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ABSTRACT

Hair simulation has been always a complex process in the field of human
modeling and therefore has been addressed by several researchers. The difficulties of
processing hair result from the huge number of hair strands on model, thin structure
of hair and complexity of hair to hair interaction. Various techniques have been

proposed to overcome these difficulties in hair modeling.

Mass spring systems are commonly used to represent deformable objects such as
hair, cloth and facial expressions, for real-time simulation. In this thesis, we designed
a simple physics model using mass spring systems. In our model, each hair strand is
generated and animated individually. The motion of hair strands is determined

according to Newton’s Laws of Motion.

Keywords: Hair modeling, fur modeling, physically based modeling, mass-spring

systems, simulation.
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OZET

Sa¢c simulasyonu, bilgisavar ortaminda insan modellenmesinde her zaman cok
karmasik bir islem olarak karsimiza cikmaktadwr ve bu nedenle cok sayida
arastrmacinin ilgi odagi olmustur. Sacin modellenmesindeki zorluklarn temel
kaynaklart model Uzerinde cok sayida sac teiinin bulunmasi, sacin ¢ok ince bir
vapida olmas: ve sacin diger saclaria olan karmasik etkilesimidir. Bu zorluklarin

Ustesinden gelmek icin cesitli sag modelieme teknikleri sunulmustur.

Kitle-vay sistemleri, sac, kumas ve viiz ifadesi gibi deforme olabilen nesnelerin
gercek zamanl olarak modellenmesinde vaygin olarak kullanilan bir vontemdir. Bu
tezde, kitle-vay sistemleri kullanarak basit bir fiziksel model olusturduk.
Modelimizde, her bir sag teli avri olarak olusturup hareketiendirilmektedir. Sagin

tium hareketleri Newton’un temel hareket kanunlarini esas alarak belirlenmistir.

Anzahtar Sdzeiikler: Sac modellemesi, kiirk modellemesi, fiziksel temell

modelleme, kiitle-vay sistemieri, simulasvon.
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CHAPTER ONE
INTRODUCTION

Computer generated virtual human models are widely used in many areas such as
computer games, advertisement clips, and movies. As a result of advances in
computer graphics technology, we are able to see virtual human models, which can
not be distinguished from real humans. One of the many challenging subjects in
simulating these believable virtual human models has been to produce realistic

looking hair.

Two decades before, first virtual humans had a polygonal hair structure which has
no sense of reality. But advances in computer graphics area forced graphics
developers to find new techniques in hair modeling. Realistic visual depiction of
virtual human models has improved over the years. Details have become more
conspicuous. It is a fact that, hair is a distinguishing characteristic of human and very

important to generate realistic human models.

1.1 Hair & Fur Characteristics

Hair is a slender, threadlike fiber growing from the body. It is 97% protein, with
the remaining 3% made up of amino acids, minerals and other trace elements. Hair
consists mainly of keratin, which is also responsible for the elasticity of fingernails.
Hair is a non-living tissue. The living tissue that makes your hair grow is hidden
inside the hair follicle. The shaft, the part of a hair that you see, is made of cells that
aren't living anymore. We actually have hair of various types all over our bodies. In
fact, the only places we do not have some form of hair are the soles of our feet, the
palm of our hands, and our lips. (WEB 1, 2003)



The hair that grows on our heads is quite possibly the most decorative feature of
the human body. While it provides insulation for our heads, protecting it from the
heat and cold, hair also has definite ornamental purposes and is very often used when
people describe the way we look. Hair is the fastest growing tissue in the body. 35

meters of hair fiber is produced every day on the average adult scalp.

There are typically 100,000 to 150,000 individual hair strands on a human head.
Geometrically, they are long thin curved cylinders (Figure 1.1) having varying
thickness. A single hair has a thickness of 0.02 - 0.04 mm, so that 20 - 50 hair strands
next to each other make one millimeter. The strands of hair can have any degree of
waviness from straight to curly. The hair color can change from white to grey, red to
brown, due to the pigmentation. The detailing of these properties is useful when
modeling and rendering the hair, as use of parameters derived from real hair will

enhance the realism of the model.

Figure 1.1 Close-Up view of a single hair strand
At first glance, fur appears to be having same properties with hair. Sometimes, the
terms fur and hair are used interchangeably. But, there are significant differences

between hair and fur.

Relatively Short: Compared to human hair, animal fur is shorter. In general, fur is

introduced as short hair.

Covers Most of the Body: Fur covers the most of the animal bodies, however, hair is

only located on the scalp of human. Therefore, it is clear that fur is applied over a

bigger area and it is more difficult and expensive to model.



Different Types: Animals can have different types of fur such as wavy and smooth

on different parts of the body. On the other hand, human has a single type hair

model, wavy or smooth.

Vary In Color: Animal fur can vary in color over the body. But, generally, human
hair color is identical. For example, tiger or zebra fur has a striped structure with

different colors.

Fur is very essential for creating realistic animals and relatively short in
relationship to the size of the body, so it is the skin layer that defines what the shape
of the animal is. Therefore, fur does not always need dynamics or any type of

automatic movement.

1.2 Why Is It Hard To Simulate Hair?

(Watanabe, Y., & Suenaga, Y., 1989) gave a good example of the complexity
involved in rendering hair: “If, for example, we suppose a hair is approximated by 32
cylinders and each cylinder is approximated by 32 triangular patches, and if a person
has 100,000 hairs, the total number of triangular patches would be 102,400,000. 1t is
impossible to draw such a big number of triangular patches in a reasonably short
time.” Although this calculation does not include the complexity of hair dynamics or
hair to head and hair to hair collision, it is a huge number. The ray tracing of the 102
million faces has not been counted either, and this could potentially be the most
expensive part of the process. The difficulties of hair simulation can be listed as

follows:

Y

Huge number of hair strands on a scalp

A4

Geometric intricacies(complexity) of individual hair

v

Complex interaction of light and shadow among the hairs

Small scale of thickness of one hair compared to the rendered image

YV V¥

Dealing with hair to hair and hair to head interaction while in motion



1.3 Hair Simulation Phases

It is really hard to divide hair simulation into phases due to number of different
approaches. (Magnenat-Thalmann, N. et al. 2002) proposed that, there are three main
aspects in hair simulation. These are hair shape modeling, hair dynamics or
animation and hair rendering. Hair shape modeling deals with exact or fake creation
of thousands of individual hair strands. Four attributes are very considerable in hair
shape modeling: hair geometry, density, distribution and orientation. These attributes
directly affect the final image. For example, hair geometry differentiates, whether the
hair is curly or smooth or to have a semi-bald head, hair distribution is modified. For
the reasons, it would be worthwhile to handle them carefully. Dynamics of hair
means hair movement, the collision of hair with other objects and self-collision of
hair particularly when there is long hair. The movement of hair is governed by
physical law, so physically based modeling approach may make good results.
Animating single strand is not a difficult problem using physically based approach.
However, the number of hair makes it impossible or impractical to implement. The
rendering of hair deals with hair color, shadow, lightning and varying degree of
transparency and anti-aliasing. Each of these aspects is a different research topic in

computer graphics area and many researchers spent effort on them.

1.3.1 Hair Shape Modeling

The purpose of hair modeling is to produce a simple and ordinary hairstyle.
Complex hair styles are combination physical properties of individual hair strand and
complex hair to hair and hair to body interactions. Hair shape should be modeled in
appropriate format to simulate hair movement at interactive speeds. Therefore, it

would be considerable to treat hair shape modeling as a separate problem.

First attempts of hair shape models were based on explicit hair models. In explicit
hair modeling, each hair strand is processed as individually for shape and dynamics.

Each hair strand has parameters such as density, length, orientation. Model is the



process of creating hair style from individual hair strands. Explicit hair models are
very stylish and close to reality. Unfortunately, they are hard to implement and
expensive methods for hair dynamics. The most obvious approach is to model each
individual hair as a curved cylinder. The hair width is less than size of a pixel. This

causes a serious aliasing problem.

Figure 1.2 Hair styling by defining curves (Thalmann N. et al , 2002)

To overcome these difficulties of explicit hair modeling technique, it is considered
as a bunch of hair instead of individual hair strands in cluster models. The major
problem of explicit hair modeling is huge number of hair strands. Defining strands in

a bucket will decrease the number of elements that must be modeled.

Fur is more complex structure which has explicit geometric definition. Using
volumetric textures, fur can be modeled as a volumetric density function. Volumetric
Textures are a logical extension of 2D textures. With this method we see much detail

on the surface in Figure 1.3.

Figure 1.3 Volumetric Textures (Perlin K. et al. 1989)

This method gives an illusion of the fur like medium without defining geometry

of each and every fiber. However this method has a limitation, only fur or very short



hair can be modeled as a volumetric density function. Volumetric textures are

successful ways of implementing complexity of nature and they are rich in detail.

1.3.2 Hair Dynamics

Generally, dynamic models are basically based on individual hair structure. An
individual hair strand is modeled as a combination of rigid segments and these
segments are connected to each other. Segments have bending stiffness at each joint.
The individual hair segments are solved for the movement of hair due to internal and
external forces. A single hair strand is modeled as a series of line segments as seen in

Figure 1.5.

5

Figure 1.4 Single Hair Strand Model

In the case of fur, which is generally modeled as volumetric texture, the explicit
model approach for the animation can not be used effectively. Instead of this, volume

density functions should be used to facilitate this task.

1.3.3 Hair Rendering

Hair rendering is a huge problem in human simulation which is examined by
researchers many years. Lots of techniques were used to create photorealistic hair
models. The hair rendering problem arises due to complex interaction of light, small
width of individual hair strand and detailed geometry of hair models. The rendering
of hair therefore causes a considerable anti-aliasing problem. Reflections of light and

cast of shadows play key role in hair rendering process.



Figure 1.5 Lightning is crucial in hair simulation.

Lightning is an important phase in hair modeling. Hair has a semi transparent
structure. So lightning must be handled carefully. In Figure 1.5, there are two hair
models. Right model has a realistic lightning. The other one looks like a black area

not hair.

1.4  Goal of This Thesis

This thesis focuses on three main parts which are related to each other. First part
of the thesis can be thought as a survey about current and previous hair simulation
models. In this section, models are categorized according to the techniques which
they used and the way how they were implemented. Not only categorizing the

techniques, also they are briefly described.

In chapter three, topic is physically based modeling, which has brought an
important new approach to computer animation. The strong relationship between
physics, mathematics and computer graphics is exhaustively examined and it is
emphasized that physically based modeling plays important role in the realization of
the real world to the screen. In addition, types of physically based models are studied
by giving examples. Furthermore, Newtonian Rules of Motion is explained which is

very crucial for physically based modeling.

The fourth chapter covers the details of mass spring systems which we used in our
hair model. Before explaining our model we gave some other models which also use
mass spring systems such as facial and cloth animation. The final chapter focuses on

our hair model and future work about hair simulation.



CHAPTER TWO
PREVIOUS APPROACHES

Hair rendering is one of the most challenging subjects in computer graphics
community. To challenge the hair modeling problem due to large number of
individual hair strands in a model and to obtain photorealistic results, many years
researchers published different solution approaches in hair modeling, hair dynamics
and hair rendering fields. Some of them gave acceptable results, on the other hand,

some techniques were quite well in theory, but not applicable.

2.1 Ancient Approaches

Research in hair modeling area has speed up last a few years. Because of
inefficient hardware and algorithm complexity, people used very simple hair models
in first human characters. However, recently realistic hair models have become
necessary due to movie and computer game industry. This compulsion pushed hair
modeling society to find new techniques. Before examining these techniques, the
ancient approaches should be studied carefully to understand the importance of the

situation.

The first technique was “coloring” method which was very simple and used
frequently in oldest graphics applications such as first computer games. Actually,
coloring is not a hair modeling technique. Only specified part of the head is colored
to give the sense of the hair. There was no complexity; hence, it was very cheap.
From this point, we will use the terms cheap and expensive for techniques. When it is

considered that a technique is cheap, this means the technique is easily applicable



and does not need too much effort during modeling and computation time during

rendering. On the other hand, expensive means more computation time and effort.

Computer graphics developers try to extend coloring method by using gradient
colors. In gradient colors, there is a smooth change from one color to another. As
mentioned before in introduction section, hair color changes from root of the hair
strand to the top and different parts of the scalp may have different color. Therefore,
it will be a suitable choice to use gradient colors instead of one definite color. In

Figure 2.1, a simple gradient color can be seen.

Figure 2.1 Gradient Colors Figure 2.2 Texture Mapping

Concentrated on, applying gradient colors, developers ignored the hair for many
years. By significant changes in computer graphics fields, they met three dimensional
world and new concepts arose. One of them is texture mapping technique and it is
quite popular in computer graphics. Texture mapping (Figure 2.2) is a graphic design
process which a two-dimensional surface, called a texture map, is wrapped around a
three-dimensional object. It is mostly used in computer games and real-time graphics
applications. Textures, which look like hair or fur, are wrapped on models. Coloring
method is not valid today. On the contrary, texture mapping is frequently used in

most computer games to give hair to human characters today.

2.2 Hair Shape Modeling Approaches

2.2.1 Explicit Hair Models

The techniques that explained above have no sense of three-dimension. Therefore
it is pointless to talk about hair dynamics or long hair models in these techniques.
(Csuri, C et al., 1979) were the first to render fur-like volumes in 1979. In this
approach, each hair strand was modeled as a single triangle laid on a surface.
Constructed hair strands are rendered using a Z-buffer algorithm for hidden surface

removal.




(Miller, G.S.P., 1988) obtained better results by rendering furry animals. The
rendered images originated from explicit hairs. In this method, each hair strand was
modeled with triangles to give the shape of a pyramid. The number of hairs was
small and their thickness was large. Therefore, it would become impractical when
applied to human scalp due to large number of hairs and thin structure of a hair

strand.

(Daldegan, A. et al, 1993) presented a system that the user can define
characteristics of individual hair strands and construct a hair style based on them. To
define the characteristics of hair strands, user should set parameters such as density,

spread and location.

Figure 2.3 Hair styling with curves (Thalmann N. et al , 2002)

2.2.2 Cluster Model Approaches

The explicit models are really nice looking and realistic. However, they are
computationally expensive. For example, it will take hours to model hair styles like
in Figure 2.3. To overcome these difficulties hair is defined as bunch of hair strands

in cluster model. Clustering is also known as wisps modeling.

Figure 2.4 Cluster Hair Model, (Yan et al. ,1999)



(Yan X. D. et al, 1999) modeled the wisps as generalized cylinders and rendered
the hair using the blend of ray-tracing generalized cylinders and volumetric textures

as seen in Figure 2.4.

2.2.3 Volumetric Model Approaches

(Perlin K. et al., 1989) introduced hypertextures, which can model fur without
defining geometry for each single hair strand and this method gives the sense of fur
like view (Figure 2.5). They used simple analytical functions to model a furry ball

and furry donut.

Figure 2.5 Fur as a Volumetric Texture (Perlin K. et al. 1989)

2.3 Hair Rendering Approaches

Hair rendering can be examined according to modeling structure. Hair
rendering approaches can be divided into two categories: with or without

modeling.

2.3.1 Hair Rendering with Modeling

(Watanabe Y. & Suenaga Y., 1989) introduced a wisp model which uses prisms to
represent hair segments. Model gave a poor result when flat shading was used,
however when smooth shading was applied the result was spectacular. When styling
hair, it tends to be in the form of bundles or wisps. With introducing wisps,
calculation costs can be reduced. To control the generation of hair, parameters such
as number of wisps, number of hairs in a wisp, length of hair can be set. Generation

based on wisps is very useful. After forming a single strand which follows the wisp



parameters exactly, all other strands can be generated from this initial hair by adding

some random factor to the points generated.

(LeBlanc A. et al, 1991) proposed a method which focused on hair rendering.
The method is pixel blending which is similar to that used in particle systems. Each
pixel of the image is treated as a square, and the portion of each hair that passes over
the pixel contributes to the intensity of the pixel. Pixel blending requires that the
pixels are blended in order from furthest to nearest the viewer, and naturally, hairs
that are behind solid objects should not be blended. Shadowing is another important
phase in this method. The hair casts shadows not only on itself, but also the surface
underneath. Hence, it is necessary to calculate shadows. They also introduced

shadow buffer algorithms that are ideal for hair rendering.

(Rosenblum R. et al., 1991) worked on not only static hair, also worked on hair

dynamics. Their model needed some requirements:

> No restrictive upper limit on the number of hairs allowed in an image

> The images must be spatially anti-aliased

» The images must be shadowed

> The storage structure for a strand of hair must be amenable to efficient
rendering

» Total execution time must be kept low so animation sequences can be

rendered in a reasonable amount of time.

In the view of hair dynamics, in their model each hair strand was modeled as two
masses put in a fixed distance by a spring. In this method, the new mass velocity, and

therefore position could be calculated for all points in the hair.

(Anjyo K. et al., 1992) used cantilever beams to simulate hair. It was a straight
beam with a fixed support at one end only. The bending occurs due to gravity. In
cantilever beam approach, there is a problem. The hairs which have vertical normals

grow quite long before they start to bend down, because, they are almost parallel to
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gravity. Anjyo introduced the concept of joint stiffness between consecutive hair

segments.

(Daldegan A. & Magnenat-Thalmann N., 1993) introduced a model which wisps
can be created and points in 3D world, which the wisps that will follow, can be
defined. In this model collision detection is avoided by leaving the style to the user.
But this brings a big problem; the amount of work done by user is huge. The

rendering process is same with the model of (LeBlanc A. et al., 1991).

(Ando M. & Morishima S., 1995) showed in their approach that it is important to
define the shape of the curve instead of local structure of each hair. The shape of hair
is determined by shape control points. These shape control points were connected

with segments.

(Rankin J. and Hall R., 1996) used a method called “linked chain of rigid micro-
edges” to simulate hair. The attractive part of this method is avoidance of collision.
This is done by changing the colors when a collision occurs. In previous approaches

the change was done in the shape of hair instead of color.

2.3.2 Hair Rendering Without Modeling

As told before in this text, computational time to render a full head of hair is too
big. Some researchers avoided this problem by applying textures to the scalp of
human head. (Kajiya J. T. & Kay T. L., 1989) used 3d volumetric structures (texels)
to make the teddy bear furry, in Figure 2.6. Texel is essentially an array that
represents the density of the micro surfaces at each point. Texels are 3 dimensional
texture maps. Texels are volumetric structures that hold complex collection of

surfaces.

In the field of hair rendering, texels are used to store hair. They can be simplified
by removing the lighting model components, as the bidirectional reflectance function
is constant for each hair and common to all hairs, so long as the hair doesn't change

color.
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Figure 2.6 Furry Teddy Bear, (Kajiya J. T. & Kay T. L. ,1989)

(Sourin A. L et al, 1996) proposed a new approach in hair modeling. In this
approach, all detailed complex solids are produced from a simple formula. Solid

objects are represented as a set of 3D points and they were defined with function f.

G: f(z,9,2) 20

G represents the solid object and f is a continuous function. To deform the solid f
function is modified. There are three situations in this model:
» f£>0: Points inside the solid.
» f=0: Points on the solid.
» f£<0: Points outside the solid.

They used a noise function to define hairs. Each single hair strand is modeled as

piece of solid noise. This method was very impressive for fur rendering

2.4 Comparison of Hair Models

(Magnenat-Thalmann N. et al. 2002) presented a survey about technological
advances in hair simulation for computer graphics. They examined hair simulation

process in the view of three aspects: hair shape modeling, hair rendering and hair



dynamics. In table 2.1, they summarized their role with their effectiveness and

limitations for each aspect of the hair simulation.

Table 2.1 Comparison Of Hair Models (Magnenat-Thalmann N. et al. 2002)

Hair Modeling

Hair Animation

Hair Rendering

Effective
-tedious to model
-not suitable for
knots and braids

Explicit
Models

Adequate

- expensive due to size
- inappropriate for hair
to hair interaction

Fast
- inadequate for
self-shadowing

e Adhoc Effective
S g inappropriate - lacks physical basis - lacks shadowing
E % - no hair-hair and self-shadowing
interaction
o
£ 8 Effective Limited Effective
g g -Not suitable for - via Animated Shape - expensive
'E & long hair Perturbation
Effective Not done Effective

-not suitable for
knots and braids

Cluster
Model

- via Animated Shape
Perturbation

Research in hair simulation despite the difficulties has been encouraging and

shown evident improvements over years. People do not accept human characters

without hair or animals without fur. This forced developers to find new techniques.

Hair simulation is still an open issue and it is certain that further improvements will

occur in future.




CHAPTER THREE
PHYSICALLY BASED MODELING

In recent years, physically based modeling has emerged as an important new
approach to computer animation and computer graphics modeling. It was first
introduced in the late 80’s to apply common physics and engineering disciplines to
the subject of computer graphics modeling and animation. These disciplines are not
fairly new in physics and engineering, but what is new about physically-based

modeling is the way in which they are applied.

3.1 Physically Based vs. Physics Simulation

The first computer animations were drawn on individual sheets of paper or
celluloid. When a series of sheets is transferred to film and run at a speed of 24
frames per second, an illusion of motion is perceived. From a simulation perspective,
the sheets reflect a declarative type of model that is similar to a finite state
automaton, one state per sheet. Therefore, early animation models were finite state
automata. The next generation of animation programs allowed users to automatically
create in between states by specifying certain key states (key frames) and then using
geometric smoothing methods such as a Bezier or cubic spline. Now, given this
knowledge, we can see how progress has been made in computer animation.
Specifically, we can create more cohesive models by basing the animation on more
complex model types, such as event modeling, functional modeling or constraint
modeling. The term “physically based” normally refers to constraint based,
equational, models derived from physical laws; however, the movement called

physically based modeling is a step in the direction of using simulation models to



replace the older automata type models, inherent in frame based simulation with

more comprehensive system models. (WEB_2, 1994)

Physically-based modeling in computer graphics is the simulation of physical
systems for the purposes of creating computer graphics images. Generally, these
graphics images are animated. Anyway, when physics is subject, it is impossible to
think system which has no motion. As a part of the realization of the real world to the
screen, physical based modeling has an important role. It helps us to visualize the
objects when they are interacting with the environment or any controls are applying.
In physically based modeling, physics is just a tool. It is only used to create nice and
interesting computer graphics. It does not matter if the model is correct for the given
situation, as long as it gives appropriate results. The most important issue is the
appearance and applicability of the model. Therefore, the accuracy of the model is
ignored easily. Physically based modeling is a mixture of three fields: physics,
numerical programming and computer graphics. By correct combination of these

there fields, realistic looking computer graphics images can be achieved.

Physically based modeling is not a physics simulation. The main difference
between physically based modeling and physics simulation is accuracy. In physical
simulation, researchers try to gain more insight into the physical world. The stress is
on accuracy, prediction of the real world and the discovery of new phenomena, for
example, simulating the collision of two galaxies, behavior of a tornado, fluid flow,
the corrosion or the fracture of a metal plate. Another type of physical simulation is
used for engineering purposes to simulate the behavior of machines such as airplanes
or cars, and is closer to physically based modeling because it often uses computer
graphics and requires real-time solution. As we mentioned before, physically based
modeling is a mixture of three components. In the next part of this chapter these

components will be explained briefly. (Turner, R., 1993)

3.2 Physics

The term physics in physically based modeling is usually the Newtonian classical

mechanic rules. Objects are the collection of masses. These masses are the either free



moving, static or confined in rigid bodies. Although the masses themselves are
simple, the forces acting between them can be complex, depending on the type of
physical model. Actually these forces do not represent the forces of the nature. They
are imaginary forces that is, approximations to the actual forces resulting from very
complex physical processes. For example, in a simulation gravity force must not be
same as the real world. If the simulation gives the well result, it does not matter how
much it effected. The important matter is how it effected such as in which direction,

how long etc.

Physics is obviously a field of study in its own right and not a sub-category of
mathematics. Nevertheless, physics and mathematics are closely tied to one another
in several areas within computer graphics. Examples of graphics problems that
involve physics include how light interacts with the surfaces of objects, how light
bounces around in a complex environment, the way people and animals move, and
the motion of water and wind. Knowledge of physics is important for simulating all

of these phenomena.

We can see already that we are beginning to deal not with exact mathematical
representations of physical reality but rather with approximations. This is of course
true for most physical and engineering calculations, but it is especially true in
physically based modeling because the only real arbiter of physical accuracy in this
case is our eyes. Physical simulation is little more than just another algorithm for
generating interesting computer graphics and animation behavior. Because the
algorithm is rooted in physical law, there is a better chance that we will get visually

appealing results.

The main disadvantage of physically based modeling is the control of the system.
The system tends to behave what the physics rules wants not we want. Friction,
parameters and force fields are elements of this modeling world. The developer
should adjust this friction and tune parameters until a desired behavior is achieved.
Although these control mechanism is processed, there is still a big problem,

kinematics control. This control is accomplished through use of constraints, which



force the physically based modeling to conform to certain geometries or paths or to

perform a certain task, while still behaving in a physical way.

3.3 Numerical Programming

Physical models construct the basis of physically based modeling, but how to
simulate them is another topic. This topic leads us to numerical programming. This is
one of the oldest fields in computer science which is concerned with finding
numerical solutions to solve mathematical problems. Although numerical
programming covers many topics, such as solving linear systems, finding roots of
equations, and evaluating transcendental functions, the most important one for
physically based modeling is the solutions of differential equations. Since most
physical laws, and our models, can be expressed in the form of a differential
equation, implementing a physically based modeling requires solving this differential

equation numerically.

The main emphasis in numerical differential equation solving is on highly specific
problems in science and engineering. In early days of computers, CPUs were slow
and expensive; therefore, it was hard to interact with a numerical solution as it
happens. But, with evolving technology, faster CPUs make us to achieve observing
results and deciding what looks nice and realistic. Furthermore, a user can actually
construct his model interactively, using the physical behavior as a modeling tool.
Computer graphics developers do not want to develop complex numerical
programming algorithms. The techniques need to be straightforward and easy to

comprehend.

3.4 Computer Graphics

Computer graphics is the third and most important component of physically based
modeling. Previous components are used to achieve realistic and nice looking
computer graphics images. Physically based modeling can, in fact, be thought of as a

natural evolution of computer graphics modeling techniques. Computers graphics
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also provides data structures and software techniques which allow complex

physically-based models.

Physically-based modeling adds new levels of representation to graphics objects.
In addition to geometry, forces, torques, velocities, accelerations, kinetic and
potential energies, heat, and other physical quantities are used to control the creation
and evolution of models. Simulated physical laws govern model behavior, and
animators can guide their models using physically-based control systems. Physically-
based models are responsive to one another and to the simulated physical worlds that

they inhabit.

3.5 Classical Mechanics

Classical mechanics is the study of the motion of bodies, in accordance with the
general principles first pronounced by Sir Isaac Newton in his “Philosophiae
Naturalis Principia Mathematica (1687)”, commonly known as the Principia.
Classical mechanics was the first branch of Physics to be discovered, and is the
foundation upon which all other branches of Physics are built. Moreover, classical
mechanics has many important applications in other areas of science, such as
Astronomy (e.g., celestial mechanics), Chemistry (e.g., the dynamics of molecular
collisions), Geology (e.g., the propagation of sound waves, generated by
earthquakes, through the Earth's crust), and Engineering (e.g., the equilibrium and

stability of structures).

Most measurements in physics are made with respect to fundamental quantities or
units. On the other hand, computer programs and mathematics deal only in pure
numerical quantities. Physical quantities may be constructs of the human mind, but
they are based on something real that exists "out there". We choose as our
fundamental quantities a unit of time, a unit of space or distance, and a unit of matter

Or mass.
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In classical mechanics, the main concept is the motion of objects. To find a way
of describing the motion of objects, a mathematical formulation that allows us to
represent the position, velocity, and acceleration of moving objects must be defined.
This formulation must express how these quantities are related to each other in time.
In other words Kinematics is concerned with describing the way in which objects

move. There are 3 basic properties (functions) of a particle in motion:

Position: A position function can be either scalar-valued (for motion in one
dimension) or vector-valued (for motion in two or three dimensions). At each point

in time its value represents the position of an object at that time.

Velocity: It is the time-derivative of the position function, and gives the velocity of

an object at each point in time.

Acceleration: This is the time-derivative of the velocity function, and the second
time-derivative of the position function. It gives the value of the acceleration of an

object at each point in time.

3.6 Dynamics

The study of dynamics begins with an introduction of the concepts of force and
mass, then goes on to introduce the basic laws of dynamics, Newton's Three Laws.
Dynamics describes why physical systems move in certain ways, not just how, and

allows us to predict the behavior of a physical system.

3.6.1 Definition of Force

A force is an interaction between two objects involving a push or a pull. To have a
force, there must be two objects, one object pushes and the other gets pushed. A
force is something that happens between two objects. The things that make objects

move are forces. A force is a vector quantity, as it has both a magnitude and a
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direction. The magnitude of force can be changed by pushing it harder or softer and
direction can be changed by pushing it in one way or another. Consequently, it is
obvious that force causes motion. Isaac Newton put forth a variety of laws which
explain why objects move (or don't move) as they do. These three laws have become

known as Newton's three laws of motion. (WEB_3, 2001)

3.6.2 Newtonian Rules of Motion

Newton's first law of motion is often stated as, an object at rest tends to stay at rest
and an object in motion tends to stay in motion with the same speed and in the same
direction unless acted upon by an unbalanced force. In other words, an object moves
with constant velocity unless acted upon by a net external force. When velocity is

zero, it means no there is no motion.

Mass is another important concept, that plays a role in the relation between force
and motion. A mass is the amount of matter in a given body. Mass is a scalar
quantity, it has no direction, and is the object itself, not its location. Mass is
measured in kilograms (kg). A certain given objects mass will be the same on earth,
on the moon, or in empty space. But the weight of object in these different locations

will change.

Newton's Second Law gives us a quantitative relation between force and motion.
Newton's Second Law says that the net force (F) acting upon an object causes
acceleration (a), with the magnitude of the acceleration directly proportional to the

net force and inversely proportional to the mass (m).

F=ma (3.1)
2

The Second Law relates two vector quantities, force and acceleration. Because
both force and acceleration are vector quantities, it is important to understand that the
acceleration of an object will always be in the same direction as the sum of forces

applied to the object. The magnitude of acceleration depends on the mass of the
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object, but is always proportional to the force. Newton's Second Law gives an exact
relation between the vectors force and motion. Actually, the law shows, the force is

simply the product of mass times acceleration.

All forces result from the interaction of two bodies. One body exerts a force
on another. When we push a box across the floor, our hands and arms certainly feel a
force in the opposite direction. Newton described his forces as acting on and between
point masses, and in his third law of motion he states that for every action there is an
equal and opposite reaction. If body A exerts a force on body B, let us denote this

force by Fap. Newton's Third Law, then, states that:
Fas = -Fan (3.2)

Newton's third law also gives us a more complete definition of a force.
Instead of merely a push or a pull, we can now understand a force as the mutual
interaction between two bodies. Whenever, two bodies interact in the physical world,
force results. Whether it be two balls bouncing off each other or the electrical
attraction between a proton and an electron, the interaction of two bodies results in
two equal and opposite forces, one acting on each body involved in the interaction.

Our model is constructed with masses and is based on these Newtonian forces.

3.7 Types of Physically Based Models

There are lots of physically based modeling techniques that have been proposed
for computer animation. According to (Hégron G. & Arnaldi B. ,1992), it is hard to
classify models, because of crowded topics in physics and engineering. However,
they have divided methods into four categories: free-particle systems, mass-spring

systems, continuous systems, and rigid body systems.

The particle system is not defined well in computer graphics. It has been used to
describe modeling techniques, rendering techniques, and even types of animation.
The particles may be completely independent of each other, or there may be some

forces between them. A particle system is composed of one or more individual
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particles (Reeves W. T. , 1983).Particles are graphical primitives such as points or
lines. Free particle systems are a good choice for models of fluid, smoke, fire sand

etc. Figure 3.1 is an example of fire animation. I used Particle Illusion 3.0 software to

construct the animations. (www.wondertouch.com)

Figure 3.1 Fire animation with a particle systems using software P.Illusion 3.0

Mass-spring systems are commonly used to represent deformable models for
real-time simulations. An object is modeled as a collection of point masses connected
by springs in a lattice structure (Figure 4.2). Mass-spring systems are simple and
easy to implement. Our hair simulation is a mass-spring system model. In next

chapters, mass-spring systems will be explained in details.

Figure 3.2 Mass-Spring System Layout

Continuous system models are based on continuum mechanics, which studies

elastic, deformable and fluid materials. Quantities which were represented as single
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values (for a particle) or as an array of values (for a particle system); now become

scalar, vector fields. Mass, m, for example, becomes mass density.

On account of flexibility problem of mass-spring and continuous systems, a
mathematical abstraction approach, rigid body method appeared. Rigid body method
is developed in different fields of science such as physics, engineering, robotics and
automotive. System of rigid bodies is quite different from a system of particles in the
sense that the elements of the system are rigid bodies that have not only the mass but
also the volume. A rigid body is defined as a finite or infinite collection of mass
points which are constrained to maintain a fixed distance from each other. In true
life, all objects are somewhat flexible, but the rigid body approximation is a very

good one for modeling a variety of everyday objects.

3.8 Differential Equations

In many ways, differential equations are the heart of analysis and calculus, two of
the most important branches of mathematics for over the past 300 years. Differential
equations are an integral part or a goal of many undergraduate calculus courses. As
an important mathematical tool for the physical sciences, the differential equation
has no equal. So it is widely accepted that differential equations are important in

both applied and pure mathematics.

3.8.1 Modeling with Differential Equations

In physically based modeling, differential equations are a standard mathematical
technique which is used to simulate a physical model. In other words, the behavior of
a physical system can be defined by a differential equation. Firstly, the system
examined carefully, then, it is put forward an idea about behavior of the system. This
method is based on Newtonian laws of motion. The result is normally a differential
equation of forces expressed in terms of differentials of the state variables with

respect to time or space.
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To animate the physically based model, a proper solution must be found. Exactly
which solution we find depends on the initial conditions of the state variable, which

can be chosen arbitrarily, and can greatly affect the outcome of the solution.

3.8.2 Newtonian physics-based differential equation

As mentioned before, Newton's Second Law gives us a quantitative relation

between force and motion. It provides the tool for finding the net force on the object.

F

net~ M4

Newton's second law of motion defines the net force on an object as its mass
multiplied by its acceleration. Acceleration is a property of motion. Acceleration is
defined as an object's change of velocity through time. A more mathematically
precise definition is that an object's acceleration is the derivative of its velocity with

respect to time, t.

E
ot

Newton's second law, with the appropriate substitution, now looks like:

0

F par—
a’

net = "
An object's velocity is defined as its change of position through time, or more
precisely, as the derivative of its position with respect to time, 7. Define r as the
position vector of an object in some coordinate system, and then the following is

obtained:
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From just above it is known that net force is mass multiplied by the first derivative of
velocity with respect to time, 7. Substituting this yields another useful form of

Newton's second Law of Motion:

F az
==
net
i

This form of Newton's second law enables you to find the net force if you know an

object's mass and its position through time. (WEB_4, 2004)




CHAPTER FOUR
MASS SPRING SYSTEMS

As desktop computing power and graphics capabilities increased during the
1980’s, the graphics community began exploring physically based methods for
animation and modeling. These methods use physical principles and computational
power for realistic simulation of complex physical processes that would be difficult

or impossible to model with purely geometric techniques.

Mass-spring systems are one physically based technique that has been used
widely and effectively for modeling deformable objects. An object is modeled as a

collection of point masses connected by springs in a lattice structure.

Figure 4.1 A Mass Spring Model (Gibson S. & Mirtich B. ,1997)
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4.1 History

Mass spring systems are widely used to model many physical systems. In
computer graphics, facial animation, cloth simulation and other elastic models are
popular examples of mass spring systems. In face simulation, face is modeled as a
two dimensional mesh of points. And these points are connected to each other with
springs. Muscle actions of face are handled by a force that is applied to different
parts of the face. (Terzopoulos D. and Waters K., 1990) were first to apply mass
spring systems to facial animation. They modeled the face as layers like the
anatomical structure in real life. In their model, each layer is modeled with different
spring constants to maintain realistic behavior. The facial model has 6500 springs,

and is animated at interactive rates.

Mass spring systems have been used extensively for animation. (Chadwick J. et
al,, 1989) combined mass-spring models with free form deformations to animated
muscles in human character animation. The dynamic deformation of the muscle is

calculated by modifying the motion of the lattice points.

(Tu, X.,& Terzopoulos, D., 1994) used mass spring system approach to model an
artificial fish with full dynamics. They used 23 mass points and 91 springs. Muscles
that form the body are moved to propel the fish.

The most popular method for cloth modeling is to represent the cloth as a system
of masses connected with springs. Mass-spring techniques were introduced for cloth
simulation by (Breen D. et al, 1994). (Baraff D. & Witkin A., 1998), introduced
implicit techniques for cloth, used a formulation that has elements from both

continuum and mass-spring systems.

4.2 Mass-Spring Basics

Springs usually occur physically as a coil of metal, and their idealizations have

pretty simple behavior: compressing the spring will result in the spring pushing back,
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and stretching the spring will have it trying to pull back towards the start position, so
any displacement along the axis of the spring will be countered by an opposite force

that will tend to move the spring back to it's original position.

If a pull force on a spring is applied and stretched, and then a work is done on the
spring. That is because a force applied over a displacement. Since work is the
transfer of energy, it must be accounted for to what the energy was transferred. It is
considered that the energy was transferred into the spring. The work becomes stored
energy in the spring. The work becomes potential energy in the spring. A spring can
be stretched or compressed. The same mathematics holds for stretching as for

compressing springs.

When a spring (Figure 4.2) is compressed or extended, a force is produced in the
opposite direction by the spring. The equations describing spring motion can be

derived from Newton’s Laws of Motion.

Figure 4.2 Mass Spring 1
For a simple spring, the following points can be observed:

» When a spring is compressed or extended, it will produce a resistance. The
more compression or extension gives greater resistance.

> When an ideal spring is compressed or extended and then released, it tends to
oscillate.

» When a simple spring is compressed or extended and then released, it tends to
return to its rest length (o position).

> Spring constant determines the compression and extension force.



From these points, a spring formula can be produced. (4.1)

F=-k * Ax
4.1)
AX = X¢— X

e F is the resultant force.

e Kkis the spring coefficient.

e Ax is the distance from it’s rest position (x; = Xop)
e x.is the current distance.

e x;is the distance at the inertial position.

In the view of mathematics, a spring can be defined as being two points separated
from a distance x. If these points are not changed, no force will be generated,
because Ax is zero. Compressing the spring will change the value of Ax to negative.
Hence, a positive force will be generated by the spring. On the contrary, stretching

the spring will generate a negative force (Figure 4.3).

Figure 4.3 Mass Spring 2

The spring coefficient (k) is also called elasticity coefficient and affects the
spring’s final force. A spring with bigger coefficient creates a larger force. On the
other hand, a spring with a smaller k is more flexible because it creates a smaller

force from its inertial state.



4.3 Mass Spring Systems in CG

4.3.1 Cloth Simulation

In most graphics applications it is only necessary to provide the illusion of
physically accurate behavior. In previous chapter, we have seen that, in physical
based modeling, accurate results are not expected; the main purpose is to create nice
graphics. One of the most popular approaches for simulating cloth is to model the

cloth as mesh of mass-springs arranged in triangles.

In general mass spring model to simulate cloth, there are nodes, edges and
triangles. A node is the mass point in space and edge is the pair of connected nodes
by a simple spring. As usual, a triangle is three nodes connected with three edges.
Simulation is done by applying forces on these nodes. Nodes have three crucial
parameters; position, velocity and acceleration. For each time step, these parameters
should be updated to generate the motion. In order to update parameters, some forces
such as inner force of springs, bending forces, external forces must be applied to

nodes. The net force on a node is the sum of all forces acting on node.

Figure 4.4 Deformation Of Elastic Model Of A Sheet by Provot X et al.

(Provot X., 1995) proposed a physical based model for animating cloth objects
that is derived from elastically deformable models (Figure 4.4). Cloth is modeled as
deformable surface composed of masses and springs by using fundamental law of
dynamics. Provot used the Euler method to integrate energy equation through time to

be able to get the position of positions at each time step. He also observed that when



a hanging cloth is simulated using the classical model, unrealistic deformations occur
at the constraint points. He was able to correct this problem by detecting the
deformation rate of the springs around the constraint points. (WEB_S5, 1999). One
benefit of the model was that using this model it was possible to model a piece of

cloth flowing through any time of liquid, including water.

Figure 4.5 Cloth draping on objects by Baraf D. & Witkin A., 1998)

(Baraff D. & Witkin A., 1998) proposed a system that can stably take large steps
in cloth simulation. The biggest bottleneck in cloth simulation systems is that time
steps must be small to avoid numerical instability. The simulator models cloth as a
triangular mesh, with internal cloth forces derived using a simple continuum
formulation that supports modeling operations such as local anisotropic stretch or
compression. The resulting simulation system is significantly faster than previous

accounts of cloth simulation systems in the literature.

4.3.2 Facial Animation

Modeling and animation of human faces is one of the most difficult tasks in
computer graphics like other physical models. Face has a very complex, flexible 3-D
surface. It has color and texture variations and usually contains creases and wrinkles.
There are more than 200 muscles in face connected to bones and tissues. The
muscles lie underneath the skin and have a great influence on the appearance of the
face. In muscle based facial animation systems, mass-spring model is widely used to

represent the elastic properties of the face.
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(Kihler K. & Haber J.,2001) presented a muscle model and methods for muscle
construction that allow to easily create animatable facial models from given face
geometry. The influence of muscle contraction onto the skin is simulated using a

mass-spring system that connects the skull, muscle, and skin layers of this model.
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Figure 4.6 Head Model. (Kiihler K. Figure 4.7 Mass-Spring Model. (Kiihler
& Haber J. , 2001) K. & Haber J. , 2001)

As seen in Figure 4.7, elastic property of skin is simulated using masses and
springs. The springs connect the skin nodes to muscles and skull. The skin is
modeled as a layered structure to avoid skull penetration and preserve volume by

additional springs.

(Lee Y. et al. , 1995) presented a mass-system contains 3 layers: cutaneous layer,
subcutaneous fatty tissue layer and muscle layer which is the first 3D model of a

human face. Jaw rotation is specified through a menu-driven interface in the model.

4.3.3 Jello Cube Simulation

Jello cube is another popular implementation of mass spring systems. The jello
cube is a piece of 3D elastic material which can be bent, stretched, squeezed. It
behaves like an elastic material; when stretched, it tends to contract. When squeezed
together, it tends to inflate back to the original shape. Without external forces, it

eventually restores to the original shape.
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Figure 4.8 Jello Cube

Jello cube can be physically modeled as a mesh in three dimensions. The mesh
consists of a set of points, links connecting points, and various properties embedded.
Each point is initially defined with a position in space and a mass. Every mass point

connected to other points by springs (Figure 4.8).

4.4 Advantages & Limitations

(Gibson S. & Mirtich B. ,1997) presented a survey of the work done in modeling
deformable objects within the computer graphics community. They presented some
purely geometric approaches for modeling deformable objects, but focused on
physically based approaches including mass spring models. Mass spring systems are
simple physical models with well understood dynamics. There are other physical
models like continuum models which can not be animated at possible rates. On the
other hand, mass spring systems are easy to construct and can be animated at
acceptable rates even on a desktop computers. Parallel computation is easily used in

mass spring models due to nature of nodded structure.

But mass spring models have some disadvantages. The model is an approximation
of the physics that occurs in a continuous body. The structure can be only modified
through spring constants and these constants are not properly determined easily to
derive from measured material properties. In addition, some certain constraints may
not be naturally expressed in the model. Very thin surfaces and some volumetric
objects are difficult to model using mass spring approach. In these cases, some

additional springs must be used and this increases computational cost.
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Stiffness is another problem when spring constants are large. Large spring
constants are needed to model objects that are nearly rigid, or to model hard
constraints due to physical interactions. Problems in stiff systems arise due to poor

stability, requiring the numerical integrator to take small time steps.



CHAPTER FIVE
MASS-SPRING BASED HAIR MODEL

Deformable objects which are required to improve the realism of the virtual
reality applications have flexible structure. They are very useful in modeling clothes,
facial expressions and human characters. However, they are known to be

computationally expensive to model and render.

In human hair simulation, to give the motion, the shapes of hair strands are
changed. If there is a change in the shape of an object during simulation, it is said to
be a deformable object. Therefore, it is a meaningful approach to model human hair
as deformable object. Modeling and simulation of deformable objects has a long
history in computer graphics society. They have been studied for nearly two decades
with different objectives. As we mentioned in previous chapter, mass spring systems
are well appropriate for deformable objects. In this chapter, we will present a simple

physics model to simulate human hair using mass spring systems.

5.1 Physical World Design

In real life, all objects act according to physics rules. For example, free falling of a
ball is under the control of physics. When we set a ball free, the gravitational force
makes it fall. There are forces in nature and these forces generate the motion. Motion
is such an ingrained part of our daily lives that we rarely pause to contemplate it. We

rarely notice the more subtle details of the motions of objects around us.

According to Wikipedia Encyclopedia (WEB_6, 2004), computer graphics is the
field of visual computing, where one utilizes computers both to generate visual

images synthetically and to integrate or alter visual and spatial information sampled
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from real world. Consequently, to get computer generated images, a system should
be constituted that simulates the nature. In fact, real world is a complete physical

simulation without missing parts.

There are lots of advantages of being able to simulate nature. It expands the
creativity of animators and effects supervisors. Animation refers to the process in
which each frame is produced individually generated as a computer graphic
repeatedly making small changes to a model. Simulating the nature automatizes this
process. Instead of generating each frame one by one, animation generation process
is done by deforming the model. The deformation of objects and environment are

handled by some functions that imitate the real world.

S5.1.1 The Simulation Engine

To simulate the natural behavior of objects in universe, a physical simulation
engine must be constructed. However, we have explained the differences between
physically based simulation and physical simulation; we will use the term “physical
simulation engine” for our physically based model. Physical Simulation engine
supplies the ability to objects and environment to behave in a physically realistic
fashion. This means objects in the simulated world can be configured to behave just

as real objects do, according to the laws of physics.

S.1.2 Factors for a Stable Simulation Engine

The physical simulation engine can be so sensitive due to configuration of objects.
This may cause some performance problems and unexpected results. There are lots
of factors involved and sometimes it can be difficult to find the exact reason. Below
are some topics to watch out for when dealing with physical simulation to build a

stable simulation engine:

» Working with too large or too small objects may cause instabilities. In
physically based modeling, the main properties of objects such as weight,

length or size may differ from the real world.
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> The characteristics of objects which are related with motion like velocity or
acceleration can lead to unrealistic behaviors. To avoid from these behaviors
the forces acting on objects should be designed attentively.

» Collisions between objects may result unexpected problems. Of course, it is
not possible to handle all kinds of collisions just like in nature. But enough

attention must be given to this topic.

\ 74

Unnecessary parts must be extracted from simulation for best performance.
For example, when simulating the fall of a ball, the air friction should be
ignored due to small effect on the system. If not, it will increase the cost of

simulation and maybe the system will become non-applicable.

5.1.3 The Design

Generally, physical simulations are known to be complex models and many
different approaches were developed by researchers in previous decades. A most
common and plain model is shown in figure 5.1. We have constructed our model

according to this process diagram.

Main 3D Library Simulation Engine | Math Library
Application (OpenGl, (Functions, (Points , Vectoral
DirectX) Solutions) Quanties)

Figure 5.1 Physical Simulation Process

To build our physical environment, firstly basic elements such as points, vectoral
quantities must be declared. The math library includes these elements. For example,
to simulate free fall of a ball; the position of ball, direction of gravity and velocity of
ball must be described in this library. Simulation engine gives the ability of
movement to the objects that are created with the basic elements in math library.
Physical simulation is considered to be a three dimensional application due to nature
of real world. In nature, all objects exist in three dimensional world. Consequently,
using a 3D Library would be a good choice to perform the simulation. In this project,
we used OpenGL to construct a 3 dimensional environment. Nehe Productions
OpenGl tutorial (WEB_7, 2003) helped us to build this simulation.
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5.1.4 Math Library

In fact, a math library does not need to include too many elements to build a three
dimensional model. There are three coordinates in the universe: x, y and z. By using
these coordinates all objects’s positions can be defined. In addition to this, velocity,
acceleration and force components must be used. To define all these properties

vectors can be used.

5.1.4.1 Vectors

A study of motion will involve the introduction of a variety of quantities which
are used to describe the physical world. Distance, position, velocity, acceleration,
force, mass, energy, momentum, power etc. are examples of such quantities. All one
of these quantities are either scalar or vector. Displacement, velocity, force and
acceleration have a size or magnitude, but also they have associated with the idea of
a direction. A vector is a quantity that has two aspects. It has a size, or magnitude,
and a direction. In contrast, the quantities are called scalars that have only size.
Vector quantities are not fully described unless both magnitude and direction are

listed. (WEB_8, 2004)

For example, distance and displacement are two quantities which may seem to
mean the same thing, yet have distinctly different definitions and meanings. Distance
1s a scalar quantity and it refers to "how much ground an object has covered" during
its motion. Displacement is a vector quantity which refers to "how far out of place an

object is"; it is the object’s change in position.

Figure 5.2 Vectors have a direction (left), A vector in coordinate system (right)
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Graphically, a vector is represented by an arrow, defining the direction, and the
length of the arrow defines the vector's magnitude (Figure 5.2). Mathematical way of
representing a point in the space is named as vector. A vector is composed of three
numbers, generally: x, y and z. These numbers are used to show how far it must be
gone in three different directions. Vectors are written in the format of V(x, y, z).
V(4,1,3) means there is 4-step movement in x axis, 1-step movement in y-axis and 3-

step movement in z-axis. (WEB_9, 2004)
5.1.4.2 Vector Design
To build the basics of physical model, a vector class should be declared. This

class will be used for points, vectors, position, velocity and acceleration. As

explained before, this vector should have 3 elements.

Class Vector

{
float x; float y; float z;

The math library only includes this class. In addition to these x, v and z values,
the class contains the vectoral operations such as addition, subtraction etc. As
mentioned before, force is defined as a vector and it has a direction and magnitude.

Therefore, different forces acting on an object should be added to get the total force.

5.1.4.3 Vectoral Operations

Vectors can be added together, subtracted and multiplied by scalars. Vector
addition is the operation of adding two or more vectors together into a vector sum.
Force is a good example to show the properties of vectors. According to Newton’s
laws of motion, the net force acting on an object is determined by computing the

vector sum of all the individual forces.
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Figure 5.3 Addition Of Vectors (C=A +B)

The result vector is the addition of each coordinate of one vector with the
corresponding coordinate value of the other vector. It is not important if there are two

or more vectors; all vectors can be added in this manner.

Class Vector

{
float x; float y; float z;
Vector Add(Vector Other)
{

Return Vector{x + Other.x, y + Other.y, z + Other.z);

Vector subtraction, division and multiplication of a vector with a scalar are other
operations included in this class. Vector multiplication is not uniquely defined, but a
number of different types of products, such as the dot product, cross product, and
tensor direct product can be defined for pairs of vectors. The class also includes the
operation to get the length of the vector. The length of the vector is calculated by the

following formula for Vector (x, v, z):

Vector Length =  ¥x* +y* + 22 ;.1

5.1.5 Definition of Mass

According to Newton’s Second Law of Motion, a force applied to an object makes
it accelerate. But the same force applied to a bowling ball and balloon makes each
accelerate differently. The bowling ball accelerates less because it has a higher mass.

Mass is the amount of material in an object.
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Sometimes, mass appears to be same with weight. In fact, mass turns to weight
when gravitation exists. Weight differs on different locations due to gravitation
diversity. On the other hand, there is only one value for mass of an object in all
conditions. Weight is a measure of force and depends on both the amount of mass
and the amount of gravity. Mass is important for calculating how quickly things
accelerate when we apply a force to them. It is certain that, a car accelerates slower if

more passengers in it.

5.1.6 Mass Design

Mass is an object with position and velocity. The “mass” class in our simulation
should contain velocity of the mass, position of the mass, force acting on mass and

the mass value of the mass.

Class Mass

{
Vector pesition;
Vector velocity;
Vector force;

flocat massvalue;

Position, velocity and force are vectoral quantities and they are declared as an
instance of Vector class. Mass value is scalar; therefore it is declared as float type.
The object tends to move in the direction of velocity. If there is a change in the
position of an object, velocity is responsible for this. The change in the position
depends on also how much time passed. In chapter3, we discussed Newtonian Laws.
According to Newton’s First Law of Motion, the velocity of a mass changes if there

is a force acting on it.



44

Acceleration is the change in velocity per unit time. Second Motion Law of
Newton shows that the net force acting upon an object causes acceleration, with the
magnitude of the acceleration directly proportional to the net force and inversely
proportional to the mass. There are several forces acting on the mass. The total force
is the vectoral sum of all the individual forces. “Mass” class handles the calculation

of the net force by a function.

Class Mass

{

Void AddToNetForce (Vector F1)

{
this.force = Add (F1)

The physical simulation has “simulate” function that performs the calculation of
new values of position and velocity. The function takes “time” as a parameter.
Consequently, for each time segment, position and velocity values are changed
according to force and mass values. The change in the velocity is calculated with

formula:

Change In Velocity = ( Force / mass ) * Time 5.2)

And it is added to current velocity to get the new value. The change in the position

depends on velocity and time passed; it is calculated with following formula:

Change In Position = Velocity * Time (5.3)

Class Mass

{

Void simulate (float time)
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1

velocity (force / massvalue) * time;

f

position velocity * time

As seen in code segment above, the velocity and position depends on the time
passed. So this “simulate” function should be iterated at each time segment. Iterating
time may be implemented by different methods. One of the most famous and simple
methods is “Euler Method” which is widely used in computer games. It calculates

the next value of velocity and position for mass object.

5.2 Simulation Design

5.2.1 Simulation Process

When a physical simulation works, at each time segment same process is
executed. This means some functions and operations are defined and the change is
ensured by the time parameter. In this process, firstly all forces are applied and then
new values of position and velocity are calculated. According to these calculated
values, the image is drawn with a 3D library. To create the masses and perform
operations on them a “Simulation” class is needed. In this class the masses are
created and initialized. A simulation generally includes lots of masses, so it will be

congruous to define a masses array.

Class Simulation

{
Mass[} Array Masses; Float Number;

Void create (int Number)
{
For {(i=1; i< Number+1 ; i++)

Massesfi] = new Mass();
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The “Mass” class has a simulate function which calculates the velocity and
position of the mass. To call this function, a “simulateall” function is needed in

“Simulation” class, for all of the masses that have created.

| Void simulateall (float time)
{

For (i=1; i< Number+1 [ i++)

Masses[i].simulate (time) ;

To get a complete simulation class, another function must be defined which tells
to mass what to do. Without declaring it, simulation class will only create the masses
and call the simulate functions of them. Still the position and velocity of masses are
not declared and no force is applied. Thus, there will be no change in the mass
position and this will cause no motion. In next topic, the importance of this function

will be shown with an example.

5.2.2 Performing Simulation

By building “Mass” and “Simulation” classes, a basic simulation engine has come
into existence. As an example, free fall of a ball will be simulated in this topic. In
this simulation, ball is considered as a single mass. To perform the simulation a new
class will be used which was inherited from “Simulation” class as a base class. This
new class has a new function which was not included in the base class. This function

holds the operations such as initial value assignment and applying force.

Class FreeFall : Simulation
{ Vector gravitation = (0.0, -9.81, 0.0);
Void Initialize(){
Masses[1].position = Vector(0.0,0.0,0.0);
Vector(0.0,0.0,0.0);

|

f

Masses[1].velocity

Masses[1].mass = 1;
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The mass has a velocity of zero in all directions due to free fall. It’s position is set
to (0,0,0) in the coordinate system and massvalue is set to 1. Gravitation force is the
only force which should be applied to object to get a free fall effect. Actually, there
are lots of other forces acting on object such as air friction. However it is impossible
to calculate all forces that exist in nature. That would be a cost to computational time

and some forces may be ignored to reduce this.

Figure 5.4 Gravitational Force

When an object is dropped on earth surface, its velocity increases 9.81 meters per
second in each second. Therefore, gravitational acceleration is 9.81 m/sec’ on earth.

The function that performs the gravitational force is shown below.

Perform() {
Masses[1].AddToNetForce ( Masses{1].massvalue
*gravitation)

Masses[1l].simulate(time) ;

Gravitation is a vectoral quantity so it is set to (0.0, -9.81, 0.0). The fall of
the object will be in the y axis in negative direction. This is why the gravitational

acceleration is set to negative.

5.2.3 Application with OpenGl Library

The application generates the images with the values that are taken from the
objects which were instantiated from simulation classes. This project focuses on an
application which uses OpenGL as 3D Library. There are common procedures in

OpenGL applications. The application has three steps:
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» Creation of Simulation Object (Class FreeFall)
» Performing Calculations (FrameUpdate)
» Drawing Objects On Screen (GLRender)

The first step is executed once when the application starts. The creation of the
simulation object is handled with this step. The created object is used in other two

steps.

FreeFall* FreeFallObj = new FreeFall();

Applications that use OpenGL are based on frames. To generate the animation
each frame must be calculated and drawn. Second and third step performs these
operations. These functions work simultaneously. Thus, according to calculated

values in step 2 the image is drawn to screen in step3.

Function FrameUpdate () {
FreeFallObij.Perform();

GlIRender function is executed after each frame update. It contains the appropriate
OpenGL commands to build the simulation visually. The code below simulates the

free fall of a 4 sized point.

Function GLRender(){

Mass* MassFoo = FreeFallObj.Get();
Vector* position = MassFoo.position;
glPointSize(4);
glBegin (GL POINTS);
glVertex3f (position.x, position.y, position.z);

glEnd{);
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5.3 Spring Motion

5.3.1 Spring Design

A spring is a device that has an equilibrium position, and when moved from that
position, it pulls itself back toward it. A mass is connected to a spring and spring
should pull the mass towards the connection point. This system can be modeled by
claiming that there is a force on this object proportional to its displacement from the
equilibrium position. In equation (4.1), if this position is denoted as origin, x is the
displacement from origin. Here k is the proportionality constant which is

proportional to the strength of the spring.

Class HarmonicMotioni()}{
Vector ConnectionPosition = (0.0,0.0,0.0);
Float k; // Spring Constant
Mass M;
Void initialize {
M.velocity = (0.0,0.0,0.0);

M.position = ConnectionPosition + (20.0,0.0,0.0);

}

To model a harmonic motion, a mass should be declared first and its position
should be set enough far away from connection position. The force applied to the
mass is the product of spring stiffness (spring constant) and the distance vector. The
mass may be in two sides of the spring during harmonic motion; one the left hand
side or right hand side. The mass is pulled to the opposite direction with the force

generated by the spring. This is why there is negative sign at formula in Equation

(4.1).

Perform(){
Vector DeltaDistance=Mass.position — ConnectionPosition;
Vector SpringForce = -{ DeltaDistance * k)

Mass.AddToNetForce ( SpringForce )
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Mass.simulate(time) ;

DeltaDistance is the vector from the position of the mass to the connection
position. It is calculated by using the vectoral difference of mass position vector and
connection position vector. The generated force is the only force that is applied to

mass. The system oscillates forever until other forces are applied.

5.3.2 Friction Force

In physics, all systems have energy which is either kinetic or potential. All forms
of energy are associated with motion. For example, any given body has kinetic
energy if it is in motion. In real life, a system does not conserve all of its energy
forever. Friction is the main cause of energy leaks in the system and the reason why
energy is not fully conserved. Friction is a non-conservative force. Non-conservative

forces are forces that cause a change in total energy.

Friction Force = - ( Friction Constant * Current Velocity ) (5.4)

In previous topic, the first energy is generated by the spring as a pull force. When
the mass reaches connection point all energy is transferred to mass as velocity. This
energy transformation lasts forever until no other force is applied. To get a realistic
animation, some friction force should be added to simulation. Friction force opposes
motion by working in the opposite direction. For the example which was explained
in previous topic Equation 5.4 should be added to simulation to handle friction

process.
5.4 Mass-Spring Design Model For Hair Dynamics
Up to now, we have built a simulation class which does nothing and examined

how springs work with an example. From now on, we will construct hair model by

using previously built models: Vector, Mass and Simulation. One individual hair



strand includes particles connected to each other. In next topic, a single hair strand

generation will be shown.

S.4.1 Single Hair Strand Generation

In our hair model which uses mass spring systems, there are masses and forces
acting on them. From now on, we will use term “particle” instead of mass because of
not confuse it with mass object. The hair strand is a curved line which has a
deformable structure. This means its shape changes by the time passes. To generate a

hair strand lines between particles are used.

~— o

Figure 5.5 Lines between particles generate the hair strand model

In Figure 5.4 above, particles are denoted with a circle. The line which holds the
two particles together are denoted as springs. In this figure, there are five particles
connected with four springs. These springs will be source of force between two

particles.

In topic 5.3, we have built a spring mode!l where we defined a single mass and a
spring. In this model, there was a connection point and the mass was oscillating
according to this point. Now, we will extend this model to create a tension between
two particles. But, if we use the same spring force formula, system will never reach a
steady state. In equation 4.1, if Ax is not zero, a force will be generated. Therefore,
the particles will continue to move and will never stop. Consequently, the formula

should be changed as follows:

Spring Force = - (Spring Constant) * (Ax-d) (5.5)



In this equation d denotes the desirable distance between two particles. When the
distance between particles is d, no force will be applied and there will be a specific
distance between particles. The following spring class holds the two masses and

calculates the forces acting on them.

Class Spring{){
Float SpringConstant;
Float DesiredDistance;
Mass M1;
Mass M2;

In this class, two masses and two constant values are defined. The drawn line
between these two masses will be the one segment of our hair strand. By defining
more springs in our simulation, we will get a segmented hair strand. “Spring
constant” value is used to define spring tension. “Desired Distance” value determines

the distance between masses and this is the length of one segment.

5.4.2 Spring Force

Equation (5.5) will be our base formulation to generate the most significant force
in our simulation. Firstly, spring vector should be found to get the direction and
magnitude. Spring vector is the vector which is defined from one mass position to

another.

void Perform() {
Vector SpringVector = Ml.position - MZ.positon;

Float SpringVectorLength;
d = DesiredDistance — SpringVectorLength; // (Ax-d)

Vector Force = - (SpringConstant)* d; // F= -k * (Ax-d)




The generated force is applied to both masses. But one force in positive direction,
the other is in negative direction. Because, while one mass pulls the other, this will
be a push force on the other mass. This force is only the spring tension between
masses. There will be other forces acting on masses such as friction, gravitation and
wind in our hair model. From now on, all forces that we construct will be applied to

both in different directions. The code segment below shows application of forces.

void Perform(){

M1.AddToNetForce ( Force )
M2.AddToNetForce{ - Force )

5.4.3 Single Hair Strand Simulation

To animate a single hair strand by using physical laws, we need to generate
springs. The number of springs depends on the length of the hair strand and speed of
animation. When a proper distance is set between masses, adding new springs
increases the hair length. Therefore, the distance between masses is another factor
that affects hair length. When there are fewer springs, there would be less calculation

proportionally. Consequently, our simulation will work faster.

Class Spring(){
Constructor Spring(Mass Massl, Mass Mass2){
this.MI = Massli;

this.M2 Mass2;

Before constructing hair simulation class, a part must be added to spring class.
There will be lots of masses in our class and these will be connected to each other.
Each two pair of the masses will belong to a spring. Therefore, the masses of a spring

should be determined by a constructor in spring class as shown in code segment
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above. Class “Hair simulation” includes the spring generations and performs the

simulation for one hair strand.

Class HairSimulation

{
Spring(] Array Springs; Mass{] Array Masses;
Float SpringNumber; Float MassNumber;
Float SpringLength;

Void initialize()

{
For (i=1; i< MassNumber+1 ; i++){
Massesfi] = new Mass();
Masses[i].position.x = SpringLength * i;
}
For (i=1; i< SpringNumber +1 ; i++){
Springs({i] = new Spring(Masses[i],Masses[i+1]);
}
}

Now, all the masses are created and these masses will be the milestones of the hair
strand. Masses are the joint points of the strand. The two consecutive masses are
bound to a spring with a simple for loop. As we remember from previous topic, the
“Perform” function generates the spring forces and applies them to each one of the
masses. When “Perform” function is executed for each spring, the forces will be

calculated for each mass.

Void Perform() // Of Class HairSimulation
{
For (i=1; i< SpringNumber +1 ; i++){
Springs[i].Perform(); // Perform method of spring
class

/
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Until now, simulation of one hair strand is described briefly. But there are missing
parts. There will be other forces acting on masses to make the system stable and
more realistic. Without gravitation force, particles will be in same row without sense
of reality. Also, air friction is a considerable factor to hold the system steady. Unless

air friction is applied, the system continues to swing forever.

5.4.4 Gravitational Force

Gravitational force is widely used in most physical simulations. It is the most
important force on earth. Every object tends to fall. In our simulation, masses must
be under the effect of this force for a realistic view. In “FreeFall” example, we have
defined a gravitational force for a single mass. For hair model, it would be enough to

[

generate this force for all masses. “g” is the gravitational acceleration vector.

For (i=1; i< MassNumber+l ; i++)}{

Masses[i].AddToNetForce( g * Masses[i].Massvalue )

5.4.5 Air Friction

As we mentioned in topic 5.4, all systems in real life do not conserve their energy
forever. Some part of energy is converted to heat due to friction. In our hair model, if
air friction is not defined, hair strand never stops to swing. Therefore this friction

force should be applied to all masses in this model.

For (i=1; i< MassNumber+l ; i++)
{

Masses[i].AddToNetForce (-
(airfriction*Masses[i].velocity))

}

Air friction constant, spring constant and mass values are chosen arbitrarily in this
model. In physically based models, accurate results are not expected; the most
important issue is the appearance and applicability of the model. Therefore, these

values do not represent the real world values.



56

5.4.6 Output: Single Strand

In figure 5.5, the animation of a single hair strand is visualized. 18 masses are
used in this example. They are shown as dots to show the joint points of the strand.
When we move the first mass which is located at the top, all other masses follow the

nearest mass due to spring effect and this gives a smooth movement.

i
.

Figure 5.6 Motion Of Hair

Until now, we have built a fully functional model for the animation of a single
strand. In next topic, to have a bunch of hair, we will clone this hair model.
5.5 Wisp Of Hair
5.5.1 Extending HairSimulation Class

To increase the number of hair strands in our simulation, we extended

“HairSimulation” class. The number of hair strands is passed as a parameter to this

new class.

Class AllHairSimulation

{
Int number;,

Constructor AllHairSimulation (int number)

{

This.number = number;
}

HairSimulation{}] All = new HairSimulation (number) ;
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If same values are set for all hair strands, we will be able to see only one strand on
screen, because same values mean same results. Therefore, there must be a difference
in parameters of strands. This should be done by defining a difference factor or

changing some values such as friction or mass weight.
5.5.2 Wind Effect
To see the animation details, we have added a wind effect to our simulation. The

wind can be applied in both directions; from left or right. Wind is set as vectoral

quantity in simulation.

Class HairSimulation

{
Vector wind;
Void Setwind(Vector Wind)
{ this.wind = Wind;}

For (i=1; i< MassNumber+1 ; i++)
{
Masses[i].AddToNetForce (wind) ;

}




5.5.3 Output: Wisp Of Hair

" Figure 5.9 Output 3 : Thicker Strands
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CHAPTER SIX
CONCLUSION

There are different techniques which are used in hair modeling. In this thesis, we
have examined these techniques briefly and introduced a physically based model
which uses mass spring basics. Our hair model can be considered as an explicit hair
model. Explicit hair models are the most obvious approach to rendering hair is to
model each individual hair as a curved line. As seen on table 2.1, explicit models are

very expensive due to number of elements.

When each hair strand is generated individually, it costs too much and sometimes
the model becomes inapplicable. Our hair model has a segmented structure. Each
hair strand is composed of lots of segments which were implemented with masses
and springs. Reducing number of segments is a major factor to speed up the
animation. But, when the hair strand is modeled with fewer segments, we get lower

quality image.

For better performance, the combination of this model and cluster hair models
can be a solution. The hair on some parts of scalp shows the same behavior.
Therefore, it will be suitable to model a wisp of hair and distribute this wisp over

different parts of scalp; instead of modeling all strands on the scalp.

As a future work, the model can be implemented on a parallel environment. The
position and velocity values for masses can be calculated on parallel machines for

performing these large and complex tasks faster.
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APPENDICES

APPENDIX A: 3rd PARTY HAIR & FUR PLUGINS

Al. Maya Fur

This plugin is released from Alias|Wavefront in first-quarter of 1999. This plugin
allows to select a surface in Maya and than cover this surface with hair using some
attributes such as curl, transparency, length, color. Maya Fur is integrated within
Maya renderer, and results can be output as composite images or as separate render
pass for post-processing. Maya Fur is self-shadowing and supports both true 3D cast
shadows and render efficient root and back shading. Motion blur and depth of field

fully supported.

Sample Images created with MAY A Fur.
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A2. Shag:Hair

Shag:Hair is a revolutionary new plug-in system used to add hair and fur to any
3D object. Using control hairs to define the overall look of hair, this software plug-in
is implemented as an atmospheric effect inside 3D Studio MAX although it can
create true geometry. Standard MAX splines can shape hair strands, which can then
become control hairs. Shag:Hair has built-in dynamic properties and controls for
such attributes as thickness, clumping, curliness, and collision. Shag: Hair has the
added advantage of its own built-in dynamics engine, so that as your character or
creature moves, the hair will flow realistically, even to the point of accurately

colliding with surrounding geometry.

Sample Images created with SHAG:HAIR.
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A3. Shave and a Haircut

Shave and a Haircut is a 3D system for generating and rendering complex
dynamic particle systems such as grass and hair. “Shave and a Haircut” is shipped as
a plug-in that is available for Maya, 3D Studio Max and Cinemadd. Its effects are
dynamic and react automatically to physical forces, such as momentum, wind and

gravity.

Sample Images created with Shave and a Haircut.

(C) 2003 by Yusuke Matsumoto
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Ad. Fiber Factory

This Lightwave plug-in makes hair from fibers with any number of sides and
segments. The fibers can have various lengths, widths, colors, contours, curls, and
other effects; can react dynamically; and when used with bones, can be styled in
layout and animated without dynamics. It provides specular, diffuse, and ambient

lighting effects to strands of two-point polygons.

Sample Images created with Fiber Factory.
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AS. Fur Designer

Created by a long-time film production company, this plug-in for Softimage 3D
uses a particle animation system to create hair and fur. It offers styling control,
provides texture mapping of all parameters with interactive updates, and supports

animation and deformation.

Sample Image created with Fur Designer.

A6. Houdini

Houdini provides fur control through its particle operators (POPs); hair position is
based on particle streams. By putting fur into POPs, dynamics happen automatically,
hair growth can be animated, and skin can be deformed when hair is tugged. Within
Houdini, complex procedural parametric spline tools generate complex procedural
fur behavior, thereby affecting the position, orientation, and behavior of individual
hairs or groups of hairs to, for example, cause the hair on a cat to rise when the cat

arches its back. Sample Image created with Houdini.




