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İZMİR





ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to the people who have helped and

supported me throughout my project.

I am grateful to my advisor Assoc. Prof. Dr. Olcay AKAY for his continuous

support during this project.

I wish to thank my parents for their undivided support and interest who inspired me

and encouraged me to go my own way, without whom I would be unable to complete

my project.

At last but not the least, I want to thank my friends who appreciated me for my work

and motivated me and finally to God who made all the things possible.

Ozan KOZAKÇIOĞLU
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SPECTRAL DOMAIN WAVEFORM DESIGN FOR MIMO RADAR SYSTEMS

ABSTRACT

In radar systems, interference between the transmit signal and communication

signals possibly existing in the same spectrum band is a serious concern. As a

possible solution to this problem, cognitive radars having transmit signals whose

spectra contain notches are proposed. Two algorithms named SCAN and SHAPE can

be used for designing such radar transmit signals with desirable spectral

characteristics. The SCAN algorithm can also reduce sidelobes of the temporal

autocorrelations of the designed sequences via some additional constraints.

In this thesis, we introduce generalizations of both SCAN and SHAPE algorithms

for multiple-input multiple-output (MIMO) radar systems. SCAN and SHAPE are

both iterative algorithms employing fast Fourier transform (FFT). Hence, they allow

design of long sequences in an efficient manner. We also provide numerical

simulation examples of MIMO SCAN and MIMO SHAPE algorithms comparing

their performances against each other.

The proposed MIMO algorithms can be utilized for generating signals used in

other application areas such as communications. As an example, to generate

orthogonal frequency division multiplexing (OFDM) signals, the proposed methods

can be exploited.

Keywords: Radar sequence design, frequency stopband suppression, MIMO radar

systems

iv



MIMO RADARLAR İÇİN SPEKTRUM BOYUTUNDA SİNYAL TASARIMI

ÖZ

Radar sistemlerinde, gönderim sinyali ile muhtemelen aynı spektrum bandında

mevcut iletişim sinyalleri arasındaki girişim ciddi bir endişe kaynağıdır. Bu probleme

olası bir çözüm olarak, tayfları çentikler içeren verici sinyallere sahip kognitif radarlar

önerilmektedir. SCAN ve SHAPE adında iki algoritma istenilen spektral özelliklere

sahip bu radar gönderim sinyallerinin tasarımı için kullanılabilir. SCAN algoritması,

bazı ilave kısıtlamalar yoluyla tasarımı yapılan dizilerin zamansal

otokorelasyonlarının yan çubuklarını da azaltabilir.

Bu tezde, çok girişli çoklu çıkış (MIMO) radar sistemleri için SCAN ve SHAPE

algoritmalarının genellemeleri sunulmaktadır. SCAN ve SHAPE, hızlı Fourier

dönüşümü (FFT) kullanan iteratif algoritmalardır. Dolayısıyla, uzun dizilerin verimli

bir şekilde tasarımlanmasına izin verirler. MIMO SCAN ve MIMO SHAPE

algoritmalarının performanslarını birbirleriyle karşılaştıran sayısal simülasyon

örnekleri de sağlanmaktadır.

Önerilen MIMO algoritmaları, iletişim gibi diğer uygulama alanlarında kullanılan

sinyalleri üretmek için de kullanılabilir. Örnek olarak, ortogonal frekans bölüşümlü

çoğullama (OFDM) sinyallerinin üretilmesi için önerilen yöntemlerden faydalanmak

mümkündür.

Anahtar kelimeler: Radar dizi tasarımı, frekans stopbant bastırımı, MIMO radar

sistemleri
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CHAPTER ONE

INTRODUCTION

Recently, cognitive radar has drawn the attention of many researchers (Haykin,

2007). Put simply, cognitive radar can adapt itself to the changing dynamics of the

environment. It can be employed when there is a possibility for the radar transmit

signal to interfere with signals emanating from other sources such as local

communication systems, navigation systems, or military communication systems

whose operating frequency band might overlap with the spectral band of the radar

transmit signal. This overlap could be prevented to a certain degree by designing

radar transmit signals with spectral notches over the interfering frequency bands.

There exist various works proposing design of such radar transmit signals with

desirable spectral characteristics (Lindenfeld, 2004), (Wang & Lu, 2010), (Cook

et al., 2010).

There are several types of sequences proposed in the literature employed as radar

transmit signals. Sequences having a constant modulus of one and different phase

values for all of its elements are called unimodular sequences. Unimodular sequences

can be generated by methods which determine the phase values of the sequence

elements using predetermined fixed formulas (Petrolati et al., 2012), (Levanon &

Mozeson, 2004). On the other hand, another way of generating unimodular sequences

is through some iterative numerical optimization algorithms which are started by a

fixed initial sequence (Wang & Lu, 2010), (He et al., 2010), (Song et al., 2015).

Generally, only designing radar transmit sequences having unimodular

characteristic might not fulfil all the requirements of a radar system. Depending on

the application, the designed radar sequences need to be further improved to inherit

some properties, for instance target detection capabilities and good Doppler

resolution. Accordingly, several algorithms have been developed for enhancing

certain properties of the designed radar sequences such as reducing correlation

sidelobe levels in the temporal domain or suppressing some specified frequency bands

in the spectral domain or both (Stoica et al., 2009), (He et al., 2010), (Rowe et al.,

1



2014).

In communications, the idea of suppressing frequencies at some stopbands and

thus forming a sequence is employed to generate orthogonal frequency division

multiplexing (OFDM) signals having desirable power spectral density characteristics.

OFDM signals are orthogonal to each other which means that mutual

cross-correlations of those signals become approximately zero ensuring that they do

not interfere with each other (Sebt et al., 2008).

Radar systems in which only one designed radar transmit sequence is employed are

classified as single input single output (SISO) radar systems. On the other hand, using

at least two radar sequences provides some advantages such as better correlation

properties. Sytstems in which two or more sequences are designed and employed are

called as multiple input and multiple output (MIMO) radar systems. By employing

orthogonal radar transmit sequences, MIMO radars can accomplish greatly increased

virtual aperture which provides better detection performance (Fishler et al., 2006),

improved parameter identifiability (Li et al., 2007), enhanced resolution (Bliss &

Forsythe, 2003) and direct applicability of array techniques (Xu et al., 2008).

In this thesis, we first review two existing techniques that are named as SCAN

(stopband cyclic algorithm-new) (He et al., 2010) and SHAPE (Rowe et al., 2014)

algorithms which have been proposed for designing radar transmit signals with some

spectral domain constraints. Differing from the SHAPE algorithm, the SCAN

algorithm also aims at reducing sidelobe levels of the temporal autocorrelation of the

designed sequence via some additional constraints. Then, we propose extensions of

SCAN and SHAPE for MIMO radar systems and present some simulation examples.

The rest of the thesis is organized as follows: An overview of SCAN and SHAPE

algorithms is presented in Chapter Two. Extensions of both algorithms for MIMO

radar systems are proposed in Chapter Three. Numerical examples of the proposed

MIMO SCAN and MIMO SHAPE algorithms are given in Chapter Four. Comparison

of the proposed algorithms in term of certain performance metrics is carried out in

Chapter Four, as well. Finally, we end up with some concluding remarks in Chapter

2



Five.

Notation: Boldface lowercase letters denote vectors while boldface uppercase

letters denote matrices. [·]H and [·]T represent Hermitian and transpose operations,

respectively, and || · || denotes the Euclidean norm for vectors and matrices. (.)∗ is

reserved for denoting conjugate of complex numbers and the phase of a complex

number is represented by arg{·}. The µth column and the ηth row of matrix A are

denoted, respectively, as A:,µ and Aη,: .

For simplicity, the normalized cyclic frequency values ranging from 0 to 1 Hz. are

used throughout the thesis.

1.1 History of Designing Waveforms Having Constrained Spectra

There exists a vast literature about spectrally constrained radar transmit waveform

design. In this subsection, we briefly review only the most relevant works as

summarized below.

In (Lindenfeld, 2004), both transmit and receive radar waveforms are designed.

The transmit radar waveform is designed by constructing a penalty function which

determines the amount of suppression in particular stopband frequencies. The

developed algorithm is based on Fourier transform (FT). Before generating the

transmit waveform, the set of suppressed frequency bands are specified. Over each

frequency band, the energy level of the spectrum are decreased iteratively. In the

proposed algorithm, determination of frequency stopbands is accomplished by

defining a Hermitian Toeplitz matrix. In that study, a receive radar waveform is also

designed along with the generated transmit waveform.

In the approach proposed in (Wang & Lu, 2011), suppressing the required frequency

stopbands and reducing the correlation sidelobe levels at desired lags are traded-off by

introducing a weighting factor. Through the weighting factor, suppression in time and

frequency domains are performed by favoring one of them over the other on the basis

3



of application requirements. After that, the proposed method is generalized for MIMO

radar systems. This work also inspired the development of SCAN algorithm (He et al.,

2010) covered in detail in the next section.

In (Wang & Lu, 2010), particle swarm optimization (PSO) algorithm is utilized to

design waveforms owning orthogonal sparse frequencies for MIMO radar systems.

The PSO algorithm ensures that the transmit waveforms satisfy the desired sparse

frequency property and good correlation properties of having low sidelobe levels for

both auto-correlation and cross-correlation functions. Designed transmit waveforms

are formed by controlling the phase of sequence elements which have constant

modulus.

In (Song et al., 2015), it is aimed to minimize the exact metric of integrated

sidelobe level (ISL) instead of forming an approximate optimization solution similar

to cyclic algorithm-new (CAN) proposed in (Stoica et al., 2009). This method strives

to directly minimize the ISL metric monotonically. The algorithm derived in the end

is called monotonic minimizer for integrated sidelobe level (MISL). The MISL

algorithm employs the so-called majorization-minimization (MM) method which is

implemented using the fast Fourier Transform (FFT). The MM method aims to

provide a solution by converting a formidable minimization problem into a series of

simple problems.

In (Aubry et al., 2016), an alternative technique is proposed to compose signals for

increased performance in terms of signal to interference plus noise ratio (SINR). The

proposed technique aims to decrease interference in particular bands which are utilized

by both radar and communication signals in a shared fashion.

Designing radar transmit waveforms by defining some masks which provide a

desired spectrum shape is introduced in (Patton et al., 2012). In that method, radar

waveforms are designed in order to decrease the transmitted energy in the stopband

with the help of a penalty function which is implemented via the discrete-time Fourier

Transform (DTFT).
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According to (Liang et al., 2015), to obtain the maximum amount of transmitted

power in active sensing, the waveforms of interest should have constant modulus. The

purpose of that study is to prevent mutual interferences of employed radio frequencies

by satisfying both frequency and time domain constraints. To overcome the

interference problem, the authors offer an approach which forms the designed

waveforms through Lagrange programming neural network (LPNN) which separately

forms the real and imaginary parts of a waveform.

In (Clancy & Walker, 2006), OFDM signals are generated in accordance with a

desired signal spectrum. By modulating the transmitted power via each sub-carrier,

the final ODFM signal is formed.

Except for the above mentioned studies, some additional works also exist about

designing sequences having good correlation properties and desirable spectral

characteristics. For instance, in (Petrolati et al., 2012), the formulation of the

so-called PAT sequences is introduced. These sequences are fixed sequences with

well-defined phase formulations. Performance of PAT sequences is compared against

similar type of existing radar sequences such as Frank sequence and P1, P2, and Px

sequences (Levanon & Mozeson, 2004).
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CHAPTER TWO

SCAN AND SHAPE ALGORITHMS FOR DESIGNING RADAR TRANSMIT

SEQUENCES

In this chapter, we review the algorithms of SCAN and SHAPE from the existing

literature and provide numerical examples for SISO systems.

2.1 SCAN Algorithm

The SCAN algorithm was proposed for designing unimodular (i.e. constant

modulus) sequences by applying constraints both in temporal and spectral domains

(He et al., 2010). SCAN can be computed by utilizing FFT, and hence, is

computationally quite efficient. Another advantage of the SCAN algorithm is that it

can be initialized by random phased unimodular sequences of large lengths. Every

realization of the algorithm with a random initialization produces a different new

sequence with similar good properties.

Let us assume that the spectrum of the complex valued length-N radar transmit

sequence, x[n], for n = 1,2, . . . ,N, to be designed has stopbands (notches) in the

following set of normalized frequency bands

Ω =

Ns⋃
s=1

( fs1, fs2) (2.1)

where ( fs1, fs2) corresponds to the sth stopband and Ns is the number of stopbands. The

number of samples, Ñ, for calculating the discrete Fourier transform (DFT) is chosen

large enough for densely covering Ω. Here, the (n,m)th element of Ñ × Ñ DFT matrix

FÑ can be given as

FÑ[n,m] =
1
√

Ñ
e j2π nm

Ñ , n,m = 0, . . . , Ñ −1. (2.2)

A matrix S is created by including the columns of FÑ corresponding to only the

normalized frequencies within Ω. Another matrix G is formed by the remaining

6



columns of FÑ . Then, suppression of spectral power of x[n] in Ω can be realized by

solving the following minimization problem (He et al., 2010)

min
x,α

J1(x,α) =
∥∥∥∥x̃−Gα

∥∥∥∥2

subject to |x[n]| = 1 n = 1, . . . ,N
(2.3)

where x̃ = [x[1] . . . x[N] 0 . . . 0]T
Ñ×1

and α is a vector of auxiliary variables. In

addition to spectral suppression, SCAN can also manage to reduce autocorrelation

sidelobes of x[n] by utilizing the CAN (cyclic algorithm-new) algorithm (Stoica et al.,

2009). CAN aims to minimize the performance metric of integrated sidelobe level

(ISL) which is defined (Stoica et al., 2009) as

ISL = 2
N−1∑
k=1

|rx[k]|2. (2.4)

The merit factor (MF) is defined in (Stoica et al., 2009), (He et al., 2012) as,

MF =
|rx[0]|2

N−1∑
k=−(N−1)

k,0

|rx[k]|2
. (2.5)

In Eqn. (2.4), rx[k] denotes the aperiodic autocorrelation of x[n]. It is defined (Stoica

et al., 2009) as

rx[k] =

N∑
n=k+1

x[n]x∗[n− k] = r∗x[−k] , k = 0, . . . ,N −1. (2.6)

Utilizing 2N×2N DFT matrix F2N , suppression of autocorrelation sidelobes can be

accomplished by solving the following minimization problem (He et al., 2010)

min
x,v

J2(x,v) =

∥∥∥∥∥∥∥∥FH
2N

 x

0N×1

−v

∥∥∥∥∥∥∥∥
2

subject to |x[n]| = 1, n = 1, . . . ,N

|v[n]| =
1
√

2
, n = 1, . . .2N

(2.7)

where x = [x[1] x[2] . . . x[N]]T is the designed sequence and v = [v[1] v[2] . . . v[2N]]T

is a constant-valued vector.
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The two minimization problems in Eqns. (2.3) and (2.7) can be brought together

so that both spectral stopband and temporal autocorrelation sidelobe constraints are

combined in a single minimization problem which can be formulated (He et al., 2010)

as

min
x,α,v

J(x,α,v) = λ
∥∥∥∥x̃−Gα

∥∥∥∥2
+ (1−λ)

∥∥∥∥∥∥∥∥FH
2N

 x

0N×1

−v

∥∥∥∥∥∥∥∥
2

subject to |x[n]| = 1, n = 1, . . . ,N

|v[n]| =
1
√

2
, n = 1, . . . ,2N

(2.8)

where 0 ≤ λ ≤ 1 is a weighting factor controlling the relative weight of the two cost

functions J1 and J2.

2.1.1 Simulation Examples for SCAN Algorithm

In this section, we perform SCAN algorithm to suppress a predetermined spectral

band. We design a unimodular sequence of length N = 100 along with a spectral

notch. The spectral notch is placed in the range of normalized frequencies

Ω = [0.35,0.45). The weighting factor λ representing the trade-off between temporal

and spectral constraints is chosen as λ = 0.8 preferring spectral suppression more.

The SCAN algorithm is initialized by a realization of uniformly distributed random

phased unimodular sequence with length N = 100. In the implementation phase, the

DFT size of the SCAN algorithm is assigned as 1000 to densely cover all the

frequency band. The number of iterations is fixed beforehand as 105 in all the

simulation examples below.

For the first design example, the spectra of initial and final designed sequences are

shown in Figure 2.1. To observe temporal suppression of autocorrelation sidelobes,

initial and designed autocorrelations are shown in Figure 2.2.

After observing autocorrelations and spectra of sequences, we can state that both

autocorrelation and spectrum of the designed sequence are suppressed compared to

autocorrelation and spectrum of initial sequence, respectively.
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Figure 2.1 Initial and final designed spectra via SCAN algorithm with length N = 100 and weighting

factor λ = 0.8. The spectrol notch is at Ω = [0.35,0.45) Hz

Figure 2.2 Autocorrelations of initial and final designed sequences via SCAN algorithm with length

N = 100 and weighting factor λ = 0.8
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If the weighting factor λ is allowed to have a slightly larger value for each different

realization, spectral suppression becomes better in contrast to suppression of temporal

autocorrelation sidelobes. To observe this trade-off effect, we employ different

weighting factor, λ, values between 0.1 and 1 in the same simulation example above.

The resultant ISL values are plotted in Figure 2.3.

Figure 2.3 The obtained ISL values with respect to changing weighting factor values between λ = 0.1

and λ = 1

As the value of the weighting factor, λ, increases, the amount of temporal

suppression decreases. Consequently, low temporal suppression leads to a higher ISL

value. As a result of the trade-off between suppression in spectral and temporal

domains, as long as the value of λ increases, the resultant ISL value also increases.

When the weighting factor becomes unity, λ = 1, no temporal suppression occurs and

the ISL value suddenly jumps to a very high value.

In our second simulation example for SCAN algorithm, we design a unimodular

sequence of length N = 1000 having multiple spectral notches in the following

normalized frequency bands,

Ω = [0,0.11)∪ [0.13,0.19)∪ [0.25,0.36)∪ [0.40,0.65)∪ [0.80,0.87)∪ [0.94,1).

The weighting factor is chosen as λ = 0.9 in order to favor spectral suppression more.

The SCAN algorithm is initialized by a uniformly distributed random phased

unimodular sequence with length N = 1000. The DFT size is chosen as 1000. The

10



spectra of initial and final designed sequences are shown in Figures 2.4 and 2.5,

respectively, and the autocorrelations of initial and final designed sequences are

shown in Figure 2.6.

Figure 2.4 The spectrum of initial random phased sequence

Figure 2.5 The spectrum of final designed sequence having multiple notches in Ω = [0,0.11) ∪

[0.13,0.19)∪ [0.25,0.36)∪ [0.40,0.65)∪ [0.80,0.87)∪ [0.94,1) with λ = 0.9 and N = 1000

It can be seen that the designed final spectrum includes the desired suppressed

notches. Note that since the value of λ is quite high, temporal suppression is of

minimal amount.
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Figure 2.6 Autocorrelations of the initial and final designed sequences with λ = 0.9 and N = 1000

2.2 SHAPE Algorithm

Especially for wideband radar applications, designing sequences by shaping their

spectrum becomes important. Unlike the SCAN algorithm, the SHAPE algorithm is

purely based on spectral constraints (Rowe et al., 2014). For a wideband radar, a

waveform might be required to contain notches in certain predefined spectral bands.

The SHAPE algorithm can manage shaping of the spectrum in a computationally

efficient manner by employing FFT and with the aid of predefined upper and lower

spectral bounds.

The cost function to be minimized can be expressed as

min
x,θ

∥∥∥∥FH
N x−y� e jθ

∥∥∥∥2

subject to |x[n]|2 = h[n], for n = 1, . . . ,N
(2.9)

where � represents element-wise product operation, x ∈ CN×1 is the designed

sequence, y ∈ RN×1 is the nonnegative valued desired spectrum magnitude, and

FN ∈ C
N×N represents the unitary DFT matrix. θ ∈ RN×1 is an auxiliary phase vector.

The constant modulus constraint is signified by h = [h[1] h[2] . . . h[N] ]T which could

be formed by utilizing common window functions (rectangular, raised cosine,

triangular, etc.) (Rowe et al., 2014).

Instead of fitting to an exact spectrum as y in Eqn. (2.9), one can allow the
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amplitude of the spectrum to stay between an upper spectral bound, u( f ), and a lower

spectral bound, l( f ). These bound functions can be approximated as vectors

u = [u[1] u[2] . . . u[N] ]T and l = [l[1] l[2] . . . l[N] ]T sampled on the used frequency

grid points. Relaxing on the exact spectrum shape by employing bounds makes the

problem easier and more manageable. Thus, one can search for a spectrum, z, with its

modulus contained within the upper and lower spectral bounds. The accordingly

modified minimization problem becomes (Rowe et al., 2014)

min
x,β,z

∥∥∥∥FH
N x−βz

∥∥∥∥2

subject to |x[n]|2 = h[n], for n = 1, . . . ,N

|z[n]| ≤ u[n], for n = 1, . . . ,N

|z[n]| ≥ l[n], for n = 1, . . . ,N.

(2.10)

In Eqn. (2.10), β is an auxiliary scale factor which is introduced to compensate for any

likely energy mismatch and phase offset between the designed time domain sequence,

x, and the spectrum, z.

2.2.1 Simulation Examples for SHAPE Algorithm

In this section, we employ the SHAPE algorithm to design sequences with

suppressed spectral bands. In our first example, we design a unimodular sequence of

length N = 100 having only one spectral notch. We would like to note again that the

SHAPE algorithm merely deals with spectral suppression ignoring any temporal

suppression. The SHAPE algorithm is initialized by a realization of uniformly

distributed random phased unimodular sequence with length N = 100. The spectral

notch is placed in the normalized frequency interval of Ω = [0.35,0.45). We employ

spectral upper bound of −10 dB over the passband and −30 dB in the stopband. In

this simulation example, no spectral lower bound is employed. In order to terminate

the algorithm, the total number of iterations is fixed as 105. The envelope constraint is

chosen as a regular rectangular window, h = [1 1 . . . 1 ]T . The spectra of initial and

designed final sequences are shown in Figure 2.7. The employed spectral upper

bound is shown using a green line. It can be seen that the SHAPE algorithm puts a
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notch at the required frequency band and forces the whole spectrum below the upper

spectral bound.

Figure 2.7 The spectra of initial and desined final sequences when the frequency stopband located in

Ω = [0.35,0.45) and with N = 100

In our second example, we design a unimodular sequence of length N = 1000 having

multiple spectral notches. We choose the six normalized frequency stopbands as

Ω = [0,0.11)∪ [0.13,0.19)∪ [0.25,0.36)∪ [0.40,0.65)∪ [0.80,0.87)∪ [0.94,1).

The SHAPE algorithm is initialized by a uniformly distributed random phased

unimodular sequence with length N = 1000. We utilize spectral upper bounds of −10

dB in the passband and of −30 dB in the stopband, respectively. No lower spectral

bound is utilized. As the envelope constraint, we choose a regular rectangular

window, h = [1 1 . . . 1 ]T . To stop the algorithm, the total number of iterations is

determined in advance as 105. The spectra of initial and final designed sequences are

shown in Figure 2.8. The employed spectral upper bound is shown using a green line.

Again, the algorithm is able to form the desired notches and keep the designed

spectrum below the employed upper spectral bound.

2.3 Comparison of SCAN and SHAPE Algorithms

We perform a simulation example to compare performances of SCAN and SHAPE

algorithms. In this example, we assign the value of the parameter λ in the SCAN

14



Figure 2.8 The spectra of initial and final designed sequences with N = 1000

algorithm as unity (λ = 1). Thus, the temporal correlation constraint is completely

removed and the SCAN algorithm performs the sequence design based solely on the

spectral constraint. Using both SCAN and SHAPE algorithms, we design unimodular

sequences of length N = 100 with a spectral notch in the normalized frequency band

of Ω = [0.5,0.55). Both algorithms are initialized with the same realization of a

uniformly distributed random phased unimodular sequence with length N = 100. In

implementing both algorithms, we perform DFTs of length 1000. In the SHAPE

algorithm, we employ a spectral upper bound of −10 dB over the passband and of

−30 dB in the stopband. We employ no lower spectral bound. The envelope constraint

is chosen as a regular rectangular window h = [1 1 . . . 1 ]T . To compare both

algorithms on an equal footing, the number of iterations is fixed beforehand as 105.

The spectra of initial and final designed sequences are shown in Figures 2.9 and 2.10.

Figure 2.9 shows the spectra of the initial and the final designed sequences by the

SCAN algorithm. Similarly, Figure 2.10 displays the spectra of the initial and final

designed sequences by the SHAPE algorithm. The employed spectral upper bound is

shown using a green line.

By looking at the spectra of the final designed sequences, we can say that SCAN

produces a deeper notch (approximately −60 dB) than the SHAPE algorithm in which

the depth of the notch is determined by the given spectral upper bound. In contrast, the

SCAN algorithm does not require employment of any spectral bounds.
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Figure 2.9 The spectra of initial and final designed sequences via SCAN algorithm with N = 100 and

λ = 1

Figure 2.10 The spectra of initial and final designed sequences via SHAPE algorithm with N = 100
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CHAPTER THREE

EXTENSIONS TO MIMO

In this chapter, we extend the formulations of SCAN and SHAPE algorithms for

MIMO systems. In generalizing SISO versions of SCAN and SHAPE algorithms, we

have been inspired by (He et al., 2009) and (He et al., 2012) where the CAN

algorithm was generalized into MIMO systems. Thanks to using mutually orthogonal

transmit sequences, MIMO radar systems might provide better detection

performance, improved parameter estimation, and better resolution (He et al., 2012).

Both MIMO SCAN and MIMO SHAPE algorithms are initialized with a set of

sequences which can be represented as columns of a matrix as follows

X(0) = [ x1 |x2 | . . . |xM]N×M (3.1)

where the mth column represents the mth initial sequence

xm = [xm[1] xm[2] . . . xm[N] ]T . Note that there are M initial sequences of length N.

Aperiodic cross-correlation of two sequences xm1 and xm2 can be defined (He et al.,

2012) as

rm1m2[k] =

N∑
n=k+1

xm1[n]x∗m2
[n− k] = r∗m1m2

[−k] (3.2)

where m1,m2 = 1,2, . . . ,M and n = 1,2, . . . ,N. It is desired to have low level

cross-correlations between designed transmitted sequences.

The cross-energy spectral density (CESD), Pm1,m2( f ), on the other hand, can be

defined (Alessio, 2015) via the DTFT of rm1,m2[k] as

Pm1,m2( f ) =

∞∑
k=−∞

rm1,m2[k]e− j2π f k. (3.3)

3.1 MIMO SCAN Algorithm

In this section, we extend the SCAN algorithm in order to design transmit

sequences for MIMO radar systems. In MIMO sequence design formulations,
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operations on vectors are generalized into matrix operations. This is because the

MIMO SCAN algorithm is initialized by multiple sequences which are arranged in

the form of a matrix as shown in Eqn. (3.1).

To begin, we assume that the spectrum of the complex valued N ×M radar transmit

matrix X to be designed has stopbands in the normalized frequency bands, Ω, as

defined previously in Eqn. (2.1). Similarly, the (n,m)th element of the Ñ × Ñ DFT

matrix, FÑ , is defined as in Eqn. (2.2) in the previous chapter.

A matrix S is created by including the columns of FÑ corresponding to only the

normalized frequencies within Ω. Another matrix G is formed by the remaining

columns of FÑ . Then, suppression of spectral power of X in Ω can be realized by

solving the following minimization problem (He et al., 2010)

min
X,A

J1(X,A) =
∥∥∥∥X̃−GA

∥∥∥∥2

subject to |X[n,m]| = 1 n = 1, . . . ,N

m = 1, . . . ,M

(3.4)

where X̃ =

 XN×M

0(Ñ−N)×M


Ñ×M

and A is a matrix of auxiliary variables.

Similar to its SISO counterpart, the MIMO SCAN algorithm can also perform

temporal suppression on autocorrelation sidelobes of the designed sequences in XN×M

by implementing the CAN algorithm for multiple initial sequences as shown in (He

et al., 2012). Utilizing the 2N × 2N DFT matrix F2N , suppression of autocorrelation

sidelobes can be realized successfully by solving the following optimization problem

min
X,V

J2(X,V) =

∥∥∥∥∥∥∥∥FH
2N

 X

0N×M

−V

∥∥∥∥∥∥∥∥
2

subject to |X[n,m]| = 1, n = 1, . . . ,N

m = 1, . . . ,M

|V[n,m]| =
1
√

2
, n = 1, . . .2N

m = 1, . . . ,M

(3.5)
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where X = [ x1 | x2 | . . . | xM]N×M is the matrix of designed sequences and

V = [ v1 |v2 | . . . |vM]2N×M is a constant-valued matrix.

Both minimization problems in Eqns. (3.4) and (3.5) can be combined using a

weighting factor λ creating a single minimization problem. Thus, spectral suppression

at normalized frequency stopbands and temporal suppression of autocorrelation

sidelobes can be accomplished in a single minimization problem as follows

min
X,A,V

J(X,A,V) = λ
∥∥∥∥X̃−GA

∥∥∥∥2
+ (1−λ)

∥∥∥∥∥∥∥∥FH
2N

 X

0N×1

−V

∥∥∥∥∥∥∥∥
2

subject to |X[n,m]| = 1, n = 1, . . . ,N

m = 1, . . . ,M

|V[n,m]| =
1
√

2
, n = 1, . . . ,2N

m = 1, . . . ,M

(3.6)

where 0 ≤ λ ≤ 1 is the weighting factor controlling the relative weight of the two cost

functions J1 and J2.

3.1.1 Steps of MIMO SCAN Algorithm

Before outlining the steps of the MIMO SCAN algorithm, the following input

parameters are to be determined. The input matrix X(0)
N×M in (3.1) involving the initial

set of sequences, the weighting parameter, λ, the DFT size of the algorithm, Ñ, and

the set of frequency bands, Ω, to be suppressed are assigned first. Then, the matrix G

is formed as explained prior to Eqn. (3.4). After those required initializations, the

steps of the MIMO SCAN algorithm can be executed as follows:

Step #1: Form the zero-padded matrix, X̃Ñ×M, in an analogous manner to x̃ in (2.3).

Then, calculateA = GHX̃Ñ×M.

Step #2: Form the zero-padded matrix, X2N×M, and compute 2N ×M matrix, V =

1√
2
e jarg

{
FH

2NX2N×M
}
.

Step #3: Rename the first N rows of GA and F2NV as C1 and C2, respectively.
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Step #4: Find the resultant matrix at iteration i as X(i) = e jarg{λC1+(1−λ)C2}.

Iteration: Perform Step 1 through Step 4 for a predetermined number of iterations.

3.2 MIMO SHAPE Algorithm

Similar to the MIMO SCAN algorithm, we extend the SHAPE algorithm (Rowe

et al., 2014) in order to become applicable for MIMO radar systems. For MIMO

SHAPE algorithm, the minimization problem to be solved can be written as

min
X, θ

∥∥∥∥FH
N X−Y� e jθ

∥∥∥∥2

subject to |X[n,m]|2 = h[n], for n = 1, . . . ,N

m = 1, . . . ,M

(3.7)

where � symbolizes element-wise product operation, X ∈CN×M is the designed matrix

comprising unimodular radar sequences, Y ∈ RN×M is the nonnegative valued desired

spectra magnitude, and FN ∈ C
N×N denotes the unitary DFT matrix. θ ∈ RN×M is

an auxiliary phase matrix. The constant modulus constraint for the designed matrix

is emphasized by h = [h[1] h[2] . . . h[N] ]T which might be formed by employing

common window functions (rectangular, raised cosine, triangular, etc.).

For the sake of simplifying the solution, lower, l[n], and upper, u[n], spectral bounds

are incorporated into the problem as

min
X, β, Z

∥∥∥∥FH
N X−β�Z

∥∥∥∥2

subject to |X[n,m]|2 = h[n], for n = 1, . . . ,N and m = 1, . . . ,M

|Z[n,m]| ≤ u[n], for n = 1, . . . ,N and m = 1, . . . ,M

|Z[n,m]| ≥ l[n], for n = 1, . . . ,N and m = 1, . . . ,M.

(3.8)

In Eqn. (3.8), columns of ZN×M include the spectra of designed sequences. βN×M

represents an auxiliary scale matrix. Each column of β is formed by the same element.
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For example, the mth column of β contains the elements of βm as

β:,m =


βm
...

βm


N×1

. (3.9)

MIMO SHAPE algorithm is started by the initial matrix X(0)
N×M which contains M

initial sequences of length N as its columns. The mth column of the N ×M auxiliary

scale matrix, β, is initialized as,

β(0)
:,m =


1
...

1

 . (3.10)

3.2.1 Steps of MIMO SHAPE Algorithm

MIMO SHAPE algorithm is started by assigning some initial input parameters.

The matrix X(0)
N×M contains M initial sequences of length N as its columns. The mth

column of the N ×M auxiliary scale matrix, β, is initialized as β(0)
:,m = [1 1 . . . 1]T . The

upper, u = [u[1] u[2] . . . u[N] ]T , and lower, l = [l[1] l[2] . . . l[N] ]T , bound vectors

for spectral suppression and the window vector, h = [h[1] h[2] . . . h[N] ]T , for

forming time-domain envelope are assigned. After assigning these initial parameters,

the steps of the MIMO SHAPE algorithm are performed as follows.

Step #1: Initialize the temporary matrix QN×M = FH
N X(0)

N×M and divide the mth column

of QN×M by the scalar value, βm, which is the scalar forming the mth column of the

N ×M auxiliary scale matrix, β.

Step #2: In parallel to the pseudocode of the SISO SHAPE algorithm given in (Rowe

et al., 2014), perform comparisons of the elements in each and every column of the

temporary matrix QN×M with the corresponding elements of the upper, u, and lower,

l, spectral bound vectors. Via execution of these comparisons, determine the elements

of the auxiliary matrix Z(i) at the ith iteration. In these comparisons; if Q[n,m] > u[n],

then assign Z(i)[n,m] = u[n] Q[n,m]
|Q[n,m]| ; if Q[n,m] < l[n], then assign

21



Z(i)[n,m] = l[n] Q[n,m]
|Q[n,m]| . Otherwise, assign Z(i)[n,m] = Q[n,m].

Step #3: Calculate β(i)
m which is scalar forming the mth column of the N ×M auxiliary

scale matrix, β(i) at the ith iteration using the mth columns of both X(i−1) and Z(i), as

β(i)
m =

ZH[n,m]FH
N XN×M[n,m]

‖Z[n,m]‖2 .

Step #4: Compute the mth column of the matrix V(i) by multiplying the mth column of

FNZ(i) by the scalar β(i)
m .

Step #5: In parallel to the pseudocode of the SISO SHAPE algorithm given in (Rowe

et al., 2014), calculate the elements of the mth column of X(i) using preassigned

window vector h and the corresponding mth column of V(i). If V[n,m] , h[n], then

assign X(i)[n,m] =
√

h[n] V[n,m]
|V[n,m]| . Otherwise, assign X(i)[n,m] = V[n,m].

Step #6: Calculate QN×M = FH
N X(i)

N×M and divide the mth column of FH
N X(i)

N×M by the

scalar β(i)
m .

Iteration: Perform Step 2 through Step 6 for a predetermined number of iterations.
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CHAPTER FOUR

SIMULATION RESULTS FOR MIMO SCAN AND MIMO SHAPE

ALGORITHMS

In this chapter, we present simulation examples of the MIMO SCAN and MIMO

SHAPE algorithms introduced in the previous chapter. Through the examples, we

compare performances of the two algorithms against each other. In all of the examples,

both algorithms are initialized with uniformly distributed random phased unimodular

sequences of length N = 100.

4.1 Simulation Examples for MIMO SCAN

The length of the sequences to be designed and the number of designed sequences

are taken as N = 100 and M = 2, respectively. Thus, when finished, the algorithm

produces two unimodular sequences as columns of a 100× 2 matrix. The weighting

factor λ introduced in Eqn. (3.6) determines the preference between the temporal and

spectral constraints and is chosen as λ = 0.8 favouring spectral shaping more than

lowering correlation sidelobes. A spectral notch in the normalized frequency band,

Ω = [0.65,0.8), is placed for both designed sequences. The FFT size is taken as

Ñ = 1000 and the number of iterations is fixed as 2×105. The spectra of the resultant

first and second sequences can be seen in Figures 4.1 and 4.2, respectively. The

CESD of the initial and designed sequences are plotted in Figure 4.3. It is interesting

to observe that similar to the individual spectra in Figures 4.1 and 4.2, the CESD of

the designed sequences in Figure 4.3 also contains a spectral notch in the required

stopband. Moreover, cross-correlation of the designed sequences displayed in Figure

4.4 remains low obeying almost zero cross-correlation requirement for nearly

orthogonal sequences. Finally, sidelobes of the autocorrelations of both designed

sequences are greatly suppressed as indicated in Figures 4.5 and 4.6.

We can measure performance of our proposed algorithms by calculating certain

performance metrics of the initial and final designed sequences. Two of those metrics
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Figure 4.1 Initial and final spectra of the first designed sequence

Figure 4.2 Initial and final spectra of the second designed sequence

Figure 4.3 CESDs of initial and final designed sequences

24



Figure 4.4 Cross-correlations of initial and final designed sequences

Figure 4.5 Initial and final autocorrelations of the first designed sequence

Figure 4.6 Initial and final autocorrelations of the second designed sequence
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are ISL in Eqn. (2.4) and MF in Eqn. (2.5). We can also look at the stopband levels of

the designed spectra to determine how effectively the design algorithm suppresses the

desired frequency bands.

Table 4.1 displays the performance metrics of the initial and final sequences

designed by MIMO SCAN algorithm for the weighting parameter values of λ = 0.8

and λ = 0.2. One should keep in mind that it is desirable to obtain ISL values as low

as possible. Looking at Eqn. (2.8) one can see that when λ < 0.5 the MIMO SCAN

algorithm constrains the correlations of the designed sequences more than their

spectra. This is apparent in the last two rows of Table 4.1 for which λ = 0.2 and the

ISL values are lower than that of final designed sequences for λ = 0.8. On the

contrary, when λ = 0.8, spectra of the designed sequences are constrained more as

indicated by the much lower stopband levels.

Similar to ISL, the metric of MF also measures suppression of autocorrelation

sidelobes, although, contrary to ISL, MF is desired to be as high as possible. The

third column of Table 4.1 represents MF values of the initial and final designed

sequences via the MIMO SCAN algorithm. Again, the MF values of MIMO SCAN

with λ = 0.2 are better compared to the values obtained when λ = 0.8.

By virtue of their definitions, the ISL and MF performance metrics are concerned

with temporal autocorrelation sidelobes, but not spectral properties. Hence, to evaluate

spectral performances of our proposed algorithms, we measure the stopband level in

(dB) by averaging (dB) values over the corresponding stopband frequencies. Stopband

level indicates the amount of spectral suppression by the design algorithm. It can be

seen from the fourth column of Table 4.1 that, in contrast to ISL and MF, when the

value of λ is larger, spectral suppression performance of MIMO SCAN is much better.

This is because when λ > 0.5 the spectrum is constrained more than autocorrelation.

In our second example, we design three unimodular sequences by MIMO SCAN

algorithm. The sample length and the number of designed sequences are taken as

N = 100 and M = 3, respectively. When the algorithm terminates after a pre-determined

number of iterations, the matrix X to be designed, is generated. The weighting factor
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Table 4.1 Performance metrics of MIMO SCAN when designing two radar sequences

MIMO SCAN ISL MF Stopband Level (dB)

Initial 1st Sequence 8.538e+03 1.1712 -3.1252

Initial 2nd Sequence 8.834e+03 1.1319 -2.2628

Final 1st Sequence (λ = 0.8) 2.6824e+03 3.7280 -23.5015

Final 2nd Sequence (λ = 0.8) 2.5194e+03 3.6992 -24.0894

Final 1st Sequence (λ = 0.2) 1.0186e+03 9.8172 -1.9971

Final 2nd Sequence (λ = 0.2) 759.7848 13.1616 -1.8820

of the MIMO SCAN algorithm is chosen as λ = 0.8. A spectral notch is placed in the

normalized frequency band of Ω = [0.75,0.85). Figures 4.7, 4.8, and 4.9 display the

spectra of the initial and final designed sequences. Over the stopband frequency, the

suppression is approximately −15 dB.

Figure 4.7 Initial and final spectra of the first designed sequence

CESDs of initial and final sequences are shown in Figures 4.10, 4.11, and 4.12 for

the first and second designed sequences, the first and third designed sequences, and the

second and third designed sequences, respectively. It can be seen that CESDs of the

designed sequences also contain a notch at the desired stopband with an approximate

power of −25 dB.

Figures 4.13, 4.14, and 4.15 exhibit cross-correlations of the inital and final
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Figure 4.8 Initial and final spectra of the second designed sequence

Figure 4.9 Initial and final spectra of the third designed sequence

Figure 4.10 The initial and final CESDs of first and second designed sequences
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Figure 4.11 The initial and final CESDs of first and third designed sequences

Figure 4.12 The initial and final CESDs of second and third designed sequences
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sequences for the first and second designed sequences, the first and third designed

sequences, and the second and third designed sequences, respectively.

Figure 4.13 Initial and final cross-correlations of first and second designed sequences

Figure 4.14 Initial and final cross-correlations of first and third designed sequences

In addition to cross-correlations, we also examine autocorrelations of the designed

sequences. Figures 4.16, 4.17, and 4.18 display autocorrelations of the first, second,

and third designed sequences, respectively. As a consequence of a rather high λ value,

temporal suppression is of secondary importance in the MIMO SCAN algorithm.

Hence, spectral suppression is more pronounced than temporal suppression.

Table 4.2 displays the performance metrics of the initial and final sequences

designed by MIMO SCAN algorithm for λ = 0.8. Similar to the previous simulation

example, MIMO SCAN algorithm provides suppression of autocorrelation sidelobes
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Figure 4.15 Initial and final cross-correlations of second and third designed sequences

Figure 4.16 Initial and final autocorrelations of the first designed sequence

Figure 4.17 Initial and final autocorrelations of the second designed sequence
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Figure 4.18 Initial and final autocorrelations of the third designed sequence

Table 4.2 Performance metrics of MIMO SCAN having three radar sequences

MIMO SCAN ISL MF Stopband Level (dB)

Initial 1st Sequence 8.5385e+03 1.1712 -4.1152

Initial 2nd Sequence 8.8345e+03 1.1319 -1.1418

Initial 3rd Sequence 1.0856e+04 0.9211 -3.1459

Final 1st Sequence 1.9630e+03 5.0943 -13.5619

Final 2nd Sequence 2.0149e+03 4.9630 -13.7411

Final 3rd Sequence 1.8635e+03 5.3663 -13.8912

as indicated by the decreased ISL values for all three designed sequences. In parallel,

the MF values of designed sequences are increased as expected. By virtue of high

weighting parameter value (λ = 0.8), stopband levels for the designed sequences are

considerably reduced over the predetermined stopband.

4.2 Simulation Examples for MIMO SHAPE

In the first example, we take the sequence length as N = 100 and the number of

designed sequences as M = 2. Except for the notch, the spectral upper bound, u, is

merely applied to force the spectrum below 0 dB across the whole frequency range.

Over the stopband, Ω = [0.65,0.8), the designed spectrum is forced to be under −40
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dB. No spectral lower bound, l, is applied in the first example. The FFT size is taken

to be Ñ = 1000 and the number of iterations is fixed as 2× 105. The spectra of the

resultant designed sequences can be seen in Figures 4.19 and 4.20, respectively, where

the employed spectral upper bound is shown using a green line. As can be seen in

Figures 4.19 and 4.20, the spectra of both designed sequences contain the desired notch

of −40 dB as specified by the employed spectral upper bound. It is interesting to see

from Figure 4.21 that the CESD of the designed sequences contains a deeper notch of

−60 dB although it does not obey the spectral upper bound at other frequency values.

Finally, cross-correlation sidelobes of the designed sequences remain quite low as seen

in Figure 4.22 providing near orthogonality of the designed sequences. Furthermore,

sidelobes of the autocorrelations of both designed sequences are not suppressed as

indicated in Figures 4.23 and 4.24. This is no surprise because the MIMO SHAPE

algorithm does not employ temporal constraints.

Figure 4.19 Initial and final spectra of the first designed sequence

Table 4.3 displays the performance metric values of the initial and final designed

sequences by MIMO SHAPE algorithm. Notice that ISL values of the sequences

designed by MIMO SHAPE algorithm are worse than the ISL values of initial

sequences. This is because the SHAPE algorithm constrains only the spectra of

designed sequences but not their autocorrelations. MF values of the initial and final

designed sequences are given in the third column of Table 4.3. Similar to ISL values,

MF values of the designed sequences via MIMO SHAPE are worse than that of initial

sequences.
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Figure 4.20 Initial and final spectra of the second designed sequence

Figure 4.21 CESDs of initial and final designed sequences

Figure 4.22 Cross-correlations of initial and final designed sequences
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Figure 4.23 Initial and final autocorrelations of the first designed sequence

Figure 4.24 Initial and final autocorrelations of the second designed sequence
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Table 4.3 Performance metrics of MIMO SHAPE having two radar sequences

MIMO SHAPE ISL MF Stopband Level (dB)

Initial 1st Sequence 8.538e+03 1.1712 -3.1252

Initial 2nd Sequence 8.834e+03 1.1319 -2.2628

Final 1st Sequence 1.2554e+04 0.7966 -43.3248

Final 2nd Sequence 1.3386e+04 0.7470 -45.2132

Average stopband levels are presented in the fourth column of Table 4.3. Based

on the much lower stopband levels obtained by MIMO SHAPE, we can conclude that

spectral performance of MIMO SHAPE is much better than that of MIMO SCAN. This

is no surprise because, by design, the SHAPE algorithm solely constrains the spectrum

and is not concerned with autocorrelation sidelobes.

In the second simulation example, we employ a matrix of N ×M where N = 100

and M = 3 for designing three unimodular sequences with the length of 100. When

iterations terminate, the MIMO SHAPE algorithm generates the final designed

sequences. The spectral notch is placed in the normalized frequency band

Ω = [0.75,0.85). Figures 4.25, 4.26, and 4.27 show the initial and final spectra of the

designed sequences.

Figure 4.25 Initial and final spectra of the first designed sequence

CESDs of initial and final designed sequences are shown in Figures 4.28, 4.29, and
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Figure 4.26 Initial and final spectra of the second designed sequence

Figure 4.27 Initial and final spectra of the third designed sequence
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4.30 for the first and second designed sequences, the first and third designed

sequences, and the second and third designed sequences, respectively. Spectral

suppression over stopband frequencies is close to −60 dB for all three CESDs,

indicating the effectiveness of the MIMO SHAPE algorithm in suppressing desired

frequency bands.

Figure 4.28 The initial and final CESDs of the first and second designed sequences

Figure 4.29 The initial and final CESDs of the first and third designed sequences

To observe the mutual relationship of designed sequences in pairs of two, we can

look at their cross-correlations. Figures 4.31, 4.32, and 4.33 display cross-correlations

of the inital and final sequences for the first and second designed sequences, the first

and third designed sequences, and the second and third designed sequences,

respectively.
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Figure 4.30 The initial and final CESDs of the second and third designed sequences

Figure 4.31 Initial and final cross-correlations of the first and second designed sequences

Figure 4.32 Initial and final cross-correlations of the first and third designed sequences

39



Figure 4.33 Initial and final cross-correlations of the second and third designed sequences

Table 4.4 Performance metrics of MIMO SHAPE having three radar sequences

MIMO SHAPE ISL MF Stopband Level (dB)

Initial 1st Sequence 8.5385e+03 1.1712 -4.1152

Initial 2nd Sequence 8.8345e+03 1.1319 -1.1418

Initial 3rd Sequence 1.0856e+04 0.9211 -3.1459

Final 1st Sequence 1.1471e+04 0.8717 -43.2971

Final 2nd Sequence 1.0823e+04 0.9239 -43.9944

Final 3rd Sequence 1.2754e+04 0.7841 -41.5524

Table 4.4 displays the performance metric values of the initial and final designed

sequences by MIMO SHAPE algorithm. Similar to the preceding simulation

example, MIMO SHAPE algorithm does not provide any improvement in temporal

domain as indicated by the increased ISL values for all three designed sequences. In

parallel to increased ISL values, the MF values for designed sequences are decreased

compared to the initial sequences. On the other hand, its performance in terms of

spectral suppression is much better than MIMO SCAN algorithm.
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4.3 Simulation Example for MIMO SHAPE with Lower Bound

In this section, we investigate the effect of employing a lower bound in the MIMO

SHAPE algorithm together with an upper bound. In this example, the stopband is

assigned as Ω = [0.375,0.425) in normalized frequency. The upper bound is taken as

0 dB over the passband and −30 dB over the stopband. Alongside the upper bound,

the lower bound is specified as −10 dB over the passband and −40 dB over the

stopband. The length of designed sequences is N = 100 and the number of designed

sequences is M = 2. In this simulation example, the iteration number is set as 2×105.

By employing the lower bound together with the upper bound, the spectra of the

designed sequences are forced to stay in a restricted region as seen in Figures 4.34

and 4.35 which, respectively, show the spectra of the first and second designed

sequences. CESD and cross-correlation of the designed sequences can be seen in

Figures 4.36 and 4.37, respectively. Finally, autocorrelations of designed sequences

are shown in Figures 4.38 and 4.39.

Figure 4.34 Initial and final spectra of the first designed sequence

4.4 Generating OFDM Signals via MIMO SHAPE Algorithm

Other than generating radar transmit signals with suppressed stopbands, the

MIMO SHAPE algorithm can also be utilized for forming communication signals
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Figure 4.35 Initial and final spectra of the second designed sequence

Figure 4.36 CESDs of initial and final designed sequences

Figure 4.37 Cross-correlations of initial and final designed sequences
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Figure 4.38 Initial and final autocorrelations of the first designed sequence

Figure 4.39 Initial and final autocorrelations of the second designed sequence
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such as orthogonal frequency division multiplexing (OFDM) signals which have

specially designed spectra (Clancy & Walker, 2006). In this section, we also utilize

the MIMO SHAPE algorithm for designing a sample OFDM signal. In this

simulation example, we design two OFDM signals (M = 2) having spectra with a

triangularly shaped passband by employing unimodular sequences with length

N = 100. The triangular passband is placed at Ω = [0.35,0.55) in normalized

frequencies. The upper bound at the passband starts with 0 dB at the left edge and

ends with −30 dB at the right edge of the passband. The lower bound, which also has

a triangular shape over the passband, starts with −10 dB at the left edge and ends with

−40 dB value at the right edge of the passband. At other frequencies, the upper and

lower bounds are assigned as −30 dB and −40 dB, respectively. The DFT size is

chosen as 103 and the number of iterations is set to be 2× 105. As can be seen in

Figures 4.40 and 4.41, spectra of both designed sequences follow the triangular

bounds at passband. Interestingly, the CESD of both designed sequences plotted in

Figure 4.42 also takes the triangular shape over the passband. Cross-correlation of

designed sequences does not seem to provide near orthogonality as can be seen in

Figure 4.43. Furthermore, autocorrelations of both designed sequences have worse

sidelobe characteristic than their initial autocorrelations as shown in Figures 4.44 and

4.45. Again, this is a result of the fact that MIMO SHAPE algorithm does not

constrain autocorrelation of the temporal domain.

Figure 4.40 Initial and final spectra of the first designed sequence
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Figure 4.41 Initial and final spectra of the second designed sequence

Figure 4.42 CESDs of initial and final designed sequences

Figure 4.43 Cross-correlations of initial and final designed sequences
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Figure 4.44 Initial and final autocorrelations of the first designed sequence

Figure 4.45 Initial and final autocorrelations of the second designed sequence
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4.5 Application of SCAN and SHAPE Algorithms Successively in a Combined

Fashion

When the spectra of sequences designed by SCAN algorithm are examined, it can

be seen that there are fluctuations both in the passband and the stopband. Similarly,

if we observe the spectra of sequences designed by the SHAPE algorithm, when the

lower bound is not employed along with the upper bound, there exist fluctuations below

the upper bound. However, the SHAPE algorithm can inherently manage forming flat

passbands or stopbands. To reduce fluctuations, we propose an application where the

SCAN and SHAPE algorithms are applied in succession.

In this simulation example, the SCAN algorithm is initialized by a unimodular

sequence of length N = 100. The weighting factor is assigned as λ = 0.8. A spectral

notch at the frequency band Ω = [0.35,0.45) is placed. The initial and designed

spectra are shown in Figure 4.46. We can notice that there are fluctuations both in the

passband and stopband of the spectrum of the designed sequence.

After the SCAN algorithm is terminated, the resultant designed sequence is

utilized to initialize the SHAPE algorithm for which an upper bound of −10 dB at

passband frequencies and of −30 dB at stopband frequencies is employed. The DFT

size is chosen as 103 and the number of iterations is assigned as 2× 105. In Figure

4.47, the resultant spectrum of the SHAPE algorithm is plotted together with the

initial spectrum which was obtained by the SCAN algorithm. In Figure 4.48,

autocorrelation of the initial sequence, autocorrelation of the designed sequence by

SCAN, and autocorrelation of the final designed sequence by the SHAPE algorithm

are plotted together.

4.6 Computational Complexities of MIMO SCAN and MIMO SHAPE

In this section, we investigate the computational complexities of MIMO SCAN

and MIMO SHAPE algorithms. Table 4.5 shows the computation time (in seconds) of
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Figure 4.46 Initial and designed spectra by the SCAN algorithm

Figure 4.47 Initial spectrum by the SCAN algorithm and the designed spectrum by the SHAPE algorithm

Figure 4.48 Autocorrelations of the initial sequence, designed sequence by SCAN (Designed 1), and the

final designed sequence by the SHAPE algorithm (Designed 2)
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Table 4.5 Computational complexities of MIMO SCAN and MIMO SHAPE algorithms for M = 2 and

M = 3

M=2 M=3

MIMO SCAN 811.25 sec 996.82 sec

MIMO SHAPE 78.66 sec 103.40 sec

MIMO SCAN and MIMO SHAPE algorithms for M = 2 and M = 3. All the simulations

were performed on a i7-7500U PC with 16 GB memory and 2.9 GHz processor speed.

We employed unimodular sequences of length N = 100. The FFT size was assigned as

Ñ = 1000 and the number of iterations was set as 2×105. The MIMO SCAN algorithm

takes 811.25 seconds and 996.82 seconds, respectively, for M = 2 and M = 3. The

required time of MIMO SHAPE algorithm, on the other hand, for M = 2 and M = 3 are

78.66 seconds and 103.40 seconds, respectively. Thus, MIMO SCAN requires almost

ten times more time than the MIMO SHAPE algorithm. The reason for that increase

is that, different from the MIMO SHAPE algorithm, MIMO SCAN tries to suppress

autocorrelation sidelobes as an additional temporal constraint.

49



CHAPTER FIVE

CONCLUSION

In this thesis, we have proposed extensions of the radar waveform design methods

of SCAN and SHAPE for MIMO systems. We first reviewed the SISO SCAN and

SHAPE algorithms along with simulation examples indicating their characteristics

and properties. We also compared those two algorithms in terms of their advantages

and disadvantages. The SCAN algorithm provides improvements in both temporal

and spectral domains by employing a weighting parameter which trades off temporal

suppression against spectral suppression. Different from the SCAN algorithm, the

SHAPE algorithm provides only spectral suppression by introducing upper and lower

spectral bounds.

We then defined MIMO extensions of SCAN and SHAPE algorithms. We

presented the implementation steps of MIMO SCAN and MIMO SHAPE algorithms.

As for generalization of the SCAN and SHAPE algorithms to MIMO radar systems,

one important consideration is to decide whether to include the same passband and

stopband for each sequence. Another consideration in implementing MIMO SCAN

algorithm is to determine whether the weighting factor should be selected as variable

or fixed.

After extending SCAN and SHAPE algorithms to MIMO radar systems, we

presented some simulation examples. We performed simulation examples of both

MIMO algorithms for the cases of two and three unimodular sequences. During the

simulation examples, we measured some performance metrics such as ISL, MF, and

spectral suppression level at stopbands (in dB).

Finally, we note that the number of designed sequences can be increased

straightforwardly. That is why, we demonstrated the case of including three different

unimodular sequences. In this case, initial and designed final cross-correlations and

CESDs were shown for two different designed sequences from the set of three

sequences. Both MIMO SCAN and MIMO SHAPE algorithms are able to design

mutually orthogonal transmit sequences with low-level cross-correlations.
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MIMO SHAPE algorithm was applied for designing communication signals as

well. We demonstrated that MIMO SHAPE algorithm could generate OFDM signals

with a certain spectral shape. Although the designed sequences possessed desired

spectral shape, temporal suppression could not be obtained as a shortcoming of

SHAPE algorithm.

For future work, application of alternative optimization methods such as

majorization-minimization could be considered for designing MIMO radar transmit

signals.

51



REFERENCES

Alessio, S. M. (2015). Digital Signal Processing and Spectral Analysis for Scientists:

Concepts and Applications. Signals and Communication Technology, Springer

International Publishing.

Aubry, A., Carotenuto, V., & Maio, A. D. (2016). Forcing multiple spectral

compatibility constraints in radar waveforms. IEEE Signal Processing Letters,

23(4), 483–487.

Bliss, D., & Forsythe, K. (2003). Multiple-input multiple-output (MIMO) radar and

imaging: Degrees of freedom and resolution. In Conference Record of the Asilomar

Conference on Signals, Systems and Computers.

Clancy, C. T., & Walker, B. (2006). Spectrum shaping for interference management in

cognitive radio networks. SDR Forum Technical Conference, (11).

Cook, M. R., Higgins, T., & Shackelford, A. K. (2010). Thinned spectrum radar

waveforms. In 2010 International Waveform Diversity and Design Conference,

WDD 2010.

Fishler, E., Haimovich, A., Blum, R. S., Cimini, L. J., Chizhik, D., & Valenzuela,

R. A. (2006). Spatial diversity in radars - Models and detection performance. IEEE

Transactions on Signal Processing, 54.

Haykin, S. (2007). Cognitive Radar. In Knowledge-Based Radar Detection, Tracking,

and Classification (1st ed.)(9-30), John Wiley & Sons, Inc.

He, H., Li, J., & Stoica, P. (2012). Waveform design for active sensing systems: A

computational approach (1st ed.) . Cambridge University Press.

He, H., Stoica, P., & Li, J. (2009). Designing unimodular sequence sets with good

correlations - Including an application to MIMO radar. IEEE Transactions on Signal

Processing, 57(11), 4391–4405.

He, H., Stoica, P., & Li, J. (2010). Waveform design with stopband and correlation

52



constraints for cognitive radar. 2010 2nd International Workshop on Cognitive

Information Processing, CIP2010, 1(1), 344–349.

Levanon, N., & Mozeson, E. (2004). Radar Signals. John Wiley & Sons, Inc.

Li, J., Stoica, P., Xu, L., & Roberts, W. (2007). On Parameter Identifiability of MIMO

Radar. IEEE Signal Processing Letters, 14(12), 968–971.

Liang, J., So, H. C., Leung, C. S., Li, J., & Farina, A. (2015). Waveform Design With

Unit Modulus and Spectral Shape Constraints via Lagrange Programming Neural

Network. IEEE Journal on Selected Topics in Signal Processing, 9(8), 1377–1386.

Lindenfeld, M. J. (2004). Sparse frequency transmit and receive waveform design.

IEEE Transactions on Aerospace and Electronic Systems, 851–861.

Patton, L. K., Bryant, C. A., & Himed, B. (2012). Radar-centric design of waveforms

with disjoint spectral support. IEEE National Radar Conference - Proceedings, (1),

0269–0274.

Petrolati, D., Angeletti, P., & Toso, G. (2012). New piecewise linear polyphase

sequences based on a spectral domain synthesis. IEEE Transactions on Information

Theory, 58(7), 4890–4898.

Rowe, W., Stoica, P., & Li, J. (2014). Spectrally constrained waveform design. IEEE

Signal Processing Magazine, 157–162.

Sebt, M. A., Norouzi, Y., Sheikhi, A., & Nayebi, M. M. (2008). OFDM radar signal

design with optimized Ambiguity Function. 2008 IEEE Radar Conference.

Song, J., Babu, P., & Palomar, D. P. (2015). Optimization methods for sequence

design with low autocorrelation sidelobes. ICASSP, IEEE International Conference

on Acoustics, Speech and Signal Processing - Proceedings, 2015-Augus(15),

3033–3037.

Stoica, P., He, H., & Li, J. (2009). New algorithms for designing unimodular sequences

with good correlation properties. IEEE Transactions on Signal Processing, 57,

1415–1425.

53



Wang, G., & Lu, Y. (2010). Sparse frequency waveform design for MIMO radar.

Progress In Electromagnetics Research B, 20, 19–32.

Wang, G., & Lu, Y. (2011). Designing single/multiple sparse frequency waveforms

with sidelobe constraint. IET Radar, Sonar & Navigation, 5(1), 32–38.

Xu, L., Li, J., & Stoica, P. (2008). Target detection and parameter estimation for MIMO

radar systems. IEEE Transactions on Aerospace and Electronic Systems, 44.

54



APPENDIX

COMPUTER PROGRAMS

Computer Program of MIMO SCAN

f u n c t i o n outM = FX_mimoSCAN( intM , LNFFT , Lambda , MAXIT, StopBand )

% C o n s t r u c t i o n o f G m a t r i x g i v e n s to p b a n d c r i t e r i o n

% N t i l d e ∗ N t i l d e DFT m a t r i x c o n s t r u c t i o n

FNT=FXFmatrix (LNFFT ) ;

[ RowStop , ColumnStop ]= s i z e ( StopBand ) ;

% N u l l f y i n g s t o p b a n d samples

f o r k =1: RowStop

FNT ( : , StopBand ( k , 1 ) : StopBand ( k , ColumnStop ) ) = 0 ;

end

% G m a t r i x e l e m e n t s

GMat=FNT ;

GMat ( : , ~any ( GMat , 1 ) ) = [ ] ;

[RowX, ColumnX]= s i z e ( intM ) ; LN2=2∗RowX;

Amat=FXAmatrixN ( intM ) ;

AmatH= c t r a n s p o s e ( Amat ) ;

LCP=1;

whi le LCP <= MAXIT

%−−−−−S p e c t r a l −−−−−

XTil =[ intM ; z e r o s ( ( LNFFT−RowX) , ColumnX ) ] ;

Alpha= c t r a n s p o s e ( GMat )∗ XTil ;

i n v e r s e A l p h a=GMat∗Alpha ;

CP1= i n v e r s e A l p h a ( 1 : RowX , : ) ;

%−−−−−C o r r e l a t i o n −−−−−

Xzerop =[ intM ; z e r o s (RowX, ColumnX ) ] ;

f f t X z e r o p =(AmatH∗Xzerop ) / ( s q r t (LN2 ) ) ;

XzeropPhase=ang le ( f f t X z e r o p ) ;

VMatrix=exp (1 j ∗XzeropPhase ) / s q r t ( 2 ) ;

i f f t V M a t r i x = i f f t ( VMatrix )∗ s q r t (LN2 ) ;

CP2= i f f t V M a t r i x ( 1 : RowX , : ) ;

%−−−−−Phase D e t e r m i n a t i o n −−−−−

PhaseTemp=ang le ( Lambda∗CP1 + (1−Lambda )∗CP2 ) ;

TempoutX=exp (1 j ∗PhaseTemp ) ;
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intM=TempoutX ;

LCP=LCP+1;

end

outM=intM ;

end
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Computer Program of MIMO SHAPE

f u n c t i o n [ outS , BP]=FX_mimoSHAPE ( intM ,UPLM,LOWLM, Window , MAXIT, NFFT)

[RowX , ColumnX]= s i z e ( intM ) ;

BTM=r e a l ( ones ( NFFT , ColumnX ) ) ;

ZXM=z e r o s ( NFFT , ColumnX ) ;

AFT=1 / s q r t (NFFT ) ;

Xzerop =[ intM ; z e r o s ( ( NFFT−RowX) , ColumnX ) ] ;

f f t X z e r o p =AFT∗ ( f f t ( Xzerop , NFFT ) ) . / BTM;

LPC=1;

whi le LPC <= MAXIT

%F i r s t S t e p ∗∗∗∗∗∗∗∗∗

f o r H=1: ColumnX

f o r Q=1:NFFT

i f abs ( f f t X z e r o p (Q,H) ) > UPLM(Q, 1 )

ZXM(Q,H)= (UPLM(Q , 1 ) ) . ∗ f f t X z e r o p (Q,H ) / abs ( f f t X z e r o p (Q,H ) ) ;

e l s e i f abs ( f f t X z e r o p (Q,H) ) < LOWLM(Q, 1 )

ZXM(Q,H)= (LOWLM(Q, 1 ) . ∗ f f t X z e r o p (Q,H ) ) / abs ( f f t X z e r o p (Q,H ) ) ;

e l s e

ZXM(Q,H)= f f t X z e r o p (Q,H ) ;

end

end

end

f o r P=1: ColumnX

BTM( : , P)=BTM( 1 , P ) ∗ (ZXM( : , P ) ) ’ ∗ f f t X z e r o p ( : , P ) / (ZXM( : , P ) ’∗ZXM( : , P ) ) ;

end

VMAT=z e r o s ( NFFT , ColumnX ) ;

f o r K=1: ColumnX

VMAT( : , K)=AFT∗ i f f t (BTM( 1 ,K)∗ZXM( : , K) , NFFT ) ;

end

intM=exp (1 i ∗ ang le (VMAT( 1 : RowX , : ) ) ) . ∗Window ;

XPA2=[ intM ; z e r o s ( NFFT−RowX, ColumnX ) ] ;

f f t X z e r o p =AFT∗ ( f f t (XPA2 , NFFT ) ) . / BTM;

LPC=LPC+1;

end

outS=XPA2 ( 1 : RowX , : ) ;
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BP=BTM;

end
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