on the environment described above. 
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5.2.1 Implementing AES modes of Operation 

 

In the software project an implementation of AES modes of operation is 

performed. (Bertoni, Breveglieri, Fragneto, Macchetti, & Marchesin, 2002) and 

(Gladman, 2002) details some software enhancements based on the standard AES 

algorithm and they all have been integrated into this design although our primary 

concern is modes of operation instead of algorithm itself. Generated software project 

for modes of operation has the following software structure as in Figure 5.8. 

 

 
 Figure 5.8 Software structure of project                                   
“aes_modes_20101031_100MHzDDR_cache_barrel_shifter” 

 

Software project files are illustrated in Figure 5.10. 

 

“Hardware” corresponds to FPGA device, is not related with software 

applications and/or drivers. In the project it consists of MicroBlaze soft processor 

core and other hardware intellectual properties (IP) like RS232_DTE, multiport 

memory controller (MPMC), timer, clock and reset generation circuits, debug 

module  instantiated on Spartan-3E 1600E MicroBlaze Development Board. 

MicroBlaze and other hardware related parts configured as in section 5.1. 

 

“MicroBlaze Drivers” includes: 

- xilmfs_v1_00_a; “Xilinx Memory File System (MFS)” driver.  

- uartlite_v1_13_a; RS232_DTE driver. 
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- tmrctr_v1_10_b; timer-counter driver. 

- standalone_v2_00_a; standalone OS provides basic processor related 

drivers like interrupt handler, cache setup, exception setup. 

- mpmc_v2_00_a; Xilinx MPMC driver supports Error Correction Code 

(ECC) capability, performance monitoring if one of them is enabled in the 

MPMC device. Default settings are used for the project. 

- lldma_v1_00_a; controls DMA settings and transaction. No DMA 

transfer is used. 

- common_v1_00_a; controls version management, basic types, assertions, 

system parameters like driver peripheral addresses. 

- bram_v1_00_a; is not used, this driver is used when application runs on 

BRAM totally instead of DDR SDRAM. 

 

“MFS Library”; is xilmfs_v1_00_a – Xilinx memory file system driver. It is 

drawn separately since there are calls from “AES Engine” and “Console 

Application” directly to MFS Library functions (Xilinx Inc., 2006).  

 

“AES Engine”; implements AES block cipher algorithm and five confidentiality 

modes of operation (ECB, CBC, CFB, OFB and CTR – described in chapter 4). For 

CFB and OFB modes only 128-bit versions are implemented. For the initial testing 

test vectors from (Dworkin, 2001) are used and the results compared for consistency. 

Specific files can also be created and encrypted/decrypted. Section 5.3 has details 

about the results. The software flowchart is depicted in Figure 5.9. 

 

 “Console Application”; enables interrupts, initializes “MFS Library” and “AES 

Engine”, and then waits for predefined commands which can be seen by running the 

application and typing “help” (Figure 5.11). Appendix – A has details about 

command usage and samples. 
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  Figure 5.9 Software flowchart of the SDK project
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        Figure 5.10 Software project files view. 

 

 
Figure 5.11 Commands to be used for AES modes of operation test environment.  

73 



 

 

 

 

5.2.2 Setting up Profiler in SDK 

 

To profile an application in EDK hardware and software should be configured 

accordingly. Generating and viewing profile data can be done from SDK in visual 

form by issuing commands described below. Profiling restrictions can be found in 

Appendix – B. 

 

5.2.2.1 Setting up the Hardware for Profiling 

 

To profile a software application, interrupts are raised periodically to sample the 

program counter (PC) value. To do this, a timer is programmed and the timer 

interrupt handler is used to collect and store the PC. The profile interrupt handler 

requires full access to the timer, so a separate timer that is not used by the application 

itself must be available in the system. The timer interrupt signal is connected directly 

to the processor. For the system profiler is activated in hardware by adding a separate 

timer (xps_timer_0) to be used for profiling and interrupt signal (Figure 5.3) is 

directly connected to MicroBlaze interrupt pin. 

 

5.2.2.2 Setting up the Software for Profiling 

 

There are three steps involved in setting up the software application for profiling: 

1. Specify the Board Support Package (BSP) settings from software platform 

settings and set the enable_sw_intrusive_profiling field to true and select the 

timer to be used for profiling (xps_timer_0, see Figure 5.7). Issue command 

“Generate libraries and the BSP” to configures the profiling libraries to be 

part of the standalone BSP (libxil.a). 

2. Modify the software application code to enable interrupts. Since profile timer 

is directly connected to the processor without an interrupt controller, 

interrupts must be enabled in the processor. This is done by adding 

“microblaze_enable_interrupts()” call at the beginning of the application. 
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3. Build the application with the Profile build configuration using the Profile 

Configuration setting in the C/C++ Build configuration options tab. This step 

appends a -pg option to the compiler flags. An example compile command is: 

“mb-gcc -c -mxl-soft-mul -mxl-pattern-compare -mcpu=v7.10.d –pg -I 

../../microblaze_0_sw_platform/microblaze_0/include -xl-mode-executable    

-g -O2 -oaes_modes.o ../aes_modes.c” 

 

When libraries are generated, code required for profiling is automatically 

configured by the standalone BSP and becomes a part of the libxil.a library. The 

compiler inserts a call to the _mcount function after every software application 

function call. The _mcount function then gathers data on how often each of these 

software application functions are called. This function is also provided in the 

profiling library, and it handles collection of call graph data. The profiling timers 

initialize during software initialization, and the timer interrupt handlers collect 

information to provide the histogram data (Xilinx Inc., 2007).  

 

5.2.2.3 Generating and Viewing Profile Data 

 

After compiling the application for profiling, it must be run once to obtain profile 

data. By enabling profiler support at the “run configuration” settings, three 

parameters must be configured (Xilinx Inc., 2007): 

- Sampling Frequency: The sampling frequency determines the frequency at 

which timer interrupts are generated. When a higher frequency is selected, 

more samples are obtained. This provides more accuracy but is highly 

software-intrusive because of the number of interrupts. More calls are 

inserted to collect data.  

- Bin Size: The program text region is divided into multiple bins. When a 

program is interrupted because of the sampling frequency, the bin size 

determines how accurate the PC location is in the sample. When a smaller bin 

size is selected, the program text region is divided into a large number of 

small bins. This allows a more accurate sample because profile data can be 
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attributed to a specific area of the text region. The disadvantage to using a 

smaller bin size is that it requires a large number of bins to cover the entire 

text region, so a large amount of memory space is required for storing profile 

data. When a larger bin size is selected, the program text region is divided 

into a small number of large bins. This requires less memory space for storing 

profile data. However, it is much more difficult to identify specific text 

regions for the sample because of the larger bin size.  

- Profile Memory: The profile memory parameter indicates where in memory 

the profile data must be stored. This memory needs to lie outside the program 

memory area (including the text, data, heap and stack) and should not be 

overwritten. 

 

The software project has the following memory area (Figure 5.12) and profiler 

settings (Figure 5.13). All code and data sections, heap and stack are located in DDR 

SDRAM memory area. 

 
           Figure 5.12 Memory area 
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Figure 5.13 Profiler Settings 

 

5.3 Testing the Application 

 

Application is tested in two ways: 

- Test vectors from NIST (Dworkin, 2001) are demonstrated under all cipher 

modes and profile data is examined accordingly.  

- Randomly generated data is examined under all cipher modes and profile data 

is examined accordingly. 

 

5.3.1 Test Vectors  

 

Test application can be called to test AES modes of operation on test vectors 

defined by (Dworkin, 2001) and command usage is supplied in Appendix – A.      

“all all n test” command creates 10 files that are encrypted and decrypted forms of 

original plaintext message using AES modes of operation: ECB, CBC, CFB, OFB 

and CTR. By default, 128 bit AES key is used; other key lengths (192, 256) are also 

tested but are not illustrated in the delivery. 
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Profiler results of the test application after testing test vectors and exited using 

“exit” command is illustrated in Figure 5.14. After application termination profiler 

data is loaded from memory 0x8F000000 to the file “gmon.out”. SDK processes this 

file and creates figures “Time Spent in Functions (Self Time)”, “3D Bar Chart 

(Number of Calls)”, “3D Pie Chart (Percentage of Time)”, “Call Table View” and 

“Flat Profile View” (Xilinx Inc., 2007). Only results from “Flat Profile View” is 

illustrated as this can give us time spent in each function effectively. Functions used 

for modes of operation and time spent in them are showed in rectangular selection 

boxes. Results are discussed in chapter six. 

 
(a) 

 
(b) 
 
Figure 5.14 Flat Profile View, results in issuing command “all all n test”. (a) Represents results cache 

and barrel shifter enabled, (b) represents results only cache enabled.  
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5.3.2 Randomly Generated Data 

 

Another usage of test application is on randomly generated files. This is 

accomplished by issuing “gf” command and by determining name and size of the 

generated file.A file is generated as in the name “deneme.txt” five times and stored 

500000, 250000, 125000, 50000 and 10000 bytes respectively. All the commands 

usage can be found in Appendix A. Profiler results are illustrated in Appendix C. A 

much more informative figure is created in Figure 5.15. Results are discussed in 

chapter six. 

 

 
Figure 5.15 Encryption – decryption time analysis of each AES modes of operation 
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CHAPTER SIX 

CONCLUSION AND FUTURE WORK 

 

In this thesis, NIST approved cryptographic block cipher algorithm Advanced 

Encryption Standard (AES) and most importantly modes of operation are discussed 

and implemented in a Xilinx MicroBlaze SoC development platform. A mode of 

operation is a technique for enhancing the effect of a cryptographic algorithm such as 

applying a block cipher to a sequence of data blocks or a data stream. The security is 

a function of underlying block cipher not the modes. The aim of this thesis was to 

analyze the modes of operation in an embedded SoC environment and to determine 

the differences between them in terms of process time taken. 

 

Two tests are performed with two different configurations; first with test vectors 

delivered by NIST and second with randomly generated data using with cache and 

with/without barrel shifter. Test vectors are 64 bytes long and from profiling data 

obtained from chapter five showed that total time for encryption and decryption CFB 

and OFB mode took the least time; for OFB 1.05ms – 1.00ms, for CFB 0.95ms – 

1.00ms, for CTR 1.05ms – 1.00ms, for CBC 1.11ms – 1.08ms and for ECB 1.07ms – 

1.13ms. Time pairs represent when cache and barrel shifter enabled versus only 

cache enabled.  Randomly generated data could be any data length restricted to 1MB 

(memory restriction because of restricted file system capacity) and random data is 

generated that contains 500000, 250000, 125000, 50000 and 10000 bytes. From 

Figure 5.15 it is obtained that total time for encryption and decryption OFB mode 

took the least time, and other modes enumerated CFB, ECB, CTR and CBC 

respectively. Implementation showed that feedback modes (OFB, CFB) are much 

more efficient than non-feedback modes (ECB, CTR) in terms of encryption – 

decryption time. 

 

Barrel shifter is a hardware shifter and it is expected that including it in the design 

would increase overall performance but using efficient implementations developed 

by (Bertoni, Breveglieri, Fragneto, Macchetti & Marchesin, 2002) eliminates barrel 
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shifter performance addition. Results proved that with/without barrel shifter did not 

increase performance at all.  

 

It is learned that ECB mode is vulnerable to the dictionary attack  and decryption 

time takes more than encryption time so normally it is not used other than special 

purposes such as sending only encryption key or IV to the communication partners. 

CBC mode eliminates the dictionary attack by using the contents of the previous 

block to encrypt the current block but time to encrypt and decrypt is the worst among 

all modes of operation. In CFB, OFB and CTR mode encryption is same as 

decryption and actually no decryption block is used, the same encryption block is 

used. This results feedback mode is faster than ECB and CBC modes since 

decryption takes much more time than encryption. Encryption in feedback modes is 

the same as decryption thus memory overhead is less compared to CBC and ECB 

modes.  

 

Modes of operation have primarily been defined for encryption and 

authentication. Modes of operation is already studied for encryption purposes but 

some modern modes of operation combine encryption and authentication in an 

efficient way, and are known as authenticated encryption modes. The results of 

combined encryption and authentication may be investigated in embedded platforms.  
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APPENDIX A – AES MODES OF OPERATION COMMAND USAGE 

 

It is assumed that EDK project is opened in XPS as in the name 

“aes_modes_20101031_100MHzDDR_cache_barrel_shifter” and then SDK is called 

from XPS menu; “Software > Launch Platform Studio SDK”. After SDK is launched 

SDK project “aes_modes_20101031_100MHzDDR_cache_barrel_shifter” is opened. 

Spartan3E 1600E MicroBlaze board is programmed from SDK menu item “Device 

Configuration>Program FPGA” and software project is run on the board with 

profiler settings done as described in Chapter 5, section 5.2.2. Following is an output 

of the terminal after program runs and shows command usage. 

 

================================================================== 

Advanced Encryption Standard(AES) Test Environment - January, 2011 

Mode of Operations Test Cases 

ECB : Electronic Cook Book 

CBC : Cipher Block Chaining 

CFB : Cipher Feedback 

OFB : Output Feedback 

CTR : Counter 

type "help" to see commands 

================================================================== 

Testtool>help 

 

 - help         : types this help  

 - cat          : concetenate file to the STDOUT  

 - ls           : list the files on the current directory  

 - rm           : remove file, type alone and than enter filename to be deleted  

 - gf           : generate randomly initilalized file  

 - df           : show memory usage  

 - exit         : terminate application  

 - enc/dec/all  : aes engine, use one of the modes below(or both by using "all") and give filename 

to be processed 

                      usage     : enc/dec/all mode v/n filename 

                      mode      : ecb, cbc, cfb, ofb, ctr, all 

                      v/n       : v(verbose), displays operation details, n(no-verbose) 

                      filename  : any filename listed by "ls" command or "test" for test vectors 

 

Testtool>ls 

Testtool>all all n test 

non-verbose mode 

 

Testing NIST delivered test vector(s) using command(all) and mode(all) 
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Encrypting & Decrypting...  

[MK] : Using Mode of Operation : ElectronicCodebook 

[MK] : Using Mode of Operation : ElectronicCodebook 

Encrypting & Decrypting...  

[MK] : Using Mode of Operation : CipherBlockChaining 

[MK] : Using Mode of Operation : CipherBlockChaining 

Encrypting & Decrypting...  

[MK] : Using Mode of Operation : CipherFeedback 

[MK] : Using Mode of Operation : CipherFeedback 

Encrypting & Decrypting...  

[MK] : Using Mode of Operation : OutputFeedback 

[MK] : Using Mode of Operation : OutputFeedback 

Encrypting & Decrypting...  

[MK] : Using Mode of Operation : Counter 

[MK] : Using Mode of Operation : Counter 

 

Testtool>ls 

test_ecb_enc.txt 00000040 

test.txt 00000040 

test_ecb_enc_dec.txt 00000040 

test_cbc_enc.txt 00000040 

test_cbc_enc_dec.txt 00000040 

test_cfb_enc.txt 00000040 

test_cfb_enc_dec.txt 00000040 

test_ofb_enc.txt 00000040 

test_ofb_enc_dec.txt 00000040 

test_ctr_enc.txt 00000040 

test_ctr_enc_dec.txt 00000040 

 

Testtool>cat 

est_ecb_enc.txt 00000040 

test.txt 00000040 

test_ecb_enc_dec.txt 00000040 

test_cbc_enc.txt 00000040 

test_cbc_enc_dec.txt 00000040 

test_cfb_enc.txt 00000040 

test_cfb_enc_dec.txt 00000040 

test_ofb_enc.txt 00000040 

test_ofb_enc_dec.txt 00000040 

test_ctr_enc.txt 00000040 

test_ctr_enc_dec.txt 00000040 

 

Enter filename to be concetenated :test.txt 

file length = 64(bytes) 

0x6B 0xC1 0xBE 0xE2 0x2E 0x40 0x9F 0x96 0xE9 0x3D 0x7E 0x11 0x73 0x93 0x17 0x2A  

0xAE 0x2D 0x8A 0x57 0x1E 0x03 0xAC 0x9C 0x9E 0xB7 0x6F 0xAC 0x45 0xAF 0x8E 0x51  

0x30 0xC8 0x1C 0x46 0xA3 0x5C 0xE4 0x11 0xE5 0xFB 0xC1 0x19 0x1A 0x0A 0x52 0xEF  

0xF6 0x9F 0x24 0x45 0xDF 0x4F 0x9B 0x17 0xAD 0x2B 0x41 0x7B 0xE6 0x6C 0x37 0x10  

 

Testtool>cat 
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test_ecb_enc.txt 00000040 

test.txt 00000040 

test_ecb_enc_dec.txt 00000040 

test_cbc_enc.txt 00000040 

test_cbc_enc_dec.txt 00000040 

test_cfb_enc.txt 00000040 

test_cfb_enc_dec.txt 00000040 

test_ofb_enc.txt 00000040 

test_ofb_enc_dec.txt 00000040 

test_ctr_enc.txt 00000040 

test_ctr_enc_dec.txt 00000040 

 

Enter filename to be concetenated :test_ctr_enc_dec.txt 

file length = 64(bytes) 

 

0x6B 0xC1 0xBE 0xE2 0x2E 0x40 0x9F 0x96 0xE9 0x3D 0x7E 0x11 0x73 0x93 0x17 0x2A  

0xAE 0x2D 0x8A 0x57 0x1E 0x03 0xAC 0x9C 0x9E 0xB7 0x6F 0xAC 0x45 0xAF 0x8E 0x51  

0x30 0xC8 0x1C 0x46 0xA3 0x5C 0xE4 0x11 0xE5 0xFB 0xC1 0x19 0x1A 0x0A 0x52 0xEF  

0xF6 0x9F 0x24 0x45 0xDF 0x4F 0x9B 0x17 0xAD 0x2B 0x41 0x7B 0xE6 0x6C 0x37 0x10  

 

Testtool>df 

Number of Blocks Used : 12 

Number of Blocks Free : 19988 

 

Testtool>gf 

Generating File ...: 

Enter filename to be created :deneme.txt 

Enter file size (decimal) :2000 

 

Testtool>all all n deneme.txt 

non-verbose mode 

Testing file(deneme.txt) using command(all) and mode(all) 

Encrypting & Decrypting...  

Filename : test_ctr_enc.txt 

Concatenated filename [deneme.txt_ecb_enc] 

[MK] : Using Mode of Operation : ElectronicCodebook 

Filename : deneme.txt_ecb_enc 

Concatenated filename [deneme.txt_ecb_enc_dec] 

[MK] : Using Mode of Operation : ElectronicCodebook 

Encrypting & Decrypting...  

Filename : deneme.txt_ecb_enc 

Concatenated filename [deneme.txt_cbc_enc] 

[MK] : Using Mode of Operation : CipherBlockChaining 

Filename : deneme.txt_cbc_enc 

Concatenated filename [deneme.txt_cbc_enc_dec] 

[MK] : Using Mode of Operation : CipherBlockChaining 

Encrypting & Decrypting...  

Filename : deneme.txt_cbc_enc 

Concatenated filename [deneme.txt_cfb_enc] 

[MK] : Using Mode of Operation : CipherFeedback 
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Filename: deneme.txt_cfb_enc 

Concatenated filename [deneme.txt_cfb_enc_dec] 

[MK] : Using Mode of Operation : CipherFeedback 

Encrypting & Decrypting...  

Filename : deneme.txt_cfb_enc 

Concatenated filename [deneme.txt_ofb_enc] 

[MK] : Using Mode of Operation : OutputFeedback 

Filename : deneme.txt_ofb_enc 

Concatenated filename [deneme.txt_ofb_enc_dec] 

[MK] : Using Mode of Operation : OutputFeedback 

Encrypting & Decrypting...  

Filename : deneme.txt_ofb_enc 

Concatenated filename [deneme.txt_ctr_enc] 

[MK] : Using Mode of Operation : Counter 

Filename: deneme.txt_ctr_enc 

Concatenated filename [deneme.txt_ctr_enc_dec] 

[MK] : Using Mode of Operation : Counter 

 

Testtool>ls 

test_ecb_enc.txt 00000040 

test.txt 00000040 

test_ecb_enc_dec.txt 00000040 

test_cbc_enc.txt 00000040 

test_cbc_enc_dec.txt 00000040 

test_cfb_enc.txt 00000040 

test_cfb_enc_dec.txt 00000040 

test_ofb_enc.txt 00000040 

test_ofb_enc_dec.txt 00000040 

test_ctr_enc.txt 00000040 

test_ctr_enc_dec.txt 00000040 

deneme.txt 000007d0 

deneme.txt_ecb_enc 000007d0 

deneme.txt_ecb_enc_dec 000007d0 

deneme.txt_cbc_enc 000007d0 

deneme.txt_cbc_enc_dec 000007d0 

deneme.txt_cfb_enc 000007d0 

deneme.txt_cfb_enc_dec 000007d0 

deneme.txt_ofb_enc 000007d0 

deneme.txt_ofb_enc_dec 000007d0 

deneme.txt_ctr_enc 000007d0 

deneme.txt_ctr_enc_dec 000007d0 

 

Testtool>df 

Number of Blocks Used : 57 

Number of Blocks Free : 19943 

 

Testtool>exit 

-- Exiting main() – 

Figure A.1 An example of commands usage in AES modes of operation project. 
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APPENDIX B – PROFILING RESTRICTIONS 

 

The following restrictions apply when profiling in EDK: 

- Profiling does not measure the time spent in interrupt handlers because 

interrupt handlers typically disable further interrupts from occurring. 

Therefore, it is impossible for profiling interrupts to occur when the program 

is executing an interrupt handler. 

- Profiling can only be done with the standalone platform; it cannot be done in 

the presence of an OS. This is because the profiling libraries are only 

available in the standalone BSP. 

- Recursive functions are not supported. 

- If the timer is directly connected to the processor (for example, when there is 

no interrupt controller), the software application requires additional setup to 

support profiling. 

- The call graph for functions inside C and Math libraries (libc and libm) are 

not generated because these libraries are not compiled with the -pg compiler 

profiling option. 

- Ensure that memory used for collecting profile data is not used by any other 

function in the application. 

- Profiling cannot be done while debugging. Enable profiling only when 

selecting the Run configuration in SDK (Xilinx, 2008). 
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APPENDIX C – PROFILER RESULTS OF RANDOMLY GENERATED 

DATA 

 

In chapter five section 5.3.2, the informative graph is constructed from “Flat 

Profile View” results shown below: 

 

 
Figure C.1 Randomly generated data, 10000 bytes. 
 

 
Figure C.2 Randomly generated data, 50000 bytes. 
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Figure C.3 Randomly generated data, 125000 bytes. 
 

 
Figure C.4 Randomly generated data, 250000 bytes. 
 

 
Figure C.5 Randomly generated data, 500000 bytes. 
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