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DEVELOPMENT AND IMPLEMENTATIONS 

OF FUZZY DECISION TREE ALGORITHMS 

 

ABSTRACT 

 

In this work, fundamentally fuzzy ID3 algorithm and the effects of T-operators on 

its reasoning procedure on numeric data is investigated and two novel approaches 

working on linguistic data have been proposed. Firstly, the information about fuzzy 

ID3 approach is presented. The usage of T-operators is given in details. The 

implementation is applied on geographic classification of virgin olive oil. Then, the 

first proposed approach on linguistic data is the FID3-L-WABL (Fuzzy ID3 

Algorithm Based on Linguistic Data by Using WABL Defuzzification Method) 

which is a novel version of the known Fuzzy Interactive Dichotomizer 3 (Fuzzy ID3) 

classification algorithm working on linguistic data. This approach is performed on L-

R (Left-Right) Fuzzy Number. Each fuzzy number is defuzzified by using WABL 

(Weighted Averaging Based on Levels). Then, Fuzzy c-means algorithm is adapted 

to obtain membership values of each fuzzy term for each fuzzy variable. 

Consequently, Fuzzy ID3 algorithm is applied. The second proposed approach is the 

FID3-LR (Fuzzy ID3 Algorithm for L-R Fuzzy Data) which is a mixture of FkM-F 

(Fuzzy k-means Clustering Model for Fuzzy data) clustering algorithm working on 

L-R fuzzy data and Fuzzy Interactive Dichotomizer 3 (Fuzzy ID3) classification 

algorithms.  

 

Fuzzy c-means algorithm was performed in MATLAB 2014a. The codes for the 

experiments, FuzzyID3 by using T-operators, FID3-L-WABL, and FID3-LR, have 

been developed in the MS Visual Studio C# IDE for the experimental study (Intel i7, 

2.4 GHz, 4 Gb RAM). They have been designed as an integrated software system 

called as Fuzzy Artemis. In addition, OliveDeSoft is designed for current and future 

studies in order to analyze the olive oil quality and geographic characterization.  

 

Keywords: Fuzzy logic, fuzzy decision tree, classification, defuzzification, linguistic 

data, geographic identification, olive oil.  
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BULANIK KARAR AĞACI ALGORİTMALARININ GELİŞİMİ VE 

UYGULAMALARI 

 

ÖZ 

 

Bu çalışmada, esasen fuzzy ID3 algoritması ve nümerik veri üzerinde T-

operatörlerinin çıkarsama prosedürüne etkisi araştırılır ve sözel veri üzerinde çalışan 

iki yeni yaklaşım ortaya konulmaktadır. Öncelikle, fuzzy ID3 yaklaşımı 

sunulmaktadır. T-operatörlerinin kullanımı detaylıca incelenmektedir. Uygulaması, 

natürel zeytinyağının coğrafik sınıflandırılması üzerinde gerçekleştilmektedir. Sonra, 

sözel verilerde çalışan ilk sunulan yaklaşım Fuzzy Interactive Dichotomizer 3 

(Bulanık ID3) sınıflandırma algoritmasının yeni bir versiyonu olan FID3-L-WABL 

(WABL durulaştırma methodu kullanılarak sözel veriye dayalı Bulanık ID3 

Algoritması)’dır. Bu yaklaşım, L-R (Sol-Sağ) Bulanık Sayısı üzerinde 

çalıştılmaktadır. Her bulanık sayı WABL (Weighted Averaging Based on Levels) ile 

durulaştırılmaktadır. Sonra, Bulanık c-Ortalamalar algoritması, her bulanık 

değişkenin bulanık terimimin üyelik derecesini elde etmek için adapte edilmektedir. 

Son olarak, Bulanık ID3 uygulanır. İkinci sunulan yaklaşım, L-R bulanık veri 

üzerinde çalışan FkM-F (Bulanık Veri için Bulanık k-ortalamalar Kümeleme Modeli) 

kümeleme algoritmasının, Fuzzy Interactive Dichotomizer 3 (Bulanık ID3) 

algortimasıyla karışımından oluşan FID3-LR (Bulanık Veri için Bulanık ID3) 

algoritmasıdır.  

 

Bulanık c-ortalamalar algoritması MATLAB 2014a’da yazılmıştır. T-operatörleri 

kullanılarak çalışan FuzzyID3, FID3-L-WABL, and FID3-LR, deneysel çalışmaları 

MS Visual Studio C# ortamı (Intel i7, 2.4 GHz, 4 Gb RAM) kullanılarak 

geliştirilmiştir. Deneyler, Fuzzy Artemis isimli entegre edilmiş bir yazılım 

geliştirilerek tasarlanmıştır. Ayrıca, OliveDeSoft, zeytinyağının kalitesi ve coğrafik 

karakterizasyon analizi yapmak için tasarlanmıştır.  

 

Anahtar Kelimeler: Bulanık mantık, bulanık karar ağacı, sınıflandırma, 

durulaştırma, sözel veri, cografi karakterizasyon, zeytinyağı. 
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CHAPTER ONE   

INTRODUCTION 

 

Classification has a crucial manner in machine learning and data mining. Humans 

use words in order to communicate. Words include more information than numbers 

in order to make decision and classification. Nowadays, fuzzy logic is preferred to 

handle the imprecise information for computing with words because of its flexibility. 

  

The amount of data in the world goes on increasing each day in data repositories. 

As a result, databases reserve a huge amount of information that has not been 

discovered yet. In recent years, an effective tool which is called data mining has 

emerged to discover patterns and trends in these data repositories. According to 

Larose (2005) data mining is a widely used process in order to discover meaningful 

relations, patterns and trends by using statistical and mathematical techniques in 

large data repositories. 

 

The technical basis of data mining is provided by machine learning. Machine 

learning aims to identify patterns and pick out some knowledgeable information 

based on the data inside data repositories. The algorithms of the machine learning 

can be used to illustrate relations among observed variables and have deeper 

information about data.  

 

 Decision trees are widely used machine learning tools in data mining among the 

most popular classification structures (Janikow, 1996, 1998; Lee et al., 1999; 

Kantarcı, Turanoğlu, & Ulutagay, 2013). Originally, they have been studied in the 

fields of decision theory and statistics. In recent years, it has also been implemented 

in pattern recognition. Quinlan (1990) argues that decision trees provide a powerful 

formalism for representing comprehensible and accurate classifiers.  

 

In the literature, there are distinctive methods proposed to generate the decision 

trees. ID3 (Quinlan, 1986), CART (Breiman et al., 1984) and C 4.5 (Quinlan, 1993) 
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are the most important decision tree learning algorithms. Trees produced by these 

algorithms are very sensitive to small changes in data.  

 

However, Abu-halaweh & Harrison (2010) argue that ID3 algorithm is not 

efficient in handling data uncertainties due to measurement error and/or noise. It was 

also argued that these algorithms work well in symbolic domains. They designate 

symbolic decisions to new samples.  

 

In recent years, neural networks have become popular for classification (Sarle, 

1994; Aroca-Santos, 2016; Binetti et al., 2017). But when the users want to 

understand or justify the rules, neural networks do not fit for the purpose. Fuzzy 

representation deals with problems of uncertainty, noise, and inexact data (Zadeh, 

1965). Some scholars have attempted to combine fuzzy sets and decision trees. They 

advise fuzzy decision trees. Fuzzy decision trees are also useful to evaluate the rules 

used for the classification. The usage of linguistic labels as fuzzy terms gives power 

to the knowledge systems. 

 

First, Chang & Pavlidis developed a kind of fuzzy decision tree algorithm in 

1977. This fuzzy decision tree approach was based on binary search trees. In the 

literature, several versions of fuzzy decision tree algorithms are proposed  by Umano 

et al. (1994), Janikow (1998), Chiang & Hsu (2002), Liu & Pedrycz (2007), Sanz et 

al. (2012) as fuzzy ID3 algorithm. Jang et al. (1997) also applied a fuzzy CART 

approach to estimate the structure of a fuzzy inference system, and Tokumaru & 

Muranaka (2009) used Fuzzy C 4.5 algorithm for product impression.  

 

 In our study, firstly, it is aimed to observe the behaviour of various types of T-

operators on the reasoning process of fuzzy ID3 structure. Secondly, two novel fuzzy 

ID3 algorithms called Fuzzy ID3 algorithm based on linguistic data by using WABL 

defuzzification method (Fuzzy ID3-L-WABL) and Fuzzy ID3 algorithm for L-R 

fuzzy data (Fuzzy ID3-LR) are proposed for the classification on linguistic data set. 

In both two approaches, linguistic variables are defined by using triangular fuzzy 

numbers given as L-R fuzzy numbers. Fuzzy ID3-L-WABL uses weighted level-
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based averaging method to make defuzzificaiton. Then, fuzzy c-means algorithm is 

performed in order to handle the membership degrees for each variable given in the 

data sets. Then, Fuzzy ID3-LR performs directly on L-R fuzzy data. It makes 

fuzzification via fuzzy k-means clustering model for fuzzy data (FkM-F) algorithm 

which works on L-R fuzzy data. After fuzzification process, both two approaches use 

Fuzzy ID3 algorithm for the induction of fuzzy decision tree. And, finally the fuzzy 

reasoning performs with different T-operators.  

 

The rest of the thesis is organized as follows. In Chapter II, we briefly introduce 

fuzzification, tree induction and fuzzy reasoning procedure on fuzzy decision trees. 

In Chapter III, the information about Fuzzy ID3 algorithm based on Fuzzy c-means 

for numeric data is given. In Chapter IV, a brief information is given about linguistic 

data, Weighted Averaging Based on Levels (WABL), and then Fuzzy ID3 algorithm 

based on linguistic data by using WABL defuzzification method (Fuzzy ID3-L-

WABL) is proposed. In Chapter V, weighted dissimilarity measure, fuzzy k means 

clustering model for fuzzy data (FkM-F) is informed, and Fuzzy ID3 algorithm for 

L-R fuzzy data (Fuzzy ID3-LR) is presented. In Chapter VI, the experimental 

framework is reported. In Chapter VII, Conclusion is stated as a final chapter.  
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CHAPTER TWO  

FUZZY DECISION TREES AND ITS REASONING PROCEDURE 

 

2.1 Introduction 

 

Decision trees which are combined with fuzzy approach are called fuzzy decision 

trees. While fuzzy decision tree is being constructed, some scholars prefer to initially 

fuzzify variables and splitting criteria, thus obtain fuzzy rules and implement these 

rules in inference procedure (pre-fuzzification). On the other hand, other scholars 

prefer using classical variables and splitting criteria, and then fuzzifying the obtained 

classical rules (post-fuzzification). First fuzzy decision trees were introduced by 

Chang & Pavlidis in 1977. The binary search method and fuzzy approach was 

combined in their paper. In 1994, Umano et al. proposed a novel approach to set up a 

fuzzy decision tree from data defined using fuzzy sets by way of experts. Their 

algorithm was called fuzzy ID3 algorithm. Fuzzy decision tree handled with fuzzy 

ID3 algorithm consists of nodes for testing variables, thresholds used for branching 

via test values of fuzzy sets given via an expert and leaves for determining the class 

with certainties (pre-fuzzification). 

 

Yuan & Shaw (1995) introduced an induction-learning algorithm for fuzzy 

decision trees. They were interested in incorporating subjective uncertainties into 

knowledge induction procedure for classification. In their study, the aim is to reduce 

the classification ambiguity in order to generate fuzzy decision tree (pre-

fuzzification). 

 

Hsu et al. (1995) used Classical ID3 algorithm to generate the rules for mobile 

robot control. A post-fuzzification is applied to the generated rules. Then, a neural 

network architecture represented the fuzzy rules. While performing an on-line 

training, the membership function of each linguistic variable is assigned via the 

gradient descent approach.  

 

In 1998, Janikow presented the fuzzy decision tree approach with various 

inference procedures, which were depended on conflict resolution in rule-based 
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systems and powerful approximate reasoning methods. Proposed fuzzy decision tree 

uses a version of Fuzzy ID3 algorithm (pre-fuzzification). This paper has become an 

important reference for future studies.  

 

Chiang & Hsu (2002) developed a new fuzzy classification tree for data analysis. 

This algorithm integrates the fuzzy classifiers with decision trees that can work well 

in classifying data with noise. When the accuracy of this algorithm is compared with 

the accuracy of three algorithms, which are proposed by Yuan & Shaw (1995), Hsu 

et al. (1995), and Janikow (1998), it is seen that the fuzzy classification algorithm has 

a better accuracy rate.  

 

Liu & Pedrycz (2007) proposed a new algorithmic framework for building fuzzy 

sets (membership functions), their logic operators and forming the design process of 

fuzzy decision trees. They compared their findings with the outcomes produced by 

the fuzzy decision trees presented by Janikow (1998). 

 

Sap & Khokhar (2004) constructed a new fuzzy decision tree by using weighted 

fuzzy production rules. In this approach, each proposition is assigned a weight 

parameter in the antecedent of a fuzzy production rule and a certainty factor is 

assigned to each rule. In this paper, the implementation is applied to stock market 

databases. Certainty factors have been calculated by using important variables such 

as effect of other companies, effect of stock exchanges etc. in dynamic stock market. 

And, this approach was used to predict stock share indices. 

 

 Chang et al. (2011) established a case based fuzzy decision tree model to predict 

the behaviour of stock prices movements in financial time series for trend discovery. 

In this paper, the fuzzy decision tree is generated from the stock database and then 

converted to fuzzy rules; and these rules are used in decision making of stock price’s 

movement. 

 

Sanz et al. (2012) aimed to improve the performance of fuzzy decision trees 

(FDT) by using IVFS and Genetic Algorithms. They presented a novel methodology 

called “Ignorance functions based Interval-Valued Fuzzy Decision Tree with Genetic 

Tuning (IIVFDT)”. The induction of the base FDT using the fuzzy ID3 algorithm 
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proposed in Yuan & Shaw (1995). A new modeling of the linguistic labels of the 

classifier is proposed by means of IVFSs. With this aim, they defined a novel 

construction method of IVFSs starting from the fuzzy sets by learning algorithm and 

using weak ignorance functions to measure the degree of ignorance when assigning 

punctual values as membership degrees (Sanz et al., 2011). The extension of the 

Fuzzy Reasoning Method (FRM) accomplished with the full power of IVFSs in the 

inference process. In each step of the FRM, the computation is made by using 

intervals and the ignorance degree is taken into account from the beginning to the 

end of the process. 

 

In this chapter, before explaining proposed fuzzy decision tree approaches, what 

fuzzification is; what fuzzy logic is; how the fuzzification is done by using fuzzy 

numbers and fuzzy c-means (FCM) is defined, how the tree induction is performed, 

and how the fuzzy reasoning procedure on fuzzy decision tree is done will be 

covered.  

 

2.2 Fuzzification 

 

Fuzzification process can be defined as making a crisp quantity fuzzy. 

Membership functions can be used for transforming a crisp variable into a fuzzy 

variable. Also, if fuzzy c-means algorithm is used, membership values are achieved. 

These values show the membership degrees for each cluster defined as a fuzzy 

variable (Ross, 2010). 

 

2.2.1 Fuzzy Logic and Fuzzy Sets 

 

In real life, there are many more unrealistic situations contained vagueness and 

ambiguity. In order to deal with the problems appeared because of these contexts, 

Zadeh (1965) suggested fuzzy set theory. In consequence of this set theory, fuzzy 

logic emerged. While the classical logic uses binary sets, the fuzzy logic uses fuzzy 

sets. In classical set theory, an element in the universe either matches with a set or 

does not.  
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Let U be a space of objects and x is generic element of U. A classical set A, 𝐴 ⊆

𝑈, is defined as a collection of elements or objects 𝑥 ∈ 𝑈, such as each x can either 

belong or not belong to the set A. By using a characteristic function for each element 

x in U, a classical set A can be represented by a set of ordered pairs (𝑥, 0) or (𝑥, 1). 

It means 𝑥 ∉ 𝐴 or 𝑥 ∈ 𝐴, respectively.  

 

Definition 2.1. Fuzzy sets and membership functions If x is a collection of 

objects denoted generically by x, then a fuzzy set A in U is defined as a set of 

ordered pairs (Zadeh, 1965): 

 

𝐴 = {𝑥, 𝜇𝐴(𝑥)|𝑥𝜖𝑈}                                            (2.1) 

 

where 𝜇𝐴(𝑥) is called membership function for the fuzzy set A. The membership 

function maps each element of U to a membership grade (or membership value) 

between 0 and 1.  X referred to as the universe of discourse, and this universe can be 

defined with discrete (ordered or non-ordered) or continuous space. 

 

 

Definition 2.2. Normality A fuzzy set A is normal if its core is nonempty. There 

is always a point 𝑥 ∈ 𝑈 such that 𝜇𝐴(𝑥) = 1 (Jang et al., 1997). 

 

Definition 2.3. Convexity A fuzzy set A is convex if and only if for any 𝑥1, 𝑥2 ∈

𝑈 and any 𝜆 ∈ [0,1] (Jang et al, 1997): 

 

𝜇𝐴(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ 𝑚𝑖𝑛{𝜇𝐴(𝑥1), 𝜇𝐵(𝑥2)}                        (2.2) 

 

Definition 2.4. Fuzzy numbers A fuzzy number A is a fuzzy set in the real line 

(R) that satisfies the conditions for normality and convexity.  

 

A fuzzy set is defined by using a membership function. In literature, there are 

different kinds of membership functions such as triangular, trapezoidal, etc. A 

mathematical formula is described in order to express each membership function 

(Jang et al., 1997).  
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Definition 2.5. A parametric triangular fuzzy number A fuzzy number with 

membership function in the form 

 

𝜇𝐴(𝑥) =

{
 
 

 
 (

𝑥−𝑎

𝑏−𝑎
)
1 𝑠⁄

, 𝑥 ∈ [𝑎, 𝑏),

(
𝑐−𝑥

𝑐−𝑏
)
1 𝑠⁄

, 𝑥 ∈ [𝑏, 𝑐),

      0             ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                 (2.3) 

 

where 𝑠 > 0 is a parameter (Figure 2.1), will be termed a parametric triangular fuzzy 

number 𝐴 = (𝑎, 𝑏, 𝑐) (Nasibov and Mert, 2007). 

 

 

Figure 2.1 Forms of parametric triangular fuzzy numbers (a) 0s1 (b) s1 (c) s1. 

 

Definition 2.5. Triangular membership function A triangular membership 

function is presented by three parameters {𝑎, 𝑏, 𝑐} as follows (Jang et al.(1997)): 

 

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑥; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

0,          𝑥 ≤ 𝑎

    
𝑥−𝑎

𝑏−𝑎
,         𝑎 ≤ 𝑥 < 𝑏

    
𝑐−𝑥

𝑐−𝑏
,         𝑏 ≤ 𝑥 < 𝑐

0,          𝑐 ≤ 𝑥

                                  (2.4) 

 

These parameters {𝑎, 𝑏, 𝑐} (𝑤𝑖𝑡ℎ 𝑎 < 𝑏 < 𝑐) determine the x coordinates of the three 

corners of the underlying triangular membership function (Figure 2.2).  

 



 

 

9 

 

 

 

Figure 2.2 Triangular Membership function characterized by three parameters {𝐚, 𝐛, 𝐜}. 

 

2.2.2 Fuzzy c-Means(FCM) 

 

Fuzzy c-means (FCM) is a path for assigning the membership degrees for fuzzy 

terms in each fuzzy variable. This algorithm proposed in Dunn (1973) and it became 

better in Bezdek (1981). The main aim of it is to reach a fuzzy 𝑐 partition matrix 𝑈. 

An objective function 𝐽𝑚 is defined in order to minimize. It is given as follows for 

fuzzy partition (Eq. 2.5): 

 

𝐽𝑚(𝑈, 𝑣) = ∑ ∑ (𝜇𝑖𝑘)
𝑚𝑐

𝑖=1 (𝑑𝑖𝑘)
2𝑛

𝑘=1                            (2.5) 

 

where 𝜇𝑖𝑘 is defined as the membership degree of the 𝑘𝑡ℎ data point in the 𝑖𝑡ℎ class. 

p is the dimensionality of the data space. The parameter 𝑚 > 1 reflects sharpness of 

the fuzzification process.  In Eq.2.6, 𝑑𝑖𝑘 shows any distance measure (usually the 

Euclidean distance) between 𝑘𝑡ℎdata point and 𝑖𝑡ℎ cluster center in p dimensional 

space. The distance could be defined as: 

 

𝑑𝑖𝑘 = 𝑑(𝑥𝑘, 𝑣𝑖) = [∑ (𝑥𝑘𝑗 − 𝑣𝑖𝑗)
2𝑝

𝑗=1 ]
1 2⁄

,   𝑘 = 1, … , 𝑛    𝑖 = 1, . . . 𝑐      (2.6) 
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Here, 𝑣𝑖 shows the 𝑖𝑡ℎ cluster center. The following, Eq.2.7. is used for the 

calculation of each clusters’ center:  

 

           𝑣𝑖𝑗 =
∑ 𝜇𝑖𝑘

𝑚𝑥𝑘𝑗
𝑛
𝑘=1

∑ 𝜇𝑖𝑘
𝑚𝑛

𝑘=1

, 𝑖 = 1,… , 𝑐, 𝑗 = 1,… , 𝑝 .                   (2.7) 

 

Membership degrees are computed in accordance with the Eq.2.8. 

 

𝜇𝑖𝑘 =
1

∑ (
‖𝑥𝑘−𝑣𝑖‖

‖𝑥𝑘−𝑣𝑧‖
)

2
𝑚−1𝑐

𝑧=1

, 𝑖 = 1,… , 𝑐; 𝑘 = 1,… , 𝑛.                   (2.8) 

The cluster number of each variable identifies the number of fuzzy linguistic 

terms for each fuzzy variable.  

 

2.2.3 Linguistic Variable 

 

Linguistic variables contain words or sentences instead of numbers as used in 

natural or artificial languages (Zadeh; 1975). These variables are more useful for the 

individuals to tell their knowledge based on various statements. Generally, humans 

think and need to explain their thoughts by using words and sentences in daily life. 

Yet, it is difficult to give the information directly. Regardless, using linguistic 

variable is an impressive way in order to model the human thought. 

 

Linguistic variables also use fuzzy variables as its values. Fuzzy variable is 

identified by a triple (X, U, R(X)) in which X is the variables’ name, U is a universe 

of discourse, and R(X) is a fuzzy subset of U which represents a fuzzy restriction 

imposed by X (Nasibov & Mert, 2007; Ross, 2010).  

 

 Selecting the Linguistic Term Set 

 

The selection of the linguistic term set is an important issue. The aim is to 

introduce the minimum number of words to the user. The user needs enough 

argument in order to explain his/her statement efficiently. Hence, the number of the 
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linguistic terms should be as few as achievable. It should also be as many as possible 

in order to evaluate the statements in different levels. The differentiation of levels in 

fuzzy variable can be called as “Granularity of Fuzziness”. 

 

Miller (1955) proposed that humans generally organize the information 

designated with odd numbers in order to keep in their memory. It is observed that the 

terms are symmetrically distributed around the mean term which is approximately 

0.5. Hence, generally, 7, 9, 11, or not more than 13 are preferred as element numbers 

in linguistic term sets (Nasibov & Kantarcı, 2010).  

 

In addition, the numeric variables can be transformed into linguistic variables 

defined as fuzzy variable. A fuzzy clustering algorithm such as fuzzy c-means is 

used in order to assign a membership degree for each numeric value. Each fuzzy 

term of a fuzzy variable is defined by using linguistic term. The cluster number is 

identified by using experts’ opinion, by evaluating the variables’ distributions or by 

using a partition coefficient index in order to reach the optimal cluster number 

(Bezdek, 1974a; Bezdek, 1974b; Dunn, 1974). 

 

 Generating Linguistic Descriptors.  

 

After the determination of element number of the linguistic term set, it is 

necessary to generate the linguistic descriptors. There are two kinds of 

approaches, called as Context-Free Grammar Approach and Ordered Structure of 

Linguistic Terms Approach, respectively. These approaches define the linguistic 

descriptors.  

 

2.2.3.3.1 Context-Free Grammar Approach. Context-free grammar is used in  

order to define the linguistic term set in this approach. G is defined as the grammar 

that accomplishes the sentences. Grammar consists of a four-order notation presented 

as (𝑉𝑁, 𝑉𝑇 , 𝐼, 𝑃). VN proposes non-terminal symbols set, VT proposes terminal 

symbols set, I propose the initial symbol, and P, the generation rules. The expanded 

Backus Naur Form (Bordogna & Passi, 1993) may be performed for P generation 

rule.  
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The basic terms are identified as {many, medium, few…}, constraints as {none, a 

lot, quite, ...}, relations are given as {fewer, lower, …} and links defined as {and, 

but, or, …}. Firstly, an initial term I is selected. Then, a linguistic terms set can be 

generated as S= {low, lower, not low, lower or medium, …} using P. Miller (1955) 

observed that the language used should be clearly understandable. Therefore, the 

selection of grammar terms composes the shape of the linguistic term set (Kantarcı, 

2010). 

 

2.2.3.3.2 Approach Depending on the Ordered Structure of Linguistic Terms.  

Ordered structure of linguistic terms range on an indicator chart. It is defined by 

using an example; assume 𝑎 < 𝑏 then 𝑠𝑎 < 𝑠𝑏 (Kantarcı, 2010). 

𝑆 = {𝑠0: 𝑛𝑜𝑛𝑒, 𝑠1: 𝑣𝑒𝑟𝑦 𝑓𝑒𝑤, 𝑠2: 𝑓𝑒𝑤, 𝑠3: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑠4: ℎ𝑖𝑔ℎ, 𝑠5: 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ, 𝑠6: 𝑝𝑒𝑟𝑓𝑒𝑐𝑡}  

When this approach will be used, it is necessary that the term set provides the 

following characteristics:  

There is a negation operator, i.e.,𝑁𝑒𝑔(𝑠𝑖) = 𝑠𝑗 , 𝑗 = 𝑇 − 𝑖.  

(T + 1 = The number of the elements of the term set). 

Maximization Operator = Max(si, sj) = si, si ≥ sj.  

Minimization Operator=Min(si,sj)=si, si ≤ sj. 
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 The Semantic Depending on Membership Functions and a Semantic 

Rule as Linguistic Term Set 

 

The number of elements of the linguistic term set and its descriptors are identified 

by using the methods defined in former subchapters. Then, the meanings of the 

linguistic term set should be assigned. In the literature, there are three main issues 

that assign the definition of the linguistic term set. These are defined as “semantic 

depending on membership functions and a semantic rule”, “semantic depending on 

the ordered structure of the linguistic term set”, and “mixed semantic”, respectively. 

In this study, “semantic depending on membership functions and a semantic rule” is 

used. The definition is given as follows: 

 

Propositions as “Suzan is tall”, “The olive tree is extremely small” are named as 

fuzzy propositions. These statements are not reflected certain situations. Each fuzzy 

proposition generates fuzzy terms. And each of the fuzzy term is modelled by using a 

“fuzzy set”. This set is characterized by mathematically designating a value from the 

real numbers in the range of [0,1]. This value shows that each individual’s 

membership degree belonging to the fuzzy set defined as fuzzy term.  

 



 

 

14 

 

The semantic issue follows the two steps given below:  

 The primary fuzzy sets combined to the primary linguistic terms. 

 The semantic rule M, to construct the fuzzy sets of the non-primary 

linguistic terms from primary fuzzy sets. 

 

The representation of the primary fuzzy terms counts on parameters expressed by 

humans. Yet, it is so hard to explain their behaviour and preferences within the 

similar parameters. Same primary terms may not have same representations. Each 

researcher can prefer different membership function for linguistic evaluations 

(Delgado et al., 1992; Bordogna & Passi, 1993; Kantarcı, 2010). 

 

2.3 Tree Induction 

 

Decision tree method is widely used in data mining, machine learning, expert 

systems, and multivariate analysis. Decision tree algorithms aim to part the input 

space of data set into mutually exclusive regions while each input has its class label. 

The structure of a decision tree consists of internal and external nodes connected via 

branches. There is a top root node. The other internal nodes follow the root node. 

 

A function is used in order to decide which internal node will come to next. There 

are external nodes at the end of the tree. These nodes are also known as leaf or 

terminal nodes. Each terminal node is combined with a class label or value. A 

decision tree has paths from the root node to the terminal nodes. These paths are used 

as rules. And these constructed rules are used for classification. 

 

   Generally, a decision tree is constructed as follows. Firstly, a decision function 

is chosen in order to decide the root node for the starting. Then, the data set is 

participated according to the values of this root node. The tree begins to branch. The 

decision function is performed iteratively. The child nodes, named as internal nodes, 

are defined via the result of this decision function. This is repeated until a terminal 

node is reached. If the terminal node is reached, a class label or value is designated to 

the terminal node. Decision trees are often used for the classification problems.  
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Figure 2.3 Example of classical decision tree. 

 

Fuzzy decision trees are the structures, which are the adaptation of decision trees 

on fuzzy sets. These structures are also used for the classification problems. Fuzzy 

decision tree algorithms perform on fuzzy variables. Unlike a classical decision tree, 

each leaf node includes each class label with a normalized weight. All rules 

generated by fuzzy decision tree is used in order to make classification. Then, the 

classification is completed according to the result of fuzzy rule-based reasoning 

structure based on these generated rules (Harrington, 1991; 1993; 2017; Harrington 

et al., 2009).  
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Fuzzy decision trees are the structures, which are the adaptation of decision trees 

on fuzzy sets. These structures are also used for the classification problems. Fuzzy 

decision tree algorithms perform on fuzzy variables. As distinct from classical 

decision tree, each leaf node includes each class label with a normalized weight. All 

rules generated by fuzzy decision tree is used in order to make classification. Then, 

the classification is completed according to the result of fuzzy rule-based reasoning 

structure based on these generated rules (Harrington, 1991; 1993; 2017; Harrington 

et al., 2009).  

 

 

Figure 2.4 Example of fuzzy decision tree. 
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2.4 Fuzzy Reasoning Procedure on Fuzzy Decision Trees 

 

Fuzzy reasoning procedeure is an inference process that reproduces consequences 

by using a set of fuzzy if-then-rules and known facts. The inference procedure can be 

formalized upon these rules. In general, this inference procedure is named 

approximate reasoning or fuzzy reasoning. 

 

Definition 2.7. Approximate Reasoning Let A, A', and B be fuzzy sets of X, X' 

and Y, respectively. Assume that the fuzzy implication 𝐴 → 𝐵 is expressed as a 

fuzzy relation R on 𝑋 × 𝑌. Then, the fuzzy set B is induced by "𝑥 𝑖𝑠 𝐴′"  and the 

fuzzy rule "𝑖𝑓 𝑥 𝑖𝑠 𝐴 𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝐵" is defined by  

 

𝜇𝐵′(𝑦) = 𝑚𝑎𝑥𝑥𝑚𝑖𝑛[𝜇𝐴′(𝑥), 𝜇𝑅(𝑥, 𝑦)]                       (2.9) 

 

 

2.4.1 Multiple Rules with Multiple Antecedents 

 

The  multiple rules are interpreted by using the union of the fuzzy relations 

corresponding to the fuzzy rules. In summary, the process of fuzzy reasoning or 

approximate reasoning can be divided into four steps given in Figure 2.5. Also, the 

steps are defined as the following (Jang et al., 1997):  

 

Step 1. Degrees of compatibility: The antecedents of fuzzy rules are compared 

with respect to each antecedent membership function to find the degrees of 

compatibility. 

 

 

Figure 2.5 The steps of fuzzy reasoning of multiple rules with multiple antecedents. 
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Step 2. Firing strength: Degrees of compatibility are compared with respect 

antecedent membership functions in a rule using fuzzy AND or OR operators. The 

aim is to form a firing strength. It shows the degree at which the antecedent part of 

the rule is satisfied. 

 

Step 3. Qualified (induced) consequent Membership Functions (MF): The 

firing strength is applied to the consequent membership functions of a rule to 

generate a qualified consequent membership functions. It shows how the firing 

strength performed in a fuzzy implication.  

 

Step 4. Overall output membership functions: All the qualified consequent 

membership functions are applied in order to reach an overall output membership 

function.  

 

Assume that a generalized modus potent problem given as  

Premise 1 (fact): 𝑥 𝑖𝑠 𝐴′ and 𝑥 𝑖𝑠 𝐵′ 

Premise 2 (rule 1): 𝑖𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦  𝑖𝑠 𝐵1 𝑡ℎ𝑒𝑛 𝑧 𝑖𝑠 𝐶1  

Premise 3 (rule 2): 𝑖𝑓 𝑥 𝑖𝑠 𝐴2𝑎𝑛𝑑 𝑦  𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛 𝑧 𝑖𝑠 𝐶2  

Consequence (conclusion) 𝑧 𝑖𝑠 𝐶". 

 

Let 𝑅1 = 𝐴1 × 𝐵1 → 𝐶1 and 𝑅2 = 𝐴2 × 𝐵2 → 𝐶2  . If the the max-min 

composition operator ∘ is assumed the distributive over the U operator, it can be 

given as follows: 

              𝐶′ = (𝐴′ × 𝐵′) ∘ (𝑅1⋃𝑅2) 

                                          = [(𝐴′ × 𝐵′) ∘ 𝑅1 ]⋃[(𝐴′ × 𝐵′) ∘ 𝑅2] 

 = (𝐶1′ × 𝐶′2) 

where 𝐶′1 and 𝐶′2 are the inferred fuzzy sets for rules 1 and rules 2, respectively. 

 

The fuzzy reasoning for multiple rules with multiple antecedents are given 

schematically in Figure 2.6 which shows graphically the operation of the fuzzy 

reasoning for multiple rules with multiple antecedents in graphics.  
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Figure 2.6 Fuzzy reasoning for multiple rules with multiple antecedents. 

 

 

2.4.2 Fuzzy If-Then Rules 

 

Let a fuzzy if-then rule (also known as fuzzy rule, fuzzy implication, or 

conditional statement) is given as the following form 

𝑖𝑓 𝑥 𝑖𝑠 𝐴 𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝐵 

where A and B are linguistic values defined by fuzzy sets on universes of discourse 

X and Y, respectively. Generally, "x is A" is named as the antecedent or premise, and 

"y is B" is named as the consequence or conclusion. In daily life, humans generally 

use examples of fuzzy if-then rules, such as the following: “If an olive is black, then 

it is ripe”. It is necessary to formalize the rule 𝐴 → 𝐵 as a binary fuzzy relation R on 

the product space 𝑋 × 𝑌. In literature, a fuzzy rule 𝐴 → 𝐵 can be represented as, 

𝑅 = 𝐴 → 𝐵 = 𝐴 × 𝐵 = ∫ 𝜇𝐴(𝑥)
𝑋×𝑌

∗̃ 𝜇𝐵(𝑥) (𝑥, 𝑦)⁄  

where ∗̃ is a T-norm operator and 𝐴 → 𝐵 is used again to represent the fuzzy relation 

R.  

 

2.4.3 Fuzzy Rule Based Classification System (FRBCS)  

 

Fuzzy rule based classification system (FRBCS) is an important issue in the field 

of pattern recognition in order to solve classification problems. This uses linguistic 
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labels in the antecedents of their rules. This behaviour of the system provides 

computational flexibility. In real life, it has been used for the solution of various kind 

of problems, such as image processing (Nakashima, Schaefer, Yokota, & Ishibuchi, 

2007), medical problems (Sanz et al., 2014), chemometrics (Nasibov et al., 2016), 

etc. 

 

It is necessary to define a classification problem for FRBCS. Classification 

problem is a supervised learning problem. A set of training samples, named as 

training set, is used in order to solve this kind of problems. Each training samples has 

its class label. A mapping function called as classifier is used as the construction of 

the classification model. The model is used in order to assign class label to a new 

sample.  

 

Assume that a training set consists of p samples. 𝑥𝑝 = (𝑥𝑝1, … , 𝑥𝑝𝑛) is the pth 

sample of the training set where 𝑥𝑝𝑖 is the value of the ith attribute (𝑖 = 1,2… , 𝑛) of 

the pth training sample. Target variable includes class labels as given 𝑦𝑝 ∈ 𝐶 =

{𝐶1, 𝐶2, … , 𝐶𝑚}, where m is the number of classes of the problem (Ishibuchi, 

Nakashima, & Nii, 2004; Elkano et al., 2015). 

 

FRBCSs can be summarized with two main components as given below (Elkano 

et al. 2015; Nasibov et al., 2016): 

Knowledge Base: The rule base (RB) and the database is included in knowledge 

base. The rules and the membership functions are stored in it. 

Fuzzy Reasoning Method: The classification model is performed on the samples 

via the information stored in the knowledge base.  

 

Fuzzy decision tree approach is also a kind of fuzzy classifier. The algorithm 

constructs a fuzzy decision tree. Each path handled from the root node to the terminal 

node is assumed as a fuzzy rule. It means that the constructed fuzzy decision tree 

model includes multivariate rules with multivariate antecedents. This model can be 

thought as fuzzy rule based system while it is being used to make the classification. 
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The structure of FRBCS uses a preferred fuzzy decision tree algorithm in learning 

process in order to generate fuzzy rules based on linguistic labels. Each path of the 

tree shows the fuzzy rules. Rule Weights (RW) for each l class are stored at each leaf 

node. 𝑅𝑊𝑗𝑙 shows jth rule weight handled from fuzzy confidence value 𝐶𝐹𝑗𝑙 which  

equals to 𝑅𝑊𝑗𝑙. A classification problem with fuzzy decision tree model combined 

with Fuzzy Rule Based Classification System is summarized in Figure 2.7. 

 

 

Figure 2.7 A classification problem with Fuzzy ID3 algorithm combined with FRBC 
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CHAPTER THREE  

FUZZY ID3 ALGORITHM BASED ON FCM FOR NUMERIC DATA 

 

3.1 Introduction 

 

In this chapter, information about Fuzzy ID3 Interactive Dichotomizer 3 (Fuzzy 

ID3) algorithm and the adaptation of this algorithm via fuzzy c-means (FCM) which 

can work on numeric data is given. The phases of this approach will be discussed in 

the following subchapters. 

 

3.2 Fuzzy ID3 Interactive Dichotomizer3 (Fuzzy ID3) 

 

Umano et al. (1994) proposed Fuzzy Interactive Dichotomizer 3 (Fuzzy ID3) 

which is a fuzzy decision tree builder algorithm. This algorithm is a kind of fuzzified 

version of ID3 algorithm proposed in Quinlan (1986). It uses crisp and fuzzy 

variables. This algorithm divides the training set in accordance with a variable. This 

variable is chosen via a measure called information gain which is based on fuzzy 

entropy. This measure aims to seek that the variable includes the highest qualified 

information.  

 

Let N labelled fuzzified patterns and n attributes are given as 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑛}. 

For each k assume that (1 ≤ 𝑘 ≤ 𝑛). The attribute 𝐴𝑘 takes 𝑚𝑘values of fuzzy 

subsets (𝐴𝑘1, 𝐴𝑘2, … , 𝐴𝑘𝑚𝑘
). C  denotes the classification target attribute, taking m 

values 𝐶1, 𝐶2, … , 𝐶𝑚. The cardinality of a given fuzzy set is denoted by 𝑀(. ), that is, 

the sum of the membership values of the fuzzy set (Umano et al., 1994; Nasibov et 

al., 2016). The induction process of fuzzy ID3 is given step by step as the following:  
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Step 1: A root node which has a set of all data is generated. This data set should be 

fuzzified data set which is fuzzified with fuzzy c-means (FCM) algorithm (class 

number (c) of each fuzzy variable is set to 3), and it is initialized with the 

membership values equal to 1 for all data.  

Step 2: The expanded attribute is selected by using the following steps: 

Step 2a: For each linguistic label 𝐴𝑘𝑖(𝑖 = 1,2, … ,𝑚𝑘), compute its relative 

frequencies with respect to class 𝐶𝑗 (𝑗 = 1,2, … ,𝑚). 

 

𝑝𝑘𝑖(𝑗) =
𝑀(𝐴𝑘𝑖∩𝐶𝑗)

𝑀(𝐴𝑘𝑖)
                                                         (3.1) 

 

Step 2b: For each linguistic label 𝐴𝑘𝑖, (𝑖 = 1,2, … ,𝑚𝑘). Compute its fuzzy 

classification entropy. 

 

𝐸𝑛𝑡𝑟𝑘𝑖 = −∑ 𝑝𝑘𝑖(𝑗)log (𝑝𝑘𝑖(𝑗))
𝑚
𝑗=1                                             (3.2) 

 

Step 2c: Compute the average fuzzy classification entropy of each attribute. 

 

𝐸𝑘 = ∑
𝑀(𝐴𝑘𝑖)

∑ 𝑀(𝐴𝑘𝑗)
𝑚𝑘
𝑗=1

𝑚𝑘
𝑖=1 𝐸𝑛𝑡𝑟𝑘𝑖                                            (3.3) 

 

Step 2d: Select the attribute that maximizes the information gain (𝐺𝑘). 

 

𝐴𝑡𝑡𝑟 = argmax
1≤𝑘≤𝑛

(𝐺𝑘), where 𝐺𝑘 = 𝐸 − 𝐸𝑘                          (3.4) 

 

For class label 𝐶𝑖, 𝑖 = 1,2… ,𝑚, compute its relative frequencies depending 

on class 𝐶𝑖: 

 

𝑝𝑖(𝑗) =
𝑀(𝐶𝑖)

𝑁
                                                  (3.5) 
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In Eq. 3.6, E is called as the total entropy, E is calculated as below: 

   𝐸 = −∑ 𝑝𝑖(𝑗)log (𝑝𝑖(𝑗))
𝑚
𝑗=1                                         (3.6) 

Step 2e: Assign the selected attribute as the root node and the linguistic 

labels as candidate branches of the tree. 

Step 3: Select one branch to analyze. If it is empty, the selected branch is deleted. 

If the selected branch is non-empty, the relative frequencies are computed by using 

(Eq.3.1) all objects within the branch into each class. If the relative frequency of each 

class is above the given threshold 𝜃𝑟 or all the attributes are used for the induction, 

the branch is terminated as a leaf node. Otherwise, the attribute is selected with the 

smallest average fuzzy classification entropy (Eq.3.4) among those, which has not 

been used as a new decision node yet and its linguistic labels are added as 

candidates. At each leaf, each class will have its relative frequency.  

Step 4: Repeat Step 3 as long as there are branches to analyze. If there are no 

candidate branches the decision tree is completed.  

 

3.2.1 The Rule Structure Generated from Each Branch of The Fuzzy Decision 

Tree 

 

After the fuzzy decision tree induction, the rules are induced from each branch. 

Each branch behaves as a kind of path. The rule Rj is given as follows:  

 

Rule Rj: If x1is Aj1 and … and xn is Ajn then Class = Cj with RWjl, where Rj is 

the label of the jth rule with class l. x = (x1, … , xn) is an n-dimensional pattern 

vector that represents the samples. Aji is a fuzzy set. Cj ∈ C is the class label, and 

RWj is the rule weight. In fuzzy decision tree, each leaf node has rule weights which 

are computed as the relative frequency for each class (as in Step 3). 

 

3.2.2 Reasoning (Classification) 

 

Let xp = (xp1, … , xpn) be the pth example of the training set, which is composed 

of P samples, where 𝑥𝑝𝑖 is the value of the ith attribute i = (1,2, … , n) of the pth 



 

 

25 

 

sample. Each sample belongs to class yp ∈ C = {C1, C2, … , Cm}, where m is the 

number of classes of the problem. Assume that xp is a novel sample to be classified 

with FID3 reasoning procedure suggested in Umano et al. (1994). It is adapted into 

fuzzy reasoning method as given in FARC-HD (Elkano et al., 2015).  

 

Four steps are given below which are adapted with Fuzzy ID3 reasoning 

structures in (Sanz et al., 2012). 

 

Step 1. Matching degree: In this step, the strength of activation of the if-part for 

all rules handled from each path of the fuzzy decision tree in the rule base with the 

pattern xp is computed as; 

                        μAj(xp) = T(μAj1(xp1), … , μAjnj
(xpj))                                   (3.7) 

where μAj(xpj) is the matching degree of the example with ith antecedent of the rule 

Rj. T is a T-norm (Algebraic Product/Sum T-norm operator given in Table 3.1), and 

nj is the number of antecedents of the rule. 

 

Step 2.Association degree: The association degree of the pattern xp with each 

rule in the rule base and for the class l is computed as follows, where RWjl, is an 

associated degree of each leaf node which is at the end of each path, Rj, with the 

class l.  

 

bjl(xp) = 𝜇𝐴𝑗(𝑥𝑝). RWjl                                            (3.8) 

 

Step 3. Confidence degree: In this stage, the confidence degree for each class l  is 

computed to obtain the confidence degree of a class, and the association degrees of 

the rules of that class are summed as given in (Umano et al., 1994). 

 

conf𝑙(xp) = ∑ 𝑏𝑗𝑙(𝑥𝑝)𝑅𝑗∈𝑅𝐵;𝐶𝑗=𝑙
                𝑙 = 1,2… ,𝑚                 (3.9) 
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and in which bjl(xp), j = 1,2, … , R is the association degree of the pattern xp to the 

class l according to the jth. rule. 

 

Step 4. Classification: The class with the highest confidence degree is assigned as 

the predicted one (Umano et al., 1994; Elkano et al. 2015). 

 

𝐶𝑙𝑎𝑠𝑠 = argmax
𝑙=1,…,𝑚

(𝑐𝑜𝑛𝑓𝑙(𝑥𝑝))                                  (3.10) 
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Table 3.1 T-Operators used in fuzzy reasoning method. 

Non-Parametric Operators 

Ref T-norm operators T-conorm operators 

Zadeh(1965) 𝑇1(𝑥, 𝑦) = min (𝑥, 𝑦) 𝑇1
∗(𝑥, 𝑦)) = max (𝑥, 𝑦) 

Algebraic Product/Sum 

(Weber, 1983; Bandler & Kohout, 

1980) 

𝑇2(𝑥, 𝑦) = x. y 𝑇2
∗(𝑥, 𝑦)) = 𝑥 + 𝑦 − 𝑥. 𝑦 

Bounded Product/Sum 

(Giles, 1976) 
𝑇3(𝑥, 𝑦) = max (0, 𝑥 + 𝑦 − 1) 𝑇3

∗(𝑥, 𝑦) = min (1, 𝑥 + 𝑦) 

Nonparametric Hamacher 

(Oussallah, 2003) )0(   
𝑇4(𝑥, 𝑦)) =

𝑥. 𝑦

(𝑥 + 𝑦 − 𝑥. 𝑦)
 𝑇4

∗(𝑥, 𝑦) =
𝑥 + 𝑦 − 2. 𝑥. 𝑦

1 − 𝑥. 𝑦
 

Parametric Operators 

Ref T-norm operators T-conorm operators 
Parametric 

Range 

Hamacher (Oussallah, 2003) 𝑇5(𝑥, 𝑦)) =
𝑥. 𝑦

𝜆 + (1 − 𝜆)(𝑥 + 𝑦 − 𝑥. 𝑦)
 𝑇5

∗(𝑥, 𝑦)) =
𝑥 + 𝑦 − (2 − 𝜆). 𝑥. 𝑦

𝜆 + (1 − 𝜆)(1 − 𝑥. 𝑦)
 𝜆 ≥ 0 

Yager (1980) 𝑇6(𝑥, 𝑦) = max (1 − ((1 − 𝑥)
𝑝 + (1 − 𝑦)𝑝)1 𝑝⁄ , 0) 𝑇6

∗(𝑥, 𝑦) = min ((𝑥𝑝 + 𝑦𝑝)1 𝑝⁄ , 1) 𝑝 = (0,1) 

Dombi (1982) 

𝑇7(𝑥, 𝑦)) =
1

1 + ((
1
𝑥
− 1)𝜆 + (

1
𝑦
− 1)𝜆)1 𝜆⁄

 

 

 

𝑇7
∗(𝑥, 𝑦)) =

1

1 + ((
1
𝑥
− 1)−𝜆 + (

1
𝑦
− 1)−𝜆)−1 𝜆⁄

 𝜆 = (0,1) 

Dubois&Prade (1986) 𝑇8(𝑥, 𝑦)) =
𝑥. 𝑦

max (𝑥, 𝑦, 𝜆)
 𝑇8

∗(𝑥, 𝑦) = 1 −
(1 − 𝑥). (1 − 𝑦)

max (1 − 𝑥, 1 − 𝑦, 𝜆)
 𝜆 = (0,1) 

Weber(1983) 𝑇9(𝑥, 𝑦)) = max (
𝑥 + 𝑦 − 1 + 𝜆. 𝑥. 𝑦

1 + λ
, 0) 

 

𝑇9
∗(𝑥, 𝑦)) = min(𝑥 + 𝑦 + 𝜆. 𝑥. 𝑦, 1) 

 

𝜆 = (0,1) 
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3.3 Proposed Reasoning Approach for Fuzzy ID3 Based on T-Operators 

 

In this study, it is aimed to search the effects of different T-Operators on the 

reasoning process in fuzzy decision tree based on fuzzyID3 algorithm. Therefore, T-

operators are adapted into the reasoning process (Farahbod & Eftekhari, 2012). 

 

It is assumed that 𝑥𝑝 is a novel sample to be classified. In this subchapter, the 

steps of novel proposed reasoning approach in order to make reasoning will be 

studied by using the rules generated from a fuzzy decision tree.  

 

3.3.1 Overview of T-Operators 

 

T-norm and T-conorm operators developed from the triangular inequalities, are 

also named as T-Operators. These operators were generated from the studies of 

probabilistic metric spaces (Menger, 1942; Schweizer & Sklar, 1973).  

 

Their aim is to calculate the intersection and union of two fuzzy sets. In literature, 

there are various types of T-operators which work better in some decision-making 

situations (Dubois & Prade, 1986).  

 

While determining a set of T-operators for a decision-making problem, their 

properties, the accuracy model, their simplicity, computer and hardware 

implementations, etc. gain importance are taken account. 

  

Union (Disjunction): The union of two fuzzy sets A and B is a fuzzy set C written 

as 𝐶 = 𝐴 𝑜𝑟 𝐵, whose membership function (MF) is related to those of A and B by  

 

𝜇𝐶(𝑥) = (𝜇𝐴(𝑥)⋁𝜇𝐵(𝑥))                                        (3.11)  

 

Intersection (Conjunction): The intersection of two fuzzy sets A and B is a fuzzy 

set C, written as 𝐶 = 𝐴 𝑜𝑟 𝐵, whose MF is related to those of A and B by  

 

𝜇𝐶(𝑥) = (𝜇𝐴(𝑥)⋀(𝑥))                                        (3.12)  
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T-norms and T-conorms are two placed functions from [0,1] × [0,1] to [0,1] that 

are monotonic, commutative and associative. 

 

Definition 3.1. Let 𝑇: [0,1] × [0,1] → [0,1]. T is a T-norm if and only if (iff) for 

all 𝑥, 𝑦, 𝑧 ∈ [0,1] (Gupta & Qi, 1991):  

 

𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥) commutativity 

𝑇(𝑥, 𝑦) ≤ 𝑇(𝑥, 𝑧) if 𝑦 ≤ 𝑧 (monotonicity) 

𝑇(𝑥, 𝑇(𝑦, 𝑧)) = 𝑇(𝑇(𝑥, 𝑦), 𝑧) (associativity) 

     𝑇(𝑥, 1) = 𝑥  

 

Definition 3.2. Let 𝑇∗: [0,1] × [0,1] → [0,1]. T* is a T*-conorm if and only if 

(iff) for all 𝑥, 𝑦, 𝑧 ∈ [0,1] Gupta & Qi, 1991):  

 

𝑇∗(𝑥, 𝑦) = 𝑇∗(𝑦, 𝑥) commutativity 

𝑇∗(𝑥, 𝑦) ≤ 𝑇∗(𝑥, 𝑧) if 𝑦 ≤ 𝑧 (monotonicity) 

𝑇∗(𝑥, 𝑇∗(𝑦, 𝑧)) = 𝑇∗(𝑇∗(𝑥, 𝑦), 𝑧) (associativity) 

𝑇∗(𝑥, 0) = 𝑥  

 

3.3.2 Proposed Reasoning Approach 

 

It is assumed that 𝑥𝑝 is a novel sample to be classified with proposed reasoning 

approach by using different T operators as defined in Gupta & Qi (1991). Then, the 

steps of this novel approach are given as following:  

 

Step 1. Matching degree: In this step, the strength of activation of the if-part for 

all rules handled from each path of the fuzzy decision tree in the rule base on the 

pattern 𝑥𝑝 is computed (Eq. 3.13.):  

 

𝜇𝐴𝑗(𝑥𝑝𝑖) = 𝑇(𝜇𝐴𝑗1(𝑥𝑝1),… , 𝜇𝐴𝑗𝑛𝑗
(𝑥𝑝𝑛𝑗))                      (3.13) 
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where 𝜇𝐴𝑗(𝑥𝑝𝑖) is the matching degree of the example with ith antecedent of the rule 

𝑅𝑗. T is a T-norm (listed in Table 3.1) and 𝑛𝑗  is the number of antecedents of the rule.  

 

Step 2: Association degree: The association degree of the pattern 𝑥𝑝with each 

rule in the rule base and for the class l is computed as follows where 𝑅𝑊𝑗𝑙 is an 

associated degree of each leaf node which is at the end of each path, 𝑅𝑗, with the 

class l (Eq. 3.14). T is a T-norm listed in Table 3.1.  

 

𝑏𝑗𝑙(𝑥𝑝) = 𝑇(𝜇𝐴𝑗(𝑥𝑝), 𝑅𝑊𝑗𝑙)                                         (3.14) 

 

Step 3: Confidence degree: In this stage, the confidence degree for each class is 

computed. To obtain the confidence degree of a class, the association degrees of the 

rules of that class are aggregated by using conjunction operators (Eq. 3.15) where T* 

is a T-conorm listed in Table 3.1.  

 

𝑐𝑜𝑛𝑓𝑙(𝑥𝑝) = 𝑇∗(𝑏1𝑙(𝑥𝑝), 𝑏2𝑙(𝑥𝑝), … , 𝑏𝑅𝑙(𝑥𝑝))                             (3.15) 

 

and in which  𝑏𝑗𝑙(𝑥𝑝), 𝑗 = 1,2, … , 𝑅, is the association degree of the pattern 𝑥𝑝 to the 

class l according to the jth rule. 

 

Step 4: Classification: The class with the highest confidence degree is assigned 

as the predicted one (Eq. 3.16) (Umano et al., 1994). 

  𝐶𝑙𝑎𝑠𝑠 = argmax
𝑙=1,…,𝑚

(𝑐𝑜𝑛𝑓𝑙(𝑥𝑝))                                    (3.16) 
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CHAPTER FOUR  

FUZZY ID3 ALGORITHM BASED ON LINGUISTIC DATA BY USING 

WABL DEFUZZIFICATION METHOD 

 

4.1 Introduction 

 

In this chapter, a novel fuzzy ID3 algorithm for linguistic data is proposed. The 

information is given briefly about linguistic data defined by using triangular fuzzy 

numbers given as L-R fuzzy numbers. Weighted Averaging Based on Levels 

(WABL), the adaptation of fuzzy c-means (FCM) and Fuzzy ID3 Classification 

Model for High Dimensional Problems are summarized, respectively. 

 

4.2 Linguistic Data and Its Representation 

 

Humans use words or sentences in daily life. These words or sentences are used in 

order to make the decisions. Each word or sentence is defined as the value of 

linguistic variables. The information is given about the concept of linguistic variable 

in Subchapter 2.2.3. In this approach, L-R representation of fuzzy number is used as 

given in Definition 4.1 (Nasibov, Baskan, & Mert, 2005). 

 

Definition 4.1. The set of real numbers is denoted by E. Let 𝐋 = {𝐿|𝐿: [0,1] → 𝐸} 

be a class of monotone non-decresasing functions and 𝐑 = {𝑅|𝑅: [0,1] → 𝐸} be a 

class of monotone non-increasing functions. Both L and R are left-continuous 

functions, and ∀𝛼 ∈ [0,1], 𝐿(𝛼) > −∞,∀𝐿 ∈ 𝑳 and 𝑅(𝛼) < ∞, ∀𝑅 ∈ 𝑹. Any fuzzy 

subset A of the number of axis E or fuzzy number A can be defined by the following 

L-R representation: 

 

    𝐴 = ⋃ (𝛼, 𝐴𝛼𝛼∈(0,1] )                                              (4.1) 

where  

𝐴𝛼 = [𝐿𝐴(𝛼), 𝑅𝛼(𝛼)] = {𝑡 ∈ 𝐸|𝐿𝐴(𝛼) ≤ 𝑡 ≤ 𝑅𝛼(𝛼)}                      (4.2) 

 

For this representation, it is assumed that 𝐴1 ≠ ∅ 
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4.3 Weighted Averaging Based on Levels (WABL) 

 

Weighted Averaging Based on Levels (WABL) method is defined in (Nasibov, 

2002; Nasibov & Mert, 2007). It is a kind of defuzzification method such as mean of 

maxima (MOM), centroid etc. Let A is a fuzzy number indicated by L-R 

representation. The average representative of this fuzzy number is defined by the 

formula given below:  

 

𝐼(𝐴) = ∫ (𝑐𝐿𝐿𝐴(𝛼) + 𝑐𝑅𝑅(𝛼))𝑝(𝛼)𝑑𝛼
1

0
                                        (4.3) 

 

where coefficients 𝑐𝐿 and 𝑐𝑅 are the weight coefficients of left and right sides 

respectively (pessimism/optimism parameters) , and 𝑝(𝛼) is the distribution function 

of the importance of the level sets. The weights satisfy the following normality and 

non-negativity conditions: 

 

𝑐𝐿 ≥ 0, 𝑐𝑅 ≥ 0, 𝑐𝐿 + 𝑐𝑅 = 1                                                         (4.4)  

 

𝑝: [0,1] → 𝐸+, ∫ 𝑝(𝛼)𝑑𝛼 = 1
1

0
                                                         (4.5) 

 

𝑐𝐿, 𝑐𝑅 and 𝑝(𝛼) are called as WABL strategy parameters.  

A way to determine the 𝑝(𝛼) function is given by using the following formula 

(Eq.4.6) (Nasibov & Mert, 2007):  

 

𝑝(𝛼) = (𝑘 + 1)𝛼𝑘                                                               (4.6) 

 

where 𝑘 > 0 is a parameter.   

It is valid for the theorem given below and proven in the study (Nasibov & Mert, 

2007): 
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Theorem 1. Let 𝐴 = (𝑎, 𝑏, 𝑐) will be termed a parametric triangular fuzzy number 

with parameter 𝑠 > 0 and suppose that the distribution function of the importance of 

the degrees has the form (Eq. 4.7). Then, the following formula for WABL is valid: 

 

  𝐼(𝐴) = 𝑐𝑅 (𝑐 −
𝑘+1

𝑘+𝑠+1
(𝑐 − 𝑏)) + 𝑐𝐿 (𝑐 −

𝑘+1

𝑘+𝑠+1
(𝑏 − 𝑎))            (4.7) 

 

4.4 Fuzzy ID3 Algorithm Based on Linguistic Data By Using WABL 

Defuzzification Method (Fuzzy ID3-L-WABL Approach) 

 

A novel fuzzy ID3 approach is proposed for linguistic data which is defined as 

fuzzy. It aims to generate a fuzzy decision tree on L-R fuzzy data. In order to apply 

fuzzy ID3, it is necessary to apply WABL for the defuzzification on L-R fuzzy data. 

Then, Fuzzy c-means (FCM) algorithm is used in order to fuzzify each variable. At 

the end, fuzzy ID3 algorithm is performed. Then, the reasoning can be performed by 

using the rules generated from the fuzzy decision tree. This procedure is summarized 

in Figure 4.1, in graphic.  

 

 

Figure 4.1 The process of fuzzy decision tree induction based on linguistic data by using WABL 

defuzzification method. 

 

Algorithm of the induction process Fuzzy ID3 Algorithm Based on Linguistic Data 

by Using WABL Defuzzification Method 

Assume that the data set is defined with fuzzy data as linguistic variable. 

Step 1: The average representative of each fuzzy term is calculated by using Eq. 

4.7. characterized as 𝐼(𝐴) for each fuzzy variable.  

Step 2: Fuzzy c-means algorithm defined in Subchapter 2.2.4. is applied to the 

modified dataset to construct fuzzy sets of linguistic terms in Step 1. 
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Step 3: Generate a root node, which has a set of all fuzzified data set by using 

FCM algorithm.  

Step 4: The expanded attribute is selected by using the following steps: 

Step 4a: For each linguistic labelAki(i = 1,2, … ,mk), compute its relative 

frequencies depending on  class Cj(j = 1,2, … ,m)  

.pki(j) =
M(Aki∩Cj)

M(Aki)
                                                   (4.8) 

 

Step 4b: For each linguistic label Aki(i = 1,2, … ,mk), compute its fuzzy 

classification entropy. 

 

Entrki = −∑ pki(j)log (pki(j))
m
j=1                          (4.9) 

 

Step 4c: Compute the average fuzzy classification entropy of each attribute. 

 

Ek = ∑
M(Aki)

∑ M(Akj)
mk
j=1

mk
i=1 Entrki                               (4.10) 

 

Step 4d: Select the attribute that maximizes the information gain (Gk). 

 

Attr = argmax
1≤k≤n

(Gk), where Gk = E − Ek                         (4.11) 

 

For class label Ci, i = 1,2… ,m, compute its relative frequencies considering 

class Ci . 

 

pi(j) =
M(Ci)

N
                                         (4.12) 

 

In Eq.4.13, E is a total entropy, and is calculated as below: 

 

    E = −∑ pi(j)log (pi(j))
m
j=1                          (4.13)  

 



 

 

35 

 

 

Step 4e: Assign the selected attribute as the root node and the linguistic 

labels as candidate branches of the tree. 

 

Step 5 Select one branch to analyze. If it is empty, the selected branch is deleted. 

If the selected branch is non-empty, the relative frequencies are computed by using 

(Eq.4.8) all objects within the branch into each class. If the relative frequency of each 

class is above the given threshold 𝜃𝑟 or all the attributes are used for the induction, 

the branch is terminated as a leaf node. Otherwise, the attribute is selected with the 

smallest average fuzzy classification entropy (Eq.4.11) among those, which has not 

been used as a new decision node yet and its linguistic labels are added as 

candidates. At each leaf, each class will have its relative frequency.  

Step 6: Repeat Step 4-5 as long as there are branches to analyze. It is completed.  

 

4.4.1 The Rule Structure Generated from Each Branch of The Fuzzy Decision 

Tree 

 

After the fuzzy decision tree induction, the rules are induced from each branch. 

Each branch behaves as a kind of path. The rule Rj is given as follows:  

 

Rule Rj: If x1is Aj1 and … and xn is Ajn then Class = Cjl with RWjl, where Rj is 

the label of the jth rule with class l. x = (x1, … , xn) is an n-dimensional pattern 

vector that represents the example. Aji is a fuzzy set. Cjl ∈ C is lth class label for jth 

rule, and RWjl is the rule weight. 

 

In fuzzy decision tree, at each leaf node has rule weights which are computed as 

the relative frequency for each class (as in Step 4d).  

 

4.4.2 Reasoning (Classification) 

 

Let xp = (xp1, … , xpn) is the pth sample of the training set, which is composed of 

P samples, where 𝑥𝑝𝑖 is the value of the ith attribute i = (1,2, … , n) of the pth 
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sample. Each sample belongs to class yp ∈ C = {C1, C2, … , Cm}, where m is the 

number of classes of the problem. Assume that xp is a new example to be classified 

with FID3 reasoning procedure suggested in Subchapter 3.2.2. The steps are given 

below: 

 

Step 1: Matching degree: In this step, the strength of activation of the if-part for 

all rules obtained from each path of the fuzzy decision tree in the rule base with the 

pattern xp  is computed as 

 

                                           μAj(xp) = T(μAj1(xp1), … , μAjnj
(xpj))                        (4.16) 

 

where μAj(xpj) is the matching degree of the example with ith antecedent of the rule 

Rj. T is one of the non-parametric T-norm operators (listed in Table 3.1), and nj is 

the number of antecedents of the rule.  

 

Step 2: Association degree: The association degree of the pattern xp with each 

rule in the rule base and for the class l is computed as follows where RWjl is an 

association degree of each leaf node which is at the end of each path, Rj, with the 

class l. T is one of the non-parametric T-norm operators (listed in Table 3.1), 

 

bjl(xp) = T (μAj(xp), RWjl)                                         (4.17) 

 

Step 3: Confidence degree: In this stage, the confidence degree for each class is 

computed. To obtain the confidence degree of a class, the association degrees of the 

rules of that class are aggregated by using conjunction operators where T* is one of 

the non-parametric T-conorm operators (listed in Table 3.1), 

 

conf𝑙(xp) = T
∗ (b1l(xp), b2l(xp), … , bRl(xp))                              (4.18) 
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and in which bjl(xp), j = 1,2, … , R, is the association degree of the pattern xp to the 

class l according to the jth rule. 

Step 4: Classification: The class with the highest confidence degree is assigned as 

the predicted one (Umano et al., 1994; Elkano et al. 2005; Nasibov et al. 2016). 

 

𝐶𝑙𝑎𝑠𝑠 = argmax
𝑙=1,…,𝑚

(𝑐𝑜𝑛𝑓𝑙(𝑥𝑝))                                     (4.19) 
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CHAPTER FİVE  

FUZZY ID3 ALGORITHM FOR L-R FUZZY DATA 

 

5.1 Introduction 

 

In this chapter, a novel fuzzy ID3 algorithm is presented working on directly L-R 

fuzzy data for the classification problems. The information is given about weighted 

dissimilarity measure. Then, Fuzzy k-means clustering model for fuzzy data (FkM-F) 

is defined. At the end, the adaptation of FkM-F and Fuzzy ID3 Classification Model 

for High Dimensional Problems are summarized, respectively.  

 

5.2 L-R (Left-Right) Fuzzy Data 

 

In a matrix form, a general class of fuzzy data, called L-R fuzzy data, can be 

defined as follow (Coppi, D’Urso, & Giordani, 2012; Ulutagay & Kantarci, 2013; 

Ulutagay & Kantarci, 2014; Ulutagay & Kantarci, 2015):  

 

𝑋̃ = {𝑥̃𝑖𝑗 = (𝑐1𝑖𝑗, 𝑐2𝑖𝑗, 𝑙𝑖𝑗, 𝑟𝑖𝑗)𝐿𝑅: 𝑖 = 1,… , 𝑛; 𝑗 = 1, … , 𝑝} fuzzy data matrix      (5.1) 

 

 

Figure 5.1 Trapezoidal membership function. 
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where 𝑥̃𝑖𝑗 = (𝑐1𝑖𝑗, 𝑐2𝑖𝑗 , 𝑙𝑖𝑗, 𝑟𝑖𝑗)𝐿𝑅 represents the LR fuzzy variable j observed on the i-

th object, 𝑐1𝑖𝑗 and 𝐶2𝑖𝑗, denote the left and right center, respectively, and 𝑙𝑖𝑗 and 𝑟𝑖𝑗 

the left and the right spread, respectively, with the following membership function:  

 

𝜇𝑥̃𝑖𝑗(𝑢𝑖𝑗) =

{
 
 

 
 𝐿 (

𝑐1𝑖𝑗−𝑢𝑖𝑗

𝑙𝑖𝑗
)   , 𝑢𝑖𝑗 ≤ 𝑐1𝑖𝑗(𝑙𝑖𝑗 > 0) 

                   1,   𝑐1𝑖𝑗 ≤ 𝑢𝑖𝑗 ≤ 𝑐1𝑖𝑗

𝑅 (
𝑢𝑖𝑗−𝑐2𝑖𝑗

𝑙𝑖𝑗
)   , 𝑢𝑖𝑗 ≤ 𝑐2𝑖𝑗(𝑙𝑟𝑗 > 0)

                             (5.2) 

 

where 𝐿(𝑧𝑖𝑗) (𝑎𝑛𝑑 𝑅(𝑧𝑖𝑗)) is a decreasing ‘shape’ function from ℜ+ to [0,1] with 

𝐿(0) = 1; 𝐿(𝑧𝑖𝑗) < 1 for all 𝑧𝑖𝑗 > 0, ∀𝑖, 𝑗; 𝐿(𝑧𝑖𝑗) > 0 for all 𝑧𝑖𝑗 < 1, ∀𝑖, 𝑗; 𝐿(1) = 0 

(or 𝐿(𝑧𝑖𝑗) > 0 for all 𝑧𝑖𝑗, ∀𝑖, 𝑗, and 𝐿(+∞)=0) (Coppi, D’Urso, & Giordani (2012)). 

One of the particular case of L-R fuzzy data (Figure 5.1.) is the trapeziodal one 

where 𝐿 (
𝑐1𝑖𝑗−𝑢𝑖𝑗

𝑙𝑖𝑗
)   = 1 −

𝑐1𝑖𝑗−𝑢𝑖𝑗

𝑙𝑖𝑗
 and 𝑅 (

𝑢𝑖𝑗−𝑐2𝑖𝑗

𝑙𝑖𝑗
)  = 1 −

𝑢𝑖𝑗−𝑐2𝑖𝑗

𝑙𝑖𝑗
  (Zimmerman, 

2001). 

 

5.3 Weighted Dissimilarity Measure 

 

A weighted dissimilarity measure for fuzzy data observed on each object i.e. is 

suggested by considering, separately, the distances for the centers and spreads of the 

fuzzy data observed on each object, i.e. and using a suitable weighting system for 

such distance components (Coppi, D’Urso, & Giordani, 2012). Thus, by considering 

the 𝑖𝑡ℎ and 𝑖′𝑡ℎ objects, the results are: 

 

𝑑𝐹
2(𝑥̃𝑖, 𝑥̃𝑖′) = 𝑤𝑐

2[𝑑2(𝑐1𝑖, 𝑐1𝑖′) + 𝑑
2(𝑐2𝑖, 𝑐2𝑖′)] + 𝑤𝑠

2[𝑑2(𝑙𝑖, 𝑙𝑖′) + 𝑑
2(𝑟𝑖, 𝑟𝑖′)]   (5.3) 

 

𝑑2(𝑐1𝑖, 𝑐1𝑖′) = ‖𝑐1𝑖 − 𝑐1𝑖′‖ = Euclidean distance between the left centers 𝑐1𝑖 and 

𝑐1𝑖′. 

𝑑2(𝑐2𝑖, 𝑐2𝑖′) = ‖𝑐2𝑖 − 𝑐2𝑖′‖ = Euclidean distance between the right centers 𝑐2𝑖 

and 𝑐2𝑖′. 

𝑑2(𝑙𝑖, 𝑙𝑖′) =  ‖𝑙𝑖 − 𝑙𝑖′‖ = Euclidean distance between the left spreads 𝑙1𝑖 and 𝑙1𝑖′. 
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𝑑2(𝑟𝑖, 𝑟𝑖′) =  ‖𝑟𝑖 − 𝑟𝑖′‖ = Euclidean distance between the right spreads 𝑟1𝑖 and 

𝑟1𝑖′. 

𝑐1𝑖 ≡ (𝑐1𝑖1, … , 𝑐1𝑖𝑗, … , 𝑐1𝑖𝑝) 
′and 𝑐1𝑖′ ≡ (𝑐1𝑖′1, … , 𝑐1𝑖′𝑗 , … , 𝑐1𝑖′𝑝

′
 

𝑐2𝑖 ≡ (𝑐2𝑖1, … , 𝑐2𝑖𝑗, … , 𝑐2𝑖𝑝) 
′and 𝑐2𝑖′ ≡ (𝑐2𝑖′1, … , 𝑐2𝑖′𝑗, … , 𝑐2𝑖′𝑝

′
) 

𝑙𝑖 ≡ (𝑙𝑖1, … , 𝑙𝑖𝑗, … , 𝑙𝑖𝑝) 
′and 𝑙𝑖′ ≡ (𝑙𝑖′1, … , 𝑙𝑖′𝑗 , … , 𝑙𝑖′𝑝

′
) 

𝑟𝑖 ≡ (𝑟𝑖1, … , 𝑟𝑖𝑗, … , 𝑟𝑖𝑝) 
′and 𝑟𝑖′ ≡ (𝑟𝑖′1, … , 𝑟𝑖′𝑗 , … , 𝑟𝑖′𝑝

′
) 

𝑤𝑐, 𝑤𝑠 ≥ 0 are suitable weights for the center component and the spread 

component of 𝑑2(𝑥̃𝑖, 𝑥̃𝑖′), where 𝑥̃𝑖 and 𝑥̃𝑖′ denote the fuzzy data vectors, 

respectively, for the 𝑖𝑡ℎ  and 𝑖′𝑡ℎ objects., i.e. 𝑥̃𝑖 = {𝑥̃𝑖𝑗 = (𝑐1𝑖𝑗, 𝑐2𝑖𝑗, 𝑙𝑖𝑗, 𝑟𝑖𝑗)𝐿𝑅: 𝑗 =

1, … . , 𝑝} and 𝑥̃𝑖′ = {𝑥̃𝑖′𝑗 = (𝑐1𝑖′𝑗, 𝑐2𝑖′𝑗, 𝑙𝑖′𝑗 , 𝑟𝑖′𝑗)𝐿𝑅: 𝑗 = 1,… . , 𝑝}. The weights 

𝑤𝑐, 𝑤𝑠 ≥ 0 can be stored in the two dimensional vector 𝑤 ≡ (𝑤𝑐𝑤𝑠)′.  

 

If the membership function value of the centers is maximum, it is advised to 

accept that the weight of (left and right) center distances is higher than or at least 

equals to the weight of (left and right) spread distances. Then, the following 

conditions are assumed: 

  

 𝑤𝑐 + 𝑤𝑠 = 1 (normalization condition) and 𝑤𝑐, 𝑤𝑠 ≥ 0 (coherence condition).  

It is assumed that the weights are equal for center distances and spreads, 

respectively. 

 

5.4 Fuzzy k-Means Clustering Model for Fuzzy Data (FkM-F) 

 

A fuzzy clustering method based on the generalized class of the so-called 

symmetric 𝐿𝑅2 fuzzy data given in 5.1 and the measure given in Eq.5.2 by means of 

Eq.5.3 is explained in (Coppi, D’Urso, & Giordani, 2012): This technique, called 

Fuzzy k-means clustering model for fuzzy data (FkM-F), can be formalized as 

follows:  

 

min
𝑢𝑖𝑔,ℎ𝑔,𝑤

: 𝐽𝐹𝑘𝑀−𝐹 ≡ ∑ ∑ 𝑢𝑖𝑔
𝑚𝑑𝐹

2(𝑥̃𝑖, ℎ𝑔)
𝑘
𝑔=1

𝑛
𝑖=1                                                                        

          = ∑ ∑ 𝑢𝑖𝑔
𝑚 [𝑤𝑐

2[𝑑2(𝑐1𝑖, ℎ𝑔
𝑐1) + 𝑑2(𝑐2𝑖, ℎ𝑔

𝑐2)] + 𝑤𝑠
2[𝑑2(𝑙𝑖, ℎ𝑔

𝐿) + 𝑑2(𝑟𝑖, ℎ𝑔
𝑅)]]𝑘

𝑔=1
𝑛
𝑖=1  (5.4) 
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𝑠. 𝑡. 𝑢𝑖𝑔 = 1, 

𝑤 ≡ (𝑤𝑐, 𝑤𝑠)
′ ≥ 02, 𝑤𝑐 ≥ 𝑤𝑠, 𝑤𝑐 +𝑤𝑠 = 1. 

 

where 𝑚 > 1 is a weighting exponent that controls the fuzziness of the obtained 

partition:  

𝑢𝑖𝑔 indicates the membership degree of the 𝑖𝑡ℎ object in the 𝑔𝑡ℎ cluster 

𝑑𝐹
2(𝑥̃𝑖, ℎ̃𝑔) shows the suggested dissimilarity measure (Eq.5.3) between the 𝑖𝑡ℎ 

object and the prototype of the 𝑔𝑡ℎ cluster; analogously for its components 

𝑑2(𝑐1𝑖, ℎ𝑔
𝑐1) , 𝑑2(𝑐2𝑖, ℎ𝑔

𝑐2)  𝑑2(𝑙𝑖, ℎ𝑔
𝐿),  𝑑2(𝑟𝑖, ℎ𝑔

𝑅), where the fuzzy vector ℎ̃𝑔 ≡

{ℎ̃𝑔𝑖 = (ℎ𝑔
𝑐1 , ℎ𝑔

𝑐2 , ℎ𝑔
𝐿 , ℎ𝑔

𝑅)𝐿𝑅: 𝑗 = 1, … , 𝑝} represents the fuzzy prototype of the 𝑔𝑡ℎ 

cluster, ℎ𝑔
𝑐1 ≡ (ℎ𝑔1

𝑐1 , … , ℎ𝑔𝑗
𝑐1 , … , ℎ𝑔𝑝

𝑐1 )′, ℎ𝑔
𝑐2 ≡ (ℎ𝑔1

𝑐2 , … , ℎ𝑔𝑗
𝑐2 , … , ℎ𝑔𝑝

𝑐2 )′, ℎ𝑔
𝐿 ≡

(ℎ𝑔1
𝐿 , … , ℎ𝑔𝑗

𝐿 , … , ℎ𝑔𝑝
𝐿 )′, ℎ𝑔

𝑅 ≡ (ℎ𝑔1
𝑅 , … , ℎ𝑔𝑗

𝑅 , … , ℎ𝑔𝑝
𝑅 )′ are p vectors, whose  𝑗𝑡ℎ element  

refers to the 𝑗𝑡ℎ variable, that denote, respectively, the (left and right) 

centers and the (left and right) spreads of the 𝑔𝑡ℎ fuzzy protoype. 

 

By solving the constrained quadratic minimization problem (Eq.5.4) via the 

Lagrangian multiplier method with respect to 𝑢𝑖𝑔 and by setting the first derivative 

of  Eq. 5.4.The following iterative solution is obtained with rescpect to Eq.5.5, 

Eq.5.6 and Eq.5.7. 

 

𝑢𝑖𝑔 =
[𝑤𝑐

2[𝑑2(𝑐1𝑖,ℎ𝑔
𝐶1)+𝑑2(𝑐2𝑖,ℎ𝑔

𝐶2)]+𝑤𝑠
2[𝑑2(𝑐1𝑖,ℎ𝑔

𝐶1)+𝑑2(𝑐2𝑖,ℎ𝑔
𝐶2)]]

−
1

𝑚−1

∑ [𝑤𝑐
2[𝑑2(𝑐1𝑖,ℎ𝑔

𝐶1)+𝑑2(𝑐2𝑖,ℎ𝑔
𝐶2)]+𝑤𝑠

2[𝑑2(𝑙𝑖,ℎ𝑔
𝐶1)+𝑑2(𝑟𝑖,ℎ𝑔′

𝑅 )]]
−

1
𝑚−1𝑘

𝑔′=1

         (5.5) 

 

ℎ𝑔
𝑐1 =

∑ 𝑢𝑖𝑔
𝑚𝑐1𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑔
𝑚𝑛

𝑖=1

, ℎ𝑔
𝑐2 =

∑ 𝑢𝑖𝑔
𝑚𝑐2𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑔
𝑚𝑛

𝑖=1

, ℎ𝑔
𝐿 =

∑ 𝑢𝑖𝑔
𝑚𝑙𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑔
𝑚𝑛

𝑖=1

, ℎ𝑔
𝑅 =

∑ 𝑢𝑖𝑔
𝑚𝑟𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑔
𝑚𝑛

𝑖=1

             (5.6) 

 

and  

𝑤𝑐 =
∑ ∑ 𝑢𝑖𝑔

𝑚[𝑑2(𝑙𝑖,ℎ𝑔
𝐿)+𝑑2(𝑟𝑖,ℎ𝑔

𝑅)]𝑘
𝑔=1

𝑛
𝑖=1

∑ ∑ 𝑢𝑖𝑔
𝑚[𝑑2(𝑐1𝑖,ℎ𝑔

𝑐1)+𝑑2(𝑐2𝑖,ℎ𝑔
𝑐2)+𝑑2(𝑙𝑖,ℎ𝑔

𝐿)+𝑑2(𝑟𝑖,ℎ𝑔
𝑅)]𝑘

𝑔=1
𝑛
𝑖=1

  , (𝑤𝑠 = 1 − 𝑤𝑐)        (5.7) 
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By recognizing (Eq.5.7), the normalization condition is satisfied. It can be 

demonstrated that (Eq.5.4) is a parabola with respect to 𝑤𝑠 to provide for the 

coherence condition. Actually (Eq.5.7), matches up with the abscissa of its vertex. 

When it is taken 𝑤𝑠 > 0.5. , the solution in (Eq.5.7) is impossible. In addition, 

among the feasible solutions, it is seen that the minimum value of (Eq.5.4) is 

obtained with respect to 𝑤𝑠 as long as 𝑤𝑠 = 0.5. and (𝑤𝑐 = 0.5.) (D’Urso &  

Giordani, 2006). 

 

Algorithm of Fuzzy k-means clustering Algorithm FkM-F(𝑿̃,𝒎, 𝒌) 

  

Step0a. Produce randomly the membership degree matrix 𝑈(0) subject to 

(Eq.5.4). 

Step0b. Calculate the prototypes 𝐻̃0 according to (Eq.5.6) using 𝑈(0). 

Step 1. Upgrade the weights 𝑤𝑐
(𝑡)

 and  𝑤𝑠
(𝑡)

 according to (Eq.5.7) keeping fixed 

𝑈(𝑡−1) and 𝐻̃(𝑡−1) where 𝑡 ≥ 1 shows the iteration number, and set 𝑤𝑐
(𝑡)
= 𝑤𝑠

(𝑡)
=

0.5 if 𝑤𝑠
(𝑡)
≥ 0.5. 

Step 2. Update the prototypes 𝐻̃(𝑡) according to (Eq.5.6.) keeping fixed 𝑈(𝑡−1). 

Step 3. Update the membership degree matrix 𝑈(𝑡) according to (Eq.5.5) keeping 

fixed 𝐻̃(𝑡) and 𝑤𝑐
(𝑡)

 and 𝑤𝑠
(𝑡)

. 

Step 4. If ‖𝑈(𝑡) −𝑈(𝑡−1)‖ < 𝜀, where 𝜀 is non-negative small number fixed in 

advance, the algorithm has converged, otherwise go to Step 1. 

 

5.5 Fuzzy ID3 for LR Fuzzy Data (FuzzyID3-LR) 

 

Fuzzy ID3 for LR Fuzzy Data (FuzzyID3-LR) aims to generate a fuzzy decision 

tree on L-R fuzzy data by making the fuzzification directly. In contrast with Fuzzy 

ID3-L-WABL approach, it is not necessary to apply WABL method for the 

defuzzification on L-R fuzzy data and FCM algorithm. In this approach, FkM 

algorithm is applied directly to Fuzzy L-R data in order to handle membership 

degrees. At the end, fuzzy ID3 algorithm is performed. Then, reasoning can be 



 

 

43 

 

performed with the rules generated from the fuzzy decision tree. This procedure is 

given in Figure 5.2, graphically.  

 

 

Figure 5.2 The process of fuzzy decision tree induction based on linguistic data by using WABL 

defuzzification method. 

 

Algorithm of the induction process Fuzzy ID3 Algorithm for L-R Fuzzy Data 

Assume that the data set is defined with fuzzy data as linguistic variable. 

Step 1: Algorithm FkM-F is performed and each membership degree is calculated 

for each fuzzy term defined for each fuzzy variable. 

Step 2: A root node which has a set of all fuzzified data set is generated by using 

the data set obtained from Step 1. 

Step 3: The expanded attribute is selected by using the following steps: 

Step 3a: For each linguistic labelAki(i = 1,2, … ,mk), compute its relative 

frequencies considering class Cj(j = 1,2, … ,m)  

 

.    pki(j) =
M(Aki∩Cj)

M(Aki)
                                                   (5.8) 

Step 4: The expanded attribute is selected with the following steps: 

Step 4a: For each linguistic labelAki(i = 1,2, … ,mk), compute its relative 

frequencies depending on class Cj(j = 1,2, … ,m)  

  

pki(j) =
M(Aki∩Cj)

M(Aki)
                                                   (5.9) 
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Step 4b: For each linguistic label Aki(i = 1,2, … ,mk), compute its fuzzy 

classification entropy. 

 

Entrki = −∑ pki(j)log (pki(j))
m
j=1                         (5.10) 

 

Step 4c: Compute the average fuzzy classification entropy of each attribute. 

 

Ek = ∑
M(Aki)

∑ M(Akj)
mk
j=1

mk
i=1 Entrki                                  (5.11) 

 

Step 4d: Select the attribute that maximizes the information gain (Gk). 

 

Attr = argmax
1≤k≤n

(Gk), where Gk = E − Ek                         (5.12) 

 

For class label Ci, i = 1,2… ,m, compute its relative frequencies depending 

on class Ci . 

 

pi(j) =
M(Ci)

N
                                               (5.13) 

In Eq.5.14, E is a total entropy, and is calculated as below: 

 

E = −∑ pi(j)log (pi(j))
m
j=1                                    (5.14)  

 

Step 4e: Assign the selected attribute as the root node and the linguistic 

labels as candidate branches of the tree. 

 

Step 5 Select one branch to analyze. If it is empty, the selected branch is deleted. 

If the selected branch is non-empty, the relative frequencies are computed by using 

(Eq.5.8) all the objects within the branch into each class. If the relative frequency of 

each class is above the given threshold 𝜃𝑟 or all the attributes are used for the 

induction, the branch is terminated as a leaf node. Otherwise, the attribute is selected 

with the smallest average fuzzy classification entropy (Eq.5.12) among those, which 
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has not been used as a new decision node yet and its linguistic labels are added as 

candidates. At each leaf, each class will have its relative frequency.  

 

Step 6: Repeat Step 4 as long as there are branches to analyze. It is completed.  

 

5.5.1 The Rule Structure Generated from Each Branch of The Fuzzy Decision 

Tree 

 

After the fuzzy decision tree induction, the rules are induced from each branch. 

Each branch behaves as a kind of path. The rule Rj is given as follows:  

 

Rule Rj: If x1is Aj1 and … and xn is Ajn then Class = Cjl with RWjl, where Rj is 

the label of the jth rule with the class l. x = (x1, … , xn) is an n-dimensional pattern 

vector that represents the example. Aji is a fuzzy set. Cjl ∈ C is the class label for jth 

rule, and RWjl is the rule weight. 

 

At each leaf node has rule weights which are computed as the relative frequency 

for each class (as in Step 4d).  

 

5.5.2 Reasoning (Classification) 

 

Let xp = (xp1, … , xpn) be the pth example of the training set, which is composed 

of P samples, and where 𝑥𝑝𝑖 is the value of the ith attribute i = (1,2, … , n) of the pth 

sample. Each sample belongs to class yp ∈ C = {C1, C2, … , Cm}, where m is the 

number of classes of the problem. A novel sample xp is classified with FID3 

reasoning procedure whose steps are performed as given in Subchapter 4.4.2. 
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CHAPTER SİX  

EXPERIMENTAL FRAMEWORK 

 

6.1 Introduction 

 

In this chapter, the experimental framework has been described to evaluate the 

beneficialness of the proposals. In the following subschapters, firstly a survey on 

geographic classification of virgin olive oil is explained. This survey focuses on 

fuzzy decision trees to solve the geographic characterization problem. The behaviour 

of different T-operators on the fuzzy reasoning procedure is also examined on virgin 

olive oil dataset. The study is encouraged with statistical tests.  

 

Secondly, the behaviour of Fuzzy ID3-L-WABL and Fuzzy ID3-LR are analyzed 

on six data sets chosen from the real-world databases. In this part of the experimental 

framework, the performances of classical Fuzzy ID3, Fuzzy ID3-L-WABL, and 

Fuzzy ID3-LR are evaluated. The statistical comparisons are performed based on non 

parametric T-operators given in Table 3.1. 

 

6.2 A Survey on Geographic Classification of Virgin Olive Oil with using T-

operators in Fuzzy Decision Tree Approach 

 

In this subchapter, the information about a survey on geographic classification of 

Virgin Olive Oil is given. A geographic classification system is proposed based on 

fuzzy decision tree approach. Proposed reasoning approach for fuzzy ID3 algorithm 

is also analyzed. Firstly, the description of the olive oil samples and the methodology 

used in chemical analyses of olive oil samples are given. Secondly, PCA results are 

discussed. Thirdly, data normalization is clarified. Then, the results are presented. 

Finally, discussion and conclusion parts are covered (Vahaplar et al., 2013; Nasibov 

et al., 2013; Nasiboğlu et al., 2013; Kantarci et al.,2015a; 2015b). 

 

6.2.1 Olive Oil Samples 

 

Olives were collected from certain trees of the cultivars, some of which stands as 

the subject matter of this work: Ayvalik, Memecik, Kilis Yaglik, Nizip Yaglik. The 
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samples were collected in 2002-2003, 2004-2005 and 2005-2006 harvest seasons. 

101 olive oils; collected from different regions (North Aegean (33), South Aegean 

(53), Mediterranean (4), and South East (11)) were chosen for the experimental study 

(Gumuskesen and Yemişçioğlu, 2007). The analyses of fatty acids were performed 

according to the official method (European Community Regulation, 1991).  

 

The olive oil samples were esterified in a methanol solution of 2N KOH for 30 

minutes at 50 ºC. The gas chromatographic analyses of fatty acid methyl esters were 

performed on a Perkin Elmer 8600 gas chromatograph, equipped with a flame 

ionization detector: The column was a fused silica capillary coating with CP-WAX 

52CB (Varian) length 25 meters, inner diameter 0.32 m. film thickness 0.20 m. 

Helium was the carrier gas at a flow rate of 1.5 mL/min. The column temperature 

program was initially isotherm for 10 min at 140ºC, an initially programmed rate of 

1o C/min up to 160ºC, then a second rate of 2ºC/min up to 220º C and a final 

isotherm for 15 min. The injector and flame ionization detector temperatures were 

250ºC. Samples of 0.2 L were injected into the split mode with a split ratio of 1:10. 

The apparatus itself carried out recording and integration. The analyses were 

repeated in triplicate.  

 

The gas-chromatographic peaks were identified as corresponding fatty acid 

methyl esters by checking the elution order on the column and compared the 

retention times with those of pure standards. Results were expressed as peak area 

ratio percentage. The analysis of triglycerides was performed according to the 

official chromatographic method of the EC no. 2472/97 (European Community 

Regulation, 1997). 

 

The apparatus was a Hewlett Packard HPLC instrument model 1100 consisted by 

a degasser, quaternary pum, manual six-way injection valve, refractometer detector, 

and Chemstation Software package for instrument control, data acquisition, and data 

analysis. A Lichrosorb FP 18 (4.6 0.25 mm) analytical column was used. The 

analysis of sterols was performed according to the official method of the EC no. 

2568/91 (European Community Regulation, 1991). 
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The apparatus was a Hewlett Packard instrument model 6890 gas chromatograph, 

equipped with a flame ionization detector (FID); a HP-5 (Crosslinked 5% PH ME 

Siloxane) capillary column (30 m 0.25 mm 0.25 lm) and a 6890 Agilent automatic 

injector.  

 

The determination of content of acidity, index of peroxide was performed 

according to the official methods of the EC. While PCA was applied in SPSS 20.0, 

partition coefficients and Fuzzy c-means algorithm were performed in MATLAB 

2015. A software called as OliveDeSoft is programmed in the Visual C# for the 

experimental study (intel i7, 2.4 GHz, 4 Gb RAM). 

 

6.2.2 OliveDeSoft 

 

OliveDeSoft is a novel improved version of the software named as SAPOO 

(Sensory Analysis Package: Olive Oil) developed using Borland C++ Builder 

environment (Kantarci, 2010). SAPOO was designed in order to determine the type 

of virgin olive oil. It uses the sensory evaluation model based on linguistic decision 

analysis proposed in (Martínez, Espinilla, & Perez, 2008). 

 

In addition to SAPOO’s facilities, OliveDeSoft (Olive Decision Software) 

includes the characterization of olive oil according to various regions. It enables 

making the characterization of the olive oil by using fuzzy decision tree approach. In 

addition, it includes different reasoning T-operators in order to observe the behaviour 

of the reasoning procedure. OliveDeSoft in the Visual C# is for the experimental 

study (intel i7, 2.4 GHz, 4 Gb RAM). When the software is run, the opening screen 

welcomes as given in Figure 6.1. (Kantarci et al., 2013). 
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Figure 6.1 OliveDeSoft opening screen. 

 

The aim is to get information from data and to create a useful tool for geographic 

characterization. 

 

Figure 6.2 Classification Procedure by using fuzzy ID3. 

 

The classical chemical data achieved from the olive oil samples is evaluated with 

Fuzzy ID3 algorithm. A fuzzy decision tree is constructed. Hence, this tree can be 

put into account for the classification of olive oil samples according to region. In 

OliveDeSoft, this can be performed fuzzy ID3 with the following menu item (given 

in Figure 6.3): 

 

AnalysisFuzzy Decision Tree Fuzzy ID3. 
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Figure 6.3 OliveDeSoft Screen “Analysis-Fuzzy Decision Tree” 

 

Then, Screen “Fuzzy ID” is opening in order to observe the performance of 

different T-operators (Figure 6.4.).  

 

 
Figure 6.4 Screen “Fuzzy ID3” 

 

With OliveDeSoft, it is possible to decide the region of olive oil sample with the 

following menu item (given in Figure 6.5.): 

 

AnalysisCharacterization of Olive Oil Satisfy the region. 
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Figure 6.5 Screen “Analysis-Charcterization of olive oil” 

 

6.2.3 Implementation of PCA 

 

Principal component analysis was performed on this data set in order to explore 

the data structure. The principal components plot is given in Figure 6.6. It is clear 

that there is information related to the geographic origin of virgin olive oils on the 

results obtanied from the chemical analyses, but there is a region (Mediterranean) 

which has less data than the other regions so it cannot be viewed clearly. This region 

can be seen by collecting many more data from this region. The data implementation 

is performed in IBM SPSS 20. 

 

 

Figure 6.6 The Principal components plot on the virgin olive oil sample. 
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6.2.4 Min-Max Normalization and Fuzzy c-means Algorithm 

 

The data set is normalized by min-max normalization. Normalization is performed 

to avoid domination between attributes of the data. It is a linear transformation. Let B 

is an attribute. Min B and Max B are the minimum and the maximum values of this 

attribute. In this case, min-max normalization maps a value v  of B into v'  in a new 

range between 0 and 1. The following formula is used for min-max normalization 

(Eq.6.1): 

 

𝑣′ =
𝑣−𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴−𝑚𝑖𝑛𝐴
                                           (6.1) 

 

In this experimental study, the data fuzzification process was performed with 

fuzzy c-means (FCM) algorithm.  

 

 

 

6.2.5 Partition coefficient index 

 

The determination of the correct number of clusters (c) for fuzzy c-means (FCM) 

algorithm has a crucial issue. In literature, there are some scalar measures of 

partitioning fuzziness, called validity indicators (Bezdek, 1974a; 1974b; Dunn, 

1974). Partition coefficient is a scalar measure as formulized as below (Eq.6.2): 

 

𝑉𝑝𝑐 =
1

𝑛
∑ ∑ 𝜇𝑖𝑗

2𝑛
𝑗=1

𝑛
𝑖=1                                               (6.2) 

 

whereas optimal cluster number is ),,(max cUVPC
. Partition coefficient was used in 

order to determine the number of clusters (Bezdek, 1974b; Dunn, 1974). The 

calculated partition coefficient value for each cluster is given in Table 6.1. 
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6.2.6 Performance Measure and Statistical Tests  

 

The chemical measurements have imprecise information. In this study, fuzzy ID3 

algorithm based on fuzzy logic is chosen. Normally, ID3 algorithm works with 

categorical variables. Yet, Fuzzy ID3 algorithm deals with numerical variables by 

using fuzzy variables. Each numeric variable transforms into fuzzy variable.  

 

In this study, the chemical data was fuzzified by using Fuzzy c-means (FCM) 

algorithm. Each fuzzy variable has fuzzy terms inside of it as it is described before. 

The clusters are determined by using partition coefficient value. This approach uses 

nine different T-operators into the reasoning procedure. Classical FuzzyID3 (Umano 

et al., 1994) and C4.5 (Quinlan, 1993) algorithms are also performed to examine the 

performances. 

 

Leave-one-out validation procedure was performed in order to measure the 

performances of the algorithms. Accuracy rate is a technic widely used in order to 

test different methods. This metric is defined as percentage of correctly classified 

samples (Elkano et al., 2015). Also, threshold value is set to 𝜃𝑟 = 0.75 for the 

analysis. Parameters are set as Yager p=2, Hamacher p=0.25, Dombi=1, 

Dubois=0.25 and Weber=15 for parametric operators’ experimental study. While 

𝜃𝑟 = 0.75, each operator reaches the maximum accuracy rates. 

 

6.2.7 Studying fuzzy reasoning method with non-parametric operators 

 

C4.5 algorithm also uses entropy as splitting criteria, like ID3 algorithm. It was 

proposed in Quinlan (1993) to deal with the numerical data. The observed 

performance of this algorithm is 86.14%. Then, it is seen that the performance of 

classical Fuzzy ID3 algorithm with its’ own reasoning method has the same 

performance with 86.14%.  

 

 

 



 

 

 

 

 
Table 6.1The calculated partition coefficient value for each cluster number (c=2, c=3, c=4) 

Attributes c=2 c=3 c=4 Attributes c=2 c=3 c=4 

Myristic Acid (C14:0) 0.9202 0.9389 0.9189 Campesterol 0.8099 0.7607 0.7439 

Palmitic Acid (C16:0) 0.8735 0.8207 0.7765 Campestenol 0.9998 0.9170 0.9116 

Palmitoleic Acid (C16:1) 0.8313 0.7994 0.7960 Stigmasterol 0.9181 0.8006 0.7980 

Heptadecanoic Acid (C17:0) 0.9066 0.8443 0.8035 Delta 7 Campesterol 0.8251 0.8161 0.8171 

Heptadecenoic Acid (C17:0) 0.9153 0.8528 0.8240 
Delta 5-23 

Stigmastadienol 
0.9899 0.8724 0.8852 

Stearic Acid (C18:0) 0.8013 0.7930 0.7435 Clerosterol 0.8086 0.8037 0.7511 

Oleic Acid (C18:1) 0.8797 0.8013 0.7436 Beta-Sitosterol 0.9027 0.8450 0.7576 

Linoleic Acid (C18:2) 0.8368 0.7724 0.7441 Sitostenol 0.8982 0.8018 0.8076 

Linolenic Acid(C18:3) 0.9998 0.8383 0.9239 Delta 5 Avenasterol 0.8901 0.8286 0.7609 

Arachidic Acid(C20:0) 0.7967 0.7741 0.7567 
Delta 5-24 

Avenasterol 
0.9143 0.8224 0.8254 

Gadoleic Acid (C20:1) 0.8554 0.8291 0.7772 Delta 7 Stigmastenol 0.8356 0.7880 0.7352 

Behenic Acid(C22:0) 0.8024 0.7900 0.7978 Delta 7 Avenasterol 0.8757 0.8368 0.7957 

Lignoceric Acid(C24:0) 0.7754 0.7934 0.7670 Total Beta Sitosterol 0.8370 0.7756 0.8132 

Cholesterol 0.8389 0.8002 0.7988 Total Sterol 0.8660 0.8109 0.7557 

Brassicasterol 0.8640 0.7955 0.8046 Erythrodiol_Uvaol 0.8693 0.8178 0.7623 

24-Methylene 0.9011 0.7803 0.7989 Trilinolein 0.8719 0.8035 0.7649 
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The performance results of non-parametric approaches given in Table 6.2 shows 

that the result handled from four nonparametric versions have the same performance 

value with handled from C4.5 algorithm. Fuzzy ID3 algorithm reasoning with 

Bounded Product T-operators has the minimum performance value with 85.15%. 

 

Table 6.2 The performance results of each algorithm for non-parametric operators. 

Algorithms Accuracy Rate (%) 

C4.5 86.14* 

FuzzyID3_reasoning with Classical 86.14* 

FuzzyID3_ reasoning with Zadeh T-Opeators 1T & *
1T  86.14* 

FuzzyID3_ reasoning with Algebraic Product/Sum 2T & *
2T  86.14* 

FuzzyID3_ reasoning with Bounded Product/Sum 4T & *
4T  85.15 

FuzzyID3_ reasoning with Non Parametric Hamacher )0(  3T & *
3T  86.14* 

 

6.2.8 Studying Fuzzy Reasoning Method with Parametric Operators 

 

The performance of fuzzy reasoning method is controlled within different 

parameters. It is thought that a better classification accuracy rate is reached by 

changing the parameters value. The performance results for each Fuzzy ID3 

reasoning with parametric T-operators (listed in Table 3.1.) are given in Table 6.3.  

 

Fuzzy ID3 reasoning with Weber T-operators (lambda: (15-17)) has the highest 

performance value with 87.13%. It is observed that in different parameter values, the 

algorithm can reach the highest performance value. The other operators reach 

maximum 86.14%, same as non-parametric operators. 
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Table 6.3 The performance results of each algorithm for parametric operators. 

Algorithms 
Parameter 

Value 

Accuracy Rate 

(%) 

FuzzyID3_ reasoning with Hamacher max. Values 5T & *
5T  (0.25-6.50) 86.14 

FuzzyID3_ reasoning with Yager max. Values 6T  & *
6T  (2-300) 86.14 

FuzzyID3_ reasoning with Dombi max. values 7T  & *
7T  (1-155) 86.14 

FuzzyID3_ reasoning with Dubois max. values 8T  & *
8T  (0.25-1) 86.14 

FuzzyID3_ reasoning with Weber max. values 9T  & *
9T  (15-17) 87.13* 

FuzzyID3_ reasoning with Yuyandong max. values 10T & *
10T  (100-105) 86.14 

 

The graph of accuracy rates handled from different parametric operators with 

𝜃𝑟 = 0.75 in (0-20) are given in Figure 6.7. It is supported that Fuzzy ID3 reasoning 

with Weber has a good performance average of 85.90% within range (0-20) and 

Hamacher has a performance with an average of 84.82%.  

 

 

Figure 6.7 Accuracy rates handled from different parametric operators Range =(0-20) and θr=0.75. 
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6.2.9 Study of the Behaviour of Fuzzy ID3 Reasoning Method Based on 

Different T-Operators. 

 

The Friedman aligned ranks have been applied as a non-parametric statistical 

procedure in order to detect statistical differences among a group of results for 20 

threshold (𝜃𝑟) values in Table 6.4. This test obtains p-value as equal to zero, which 

shows that there are significant differences among the results.  

 

Table 6.4 Friedman aligned ranks 

Algorithm Rank 

Friedman aligned ranks Zadeh 7.68 

Classical 4.72 

Algebraic Product 4.72 
Total N 20 

Bounded Product 4.42 

Non-Parametric Hamacher 

( 0 ) 
4.72 

Test Statistic 95.605 

Yager 7.65 

Hamacher 4.72 Degrees of 

Freedom 
9 

Dombi 3.32 

Dubois 4.18 
Asymptotic Sig. 

(2 sided test) 
0.000 
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The pairwise comparisons are performed. The adjusted p-values are taken into 

account in order to evaluate these pairwise comparisons among the non-parametric 

algorithms. The results are given in Table 6.5. Friedman aligned ranks test and 

pairwise comparisons were performed in IBM SPSS 20.  

 

There are thirteen significance comparison as follows: 

Dombi vs. Yager with adj. p-value=0.000.  

Dombi vs. Zadeh with adj. p-value=0.000. 

Dombi vs. Weber with adj. p-value=0.000.  

Dubois vs. Yager with adj. p-value=0.013.  

Dubois vs. Zadeh with adj. p-value=0.012.  

Dubois vs. Weber with adj. p-value=0.000.  

Bounded Product/Sum vs. Yager with adj. p-value=0.034.  

Bounded Product/Sum vs. Zadeh with adj. p-value=0.031.  

Bounded Product/Sum vs. Weber with adj. p-value=0.000.  

Classical vs. Weber with adj. p-value=0.001. 

Algebraic Product/Sum vs. Weber with adj. p-value=0.001.  

Hamacher ( 0 ) vs. Weber with adj. p-value=0.001.  

Hamacher vs. Weber with adj. p-value=0.001. 

 

In Table 6.6, it is also seen that the highest average is handled from Weber. It is 

seen from pairwise comparisons that Weber has better results than Classical which is 

the standard version. Weber has also better results than Hamacher. Yager has better 

results than Dombi and Dubois. Yager, Zadeh, and Weber have better results than 

Bounded Product. As a result, Weber, which is a parametric operator given in bold as 

above, has better results than all non-parametric operators. 

 

Also, the graph of the accuracy rates is handled for different thresholds within all 

approaches in Figure 6.8. Accuracy rates handled for different thresholds within 

different fuzzy reasoning methods are given in Table 6.7. 
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Table 6.5 The results of pairwise comparisons for FuzzyID3 reasoning operators with 20 different thresholds (range=0.71-0.90) via adjusted significance values 

 

Weber Zadeh Yager Hamacher 

 

NP 

Hamacher 

(λ = 0) 

Algebraic 

Product 
Classical 

Bounded 

Product 
Dubois 

Dombi 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 

Dubois 0.000 0.012 0.013 1.000 1.000 1.000 1.000 1.000  

Bounded Product 0.000 0.031 0.034 1.000 1.000 1.000 1.000   

Classical 0.001 0.093 0.101 1.000 1.000 1.000    

Algebraic Product 0.001 0.093 0.101 1.000 1.000     

NPHamacher (λ = 0) 0.001 0.093 0.101 1.000      

Hamacher 0.001 0.093 1.000       

Yager 1.000 1.000        

Zadeh 1.000         

 

 

 

 

 

 



 

 

60 

 

It is seen that maximum value has Dombi T-operators handled for 𝜃𝑟 = 0.85 with 

88.11%. As a result, it is observed that we can also reach better results by using 

different threshold values. In future work, the behaviour of threshold values is 

planned to be researched.  

 

6.2.10 Discussion and Conclusion  

 

In this study, it is aimed to make the geographic classification of olive oil. It is 

one of the basic agricultural products of Turkey, and is an important food product for 

the human health from past to present. So, the quality control of this product has a 

crucial importance and it is very difficult. In accordance with this study, chemical 

measurements were used in order to make on experimental study. Chemical 

measurements contain uncertainty. In order to deal with uncertain information, Fuzzy 

ID3 classifier was chosen to construct the classification of olive oil samples. 

Additionally, fuzzy ID3 reasoning method which is based on T-operators has been 

proposed. The study has targetted to see the performance of proposed fuzzy 

reasoning method to solve the geographic classification problem.  

 

 

Figure 6.8 Accuracy rates handled for different thresholds. 

 

It is observed that the results obtained from four non-parametric versions have the 

same performance value with the results obtained from C4.5 algorithm. Then, the 

performance of parametric operators are checked. As a result, it is seen that Fuzzy 

ID3 reasoning with Weber T-operators (lambda: (15-17)) has the highest 
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performance value with 87.13%. Statistical procedure was performed in order to 

detect statistical differences among a group of results for 20 threshold (𝜃𝑟) values. 

 

It is observed that there are significant differences among the results. Also, the 

pairwise comparisons are performed for each approach. Weber has better results than 

Classical which is the standard version. 
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Table 6.6 The performance results (%) of each algorithm for parametric operators range =(0-20) and θr=0.75. 

Parameter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average 

Hamacher 86.14 86.14 86.14 86.14 86.14 86.14 86.14 85.12 85.12 85.15 85.15 85.15 85.15 84.16 84.16 84.16 83.17 83.17 83.17 83.17 82.18 84.82 

Dubois_Prade 46.53 86.14 84.16 80.20 78.22 75.25 71.29 30.69 30.69 30.69 30.69 32.67 30.69 32.67 33.66 33.66 33.66 33.66 33.66 33.66 33.66 46.49 

Weber 85.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 85.12 85.12 85.12 85.12 85.12 87.13 87.13 87.13 86.14 85.12 85.15 85.90 

Dombi 32.67 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 83.59 

Yager 32.67 85.12 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 86.14 83.54 
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Table 6.7 Accuracy rates handled for different thresholds (%). 

𝜽𝒓 Zadeh Classical 
Algebraic 

Product/Sum 

Bounded 

Product/Sum 

NP Hamacher 

( 0 ) 

Yager 

(p=2) 

Hamacher 

(p=0.25) 

Dombi 

(1) 

Dubois 

(0.25) 

Weber 

(15) 

0.71 85.15 85.15 85.15 84.16 85.15 85.15 85.15 82.18 51.48 86.14 

0.72 85.15 85.15 85.15 84.16 85.15 85.15 85.15 82.18 51.48 86.14 

0.73 85.15 85.15 85.15 84.16 85.15 85.15 85.15 82.18 85.15 86.14 

0.74 85.15 85.15 85.15 84.16 85.15 85.15 85.15 82.18 85.15 86.14 

0.75 86.14 86.14 86.14 85.15 86.14 86.14 86.14 83.16 86.14 87.13 

0.76 86.14 86.14 86.14 85.15 86.14 86.14 86.14 83.16 86.14 87.13 

0.77 84.16 84.16 84.16 83.17 84.16 84.16 84.16 82.18 84.16 86.14 

0.78 82.18 82.18 82.18 81.19 82.18 82.18 82.18 82.18 82.18 82.18 

0.79 86.14 84.16 84.16 85.15 84.16 86.14 84.16 84.16 84.16 86.14 

0.80 86.14 84.16 84.16 85.15 84.16 86.14 84.16 84.16 84.16 86.14 

0.81 86.14 84.16 84.16 85.15 84.16 86.14 84.16 84.16 84.16 86.14 

0.82 86.14 84.16 84.16 85.15 84.16 86.14 84.16 84.16 84.16 86.14 

0.83 86.14 84.16 84.16 85.15 84.16 86.14 84.16 84.16 84.16 86.14 

0.84 87.13 87.13 87.13 86.14 87.13 87.13 87.13 87.13 87.13 87.13 

0.85 87.13 86.14 86.14 86.14 86.14 87.13 86.14 88.11 86.14 87.13 

0.86 87.13 86.14 86.14 86.14 86.14 87.13 86.14 86.14 86.14 87.13 

0.87 86.14 83.17 83.17 85.15 83.17 86.14 83.17 86.14 83.17 86.14 

0.88 85.15 36.63 36.63 84.16 36.63 85.15 36.63 36.63 36.63 85.15 

0.89 84.16 37.62 37.62 83.17 37.62 86.14 37.62 35.64 37.62 81.19 

0.90 84.16 42.57 42.57 83.17 42.57 83.17 42.57 40.59 42.57 83.17 

Average 85.54 77.97 77.97 84.46 77.97 85.59 77.97 77.03 74.60 85.74 
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Hence, Weber has better results than all non-parametric operators’ results. So, it is 

claimed that by using different parameters, better reasoning performance can be 

handled for the classification procedure with fuzzy ID3. In future research, there are 

several works to be addressed related with the adaptation of n-dimensional overlap 

functions (Elkano et al., 2015). 

 

6.3 Study of the Behaviour of Fuzzy ID3-L-WABL and Fuzzy ID3- LR 

 

In this Subchapter, Behaviour of Fuzzy ID3-L-WABL and Fuzzy ID3-LR are 

analyzed. First, the datasets selected for the experimental studies (see Subchapter 

6.3.1) are explained. Second, the parameter set-up for each method (see Subchapter 

6.3.2) is given. Third, Fuzzy Artemis is presented, which is programmed to make the 

experimental studies (see Subchapter 6.3.3). Then, the detailed information is given 

for the experimental study (see Subchapter 6.3.4). At last, a brief analysis is done 

about the results obtained from two proposed linguistic approaches.  

 

6.3.1 Datasets 

 

In order to analyze the performance of our proposal, we have considered six 

datasets selected from the KEEL dataset repository (Alcala-Fdez et al., 2009; 

Datasets., n.d.) prepared by using 5-fold stratified cross-validation model. Table 6.8 

summarizes the features of the selected datasets, showing for each dataset the 

number of examples, number of numerical attributes (Num Atts), and the number of 

classes(Class). 

 

Table 6.8 Summary of the datasets’ features used in experimental study 

           ID Dataset Examples Num Attr Class 

1 Iris 150 4 3 

2 Phoneme 5404 5 2 

3 Pima 768 8 2 

4 Ring 7400 20 2 

5 Sonar 208 60 2 

6 Wdbc 569 30 2 
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6.3.2 Performance Measure and Statistical Tests 

 

The accuracy rate is one of the most common metric measures to test performance 

of the different methods. It is explained with percentage of correctly classified 

examples related to the total number of examples. In our study, we use 5-fold cross 

validation. The statistical tests are done with the average of 5-fold experiments. 

Fuzzy c-means (FCM) algorithm and FkM-F algorithm are performed in MATLAB 

2015 in order to handle the fuzzification phase of the datasets. A software called 

FuzzyArtemis is programmed in the Visual C# for the experimental study (intel i7, 

2.4 GHz, 4 Gb RAM). 

 

In order to give a statistical support to the analysis of the results, it is carried out 

Wilcoxon Signed Rank Test to perform pairwise comparisons and Aligned Friedman 

Test to check whether there are statistical differences among a group of methods or 

not. Statistical non-parametric tests are performed in IBM SPSS 23.  

 

6.3.3 FuzzyArtemis 

 

FuzzyArtemis aims to make experimental studies about fuzzy classification and 

clustering. The first menu is developed for fuzzy classification approach. It uses 

fuzzy ID3 algorithm in order to solve the classification problems. It is planned that 

fuzzy clustering approach will be made add-in for future studies. 

 

You can handle fuzzy decision tree based Fuzzy ID3 algorithm. When 

FuzzyArtemis is run, the opening screen welcomes as given in Figure 6.9. 
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Figure 6.9 FuzzyArtemis opening screen. 

 

Data menu help to see the data as seen in Figure 6.10. If user wants to construct 

fuzzy decision tree, user needs to follow the menus as given below:  

 

DataOpen Data Fuzzy ID3. 

 

 

Figure 6.10 FuzzyArtemis “Data” screen (Open Data Command). 

 

FuzzyArtemis “Analyze” screen is given in Figure 6.11. It is seen that the user can 

make the induction of fuzzy decision tree by using the button “Induction of Fuzzy 

ID3 Algoirthm”. Then, user can choose one of the fuzzy reasoning methods among 

various parameteric and non-parametric approaches. In addition, the user can see the 

performance of the selected method by using the button “Perform The Selected 

Inference Method”.  
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Figure 6.11 FuzzyArtemis “Analyze” screen. 

 

6.3.4 Experimental Study 

 

The experimental study consists of two steps. It is aimed to show that novel fuzzy 

ID3 approaches working on linguistic data have good performances at least as 

classical fuzzy ID3 approach working on numeric data. In the first step, the 

performance behaviour of three approaches is analyzed by using a fixed threshold 

value (𝜃𝑟 = 0.75) and different T-operators. In the second step, the performance 

behaviour of of three approaches is examined by using various T-operators and 

different thresholds. The experimental study is supported by statistical analysis.  

 

6.3.4.1 Study of The Behaviour of Fuzzy ID3 Induction Process on Numerical 

Data, Fuzzy ID-L-WABL and Fuzzy ID3-LR 

 

The behaviour of classical Fuzzy ID3, Fuzzy ID-L-WABL, and Fuzzy ID3-LR 

approaches are analyzed by using T-operators on six well-known data sets. Then, the 

behaviour of different t-operators on fixed threshold results for three different 

approaches are obtained. It is aimed to show that the results handled from proposed 

approaches for linguistic data has good performance at least as the results handled 
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from Fuzzy ID3 Induction process for the classical approach. Triangular fuzzy 

numbers (defined in Subchapter 2.2.2) are consisted of the following steps: 

Step 1. Each attribute’s value is assigned as the center (b). 

Step 2. Each center value is multipled with a random number generated 

between (0-0.20). This random number represents 𝑙𝑖𝑗  or 𝑟𝑖𝑗 which is defined in 

Subchapter 5.2. 

Step 3. Then, left (a) value is computed with the substraction of 𝑙𝑖𝑗  from b and 

the right value is computed with the summation of 𝑟𝑖𝑗 with right (c). 

 

The set-up parameters are given in Table 6.9 for three methods. 

 

First method is defined as classical Fuzzy ID3 Induction Process (FID3). In this 

approach, fuzzification is done by using fuzzy c-means algorithm. Second method 

indicates Fuzzy ID3 Algorithm Based on Linguistic Data by using WABL 

Defuzzification. Fuzzy c-means (FCM) algorithm is used again in order to  get 

membership degrees.  

 

Then, Fuzzy ID3-L-WABL is applied in order to achieve the fuzzy decision tree. 

Hence, third method works directly on fuzzy data. It uses FkM-F algorithm to 

perform the fuzzification phase. Then, the non-parametric reasoning methods (given 

in Table 3.1) are applied to the six data sets for both three approaches to examine the 

performances of the classification.  

  

The accuracy rates are obtained for the three methods. The performance results 

are given in Table 6.10, Table 6.11 and Table 6.12, respectively. 

 

It is seen that Wdbc has the highest performance result with 91.57%, which is 

obtained from tha adaptation of FID3-L-WABL and Bounded Product/Sum 

reasoning among the other approaches. Iris data set has best accuracy rate with 

95.33% FID3-L-WABL and Zadeh reasoning among all reasoning methods.  
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Table 6.9 Set up of the methods parameters 

Methods Algorithm Parameters 

1 
Fuzzy ID3 Induction Process 

(FID3) 

 

FCM:c=3 classes 

𝜃𝑟 = 0.75 

max depth=11 

Non-parametric operatos given in 

Table 3.1. 

2 

Fuzzy ID3 Algorithm Based on 

Linguistic Data By Using 

WABL Defuzzification 

Method (FID3-L-WABL) 

FCM: c=3 classes  

WABL: 

 𝑘 = 0; 𝑠 = 1.0;      

𝑐𝐿 = 𝑐𝐾 = 0.50      
FID3: 𝜃𝑟 = 0.75 

max depth=11 

Reasoning:Non-parametric operatos 

given in Table 3.1. 

3 

Fuzzy ID3 Algorithm for L-R 

Fuzzy Data 

(Fuzzy ID3-LR) 

FkM: c=3 classes  

L-R fuzzy data used for Method 2. 

FID3: 𝜃𝑟 = 0.75 

max depth=11 

Non-parametric operatos given in 

Table 3.1. 

 

Moreover, while Ring data set has the best performance with 74.88% FID3-L-

WABL and Algebraic Product/Sum reasoning, it has the least performance with 

49.64% FID3-LR and Bounded Product/Sum reasoning.  

 

Table 6.10 Accuracy rates (%) obtained from FID3 

 

Datasets 
Zadeh 

Algebraic 

Product/Sum 

Bounded 

Product/Sum 

Nonparametric 

Hamacher )0(   

Wdbc 90.51 91.04 91.39 84.18 

Iris 94.00 94.00 94.00 94.00 

Pima 73.56 74.86 70.70 72.78 

Ring 73.00 74.55 63.49 68.99 

Sonar 73.08 63.11 71.64 58.72 

Phoneme 73.67 73.59 73.33 73.17 

 

Also, Sonar has 77.89% accuracy rate with FID3-LR and Algebraic Product/Sum 

reasoning. Phoneme has the highest accuracy rate with 74.91% for FID3-L-WABL 

and Algebraic Product/Sum reasoning. 
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Table 6.11 Accuracy rates (%) obtained from FID3-L-WABL 

 

 

Datasets 

Zadeh 
Algebraic 

Product/Sum 

Bounded 

Product/Sum 

Nonparametric 

Hamacher )0(   

Wdbc 90.87 79.82 91.57 73.83 

Iris 95.33 94.67 94.67 94.67 

Pima 72.91 73.82 69.66 73.56 

Ring 74.14 74.88 64.61 68.88 

Sonar 73.10 74.08 73.09 64.41 

Phoneme 74.70 74.91 73.58 74.48 

 

The experimental study is encouraged by the statistical tests. The Aligned 

Friedman is performed to check whether there are statistical differences among the 

performances of reasoning methods. Also, Wilcoxon signed rank test is applied to 

make the comparison among the methods. It is aimed to show that the performances 

of the proposed approaches, FID3-L-WABL and FID3-LR, have as good 

performance as classical Fuzzy ID3 in general. 

 

Table 6.12 Accuracy rates (%) obtained from FID3-LR 

Datasets Zadeh 
Algebraic 

Product/Sum 

Bounded 

Product/Sum 

Nonparametric 

Hamacher )0(   

Wdbc 90.16 90.86 90.86 91.04 

Iris 55.33 33.99 33.33 50.67 

Pima 65.75 65.75 65.10 66.01 

Ring 51.08 49.76 49.64 49.76 

Sonar 74.03 77.89 57.75 74.99 

Phoneme 70.65 70.65 70.65 70.65 

 

According to the result of the Aligned Friedman test, it is seen that p-value equals 

to 0.008 as given in Table 6.13. It shows that there are significant differences among 

the results (=0.05). Then, Wilcoxon signed rank test is applied to the approaches in 

order to test the comparison among the reasoning methods on three induction 

approaches as FID3-L-WABL, FID3-LR, and classical FID3. The results of this test 
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for six well-known selected data sets are given in Table 6.14. (L_ implies FID3-L-

WABL, L2 implies FID3_LR). 

 
Table 6.13 Friedman aligned ranks results to test the performance of reasoning methods 

Algorithm Rank Algorithm Rank Algorithm Rank 

Friedman aligned 

ranks 

Total N 6 

Test 

Statistic 
25.30 

Zadeh 7.50 Zadeh_L 9.50 Zadeh_L2 4.33 

Algebraic 

Product/Sum 
8.33 

Algebraic 

Product/Sum_L 
9.50 

Algebraic 

Product/Sum_L

2 
4.67 

Bounded 

Product/Sum 
6.58 

Bounded 

Product/Sum_L 
7.83 

Bounded 

Product/Sum_L

2 
2.17 

Asymptotic 

Sig.  

(2 sided 

test) 

0.008 Non 

Parametric     

Hamacher 

( 0 ) 

5.25 

Non Parametric     

Hamacher_L 

( 0 ) 
6.92 

Non Parametric     

Hamacher_L2 

( 0 ) 
5.42 
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It is seen that there is no significant difference between the results of Zadeh 

operator applied with FID3-L-WABL and FID3-LR with p value, 0.075. In addition, 

the results of Zadeh operator applied with classical FID3 and FID3-LR with p value, 

0.075 shows that there is no significant difference.  

 

Hence, it is concluded that there is no significant difference for the pairs of 

Algebraic Product/Sum operator results obtained from FID3-L-WABL and FID3-LR, 

classical FID3 and FID3-LR. P values handled from the tests are given as 0.249 and 

0.173, respectively. Non-Parametric Hamacher operator’s results got from FID3-L-

WABL and FID3-LR, classical FID3 and FID3-LR, respectively. These two pairs’ 

comparisons have p-values as 0.463.  

 

Yet, it is observed that Bounded Product/Sum operator’s results got from FID3-L-

WABL and FID3-LR, classical FID3 and FID3-LR are significant difference with p-

value as 0.028, respectively. It is observed that FID3-LR achieved better results with 

Bounded Product/Sum reasoning operator than FID3-L-WABL and classical FID3 

approaches.  

 

It is seen that there is significant difference between the results of Non Parametric 

Hamacher and Bounded Product/Sum produced with FID3-LR (p-value, 0.043). It is 

seen that Bounded Product/Sum operator has better results with p value, 0.022. There 

is significant difference between the results obtained from Non Parametric Hamacher 

and Algebraic Product/Sum operators with FID3-L-WABL (p value, 0.043). 

 

The results of Algebraic Product/Sum operator with FID3-L-WABL has better 

results than the results of Non Parametric Hamacher operator with FID3-L-WABL. 

Classical FID3 with Non Parametric Hamacher operators achieves better results than 

classical FID3 with Zadeh and Bounded Product/Sum operators with p value, 0.022. 

 

As a summary, it is observed that there are no differences between the results of 

classical FID3, FID3-L-WABL and FID3-LR in general situation. Linguistic 

approaches have good performance no fewer than numerical approach. Yet, Fuzzy 
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ID3-LR has better performance than FuzzyID3-L-WABl and classical FuzzyID3 for 

Bounded Product/Sum operator’s results.  



 

 

 

 

7
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Table 6.14 Wilcoxon signed rank tests on different threshold for general situation. 

Comparison 

Sum 

of  

Negati

ve 

Ranks  

 Sum of  

Positive 

Ranks 

Hypothesis 
Z test 

statistic 

 

Exact sig. 

 (1-tailed)  

p value 

Decision Comparison 
Sum of  

Negativ

e Ranks  

 Sum of  

Positive 

Ranks 
Hypothesis 

Z test 

statistic 

 

Exact sig. 

 (1-tailed)  

p value 
Decision 

Algebraic Product/Sum_L2 vs Zadeh_L2 

 (MD=MZADEH_L2-MALGEBRAIC/RODUCT-SUM_L2) 
6.00 4.00 

𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-0.365 

 
0.715 

It is not 

rejected 

Non Parametric Hamacher vs.Zadeh 

(MD=MZADEH-M NON PARAMETRIC HAMACHER) 
15.0 0.0 

𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
-2.023 

 
0.043 

It is rejected 

Bounded Product/Sum_L2 vs. Zadeh_L2 

(MD=MZADEH_L2-MBOUNDED/RODUCT-SUM_L2) 
13.00 2.00 

𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-1.483 

 
0.138 It is not 

rejected 

Bounded Product/Sum vs. Algebraic 

Product/Sum 

(MD=MALGEBRAIC/RODUCT-SUM- 

MBOUNDED/RODUCT-SUM) 

9.0 6.0 
𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
-0.405 

 
0.686 It is not 

rejected 

Non Parametric Hamacher_L2 vs. Zadeh_L2 

(MD=MZADEH_L2-M NON PARAMETRIC HAMACHER_L2) 
9.0 6.0 

𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-0.405 

 
0.686 It is not 

rejected 

Non Parametric Hamacher vs.  Algebraic 

Product/Sum 

(MD=MALGEBRAIC/PRODUCT-M NON PARAMETRIC 

HAMACHER) 

15.0 0.0 
𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
-2.023 

 
0.043 

It is rejected 

Bounded Product/Sum_L2 vs Algebraic 

Product/Sum _L2  

(MD=MALGEBRAIC/RODUCT-SUM_L2- MBOUNDED/RODUCT-

SUM_L2) 

10.0 0.0 
𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-1.826 

 
0.068 It is not 

rejected 

Non Parametric Hamacher vs.   Bounded 

Product/Sum 

(MD=MBOUNDED/PRODUCT-M NON PARAMETRIC 

HAMACHER) 

10.0 5.0 
𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
 

-0.674 

 
0.500 It is not 

rejected 

Non Parametric Hamacher_L2 vs.  Algebraic 

Product/Sum_L2 

(MD=MALGEBRAIC/PRODUCT_L2-M NON PARAMETRIC 

HAMACHER_L2) 

3.0 7.0 
𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-0.730 

 
0.465 

 

It is not 

rejected 

Zadeh_L vs. Zadeh_L2 

 (MD=MZADEH_L2-MZADEH_L) 
2.0 19.0 

𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
1.782 

 
0.075 It is not 

rejected 

Non Parametric Hamacher_L2 vs.Bounded 

Product/Sum_L2 

(MD=MBOUNDED/PRODUCT_L2-M NON PARAMETRIC 

HAMACHER_L2) 

0.0 15.0 
𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-2.023 

 
0.043 It is 

rejected 
Zadeh vs. Zadeh_L2 

 (MD=MZADEH_L2-MZADEH) 
2.0 19.0 

𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
-1.782 

 
0.075 It is not 

rejected 

Algebraic Product/Sum_L vs. Zadeh_L 

(MD=MZADEH_L-MALGEBRAIC/RODUCT-SUM_L) 
8.0 13.0 

𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-0.524 

 
0.600 It is not 

rejected 

Algebraic Product/Sum_L vs Algebraic 

Product/Sum_L2 

 (MD=MALGEBRAIC PRODUCT/SUM_L2-

MALGEBRAIC PRODUCT/SUM_L) 

5.0 16.0 
𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
-1.153 

 
0.249 It is not 

rejected 

Bounded  Product/Sum_L vs. zadeh_L 

(MD=MZADEH_L-MBOUNDED/RODUCT-SUM_L) 
18.0 3.0 

𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-1.572 

 
0.116 It is not 

rejected 

Algebraic Product/Sum vs Algebraic 

Product/Sum_L2 

(MD=MALGEBRAIC PRODUCT/SUM_L2-

MALGEBRAIC PRODUCT/SUM) 

4.0 17.0 
𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
-1.363 

 
0.173 It is not 

rejected 

Non Parametric Hamacher_L vs.  Zadeh_L 

(MD=MZADEH_L-M NON PARAMETRIC HAMACHER_L) 
19.0 2.0 

𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-1.782 

 
0.075 

It is not 

rejected 

Bounded Product/Sum_L vs. Bounded 

Product/Sum_L2 (MD=MBOUNDED 

PRODUCT/SUM_L2-MBOUNDED PRODUCT/SUM_L ) 
0.0 21.0 

𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
-2.201 

 
0.028 It is rejected 

Bounded Product/Sum_L vs. Algebraic 

Product/Sum_L 

(MD=MALGEBRAIC/RODUCT-SUM_L- MBOUNDED/RODUCT-

SUM_L) 

10.0 5.0 
𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-0.674 

 
0.500 It is not 

rejected 

Bounded Product/Sum vs. Bounded 

Product/Sum_L2  

(MD=MBOUNDED PRODUCT/SUM_L2-MBOUNDED 

PRODUCT/SUM ) 

0.0 21.0 
𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
-2.201 

 
0.028 

It is rejected 

Non Parametric Hamacher_L vs.  Algebraic 

Product/Sum_L 

(MD=MALGEBRAIC/PRODUCT_L-M NON PARAMETRIC 

HAMACHER_L) 

15.0 0.0 
𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-2.023 

 
0.043 It is 

rejected 

Non Parametric Hamacher_L vs. Non 

Parametric Hamacher_L2  

(MD=MNPHAMACHER_L2-MNPHAMACHER_L) 
7.0 14.0 

𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
-0.734 

 
0.463 It is not 

rejected 

Non Parametric Hamacher_L vs. Bounded 

Product/Sum_L 

MD=MBOUNDED/PRODUCT_L-M NON PARAMETRIC 

HAMACHER_L 

9.0 6.0 
𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-0.405 

 
0.686 It is not 

rejected 

Non Parametric Hamacher vs. Non 

Parametric Hamacher_L2  

(MD=MNPHAMACHER_L2-MNPHAMACHER) 
7.0 14.0 

𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
-0.734 

 
0.463 It is not 

rejected 

Algebraic Product/Sum vs. Zadeh 

(MD=MZADEH-MALGEBRAIC/RODUCT-SUM) 
6.0 9.0 

𝐻0:𝑀𝐷 = 0 

𝐻1: 𝑀𝐷 ≠ 0 
-0.405 

 
0.686 

It is not 

rejected 
Bounded  Product/Sum vs. Zadeh 

(MD=MZADEH-MBOUNDED/RODUCT-SUM) 
13.0 2.0 

𝐻0: 𝑀𝐷 = 0 

𝐻1:𝑀𝐷 ≠ 0 
-1.483 

 
0.138 

It is not 

rejected 
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6.3.4.2 Study of the behaviour of different t-operators on different threshold values 

for classical Fuzzy ID3, Fuzzy ID3-L-WABL, and Fuzzy ID3–LR 

 

In this study, classical Fuzzy ID3 (FID3), Fuzzy ID3-L-WABL, (FID3-L-WABL) 

and Fuzzy-LR with different threshold values between the range 0.60-0.90 are 

performed for the induction of fuzzy decision tree. Then, four non-parametric T-

operators are worked on reasoning process. It is aimed to show that the performance 

of different T-operators on these three approaches.  

 

Iris data set 

 

Iris data set performance results for three approaches are given in Table 6.15, 

Table 6.16, and Table 6.17, respectively. 

 

While classical FID3 approach with 0.82 threshold is performed for the induction 

process on Iris data set, Algebraic Product/Sum operator has the higest accuracy rate 

with 96.67% among the other non-parametric operators. 

 

While FID3-L-WABL approach with 0.82 threshold is performed for the 

induction process on Iris data set, Algebraic Product/Sum operator has the higest 

accuracy rate with 96.67% among the other non-parametric operators. 

 

While FID3-LR approach with 0.60 threshold is performed for the induction 

process on Iris data set, Non parametric operator has the higest accuracy rate with 

76.00% among the other non-parametric operators. FID3-LR approach has the lowest 

accuracy rates among non-parametric T-operators. 
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Table 6.15 Iris data set performance results (%) different t-operators on different threshold results 

for classical Fuzzy ID3 (FID3). 

Threshold Zadeh 
Algebraic 

Product/Sum 

Bounded 

Product/Sum 

NP_ 

Hamacher 

0.60 94.00 94.00 94.00 94.00 

0.61 94.00 94.00 94.00 94.00 

0.62 94.00 94.00 94.00 94.00 

0.63 94.00 94.00 94.00 94.00 

0.64 94.00 94.00 94.00 94.00 

0.65 94.00 94.00 94.00 94.00 

0.66 94.00 94.00 94.00 94.00 

0.67 94.00 94.00 94.00 94.00 

0.68 94.00 94.00 94.00 94.00 

0.69 94.00 94.00 94.00 94.00 

0.70 94.00 94.00 94.00 94.00 

0.71 94.00 94.00 94.00 94.00 

0.72 94.00 94.00 94.00 94.00 

0.73 94.00 94.00 94.00 94.00 

0.74 94.00 94.00 94.00 94.00 

0.75 94.00 94.00 94.00 94.00 

0.76 94.00 94.00 94.00 94.00 

0.77 94.00 94.00 94.00 94.00 

0.78 94.00 94.00 94.00 94.00 

0.79 94.00 94.00 94.00 94.00 

0.80 94.00 94.00 94.00 94.00 

0.81 95.33 94.67 94.67 94.67 

0.82 94.67 96.67 95.33 94.00 

0.83 95.33 93.33 93.33 88.00 

0.84 94.67 95.33 94.67 88.00 

0.85 94.67 95.33 94.67 88.00 

0.86 94.67 95.33 94.67 88.00 

0.87 94.67 95.33 94.67 88.00 

0.88 94.67 95.33 94.67 88.00 

0.89 94.67 95.33 94.67 88.00 

0.90 94.67 95.33 94.67 88.00 
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Table 6.16 Iris data set performance results (%) different t-operators on different threshold results 

for Fuzzy ID3-L-WABL (FID3-L-WABL). 

Threshold Zadeh_L 
Algebraic 

Product/Sum_L 

Bounded 

Product/Sum_L 

NP_ 

Hamacher_L 

0.60 95.33 94.67 94.67 94.67 

0.61 95.33 94.67 94.67 94.67 

0.62 95.33 94.67 94.67 94.67 

0.63 95.33 94.67 94.67 94.67 

0.64 95.33 94.67 94.67 94.67 

0.65 95.33 94.67 94.67 94.67 

0.66 95.33 94.67 94.67 94.67 

0.67 95.33 94.67 94.67 94.67 

0.68 95.33 94.67 94.67 94.67 

0.69 95.33 94.67 94.67 94.67 

0.70 95.33 94.67 94.67 94.67 

0.71 95.33 94.67 94.67 94.67 

0.72 95.33 94.67 94.67 94.67 

0.73 95.33 94.67 94.67 94.67 

0.74 95.33 94.67 94.67 94.67 

0.75 95.33 94.67 94.67 94.67 

0.76 95.33 94.67 94.67 94.67 

0.77 95.33 94.67 94.67 94.67 

0.78 95.33 94.67 94.67 94.67 

0.79 95.33 94.67 94.67 94.67 

0.80 95.33 94.67 94.67 94.67 

0.81 94.00 96.00 95.33 94.00 

0.82 96.00 96.67 95.33 91.33 

0.83 96.00 95.33 93.33 88.00 

0.84 96.00 95.33 93.33 88.00 

0.85 96.00 95.33 93.33 88.00 

0.86 96.00 95.33 93.33 88.00 

0.87 96.00 95.33 93.33 88.00 

0.88 96.00 95.33 93.33 88.00 

0.89 96.00 96.00 93.33 88.00 

0.90 96.00 96.00 93.33 88.00 
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Table 6.17 Iris data set performance results (%) different t-operators on different threshold results 

for FuzzyID3-LR (FID3-LR) approach. 

Threshold Zadeh_L 
Algebraic 

Product/Sum_L 

Bounded 

Product/Sum_L 

NP_ 

Hamacher_L 

0.60 70.67 71.33 33.99 76.00 

0.61 67.33 65.33 33.33 74.02 

0.62 65.33 59.33 33.33 70.00 

0.63 65.33 59.33 33.33 70.00 

0.64 65.33 59.33 33.33 70.00 

0.65 64.66 55.99 33.33 68.66 

0.66 63.33 49.33 33.33 66.66 

0.67 63.33 49.33 33.33 66.66 

0.68 63.33 49.33 33.33 66.66 

0.69 62.67 45.33 33.33 65.99 

0.70 62.66 42.00 33.33 63.33 

0.71 61.33 36.66 33.33 60.00 

0.72 61.33 36.66 33.33 57.33 

0.73 55.33 34.66 33.33 51.33 

0.74 55.33 33.99 33.33 50.67 

0.75 55.33 33.99 33.33 50.67 

0.76 55.33 33.99 33.33 50.67 

0.77 55.33 33.99 33.33 50.67 

0.78 49.33 33.33 33.33 47.33 

0.79 49.33 33.33 33.33 47.33 

0.80 38.67 33.33 33.33 39.33 

0.81 38.67 33.33 33.33 39.33 

0.82 33.33 33.33 33.33 33.33 

0.83 33.33 33.33 33.33 33.33 

0.84 33.33 33.33 33.33 33.33 

0.85 33.33 33.33 33.33 33.33 

0.86 33.33 33.33 33.33 33.33 

0.87 33.33 33.33 33.33 33.33 

0.88 33.33 33.33 33.33 33.33 

0.89 33.33 33.33 33.33 33.33 

0.90 33.33 33.33 33.33 33.33 
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The Friedman aligned ranks as a non-parametric statistical procedure is applied to 

detect statistical differences among a group of results on 31 thresholds value between 

0.60-0.90. for three approaches. The test results performed on both approaches have 

significant p-value, 0.000 as given in Table 6.18. It is seen that there are significant 

differences among the results (=0.05). 

 

Wilcoxon signed rank tests are applied into the Iris data set to test the comparison 

among the reasoning methods. It is seen that the results of Non Parametric Hamacher 

operator are better than the results of Zadeh operator produced with classical FID3 

(p-value, 0.001), significantly. Bounded Product/Sum operator has worse 

performance than Algebraic Product/Sum operator with classical FID3 (p value, 

0.004).  

 

The performance of Algebraic Product/Sum operator and Bounded Product/Sum 

operator is better than the performance of Non Parametric Hamacher operator with 

classical FID3 (p value, 0.002). The performance of Zadeh operator is higher than 

Algebraic Product/Sum operator, Bounded Product/Sum operator,  and Non 

parametric Hamacher operator with FID3-L-WABL’s performances (p value, 0.000). 

Bounded Product/Sum operator,  and Non parametric Hamacher operator give better 

results than Algebraic Product/Sum operator with FID3-L-WABL (p value, 0.000). 

Hence, Non parametric Hamacher operator with FID3-L-WABL works better than 

Bounded Product/Sum results.  

 

Table 6.18 Friedman aligned ranks test for Iris data set. 

Algorithm Rank Algorithm Rank Algorithm Rank 

Friedman aligned 

ranks 

Total N 31 

Test Statistic 

(df) 

303.9 

(11) 
Zadeh 7.23 Zadeh_L 11.69 Zadeh_L2 3.11 

Algebraic 

Product/Sum 
7.63 

Algebraic 

Product/Sum_L 
10.31 

Algebraic 

Product/Sum_L2 
2.11 

Bounded 

Product/Sum 
7.11 

Bounded 

Product/Sum_L 
9.23 

Bounded 

Product/Sum_L2 
1.50 

Asymptotic 

Sig. (2 sided 

test) 

0.000 
Non 

Parametric     

Hamacher 

( 0 ) 

6.27 

Non Parametric     

Hamacher_L 

( 0 ) 
8.53 

Non Parametric     

Hamacher_L2 

( 0 ) 
3.27 
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It is observed that the performance of Algebraic Product/Sum operator, Bounded 

Product/Sum operator is higher than Zadeh operator with FID3-LR’s performance (p 

value, 0.000) as FID3-L-WABL approach. Yet, Non parametric Hamacher operator 

with FID3-LR has better perfomance than Zadeh operator with FID3-LR (p value, 

0.000).  

 

Bounded Product/Sum operator has a worse performance than Algebraic 

Product/Sum operator with FID-LR (p value, 0.000). The performance of Non 

Parametric Hamacher operator is better than Algebraic Product/Sum and Bounded 

Product/Sum operators’ performances with FID3-LR (p value, 0.000). 

 

Zadeh, Bounded Product/Sum, and Algebraic Product/Sum with FID3-L-WABL’s 

performances are better than Zadeh operator with FID3-LR performance (p value, 

0.000).  Zadeh, Bounded Product/Sum, Algebraic Product/Sum, and Non Parametric 

Hamacher operator with FID3-L-WABL’s performances are better than Algebraic 

Product/Sum’s with FID3-LR’s peformance (p value, 0.000). In a similar manner, 

Zadeh, Bounded Product/Sum, Algebraic Product/Sum, and Non Parametric 

Hamacher operator with FID3-L-WABL’s performances are better than Bounded 

Product/Sum with FID3-LR’s peformance (p value, 0.000). Zadeh, Bounded 

Product/Sum, Algebraic Product/Sum, and Non Parametric Hamacher operator with 

FID3-L-WABL’s performances are also better than Non Parametric Hamacher 

operator with FID3-LR’s peformance (p value, 0.000). 

 

It is observed that the performance of Zadeh operator with FID3-L-WABL is 

better than Zadeh operator, Algebraic Product/Sum, Bounded Product/Sum, and Non 

parametric Hamacher with classical FID3. Algebraic Product/Sum operator with 

FID3-L-WABL has also better results than Zadeh operator, Algebraic Product/Sum, 

Bounded Product/Sum, and Non parametric Hamacher with classical FID3. Hence, 

Bounded Product/Sum with FID3L-WABL’s performance does not have any 

significant difference than Zadeh (p value, 0.372), Algebraic Product/Sum (p 
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value,0.454), Bounded Product/Sum operator (p value, 0.454) with classical FID3’s 

performances. Non-Parametric with FID3-L-WABL has better performance than it. 

 

Zadeh, Algebraic Product/Sum, Bounded Product/Sum, and Non parametric 

Hamacher operators with classical FID3 have better performance than Zadeh 

operator with FID3-LR (p value, 0). Zadeh, Algebraic Product/Sum, Bounded 

Product/Sum, and Non parametric Hamacher operators with classical FID3 have 

better performance than Algebraic Product/Sum operator with FID3-LR (p value, 0).  

 

Zadeh, Algebraic Product/Sum, Bounded Product/Sum, and Non parametric 

Hamacher operators with classical FID3 have better performance than Bounded 

Product/Sum operator with FID3-LR (p value, 0). Zadeh, Algebraic Product/Sum, 

Bounded Product/Sum, and Non parametric Hamacher operators with classical FID3 

have better performance than Non parametric Hamacher operator with FID3-LR (p 

value, 0). 

 

Phoneme data set 

 

Phoneme data set performance results for three approaches are given in Table 

6.19, Table 6.20, and Table 6.21, respectively. 

 

While classical FID3 approach with the threshold range 0.60-0.63 is performed 

for the induction process on Phoneme data set, Non Parametric Hamacher operator 

has the higest accuracy rate with 75.22% among the other non-parametric operators. 

 

While FID3-L-WABL approach in (0.72-0.74) threshold ranges is performed for 

the induction process on Iris data set, Algebraic Product/Sum operator has the higest 

accuracy rate with 75.54% among the other non-parametric operators. 

 

While FID3-LR approach with 0.60 threshold is performed for the induction 

process on Phoneme data set, Non parametric Hamacher operator has the higest 

accuracy rate with 77.01% among the other non-parametric operators.  
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Table 6.19 Phoneme data set performance results (%) different t-operators on different threshold 

results for classical FuzzyID3(FID3) 

Threshold Zadeh 

Algebraic 

Product/ 

Sum 

Bounded Product/ 

Sum 

NP_ 

Hamacher 

0.60 75.09 75.26 74.41 75.22 

0.61 75.09 75.26 74.41 75.22 

0.62 75.09 75.26 74.41 75.22 

0.63 75.09 75.26 74.41 75.22 

0.64 74.48 74.63 74.15 73.98 

0.65 74.48 74.46 74.07 73.89 

0.66 74.50 74.48 74.07 73.72 

0.67 74.50 74.67 74.09 73.74 

0.68 74.50 74.67 74.09 73.74 

0.69 74.46 74.57 74.09 73.65 

0.70 74.32 74.43 74.11 73.70 

0.71 74.46 74.48 74.13 73.79 

0.72 74.50 74.50 74.15 73.39 

0.73 74.52 74.48 74.15 73.89 

0.74 74.52 74.48 74.15 73.89 

0.75 73.67 73.59 73.33 73.37 

0.76 71.93 71.84 71.89 71.65 

0.77 70.65 70.65 70.65 70.65 

0.78 70.65 70.65 70.65 70.65 

0.79 70.65 70.65 70.65 70.65 

0.80 70.65 70.65 70.65 70.65 

0.81 70.65 70.65 70.65 70.65 

0.82 70.65 70.65 70.65 70.65 

0.83 70.65 70.65 70.65 70.65 

0.84 70.65 70.65 70.65 70.65 

0.85 70.65 70.65 70.65 70.65 

0.86 70.65 70.65 70.65 70.65 

0.87 70.65 70.65 70.65 70.65 

0.88 70.65 70.65 70.65 70.65 

0.89 70.65 70.65 70.65 70.65 

0.90 70.65 70.65 70.65 70.65 
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Table 6.20 Phoneme data set performance results (%) different t-operators on different threshold 

results for FuzzyID3-L-WABL (FID3-L_WABL). 

Threshold Zadeh_L 

Algebraic 

Product/ 

Sum_L 

Bounded 

Product/ 

Sum_L 

NP_ 

Hamacher_L 

0.60 74.49 75.22 74.37 75.02 

0.61 74.49 75.22 74.37 75.02 

0.62 74.49 75.22 74.37 75.02 

0.63 74.49 75.22 74.41 74.94 

0.64 74.30 74.30 74.15 73.98 

0.65 74.35 74.35 74.06 73.72 

0.66 74.39 74.46 74.07 73.38 

0.67 74.42 74.54 74.07 73.82 

0.68 74.43 74.54 74.07 73.82 

0.69 74.56 74.65 74.09 73.91 

0.70 74.89 74.98 74.13 74.20 

0.71 75.09 75.27 74.13 74.57 

0.72 75.28 75.54 74.15 74.79 

0.73 75.28 75.54 74.17 74.79 

0.74 75.28 75.54 74.17 74.80 

0.75 74.70 74.91 73.58 73.48 

0.76 74.17 74.41 73.24 73.87 

0.77 74.07 74.28 72.96 73.89 

0.78 74.07 74.28 72.96 73.89 

0.79 74.04 74.24 72.96 73.87 

0.80 72.39 72.43 71.80 72.26 

0.81 71.11 71.21 70.95 71.11 

0.82 71.11 71.21 70.95 71.11 

0.83 70.65 70.65 70.65 70.65 

0.84 70.65 70.65 70.65 70.65 

0.85 70.65 70.65 70.65 70.65 

0.86 70.65 70.65 70.65 70.65 

0.87 70.65 70.65 70.65 70.65 

0.88 70.65 70.65 70.65 70.65 

0.89 70.65 70.65 70.65 70.65 

0.90 70.65 70.65 70.65 70.65 
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Table 6.21 Phoneme data set performance results (%) different t-operators on different threshold 

results for Fuzzy-LR (FID3-LR). 

Threshold Zadeh_L2 
Algebraic 

Product/Sum_L2 

Bounded 

Product/Sum_L2 

NP_ 

Hamacher_L2 

0.60 76.02 75.46 70.97 77.01 

0.61 75.81 75.15 70.97 76.04 

0.62 75.41 74.17 70.97 74.83 

0.63 75.41 74.17 70.97 74.83 

0.64 74.47 73.24 70.65 73.91 

0.65 74.46 73.24 70.65 73.91 

0.66 74.46 73.24 70.65 73.91 

0.67 74.46 73.24 70.65 73.91 

0.68 74.46 73.24 70.65 73.91 

0.69 73.29 72.50 70.65 73.01 

0.70 73.29 72.50 70.65 73.01 

0.71 72.50 71.85 70.65 72.21 

0.72 70.65 70.65 70.65 70.65 

0.73 70.65 70.65 70.65 70.65 

0.74 70.65 70.65 70.65 70.65 

0.75 70.65 70.65 70.65 70.65 

0.76 70.65 70.65 70.65 70.65 

0.77 70.65 70.65 70.65 70.65 

0.78 70.65 70.65 70.65 70.65 

0.79 70.65 70.65 70.65 70.65 

0.80 70.65 70.65 70.65 70.65 

0.81 70.65 70.65 70.65 70.65 

0.82 70.65 70.65 70.65 70.65 

0.83 70.65 70.65 70.65 70.65 

0.84 70.65 70.65 70.65 70.65 

0.85 70.65 70.65 70.65 70.65 

0.86 70.65 70.65 70.65 70.65 

0.87 70.65 70.65 70.65 70.65 

0.88 70.65 70.65 70.65 70.65 

0.89 70.65 70.65 70.65 70.65 

0.90 70.65 70.65 70.65 70.65 
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The Friedman aligned ranks as a non-parametric statistical procedure is applied to 

detect statistical differences among a group of results on 31 thresholds value between 

0.60-0.90. for three approaches. The test results performed on both approaches have 

significant p-value, 0.000 as given in Table 6.22. It is seen that there are significant 

differences among the results (=0.05). 

 

Table 6.22 Friedman aligned ranks test for Phoneme data set. 

Algorithm Rank Algorithm Rank Algorithm Rank 

Friedman aligned 

ranks 

Total N 31 

Test 

Statistic 

(df) 

131.722 

(11) 
Zadeh 7.50 Zadeh_L 8.48 Zadeh_L2 6.37 

Algebraic 

Product/Sum 
7.97 

Algebraic 

Product/Sum_L 
9.79 

Algebraic 

Product/Sum_L2 
4.15 

Bounded 

Product/Sum 
5.71 

Bounded 

Product/Sum_L 
6.65 

Bounded 

Product/Sum_L2 
3.34 

Asymptotic 

Sig. (2 sided 

test) 

0.000 
Non 

Parametric     

Hamacher 

( 0 ) 

5.60 

Non Parametric     

Hamacher_L 

( 0 ) 
7.31 

Non Parametric     

Hamacher_L2 

( 0 ) 
5.15 

 

Then, Wilcoxon signed rank tests are applied into the phoneme data set to test the 

comparison among the reasoning methods. It is seen that the results of Algebraic 

Product/Sum operator are better than the results of Zadeh operator produced with 

classical FID3 (p-value, 0.014), significantly. Bounded Product/Sum and Non 

Parametric Hamacher operators with classical FID3 have worse performance than 

Zadeh operator with classical FID3 (p value, 0.000).  

 

The performance of Algebraic Product/Sum operator is better than Bounded 

Product/Sum operator with classical FID3 (p value, 0.000). Non parametric 

Hamacher operator with FID3-L-WABL’s performance is better than Algebraic 

Product/Sum operator with FID3-L-WABL’s performance (p value, 0.000).  

 

Bounded Product/Sum operator and Algebraic Product/Sum operator with FID3-

L-WABL’s works better than Zadeh’s operator with FID3-L-WABL. Non parametric 

Hamacher operator with FID3-L-WABL’s performance is better than Zadeh operator 

with FID3-L-WABL’s performance (p value, 0.000). Algebraic Product/Sum 

operator with FID3-L-WABL’s performance is better than Non parametric Hamacher 

operator with FID3-L-WABL’s performance. Nonetheless,  Non parametric 
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Hamacher operator with FID3-L-WABL works better than Bounded Product/Sum 

operator (p value, 0.000). 

 

The performance of Non Parametric Zadeh operator is better than Algebraic 

Product/Sum, Bounded Product/Sum, Non parametric Hamacher operators’ 

performances with with FID3-LR (p value, 0.000). Algebraic Product/Sum works 

better than Bounded Product/Sum with FID3-LR (p value, 0.000). Non parametric 

Hamacher operators with FID3-LR works better than Algebraic Product/Sum and 

Bounded Product/Sum with FID3-LR.  

 

Zadeh operator (p value, 0.000), Algebraic Product/Sum operator (p value, 0.000), 

Bounded Product/Sum operator (p value, 0.000) and Non parametric Hamacher 

operator (p value, 0.000) with FID3-L-WABL have better performance than Zadeh 

operator with FID3-LR. 

 

Zadeh operator (p value, 0.000), Algebraic Product/Sum operator (p value, 0.000), 

Bounded Product/Sum operator (p value, 0.000) and Non parametric Hamacher 

operator (p value, 0.000) with FID3-L-WABL have better performance than 

Algebraic Product/Sum operator with FID3-LR. 

 

Zadeh operator (p value, 0.000), Algebraic Product/Sum operator (p value, 0.000), 

Bounded Product/Sum operator (p value, 0.000) and Non parametric Hamacher 

operator (p value, 0.000) with FID3-L-WABL have better performance than 

Bounded Product/Sum operator with FID3-LR. 

 

While Non parametric Hamacher operator (p value, 0.000) with FID3-LR have 

better results than Algebraic Product/Sum operator (p value, 0.000) and Bounded 

Product/Sum operator (p value, 0.000) with FID3-L-WABL. Yet, Non parametric 

Hamacher operator with FID3-LR has worse performance than Hamacher operator 

with FID3- L-WABL (p value, 0.000). 
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Zadeh, Bounded Product/Sum, Algebraic Product/Sum and Non Parametric 

Hamacher operators with classical FID3 performances are worse than Zadeh operator 

with FID3-L-WABL performance (p value, 0.000). In a similar manner, Zadeh, 

Bounded Product/Sum, Algebraic Product/Sum and Non Parametric Hamacher 

operators with classical FID3 performances are worse than Algebraic Product/Sum 

operator with FID3-L-WABL performance (p value, 0.000).  

 

Bounded Product/Sum with FID3-L-WABl performance is worse than Bounded 

Product/Sum (p value, 0.019) and Non Parametric Hamacher (p value, 0.013) 

operators with classical FID3 performances’. 

 

 However, Non Parametric Hamacher operator with FID3-L-WABL has better 

performance than Bounded Product/Sum (p value, 0,001) and Non Parametric 

Hamacher operators (p value, 0.002) with classical FID3. 

 

It is observed that Zadeh (p value, 0.013) and Algebraic Product/Sum (p value, 

0.005) operators with classical FID3 performances’ are better than Zadeh with Fuzzy 

ID3-LR performance. Zadeh (p value, 0.000), Bounded Product/Sum(p value, 0.000), 

Algebraic Product/Sum(p value, 0.000), and Non Parametric Hamacher (p value, 

0.000) operators with classical FID3 performances are better than Algebraic 

Product/Sum with FID3-LR performance. None the less, Bounded Product/Sum (p 

value, 0.000) with FID3-LR performance is better than Zadeh, Bounded 

Product/Sum, Algebraic Product/Sum and Non Parametric Hamacher operators with 

classical FID3 performances (p value, 0).  

 

Non Parametric Hamacher operators with FID3-LR perfoms better than Algebraic 

Product/Sum (p value, 0.000). 

 

Pima data set 

 

Pima data set performance results for three approaches are given in Table 6.23, 

Table 6.24, and Table 6.25, respectively. 
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While classical FID3 approach with the threshold 0.60 is performed for the 

induction process on Pima data set, Zadeh operator has the higest accuracy rate with 

76.04% among the other non-parametric operators. While FID3-L-WABL approach 

with 0.69 threshold is performed for the induction process on Pima data set, Zadeh 

operator has the higest accuracy rate with 75.64% among the other non-parametric 

operators. While FID3-LR approach with 0.62 threshold is performed for the 

induction process on Pima data set, Non parametric Hamacher operator has the higest 

accuracy rate with 75.52% among the other non-parametric operators.  

 

The Friedman aligned ranks as a non-parametric statistical procedure is applied to 

detect statistical differences among a group of results on 31 thresholds value between 

0.60-0.90. for three approaches. The test results performed on both approaches have 

significant p-value, 0.000 as given in Table 6.26. It is seen that there are significant 

differences among the results (=0.05). 

 

Then, Wilcoxon signed rank tests are applied into the pima data set to test the 

comparison among the reasoning methods. It is seen that the results of Algebraic 

Product/Sum operator are better than the results of Zadeh operator produced with 

classical FID3 (p-value, 0.000), significantly.  

 

Bounded Product/Sum and Non Parametric Hamacher operators with classical 

FID3 have worse performance than Zadeh operator with classical FID3 (p value, 

0.000). In a similar manner, Bounded Product/Sum and Non Parametric Hamacher 

operators with classical FID3 have worse performance than Algebraic Product/Sum 

operator with classical FID3 (p value, 0.000). On the other hand, Non Parametric 

Hamacher operators with classical FID3 has better performance than Bounded 

Product/Sum operator (p value, 0.007). 
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Table 6.23 Pima data set performance results (%) different t-operators on different threshold results 

for classical FuzzyID3 (FID3). 

Threshold Zadeh 

Algebraic 

Product/ 

Sum 

Bounded 

Product/Sum 

NP_ 

Hamacher 

0.60 74.48 74.35 74.35 74.35 

0.61 74.48 74.35 74.35 74.35 

0.62 74.48 74.35 74.35 74.35 

0.63 74.22 73.69 73.96 73.44 

0.64 74.35 73.70 73.83 73.05 

0.65 75.39 75.26 74.74 73.44 

0.66 75.78 75.52 74.87 73.70 

0.67 76.04 75.39 75.13 73.31 

0.68 75.26 74.74 74.22 71.88 

0.69 75.52 75.39 74.35 72.27 

0.70 74.74 74.47 73.44 71.35 

0.71 74.34 74.47 72.78 71.48 

0.72 74.48 75.12 71.61 70.83 

0.73 74.34 74.60 71.61 72.52 

0.74 74.08 74.60 71.22 72.65 

0.75 73.56 74.86 70.70 72.78 

0.76 73.56 75.64 70.18 72.78 

0.77 73.56 75.64 70.18 72.78 

0.78 73.43 75.64 70.05 72.91 

0.79 72.91 74.99 69.92 73.17 

0.80 73.17 74.86 70.05 73.17 

0.81 73.04 74.47 69.92 73.17 

0.82 72.52 73.69 69.40 73.04 

0.83 72.39 73.56 69.27 72.78 

0.84 72.65 74.08 69.66 71.87 

0.85 69.79 72.00 67.32 68.48 

0.86 68.10 70.05 66.41 67.45 

0.87 68.49 69.66 66.15 67.58 

0.88 68.36 69.79 65.76 67.32 

0.89 68.23 69.92 65.76 67.97 

0.90 68.10 69.53 65.76 67.19 
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Table 6.24 Pima data set performance results (%) different t-operators on different threshold results 

for FuzzyID3-L-WABL (FID3-L-WABL). 

Threshold Zadeh_L 
Algebraic 

Product/Sum_L 

Bounded 

Product/ 

Sum_L 

NP_ 

Hamacher_L 

0.60 74.22 74.22 74.35 74.35 

0.61 74.22 74.22 74.35 74.35 

0.62 74.22 74.22 74.35 74.35 

0.63 73.57 73.18 73.70 72.66 

0.64 73.57 73.18 73.70 72.66 

0.65 75.00 73.83 74.47 72.53 

0.66 74.87 73.57 74.48 72.27 

0.67 74.99 73.83 73.70 72.53 

0.68 74.99 73.69 73.69 72.27 

0.69 75.64 74.74 74.21 73.44 

0.70 74.73 73.56 72.78 72.26 

0.71 74.21 74.21 71.61 72.39 

0.72 74.08 74.34 71.22 73.57 

0.73 74.21 73.56 70.80 73.83 

0.74 73.95 73.82 70.31 73.70 

0.75 72.91 73.82 69.66 73.56 

0.76 72.39 73.82 69.40 73.57 

0.77 72.26 73.69 69.40 73.17 

0.78 72.26 73.95 69.27 73.57 

0.79 71.61 73.69 69.14 72.39 

0.80 71.35 73.17 68.75 72.26 

0.81 70.96 72.78 68.10 72.00 

0.82 70.83 72.52 67.97 72.00 

0.83 70.96 72.91 68.23 71.87 

0.84 71.48 72.65 67.84 71.87 

0.85 69.79 71.61 67.32 69.53 

0.86 70.57 71.61 67.58 68.75 

0.87 70.57 71.61 67.58 68.75 

0.88 69.66 71.09 67.19 68.49 

0.89 69.01 70.44 67.06 68.75 

0.90 68.23 69.78 66.28 68.23 
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Table 6.25 Pima data set performance results (%) different t-operators on different threshold results 

for classical Fuzzy-LR (FID3-LR). 

Threshold Zadeh_L 
Algebraic 

Product/Sum_L 

Bounded 

Product/Sum_L 

NP_ 

Hamacher_L 

0.60 75.13 73.83 65.50 74.47 

0.61 74.73 73.30 65.24 74.73 

0.62 74.47 73.56 65.10 75.52 

0.63 74.47 72.91 65.10 75.51 

0.64 74.60 72.53 65.10 75.39 

0.65 74.08 71.21 65.10 75.12 

0.66 74.60 71.48 65.10 75.38 

0.67 74.60 71.09 65.10 75.25 

0.68 74.34 70.08 65.10 75.25 

0.69 73.95 70.56 65.10 74.99 

0.70 72.78 69.79 65.10 74.47 

0.71 72.39 69.39 65.10 73.56 

0.72 69.66 67.31 65.10 70.18 

0.73 67.32 66.41 65.10 67.32 

0.74 66.53 65.88 65.10 66.79 

0.75 65.75 65.75 65.10 66.01 

0.76 65.10 65.10 65.10 65.10 

0.77 65.10 65.10 65.10 65.10 

0.78 65.10 65.10 65.10 65.10 

0.79 65.10 65.10 65.10 65.10 

0.80 65.10 65.10 65.10 65.10 

0.81 65.10 65.10 65.10 65.10 

0.82 65.10 65.10 65.10 65.10 

0.83 65.10 65.10 65.10 65.10 

0.84 65.10 65.10 65.10 65.10 

0.85 65.10 65.10 65.10 65.10 

0.86 65.10 65.10 65.10 65.10 

0.87 65.10 65.10 65.10 65.10 

0.88 65.10 65.10 65.10 65.10 

0.89 65.10 65.10 65.10 65.10 

0.90 65.10 65.10 65.10 65.10 
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Table 6.26 Friedman aligned ranks test for Pima data set. 

Algorithm Rank Algorithm Rank Algorithm Rank 

Friedman aligned 

ranks 

Total N 31 

Test Statistic 

(df) 

200.796 

(11) 
Zadeh 10.06 Zadeh_L 8.11 Zadeh_L2 4.81 

Algebraic 

Product/Sum 
10.65 

Algebraic 

Product/Sum_L 
8.66 

Algebraic 

Product/Sum_L2 
2.29 

Bounded 

Product/Sum 
6.52 

Bounded 

Product/Sum_L 
5.76 

Bounded 

Product/Sum_L2 
1.73 

Asymptotic 

Sig. (2 sided 

test) 

0.000 
Non 

Parametric     

Hamacher 

( 0 ) 

6.65 

Non Parametric     

Hamacher_L 

( 0 ) 
7.03 

Non Parametric     

Hamacher_L2 

( 0 ) 
5.74 

 

While Algebraic Product/Sum (p-value, 0.004) and Bounded Product/Sum (p-

value, 0.000) operators with FID3-L-WABL has better performance than Zadeh with 

FID3-L-WABL, Non Parametric Hamacher (p-value, 0.000) has worse performance 

than it. Algebraic Product/Sum with FID3-L-WABL has better performance than 

Bounded Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value, 

0.000) with FID3-L-WABL. Hence, Non Parametric Hamacher with FID3-L-WABL 

(p-value, 0.000) has better performance than Bounded Product/Sum operator with 

FID3-L-WABL.  

 

Zadeh with FID3-LR performs better than Algebraic Product/Sum (p-value, 

0.000) and Bounded Product/Sum (p-value, 0.000) operators with FID3-LR. But,  

Non Parametric Hamacher with FID3-LR works better than Zadeh with FID3-LR. 

 

Algebraic Product/Sum with FID3-LR has a better performance than Bounded 

Product/Sum (p-value, 0.000) operator with FID3-LR. Non Parametric Hamacher 

with FID3-LR works better than Algebraic Product/Sum (p-value, 0.000) and 

Bounded Product/Sum (p-value, 0.000) with FID3-LR.  

 

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000)  with 

FID3-L-WABL has better performance than Zadeh with FID3-LR. In a similar 

manner, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000) with 
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FID3-L-WABL has better performance than Algebraic Product/Sum with FID3-LR. 

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000)  with 

FID3-L-WABL also has better performance than Bounded Product/Sum with FID3-

LR.  Additionaly, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), 

Bounded Product/Sum (p-value, 0.001), and Non Parametric Hamacher (p-value, 

0.000) with FID3-L-WABL has better performance than Non Parametric Hamacher 

with FID3-LR. 

 

Zadeh (p-value, 0.000) and Algebraic Product/Sum (p-value, 0.000) operator with 

classical FID3 have better performance than Zadeh operator with FID3-L-WABL. 

On the other hand, Zadeh operator with FID3-L-WABL has better performance than 

Bounded Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 

0.000) with classical FID3.  

 

Algebraic Product/Sum with FID3-L-WABL has better performance than Zadeh 

(p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded Product/Sum (p-

value, 0.000), and Non Parametric Hamacher (p-value, 0.000) with classical FID3.  

 

Yet, Bounded Product/Sum (p-value, 0.010) and Non Parametric Hamacher (p-

value, 0.007)  with classical FID3 have better performance than Bounded 

Product/Sum with FID3-L-WABL. However, Bounded Product/Sum  (p-value, 

0.001)  with classical FID3 has better performance than Non Parametric 

Hamacherwith FID3-L-WABL. 

 

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000)  

operators with classical FID3 have better performance than Zadeh operator with 

FID3-LR. In a similar manner, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-

value, 0.000), Bounded Product/Sum (p-value, 0.000), and Non Parametric 

Hamacher (p-value, 0.000) operators with classical FID3 have better performance 

than Algebraic Product/Sum operator with FID3-LR. Zadeh (p-value, 0.000), 
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Algebraic Product/Sum (p-value, 0.000), Bounded Product/Sum (p-value, 0.000), 

and Non Parametric Hamacher (p-value, 0.000)  operators with classical FID3 also 

have better performance than Bounded Product/Sum operator with FID3-LR. Finally, 

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.002), and Non Parametric Hamacher (p-value, 0.002)  

operators with classical FID3 have better performance than Non Parametric 

Hamacher operator with FID3-LR. 

 

Ring data set 

 

Ring data set performance results for three approaches are given in Table 6.27, 

Table 6.28, and Table 6.29, respectively. 

 

While classical FID3 approach with the threshold 0.72 is performed for the 

induction process on Ring data set, Algebraic Product/Sum operator has the higest 

accuracy rate with 75.07% among the other non-parametric operators. 

 

While FID3-L-WABL approach with 0.69 threshold is performed for the 

induction process on Ring data set, Algebraic Product/Sum operator has the higest 

accuracy rate with 75.01% among the other non-parametric operators. 

 

While FID3-LR approach with 0.60 threshold is performed for the induction 

process on Ring data set, Non parametric Hamacher operator has the higest accuracy 

rate with 62.54% among the other non-parametric operators.  

 

The Friedman aligned ranks as a non-parametric statistical procedure is applied to 

detect statistical differences among a group of results on 31 thresholds value between 

0.60-0.90. for three approaches. The test results performed on both approaches have 

significant p-value, 0.000 as given in Table 6.30. It is seen that there are significant 

differences among the results (=0.05). 
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Table 6.27 Ring data set performance results (%) different t-operators on different threshold results 

for classical FuzzyID3 (FID3).  

Threshold Zadeh 

Algebraic 

Product/ 

Sum 

Bounded Product/ 

Sum 

NP_ 

Hamacher 

0.60 70.20 70.41 65.97 65.08 

0.61 72.36 72.34 66.11 65.96 

0.62 72.57 72.38 66.15 65.69 

0.63 72.50 72.41 66.14 65.53 

0.64 72.78 72.78 66.39 65.12 

0.65 73.01 73.09 66.49 65.05 

0.66 73.21 74.01 66.70 65.68 

0.67 73.43 73.44 66.70 65.59 

0.68 73.84 73.95 66.64 66.88 

0.69 74.84 74.95 66.19 68.31 

0.70 74.82 74.95 65.59 68.68 

0.71 74.82 75.01 75.01 69.18 

0.72 74.61 75.07 64.72 69.22 

0.73 73.20 74.43 63.72 68.77 

0.74 73.55 74.81 63.82 69.01 

0.75 73.00 74.55 63.49 66.99 

0.76 71.20 73.18 62.41 68.00 

0.77 71.74 74.42 61.55 68.14 

0.78 68.47 73.88 58.93 65.53 

0.79 65.05 69.36 57.23 62.69 

0.80 64.20 69.66 56.66 62.32 

0.81 63.26 69.27 55.99 61.65 

0.82 62.15 68.51 55.30 60.55 

0.83 59.41 64.27 54.20 58.28 

0.84 56.53 60.00 52.95 55.93 

0.85 49.51 49.51 49.51 49.51 

0.86 49.51 49.51 49.51 49.51 

0.87 49.51 49.51 49.51 49.51 

0.88 49.51 49.51 49.51 49.51 

0.89 49.51 49.51 49.51 49.51 

0.90 49.51 49.51 49.51 49.51 
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Table 6.28 Ring data set performance results (%) different t-operators on different threshold results 

for FuzzyID3-L-WABL(FID3-L-WABL). 

Threshold Zadeh_L 

Algebraic 

Product/ 

Sum_L 

Bounded Product/ 

Sum_L 

NP_ 

Hamacher_L 

0.60 69.82 70.20 66.03 65.30 

0.61 71.85 72.31 66.30 66.26 

0.62 71.99 72.54 66.34 66.27 

0.63 71.96 72.54 66.32 65.86 

0.64 72.00 72.59 66.34 65.70 

0.65 72.11 72.58 66.45 65.50 

0.66 72.24 72.74 66.59 65.32 

0.67 73.04 73.55 66.97 66.49 

0.68 73.53 74.03 66.91 67.77 

0.69 74.24 75.01 70.43 69.07 

0.70 74.30 74.73 66.11 68.95 

0.71 74.27 74.63 65.56 69.05 

0.72 74.31 74.39 65.58 68.97 

0.73 74.41 74.96 65.39 69.11 

0.74 74.51 74.95 65.04 68.78 

0.75 74.14 74.88 64.61 68.88 

0.76 73.45 74.41 63.69 68.70 

0.77 64.14 67.38 56.73 62.07 

0.78 53.43 55.07 50.86 52.65 

0.79 52.35 53.47 50.68 51.73 

0.80 49.51 49.51 49.51 49.51 

0.81 49.51 49.51 49.51 49.51 

0.82 49.51 49.51 49.51 49.51 

0.83 49.51 49.51 49.51 49.51 

0.84 49.51 49.51 49.51 49.51 

0.85 49.51 49.51 49.51 49.51 

0.86 49.51 49.51 49.51 49.51 

0.87 49.51 49.51 49.51 49.51 

0.88 49.51 49.51 49.51 49.51 

0.89 49.51 49.51 49.51 49.51 

0.90 49.51 49.51 49.51 49.51 
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Table 6.29 Ring data set performance results (%) different t-operators on different threshold results 

for Fuzzy ID3-LR (FID3-LR). 

Threshold Zadeh_L 
Algebraic 

Product/Sum_L 

Bounded 

Product/Sum_L 

NP_ 

Hamacher_L 

0.60 60.34 63.38 53.55 62.54 

0.61 60.04 62.86 53.55 62.09 

0.62 59.60 63.08 53.58 62.08 

0.63 59.06 63.16 53.58 62.08 

0.64 58.65 62.78 51.49 61.72 

0.65 58.22 62.16 51.00 61.02 

0.66 57.86 61.96 50.99 60.86 

0.67 57.86 61.96 50.99 60.86 

0.68 57.30 61.99 50.98 60.73 

0.69 54.72 57.29 50.57 56.31 

0.70 54.91 57.34 50.57 56.42 

0.71 51.58 52.51 50.01 51.86 

0.72 53.15 52.76 50.14 52.11 

0.73 51.08 49.76 49.64 49.76 

0.74 51.08 49.76 49.64 49.76 

0.75 51.08 49.76 49.64 49.76 

0.76 51.08 49.76 49.64 49.76 

0.77 51.08 49.76 49.64 49.76 

0.78 51.08 49.76 49.64 49.76 

0.79 51.08 49.76 49.64 49.76 

0.80 51.08 49.76 49.64 49.76 

0.81 49.51 49.51 49.51 49.51 

0.82 49.51 49.51 49.51 49.51 

0.83 49.51 49.51 49.51 49.51 

0.84 49.51 49.51 49.51 49.51 

0.85 49.51 49.51 49.51 49.51 

0.86 49.51 49.51 49.51 49.51 

0.87 49.51 49.51 49.51 49.51 

0.88 49.51 49.51 49.51 49.51 

0.89 49.51 49.51 49.51 49.51 

0.90 49.51 49.51 49.51 49.51 
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Then, Wilcoxon signed rank tests are applied into the ring data set to test the 

comparison among the reasoning methods.  

 

It is seen that the results of Algebraic Product/Sum operator are better than the 

results of Zadeh operator produced with classical FID3 (p-value, 0.000), 

significantly. Bounded Product/Sum and Non Parametric Hamacher operators with 

classical FID3 have worse performance than Zadeh operator with classical FID3 (p 

value, 0.000). 

 

In a similar manner, Bounded Product/Sum and Non Parametric Hamacher 

operators with classical FID3 have worse performance than Algebraic Product/Sum 

operator with classical FID3 (p value, 0.000). Yet, Non Parametric Hamacher 

operators with classical FID3 has better performance than Bounded Product/Sum 

operator  (p value, 0.004). 

 

While Algebraic Product/Sum (p-value, 0.004) operator with FID3-L-WABL has 

better performance than Zadeh with FID3-L-WABL, Bounded Product/Sum (p-

value, 0.000) and Non Parametric Hamacher (p-value, 0.000) has worse performance 

than it. Algebraic Product/Sum with FID3-L-WABL has better performance than 

Bounded Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value, 

0.000) with FID3-L-WABL. Hence, Non Parametric Hamacher with FID3-L-WABL 

(p-value, 0.000) has better performance than Bounded Product/Sum operator with 

FID3-L-WABL.  

 

Zadeh with FID3-LR performs better than Bounded Product/Sum (p-value, 0.000) 

operators with FID3-LR. But,  Algebraic Product/Sum (p-value, 0.014) and Non 

Parametric Hamacher (p-value, 0.015) with FID3-LR works better than Zadeh with 

FID3-LR. 

 

 

Algebraic Product/Sum with FID3-LR is better performance than Bounded 

Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value, 0.000) 
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operator with FID3-LR. Non Parametric Hamacher with FID3-LR works better than 

Bounded Product/Sum (p-value, 0.000) with FID3-LR.  

 

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000)  with 

FID3-L-WABL has better performance than Zadeh with FID3-LR.  

 

In a similar manner, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 

0.000), Bounded Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-

value, 0.000) with FID3-L-WABL has better performance than Algebraic 

Product/Sum with FID3-LR.  

 

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000) with 

FID3-L-WABL also has better performance than Bounded Product/Sum with FID3-

LR.  Additionally, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), 

Bounded Product/Sum (p-value, 0.001), and Non Parametric Hamacher (p-value, 

0.000) with FID3-L-WABL has better performance than Non Parametric Hamacher 

with FID3-LR. 

 

Table 6.30 Friedman aligned ranks test for Ring data set. 

Algorithm Rank Algorithm Rank Algorithm Rank 

Friedman aligned 

ranks 

Total N 31 

Test 

Statistic 

(df) 

210.242 

(11) 
Zadeh 9.81 Zadeh_L 7.69 Zadeh_L2 3.97 

Algebraic 

Product/Sum 
10.48 

Algebraic 

Product/Sum_L 
8.74 

Algebraic 

Product/Sum_L2 
4.26 

Bounded 

Product/Sum 
6.98 

Bounded 

Product/Sum_L 
6.11 

Bounded 

Product/Sum_L2 
2.65 

Asymptotic 

Sig. (2 

sided test) 

0.000 
Non 

Parametric     

Hamacher 

( 0 ) 

7.19 

Non 

Parametric     

Hamacher_L 

( 0 ) 

6.27 

Non Parametric     

Hamacher_L2 

( 0 ) 
3.84 
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Zadeh (p-value, 0.000) and Algebraic Product/Sum (p-value, 0.000) operator with 

classical FID3 have better performance than Zadeh operator with FID3-L-WABL. 

On the other hand, Zadeh operator with FID3-L-WABL has better performance than 

Bounded Product/Sum (p-value, 0.005) with classical FID3. 

 

Algebraic Product/Sum with FID3-L-WABL has better performance than Zadeh 

(p-value, 0.021), and Algebraic Product/Sum (p-value, 0.005) with classical FID3.  

 

Algebraic Product/Sum with FID3-L-WABL has worse performance than 

Bounded Product/Sum (p-value, 0.0001).   

 

Yet, Bounded Product/Sum (p-value, 0.010) and Non Parametric Hamacher (p-

value, 0.007)  with classical FID3 have better performance than Bounded 

Product/Sum with FID3-L-WABL. However, Bounded Product/Sum  (p-value, 

0.001) with classical FID3 has better performance than Non Parametric 

Hamacherwith FID3-L-WABL. 

 

Zadeh (p-value, 0.000) and Algebraic Product/Sum (p-value, 0.000)  with 

classical FID3 have better performance than Non Parametric Hamacher with FID3-

L-WABL. 

 

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000)  

operators with classical FID3 have better performance than Zadeh operator with 

FID3-LR.  

 

In a similar manner, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 

0.000), Bounded Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-

value, 0.000) operators with classical FID3 have better performance than Algebraic 

Product/Sum operator with FID3-LR.  
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Also, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000)  

operators with classical FID3 have better performance than Bounded Product/Sum 

operator with FID3-LR.  

 

Finally, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), 

Bounded Product/Sum (p-value, 0.002), and Non Parametric Hamacher (p-value, 

0.002)  operators with classical FID3 have better performance than Non Parametric 

Hamacher operator with FID3-LR. 

 

Sonar data set 

 

Sonar data set performance results for three approaches are given in Table 6.31, 

Table 6.32, and Table 6.33, respectively. 

 

While classical FID3 approach with the threshold 0.88 is performed for the 

induction process on Sonar data set, Zadeh operator has the higest accuracy rate with 

75.49% among the other non-parametric operators. 

 

While FID3-L-WABL approach with 0.86 threshold is performed for the 

induction process on Sonar data set, Bounded Product/Sum operator has the higest 

accuracy rate with 77.39% among the other non-parametric operators. 

 

While FID3-LR approach with 0.88 threshold is performed for the induction 

process on Sonar data set, Non parametric Hamacher operator has the higest 

accuracy rate with 77.42% among the other non-parametric operators.  

 

The Friedman aligned ranks as a non-parametric statistical procedure is applied to 

detect statistical differences among a group of results on 31 thresholds value between 

0.60-0.90. for three approaches. The test results performed on both approaches have 

significant p-value, 0.000 as given in Table 6.34. It is seen that there are significant 

differences among the results (=0.05). 
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Table 6.31 Sonar data set performance results (%) different t-operators on different threshold results 

for classical Fuzzy ID3 (FID3). 

Threshold Zadeh 

Algebraic 

Product/ 

Sum 

Bounded Product/ 

Sum 

NP_ 

Hamacher 

0.60 73.60 73.61 73.61 73.61 

0.61 73.60 73.61 73.61 73.61 

0.62 73.60 73.61 73.61 73.61 

0.63 73.60 73.61 73.61 73.61 

0.64 73.60 73.61 73.61 73.61 

0.65 73.60 73.61 73.61 73.61 

0.66 73.60 73.61 73.61 73.61 

0.67 73.60 73.61 73.61 73.61 

0.68 73.60 73.61 73.61 73.61 

0.69 74.09 73.61 74.09 73.61 

0.70 74.09 73.12 74.10 72.14 

0.71 74.56 72.65 72.62 71.19 

0.72 73.59 67.39 72.64 63.99 

0.73 72.61 67.39 70.68 63.99 

0.74 73.08 63.11 71.16 58.72 

0.75 73.08 63.11 71.64 58.72 

0.76 72.60 63.11 70.69 58.72 

0.77 74.03 64.54 72.11 59.20 

0.78 74.03 64.54 72.11 59.20 

0.79 74.03 56.74 71.14 53.83 

0.80 74.03 56.74 72.57 52.39 

0.81 74.03 51.02 72.57 48.58 

0.82 72.60 46.63 70.65 46.63 

0.83 72.60 46.63 70.65 46.63 

0.84 73.55 46.63 70.64 46.63 

0.85 72.60 46.63 69.69 46.63 

0.86 74.07 54.92 71.15 48.58 

0.87 74.54 69.79 72.59 55.75 

0.88 75.49 69.79 72.58 56.72 

0.89 74.53 68.83 71.63 59.62 

0.90 74.54 74.05 71.15 62.50 
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Table 6.32 Sonar data set performance results (%) different t-operators on different threshold results 

for FuzzID3-L-WABL (FID3-L-WABL). 

Threshold Zadeh_L 

Algebraic 

Product/ 

Sum_L 

Bounded 

Product/ 

Sum_L 

NP_ 

Hamacher_L 

0.60 73.14 73.62 73.62 73.62 

0.61 73.14 73.62 73.62 73.62 

0.62 73.14 73.62 73.62 73.62 

0.63 73.14 73.62 73.62 73.62 

0.64 73.14 73.62 73.62 73.62 

0.65 73.14 73.62 73.62 73.62 

0.66 73.14 73.62 73.62 73.62 

0.67 73.14 73.62 73.62 73.62 

0.68 73.14 73.62 73.62 73.62 

0.69 73.62 73.62 74.11 72.65 

0.70 73.62 73.62 74.09 72.15 

0.71 73.61 73.14 73.11 70.19 

0.72 72.62 72.16 72.62 67.74 

0.73 73.10 72.16 72.62 65.84 

0.74 73.10 73.59 73.58 64.41 

0.75 73.10 74.08 73.09 64.41 

0.76 73.58 73.12 73.09 63.94 

0.77 75.01 74.55 74.99 64.41 

0.78 75.01 74.55 74.99 65.39 

0.79 75.01 67.72 74.99 58.08 

0.80 75.01 56.77 74.52 50.94 

0.81 74.05 46.63 74.52 46.63 

0.82 75.02 46.63 75.01 46.63 

0.83 75.49 52.82 75.48 51.87 

0.84 75.97 52.82 75.96 51.87 

0.85 75.97 46.63 75.96 46.63 

0.86 76.45 50.44 77.39 47.58 

0.87 76.45 62.64 76.42 49.05 

0.88 76.93 62.15 76.42 50.99 

0.89 75.49 67.86 76.42 55.31 

0.90 75.98 74.05 75.46 57.68 
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Table 6.33 Sonar data set performance results (%) different t-operators on different threshold results 

for FuzzyID3-LR (FID3-LR). 

Threshold Zadeh_L 
Algebraic 

Product/Sum_L 

Bounded 

Product/Sum_L 

NP_ 

Hamacher_L 

0.60 65.89 70.73 63.94 69.77 

0.61 65.89 70.73 63.94 69.77 

0.62 66.86 69.76 63.94 68.30 

0.63 66.86 69.76 63.94 68.79 

0.64 66.86 69.76 63.94 68.79 

0.65 65.89 62.44 63.94 60.99 

0.66 65.59 62.44 63.94 60.99 

0.67 68.27 62.52 65.37 63.02 

0.68 69.70 65.38 66.32 63.48 

0.69 70.19 65.38 66.32 63.48 

0.70 70.19 65.38 66.32 62.51 

0.71 69.23 72.52 61.08 69.65 

0.72 70.19 71.20 60.60 65.91 

0.73 72.09 71.70 57.74 68.28 

0.74 73.06 77.39 57.74 73.08 

0.75 74.03 77.89 57.75 74.99 

0.76 74.97 76.92 57.75 73.56 

0.77 76.92 77.43 56.77 75.02 

0.78 75.98 76.93 56.77 75.97 

0.79 76.96 77.41 56.77 75.49 

0.80 76.96 77.41 57.25 73.10 

0.81 76.48 77.41 57.25 74.53 

0.82 76.95 77.40 57.72 75.48 

0.83 76.46 77.40 57.72 75.48 

0.84 76.93 77.40 57.72 74.54 

0.85 77.42 78.85 57.72 76.96 

0.86 76.93 78.37 56.76 75.04 

0.87 78.62 79.33 55.30 77.89 

0.88 76.92 76.45 54.82 75.96 

0.89 75.49 75.97 54.82 76.46 

0.90 76.92 75.51 53.87 76.46 
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Then, Wilcoxon signed rank tests are applied into the sonar data set to test the 

comparison among the reasoning methods.  

 

It is seen that the results of Zadeh operator with classical FID3are better than the 

results of produced by Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000) 

operators with classical FID3. Bounded Product/Sum operator with classical FID3 

have better performance than Algebraic Product/Sum operator with classical FID3 (p 

value, 0.000). 

 

In a similar manner, Non Parametric Hamacher operators with classical FID3 

have worse performance than Bounded Product/Sum(p value, 0.000) and Algebraic 

Product/Sum (p value, 0.000) operators with classical FID3.  

 

Algebraic Product/Sum (p-value, 0.019) and Non Parametric Hamacher (p-value, 

0.000) with FID3-L-WABL has worse performance than Zadeh with FID3-L-

WABL. Bounded Product/Sum (p-value, 0.000) with FID3-L-WABL has better 

performance than Algebraic Product/Sum with FID3-L-WABL.  

 

Hence, Non Parametric Hamacher with FID3-L-WABL (p-value, 0.000) has 

worse performance than Algebraic Product/Sum and Bounded Product/Sum operator 

with FID3-L-WABL.  

 

Zadeh with FID3-LR is better performance than Bounded Product/Sum (p-value, 

0.000) and Non Parametric Hamacher (p-value, 0.004) operators with FID3-LR. 

And, Algebraic Product/Sum (p-value, 0.000) and Bounded Product/Sum (p-value, 

0.000) with FID3-LR Zadeh with FID3-LR work better than Non Parametric 

Hamacher with FID3-LR Zadeh with FID3-LR. 

 

Non Parametric Hamacher (p-value, 0.000) with FID3-LR has better performance 

than Bounded Product/Sum (p-value, 0.000) with FID3-LR . 
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Table 6.34 Friedman aligned ranks test for Sonar data set. 

Algorithm Rank Algorithm Rank Algorithm Rank 

Friedman aligned ranks 

Total N 31 

Test 

Statistic 

(df) 

101.591 

(11) 

Zadeh 7.27 Zadeh_L 8.16 Zadeh_L2 7.34 

Algebraic 

Product/Su

m 

5.13 
Algebraic 

Product/Sum

_L 

7.42 
Algebraic 

Product/S

um_L2 
8.00 

Bounded 

Product/Su

m 

6.89 
Bounded 

Product/Sum

_L 

9.60 
Bounded 

Product/S

um_L2 
2.42 

Asymptotic 

Sig. (2 sided 

test) 

0.000 Non 

Parametric     

Hamacher 

( 0 ) 

4.21 

Non 

Parametric     

Hamacher_L 

( 0 ) 

5.34 

Non 

Parametri

c     

Hamacher

_L2 

( 0 ) 

6.23 

 

While Zadeh (p-value, 0.031) and Bounded Product/Sum (p-value, 0.041) with 

FID3-L-WABL has better performance than Zadeh with FID3-LR, Non Parametric 

Hamacher (p-value, 0.001) with FID3-L-WABL has a worse performance than 

Zadeh with FID3-LR. 

 

Algebraic Product/Sum (p-value, 0.000) with FID3-LR has a better performance 

than Non Parametric Hamacher (p-value, 0.001) with FID3-L-WABL. 

 

Also, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.024)  with 

FID3-L-WABL has better performance than Bounded Product/Sum with FID3-LR. 

 

 While Zadeh (p-value, 0.001), and Bounded Product/Sum (p-value, 0.001) with 

FID3-L-WABL has better performance than Non Parametric Hamacher with FID3-

LR, Non Parametric Hamacher (p-value, 0.001) with FID3-LR has a better 

performance than Non Parametric Hamacher with FID3-L-WABL.   

 

Zadeh (p-value, 0.011), Algebraic Product/Sum (p-value, 0.000), Bounded 

Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000) 

operator with classical FID3 have worse performance than Zadeh operator with 

FID3-L-WABL. On the other hand, while Algebraic Product/Sum operator with 

FID3-L-WABL works worse than Zadeh (p-value, 0.007)    with classical FID3,  it 
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works better than Algebraic Product/Sum (p-value, 0.004) and Non Parametric 

Hamacher (p-value, 0.000) with classical FID3. 

 

Bounded Product/Sum with FID3-L-WABL has a better performance than Zadeh 

(p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded Product/Sum (p-

value, 0.000), and Non Parametric Hamacher (p-value, 0.000)  with classical FID3. 

 

Non Parametric Hamacher with FID3-L-WABL has a better performance than 

Zadeh (p-value, 0.000), Bounded Product/Sum (p-value, 0.000) with classical FID3. 

 

Algebraic Product/Sum (p-value, 0.006) and Non Parametric Hamacher (p-value, 

0.000) operators with classical FID3 have better performance than Zadeh operator 

with FID3-LR.  

 

Algebraic Product/Sum with FID3-L-LR has a better performance than Algebraic 

Product/Sum (p-value, 0.005) and Non Parametric Hamacher (p-value, 0.001) with 

classical FID3.  

 

Bounded Product/Sum with FID3-LR has a worse performance than Zadeh, 

Algebraic Product/Sum (p-value, 0.000) and Bounded (p-value, 0.003) with classical 

FID3.  

 

While Non Parametric Hamacher with FID3-LR has a worse performance than 

Zadeh (p-value, 0.023) with classical FID3, it has a better performance than 

Algebraic Product/Sum (p-value, 0.030) and Non Parametric Hamacher (p-value, 

0.001) with classical FID3. 

 

Wdbc data set 

 

Wdbc data set performance results for three approaches are given in Table 6.35, 

Table 6.36, and Table 6.37, respectively. 
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While classical Fuzzy ID3 approach with the threshold 0.88 is performed for the 

induction process on Wdbc data set, Algebraic Product/Sum operator has the higest 

accuracy rate with 93.67% among the other non-parametric operators. 

 

While Fuzzy ID3-L-WABL approach with 0.90 threshold is performed for the 

induction process on Wdbc data set, Bounded Product/Sum operator has the higest 

accuracy rate with 94.55% among the other non-parametric operators. 

 

While Fuzzy ID3-LR approach with threshold range 0.88-0.90 is performed for 

the induction process on Wdbc data set, Algebraic Product/Sum operator has the 

higest accuracy rate with 94.38% among the other non-parametric operators.  

 

The Friedman aligned ranks as a non-parametric statistical procedure is applied to 

detect statistical differences among a group of results on 31 thresholds value between 

0.60-0.90 for three approaches. The test results performed on both approaches have 

significant p-value, 0.000 as given in Table 6.38. It is seen that there are significant 

differences among the results (=0.05). 

 

Then, Wilcoxon signed rank tests are applied into the Wdbc data set to test the 

comparison among the reasoning methods. It is seen that the results of Zadeh 

operator with classical FID3 are worse than the results of produced by Bounded 

Product/Sum (p-value, 0.000) with classical FID3.  Zadeh with classical FID3 has 

better performance than Non Parametric Hamacher (p-value, 0.000) with classical 

FID3. 

 

While Bounded Product/Sum operator with classical FID3 has a better 

performance than Algebraic Product/Sum operator with classical FID3 (p value, 

0.000), Non Parametric Hamacher operator has a worse performance than Algebraic 

Product/Sum operator with classical FID3 (p value, 0.000). In a similar manner, Non 

Parametric Hamacher operator with classical FID3 has a worse performance than 

Bounded Product/Sum (p value, 0.000) operator with classical FID3.   
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Table 6.35 Wdbc data set performance results (%) different t-operators on different threshold results 

for classical Fuzzy ID3 (FID3). 

Threshold Zadeh 

Algebraic 

Product/ 

Sum 

Bounded Product/ 

Sum 

NP_ 

Hamacher 

0.60 88.23 89.46 89.81 85.95 

0.61 88.23 89.46 89.81 88.40 

0.62 88.23 89.46 89.81 88.23 

0.63 89.98 90.51 90.86 85.95 

0.64 89.98 90.51 90.86 85.95 

0.65 89.98 90.51 90.86 85.95 

0.66 89.98 90.51 90.86 85.95 

0.67 89.98 90.51 90.86 85.95 

0.68 89.98 90.51 90.86 85.95 

0.69 89.98 90.51 90.86 85.95 

0.70 89.98 90.51 90.86 85.95 

0.71 89.98 90.51 90.86 85.95 

0.72 89.98 90.51 90.86 85.95 

0.73 89.98 90.51 90.86 85.95 

0.74 90.51 91.04 91.39 84.18 

0.75 90.51 91.04 91.39 84.18 

0.76 90.34 90.86 91.39 83.82 

0.77 91.39 91.74 92.09 83.12 

0.78 91.39 91.74 92.09 83.12 

0.79 91.03 80.77 92.09 74.63 

0.80 91.74 69.54 92.62 64.80 

0.81 91.74 69.54 92.62 64.80 

0.82 91.38 46.73 92.79 46.73 

0.83 91.74 57.96 92.79 54.80 

0.84 92.44 69.89 92.09 62.17 

0.85 92.09 69.89 92.09 62.87 

0.86 92.09 69.89 92.27 62.70 

0.87 91.92 81.22 91.92 68.18 

0.88 92.97 82.62 92.09 65.90 

0.89 92.79 93.67 92.09 72.58 

0.90 92.79 93.67 92.09 73.63 
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Table 6.36 Wdbc data set performance results (%) different t-operators on different threshold results 

for Fuzzy ID3-L-WABL (FID3-L-WABL). 

Threshold Zadeh_L 

Algebraic 

Product/ 

Sum_L 

Bounded 

Product/ 

Sum_L 

NP_ 

Hamacher_L 

0.60 88.23 89.46 89.81 88.40 

0.61 90.16 90.33 90.51 85.95 

0.62 90.16 90.33 90.51 85.95 

0.63 90.16 90.33 90.51 85.95 

0.64 90.16 90.33 90.51 85.95 

0.65 90.16 90.33 90.51 85.95 

0.66 90.16 90.33 90.51 85.95 

0.67 89.98 89.98 90.51 85.95 

0.68 89.98 89.98 90.51 85.95 

0.69 89.98 89.98 90.51 84.89 

0.70 89.98 89.98 90.51 84.89 

0.71 89.98 89.98 90.51 85.89 

0.72 89.98 78.75 90.51 75.60 

0.73 89.98 78.75 90.51 75.60 

0.74 90.87 79.82 91.57 73.83 

0.75 90.87 79.82 91.57 73.83 

0.76 92.10 69.36 92.62 65.15 

0.77 92.10 69.36 92.62 65.15 

0.78 92.10 69.36 92.62 65.15 

0.79 92.10 69.36 92.62 65.15 

0.80 92.10 69.36 92.62 65.15 

0.81 92.62 57.96 92.62 54.98 

0.82 92.45 46.91 92.45 46.91 

0.83 92.45 69.54 92.62 60.24 

0.84 92.62 69.89 92.62 60.07 

0.85 92.80 69.89 92.62 60.94 

0.86 92.62 71.47 92.27 56.03 

0.87 92.62 71.82 92.27 56.21 

0.88 92.62 59.89 92.27 51.47 

0.89 94.20 94.38 93.67 73.44 

0.90 94.55 94.38 93.85 75.74 
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Table 6.37 Wdbc data set performance results (%) different t-operators on different threshold results 

for Fuzzy ID3-LR (FID3-LR). 

Threshold Zadeh_L 
Algebraic 

Product/Sum_L 

Bounded 

Product/Sum_L 

NP_ 

Hamacher_L 

0.60 90.16 90.86 90.86 91.04 

0.61 90.16 90.86 90.86 91.04 

0.62 90.16 90.86 90.86 91.04 

0.63 90.16 90.86 90.86 91.04 

0.64 90.16 90.86 90.86 91.04 

0.65 90.16 90.86 90.86 91.04 

0.66 90.16 90.86 90.86 91.04 

0.67 90.16 90.86 90.86 91.04 

0.68 90.16 90.86 90.86 91.04 

0.69 90.16 90.86 90.86 91.04 

0.70 90.16 90.86 90.86 91.04 

0.71 90.16 90.86 90.86 91.04 

0.72 90.16 90.86 90.86 91.04 

0.73 90.16 90.86 90.86 91.04 

0.74 90.16 90.86 90.86 91.04 

0.75 90.16 90.86 90.86 91.04 

0.76 90.16 90.86 90.86 91.04 

0.77 90.16 90.86 90.86 91.04 

0.78 90.16 90.86 90.86 91.04 

0.79 90.16 90.86 90.86 91.04 

0.80 90.16 90.86 90.86 91.04 

0.81 90.16 90.86 90.86 91.04 

0.82 90.16 90.86 90.86 91.04 

0.83 90.16 89.98 89.63 88.58 

0.84 91.39 90.16 89.10 88.05 

0.85 92.62 90.33 88.05 87.67 

0.86 92.62 90.33 88.05 87.99 

0.87 92.44 93.14 47.17 90.86 

0.88 93.15 94.38 37.26 91.92 

0.89 93.15 94.38 37.26 91.92 

0.90 92.97 94.38 37.26 92.09 
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Algebraic Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value, 

0.000) with FID3-L-WABL have worse performance than Zadeh with FID3-L-

WABL. Bounded Product/Sum (p-value, 0.001) with FID3-L-WABL has a better 

performance than Zadeh operator with FID3-L-WABL. Hence, Non Parametric 

Hamacher with FID3-L-WABL (p-value, 0.000) has a worse performance than 

Algebraic Product/Sum operator with FID3-L-WABL. But, Bounded Product/Sum 

with FID3-L-WABL has a better performance than Algebraic Product/Sum operator 

(p-value, 0.000) and Non-Parametric Hamacher (p-value, 0.000) with FID3-L-

WABL.  

 

Zadeh with FID3-LR is worse performance than Algebraic Product/Sum (p-value, 

0.000) operator with FID3-LR. And, Algebraic Product/Sum with FID3-LR works 

better than Bounded Product/Sum (p-value, 0.000) with FID3-LR Zadeh. Also, Non 

Parametric Hamacher with FID3-LR has a better perfomance than Bounded 

Product/Sum (p-value, 0.000) with FID3-LR Zadeh. 

 

While Zadeh (p-value, 0.004) and Bounded Product/Sum (p-value, 0.000) with 

FID3-L-WABL have better performance than Zadeh with FID3-LR, Algebraic 

Product/Sum  (p-value, 0.000) and Non Parametric Hamacher (p-value, 0.000) with 

FID3-L-WABL have worse performance than Zadeh with FID3-LR. 

 

Table 6.38 Friedman aligned ranks test for Wdbc data set. 

Algorithm Rank Algorithm Rank Algorithm Rank 

Friedman aligned ranks 

Total N 31 

Test Statistic 

(df) 

189.11 
(11) 

Zadeh 5.77 Zadeh_L 7.77 Zadeh_L2 6.29 

Algebraic 

Product/Su

m 

6.19 
Algebraic 

Product/Sum_L 
4.32 

Algebraic 

Product/Sum_L2 
8.79 

Bounded 

Product/Su

m 

9.26 
Bounded 

Product/Sum_L 
9.35 

Bounded 

Product/Sum_L2 
7.31 

Asymptotic 

Sig. (2 sided 

test) 

0.000 Non 

Parametric     

Hamacher 

( 0 ) 

2.23 

Non 

Parametric     

Hamacher_L 

( 0 ) 

1.56 

Non Parametric     

Hamacher_L2 

( 0 ) 
9.15 

 

While Zadeh (p-value, 0.000) and Bounded Product/Sum (p-value, 0.000) with 

FID3-L-WABL have better performance than Zadeh with FID3-LR, Algebraic 
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Product/Sum  (p-value, 0.000) and Non Parametric Hamacher (p-value, 0.000) with 

FID3-L-WABL have worse performance than Algebraic Product/Sum with FID3-

LR. 

 

Zadeh (p-value, 0.016) and Bounded Product/Sum (p-value, 0.002) with FID3-L-

WABL have better performance than Bounded Product/Sum with FID3-LR.  Yet, 

Algebraic Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value, 

0.000)  with FID3-L-WABL also has worse performance than Bounded Product/Sum 

with FID3-LR. 

 

While Bounded Product/Sum (p-value, 0.011) with FID3-L-WABL has better 

performance than Non Parametric Hamacher with FID3-LR, Algebraic Product/Sum 

(p-value, 0.000) and Non Parametric Hamacher (p-value, 0.000) with FID3-LR has a 

better performance than Non Parametric Hamacher with FID3-L-WABL.   

 

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.009), and Non 

Parametric Hamacher (p-value, 0.000) operator with classical FID3 have worse 

performance than Zadeh operator with FID3-L-WABL. On the other hand, Bounded 

Product/Sum operator with classical FID3 works better than Zadeh (p-value, 0.000) 

with FID3-L-WABL. 

 

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.006), and Bounded 

Product/Sum (p-value, 0.000) with classical FID3 have better performance than 

Algebraic Product/Sum with FID3-L-WABL. But, Algebraic Product/Sum with 

FID3-L-WABL has better performance than Non Parametric Hamacher (p-value, 

0.000) with classical FID3. 

 

In a similar manner, Zadeh (p-value, 0.000), and Algebraic Product/Sum (p-value, 

0.006) with classical FID3 have better performance than Bounded Product/Sum with 

FID3-L-WABL. But, Bounded Product/Sum with FID3-L-WABL has a better 

performance than Non Parametric Hamacher (p-value, 0.000) with classical FID3. 
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Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.009), Bounded 

Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value, 0.000) 

operator with classical FID3 have better performance than Non Parametric Hamacher 

operator with FID3-L-WABL.  

 

Bounded Product/Sum (p-value, 0.000) with classical FID3 has a better 

performance than Zadeh with FID3-LR. But, Zadeh with FID3-LR has a better 

performance than Non Parametric Hamacher (p-value, 0.000) with classical FID3. 

 

Zadeh (p-value, 0.029), Algebraic Product/Sum (p-value, 0.000) and Non 

Parametric Hamacher (p-value, 0.000) with classical FID3 have worse performance 

than Algebraic Product/Sum with FID3-LR.  

 

Bounded Product/Sum with FID3-LR has a better performance than Algebraic 

Product/Sum (p-value, 0.035) and Non Parametric Hamacher (p-value, 0.002)  with 

classical FID3. Yet, Bounded Product/Sum with classical FID3 has a better 

performance than Bounded Product/Sum with FID3-LR. 

 

Non Parametric Hamacher (p-value, 0.000) with FID3-LR performs better than 

Algebraic Product/Sum with classical FID3. 

 

6.3.4.2 Conclusion 

 

In this study, novel two fuzzy decision tree approaches for linguistic data are 

proposed. In daily life, words are used for the communication. Especially, this 

century is the evolution of the information. This information is stored as words. It is 

necessary to solve the relations among the words and sentences. This study aims to 

seek novel ways to find the rules among the data stored as words. In addition, it gives 

a methodology in order to solve the classification problem for fuzzy data 

warehouses. 
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In the first approach, L-R fuzzy data is used then WABL method for 

Defuzzification is adapted and it is applied. Fuzzy c-means algorithm is also used in 

order to handle membership degrees. After the fuzzification phase, fuzzy ID3 

approach is applied. It is seen that FID3-L-WABL approach has a good performance 

not less than classical FID3. In second approach, L-R fuzzy data is adapted into 

FuzzyID3 algorithm, directly. FID3-LR uses FkM-F algorithm for the fuzzification 

phase. It is observed that the comparisons have shown that this approach has a better 

performance in some different reasoning approaches.  

 

The behaviour of this approach by using 31 threshold value changes in the range 

0.60-0.90 is analyzed for 6 well known data sets. It is seen that FID3-L-WABL and 

FID3-LR with different T-operators have better behaviour on some data sets (Iris 

data set, Phoneme data set) than classical FID3. 

 

It is observed that Iris data set has the maximum accuracy rates of 96.67%  for 

Algebraic Product/Sum with classical FID3 and Algebraic Product/Sum FID3-L-

WABL while 𝜃𝑟 = 0.75. Wdbc data set has the highest accuracy rate with 94.55% 

for Bounded Product/Sum with FID3-L-WABL while 𝜃𝑟 = 0.75. While Sonar data 

set has the highest accuracy rate 77.42% for Non-parametric Hamacher with FID3-

LR(𝜃𝑟 = 0.75), Pima data set has the highest accuracy rate 76.04% for Non-

parametric Hamacher with classical FID3(𝜃𝑟 = 0.75).  

 

Phoneme data set has the maximum accuracy rate of 77.01% for Non-parametric 

Hamacher with FID3-LR. Lastly, Ring has the highest performance for Non-

Parametric Hamacher with FID3-LR.  

 

Four small data sets (Iris, Wdbc, Sonar, Pima) have good performances on 

classical FID3, Fuzzy-L-WABL, and Fuzzy-LR on different T-operators. Hence, 

Fuzzy-LR has better performance than the other approaches for large data sets 

(Phoneme, and Ring). 
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In the future, several works remains to be addressed. This study can directly be 

applied to the data set which is defined as linguistics. Moreover, a synergy can be 

adapted into the study between overlap functions and decomposition strategies for 

linguistic data approach. Finally, linguistic summary can be adapted in to the 

reasoning procedure in order to find the important rules. 
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CHAPTER SEVEN  

CONCLUSION 

 

In this work, a fundamental solution is proposed to solve the geographic 

classification problem and the effects of different T-operators on its reasoning 

procedure on numeric data is investigated in this problem solution. In addition, two 

novel fuzzy ID3 approaches working on linguistic data have been proposed. The first 

one is FID3-L-WABL (Fuzzy ID3 Algorithm Based on Linguistic Data by Using 

WABL Defuzzification Method) which is a novel version of the known Fuzzy 

Interactive Dichotomizer 3 (Fuzzy ID3) classification algorithm working on 

linguistic data. The second one is FID3-LR (Fuzzy ID3 Algorithm for L-R Fuzzy 

Data) which is a mixture of FkM-F (Fuzzy k-means Clustering Model for Fuzzy 

data) clustering algorithm working on L-R fuzzy data and Fuzzy Interactive 

Dichotomizer 3 (Fuzzy ID3) classification algorithms.  

 

Fuzzy c-means algorithm and FkM-F were performed in MATLAB 2014a. The 

codes for the experiments, FuzzyID3 by using T-operators, FID3-L-WABL, and 

FID3-LR, have been developed in the MS Visual Studio C# IDE for the experimental 

study (intel i7, 2.4 GHz, 4 Gb RAM). OliveDeSoft is designed for current and future 

studies to analyze the olive oil quality and geographic characterization. In addition, 

fuzzy ID3 algorithm has been designed as an integrated software system called as 

Fuzzy Artemis. 

 

The fundamental idea of the FID3-L-WABL is to work on fuzzy data. In this 

approach, L-R (Left-Right) fuzzy number is used. Each fuzzy number is defuzzified 

by using WABL (Weighted Averaging Based on Levels). Then, it is adapted with 

Fuzzy c-means algorithm to achieve the fuzzification. Consequently, Fuzzy ID3 

algorithm is applied. In other words, FID3-L-WABL is worked on linguistic dataset 

to provide a classification system. It is flexible. WABL is used to calculate the 

average representative of a fuzzy number. WABL approach is the most robust 

mathematical model among the defuzzificaiton methods. It supports the performance 

of FID3 algorithm to obtain the rules within the linguistic dataset. 
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The other proposed algorithm, FID3-LR, works directly on L-R (Left-Right) 

fuzzy data. The fuzzificaiton is done by FkM-F. FkM-F is a fuzzy clustering 

algorithm which is presented for L-R (Left-Rigt) fuzzy data. It uses a weighted 

dissimilarity measure to compute the distances between two fuzzy L-R data. It 

handles membership degrees for each cluster whose number is specified before. This 

approach is convenient if the database is defined as linguistic.  

 

These two novel approaches are supported with the different non-parametric T-

opeators on reasoning procedure. Computational experiments are performed and, 

these experiments are encouraged by statistical analyses. After experiments with 

various T-operators on six different datasets, the proposed approaches that give 

better results have been observed.  

 

To summarized, in this thesis; 

 

Fuzzy ID3 algorithm (FID3) has been discoursed and a geographic classification 

problem for virgin olive oil is analyzed by using different T-operators on reasoning 

phase. 

 

A software called as OliveDeSoft is proposed in order to classify the olive oil 

samples.  

 

Fuzzy ID3 algorithm (FID3) has been achieved and a novel FID3 algorithm, 

called FID3-L-WABL, of which is linguistic variant has been proposed. WABL 

defuzzification method is used to defuzzify L-R fuzzy data.  

 

FID3-LR algorithm is suggested on the basis of Fuzzy ID3 algorithm which works 

directly on L-R fuzzy data. It works fundamentally on linguistic databases to solve 

the classification problems.  
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A software called FuzzyArtemis is presented to succeed in the experimental study 

for Fuzzy ID3, Fuzzy ID3-L-WABL, and Fuzzy ID3-LR.  

 

Fuzzy c-means (FCM) algorithm and FkM-F are performed in MATLAB 2014a.  

 

The codes for the experiments, FuzzyID3 by using T-operators, FID3-L-WABL, 

and FID3-LR, have been developed in the MS Visual Studio C# IDE for the 

experimental study (intel i7, 2.4 GHz, 4 Gb RAM). They have been designed and 

integrated into a software. 

 

In the future, OliveDeSoft can be improved to determine the quality of virgin 

olive oil and the charaterization of olive oil as a tool of geographic indications for 

olive oil sector in Turkey. The proposed algorithms can also be applied directly into 

linguistic databases. Moreover, a synergy can be adapted into the study between 

overlap functions and decomposition strategies for linguistic data approach. Finally, 

linguistic summary can be adapted into the reasoning procedure to make the 

summarization of the linguistic data sets by evaluatig the rule base. In the light of 

these aims, FuzzyArtemis can be improved.  
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