DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

SAFSIZLIK İÇEREN KÜRESEL KUANTUM NOKTASININ ELEKTRONİK YAPISI

İskender ALTINDİŞ

Ocak, 2007 İZMİR

SAFSIZLIK İÇEREN KÜRESEL KUANTUM NOKTASININ ELEKTRONİK YAPISI

Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi Fizik Anabilim Dalı

İskender ALTINDİŞ

Ocak, 2007 İZMİR

YÜKSEK LİSANS TEZİ SINAV SONUÇ FORMU

İSKENDER ALTINDİŞ, tarafından YRD. DOÇ. DR. HAKAN EPİK yönetiminde hazırlanan **"SAFSIZLIK İÇEREN KÜRESEL KUANTUM NOKTASININ ELEKTRONİK YAPISI"** başlıklı tez tarafımızdan okunmuş, kapsamı ve niteliği açısından bir Yüksek Lisans tezi olarak kabul edilmiştir.

Yrd. Doç. Dr. Hakan EPİK

Danışman

Yrd. Doç. Dr. Kemal ALTIPARMAK

Prof. Dr. İsmail SÖKMEN

Jüri Üyesi

Jüri Üyesi

Prof. Dr. Cahit HELVACI

Müdür

Fen Bilimleri Enstitüsü

TEŞEKKÜR

Tezin yazılması sırasında tanışmaktan çok hoşnut olduğum Mustafa Çetin Liceli'nin büyük katkıları, hiçbir zaman unutulmayacak.

Bu tezin hazırlanması sürecindeki katkılarından dolayı, kendilerini çok yorduğum danışmanım Yrd. Doç. Dr. Hakan EPİK ile sevgili ve saygıdeğer öğretmenim Yrd. Doç. Dr. Kadir AKGÜNGÖR'e teşekkürlerimi birer borç olarak iletirim.

Dokuz Eylül Üniversitesi Fizik Bölümü'ndeki çok değerli gördüğüm arkadaşlarım arasında Sevil SARIKURT ve Ümit AKINCI'nın adlarını, burada özel olarak anarım.

Dokuz Eylül Üniversitesi Fizik Bölümü dışındaki, beni koşulsuz sevgi, destek ve inançlarına yaraşır gören ve bana güç veren arkadaşlarım Mehmet GEZEN, Gökhan GÜRSOY, Mehmet Kağan KANDİLLİ, Canan ÖZTÜRK, Erdinç TOPSAKAL, Enver YETİM ile sevgili kardeşim Arda ALTINDİŞ'e gönül borçlusuyum.

Bana olan sevgisi ve katkılarından dolayı annem Yıldız HACIOĞLU'yu da sevgiyle anarım.

Bitmek tükenmek bilmeyen her türlü maddi ve manevi desteğindeki içtenliğini, her kezinde gözlerinde ve sözlerinde bana kanıtlamış olan sevgili "babam" Ali ALTINDİŞ, bu tezin bitmiş olmasının başnedenidir. Kendisine derin sevgi ve saygılarımı sunarım.

Hepinize çok teşekkür ederim.

İskender ALTINDİŞ

SAFSIZLIK İÇEREN KÜRESEL KUANTUM NOKTASININ ELEKTRONİK YAPISI

ÖZ

Bu çalışmada, küre içindeki bir serbest parçacığın Schrödinger denklemi, sonlu elemanlar yöntemi kullanılarak çözülmüştür. Çözümler, Bessel fonksiyonlarının analitik çözümleriyle karşılaştırılmış ve çözümlerin büyük duyarlılıkla uyum içerisinde olduğu görülmüştür.

Anahtar Sözcükler: Sonlu elemanlar yöntemi, kuantum nokta, kuantum kuyusu.

ELECTRONIC STRUCTURE OF THE SPHERICAL QUANTUM DOT WITH AN IMPURITY

ABSTRACT

In this study, free particle in a spherical well of Schrödinger equation is solved by using Finite Element Method (FEM). The solutions are compared with analytic solution, Bessell functions and it's seen that solutions are in accordance with great accuracy.

Key Words: Finite element methods (FEM), quantum dot, quantum well.

İÇİNDEKİLER

Sayfa
YÜKSEK LİSANS TEZİ SINAV SONUÇ FORMUii
TEŞEKKÜRiii
ÖZiv
ABSTRACTv
BÖLÜM BİR – GİRİŞ1
BÖLÜM İKİ – KUANTUM NOKTALAR VE SONLU
ELEMANLAR YÖNTEMİ2
2.1 Kuantum Noktalarının Yapısı ve Deneysel Olarak Oluşturulması2
2.2 Sonlu Elemanlar Yöntemi
2.3 Baz Fonksiyonları
2.3.1 Bir Boyuttaki Baz Fonksiyonların Seçimi
2.3.2 Bir Boyutta Parçalı Doğrusal Baz Fonksiyonlarının
Bulunması11
2.3.3 Yüksek Dereceli Bazlar15
BÖLÜM ÜÇ – TARTIŞMA20
3.1 Sonlu Elemanlar Yönteminin, Küresel Bölge İçindeki Serbest
Bir Parçacığın Schrödinger Denklemine Uygulanması
3.2 Sonuç
KAYNAKLAR
EK

BÖLÜM BİR GİRİŞ

Nanometre basamağındaki düşük boyutlu sistemler, son yirmi yıldır yoğun madde fiziğinde yeni bir araştırma alanı oluşturmaktadır. Kuantum kuyuları, telleri ve noktaları gibi bu düşük boyutlu sistemlerin üretimindeki teknolojik ilerlemeler, daha ileri aygıtları, örneğin çok daha hızlı bilgisayarları müjdelediğinden, ilgiyi üzerine çekmeyi başarmıştır. Atomlara benzer böyle sistemler, insan yapımı yapıdır ve laboratuarlarda tasarlanıp üretilmektedir. Yüktaşıyıcıları, kuantum mekaniksel olarak, tüm uzaysal yönlerde hapsedilir ve böylelikle çok küçük yarıiletken yapıları anlayabilmek umulur. Bu yapılarda doğal uzunluk ölçeği, birkaç nanometre basamağındadır ve çoğunlukla sıfır boyutlu cisimler veya kuantum noktaları olarak adlandırılır. Bu ölçekteki bir sistemde kuantum etkileri, kendini güçlü olarak gösterir. Bu nedenle de kuantum noktaları, alışılmış benzerlerinden oldukça değişik, yeni fiziksel etkiler göstermektedir. Bu yüzden son zamanlarda, kuramsal ve deneysel araştırmaların çoğunda, bu sistemlerin çeşitli fiziksel özelliklerini anlamak ve incelemek için çalışılmaktadır. Bu özelliklerin başında da elektronik özellikleri gelmektedir (Kervan, 2004).

BÖLÜM İKİ

KUANTUM NOKTALAR VE SONLU ELMANLAR YÖNTEMİ

2.1 Kuantum Noktalarının Yapısı ve Deneysel Olarak Oluşturulması

Kuantum noktaları, üç uzay boyutunda kuantum mekaniksel olarak hapsedilmiş, sıfır boyutlu sistemlerdir. Bu yapılarda doğal uzunluk ölçeği, dev atomlarla benzer ölçülürde, birkaç nanometre basamağındadır. Tıpkı doğal atomlar gibi, istenildiğinde değiştirilebilen elektron sayısı içerir. Enerji düzeyleri kararlı olup spektrumu kesiklidir. Bu yüzden kuantum noktaları kimi kez yapay atom olarak anılır. Tıpkı doğal bir atomdaki gibi, bir kuantum noktasında da elektronlar, merkezcil bir yere doğru çekime uğrar. Başka bir deyişle, bu kuantum noktasında elektronlar, aslında bir potansiyel kuyusuna tıkılmıştır.

Son yirmi yıldır, kuantum noktalarına olan ilginin azalmayarak sürmesinin nedenlerinden birincisi, doğal uzunluk ölçeğinin nanometre basamağında olmasıdır. Bu nedenle kuantum noktasına, kuantum mekaniğinin çalışıldığı bir laboratuar gibi bakılır. Bu laboratuara da, kuantum mekaniğini sınamak için görkemli bir alan olarak yaklaşılmaktadır. İkincisi, belki daha önemlisi, kuantum nokta sistemleri, çok ilginç ve aynı zamanda hacimsel benzerlerinden oldukça değişik birçok fiziksel etki göstermektedir. Ayrıca kuantum nokta yapılarını, iki ve üç boyutta anlamak olanaklıdır; bu yapılar değişik biçim ve ölçülerde üretilebilir. Bu örnek esnekliği ve yeni fiziksel etkiler, kuantum nokta yapılarını, çok hızlı sistemler olan mikro elektronik aygıtlarda uygulayım açısından umut verici kılar.

Kuantum noktaları, üç yönde tıkılmış nanoyapılar olduğu için, kuantum kuyusu ve kuantum tellerinden mantıksal olarak ilerlemeyi gösterir. 1970'lilerin başlarında, boyutu ikiye sınırlandırılmış, kuantum kuyuları olarak adlandırılan sistemlerin elektronik yapıları üzerinde araştırmalar başladı. Böyle bir kuantum kuyusunda elektronlar, yalnızca iki uzaysal yönde hareket edebilir. Diğer yöndeki hareket, yasaklanmıştır. Bu yüzden kuantum kuyu yapısında, elektronlar iki boyutumsu elektron gazı oluşturuyor, denir. Kuantum kuyusu, yüksek enerjili iletkenlik bandına sahip iki yarıiletken katman arasına yerleştirilmiş, çok ince, düz bir yarıiletken katmandan oluşur. İki malzemenin iletkenlik bandı enerjileri arasındaki ayrım, elektronları ince bir katmana hapseder. Genel olarak kuantum kuyuları oluşturmak için kullanılan malzeme, GaAs'dır. Bariyer olarak kullanılan da $Al_{1-\chi}Ga_{\chi}As'$ dır. Kuantum kuyuları, çeşitli aygıtlarda kullanılmaktadır. CD çalarlarda kullanılan lazer diyotlar ile uydu televizyonlarında kullanılan mikrodalga alıcılar, bunlara örnektir (Jie, 2002).

1980'lilerin başlarında teknolojideki hızlı ilerleme, elektronları, kuantum telleri olarak adlandırılan bir boyutlu yapılara hapsetmeyi olanaklı kılmıştır. Kuantum telleri, kuantum kuyusu içeren bir örnekte kazıma yaparak, çizgiler biçiminde üretilir. Kuantum telindeki elektronlar, tek bir yönde serbestçe hareket ederken, diğer iki yöndeki hareketleri sınırlandırılmıştır. Elektronların böyle bir sistemi, bir boyutumsu elektron gazı olarak adlandırılır (Chuu, Hsiao, ve Mei, 1992).

Kuantum noktasındaysa, elektronlar, hiçbir serbestlik yönüne sahip değildir. Elektronların de Broglie dalgaboyu, bu sistemlerin kuantum etkilerini şaşırtıcı yapan hapsedilme uzunluğu ile aynı uzunluk ölçeğindedir. Bir kuantum noktasının hapsedilme uzunluğu, üç yönde de aynı basamaktaysa, üç boyutumsu kuantum noktası veya basit olarak, üç boyutlu kuantum noktası olarak adlandırılır. Eğer özel bir yönde hapsedilme uzunluğu, diğer iki yöne baktığımızda küçük olursa, bu sistem, iki boyutumsu kuantum noktası olarak adlandırılır.

Özetle, elektronların veya hollerin, ince bir yarı iletken katmana hapsedilmesiyle sağlanan boyuttaki azalmanın, elektron hareketinde önemli değişikliklere yol açtığı görülür. Bu adımlama, elektronların çevresindeki boyutu, iki boyutlu kuantum kuyusundan bir boyutlu kuantum teline, oradan da sıfır boyutlu kuantum noktasına azaltmakla geliştirilebilir. Bu durumda boyut, elektronların hareketindeki serbestlik derecesi sayısını gösterir. Genellikle bir kuantum kuyusundaki elektronlar, bir yönde hapsedilmiş olmasına karşın, kuantum telinde iki yönde hapsedilmiştir. Böylece serbestlik derecesi bire inmiştir. Kuantum noktasındaki elektronlarsa, her üç yönde de hapsedilmiş olduğundan, serbestlik derecesi sıfıra inmiştir. Serbestlik derecesi, "S"; hapsedilmiş yönlerin sayısı, "H" ile gösterilirse, bütün katıhal sistemleri için,

eşitliği yazılabilir. Olabilecek dört değer çifti, Tablo 1.1'de gösterilmiştir. Azaltılmış boyutlu sistemleri, hapsedilmiş yönlerin H sayısındansa, elektron hareketinde geri kalan S serbestlik derecesi sayısıyla adlandırmak, görenek olmuştur.

SİSTEM	Н	S
Hacimsel	0	3
Kuantum kuyusu	1	2
Kuantum teli	2	1
Kuantum noktası	3	0

Tablo 1.1 Çeşitli yapılar için, hapsedilmiş yön ve serbestlik derecesi sayıları

Kuantum noktaları, birçok yöntem kullanılarak üretilebilir. Ancak başlıca amaç, elektronları, küçük bir bölgeye hapsetmektir. Bu hapsetmeyi yapmanın bir yolu, örneğin metal plâkayı yalıtıcıyla kaplayarak, malzemenin sınırlarını kullanmaktır. Aynı zamanda, elektrik alan uygulanarak, elektronların hareketleri, yarıiletken içinde küçük bir bölgeye kısıtlanabilir. Kuantum noktalarını üretmek için kullanılan yöntemlerin çoğunda başlangıç noktası, yarıiletken bir kuantum kuyusunda iki boyutlu elektron gazının oluşturulmasıdır. Bir kuantum nokta yapısı, şimdi ek yanal sınırlamalar uygulanırsa, böyle bir sistemden oluşur.

2.2 Sonlu Elemanlar Yöntemi

Sonlu elemanlar yöntemi; mühendislik, fizik ve matematiğin çeşitli alanlarında karşımıza çıkan, tanımlanmış kısmi diferansiyel denklemlerin ya da çeşitli fiziksel problemlerin çözümünde kullanılan sayısal çözümleme yöntemlerinden birisidir (Sarıkurt ve Kuralı, 2004).

Bu yöntemin temelini oluşturan düşünce, çalışma bölgesini, diferansiyel denklemin yaklaşık olarak çözümünü sağlayan birçok küçük altbölgeye bölmektir. Her bir bölge için elde edilen çözümler bir araya getirilerek, problemin bütün çözüm bölgesi üzerinden davranışı belirlenir (Pask, Klein, Sterne, ve Fong, 2001).

Şekil 2.1'de de görüldüğü gibi, çalışma bölgesi önce sonlu global elementlere ayrılır ki bu global elementler, ortak nodlarla birbirine bağlanır. Aynı biçimde, global elemanlar da nodlar yardımıyla, sonlu sayıdaki lokal elementlere ayrılır.

Sonlu elemanlar yönteminin iki temel özelliği şöyledir:

1) Sonlu elemanlar üzerindeki fiziksel alanın parçalı yaklaşımı, basit yaklaşım

fonksiyonlarından bile daha kusursuz bir sonuç sağlar. Eleman sayısı artırıldıkça daha doğru ve kesin sonuçlar elde edilir.

 Yaklaşımın yerelliği, kesikleştirilmiş bir problem için sparse denklem sistemine götürür. Elde edilen bu yeni denklem sistemi, çok sayıda ortak nod bilinmeyeni içeren problemlerin çözümünü kolaylaştırır.

Bir koordinat sisteminde başıboş duran, "s" sayısındaki noktadan polinom geçirmek istediğimizde, aynı sayıda baz fonksiyonu gereksinimi, kendini gösterir. Baz fonksiyonları olarak trigonometrik fonksiyonlar ya da Bessel fonksiyonları gibi özel fonksiyonlar kullanılabilirse de genelde polinomlar yeğlenir. Çalışma bölgesini hiç global elemanlara ayırmadan, tümüyle lokal elemanlara ayırabilir, elde edilen nodlardan polinom geçirebilirdik ki bu yöntemin adı, sonlu farklar yöntemidir. Ancak bu kez, eldeki büyük nod sayısı için türetilecek polinomun derecesi çok yüksek olacağından, işlemler zorlaşacaktır.

Bu bilgiler ışığında, sonlu elemanlar yönteminde izlenecek yol şöyledir:

Öncelikle çözüm bölgesi, sonlu sayıda global elemana ayrılır, aynı biçimde, global elemanlar da sonlu sayıda lokal elemana ayrılır. Sınır ve ortak nodları da özel adlı nodlar olarak ele alırsak, her biri bir nod düşeyindeki noktaların, bu düşey üzerinde nerede olduğunu bulma amacındayız; noktalar konumlandırılır: "i", noktanın bir ayağının i. nodda olduğunu belirtmek ve "S_i" de diğer ayağının nerde olduğunu bilmediğimizi gösteren bir değişken olmak üzere, nokta şuradadır: (i, S_i). Bundan sonra, baz fonksiyonları ve yeri tam olarak belli olmayan bu noktaların kullanımıyla, olası polinomlar belirlenir. Her bir noddaki nokta ve baz fonksiyonları, oradaki lokal elemanı tanımlar. Her bir lokal eleman için, lokal elemanı tanımlayan katsayılar matrisi belirlenmelidir. Katsayılar matrisini belirlemekte kullanılan birçok yöntemden en uygun olanları, varyasyonel metod ile Galerkin yöntemidir. Bütün çözüm bölgesinde global denklem sistemini bulabilmek için, tüm lokal eleman matrisleri bir araya getirilmelidir. Diğer bir deyisle, kesiklilik için kullanılan bütün lokal elemanların yerel denklemleri birleştirilmelidir. Lokal eleman denklemleri bulunurken göz önünde tutulmayan sınır koşulları, çözüm öncesinde sisteme uygulanmalıdır. Denklem sistemi, matrisin sparse ve simetrik olma özellikleri göz önüne alınarak çözülür. Çözüm için doğrudan yöntemler ya da iterasyon yöntemleri kullanılabilir. Matrisin çözümünden elde edilen özfonksiyonların nod değerleri, çözümün bir sonucu olarak ortaya konulur.

Tüm bunların sonunda nod değerleri ve baz fonksiyonları kullanılarak her bir lokal elemanın içindeki ölçülebilir fiziksel nicelikler belirlenebilir.

2.3 Baz fonksiyonları

Yaklaşık çözüm, sonlu boyuttaki fonksiyon uzayında aranır. Bu uzay, baz fonksiyonu takımı ile tanımlanabilir.

$$\{\phi_1, \phi_2, ..., \phi_N\}$$
 (N, uzayın boyutunu gösterir)

Baz fonksiyonlarının temel özelliği, uzayın herhangi bir üyesinin, baz fonksiyonlarının doğrusal bir bileşimi olarak ifade edilebilmesidir. z_N deneme uzayında aranan herhangi bir u(z) fonksiyonuna yaklaşım, şu biçimdeki U(z) ile gösterilir,

$$U(z) = \sum_{j=1}^{N} c_j \phi_j(z)$$
 (j=1,2,3,...,N)

Burada c_i , sayı; U(z), deneme fonksiyonudur.

2.3.1 Bir Boyuttaki Baz Fonksiyonların Seçimi

Deneme uzayı, genellikle sonlu boyuttaki polinom uzayı olarak seçilir. Bu, esas olarak polinomların uygunluğundan ileri gelmektedir. Çünkü polinomların tanımlanması kolaydır ve iyi bilinen özelliklere sahiptir. N boyutlu bir polinom uzayının seçimi, baz fonksiyonlarının polinom olduğunu gösterir. n. dereceden bir polinom uzayı için polinomun boyutu, N = n+1'dir ve temel bir küme, $\{1, z, z^2, ..., z^{N-1}\}$ 'dir. Bununla birlikte herhangi bir doğrusal vektör uzayı için tek bir temel küme yoktur. Baz fonksiyonlarının seçiminde esneklik vardır. Polinom uzayları için, baz fonksiyonu olarak Lagrange polinomlarının seçimi uygundur.

Örneğin, $\Omega = [w_1, w_2]$ üzerinde tanımlı (N-1). derece polinomlarının z_N uzayı incelensin. Burada Ω , diferansiyel denklemin çalışma alanını belirtir. Lagrange polinomları, Ω bölgesi içindeki N tane farklı nokta kümesine göre tanımlanır. Bu noktalar, "nod" olarak adlandırılır ve $\{z_1, z_2, ..., z_N\}$ ile ifade edilir. (N-1). derece

polinomu, her bir z_j ile ilişkilidir (j = 1, 2, ..., N). Polinom, $z = z_j$ 'de bir değere sahipken diğer tüm z_i nodlarında $i \neq j$ olduğundan, sıfırdır.

$$\phi_{i}\left(z_{j}\right) = \delta_{ij} \tag{2.1}$$

Bir boyutta $\phi_i(z)$ 'leri bulmak için, denklemin çalışma uzayı olan $[z_a, z_b]$, [0,1] aralığında alınabilir.

Çalışma uzayında, N-1 sayıda ortak nod belirlensin. Böylece uzay, N sayıda global elemana ayrılacaktır. " Ω_j " ile gösterilen her bir global eleman, uzayda, $\left(\frac{j-1}{N}, \frac{j}{N}\right)$ arasında yer alacaktır. Uzaydaki bu global elemanların eşit uzunluklu olması gerekmez (İşlem kolaylığı açısından eşit uzunluklu olarak alınmıştır.).

Baz fonksiyonları, z uzayında $\hat{\Omega} = [-1,1]$ aralığında oluşturulsun. Bu uzay da N_0 tane nod ile lokal elemana ayrılsın ($N_0 \ge 2$). Yani z uzayı, N_0 tane nodla, $N_0 - 1$ lokal elemana ayrılır.

Bu uzayda $\phi_i(z_j) = \delta_{ij}$ baz fonksiyonları oluşturulup bu fonksiyonlar, ölçeklenmiş uzayın global elemanlarına $(\Omega_1, \Omega_2, ..., \Omega_{N-1})$ taşınır.

Oluşturulan baz fonksiyonları N_0 tanedir ve bunlar z^{N_0-1} . dereceden polinomdur.

(2.1) koşulunu sağlayacak biçimdeki fonksiyon seçimi şöyle olabilir :

$$\phi_i(z) = \Lambda_i \prod_{j=1}^{N_0} (z - z_j) \qquad (j \neq i)$$
 (2.2)

 Λ_i 'ler, normalizasyon katsayılarıdır.

$$\phi_i(z_k) = \Lambda_i \prod_{j=1}^{N_0} (z_k - z_j) \quad (j \neq i)$$
 (2.3)

(2.1) denkleminden,

$$\delta_{ik}(z) = \Lambda_i \prod_{j=1}^{N_0} (z_k - z_j) \qquad (j \neq i)$$

$$1 = \Lambda_{i} \prod_{j=1}^{N_{0}} (z_{i} - z_{j}) \qquad (j \neq i)$$
$$\Lambda_{i} = \frac{1}{\prod_{j=1}^{N_{0}} (z_{i} - z_{j})} \qquad (j \neq i) \qquad (2.4)$$

(2.4), (2.2) de yazılırsa

$$\phi_{i}(z) = \frac{1}{\prod_{j=1}^{N_{0}} (z_{i} - z_{j})} \prod_{j=1}^{N_{0}} (z - z_{j}) \qquad (j \neq i) \qquad (i, j = 1, 2, ..., N_{0})$$
(2.5)

 \boldsymbol{z}_{j} , \boldsymbol{z} uzayında j. nodun konumudur.

$$\phi_{i}(z) = \prod_{j=1, (j\neq i)}^{N_{0}} \frac{\left(z-z_{j}\right)}{\left(z_{i}-z_{j}\right)}$$
(2.6)

z uzayında, değişik nod sayıları için elde edilen baz fonksiyonları, aşağıda verilmiştir:

Şekil 2.2 z uzayının bire kesilmesi (N_0 =2)

ile bu uzayda elde edilen baz fonksiyonları

Şekil 2.3 z uzayının ikiye kesilmesi ($N_0 = 3$)

ile bu uzayda elde edilen baz fonksiyonları

Şekil 2.4 z uzayının üçe kesilmesi ($N_0 = 4$) ile bu uzayda elde edilen baz fonksiyonları

Şekil 2.5 z uzayının dörde kesilmesi ($N_0 = 5$) ile bu uzayda elde edilen baz fonksiyonları

2.3.2 Bir Boyutta Parçalı Doğrusal Baz Fonksiyonlarının Bulunması

Parçalı doğrusal baz fonksiyonları, bir boyutlu $\Omega = (0,1)$ çalışma alanında araştırılsın. Bu çalışma bölgesi de üç global elemana ayrılsın ($\Omega_1, \Omega_2, \Omega_3$). Parçalı baz fonksiyonlarını bulmak için, her bir global elemana ilişkin baz fonksiyonları kullanılır. Yerel baz fonksiyonları oluşturmak içinse parent baz fonksiyonlarından yararlanılır.

Parent bazlar $\{\hat{\phi}_i\}$, $\hat{\Omega} = (-1,1)$ parent öğesi üzerinde tanımlansın.

Şekil 2.6 Üç global elemanlı çalışma uzayı ve doğrusal baz fonksiyonları

(2.6) denklemine benzer biçimde, parent bazlar, aşağıdaki gibi yazılabilir.

$$\hat{\phi}_{1}(\xi) = \frac{\xi - \xi_{2}}{\xi_{1} - \xi_{2}} = \frac{\xi - 1}{-1 - 1} = -\frac{1}{2}(\xi - 1) \Longrightarrow \hat{\phi}_{1}(\xi) = \frac{1}{2}(1 - \xi)$$
(2.7)

$$\hat{\phi}_{2}(\xi) = \frac{\xi - \xi_{1}}{\xi_{2} - \xi_{1}} = \frac{\xi - (-1)}{1 - (-1)} = \frac{1}{2}(\xi + 1) \Longrightarrow \hat{\phi}_{2}(\xi) = \frac{1}{2}(1 + \xi)$$
(2.8)

Her bir Ω_j global elemanına ilişkin olan yerel baz fonksiyonları, $\hat{\Omega}$ parent elemanının her bir Ω_j global elemanına, $z^{(j)}(\xi)$ ile belirtilen dönüşüm altında dağıtılmasıyla tanımlanır. Dönüşümün yapılabilmesi için z'nin ξ 'ye bağlı betimlemesi elde edilmelidir.

$$z^{(j)}(\xi) = a^{(j)}\xi + b^{(j)}$$
(2.9)
$$z^{(j)}(-1) = -a^{(j)} + b^{(j)} = \frac{j-1}{N}$$

$$z^{(j)}(1) = a^{(j)} + b^{(j)} = \frac{j}{N}$$

$$\Rightarrow b^{(j)} = \frac{2j-1}{2N} \qquad a^{(j)} = \frac{1}{2N}$$
(2.10)

Bulunan (2.10) denklemleri, (2.9) denkleminde yerine yazılırsa ;

$$z^{(j)}(\xi) = \frac{1}{2N}\xi + \frac{(2j-1)}{2N}$$
(2.11)

ve

$$\xi^{(j)}(z) = 2Nz + (1 - 2j) \qquad (2.12)$$

elde edilir.

Şekil 2.7 [-1,1] aralığında elde edilen baz fonksiyonların, çalışma

uzayına dağıtılması.

N=3 j=1,2,3

$$z^{(1)}(\xi) = \frac{1}{6}\xi + \frac{1}{6} \qquad \Rightarrow \xi^{(1)}(z) = 6z - 1 \qquad (2.13)$$

$$z^{(2)}(\xi) = \frac{1}{6}\xi + \frac{3}{6} \qquad \Rightarrow \xi^{(2)}(z) = 6z - 3 \qquad (2.14)$$

$$z^{(3)}(\xi) = \frac{1}{6}\xi + \frac{5}{6} \qquad \Rightarrow \xi^{(3)}(z) = 6z - 5 \qquad (2.15)$$

Yukarıda, sağ yandaki üç eşitlik, her bir global eleman için $z \rightarrow \xi$ dönüşümüdür.

$$\phi_{i}^{(j)}(z) \equiv \hat{\phi}_{i}\left[\xi^{(j)}(z)\right]$$
(2.16)

Her bir global elemana ilişkin yerel baz fonksiyonları, (2.7) ve (2.8) denklemleri kullanılarak elde edilebilir.

$$\phi_1^{(1)}(z) \equiv \hat{\phi}_1(\xi^{(1)}(z)) = (1 - 6z + 1)/2 \Longrightarrow \phi_1^{(1)}(z) = 1 - 3z$$

$$\begin{split} \varphi_{2}^{(1)}(z) &\equiv \hat{\varphi}_{2}\left(\xi^{(1)}(z)\right) = (1+6z-1)/2 \Longrightarrow \varphi_{2}^{(1)}(z) = 3z \\ \varphi_{1}^{(2)}(z) &\equiv \hat{\varphi}_{1}\left(\xi^{(2)}(z)\right) = (1-6z+3)/2 \Longrightarrow \varphi_{1}^{(2)}(z) = 2-3z \\ \varphi_{2}^{(2)}(z) &\equiv \hat{\varphi}_{2}\left(\xi^{(2)}(z)\right) = (1+6z-3)/2 \Longrightarrow \varphi_{2}^{(2)}(z) = 3z-1 \\ \varphi_{1}^{(3)}(z) &\equiv \hat{\varphi}_{1}\left(\xi^{(3)}(z)\right) = (1-6z+5)/2 \Longrightarrow \varphi_{1}^{(3)}(z) = 3-3z \\ \varphi_{2}^{(3)}(z) &\equiv \hat{\varphi}_{2}\left(\xi^{(3)}(z)\right) = (1+6z-5)/2 \Longrightarrow \varphi_{2}^{(3)}(z) = 3z-2 \end{split}$$

Yerel baz fonksiyonları, ortak nodlarda birleştirilerek, global baz fonksiyonları (ϕ_i 'ler) elde edilir.

Şekil 2.8 Parçalı baz fonksiyonları.

Parçalı baz fonksiyonları,

$$\phi_1(z) = \begin{cases} \hat{\phi}_1^{(1)}(z) & , z \in \overline{\Omega}_1 \\ 0 & , z \text{ diger} \end{cases}$$
(2.17)

$$\phi_{2}(z) = \begin{cases} \hat{\phi}_{2}^{(1)}(z) & , z \in \overline{\Omega}_{1} \\ \hat{\phi}_{1}^{(2)}(z) & , z \in \overline{\Omega}_{2} \\ 0 & , z \text{ diger} \end{cases}$$
(2.18)

$$\phi_{3}(z) = \begin{cases} \hat{\phi}_{2}^{(2)}(z) & , z \in \overline{\Omega}_{2} \\ \hat{\phi}_{1}^{(3)}(z) & , z \in \overline{\Omega}_{3} \\ 0 & , z \text{ diger} \end{cases}$$
(2.19)

$$\phi_4(z) = \begin{cases} \hat{\phi}_2^{(3)}(z) & , z \in \overline{\Omega}_3 \\ 0 & , z \text{ diger} \end{cases}$$
(2.20)

biçimindedir. Bulunan yerel baz fonksiyonları değerleri kullanılarak, parçalı baz fonksiyonları, şu biçimde de yazılabilir:

$$\phi_{1}(z) = \begin{cases} 1-3z & ,0 \le z \le 1/3 \\ 0 & ,z & \text{diğer} \end{cases}$$
(2.21)
$$\phi_{2}(z) = \begin{cases} 3z & ,0 \le z \le 1/3 \\ 2-3z & ,1/3 \le z \le 2/3 \\ 0 & ,z & \text{diğer} \end{cases}$$
(2.22)
$$\phi_{3}(z) = \begin{cases} 3z-1 & ,1/3 \le z \le 2/3 \\ 3-3z & ,2/3 \le z \le 1 \\ 0 & & \text{diger} \end{cases}$$
(2.23)

$$\phi_4(z) = \begin{cases} 3z - 2 & , 2/3 \le z \le 1 \\ 0 & , z \text{ diğer} \end{cases}$$
(2.24)

2.3.3 Yüksek Dereceli Bazlar

Yüksek dereceli, sonlu elemanlar bazları; tanımlanacak olan, bağımsız, parent baz fonksiyonlarından başlayarak oluşturulur.

Örnek olarak, yine bir boyutta $\Omega = (0,1)$ çalışma alanı için, bu kez ikinci dereceden, parent baz fonksiyonları bulunsun. Çalışma alanı, bir önceki bölümde

olduğu gibi, gene üç global elemana ayrılsın $(\Omega_1, \Omega_2, \Omega_3)$. $\left\{ \hat{\phi}_i \right\}$ parent bazı da, $\hat{\Omega} = (-1,1)$ parent eleman üzerinde tanımlansın.

Şekil 2.9 Çalışma uzayı ve parabolik baz fonksiyonları

Parent bazlar,

$$\hat{\phi}_{1}(\xi) = \frac{(\xi - \xi_{2})}{(\xi_{1} - \xi_{2})} \frac{(\xi - \xi_{3})}{(\xi_{1} - \xi_{3})} = \frac{(\xi - 0)}{(-1 - 0)} \frac{(\xi - 1)}{(-1 - 1)} \Longrightarrow \hat{\phi}_{1}(\xi) = -\frac{1}{2} \xi (1 - \xi)$$
(2.25)

$$\hat{\phi}_{2}(\xi) = \frac{(\xi - \xi_{1})}{(\xi_{2} - \xi_{1})} \frac{(\xi - \xi_{3})}{(\xi_{2} - \xi_{3})} = \frac{(\xi + 1)}{(0 + 1)} \frac{(\xi - 1)}{(0 - 1)} \Longrightarrow \hat{\phi}_{2}(\xi) = (1 + \xi)(1 - \xi)$$
(2.26)

$$\hat{\phi}_{3}(\xi) = \frac{(\xi - \xi_{1})}{(\xi_{3} - \xi_{1})} \frac{(\xi - \xi_{2})}{(\xi_{3} - \xi_{2})} = \frac{(\xi + 1)}{(1 + 1)} \frac{(\xi - 0)}{(1 - 0)} \Longrightarrow \hat{\phi}_{3}(\xi) = \frac{1}{2} \xi (1 + \xi)$$
(2.27)

Görüldüğü gibi, parent bazlar, üç tane bağımsız, ikinci dereceden polinomdan oluşmaktadır.

Şekil 2.10 Parabolik baz fonksiyonlarının çalışma uzayına dağıtılması.

(2.13), (2.14) ve (2.15) denklemleri kullanılarak, yerel baz fonksiyonları elde edilir.

$$\begin{split} \varphi_{i}^{(j)}(z) &= \hat{\varphi}_{i}\left[\xi^{(j)}(z)\right] \\ \varphi_{1}^{(l)}(z) &= \hat{\varphi}_{i}\left(\xi^{(l)}(z)\right) = -\frac{1}{2}(6z-1)(2-6z) \Rightarrow \varphi_{1}^{(l)}(z) = 1-9z+18z^{2} \\ \varphi_{2}^{(l)}(z) &= \hat{\varphi}_{2}\left(\xi^{(l)}(z)\right) = (1+6z-1)(1-6z+1) \Rightarrow \varphi_{2}^{(l)}(z) = 12z-36z^{2} \\ \varphi_{3}^{(l)}(z) &= \hat{\varphi}_{3}\left(\xi^{(l)}(z)\right) = \frac{1}{2}(6z-1)(1+6z-1) \Rightarrow \varphi_{3}^{(l)}(z) = -3z+18z^{2} \\ \varphi_{1}^{(2)}(z) &= \hat{\varphi}_{1}\left(\xi^{(2)}(z)\right) = -\frac{1}{2}(6z-3)(1-6z+3) \Rightarrow \varphi_{1}^{(2)}(z) = 6-21z+18z^{2} \\ \varphi_{2}^{(2)}(z) &= \hat{\varphi}_{2}\left(\xi^{(2)}(z)\right) = (1+6z-3)(1-6z+3) \Rightarrow \varphi_{2}^{(2)}(z) = -8+36z-36z^{2} \\ \varphi_{3}^{(2)}(z) &= \hat{\varphi}_{3}\left(\xi^{(2)}(z)\right) = \frac{1}{2}(6z-3)(1+6z-3) \Rightarrow \varphi_{3}^{(2)}(z) = 3-15z+18z^{2} \\ \varphi_{1}^{(3)}(z) &= \hat{\varphi}_{1}\left(\xi^{(3)}(z)\right) = -\frac{1}{2}(6z-5)(1-6z+5) \Rightarrow \varphi_{1}^{(3)}(z) = 15-33z+18z^{2} \\ \varphi_{2}^{(3)}(z) &= \hat{\varphi}_{2}\left(\xi^{(3)}(z)\right) = (1+6z-5)(1-6z+5) \Rightarrow \varphi_{3}^{(3)}(z) = -24+60z-36z^{2} \\ \varphi_{3}^{(3)}(z) &= \hat{\varphi}_{3}\left(\xi^{(3)}(z)\right) = \frac{1}{2}(6z-5)(1+6z-5) \Rightarrow \varphi_{3}^{(3)}(z) = 10-27z+18z^{2} \end{split}$$

Sonuçta, yerel baz fonksiyonlarının ortak nodlarda birleştirilmesiyle, parçalı baz fonksiyonları elde edilir.

Bu baz fonksiyonlarının sayısı; nod sayısı, N ve global eleman sayısı, G olmak üzere,

$$N.G - (G - 1) = 3.3 - (3 - 1) = 7$$
'dir.

$$\phi_{1}(z) = \begin{cases} \hat{\phi}_{1}^{(1)}(z) & , z \in \overline{\Omega}_{1} \\ 0 & , z \text{ diger} \end{cases}$$
(2.28)

$$\phi_{2}(z) = \begin{cases} \hat{\phi}_{2}^{(1)}(z) & , z \in \overline{\Omega}_{1} \\ 0 & , z \text{ diğer} \end{cases}$$
(2.29)

$$\phi_{3}(z) = \begin{cases} \hat{\phi}_{2}^{(1)}(z) & , z \in \overline{\Omega}_{1} \\ \hat{\phi}_{1}^{(2)}(z) & , z \in \overline{\Omega}_{2} \\ 0 & , z \text{ diger} \end{cases}$$
(2.30)

$$\phi_4(z) = \begin{cases} \hat{\phi}_2^{(2)}(z) & , z \in \overline{\Omega}_2 \\ 0 & , z \text{ diger} \end{cases}$$
(2.31)

$$\phi_{5}(z) = \begin{cases} \hat{\phi}_{3}^{(2)}(z) & , z \in \overline{\Omega}_{2} \\ \hat{\phi}_{1}^{(3)}(z) & , z \in \overline{\Omega}_{3} \\ 0 & , z \text{ diğer} \end{cases}$$
(2.32)

$$\phi_6(z) = \begin{cases} \hat{\phi}_2^{(3)}(z) & , z \in \overline{\Omega}_3 \\ 0 & , z \text{ diğer} \end{cases}$$
(2.33)

$$\phi_7(z) = \begin{cases} \hat{\phi}_3^{(3)}(z) & , z \in \overline{\Omega}_3 \\ 0 & , z \text{ diğer} \end{cases}$$
(2.34)

BÖLÜM ÜÇ

TARTIŞMA

3.1 SONLU ELEMANLAR YÖNTEMİNİN, KÜRESEL BÖLGE İÇİNDEKİ SERBEST BİR PARÇACIĞIN SCHRÖDİNGER DENKLEMİNE UYGULANMASI

Ĥ, Hamiltoniyen operatörü ve E, enerji özdeğeri olmak üzere, Schrödinger denklemi şudur:

$$\hat{H}\psi = E\psi \tag{3.1}$$

Hamiltoniyen'i açarsak, denklem,

$$\left[\frac{-\hbar^2}{2m}\vec{\nabla}^2 + V(r)\right]\psi = E\psi$$
(3.2)

biçimini alır. $\vec{\nabla}^2$ 'nin ve dalga fonksiyonunun, küresel koordinatlardaki yazımları,

$$\vec{\nabla}^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$
(3.3)

$$\psi = \mathbf{R}(\mathbf{r})\Theta(\theta)\Phi(\phi) \tag{3.4}$$

biçimindedir. Bunları yavaş yavaş Schrödinger denklemine yerleştirirsek,

$$-\frac{\hbar^{2}}{2m}\left[\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial}{\partial r}\right)+\frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)+\frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right]\psi+V(r)\psi=E\psi \qquad (3.5)$$

$$-\frac{\hbar^{2}}{2m}\left[\frac{\Theta\Phi}{r^{2}}\frac{d}{dr}\left(r^{2}\frac{dR}{dr}\right) + \frac{R\Phi}{r^{2}\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) + \frac{R\Theta}{r^{2}\sin^{2}\theta}\frac{d^{2}\Phi}{d\phi^{2}}\right] - \left[E - V(r)\right]R\Theta\Phi = 0$$
(3.6)

Eğer ϕ 'li terimi bir yana çekersek,

$$\frac{1}{\Phi}\frac{d^{2}\Phi}{d\phi^{2}} = -\frac{\sin^{2}\theta}{R}\frac{d}{dr}\left(r^{2}\frac{dR}{dr}\right) - \frac{\sin\theta}{\Theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) - \frac{2mr^{2}\sin^{2}\theta}{\hbar^{2}}\left[E - V(r)\right]$$
(3.7)

denklemi elde edilir. denklemin sol yanı, r ve θ 'dan bağımsız olup bir sayıya denktir:

$$\frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = -m_\ell^2 \qquad ; \qquad m_\ell = 0, \pm 1, \pm 2, \dots$$
(3.8)

Buradan,

$$\frac{d^2\Phi}{d\phi^2} = -m_\ell^2\Phi \tag{3.9}$$

denklemi yazılabilir. m_i , açısal momentum kuantum sayısıdır.

(3.7) denkleminin sol yanına eşitlediğimiz sayıyı, sağ yanıyla da eşitlersek,

$$-\frac{\sin^2\theta}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) - \frac{\sin\theta}{\Theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) - \frac{2mr^2\sin^2\theta}{\hbar^2}\left[E - V(r)\right] = -m_\ell^2 \qquad (3.10)$$

bulunur. Şimdi de θ 'lıları bir yana çekersek,

$$\frac{m_{\ell}^{2}}{\sin^{2}\theta} - \frac{1}{\Theta\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) = \frac{1}{R}\frac{d}{dr}\left(r^{2}\frac{dR}{dr}\right) + \frac{2mr^{2}}{\hbar^{2}}\left[E - V(r)\right]$$
(3.11)

Burada da eşitliğin sol yanı, r'den bağımsız olup bir başka sayıya denktir:

$$\frac{m_{\ell}^{2}}{\sin^{2}\theta} - \frac{1}{\Theta\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta}\right) = \lambda \qquad ; \qquad \lambda = \ell(\ell+1)$$
(3.12)

 ℓ , yörüngesel açısal momentum kuantum sayısıdır. Bu kez λ 'yı, (3.11) denkleminin sağ yanına eşitlersek,

$$\frac{1}{R}\frac{d}{dr}\left(r^{2}\frac{dR}{dr}\right) + \frac{2mr^{2}}{\hbar^{2}}\left[E - V(r)\right] = \ell(\ell+1)$$

$$\frac{d^{2}R}{dr^{2}} + \frac{2}{r}\frac{dR}{dr} + \frac{2m}{\hbar^{2}}\left[E - V(r) - \frac{\hbar^{2}\ell(\ell+1)}{2mr^{2}}\right]R = 0$$
(3.13)

sonucuna ulaşırız. "a₀", Bohr yarıçapı; "ř" de niceleyici olmak üzere, denklemi boyutsuzlaştırırsak,

$$r = \tilde{r}a_0, \qquad dr = a_0 d\tilde{r}$$

$$\frac{1}{a_0^2} \frac{d^2 R}{d\tilde{r}^2} + \frac{2}{a_0^2 \tilde{r}} \frac{dR}{d\tilde{r}} + \frac{2m}{\hbar^2} \left[E - V(r) - \frac{\hbar^2 \ell(\ell+1)}{2ma_0^2 \tilde{r}^2} \right] R = 0$$
(3.14)

$$\frac{d^{2}R}{d\tilde{r}^{2}} + \frac{2}{\tilde{r}}\frac{dR}{d\tilde{r}} + \frac{2ma_{0}^{2}}{\hbar^{2}}\left[E - V(r) - \frac{\hbar^{2}\ell(\ell+1)}{2ma_{0}^{2}\tilde{r}^{2}}\right]R = 0$$
(3.15)

$$\frac{\hbar^2}{2ma_0^2} = E_R \qquad ; E_R = 13.607 \text{eV} \text{ (Rydbergenerjisi)} \qquad (3.16)$$

$$\tilde{E} = \frac{E}{E_R}$$
 ve $\tilde{V} = \frac{V}{E_R}$ (3.17)

olmak üzere,

$$\frac{d^{2}R}{d\tilde{r}^{2}} + \frac{2}{\tilde{r}}\frac{dR}{d\tilde{r}} + \left[\tilde{E} - \tilde{V}(r) - \frac{\ell(\ell+1)}{\tilde{r}^{2}}\right]R = 0$$
(3.18)

denklemi elde edilir. Artık boyutsuz olan denklemimizdeki dalga imgelerini, yazmada ve okumada kolaylık olsun diye kaldıralım:

$$\frac{\mathrm{d}^{2}R}{\mathrm{d}r^{2}} + \frac{2}{\mathrm{r}}\frac{\mathrm{d}R}{\mathrm{d}r} + \left[\mathrm{E} - \mathrm{V}(\mathrm{r}) - \frac{\ell(\ell+1)}{\mathrm{r}^{2}}\right]\mathrm{R} = 0$$
(3.19)

Denklemi, r=0'daki tanımsızlık ya da süreksizlik noktasından kurtarmak için, şu dönüşümü yapalım:

$$\frac{d^2}{dr^2}\left(\frac{S}{r}\right) + \frac{2}{r}\frac{d}{dr}\left(\frac{S}{r}\right) + \left[E - V(r) - \frac{\ell(\ell+1)}{r^2}\right]\frac{S}{r} = 0$$
(3.21)

$$\frac{\mathrm{d}^{2}S}{\mathrm{d}r^{2}} + \left[E - V - \frac{\ell(\ell+1)}{r^{2}}\right]S = 0$$
(3.22)

Galerkin yöntemiyle,

$$S(r) = \frac{d^2S}{dr^2} + \left[E - V(r) - \frac{\ell(\ell+1)}{r^2}\right]S$$
(3.23)

$$G = \int g(r) \S(r) dr \quad ; \quad g(r) = bS^T$$
(3.24)

g(r), ağırlık fonksiyonudur. Buradaki b, bir sayı da olabilir, r'ye bağlı bir fonksiyon da. S^T ise, S'nin transpozudur.

$$G = \int_{\Omega} g(r) \frac{d^2 S}{dr^2} dr + \int_{\Omega} g(r) ES dr - \int_{\Omega} g(r) VS dr - \int_{\Omega} \frac{g(r)}{r^2} \cdot \ell(\ell+1) S dr$$

Yukarıdaki süreksizlik sorunu, ilgili bölümü seriyi açmakla da çözülebilir, ağırlık fonksiyonu $g(r) = r^2 S^D$ olarak tanımlanarak da. Ayrıca ilk integrale, değişken değiştirme yöntemi uygulanırsa,

$$u = g(r)$$
 $dv = \frac{d^2S}{dr^2}dr$

$$du = g'(r)dr$$
 $v = \frac{dS}{dr}$

$$G = g(r)\frac{dS}{dr}\Big|_{r_{c}}^{r_{s}} - \int_{\Omega} 2rS^{T}\frac{dS}{dr}dr - \int_{\Omega} r^{2}\frac{dS^{T}}{dr}\frac{dS}{dr}dr + \int_{\Omega} r^{2}S^{T}ESdr - \int_{\Omega} r^{2}S^{T}VSdr$$

$$-\ell(\ell+1)\int_{\Omega} S^{T}Sdr \qquad (3.28)$$

n, tüm lokal elemanların sayısı olmak üzere,

$$S(r) = \sum_{i=1}^{n} S_{i} N_{i}(r); \quad S^{T}(r) = \sum_{i=1}^{n} S^{T}_{i} N^{T}_{i}(r); \quad V(r) = \sum_{i=1}^{n} V_{i} N_{i}(r)$$
(3.29)

tanımlamaları yerlerine konursa,

$$G = \sum_{i=1}^{n} \left\{ r^{2} S_{i}^{T} N_{i}^{T} S_{i} \frac{dN_{i}}{dr} \Big|_{r_{c}}^{r_{s}} - \int_{\Omega} 2r S_{i}^{T} N_{i}^{T} S_{i} \frac{dN_{i}}{dr} dr \right. \\ \left. - \int_{\Omega} r^{2} S_{i}^{T} \frac{dN_{i}^{T}}{dr} S_{i} \frac{dN_{i}}{dr} dr + E \int_{\Omega} r^{2} S_{i}^{T} N_{i}^{T} S_{i} N_{i} dr \right. \\ \left. - \int_{\Omega} r^{2} S_{i}^{T} N_{i}^{T} V_{i} N_{i} S_{i} N_{i} dr - \ell(\ell+1) \int_{\Omega} S_{i}^{T} N_{i}^{T} S_{i} N_{i} dr \right\}$$
(3.30)

$$G = \sum_{i=1}^{n} S_{i}^{T} \left[r^{2} N_{i}^{T} \frac{dN_{i}}{dr} \Big|_{r_{c}}^{r_{s}} - \int_{\Omega} 2r N_{i}^{T} \frac{dN_{i}}{dr} dr - \int_{\Omega} r^{2} \frac{dN_{i}^{T}}{dr} \frac{dN_{i}}{dr} dr + E \int_{\Omega} r^{2} N_{i}^{T} N_{i} dr - \int_{\Omega} r^{2} N_{i}^{T} V_{i} N_{i} N_{i} dr - \ell(\ell+1) \int_{\Omega} N_{i}^{T} N_{i} dr \right] S_{i}$$
(3.31)

Burada örneğin, $\sum_{i=1}^{n} N_i^T N_i = N_1^T N_1 + N_2^T N_2 + ... + N_n^T N_n$ 'dir. Bu açılım, aynı zamanda, $\overline{N} = (N_1, N_2, ..., N_n)$ ve $\overline{N}^T = (N_1^T, N_2^T, ..., N_n^T)$ biçiminde tanımlanmış iki vektörün skaler çarpımından çıkan sonuçtur.

Varyasyonel metodu uygularsak, G, en düşük değerine, S_i^T 'ye veya S_i'ye göre türevi alınırsa ulaşır.

$$\frac{dG}{dS_i^T} = 0 \tag{3.32}$$

$$r^{2}\overline{N}^{T}\frac{d\overline{N}}{dr}\Big|_{r_{c}}^{r_{s}}-2\int_{\Omega}r\overline{N}^{T}\frac{d\overline{N}}{dr}dr-\int_{\Omega}r^{2}\frac{d\overline{N}^{T}}{dr}\frac{d\overline{N}}{dr}dr+E\int_{\Omega}r^{2}\overline{N}^{T}\overline{N}dr$$
$$-\int_{\Omega}r^{2}\overline{N}^{T}\overline{V}\overline{N}\overline{N}dr-\ell(\ell+1)\int_{\Omega}\overline{N}^{T}\overline{N}dr=0$$
(3.33)

Dalgafonksiyonunun, sınırlarda sıfır olması gerektiğinden, $r_s = r_c = 0$ 'dır. Bundan sonra, toplamayı lokal elemanlar üzerinden değil de, global elemanlar üzerinden yapmak için (s: global eleman sayısı),

$$\sum_{j=1}^{s} \left[-2 \int_{\Omega_{j}} r \overline{N}^{T} \frac{d\overline{N}}{dr} dr - \int_{\Omega_{j}} r^{2} \frac{d\overline{N}^{T}}{dr} \frac{d\overline{N}}{dr} dr + E \int_{\Omega_{j}} r^{2} \overline{N}^{T} \overline{N} dr - \int_{\Omega_{j}} r^{2} \overline{N}^{T} \overline{V} \overline{N} \overline{N} dr - \ell(\ell+1) \int_{\Omega_{j}} \overline{N}^{T} \overline{N} dr \right] = 0$$

$$(3.34)$$

Global değişkenden, yerel değişkene dönüşüm yapılırsa,

$$u = ar + b$$

$$0 = ar_{j} + b$$

$$1 = ar_{j+1} + b$$

Buradan da,

$$a = \frac{1}{r_{j+1} - r_j} , b = \frac{-r_j}{r_{j+1} - r_j}$$
(3.35)

bulunur.

$$u = \frac{r - r_j}{r_{j+1} - r_j} = \frac{r - r_j}{h_j}$$
(3.36)

$$\mathbf{r} = \mathbf{h}_{j}\mathbf{u} + \mathbf{r}_{j} \qquad \mathbf{d}\mathbf{r} = \mathbf{h}_{j}\mathbf{d}\mathbf{u} \tag{3.37}$$

Böylece denklem, şöyle yazılır:

$$\sum_{j=1}^{s} \left[-2 \int_{0}^{1} (h_{j}u + r_{j}) \overline{N}^{T} \frac{d\overline{N}}{du} du - \int_{0}^{1} \frac{(h_{j}u + r_{j})^{2}}{h_{j}} \frac{d\overline{N}^{T}}{du} \frac{d\overline{N}}{du} du \right]$$
$$+ E \int_{0}^{1} (h_{j}u + r_{j})^{2} \overline{N}^{T} \overline{N} du - \int_{0}^{1} h_{j} (h_{j}u + r_{j})^{2} \overline{N}^{T} \overline{V} \overline{N} N du$$
$$- \ell (\ell + 1) \int_{0}^{1} h_{j} \overline{N}^{T} \overline{N} du = 0$$
(3.38)

(3.38) denklemindeki integralleri, teker teker adlandırırsak,

$$a = 2\int_{0}^{1} (h_{j}u + r_{j})\overline{N}^{T} \frac{d\overline{N}}{du} du$$

$$= 2h_{j}\int_{0}^{1} u\overline{N}^{T} \frac{d\overline{N}}{du} du + 2r_{j}\int_{0}^{1} \overline{N}^{T} \frac{d\overline{N}}{du} du$$

$$(3.39)$$

$$b = \int_{0}^{1} \frac{(h_{j}u + r_{j})^{2}}{h_{j}} \frac{d\overline{N}^{T}}{du} \frac{d\overline{N}}{du} du$$

$$= \frac{1}{h_{j}}\int_{0}^{1} (h_{j}^{2}u^{2} + 2h_{j}r_{j}u + r_{j}^{2}) \frac{d\overline{N}^{T}}{du} \frac{d\overline{N}}{du} du$$

$$= h_{j}\int_{0}^{1} u^{2} \frac{d\overline{N}^{T}}{du} \frac{d\overline{N}}{du} du + 2r_{j}\int_{0}^{1} u \frac{d\overline{N}^{T}}{du} \frac{d\overline{N}}{du} du + \frac{r_{j}^{2}}{h_{j}}\int_{0}^{1} \frac{d\overline{N}^{T}}{du} \frac{d\overline{N}}{du} du$$

$$(3.40)$$

$$c = E\int_{0}^{1} h_{j} (h_{j}u + r_{j})^{2} \overline{N}^{T} \overline{N} du$$

$$= Eh_{j}^{3}\int_{0}^{1} u^{2} \overline{N}^{T} \overline{N} du + 2Eh_{j}^{2} r_{j}\int_{0}^{1} u \overline{N}^{T} \overline{N} du + Eh_{j} r_{j}^{2}\int_{0}^{1} \overline{N}^{T} \overline{N} du$$

$$(3.41)$$

$$\begin{aligned} \varphi &= \int_{0}^{1} h_{j} (h_{j} u + r_{j})^{2} \overline{N}^{T} \overline{V} \overline{N} \overline{N} du \\ h_{j}^{3} \int_{0}^{1} u^{2} \overline{N}^{T} \overline{V} \overline{N} \overline{N} du + 2h_{j}^{2} r_{j} \int_{0}^{1} u \overline{N}^{T} \overline{V} \overline{N} \overline{N} du + h_{j} r_{j}^{2} \int_{0}^{1} \overline{N}^{T} \overline{V} \overline{N} \overline{N} du \\ d &= \ell (\ell + 1) \int_{0}^{1} h_{j} \overline{N}^{T} \overline{N} du \\ &= \ell (\ell + 1) h_{j} \int_{0}^{1} \overline{N}^{T} \overline{N} du \end{aligned} \tag{3.43}$$

Böylelikle denklemimizi kısaca,

$$a+b+c+d=c$$

ve uzunca,

$$2h_{j}\int_{0}^{1}u\overline{N}^{T}\frac{d\overline{N}}{du}du + 2r_{j}\int_{0}^{1}\overline{N}^{T}\frac{d\overline{N}}{du}du$$

$$+ h_{j}\int_{0}^{1}u^{2}\frac{d\overline{N}^{T}}{du}\frac{d\overline{N}}{du}du + 2r_{j}\int_{0}^{1}u\frac{d\overline{N}^{T}}{du}\frac{d\overline{N}}{du}du + \frac{r_{j}^{2}}{h_{j}}\int_{0}^{1}\frac{d\overline{N}^{T}}{du}\frac{d\overline{N}}{du}du$$

$$+ h_{j}^{3}\int_{0}^{1}u^{2}\overline{N}^{T}\overline{V}\overline{N}\overline{N}du + 2h_{j}^{2}r_{j}\int_{0}^{1}u\overline{N}^{T}\overline{V}\overline{N}\overline{N}du + h_{j}r_{j}^{2}\int_{0}^{1}\overline{N}^{T}\overline{V}\overline{N}\overline{N}du$$

$$+ \ell(\ell+1)h_{j}\int_{0}^{1}\overline{N}^{T}\overline{N}du = Eh_{j}^{3}\int_{0}^{1}u^{2}\overline{N}^{T}\overline{N}du + 2Eh_{j}^{2}r_{j}\int_{0}^{1}u\overline{N}^{T}\overline{N}du + Eh_{j}r_{j}^{2}\int_{0}^{1}\overline{N}^{T}\overline{N}du \quad (3.44)$$

diye yazabiliriz. Parçacık kuyu içinde serbestçe dolaştığı için, V = 0'dır. Bunu gözönüne alarak, denklemi yeniden düzenlersek:

$$2h_{j}\int_{0}^{1}u\overline{N}^{T}\frac{d\overline{N}}{du}du + 2r_{j}\int_{0}^{1}\overline{N}^{T}\frac{d\overline{N}}{du}du$$
$$+ h_{j}\int_{0}^{1}u^{2}\frac{d\overline{N}^{T}}{du}\frac{d\overline{N}}{du}du + 2r_{j}\int_{0}^{1}u\frac{d\overline{N}^{T}}{du}\frac{d\overline{N}}{du}du + \frac{r_{j}^{2}}{h_{j}}\int_{0}^{1}\frac{d\overline{N}^{T}}{du}\frac{d\overline{N}}{du}du$$
$$+ \ell(\ell+1)h_{j}\int_{0}^{1}\overline{N}^{T}\overline{N}du = Eh_{j}^{3}\int_{0}^{1}u^{2}\overline{N}^{T}\overline{N}du + 2Eh_{j}^{2}r_{j}\int_{0}^{1}u\overline{N}^{T}\overline{N}du + Eh_{j}r_{j}^{2}\int_{0}^{1}\overline{N}^{T}\overline{N}du \quad (3.45)$$

elde edilir.

3.2 Sonuç

Bu çalışmada, küresel boşluk içindeki bir serbest parçacığın dalga fonksiyonlarını ve özdeğerlerini bulmak için, sonlu elemanlar yöntemini kullandık.

Denklem (3.45), ekte verilen MATLAB 7.0.1 ile yazılan programla çözüldü ve elde edilen sonuçlar, Bessel fonksiyonlarının 10^{-14} duyarlıklı gerçek kökleri ile karşılaştırıldı. Farklı global eleman, toplam nod sayısı ve açısal momentum değerleri için elde edilen sonuçlar aşağıdaki tablolarda verilmiştir.

Tablo 3.1'de global eleman sayısının 2, 4, 6 ve 8, toplam nod sayısının 100, açısal momentumun 0 alınması ile elde edilen sonuçlar verilmiştir.

Global Eleman Sayısı				Bessel (J _{1/2})	Hata*
2	4	6	8	Kökleri	
9,86749220605472	9,86960433385084	9,86960440121311	9,86960440109823	9,8696044010893	8,93.10 ⁻¹²
39,4672952535459	39,4784132507058	39,4784176342464	39,4784176042786	39,478417604357	7,84.10 ⁻¹¹
88,8111254930629	88,8263896315752	88,8264403700142	88,8264396050728	88,8264396098042	4,73.10 ⁻⁰⁹
157,931787038860	157,913388470097	157,913677931908	157,913670334865	157,913670417430	8,26.10 ⁻⁰⁸
246,883232713816	246,739034095215	246,740154215328	246,740109276746	246,740110027234	7,50.10 ⁻⁰⁷
355,740677363829	355,302556234763	355,305945305625	355,305753929951	355,305758439217	4,51.10 ⁻⁰⁶
484,600749539008	483,602596384608	483,611244449916	483,610595330499	483,610615653379	2,03.10 ⁻⁰⁵
633,581674162575	631,637000220773	631,656470033272	631,654607591165	631,654681669719	7,41.10 ⁻⁰⁵
802,823479752941	799,402615523922	799,442426062896	799,437727257620	799,437956488238	2,29.10 ⁻⁰⁴

Tablo 3.1 Toplam nod sayısı 100, *l*=0 için elde edilen sonuçlar

Tablo 3.2'de global eleman sayısının 2, 4, 6 ve 8 toplam nod sayısının 1000, açısal momentumun 0 alınması ile elde edilen sonuçlar verilmiştir.

Global Eleman Sayısı				Bessel (J _{1/2})	Hata*
2	4	6	8	Kökleri	
9,86958321057298	9,86960440157737	9,86960440180849	9,86960440141947	9,8696044010893	3,30.10 ⁻¹⁰
39,4783012760365	39,4784176047787	39,4784176050693	39,4784176050872	39,478417604357	7,30.10 ⁻¹⁰
88,8262534556050	88,8264396098093	88,8264396105103	88,8264396103193	88,8264396098042	5,15.10 ⁻¹⁰
157,913735463490	157,913670415299	157,913670418084	157,913670417887	157,913670417430	4,57.10 ⁻¹⁰
246,741239391002	246,740110017752	246,740110028006	246,740110027782	246,740110027234	5,48.10 ⁻¹⁰
355,309453697891	355,305758409891	355,305758439965	355,305758439746	355,305758439217	5,29.10 ⁻¹⁰
483,619263213413	483,610615578658	483,610615654181	483,610615653855	483,610615653379	4,76.10 ⁻¹⁰
631,671749141028	631,654681502706	631,654681670598	631,654681670091	631,654681669719	3,72.10 ⁻¹⁰
799,468189065952	799,437956149312	799,437956489314	799,437956488762	799,437956488238	5,24.10 ⁻¹⁰

Tablo 3.2 Toplam nod sayısı 1000, *l*=0 için elde edilen sonuçlar

* Verilen hata, global eleman sayısı 8 için elde edilen değerler ile Bessel $(J_{1/2})$ kökleri arasındaki farktır.

Tablo 3.3'de global eleman sayısının 2, 4, 6 ve 8 toplam nod sayısının 100, açısal momentumun 1 alınması ile elde edilen sonuçlar verilmiştir.

Global Eleman Sayısı				Bessel (J _{3/2})	Hata*
2	4	6	8	Kökleri	
20,1901607610558	20,1907286217558	20,1907285563344	20,1907285564402	20,190728556427	1,32.10 ⁻¹¹
59,6869843453105	59,6795175662398	59,6795159370720	59,6795159441408	59,679515944109	3,18.10 ⁻¹¹
118,952887854250	118,899881999487	118,899869056367	118,899869164145	118,899869163626	5,19.10 ⁻¹⁰
198,042534238326	197,857871656696	197,857810402148	197,857811199460	197,857811193377	6,08.10 ⁻⁰⁹
297,025413265035	296,554623772859	296,554408327276	296,554412177929	296,554412135731	4,22.10 ⁻⁰⁸
415,990080184612	414,990595569950	414,989970477930	414,989984462229	414,989984259078	2,03.10 ⁻⁰⁷
555,044778410920	553,166189106886	553,164605301579	553,164646583822	553,164645838089	7,46.10 ⁻⁰⁷
714,317642292498	711,081974283623	711,078348158178	711,078451935292	711,078449733942	2,20.10 ⁻⁰⁶
893,956825296870	888,738867260656	888,731199231706	888,731427832807	888,731422469171	5,36.10 ⁻⁰⁶

Tablo 3.3 Toplam nod sayısı 100, *l*=1 için elde edilen sonuçlar

Tablo 3.4'de global eleman sayısının 2, 4, 6 ve 8 toplam nod sayısının 1000, açısal momentumun 1 alınması ile elde edilen sonuçlar verilmiştir.

Global Eleman Sayısı				Bessel (J _{3/2})	Hata*
2	4	6	8	Kökleri	
20,1907231944012	20,1907285568080	20,1907285568600	20,1907285565011	20,190728556427	7,41.10 ⁻¹¹
59,6795911127272	59,6795159445400	59,6795159448142	59,6795159441610	59,679515944109	5,20.10 ⁻¹¹
118,900397048522	118,899869164126	118,899869164355	118,899869163938	118,899869163626	3,12.10 ⁻¹⁰
197,859645120785	197,857811194310	197,857811194101	197,857811193671	197,857811193377	2,94.10 ⁻¹⁰
296,559081649857	296,554412138050	296,554412136454	296,554412136097	296,554412135731	3,66.10 ⁻¹⁰
414,999890212025	414,989984264814	414,989984259720	414,989984259358	414,989984259078	2,80.10-10
553,183255488132	553,164645851131	553,164645838803	553,164645838676	553,164645838089	5,87.10 ⁻¹⁰
711,110491853028	711,078449761518	711,078449734673	711,078449734339	711,078449733942	3,97.10 ⁻¹⁰
888,783082462433	888,731422523306	888,731422469767	888,731422469624	888,731422469171	4,53.10 ⁻¹⁰

Tablo 3.4 Toplam nod sayısı 1000, *l*=1 için elde edilen sonuçlar

* Verilen hata, global eleman sayısı 8 için elde edilen değerler ile Bessel $(J_{1/2})$ kökleri arasındaki farktır.

Tablo 3.5'de global eleman sayısının 2, 4, 6 ve 8 toplam nod sayısının 100, açısal momentumun 2 alınması ile elde edilen sonuçlar verilmiştir.

Global Eleman Sayısı				Bessel (J _{5/2})	Hata*
2	4	6	8	Kökleri	
33,2176319799641	33,2174619136156	33,2174619142742	33,2174619142893	33,21746191427	1,93.10-11
82,7366183541976	82,7192311114784	82,7192311015033	82,7192311015131	82,71923110149	2,31.10 ⁻¹¹
151,943773488324	151,854874861021	151,854874164081	151,854874164075	151,85487416407	5,00.10 ⁻¹²
240,974727690944	240,702913969638	240,702906585794	240,702906585429	240,70290658542	8,98.10 ⁻¹²
349,923299269991	349,280122831851	349,280079898095	349,280079892086	349,28007989207	1,60.10 ⁻¹¹
478,891996733803	477,591996263343	477,591818595350	477,591818542041	477,59181854202	2,10.10 ⁻¹¹
628,000205929633	625,640911225237	625,640324364426	625,640324036578	625,64032403647	1,08.10 ⁻¹⁰
797,386346489011	793,428280355728	793,426632021802	793,426630459366	793,42663045853	8,36.10 ⁻¹⁰
987,208662048871	980,955376877927	980,951282735939	980,951276579778	980,95127657457	5,21.10 ⁻⁰⁹
1197,64561463063	1188,22381788475	1188,21458673427	1188,21456582392	1188,21456579725	2,67.10 ⁻⁰⁸

Tablo 3.5 Toplam nod sayısı 100, *l*=2 için elde edilen sonuçlar

Tablo 3.6'de global eleman sayısının 2, 4, 6 ve 8 toplam nod sayısının 1000, açısal momentumun 2 alınması ile elde edilen sonuçlar verilmiştir.

Global Eleman Sayısı				Bessel (J _{5/2})	Hata*
2	4	6	8	Kökleri	
33,2174635841697	33,2174619145896	33,2174619150041	33,2174619141956	33,21746191427	7,44.10 ⁻¹¹
82,7194018598975	82,7192311019848	82,7192311020901	82,7192311015365	82,71923110149	4,65.10 ⁻¹¹
151,855747174964	151,854874164541	151,854874164739	151,854874164190	151,85487416407	1,20.10 ⁻¹⁰
240,705575562825	240,702906585871	240,702906586182	240,702906585483	240,70290658542	6,30.10 ⁻¹¹
349,286394301025	349,280079892506	349,280079892756	349,280079892010	349,28007989207	6,00.10 ⁻¹¹
477,604578817693	477,591818542584	477,591818542710	477,591818541891	477,59181854202	1,29.10 ⁻¹⁰
625,663476813748	625,640324037445	625,640324037157	625,640324036579	625,64032403647	1,09.10 ⁻¹⁰
793,465463812185	793,426630460572	793,426630459222	793,426630458736	793,42663045853	2,06.10 ⁻¹⁰
981,012615271806	980,951276578976	980,951276575211	980,951276574880	980,95127657457	3,10.10 ⁻¹⁰
1188,30696656455	1188,21456580675	1188,21456579793	1188,21456579748	1188,21456579725	2,30.10 ⁻¹⁰

Tablo 3.6 Toplam nod sayısı 1000, *l*=2 için elde edilen sonuçlar

* Verilen hata, global eleman sayısı 8 için elde edilen değerler ile Bessel $(J_{1/2})$ kökleri arasındaki farktır.

Tablo 3.7'de global eleman sayısının 2, 4, 6 ve 8 toplam nod sayısının 100, açısal momentumun 3 alınması ile elde edilen sonuçlar verilmiştir.

	Bessel (J _{7/2})	Hata*			
2	4	6	8	Kökleri	
48,8325000684065	48,8311936429833	48,8311936436239	48,8311936436429	48,83119364362	2,29.10 ⁻¹¹
108,545079256175	108,516358905018	108,516358830162	108,516358830171	108,51635883016	1,10.10 ⁻¹¹
187,762378635049	187,635840073199	187,635838307000	187,635838306967	187,63583830695	1,70.10 ⁻¹¹
286,767936734427	286,408972076504	286,408957406587	286,408957405359	286,40895740534	1,90.10 ⁻¹¹
405,697292636170	404,887158630230	404,887083737450	404,887083722298	404,88708372229	7,96.10 ⁻¹²
544,672353657872	543,088212407144	543,087927836347	543,087927721537	543,08792772150	3,69.10 ⁻¹¹
703,824952198157	701,019898666811	701,019014782670	701,019014148125	701,01901414186	6,27.10 ⁻⁰⁹
883,303270720225	878,686375510744	878,684006729868	878,684003935419	878,68400393355	1,87.10 ⁻⁰⁹
1083,27412590327	1076,09053759234	1076,08486876377	1076,08485841025	1076,08485839956	1,07.10 ⁻⁰⁸
1303,92397268101	1293,23514106818	1293,22274096728	1293,22270750182	1293,22270745096	5,09.10 ⁻⁰⁸

Tablo 3.7 Toplam nod sayısı 100, *l*=3 için elde edilen sonuçlar

Tablo 3.8'de global eleman sayısının 2, 4, 6 ve 8 toplam nod sayısının 1000, açısal momentumun 3 alınması ile elde edilen sonuçlar verilmiştir.

	Global Eleman Sayısı				Hata*
2	4	6	8	Kökleri	
48,8312064753420	48,8311936440286	48,8311936441037	48,8311936445129	48,83119364362	8,93.10 ⁻¹⁰
108,516640911630	108,516358830698	108,516358830694	108,516358830003	108,51635883016	1,57.10 ⁻¹⁰
187,637081066291	187,635838307454	187,635838307420	187,635838306918	187,63583830695	3,20.10 ⁻¹¹
286,412482529336	286,408957405829	286,408957406022	286,408957405372	286,40895740534	3,20.10 ⁻¹¹
404,895038367259	404,887083722788	404,887083722945	404,887083722413	404,88708372229	1,23.10 ⁻¹⁰
543,103479733410	543,087927722172	543,087927722095	543,087927721706	543,08792772150	2,06.10-10
701,046547292427	701,019014149140	701,019014148450	701,019014147880	701,01901414186	6,02.10 ⁻⁰⁹
878,729313138101	878,684003936312	878,684003934089	878,684003933856	878,68400393355	3,06.10 ⁻¹⁰
1076,15534500710	1076,08485840557	1076,08485840024	1076,08485839981	1076,08485839956	2,50.10 ⁻¹⁰
1293,32757448889	1293,22270746365	1293,22270745155	1293,22270745120	1293,22270745096	2,40.10 ⁻¹⁰

Tablo 3.8 Toplam nod sayısı 1000, *l*=3 için elde edilen sonuçlar

* Verilen hata, global eleman sayısı 8 için elde edilen değerler ile Bessel $(J_{1/2})$ kökleri arasındaki farktır.

Aşağıdaki şekillerde, global elaman sayısı 8, toplam nod sayısı 1000 olmak üzere açısal momentumun 0, 1, 2 ve 3 değerleri için normalize edilmiş dalga fonksiyonlarının değişimleri verilmiştir.

Şekil 3.1 Global eleman sayısı 8, toplam nod sayısı 1000 ve l=0 için dalga fonksiyonları.

Şekil 3.2 Global eleman sayısı 8, toplam nod sayısı 1000 ve l=1 için dalga fonksiyonları.

Şekil 3.3 Global eleman sayısı 8, toplam nod sayısı 1000 ve l=2 için dalga fonksiyonları.

Şekil 3.4 Global eleman sayısı 8, toplam nod sayısı 1000 ve l=3 için dalga fonksiyonları.

Tablolardan da görüleceği gibi, toplam nod sayıları 100 ve 1000 değerlerine karşılık, global eleman sayısı arttırılırsa elde edilen çözümlerin Bessel denkleminin köklerine 10⁻¹² duyarlılığa kadar yaklaştığı görülmektedir. Diğer taraftan global eleman sayısı ile birlikte toplam nod sayısı da arttırılırsa istenilen duyarlılığa yaklaşılabilir.

l=0 için elde edilen sonuçlar, sonsuz kuyu problemindeki çözümlerle aynı olmalıdır. Şekil 3.1'den de görüleceği gibi elde edilen dalga fonksiyonları, n=1,2,3,... olmak üzere sin(n π x) biçimindedir. Sonsuz kuyu çözümleri için ayrıca enerji özdeğerlerinin pi sayısının karesine bölümü, tam sayılarının karesini vermelidir. Bu tezde hesaplanan değerlerle karşılaştıracak olursak (Tablo 3.2) elde edilen sonuçların sonlu elemanlar yönteminin bu tür çalışmalarda hassas çözümler vereceğinin diğer bir kanıtıdır.

Tablo 3.9 Sonlu elemanlar yöntemi kullanılarak bulunan

sonsuz kuyu özdeğerleri ile analitik çözümlerinin

karsı	lastırı	lması.
nuişi	iuştii i	iniusi.

n	Sonsuz Kuyu	Bu çalışma
1	1,0	1,000000003345
2	4,0	4,0000000007394
3	9,0	9,0000000005218
4	16,0	16,000000000464
5	25,0	25,000000000555
6	36,0	36,000000000536
7	49,0	49,000000000482
8	64,0	64,000000000377
9	81,0	81,000000000526
10	100,0	100,00000000057

KAYNAKLAR

- Bastard G. (1981). Hydrogenic Impurity States İn A Quantum Well: A Simple Model. Physical Rewiew B. 24, 4714-4722.
- Chuu D. S., Hsiao C. M. and Mei W. N. (1992). Hydrogenic Impurity States In Quantum Dots and Quantum Wires.
- Harrison P. (2000). Quantum Wells, Wires and Dots. NY: John Wiley & Sons
- Hurt N. E. (2000). Mathematical Physics of Quantum Wires and Devices. Netherlands: Kluwer Academic Publishers.
- Jie S. J. (2002). Excitions In Quantum Dot Quantum Well Nanoparticles. Chinese Physics. 11, 1286-1293.
- Kattan P. I. (2003). Matlab Guide To Finite Elements. Germany: Springer.
- Kervan N. (2004). Kuantum Noktalarında Polaron Etkilerinin Sıkıştırılmış Durumlarla Kuramsal Incelenmesı
- Mohan L. (2002). Finite Element and Boundary Element Application in Quantum Mechanics. NY: Oxford University Pres.
- Montenegro N. P. and Merchancano T. P. (1992). Hydrogenic Impurities In GaAs (Ga, Al) As Quantum Dots. Physical Review. 46, 9780-9783.
- Pask J. E., Klein B. M., Sterne P. A. and Fong C.Y. (2001). Finite Element Methods In Electronic Structure Theory. Computer Physics Communication. 135, 1-34.

- Sarıkurt S. ve Kuralı D. (2004). Schrodinger ve Poisson Denklemlerinin çözümünde sonlu elemanlar yönteminin kullanılması
- Şahin M. Tomak M. (2005).Electronic Structure Of A Many Electron Spherical Quantum Dot With An Impurity. Physical Review B. 72, 1-6.

EK

Bilgisayar Programları

```
Denklem (3.45)'i çözen MATLAB programı:
```

```
function [V,D,NumOfTotalNodes,ozde,flag] =
freebessell(NumOfGlobalNodes,NumOfTotalNodes,maxangularmom,radius)
% InfiniteWell.m
% define problem parameters
% radius
                    Interms of Bhor radius
% NumOfGlobalNodes number of global nodes in global element
% NumOfTotalNodes approximate number of total nodes
tic
% define mesh parameters
NumOfGlobalElements=floor((NumOfTotalNodes-1)/(NumOfGlobalNodes-1));
NumOfTotalNodes=(NumOfGlobalNodes-1)*NumOfGlobalElements +1;
% number of total nodes
NumOfStates=10;
ozde=zeros(NumOfStates,maxangularmom);
for angularmom=0:maxangularmom
h=radius/NumOfGlobalElements;
                                       % length of each element
% define mesh
nodecoor=linspace(0,radius,NumOfGlobalElements+1)'; % global
element node coordinates
%nodecoor=linspace(0,radius,NumOfTotalNodes)' ;
%nodematris(:,:)=nodecoor
% define operators
K=sparse(NumOfTotalNodes,NumOfTotalNodes); % stiffness matrix
of system
M=sparse(NumOfTotalNodes,NumOfTotalNodes);
                                                 % mass matrix of
system
% stiffness and mass matrix for an element
[Me1 Me2 Me3 Ke1 Ke2 Ke3 Ke4 Ke5 Ke6]=
CalculateMKZ (NumOfGlobalNodes);
% compute stiffness and mass matrix of system
for e=1:NumOfGlobalElements
  sctr = (e-1)*(NumOfGlobalNodes-1) +(1:NumOfGlobalNodes);
K(sctr, sctr) = K(sctr, sctr) + Ke1(:,:)*h + Ke2(:,:)*2*nodecoor(e) +
Ke3(:,:)*(nodecoor(e)^2)/h ...
     + Ke4(:,:)*2*h + Ke5(:,:)*2*nodecoor(e) +
Ke6(:,:)*h*angularmom*(angularmom+1);
M(sctr, sctr) = M(sctr, sctr) + Mel(:,:)*h^3 +
Me2(:,:)*h*(nodecoor(e)^2) + Me3(:,:)*2*h^2*nodecoor(e) ;
```

end

```
full(K)
% stiffness matrix of system with Diriclet Boundary Condition
KK=sparse(NumOfTotalNodes-2,NumOfTotalNodes-2);
% mass matrix of system with Diriclet Boundary Condition
MM=sparse(NumOfTotalNodes-2, NumOfTotalNodes-2);
KK(:,:)=K(2:NumOfTotalNodes-1,2:NumOfTotalNodes-1);
MM(:,:)=M(2:NumOfTotalNodes-1,2:NumOfTotalNodes-1);
clear K M;
opts.disp=0;
opts.tol=2*eps;
[V,D,flag] = eigs(KK,MM,NumOfStates,'sm',opts);
if flag ~=0
   disp([num2str(toc),'
                         THE ENERGY EIGEN VALUES HAVE NOT TRUE
VALUES']);
   end
%V/r dönüşümü
r=linspace(0+eps, radius, (NumOfTotalNodes-2));
for i=1:NumOfStates
R(:,i)=V(:,i)'./r;
end
xNodes=linspace(0, radius, NumOfTotalNodes-2);
%özdeğerler
dielem=diag(D);
ozde(:,angularmom+1)=dielem;
angularmom=angularmom+1;
end
D1=vpa(sort((diag(D))),15)
% Create textbox
figure(1)
                         %dalga fonksiyonları
annotation1 = annotation(figure(1), 'textbox', 'Position', [0.4857
0.8548 0.2535 0.1453], 'LineStyle', 'none', 'String', { '\psi(r) '},...
'FitHeightToText','on');
                        %Grafik isminin ortalanması
subplot(4,1,1), plot(r,V(:,1)*(-1),'k'),grid,xlabel('r'),
ylabel('\psi_1(r)')
subplot(4,1,2), plot(r,V(:,2),'k'),grid,xlabel('r'),
ylabel('\psi_2(r)')
subplot(4,1,3), plot(r,V(:,3),'k'),grid,xlabel('r'),
ylabel('\psi 3(r)')
```

```
subplot(4,1,4), plot(r,V(:,4),'k'),grid,xlabel('r'),
ylabel('\psi_4(r)')

figure(2) %dalga fonksiyonlarının karesi
annotation1 = annotation(figure(2),'textbox','Position',[0.4857
0.8548 0.2535 0.1453],'LineStyle','none','String',{'\psi^2(r)'},...
'FitHeightToText','on');
subplot(4,1,1), plot(r,V(:,1).*V(:,1),'k'),grid,xlabel('r'),
ylabel('\psi^2_1(r)')
subplot(4,1,2), plot(r,V(:,2).*V(:,2),'k'),grid,xlabel('r'),
ylabel('\psi^2_2(r)')
subplot(4,1,3), plot(r,V(:,3).*V(:,3),'k'),grid,xlabel('r'),
ylabel('\psi^2_3(r)')
subplot(4,1,4), plot(r,V(:,4).*V(:,4),'k'),grid,xlabel('r'),
ylabel('\psi^2_4(r)')
toc
```

Bessel fonksiyonlarını çözen MATLAB programı:

clear

```
xo=zeros(3,1);
x=0:0.01:10;
[j ierr]=besselj(0,x);
b=length(j);
k=1;
for i=1:(b-1)
    if j(i)*j(i+1) < 0
        xo(k) = x(i); k = k+1;
    end
end
X=zeros(length(xo),1);
for ll=1:length(xo)
gg = inline('besselj(0,x1)');
%X(ll) = fzero(gg,xo(ll),optimset('disp','iter')) ;
X(ll) = fzero(gg, xo(ll));
end
Х
```