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DEVELOPMENT AND IMPLEMENTATIONS
OF FUZZY DECISION TREE ALGORITHMS

ABSTRACT

In this work, fundamentally fuzzy 1D3 algorithm and the effects of T-operators on
its reasoning procedure on numeric data is investigated and two novel approaches
working on linguistic data have been proposed. Firstly, the information about fuzzy
ID3 approach is presented. The usage of T-operators is given in details. The
implementation is applied on geographic classification of virgin olive oil. Then, the
first proposed approach on linguistic data is the FID3-L-WABL (Fuzzy ID3
Algorithm Based on Linguistic Data by Using WABL Defuzzification Method)
which is a novel version of the known Fuzzy Interactive Dichotomizer 3 (Fuzzy ID3)
classification algorithm working on linguistic data. This approach is performed on L-
R (Left-Right) Fuzzy Number. Each fuzzy number is defuzzified by using WABL
(Weighted Averaging Based on Levels). Then, Fuzzy c-means algorithm is adapted
to obtain membership values of each fuzzy term for each fuzzy variable.
Consequently, Fuzzy 1D3 algorithm is applied. The second proposed approach is the
FID3-LR (Fuzzy ID3 Algorithm for L-R Fuzzy Data) which is a mixture of FkM-F
(Fuzzy k-means Clustering Model for Fuzzy data) clustering algorithm working on
L-R fuzzy data and Fuzzy Interactive Dichotomizer 3 (Fuzzy ID3) classification

algorithms.

Fuzzy c-means algorithm was performed in MATLAB 2014a. The codes for the
experiments, FuzzylD3 by using T-operators, FID3-L-WABL, and FID3-LR, have
been developed in the MS Visual Studio C# IDE for the experimental study (Intel i7,
2.4 GHz, 4 Gb RAM). They have been designed as an integrated software system
called as Fuzzy Artemis. In addition, OliveDeSoft is designed for current and future

studies in order to analyze the olive oil quality and geographic characterization.

Keywords: Fuzzy logic, fuzzy decision tree, classification, defuzzification, linguistic

data, geographic identification, olive oil.



BULANIK KARAR AGACI ALGORITMALARININ GELIiSiMi VE
UYGULAMALARI

(0Y/

Bu c¢alismada, esasen fuzzy ID3 algoritmasi ve niimerik veri iizerinde T-
operatorlerinin ¢ikarsama prosediiriine etkisi arastirilir ve sézel veri tlizerinde ¢alisan
iki yeni yaklasim ortaya konulmaktadir. Oncelikle, fuzzy ID3 yaklasim
sunulmaktadir. T-operatorlerinin kullanimi detaylica incelenmektedir. Uygulamasi,
natiirel zeytinyaginin cografik siiflandirilmasi tizerinde gergeklestilmektedir. Sonra,
sozel verilerde ¢alisan ilk sunulan yaklasim Fuzzy Interactive Dichotomizer 3
(Bulanik ID3) siniflandirma algoritmasinin yeni bir versiyonu olan FID3-L-WABL
(WABL durulagtirma methodu kullanilarak sozel veriye dayali Bulanik ID3
Algoritmasi)’dir. Bu yaklasim, L-R (Sol-Sag) Bulanik Sayis1 iizerinde
calistilmaktadir. Her bulanik say1 WABL (Weighted Averaging Based on Levels) ile
durulagtirilmaktadir. Sonra, Bulanik c-Ortalamalar algoritmasi, her bulanik
degiskenin bulanik terimimin tiyelik derecesini elde etmek icin adapte edilmektedir.
Son olarak, Bulanik ID3 uygulanir. Ikinci sunulan yaklasim, L-R bulanik veri
tizerinde ¢alisan FkM-F (Bulanik Veri igin Bulanik k-ortalamalar Kiimeleme Modeli)
kiimeleme algoritmasinin, Fuzzy Interactive Dichotomizer 3 (Bulanik [D3)
algortimasiyla karigimindan olusan FID3-LR (Bulanik Veri i¢in Bulanik 1D3)

algoritmasidir.

Bulanik c-ortalamalar algoritmast MATLAB 2014a’da yazilmistir. T-operatorleri
kullanilarak ¢alisan FuzzylD3, FID3-L-WABL, and FID3-LR, deneysel c¢alismalari
MS Visual Studio C# ortamu (Intel i7, 2.4 GHz, 4 Gb RAM) kullanilarak
gelistirilmistir. Deneyler, Fuzzy Artemis isimli entegre edilmis bir yazilim
gelistirilerek tasarlanmistir. Ayrica, OliveDeSoft, zeytinyagimin kalitesi ve cografik

karakterizasyon analizi yapmak i¢in tasarlanmustir.

Anahtar Kelimeler: Bulanik mantik, bulanik karar agaci, siniflandirma,

durulastirma, sdzel veri, cografi karakterizasyon, zeytinyagi.
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CHAPTER ONE
INTRODUCTION

Classification has a crucial manner in machine learning and data mining. Humans
use words in order to communicate. Words include more information than numbers
in order to make decision and classification. Nowadays, fuzzy logic is preferred to

handle the imprecise information for computing with words because of its flexibility.

The amount of data in the world goes on increasing each day in data repositories.
As a result, databases reserve a huge amount of information that has not been
discovered yet. In recent years, an effective tool which is called data mining has
emerged to discover patterns and trends in these data repositories. According to
Larose (2005) data mining is a widely used process in order to discover meaningful
relations, patterns and trends by using statistical and mathematical techniques in

large data repositories.

The technical basis of data mining is provided by machine learning. Machine
learning aims to identify patterns and pick out some knowledgeable information
based on the data inside data repositories. The algorithms of the machine learning
can be used to illustrate relations among observed variables and have deeper

information about data.

Decision trees are widely used machine learning tools in data mining among the
most popular classification structures (Janikow, 1996, 1998; Lee et al., 1999;
Kantarci, Turanoglu, & Ulutagay, 2013). Originally, they have been studied in the
fields of decision theory and statistics. In recent years, it has also been implemented
in pattern recognition. Quinlan (1990) argues that decision trees provide a powerful

formalism for representing comprehensible and accurate classifiers.

In the literature, there are distinctive methods proposed to generate the decision
trees. ID3 (Quinlan, 1986), CART (Breiman et al., 1984) and C 4.5 (Quinlan, 1993)



are the most important decision tree learning algorithms. Trees produced by these
algorithms are very sensitive to small changes in data.

However, Abu-halaweh & Harrison (2010) argue that ID3 algorithm is not
efficient in handling data uncertainties due to measurement error and/or noise. It was
also argued that these algorithms work well in symbolic domains. They designate

symbolic decisions to new samples.

In recent years, neural networks have become popular for classification (Sarle,
1994; Aroca-Santos, 2016; Binetti et al., 2017). But when the users want to
understand or justify the rules, neural networks do not fit for the purpose. Fuzzy
representation deals with problems of uncertainty, noise, and inexact data (Zadeh,
1965). Some scholars have attempted to combine fuzzy sets and decision trees. They
advise fuzzy decision trees. Fuzzy decision trees are also useful to evaluate the rules
used for the classification. The usage of linguistic labels as fuzzy terms gives power

to the knowledge systems.

First, Chang & Pavlidis developed a kind of fuzzy decision tree algorithm in
1977. This fuzzy decision tree approach was based on binary search trees. In the
literature, several versions of fuzzy decision tree algorithms are proposed by Umano
et al. (1994), Janikow (1998), Chiang & Hsu (2002), Liu & Pedrycz (2007), Sanz et
al. (2012) as fuzzy ID3 algorithm. Jang et al. (1997) also applied a fuzzy CART
approach to estimate the structure of a fuzzy inference system, and Tokumaru &

Muranaka (2009) used Fuzzy C 4.5 algorithm for product impression.

In our study, firstly, it is aimed to observe the behaviour of various types of T-
operators on the reasoning process of fuzzy ID3 structure. Secondly, two novel fuzzy
ID3 algorithms called Fuzzy ID3 algorithm based on linguistic data by using WABL
defuzzification method (Fuzzy ID3-L-WABL) and Fuzzy ID3 algorithm for L-R
fuzzy data (Fuzzy ID3-LR) are proposed for the classification on linguistic data set.
In both two approaches, linguistic variables are defined by using triangular fuzzy

numbers given as L-R fuzzy numbers. Fuzzy ID3-L-WABL uses weighted level-



based averaging method to make defuzzificaiton. Then, fuzzy c-means algorithm is
performed in order to handle the membership degrees for each variable given in the
data sets. Then, Fuzzy ID3-LR performs directly on L-R fuzzy data. It makes
fuzzification via fuzzy k-means clustering model for fuzzy data (FKM-F) algorithm
which works on L-R fuzzy data. After fuzzification process, both two approaches use
Fuzzy 1D3 algorithm for the induction of fuzzy decision tree. And, finally the fuzzy

reasoning performs with different T-operators.

The rest of the thesis is organized as follows. In Chapter Il, we briefly introduce
fuzzification, tree induction and fuzzy reasoning procedure on fuzzy decision trees.
In Chapter Ill, the information about Fuzzy ID3 algorithm based on Fuzzy c-means
for numeric data is given. In Chapter 1V, a brief information is given about linguistic
data, Weighted Averaging Based on Levels (WABL), and then Fuzzy 1D3 algorithm
based on linguistic data by using WABL defuzzification method (Fuzzy ID3-L-
WABL) is proposed. In Chapter V, weighted dissimilarity measure, fuzzy k means
clustering model for fuzzy data (FkM-F) is informed, and Fuzzy ID3 algorithm for
L-R fuzzy data (Fuzzy ID3-LR) is presented. In Chapter VI, the experimental
framework is reported. In Chapter VI, Conclusion is stated as a final chapter.



CHAPTER TWO
FUZZY DECISION TREES AND ITS REASONING PROCEDURE

2.1 Introduction

Decision trees which are combined with fuzzy approach are called fuzzy decision
trees. While fuzzy decision tree is being constructed, some scholars prefer to initially
fuzzify variables and splitting criteria, thus obtain fuzzy rules and implement these
rules in inference procedure (pre-fuzzification). On the other hand, other scholars
prefer using classical variables and splitting criteria, and then fuzzifying the obtained
classical rules (post-fuzzification). First fuzzy decision trees were introduced by
Chang & Pavlidis in 1977. The binary search method and fuzzy approach was
combined in their paper. In 1994, Umano et al. proposed a novel approach to set up a
fuzzy decision tree from data defined using fuzzy sets by way of experts. Their
algorithm was called fuzzy ID3 algorithm. Fuzzy decision tree handled with fuzzy
ID3 algorithm consists of nodes for testing variables, thresholds used for branching
via test values of fuzzy sets given via an expert and leaves for determining the class
with certainties (pre-fuzzification).

Yuan & Shaw (1995) introduced an induction-learning algorithm for fuzzy
decision trees. They were interested in incorporating subjective uncertainties into
knowledge induction procedure for classification. In their study, the aim is to reduce
the classification ambiguity in order to generate fuzzy decision tree (pre-

fuzzification).

Hsu et al. (1995) used Classical ID3 algorithm to generate the rules for mobile
robot control. A post-fuzzification is applied to the generated rules. Then, a neural
network architecture represented the fuzzy rules. While performing an on-line
training, the membership function of each linguistic variable is assigned via the

gradient descent approach.

In 1998, Janikow presented the fuzzy decision tree approach with various

inference procedures, which were depended on conflict resolution in rule-based



systems and powerful approximate reasoning methods. Proposed fuzzy decision tree
uses a version of Fuzzy ID3 algorithm (pre-fuzzification). This paper has become an

important reference for future studies.

Chiang & Hsu (2002) developed a new fuzzy classification tree for data analysis.
This algorithm integrates the fuzzy classifiers with decision trees that can work well
in classifying data with noise. When the accuracy of this algorithm is compared with
the accuracy of three algorithms, which are proposed by Yuan & Shaw (1995), Hsu
et al. (1995), and Janikow (1998), it is seen that the fuzzy classification algorithm has

a better accu racy rate.

Liu & Pedrycz (2007) proposed a new algorithmic framework for building fuzzy
sets (membership functions), their logic operators and forming the design process of
fuzzy decision trees. They compared their findings with the outcomes produced by

the fuzzy decision trees presented by Janikow (1998).

Sap & Khokhar (2004) constructed a new fuzzy decision tree by using weighted
fuzzy production rules. In this approach, each proposition is assigned a weight
parameter in the antecedent of a fuzzy production rule and a certainty factor is
assigned to each rule. In this paper, the implementation is applied to stock market
databases. Certainty factors have been calculated by using important variables such
as effect of other companies, effect of stock exchanges etc. in dynamic stock market.

And, this approach was used to predict stock share indices.

Chang et al. (2011) established a case based fuzzy decision tree model to predict
the behaviour of stock prices movements in financial time series for trend discovery.
In this paper, the fuzzy decision tree is generated from the stock database and then
converted to fuzzy rules; and these rules are used in decision making of stock price’s

movement.

Sanz et al. (2012) aimed to improve the performance of fuzzy decision trees
(FDT) by using IVFS and Genetic Algorithms. They presented a novel methodology
called “Ignorance functions based Interval-Valued Fuzzy Decision Tree with Genetic
Tuning (IIVFDT)”. The induction of the base FDT using the fuzzy ID3 algorithm

5



proposed in Yuan & Shaw (1995). A new modeling of the linguistic labels of the
classifier is proposed by means of IVFSs. With this aim, they defined a novel
construction method of IVFSs starting from the fuzzy sets by learning algorithm and
using weak ignorance functions to measure the degree of ignorance when assigning
punctual values as membership degrees (Sanz et al., 2011). The extension of the
Fuzzy Reasoning Method (FRM) accomplished with the full power of IVFSs in the
inference process. In each step of the FRM, the computation is made by using
intervals and the ignorance degree is taken into account from the beginning to the

end of the process.

In this chapter, before explaining proposed fuzzy decision tree approaches, what
fuzzification is; what fuzzy logic is; how the fuzzification is done by using fuzzy
numbers and fuzzy c-means (FCM) is defined, how the tree induction is performed,
and how the fuzzy reasoning procedure on fuzzy decision tree is done will be

covered.

2.2 Fuzzification

Fuzzification process can be defined as making a crisp quantity fuzzy.
Membership functions can be used for transforming a crisp variable into a fuzzy
variable. Also, if fuzzy c-means algorithm is used, membership values are achieved.
These values show the membership degrees for each cluster defined as a fuzzy
variable (Ross, 2010).

2.2.1 Fuzzy Logic and Fuzzy Sets

In real life, there are many more unrealistic situations contained vagueness and
ambiguity. In order to deal with the problems appeared because of these contexts,
Zadeh (1965) suggested fuzzy set theory. In consequence of this set theory, fuzzy
logic emerged. While the classical logic uses binary sets, the fuzzy logic uses fuzzy
sets. In classical set theory, an element in the universe either matches with a set or

does not.



Let U be a space of objects and x is generic element of U. A classical set A, A ©
U, is defined as a collection of elements or objects x € U, such as each x can either
belong or not belong to the set A. By using a characteristic function for each element
x in U, a classical set A can be represented by a set of ordered pairs (x,0) or (x,1).

It means x & A or x € A, respectively.

Definition 2.1. Fuzzy sets and membership functions If x is a collection of
objects denoted generically by x, then a fuzzy set A in U is defined as a set of
ordered pairs (Zadeh, 1965):

A = {x,us(x)|xeU} (2.1)

where u,(x) is called membership function for the fuzzy set A. The membership
function maps each element of U to a membership grade (or membership value)
between 0 and 1. X referred to as the universe of discourse, and this universe can be

defined with discrete (ordered or non-ordered) or continuous space.

Definition 2.2. Normality A fuzzy set A is normal if its core is nonempty. There

is always a point x € U such that u,(x) = 1 (Jang et al., 1997).

Definition 2.3. Convexity A fuzzy set A is convex if and only if for any x, x, €
U and any A € [0,1] (Jang et al, 1997):

pa(Axg + (1 = )xz) = min{u, (xq), up(x2)} (2.2)

Definition 2.4. Fuzzy numbers A fuzzy number A is a fuzzy set in the real line
(R) that satisfies the conditions for normality and convexity.

A fuzzy set is defined by using a membership function. In literature, there are
different kinds of membership functions such as triangular, trapezoidal, etc. A
mathematical formula is described in order to express each membership function
(Jang et al., 1997).



Definition 2.5. A parametric triangular fuzzy number A fuzzy number with

membership function in the form

,X €[b,0),

x € [a, b),
(2.3)

otherwise

where s > 0 is a parameter (Figure 2.1), will be termed a parametric triangular fuzzy

number A = (a, b, ¢) (Nasibov and Mert, 2007).

(a) (b)

()

Figure 2.1 Forms of parametric triangular fuzzy numbers (a) 0<s<1 (b) s=1 (c) s>1.

Definition 2.5. Triangular membership function A triangular membership

function is presented by three parameters {a, b, c} as follows (Jang et al.(1997)):

T
QO

triangle(x;a,b,c) =

—
7
oT

ag
2 Q

x<a

as<x<b

2.4
b<x<c 24)

c<x

These parameters {a, b, c} (with a < b < c) determine the x coordinates of the three

corners of the underlying triangular membership function (Figure 2.2).



v

Cc

Figure 2.2 Triangular Membership function characterized by three parameters {a, b, c}.
2.2.2 Fuzzy c-Means(FCM)

Fuzzy c-means (FCM) is a path for assigning the membership degrees for fuzzy
terms in each fuzzy variable. This algorithm proposed in Dunn (1973) and it became
better in Bezdek (1981). The main aim of it is to reach a fuzzy c partition matrix U.
An objective function J,, is defined in order to minimize. It is given as follows for

fuzzy partition (Eqg. 2.5):

Jn(U, ) = X1 Xicg (a)™ (dix)? (2.5)

where p;, is defined as the membership degree of the k" data point in the it" class.
p is the dimensionality of the data space. The parameter m > 1 reflects sharpness of
the fuzzification process. In EQ.2.6, d;;, shows any distance measure (usually the
Euclidean distance) between k**data point and it" cluster center in p dimensional

space. The distance could be defined as:

) 11/2 _
dix = d(xg, v;) = [ijl(xkj — Uij) ] ,k=1,..,n i=1,...c (2.6)



Here, v; shows the i*" cluster center. The following, Eq.2.7. is used for the

calculation of each clusters’ center:

n m
., = D=1 Pik¥k)
1y — n m
] k=1Hik

,i=1..,¢j=1..,p. (2.7)

Membership degrees are computed in accordance with the Eq.2.8.

Wik = L i=1..,ck=1.,n (2.8)

x5, —v;|[\m—-1
2§=1(|l k L”)

[l —vzll

The cluster number of each variable identifies the number of fuzzy linguistic

terms for each fuzzy variable.

2.2.3 Linguistic Variable

Linguistic variables contain words or sentences instead of numbers as used in
natural or artificial languages (Zadeh; 1975). These variables are more useful for the
individuals to tell their knowledge based on various statements. Generally, humans
think and need to explain their thoughts by using words and sentences in daily life.
Yet, it is difficult to give the information directly. Regardless, using linguistic

variable is an impressive way in order to model the human thought.

Linguistic variables also use fuzzy variables as its values. Fuzzy variable is
identified by a triple (X, U, R(X)) in which X is the variables’ name, U is a universe
of discourse, and R(X) is a fuzzy subset of U which represents a fuzzy restriction
imposed by X (Nasibov & Mert, 2007; Ross, 2010).

2231 Selecting the Linguistic Term Set

The selection of the linguistic term set is an important issue. The aim is to
introduce the minimum number of words to the user. The user needs enough
argument in order to explain his/her statement efficiently. Hence, the number of the

10



linguistic terms should be as few as achievable. It should also be as many as possible
in order to evaluate the statements in different levels. The differentiation of levels in

fuzzy variable can be called as “Granularity of Fuzziness”.

Miller (1955) proposed that humans generally organize the information
designated with odd numbers in order to keep in their memory. It is observed that the
terms are symmetrically distributed around the mean term which is approximately
0.5. Hence, generally, 7, 9, 11, or not more than 13 are preferred as element numbers

in linguistic term sets (Nasibov & Kantarci, 2010).

In addition, the numeric variables can be transformed into linguistic variables
defined as fuzzy variable. A fuzzy clustering algorithm such as fuzzy c-means is
used in order to assign a membership degree for each numeric value. Each fuzzy
term of a fuzzy variable is defined by using linguistic term. The cluster number is
identified by using experts’ opinion, by evaluating the variables’ distributions or by
using a partition coefficient index in order to reach the optimal cluster number
(Bezdek, 1974a; Bezdek, 1974b; Dunn, 1974).

2232 Generating Linguistic Descriptors.

After the determination of element number of the linguistic term set, it is
necessary to generate the linguistic descriptors. There are two kinds of
approaches, called as Context-Free Grammar Approach and Ordered Structure of
Linguistic Terms Approach, respectively. These approaches define the linguistic

descriptors.

2.2.3.3.1 Context-Free Grammar Approach. Context-free grammar is used in
order to define the linguistic term set in this approach. G is defined as the grammar
that accomplishes the sentences. Grammar consists of a four-order notation presented
as (Vy,Vr,1,P). VN proposes non-terminal symbols set, Vr proposes terminal
symbols set, | propose the initial symbol, and P, the generation rules. The expanded
Backus Naur Form (Bordogna & Passi, 1993) may be performed for P generation

rule.

11



The basic terms are identified as {many, medium, few...}, constraints as {none, a
lot, quite, ...}, relations are given as {fewer, lower, ...} and links defined as {and,
but, or, ...}. Firstly, an initial term I is selected. Then, a linguistic terms set can be
generated as S= {low, lower, not low, lower or medium, ...} using P. Miller (1955)
observed that the language used should be clearly understandable. Therefore, the
selection of grammar terms composes the shape of the linguistic term set (Kantarci,
2010).

2.2.3.3.2 Approach Depending on the Ordered Structure of Linguistic Terms.

Ordered structure of linguistic terms range on an indicator chart. It is defined by
using an example; assume a < b then s, < s, (Kantarci, 2010).

S = {sg:none, sy: very few, s,: few, sg: average, s,: high, ss: very high, sq: perfect}
When this approach will be used, it is necessary that the term set provides the
following characteristics:

There is a negation operator, i.e.,Neg(s;) = s;,j =T — L.

(T + 1 = The number of the elements of the term set).

Maximization Operator = Max(s;, s;) = s;, s; = s;.

Minimization Operator=Min(ss;)=s;, s; < s;.

12



2233 The Semantic Depending on Membership Functions and a Semantic
Rule as Linguistic Term Set

The number of elements of the linguistic term set and its descriptors are identified
by using the methods defined in former subchapters. Then, the meanings of the
linguistic term set should be assigned. In the literature, there are three main issues
that assign the definition of the linguistic term set. These are defined as “semantic
depending on membership functions and a semantic rule”, “semantic depending on
the ordered structure of the linguistic term set”, and “mixed semantic”, respectively.
In this study, “semantic depending on membership functions and a semantic rule” is

used. The definition is given as follows:

Propositions as “Suzan is tall”, “The olive tree is extremely small” are named as
fuzzy propositions. These statements are not reflected certain situations. Each fuzzy
proposition generates fuzzy terms. And each of the fuzzy term is modelled by using a
“fuzzy set”. This set is characterized by mathematically designating a value from the
real numbers in the range of [0,1]. This value shows that each individual’s

membership degree belonging to the fuzzy set defined as fuzzy term.

13



The semantic issue follows the two steps given below:
e The primary fuzzy sets combined to the primary linguistic terms.
e The semantic rule M, to construct the fuzzy sets of the non-primary

linguistic terms from primary fuzzy sets.

The representation of the primary fuzzy terms counts on parameters expressed by
humans. Yet, it is so hard to explain their behaviour and preferences within the
similar parameters. Same primary terms may not have same representations. Each
researcher can prefer different membership function for linguistic evaluations
(Delgado et al., 1992; Bordogna & Passi, 1993; Kantarci, 2010).

2.3 Tree Induction

Decision tree method is widely used in data mining, machine learning, expert
systems, and multivariate analysis. Decision tree algorithms aim to part the input
space of data set into mutually exclusive regions while each input has its class label.
The structure of a decision tree consists of internal and external nodes connected via

branches. There is a top root node. The other internal nodes follow the root node.

A function is used in order to decide which internal node will come to next. There
are external nodes at the end of the tree. These nodes are also known as leaf or
terminal nodes. Each terminal node is combined with a class label or value. A
decision tree has paths from the root node to the terminal nodes. These paths are used

as rules. And these constructed rules are used for classification.

Generally, a decision tree is constructed as follows. Firstly, a decision function
is chosen in order to decide the root node for the starting. Then, the data set is
participated according to the values of this root node. The tree begins to branch. The
decision function is performed iteratively. The child nodes, named as internal nodes,
are defined via the result of this decision function. This is repeated until a terminal
node is reached. If the terminal node is reached, a class label or value is designated to

the terminal node. Decision trees are often used for the classification problems.

14



lowr

Figure 2.3 Example of classical decision tree.

Fuzzy decision trees are the structures, which are the adaptation of decision trees
on fuzzy sets. These structures are also used for the classification problems. Fuzzy
decision tree algorithms perform on fuzzy variables. Unlike a classical decision tree,
each leaf node includes each class label with a normalized weight. All rules
generated by fuzzy decision tree is used in order to make classification. Then, the
classification is completed according to the result of fuzzy rule-based reasoning
structure based on these generated rules (Harrington, 1991; 1993; 2017; Harrington
et al., 2009).

15



Fuzzy decision trees are the structures, which are the adaptation of decision trees
on fuzzy sets. These structures are also used for the classification problems. Fuzzy
decision tree algorithms perform on fuzzy variables. As distinct from classical
decision tree, each leaf node includes each class label with a normalized weight. All
rules generated by fuzzy decision tree is used in order to make classification. Then,
the classification is completed according to the result of fuzzy rule-based reasoning
structure based on these generated rules (Harrington, 1991; 1993; 2017; Harrington
et al., 2009).

Traffic
less strong
Temperature Stay Home:0.85
Gol 15

hot

low

Stay Home:0.15 Stay Home:1.0

Ge0.85 Col 0

Figure 2.4 Example of fuzzy decision tree.
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2.4 Fuzzy Reasoning Procedure on Fuzzy Decision Trees

Fuzzy reasoning procedeure is an inference process that reproduces consequences
by using a set of fuzzy if-then-rules and known facts. The inference procedure can be
formalized upon these rules. In general, this inference procedure is named

approximate reasoning or fuzzy reasoning.

Definition 2.7. Approximate Reasoning Let A, A', and B be fuzzy sets of X, X'
and Y, respectively. Assume that the fuzzy implication A — B is expressed as a
fuzzy relation R on X x Y. Then, the fuzzy set B is induced by "x is A" and the
fuzzy rule "if x is A then y is B" is defined by

g (y) = max,minfp,, (x), ur(x,y)] (2.9)

2.4.1 Multiple Rules with Multiple Antecedents

The multiple rules are interpreted by using the union of the fuzzy relations
corresponding to the fuzzy rules. In summary, the process of fuzzy reasoning or
approximate reasoning can be divided into four steps given in Figure 2.5. Also, the

steps are defined as the following (Jang et al., 1997):

Step 1. Degrees of compatibility: The antecedents of fuzzy rules are compared

with respect to each antecedent membership function to find the degrees of

compatibility.
Degrees of Firing Cualified consequent Overall output
compatibility strength » membership » membership
functions functions

Figure 2.5 The steps of fuzzy reasoning of multiple rules with multiple antecedents.
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Step 2. Firing strength: Degrees of compatibility are compared with respect
antecedent membership functions in a rule using fuzzy AND or OR operators. The
aim is to form a firing strength. It shows the degree at which the antecedent part of

the rule is satisfied.

Step 3. Qualified (induced) consequent Membership Functions (MF): The
firing strength is applied to the consequent membership functions of a rule to
generate a qualified consequent membership functions. It shows how the firing

strength performed in a fuzzy implication.

Step 4. Overall output membership functions: All the qualified consequent
membership functions are applied in order to reach an overall output membership

function.

Assume that a generalized modus potent problem given as
Premise 1 (fact): x is A" and x is B’
Premise 2 (rule 1): if x is Ayand y is B, then z is C;

Premise 3 (rule 2): if x is A,and y is B, then z is C,

Consequence (conclusion) z is C".

Let Ry=A;xB;—-»C; and R, =A4,%XB,—>C, . If the the max-min
composition operator o is assumed the distributive over the U operator, it can be
given as follows:

C' = (A" X B") o (R{URy)
= [(A"x B") o Ry JU[(A" X B') o R,]
= (€' X C'y)

where C'; and C',, are the inferred fuzzy sets for rules 1 and rules 2, respectively.
The fuzzy reasoning for multiple rules with multiple antecedents are given

schematically in Figure 2.6 which shows graphically the operation of the fuzzy

reasoning for multiple rules with multiple antecedents in graphics.
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Figure 2.6 Fuzzy reasoning for multiple rules with multiple antecedents.

2.4.2 Fuzzy If-Then Rules

Let a fuzzy if-then rule (also known as fuzzy rule, fuzzy implication, or
conditional statement) is given as the following form
if xisAthenyisB
where A and B are linguistic values defined by fuzzy sets on universes of discourse
X and Y, respectively. Generally, "x is A" is named as the antecedent or premise, and
"y is B" is named as the consequence or conclusion. In daily life, humans generally
use examples of fuzzy if-then rules, such as the following: “If an olive is black, then
it is ripe”. It is necessary to formalize the rule A — B as a binary fuzzy relation R on
the product space X x Y. In literature, a fuzzy rule A — B can be represented as,

R=A->B=AXB =J pa(x) % up(x)/(x,y)
XxY

where % is a T-norm operator and A — B is used again to represent the fuzzy relation
R.

2.4.3 Fuzzy Rule Based Classification System (FRBCYS)

Fuzzy rule based classification system (FRBCS) is an important issue in the field

of pattern recognition in order to solve classification problems. This uses linguistic
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labels in the antecedents of their rules. This behaviour of the system provides
computational flexibility. In real life, it has been used for the solution of various kind
of problems, such as image processing (Nakashima, Schaefer, Yokota, & Ishibuchi,
2007), medical problems (Sanz et al., 2014), chemometrics (Nasibov et al., 2016),
etc.

It is necessary to define a classification problem for FRBCS. Classification
problem is a supervised learning problem. A set of training samples, named as
training set, is used in order to solve this kind of problems. Each training samples has
its class label. A mapping function called as classifier is used as the construction of
the classification model. The model is used in order to assign class label to a new

sample.

Assume that a training set consists of p samples. x, = (xp1, ..., Xpp) is the pth
sample of the training set where x,; is the value of the ith attribute (i = 1,2 ...,n) of
the pth training sample. Target variable includes class labels as given y, € C =
{C1,C,, ...,Cp}, Where m is the number of classes of the problem (Ishibuchi,
Nakashima, & Nii, 2004; Elkano et al., 2015).

FRBCSs can be summarized with two main components as given below (Elkano
et al. 2015; Nasibov et al., 2016):

Knowledge Base: The rule base (RB) and the database is included in knowledge
base. The rules and the membership functions are stored in it.

Fuzzy Reasoning Method: The classification model is performed on the samples

via the information stored in the knowledge base.

Fuzzy decision tree approach is also a kind of fuzzy classifier. The algorithm
constructs a fuzzy decision tree. Each path handled from the root node to the terminal
node is assumed as a fuzzy rule. It means that the constructed fuzzy decision tree
model includes multivariate rules with multivariate antecedents. This model can be

thought as fuzzy rule based system while it is being used to make the classification.
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The structure of FRBCS uses a preferred fuzzy decision tree algorithm in learning
process in order to generate fuzzy rules based on linguistic labels. Each path of the
tree shows the fuzzy rules. Rule Weights (RW) for each | class are stored at each leaf
node. RWj; shows jth rule weight handled from fuzzy confidence value CF;; which

equals to RWj;. A classification problem with fuzzy decision tree model combined

with Fuzzy Rule Based Classification System is summarized in Figure 2.7.

n-dimenszional Learning Process
Classification Problem Choosze a model
Training
Data Set [—| Set — Fuzzy ID3 Algorithm
Fuzzy Decision Tree :> Fuzzy Rules
Fuzzy Rule Based
p Test Set 22y
Classification

Figure 2.7 A classification problem with Fuzzy 1D3 algorithm combined with FRBC
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CHAPTER THREE
FUZZY ID3 ALGORITHM BASED ON FCM FOR NUMERIC DATA

3.1 Introduction

In this chapter, information about Fuzzy ID3 Interactive Dichotomizer 3 (Fuzzy
ID3) algorithm and the adaptation of this algorithm via fuzzy c-means (FCM) which
can work on numeric data is given. The phases of this approach will be discussed in

the following subchapters.
3.2 Fuzzy 1D3 Interactive Dichotomizer3 (Fuzzy 1D3)

Umano et al. (1994) proposed Fuzzy Interactive Dichotomizer 3 (Fuzzy 1D3)
which is a fuzzy decision tree builder algorithm. This algorithm is a kind of fuzzified
version of ID3 algorithm proposed in Quinlan (1986). It uses crisp and fuzzy
variables. This algorithm divides the training set in accordance with a variable. This
variable is chosen via a measure called information gain which is based on fuzzy
entropy. This measure aims to seek that the variable includes the highest qualified

information.

Let N labelled fuzzified patterns and n attributes are given as A = {44, A4, ..., A, }.
For each k assume that (1 < k <n). The attribute A, takes myvalues of fuzzy
subsets (Akl,Akz, ...,Akmk). C denotes the classification target attribute, taking m
values Cy, C,, ..., C,,. The cardinality of a given fuzzy set is denoted by M (.), that is,
the sum of the membership values of the fuzzy set (Umano et al., 1994; Nasibov et

al., 2016). The induction process of fuzzy I1D3 is given step by step as the following:
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Step 1: A root node which has a set of all data is generated. This data set should be
fuzzified data set which is fuzzified with fuzzy c-means (FCM) algorithm (class
number (c) of each fuzzy variable is set to 3), and it is initialized with the
membership values equal to 1 for all data.

Step 2: The expanded attribute is selected by using the following steps:

Step 2a: For each linguistic label Ay;(i =1,2,...,m;), compute its relative

frequencies with respect to class C; (j = 1,2, ..., m).

M(AgiNCj)
M(Ag;)

Pri() = 3.1)

Step 2b: For each linguistic label A;, (i = 1,2, ..., my). Compute its fuzzy

classification entropy.

Entry; = = XL pra(Dlog(pii () (3.2)

Step 2c: Compute the average fuzzy classification entropy of each attribute.

Ey = S i) g, (3.3)

Step 2d: Select the attribute that maximizes the information gain (Gy).

Attr = argmax(Gy), where G, = E — E}, (3.4)

1<sksn

For class label C;, i = 1,2...,m, compute its relative frequencies depending

on class C;:

M(Cy)

ri() ==~ (3.5)
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In Eq. 3.6, E is called as the total entropy, E is calculated as below:
E ==Y pi(Dlog(p: () (3.6)
Step 2e: Assign the selected attribute as the root node and the linguistic
labels as candidate branches of the tree.

Step 3: Select one branch to analyze. If it is empty, the selected branch is deleted.
If the selected branch is non-empty, the relative frequencies are computed by using
(Eq.3.1) all objects within the branch into each class. If the relative frequency of each
class is above the given threshold 6, or all the attributes are used for the induction,
the branch is terminated as a leaf node. Otherwise, the attribute is selected with the
smallest average fuzzy classification entropy (Eq.3.4) among those, which has not
been used as a new decision node yet and its linguistic labels are added as
candidates. At each leaf, each class will have its relative frequency.

Step 4: Repeat Step 3 as long as there are branches to analyze. If there are no

candidate branches the decision tree is completed.

3.2.1 The Rule Structure Generated from Each Branch of The Fuzzy Decision

Tree

After the fuzzy decision tree induction, the rules are induced from each branch.

Each branch behaves as a kind of path. The rule R; is given as follows:

Rule R;: If x4is Aj; and ... and x,, is Aj, then Class = C; with RWj;, where R; is
the label of the jth rule with class I. x = (x4, ...,%,) IS an n-dimensional pattern
vector that represents the samples. A;; is a fuzzy set. C; € C is the class label, and
RW; is the rule weight. In fuzzy decision tree, each leaf node has rule weights which

are computed as the relative frequency for each class (as in Step 3).

3.2.2 Reasoning (Classification)

Let x, = (Xp1, -, Xpn) b€ the pth example of the training set, which is composed
of P samples, where x,; is the value of the ith attribute i = (1,2, ...,n) of the pth
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sample. Each sample belongs to class y, € C = {C;,Cy, ..., Cry}, Where m is the
number of classes of the problem. Assume that x,, is a novel sample to be classified

with FID3 reasoning procedure suggested in Umano et al. (1994). It is adapted into

fuzzy reasoning method as given in FARC-HD (Elkano et al., 2015).

Four steps are given below which are adapted with Fuzzy ID3 reasoning

structures in (Sanz et al., 2012).

Step 1. Matching degree: In this step, the strength of activation of the if-part for
all rules handled from each path of the fuzzy decision tree in the rule base with the

pattern x,, is computed as;

i (50) = T (1, ) ) @
where Ma, (xp;) is the matching degree of the example with ith antecedent of the rule

R;. T is a T-norm (Algebraic Product/Sum T-norm operator given in Table 3.1), and

n; is the number of antecedents of the rule.

Step 2.Association degree: The association degree of the pattern x, with each
rule in the rule base and for the class I is computed as follows, where RWj;, is an
associated degree of each leaf node which is at the end of each path, R;, with the

class I.

by (xp) = 14, (xp)- RW; (3.8)

Step 3. Confidence degree: In this stage, the confidence degree for each class | is
computed to obtain the confidence degree of a class, and the association degrees of

the rules of that class are summed as given in (Umano et al., 1994).

confy(x,) = Yrjernic;=1 bji (xp) I=12..,m (3.9)
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and in which b,-l(xp), j =12, .., R is the association degree of the pattern x;, to the

class | according to the jth. rule.

Step 4. Classification: The class with the highest confidence degree is assigned as
the predicted one (Umano et al., 1994; Elkano et al. 2015).

Class = argmax(conf;(x,)) (3.10)

1=1,...m
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Table 3.1 T-Operators used in fuzzy reasoning method.

Non-Parametric Operators

Ref

T-norm operators

T-conorm operators

Zadeh(1965)

Ti(x,y) = min(x,y)

77 (x,y)) = max(x, y)

Algebraic Product/Sum

(Weber, 1983; Bandler & Kohout, T,(x,y) = x.y T3 y) = x+y— 2.y
1980)
Bounded Product/Sum
(Giles, 1976) T3(oy) = max(0,x +y —1) T3 (x,y) = min(L, x +y)

Nonparametric Hamacher
(Oussallah, 2003) (4 = 0)

x.y

Ty(x,¥)) = Gry—x3)

x+y—2.xy

e =

Parametric Operators

1+2

Parametric
Ref T-norm operators T-conorm operators
Range
B x.y X _xt+ty-Q2-D.xy
Hamacher (Oussallah, 2003) Ts(x,y)) = THA-Dex+y—27) T2 (x,y)) = T A=A =%y A=>0
Yager (1980) Ts(x,y) = max(1 — (1 — x)? + (1 — y)P)/7,0) T (x,y) = min((x? + y?)/?,1) p =(0,1)
1
T7(x! Y)) = 1 1
Dombi (1982) L+ (G-DH+G-DHA T3, y)) = 1 A=(0,1)
’ 1_ a4 Aoy
1+(G-D +(y D™
) x.y 1-x).1-y)
T y =T * = —_ =
Dubois&Prade (1986) 8(x,¥)) max(x,y, ) Tg(x,y) =1 max( —x, T=7,7) 1=(01)
+y—1+4+Ax.
Weber(1983) To(x,y)) = max(u, 0) Ts(x,y)) =min(x +y + 1.x.y,1) A=(01)




3.3 Proposed Reasoning Approach for Fuzzy 1D3 Based on T-Operators

In this study, it is aimed to search the effects of different T-Operators on the
reasoning process in fuzzy decision tree based on fuzzylD3 algorithm. Therefore, T-

operators are adapted into the reasoning process (Farahbod & Eftekhari, 2012).

It is assumed that x,, is a novel sample to be classified. In this subchapter, the

steps of novel proposed reasoning approach in order to make reasoning will be

studied by using the rules generated from a fuzzy decision tree.

3.3.1 Overview of T-Operators

T-norm and T-conorm operators developed from the triangular inequalities, are
also named as T-Operators. These operators were generated from the studies of
probabilistic metric spaces (Menger, 1942; Schweizer & Sklar, 1973).

Their aim is to calculate the intersection and union of two fuzzy sets. In literature,
there are various types of T-operators which work better in some decision-making
situations (Dubois & Prade, 1986).

While determining a set of T-operators for a decision-making problem, their
properties, the accuracy model, their simplicity, computer and hardware

implementations, etc. gain importance are taken account.

Union (Disjunction): The union of two fuzzy sets A and B is a fuzzy set C written

as C = A or B, whose membership function (MF) is related to those of A and B by

pe(x) = (pa()Vup(x)) (3.11)

Intersection (Conjunction): The intersection of two fuzzy sets A and B is a fuzzy
set C, written as C = A or B, whose MF is related to those of A and B by

pe () = (kaCIA)) (3.12)
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T-norms and T-conorms are two placed functions from [0,1] x [0,1] to [0,1] that

are monotonic, commutative and associative.

Definition 3.1. Let T:[0,1] x [0,1] — [0,1]. T is a T-norm if and only if (iff) for
all x,y,z € [0,1] (Gupta & Qi, 1991):

T(x,y) = T(y, x) commutativity

T(x,y) < T(x,z) if y < z (monotonicity)
T(x,T(y,2)) = T(T(x,y),z) (associativity)
T(x,1) =x

Definition 3.2. Let T*:[0,1] x [0,1] = [0,1]. T* is a T*-conorm if and only if
(iff) for all x,y, z € [0,1] Gupta & Qi, 1991):

T*(x,y) = T*(y, x) commutativity

T*(x,y) < T*(x,z) if y < z (monotonicity)
T*(x,T*(y,2)) = T*(T*(x,), z) (associativity)
T*(x,0) =x

3.3.2 Proposed Reasoning Approach

It is assumed that x,, is a novel sample to be classified with proposed reasoning

approach by using different T operators as defined in Gupta & Qi (1991). Then, the

steps of this novel approach are given as following:

Step 1. Matching degree: In this step, the strength of activation of the if-part for
all rules handled from each path of the fuzzy decision tree in the rule base on the

pattern x,, is computed (Eq. 3.13.):

Ha; (xpi) = T(IJA]-1 (xpl)' ---'#Ajnj (xpnj)) (3.13)

29



where Ha; (xpl-) is the matching degree of the example with ith antecedent of the rule

R;. Tiisa T-norm (listed in Table 3.1) and n; is the number of antecedents of the rule.

Step 2: Association degree: The association degree of the pattern x,with each
rule in the rule base and for the class | is computed as follows where RWj; is an
associated degree of each leaf node which is at the end of each path, R;, with the
class | (Eq. 3.14). T is a T-norm listed in Table 3.1.

bjt(xp) = T (ua,(xp), RW)) (3.14)

Step 3: Confidence degree: In this stage, the confidence degree for each class is
computed. To obtain the confidence degree of a class, the association degrees of the
rules of that class are aggregated by using conjunction operators (Eq. 3.15) where T*

is a T-conorm listed in Table 3.1.

conf; (xp) = T*(bu(xp), by, (xp), ., le(xp)) (3.15)

and in which bj;(x,), j = 1,2,..., R, is the association degree of the pattern x,, to the

class | according to the jth rule.

Step 4: Classification: The class with the highest confidence degree is assigned
as the predicted one (Eqg. 3.16) (Umano et al., 1994).
Class = argmax(conf;(x,)) (3.16)

=1,..m
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CHAPTER FOUR
FUZZY ID3 ALGORITHM BASED ON LINGUISTIC DATA BY USING
WABL DEFUZZIFICATION METHOD

4.1 Introduction

In this chapter, a novel fuzzy ID3 algorithm for linguistic data is proposed. The
information is given briefly about linguistic data defined by using triangular fuzzy
numbers given as L-R fuzzy numbers. Weighted Averaging Based on Levels
(WABL), the adaptation of fuzzy c-means (FCM) and Fuzzy ID3 Classification

Model for High Dimensional Problems are summarized, respectively.

4.2 Linguistic Data and Its Representation

Humans use words or sentences in daily life. These words or sentences are used in
order to make the decisions. Each word or sentence is defined as the value of
linguistic variables. The information is given about the concept of linguistic variable
in Subchapter 2.2.3. In this approach, L-R representation of fuzzy number is used as
given in Definition 4.1 (Nasibov, Baskan, & Mert, 2005).

Definition 4.1. The set of real numbers is denoted by E. Let L = {L|L:[0,1] — E}
be a class of monotone non-decresasing functions and R = {R|R:[0,1] —» E} be a
class of monotone non-increasing functions. Both L and R are left-continuous
functions, and Va € [0,1], L(a) > —o,VL € L and R(a) < o,VR € R. Any fuzzy
subset A of the number of axis E or fuzzy number A can be defined by the following
L-R representation:

A = Uge(o(@, A) (4.1)
where
A% =[Ly(a),Re(a)] = {t € E|Ly(a) <t < Ry(@)} (4.2)

For this representation, it is assumed that A* # @
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4.3 Weighted Averaging Based on Levels (WABL)

Weighted Averaging Based on Levels (WABL) method is defined in (Nasibov,
2002; Nasibov & Mert, 2007). It is a kind of defuzzification method such as mean of
maxima (MOM), centroid etc. Let A is a fuzzy number indicated by L-R
representation. The average representative of this fuzzy number is defined by the

formula given below:

I(4) = [ (c,La(@) + cgR(@))p(@)da (4.3)
where coefficients ¢, and c; are the weight coefficients of left and right sides
respectively (pessimism/optimism parameters) , and p(a) is the distribution function
of the importance of the level sets. The weights satisfy the following normality and

non-negativity conditions:

¢, =20,cg=20,¢c,+cg=1 4.9

p:[01] > By, [y p(@)dg = 1 (45)
cr, cg and p(«a) are called as WABL strategy parameters.
A way to determine the p(a) function is given by using the following formula
(Eq.4.6) (Nasibov & Mert, 2007):
p(a) = (k + Dak (4.6)
where k > 0 is a parameter.

It is valid for the theorem given below and proven in the study (Nasibov & Mert,
2007):
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Theorem 1. Let A = (a, b, ¢) will be termed a parametric triangular fuzzy number
with parameter s > 0 and suppose that the distribution function of the importance of
the degrees has the form (Eq. 4.7). Then, the following formula for WABL is valid:

k+1
k+s+1

k+1
k+s+1

1(A) = cg (c - (c — b)) +c, (c - (b — a)) (4.7)
4.4 Fuzzy 1D3 Algorithm Based on Linguistic Data By Using WABL

Defuzzification Method (Fuzzy I1D3-L-WABL Approach)

A novel fuzzy ID3 approach is proposed for linguistic data which is defined as
fuzzy. It aims to generate a fuzzy decision tree on L-R fuzzy data. In order to apply
fuzzy ID3, it is necessary to apply WABL for the defuzzification on L-R fuzzy data.
Then, Fuzzy c-means (FCM) algorithm is used in order to fuzzify each variable. At
the end, fuzzy 1D3 algorithm is performed. Then, the reasoning can be performed by
using the rules generated from the fuzzy decision tree. This procedure is summarized

in Figure 4.1, in graphic.

WABL Fuzzy ID3 .
Fuzzy L-R Data * Method * Fuzzy ¢ means . Algorithm * Reasoning

Figure 4.1 The process of fuzzy decision tree induction based on linguistic data by using WABL

defuzzification method.

Algorithm of the induction process Fuzzy 1D3 Algorithm Based on Linguistic Data
by Using WABL Defuzzification Method

Assume that the data set is defined with fuzzy data as linguistic variable.

Step 1: The average representative of each fuzzy term is calculated by using Eq.

4.7. characterized as 1(A) for each fuzzy variable.

Step 2: Fuzzy c-means algorithm defined in Subchapter 2.2.4. is applied to the

modified dataset to construct fuzzy sets of linguistic terms in Step 1.
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Step 3: Generate a root node, which has a set of all fuzzified data set by using
FCM algorithm.

Step 4: The expanded attribute is selected by using the following steps:

Step 4a: For each linguistic labelA; (i = 1,2, ..., my), compute its relative

frequencies depending on class C;(j = 1,2, ..., m)

N M(AkiﬂCj)
'pki(]) T M(Ak) (4.8)

Step 4b: For each linguistic label Ay;(i = 1,2, ..., my), compute its fuzzy

classification entropy.
Entrig = — X521 pri(D1og(pii (1) (4.9)

Step 4c: Compute the average fuzzy classification entropy of each attribute.

E, = Yk MO poe. 4.10
= I g Bnim (410

Step 4d: Select the attribute that maximizes the information gain (Gy).

Attr = argmaX(Gk), where Gk =E— Ek (411)

1<ksn

For class label C;, i = 1,2 ..., m, compute its relative frequencies considering

class C; .

N M(C
pi(j) = = (4.12)

In Eq.4.13, E is a total entropy, and is calculated as below:
E = —XiZ; pi(Dlog(pi () (4.13)
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Step 4e: Assign the selected attribute as the root node and the linguistic

labels as candidate branches of the tree.

Step 5 Select one branch to analyze. If it is empty, the selected branch is deleted.
If the selected branch is non-empty, the relative frequencies are computed by using
(Eq.4.8) all objects within the branch into each class. If the relative frequency of each
class is above the given threshold 6, or all the attributes are used for the induction,
the branch is terminated as a leaf node. Otherwise, the attribute is selected with the
smallest average fuzzy classification entropy (Eg.4.11) among those, which has not
been used as a new decision node yet and its linguistic labels are added as
candidates. At each leaf, each class will have its relative frequency.

Step 6: Repeat Step 4-5 as long as there are branches to analyze. It is completed.

4.4.1 The Rule Structure Generated from Each Branch of The Fuzzy Decision

Tree

After the fuzzy decision tree induction, the rules are induced from each branch.

Each branch behaves as a kind of path. The rule R; is given as follows:

Rule R;: If x4is Aj; and ... and x,, is A, then Class = C;; with RWj;, where R; is
the label of the jth rule with class I. x = (x4, ...,%,) IS an n-dimensional pattern
vector that represents the example. A;; is a fuzzy set. C;; € C is Ith class label for jth

rule, and RWj; is the rule weight.

In fuzzy decision tree, at each leaf node has rule weights which are computed as

the relative frequency for each class (as in Step 4d).

4.4.2 Reasoning (Classification)

Let x, = (Xp1, .-, Xpn) is the pth sample of the training set, which is composed of

P samples, where x,; is the value of the ith attribute i = (1,2,...,n) of the pth
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sample. Each sample belongs to class y, € C = {C;,Cy, ..., Cry}, Where m is the
number of classes of the problem. Assume that x, is a new example to be classified

with FID3 reasoning procedure suggested in Subchapter 3.2.2. The steps are given

below:

Step 1: Matching degree: In this step, the strength of activation of the if-part for
all rules obtained from each path of the fuzzy decision tree in the rule base with the

pattern x,, is computed as

i 050) = T (1, ), ) (.16

where Ma, (xp;) is the matching degree of the example with ith antecedent of the rule

R;. T is one of the non-parametric T-norm operators (listed in Table 3.1), and n; is

the number of antecedents of the rule.

Step 2: Association degree: The association degree of the pattern x,, with each
rule in the rule base and for the class | is computed as follows where RWj; is an
association degree of each leaf node which is at the end of each path, R;, with the

class I. T is one of the non-parametric T-norm operators (listed in Table 3.1),

bjl(xp) =T (uA]_ (Xp), Rle) (4.17)

Step 3: Confidence degree: In this stage, the confidence degree for each class is
computed. To obtain the confidence degree of a class, the association degrees of the
rules of that class are aggregated by using conjunction operators where T* is one of

the non-parametric T-conorm operators (listed in Table 3.1),

conf; (Xp) =T (bll(xp), bzl(xp), ,le(Xp)) (4.18)
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and in which b,-l(xp), j=1,2,..,R, is the association degree of the pattern x, to the

class | according to the jth rule.
Step 4: Classification: The class with the highest confidence degree is assigned as
the predicted one (Umano et al., 1994; Elkano et al. 2005; Nasibov et al. 2016).

Class = argmax(conf;(x,)) (4.19)

l=1,.m
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CHAPTER FIVE
FUZZY ID3 ALGORITHM FOR L-R FUZZY DATA

5.1 Introduction

In this chapter, a novel fuzzy ID3 algorithm is presented working on directly L-R
fuzzy data for the classification problems. The information is given about weighted
dissimilarity measure. Then, Fuzzy k-means clustering model for fuzzy data (FkM-F)
is defined. At the end, the adaptation of FkM-F and Fuzzy 1D3 Classification Model
for High Dimensional Problems are summarized, respectively.

5.2 L-R (Left-Right) Fuzzy Data

In a matrix form, a general class of fuzzy data, called L-R fuzzy data, can be
defined as follow (Coppi, D’Urso, & Giordani, 2012; Ulutagay & Kantarci, 2013;
Ulutagay & Kantarci, 2014; Ulutagay & Kantarci, 2015):

X = {fl} = (Clij' Caij» ll-j,rij)LR: i=1, ...,n;j =1, ,p} fuzzy data matrix (51)

\J

0 155 €2y By

Figure 5.1 Trapezoidal membership function.
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where %;; = (cq;, Caij, lij,rij)LR represents the LR fuzzy variable j observed on the i-
th object, cy;; and Cy;;, denote the left and right center, respectively, and [;; and ;;

the left and the right spread, respectively, with the following membership function:

Cll] ul]

U < cq45(li; > 0)
“fij(uij) 1' C1ij S Uij S Cqj (5.2)

kR u” Cz” ,uij < C2ij(lrj > 0)

where L(zij) (and R(Zl-j)) is a decreasing ‘shape’ function from R* to [0,1] with
(or L(z;;) > 0 for all z;;, Vi, j, and L(+)=0) (Coppi, D’Urso, & Giordani (2012)).

One of the particular case of L-R fuzzy data (Figure 5.1.) is the trapeziodal one

C1ij—Uij C1ij—Ujj Ujj—Caij Ujj—Caij .
where L (M> =1—-—"" and R (”—”’) =1-——"2 (Zimmerman,

2001).
5.3 Weighted Dissimilarity Measure

A weighted dissimilarity measure for fuzzy data observed on each object i.e. is
suggested by considering, separately, the distances for the centers and spreads of the
fuzzy data observed on each object, i.e. and using a suitable weighting system for
such distance components (Coppi, D’Urso, & Giordani, 2012). Thus, by considering

the ith and i'th objects, the results are:
di (%, X;1) = wld?(cqy, ¢q4) + dP(cop c20)] + Wi [d? (1, 1) + d?(r, )] (5.3)

d?(cyi, 1) = lley; — c1ill = Euclidean distance between the left centers c¢,; and
Ciir-

d?(cy;, c2i) = |lcai — 35|l = Euclidean distance between the right centers cy;
and c,;,.

d?(l;,1;) = |ll; — 1;,]| = Euclidean distance between the left spreads 1,; and 1;,.
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d?(r;,m,) = |y — |l = Euclidean distance between the right spreads r;; and
ir-

€11 = (C1i1, s Caifr s Crip) 'ANA €130 = (C1ir1) woes Cainjs voes Crirp

Cai = (C2i1s +wes C2ijs »oes C2ip) AN 25 = (Coir1) s Coirs ---'C2i'p’)

L= iy ijo oo L) 'and Ly = (L oo L v L)

1 = (Tig) o) Tijo ooy Tip) ANA 15 = (i1, oo, Tirjo woes Tirp )

w., ws = 0 are suitable weights for the center component and the spread
component of d?(%;, %;7), where ; and %;, denote the fuzzy data vectors,
respectively, for the ith and i'th objects., i.e. X¥; = {a”éij = (C14j, C2ijp Lijp Tij) LR T =
1,...,p}and X, = {%;; = (c1urjy C200po Lisjy T gt j = 1, .., p}. The weights

we, wg = 0 can be stored in the two dimensional vector w = (w, wy)".

If the membership function value of the centers is maximum, it is advised to
accept that the weight of (left and right) center distances is higher than or at least
equals to the weight of (left and right) spread distances. Then, the following

conditions are assumed:

w, + w, = 1 (normalization condition) and w,, wg = 0 (coherence condition).
It is assumed that the weights are equal for center distances and spreads,
respectively.

5.4 Fuzzy k-Means Clustering Model for Fuzzy Data (FKM-F)

A fuzzy clustering method based on the generalized class of the so-called
symmetric LR, fuzzy data given in 5.1 and the measure given in Eq.5.2 by means of
Eq.5.3 is explained in (Coppi, D’Urso, & Giordani, 2012): This technique, called
Fuzzy k-means clustering model for fuzzy data (FKM-F), can be formalized as

follows:

min :]FkM—F = Z?’=1 25:1 u{gd%(fb hg)
Ujg,hgw

= ?:12’!;:1 ufy [WCZ [d?(cy;, hgl) + d?(cy;, hgz)] + wl [dz(li,hg) + dz(ri,hg)]] (5.4)
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S.t.uig = 1,

w= (W, ws) =0, w, =>ws,w, +wg =1,

where m > 1 is a weighting exponent that controls the fuzziness of the obtained
partition:

u;4 indicates the membership degree of the ith object in the gth cluster

di(x;, fzg) shows the suggested dissimilarity measure (Eq.5.3) between the ith
object and the prototype of the gth cluster; analogously for its components
d?(c1phgt) L d? (e hg?)  d?(1,h5),  d*(ry, hE), where the fuzzy vector hy =

{hgi = (hg', hg?, Rk, hE) g1j = 1, ..., p} represents the fuzzy prototype of the gth

g g
cluster, hg' = (hg!, ..., g,. hcl) hy? = (hg, ..., g,. ,h;;), hk =
(hgys s hg - hg)' hg = (hg,, ..., hg,, ..., hg )" are p vectors, whose jth element

refers to the jth variable, that denote, respectively, the (left and right)
centers and the (left and right) spreads of the gth fuzzy protoype.

By solving the constrained quadratic minimization problem (Eq.5.4) via the
Lagrangian multiplier method with respect to u;, and by setting the first derivative

of Eq. 5.4.The following iterative solution is obtained with rescpect to Eq.5.5,
Eq.5.6 and Eq.5.7.

e e e o I o

Uig = - 5 o & 3 o R (5.5)
kw2 |a2(c10ngt)+a2(caphg? )| +w2 (a2 (1phgt ) +a2 (r B ) A1
hC1 _ Z;l 1u‘{)glcli hCZ _ Z;l 1u‘{)g102i hL 2;1 1u hR l lulg 5 6
g no,m 1itg no,m 1ig T n m ( : )
Li=1 U ¥ =1
g i=1 I.g l 1 lg i=1 lg

and

Zn 1 Zg 1 utg[dz(lt hg)+d2(rl hg)]
2? 12g 1 uzg[dz(cll hCl)"'dz(Czl hUZ)‘l‘dz(l hL)+d2(Tl hR)]

,(wg =1-w,) (5.7)

We =
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By recognizing (Eq.5.7), the normalization condition is satisfied. It can be
demonstrated that (Eq.5.4) is a parabola with respect to w, to provide for the
coherence condition. Actually (Eq.5.7), matches up with the abscissa of its vertex.
When it is taken ws > 0.5. , the solution in (Eq.5.7) is impossible. In addition,
among the feasible solutions, it is seen that the minimum value of (Eq.5.4) is
obtained with respect to w, as long as ws, = 0.5. and (w, =0.5.) (D’Urso &
Giordani, 2006).

Algorithm of Fuzzy k-means clustering Algorithm FKM-F(X, m, k)

StepOa. Produce randomly the membership degree matrix U® subject to
(Eq.5.4).
StepOb. Calculate the prototypes H° according to (Eq.5.6) using U,

Step 1. Upgrade the weights wc(t) and ws(t) according to (Eq.5.7) keeping fixed

U®D and A¢D where t > 1 shows the iteration number, and set w’ =

w® =
0.5ifw® > 0.5.
Step 2. Update the prototypes H® according to (Eq.5.6.) keeping fixed U1,
Step 3. Update the membership degree matrix U® according to (Eq.5.5) keeping

fixed #® and w " and w®.

Step 4. If ||[U® —U¢D|| < &, where & is non-negative small number fixed in

advance, the algorithm has converged, otherwise go to Step 1.
5.5 Fuzzy ID3 for LR Fuzzy Data (FuzzylD3-LR)

Fuzzy ID3 for LR Fuzzy Data (FuzzylD3-LR) aims to generate a fuzzy decision
tree on L-R fuzzy data by making the fuzzification directly. In contrast with Fuzzy
ID3-L-WABL approach, it is not necessary to apply WABL method for the
defuzzification on L-R fuzzy data and FCM algorithm. In this approach, FkM
algorithm is applied directly to Fuzzy L-R data in order to handle membership

degrees. At the end, fuzzy ID3 algorithm is performed. Then, reasoning can be
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performed with the rules generated from the fuzzy decision tree. This procedure is
given in Figure 5.2, graphically.

Fuzzy ID3
Fuzzy L-R Data FkM-F ‘ Algorithm Reasoning

Figure 5.2 The process of fuzzy decision tree induction based on linguistic data by using WABL

defuzzification method.

Algorithm of the induction process Fuzzy 1D3 Algorithm for L-R Fuzzy Data

Assume that the data set is defined with fuzzy data as linguistic variable.

Step 1: Algorithm FKM-F is performed and each membership degree is calculated
for each fuzzy term defined for each fuzzy variable.

Step 2: A root node which has a set of all fuzzified data set is generated by using

the data set obtained from Step 1.
Step 3: The expanded attribute is selected by using the following steps:

Step 3a: For each linguistic labelAy;(i = 1,2, ..., my), compute its relative

frequencies considering class C;(j = 1,2, ..., m)

N _ M(AgiNG))
pri() = MG (5.8)

Step 4: The expanded attribute is selected with the following steps:
Step 4a: For each linguistic labelAy;(i = 1,2, ..., my), compute its relative

frequencies depending on class C;(j = 1,2, ..., m)

M(AkinCj)
M(Aki)

Pri(j) = (5.9)
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Step 4b: For each linguistic label Ay;(i =1,2,..., my), compute its fuzzy

classification entropy.
Entry; = — X241 Pki(D1og(pki()) (5.10)
Step 4c: Compute the average fuzzy classification entropy of each attribute.

Ey = ka M(Aki)

: T Entry; 511
=1y 6.11)

Step 4d: Select the attribute that maximizes the information gain (Gy).

Attr = argmax(Gy), where G, = E — Ey (5.12)

1<ksn

For class label C;, i = 1,2 ..., m, compute its relative frequencies depending

on class C; .

. M(C;
pi(j) = =2 (5.13)

In Eq.5.14, E is a total entropy, and is calculated as below:
E = -2 pi(Dlog(pi()) (5.14)

Step 4e: Assign the selected attribute as the root node and the linguistic

labels as candidate branches of the tree.

Step 5 Select one branch to analyze. If it is empty, the selected branch is deleted.

If the selected branch is non-empty, the relative frequencies are computed by using

(Eq.5.8) all the objects within the branch into each class. If the relative frequency of

each class is above the given threshold 6, or all the attributes are used for the

induction, the branch is terminated as a leaf node. Otherwise, the attribute is selected

with the smallest average fuzzy classification entropy (Eq.5.12) among those, which
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has not been used as a new decision node yet and its linguistic labels are added as
candidates. At each leaf, each class will have its relative frequency.

Step 6: Repeat Step 4 as long as there are branches to analyze. It is completed.

5.5.1 The Rule Structure Generated from Each Branch of The Fuzzy Decision

Tree

After the fuzzy decision tree induction, the rules are induced from each branch.

Each branch behaves as a kind of path. The rule R; is given as follows:

Rule R;: If x;is Aj; and ... and x,, is A;, then Class = C;; with RWj;, where R; is
the label of the jth rule with the class |. x = (x4, ..., X,) IS an n-dimensional pattern
vector that represents the example. Aj; is a fuzzy set. C;; € C is the class label for jth

rule, and RWj, is the rule weight.

At each leaf node has rule weights which are computed as the relative frequency
for each class (as in Step 4d).

5.5.2 Reasoning (Classification)

Let x, = (Xp1, -, Xpn) b€ the pth example of the training set, which is composed
of P samples, and where x,,; is the value of the ith attribute i = (1,2, ..., n) of the pth
sample. Each sample belongs to class y, € C = {C;,Cy, ...,Cry}, Where m is the
number of classes of the problem. A novel sample x, is classified with FID3

reasoning procedure whose steps are performed as given in Subchapter 4.4.2.
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CHAPTER SIX
EXPERIMENTAL FRAMEWORK

6.1 Introduction

In this chapter, the experimental framework has been described to evaluate the
beneficialness of the proposals. In the following subschapters, firstly a survey on
geographic classification of virgin olive oil is explained. This survey focuses on
fuzzy decision trees to solve the geographic characterization problem. The behaviour
of different T-operators on the fuzzy reasoning procedure is also examined on virgin
olive oil dataset. The study is encouraged with statistical tests.

Secondly, the behaviour of Fuzzy ID3-L-WABL and Fuzzy ID3-LR are analyzed
on six data sets chosen from the real-world databases. In this part of the experimental
framework, the performances of classical Fuzzy 1D3, Fuzzy ID3-L-WABL, and
Fuzzy ID3-LR are evaluated. The statistical comparisons are performed based on non

parametric T-operators given in Table 3.1.

6.2 A Survey on Geographic Classification of Virgin Olive Oil with using T-

operators in Fuzzy Decision Tree Approach

In this subchapter, the information about a survey on geographic classification of
Virgin Olive Oil is given. A geographic classification system is proposed based on
fuzzy decision tree approach. Proposed reasoning approach for fuzzy ID3 algorithm
is also analyzed. Firstly, the description of the olive oil samples and the methodology
used in chemical analyses of olive oil samples are given. Secondly, PCA results are
discussed. Thirdly, data normalization is clarified. Then, the results are presented.
Finally, discussion and conclusion parts are covered (Vahaplar et al., 2013; Nasibov
et al., 2013; Nasiboglu et al., 2013; Kantarci et al.,2015a; 2015b).

6.2.1 Olive Oil Samples

Olives were collected from certain trees of the cultivars, some of which stands as

the subject matter of this work: Ayvalik, Memecik, Kilis Yaglik, Nizip Yaglik. The
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samples were collected in 2002-2003, 2004-2005 and 2005-2006 harvest seasons.
101 olive oils; collected from different regions (North Aegean (33), South Aegean
(53), Mediterranean (4), and South East (11)) were chosen for the experimental study
(Gumuskesen and Yemis¢ioglu, 2007). The analyses of fatty acids were performed

according to the official method (European Community Regulation, 1991).

The olive oil samples were esterified in a methanol solution of 2N KOH for 30
minutes at 50 °C. The gas chromatographic analyses of fatty acid methyl esters were
performed on a Perkin Elmer 8600 gas chromatograph, equipped with a flame
ionization detector: The column was a fused silica capillary coating with CP-WAX
52CB (Varian) length 25 meters, inner diameter 0.32 m. film thickness 0.20 m.
Helium was the carrier gas at a flow rate of 1.5 mL/min. The column temperature
program was initially isotherm for 10 min at 140°C, an initially programmed rate of
lo C/min up to 160°C, then a second rate of 2°C/min up to 220° C and a final
isotherm for 15 min. The injector and flame ionization detector temperatures were
250°C. Samples of 0.2 L were injected into the split mode with a split ratio of 1:10.
The apparatus itself carried out recording and integration. The analyses were
repeated in triplicate.

The gas-chromatographic peaks were identified as corresponding fatty acid
methyl esters by checking the elution order on the column and compared the
retention times with those of pure standards. Results were expressed as peak area
ratio percentage. The analysis of triglycerides was performed according to the
official chromatographic method of the EC no. 2472/97 (European Community
Regulation, 1997).

The apparatus was a Hewlett Packard HPLC instrument model 1100 consisted by
a degasser, quaternary pum, manual six-way injection valve, refractometer detector,
and Chemstation Software package for instrument control, data acquisition, and data
analysis. A Lichrosorb FP 18 (4.6 0.25 mm) analytical column was used. The
analysis of sterols was performed according to the official method of the EC no.
2568/91 (European Community Regulation, 1991).
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The apparatus was a Hewlett Packard instrument model 6890 gas chromatograph,
equipped with a flame ionization detector (FID); a HP-5 (Crosslinked 5% PH ME
Siloxane) capillary column (30 m 0.25 mm 0.25 Im) and a 6890 Agilent automatic

injector.

The determination of content of acidity, index of peroxide was performed
according to the official methods of the EC. While PCA was applied in SPSS 20.0,
partition coefficients and Fuzzy c-means algorithm were performed in MATLAB
2015. A software called as OliveDeSoft is programmed in the Visual C# for the
experimental study (intel i7, 2.4 GHz, 4 Gb RAM).

6.2.2 OliveDeSoft

OliveDeSoft is a novel improved version of the software named as SAPOO
(Sensory Analysis Package: Olive Qil) developed using Borland C++ Builder
environment (Kantarci, 2010). SAPOO was designed in order to determine the type
of virgin olive oil. It uses the sensory evaluation model based on linguistic decision

analysis proposed in (Martinez, Espinilla, & Perez, 2008).

In addition to SAPOQ’s facilities, OliveDeSoft (Olive Decision Software)
includes the characterization of olive oil according to various regions. It enables
making the characterization of the olive oil by using fuzzy decision tree approach. In
addition, it includes different reasoning T-operators in order to observe the behaviour
of the reasoning procedure. OliveDeSoft in the Visual C# is for the experimental
study (intel i7, 2.4 GHz, 4 Gb RAM). When the software is run, the opening screen
welcomes as given in Figure 6.1. (Kantarci et al., 2013).
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Figure 6.1 OliveDeSoft opening screen.

The aim is to get information from data and to create a useful tool for geographic

characterization.

Chemical Training Data
Defined bv Classical Sets

Min-Max Normalization

v

Fuzzification By Using
Membership Functions

v

OliveDeSoft
(Fuzzv [D3 Algorithm)

'

DECISION
(Region of Olive Oil Sample)

Figure 6.2 Classification Procedure by using fuzzy ID3.

The classical chemical data achieved from the olive oil samples is evaluated with
Fuzzy ID3 algorithm. A fuzzy decision tree is constructed. Hence, this tree can be
put into account for the classification of olive oil samples according to region. In

OliveDeSoft, this can be performed fuzzy ID3 with the following menu item (given

in Figure 6.3):

Analysis 2>Fuzzy Decision Tree =>Fuzzy I1D3.
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Dat.

Then, Screen “Fuzzy ID” is opening in order to observe the performance of

different T-operators (Figure 6.4.).

Incuction of FuzzylD3 Algarithm
Fuzzy Inference Method
Mon-Parametrized Operators T-norm and T-conorm
Zadeh (@) Bounded Praduct
Umanao et al
Algebraic Procuct
Parametrized Operators T-norm and T-conarm
Yager : Parameter Start D
Hamacher O Parameter End
Dombi 7 Parameter Step
Dubois et al O i l:l
Weher 7 wi |:|
“Yu andong (@) i l:l

Figure 6.4 Screen “Fuzzy ID3”

With OliveDeSoft, it is possible to decide the region of olive oil sample with the
following menu item (given in Figure 6.5.):

Analysis 2*Characterization of Olive Oil Satisfy the region.
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Figure 6.5 Screen “Analysis-Charcterization of olive oil”

6.2.3 Implementation of PCA

Principal component analysis was performed on this data set in order to explore
the data structure. The principal components plot is given in Figure 6.6. It is clear
that there is information related to the geographic origin of virgin olive oils on the
results obtanied from the chemical analyses, but there is a region (Mediterranean)
which has less data than the other regions so it cannot be viewed clearly. This region
can be seen by collecting many more data from this region. The data implementation
is performed in IBM SPSS 20.
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Figure 6.6 The Principal components plot on the virgin olive oil sample.
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6.2.4 Min-Max Normalization and Fuzzy c-means Algorithm

The data set is normalized by min-max normalization. Normalization is performed
to avoid domination between attributes of the data. It is a linear transformation. Let B
Is an attribute. Min B and Max B are the minimum and the maximum values of this
attribute. In this case, min-max normalization maps a value v of B into v' in a new
range between 0 and 1. The following formula is used for min-max normalization
(Eq.6.1):
, _ v-ming

(6.1)

max,p—ming

In this experimental study, the data fuzzification process was performed with
fuzzy c-means (FCM) algorithm.

6.2.5 Partition coefficient index

The determination of the correct number of clusters (c) for fuzzy c-means (FCM)
algorithm has a crucial issue. In literature, there are some scalar measures of
partitioning fuzziness, called validity indicators (Bezdek, 1974a; 1974b; Dunn,

1974). Partition coefficient is a scalar measure as formulized as below (Eq.6.2):

1
Voc =+ i=12)=1 :uizj (6.2)

whereas optimal cluster number is max (v,.,U,c). Partition coefficient was used in

order to determine the number of clusters (Bezdek, 1974b; Dunn, 1974). The

calculated partition coefficient value for each cluster is given in Table 6.1.
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6.2.6 Performance Measure and Statistical Tests

The chemical measurements have imprecise information. In this study, fuzzy ID3
algorithm based on fuzzy logic is chosen. Normally, ID3 algorithm works with
categorical variables. Yet, Fuzzy 1D3 algorithm deals with numerical variables by

using fuzzy variables. Each numeric variable transforms into fuzzy variable.

In this study, the chemical data was fuzzified by using Fuzzy c-means (FCM)
algorithm. Each fuzzy variable has fuzzy terms inside of it as it is described before.
The clusters are determined by using partition coefficient value. This approach uses
nine different T-operators into the reasoning procedure. Classical FuzzylD3 (Umano
et al., 1994) and C4.5 (Quinlan, 1993) algorithms are also performed to examine the

performances.

Leave-one-out validation procedure was performed in order to measure the
performances of the algorithms. Accuracy rate is a technic widely used in order to
test different methods. This metric is defined as percentage of correctly classified
samples (Elkano et al., 2015). Also, threshold value is set to 6, = 0.75 for the
analysis. Parameters are set as Yager p=2, Hamacher p=0.25, Dombi=1,
Dubois=0.25 and Weber=15 for parametric operators’ experimental study. While

6, = 0.75, each operator reaches the maximum accuracy rates.

6.2.7 Studying fuzzy reasoning method with non-parametric operators

C4.5 algorithm also uses entropy as splitting criteria, like ID3 algorithm. It was
proposed in Quinlan (1993) to deal with the numerical data. The observed
performance of this algorithm is 86.14%. Then, it is seen that the performance of
classical Fuzzy ID3 algorithm with its’ own reasoning method has the same

performance with 86.14%.

53



125

Table 6.1The calculated partition coefficient value for each cluster number (c=2, c=3, c=4

Attributes c=2 c=3 c=4 Attributes c=2 c=3 c=4
Myristic Acid (C14:0) 0.9202 0.9389 0.9189 Campesterol 0.8099 0.7607 0.7439
Palmitic Acid (C16:0) 0.8735 0.8207 0.7765 Campestenol 0.9998 0.9170 0.9116
Palmitoleic Acid (C16:1) 0.8313 0.7994 0.7960 Stigmasterol 0.9181 0.8006 0.7980
Heptadecanoic Acid (C17:0) 0.9066 0.8443 0.8035 Delta 7 Campesterol 0.8251 0.8161 0.8171
i . Delta 5-23
Heptadecenoic Acid (C17:0) 0.9153 0.8528 0.8240 . . 0.9899 0.8724 0.8852
Stigmastadienol
Stearic Acid (C18:0) 0.8013 0.7930 0.7435 Clerosterol 0.8086 0.8037 0.7511
Oleic Acid (C18:1) 0.8797 0.8013 0.7436 Beta-Sitosterol 0.9027 0.8450 0.7576
Linoleic Acid (C18:2) 0.8368 0.7724 0.7441 Sitostenol 0.8982 0.8018 0.8076
Linolenic Acid(C18:3) 0.9998 0.8383 0.9239 Delta 5 Avenasterol 0.8901 0.8286 0.7609
Delta 5-24
Arachidic Acid(C20:0) 0.7967 0.7741 0.7567 0.9143 0.8224 0.8254
Avenasterol
Gadoleic Acid (C20:1) 0.8554 0.8291 0.7772 Delta 7 Stigmastenol 0.8356 0.7880 0.7352
Behenic Acid(C22:0) 0.8024 0.7900 0.7978 Delta 7 Avenasterol 0.8757 0.8368 0.7957
Lignoceric Acid(C24:0) 0.7754 0.7934 0.7670 Total Beta Sitosterol 0.8370 0.7756 0.8132
Cholesterol 0.8389 0.8002 0.7988 Total Sterol 0.8660 0.8109 0.7557
Brassicasterol 0.8640 0.7955 0.8046 Erythrodiol_Uvaol 0.8693 0.8178 0.7623
24-Methylene 0.9011 0.7803 0.7989 Trilinolein 0.8719 0.8035 0.7649




The performance results of non-parametric approaches given in Table 6.2 shows
that the result handled from four nonparametric versions have the same performance
value with handled from C4.5 algorithm. Fuzzy ID3 algorithm reasoning with

Bounded Product T-operators has the minimum performance value with 85.15%.

Table 6.2 The performance results of each algorithm for non-parametric operators.

Algorithms Accuracy Rate (%)
C45 86.14*
FuzzylD3_reasoning with Classical 86.14*
FuzzylD3_ reasoning with Zadeh T-Opeators Ty & T, 86.14*
FuzzylD3_ reasoning with Algebraic Product/Sum T, & T, 86.14*
FuzzylD3_ reasoning with Bounded Product/Sum T, &T, 85.15
FuzzyID3_ reasoning with Non Parametric Hamacher (1 =0) T; & T, 86.14*

6.2.8 Studying Fuzzy Reasoning Method with Parametric Operators

The performance of fuzzy reasoning method is controlled within different
parameters. It is thought that a better classification accuracy rate is reached by
changing the parameters value. The performance results for each Fuzzy ID3

reasoning with parametric T-operators (listed in Table 3.1.) are given in Table 6.3.

Fuzzy ID3 reasoning with Weber T-operators (lambda: (15-17)) has the highest
performance value with 87.13%. It is observed that in different parameter values, the
algorithm can reach the highest performance value. The other operators reach

maximum 86.14%, same as non-parametric operators.
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Table 6.3 The performance results of each algorithm for parametric operators.

Algorithms Parameter Accuracy Rate
Value (%)
FuzzylD3_ reasoning with Hamacher max. Values Tg &T.; (0.25-6.50) 86.14
FuzzylD3_ reasoning with Yager max. Values Tg & TG* (2-300) 86.14
FuzzylD3_ reasoning with Dombi max. values T; & T, (1-155) 86.14
FuzzylD3_ reasoning with Dubois max. values Tg &TB* (0.25-1) 86.14
FuzzylD3_ reasoning with Weber max. values T &Tg* (15-17) 87.13*
FuzzylD3_ reasoning with Yuyandong max. values T;q & T, (100-105) 86.14

The graph of accuracy rates handled from different parametric operators with
6, = 0.75 in (0-20) are given in Figure 6.7. It is supported that Fuzzy 1D3 reasoning
with Weber has a good performance average of 85.90% within range (0-20) and

Hamacher has a performance with an average of 84.82%.
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Figure 6.7 Accuracy rates handled from different parametric operators Range =(0-20) and 6,=0.75.
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6.2.9 Study of the Behaviour of Fuzzy 1D3 Reasoning Method Based on
Different T-Operators.

The Friedman aligned ranks have been applied as a non-parametric statistical
procedure in order to detect statistical differences among a group of results for 20
threshold (6,) values in Table 6.4. This test obtains p-value as equal to zero, which

shows that there are significant differences among the results.

Table 6.4 Friedman aligned ranks

Algorithm Rank

Zadeh 7.68 Friedman aligned ranks

Classical 4.72

Algebraic Product 4.72

Bounded Product 4.42 T 20

Non-Parametric Hamacher

(2=0) ' Test Statistic 95.605

Yager 7.65

Hamacher 4.72 Degrees of 9

Dombi 3.32 Freedom

Dubois 4.18 Asymptotic Sig. 0.000
(2 sided test)
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The pairwise comparisons are performed. The adjusted p-values are taken into
account in order to evaluate these pairwise comparisons among the non-parametric
algorithms. The results are given in Table 6.5. Friedman aligned ranks test and

pairwise comparisons were performed in IBM SPSS 20.

There are thirteen significance comparison as follows:
Dombi vs. Yager with adj. p-value=0.000.

Dombi vs. Zadeh with adj. p-value=0.000.

Dombi vs. Weber with adj. p-value=0.000.

Dubois vs. Yager with adj. p-value=0.013.

Dubois vs. Zadeh with adj. p-value=0.012.

Dubois vs. Weber with adj. p-value=0.000.

Bounded Product/Sum vs. Yager with adj. p-value=0.034.
Bounded Product/Sum vs. Zadeh with adj. p-value=0.031.
Bounded Product/Sum vs. Weber with adj. p-value=0.000.
Classical vs. Weber with adj. p-value=0.001.

Algebraic Product/Sum vs. Weber with adj. p-value=0.001.
Hamacher (1 =0) vs. Weber with adj. p-value=0.001.

Hamacher vs. Weber with adj. p-value=0.001.

In Table 6.6, it is also seen that the highest average is handled from Weber. It is
seen from pairwise comparisons that Weber has better results than Classical which is
the standard version. Weber has also better results than Hamacher. Yager has better
results than Dombi and Dubois. Yager, Zadeh, and Weber have better results than
Bounded Product. As a result, Weber, which is a parametric operator given in bold as

above, has better results than all non-parametric operators.
Also, the graph of the accuracy rates is handled for different thresholds within all

approaches in Figure 6.8. Accuracy rates handled for different thresholds within
different fuzzy reasoning methods are given in Table 6.7.
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Table 6.5 The results of pairwise comparisons for FuzzylD3 reasoning operators with 20 different thresholds (range=0.71-0.90) via adjusted significance values

Weber Zadeh Yager Hamacher NP Algebraic Classical Bounded Dubois
Hamacher Product Product
(x=0)

Dombi 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
Dubois 0.000 0.012 0.013 1.000 1.000 1.000 1.000 1.000
Bounded Product 0.000 0.031 0.034 1.000 1.000 1.000 1.000
Classical 0.001 0.093 0.101 1.000 1.000 1.000
Algebraic Product 0.001 0.093 0.101 1.000 1.000
NPHamacher (A = 0) 0.001 0.093 0.101 1.000
Hamacher 0.001 0.093 1.000
Yager 1.000 1.000
Zadeh 1.000




It is seen that maximum value has Dombi T-operators handled for 8, = 0.85 with
88.11%. As a result, it is observed that we can also reach better results by using
different threshold values. In future work, the behaviour of threshold values is

planned to be researched.

6.2.10 Discussion and Conclusion

In this study, it is aimed to make the geographic classification of olive oil. It is
one of the basic agricultural products of Turkey, and is an important food product for
the human health from past to present. So, the quality control of this product has a
crucial importance and it is very difficult. In accordance with this study, chemical
measurements were used in order to make on experimental study. Chemical
measurements contain uncertainty. In order to deal with uncertain information, Fuzzy
ID3 classifier was chosen to construct the classification of olive oil samples.
Additionally, fuzzy 1D3 reasoning method which is based on T-operators has been
proposed. The study has targetted to see the performance of proposed fuzzy

reasoning method to solve the geographic classification problem.
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Figure 6.8 Accuracy rates handled for different thresholds.

It is observed that the results obtained from four non-parametric versions have the
same performance value with the results obtained from C4.5 algorithm. Then, the
performance of parametric operators are checked. As a result, it is seen that Fuzzy
ID3 reasoning with Weber T-operators (lambda: (15-17)) has the highest
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performance value with 87.13%. Statistical procedure was performed in order to

detect statistical differences among a group of results for 20 threshold (8,.) values.
It is observed that there are significant differences among the results. Also, the

pairwise comparisons are performed for each approach. Weber has better results than

Classical which is the standard version.
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Table 6.6 The performance results (%) of each algorithm for parametric operators range =(0-20) and 6,=0.75.

Parameter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average
Hamacher 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 85.12 | 85.12 | 85.15 | 85.15 | 85.15 | 85.15 | 84.16 | 84.16 | 84.16 | 83.17 | 83.17 | 83.17 | 83.17 | 82.18 | 84.82
Dubois_Prade 46.53 | 86.14 | 84.16 | 80.20 | 78.22 | 75.25 | 71.29 | 30.69 | 30.69 | 30.69 | 30.69 | 32.67 | 30.69 | 32.67 | 33.66 | 33.66 | 33.66 | 33.66 | 33.66 | 33.66 | 33.66 | 46.49
Weber 85.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 85.12 | 85.12 | 85.12 | 85.12 | 85.12 | 87.13 | 87.13 | 87.13 | 86.14 | 85.12 | 85.15 | 85.90
Dombi 32.67 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 83.59
Yager 32.67 | 85.12 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 86.14 | 83.54
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Table 6.7 Accuracy rates handled for different thresholds (%).

0, Zadeh Classia] Algebraic Bounded NP Hamacher Yager Hamacher Dombi Dubois Weber
Product/Sum | Product/Sum (2=0) (p=2) (p=0.25) 1) (0.25) (15)
0.71 85.15 85.15 85.15 84.16 85.15 85.15 85.15 82.18 51.48 86.14
0.72 85.15 85.15 85.15 84.16 85.15 85.15 85.15 82.18 51.48 86.14
0.73 85.15 85.15 85.15 84.16 85.15 85.15 85.15 82.18 85.15 86.14
0.74 85.15 85.15 85.15 84.16 85.15 85.15 85.15 82.18 85.15 86.14
0.75 86.14 86.14 86.14 85.15 86.14 86.14 86.14 83.16 86.14 87.13
0.76 86.14 86.14 86.14 85.15 86.14 86.14 86.14 83.16 86.14 87.13
0.77 84.16 84.16 84.16 83.17 84.16 84.16 84.16 82.18 84.16 86.14
0.78 82.18 82.18 82.18 81.19 82.18 82.18 82.18 82.18 82.18 82.18
0.79 86.14 84.16 84.16 85.15 84.16 86.14 84.16 84.16 84.16 86.14
0.80 86.14 84.16 84.16 85.15 84.16 86.14 84.16 84.16 84.16 86.14
0.81 86.14 84.16 84.16 85.15 84.16 86.14 84.16 84.16 84.16 86.14
0.82 86.14 84.16 84.16 85.15 84.16 86.14 84.16 84.16 84.16 86.14
0.83 86.14 84.16 84.16 85.15 84.16 86.14 84.16 84.16 84.16 86.14
0.84 87.13 87.13 87.13 86.14 87.13 87.13 87.13 87.13 87.13 87.13
0.85 87.13 86.14 86.14 86.14 86.14 87.13 86.14 88.11 86.14 87.13
0.86 87.13 86.14 86.14 86.14 86.14 87.13 86.14 86.14 86.14 87.13
0.87 86.14 83.17 83.17 85.15 83.17 86.14 83.17 86.14 83.17 86.14
0.88 85.15 36.63 36.63 84.16 36.63 85.15 36.63 36.63 36.63 85.15
0.89 84.16 37.62 37.62 83.17 37.62 86.14 37.62 35.64 37.62 81.19
0.90 84.16 4257 4257 83.17 42.57 83.17 42.57 40.59 4257 83.17
Average 85.54 77.97 77.97 84.46 77.97 85.59 77.97 77.03 74.60 85.74




Hence, Weber has better results than all non-parametric operators’ results. So, it is
claimed that by using different parameters, better reasoning performance can be
handled for the classification procedure with fuzzy ID3. In future research, there are
several works to be addressed related with the adaptation of n-dimensional overlap
functions (Elkano et al., 2015).

6.3 Study of the Behaviour of Fuzzy ID3-L-WABL and Fuzzy ID3- LR

In this Subchapter, Behaviour of Fuzzy ID3-L-WABL and Fuzzy ID3-LR are
analyzed. First, the datasets selected for the experimental studies (see Subchapter
6.3.1) are explained. Second, the parameter set-up for each method (see Subchapter
6.3.2) is given. Third, Fuzzy Artemis is presented, which is programmed to make the
experimental studies (see Subchapter 6.3.3). Then, the detailed information is given
for the experimental study (see Subchapter 6.3.4). At last, a brief analysis is done

about the results obtained from two proposed linguistic approaches.

6.3.1 Datasets

In order to analyze the performance of our proposal, we have considered six
datasets selected from the KEEL dataset repository (Alcala-Fdez et al., 2009;
Datasets., n.d.) prepared by using 5-fold stratified cross-validation model. Table 6.8
summarizes the features of the selected datasets, showing for each dataset the
number of examples, number of numerical attributes (Num Atts), and the number of

classes(Class).

Table 6.8 Summary of the datasets’ features used in experimental study

ID Dataset Examples Num Attr Class
1 Iris 150 4 3
2 Phoneme 5404 5 2
3 Pima 768 8 2
4 Ring 7400 20 2
5 Sonar 208 60 2
6 Wdbc 569 30 2
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6.3.2 Performance Measure and Statistical Tests

The accuracy rate is one of the most common metric measures to test performance
of the different methods. It is explained with percentage of correctly classified
examples related to the total number of examples. In our study, we use 5-fold cross
validation. The statistical tests are done with the average of 5-fold experiments.
Fuzzy c-means (FCM) algorithm and FkM-F algorithm are performed in MATLAB
2015 in order to handle the fuzzification phase of the datasets. A software called
FuzzyArtemis is programmed in the Visual C# for the experimental study (intel i7,
2.4 GHz, 4 Gb RAM).

In order to give a statistical support to the analysis of the results, it is carried out
Wilcoxon Signed Rank Test to perform pairwise comparisons and Aligned Friedman
Test to check whether there are statistical differences among a group of methods or

not. Statistical non-parametric tests are performed in IBM SPSS 23.
6.3.3 FuzzyArtemis

FuzzyArtemis aims to make experimental studies about fuzzy classification and
clustering. The first menu is developed for fuzzy classification approach. It uses
fuzzy ID3 algorithm in order to solve the classification problems. It is planned that

fuzzy clustering approach will be made add-in for future studies.

You can handle fuzzy decision tree based Fuzzy ID3 algorithm. When

FuzzyArtemis is run, the opening screen welcomes as given in Figure 6.9.
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Data  Analyze Help

Figure 6.9 FuzzyArtemis opening screen.

Data menu help to see the data as seen in Figure 6.10. If user wants to construct

fuzzy decision tree, user needs to follow the menus as given below:

Data -»Open Data =>Fuzzy ID3.
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Figure 6.10 FuzzyArtemis “Data” screen (Open Data Command).

FuzzyArtemis “Analyze” screen is given in Figure 6.11. It is seen that the user can
make the induction of fuzzy decision tree by using the button “Induction of Fuzzy
ID3 Algoirthm”. Then, user can choose one of the fuzzy reasoning methods among
various parameteric and non-parametric approaches. In addition, the user can see the
performance of the selected method by using the button “Perform The Selected

Inference Method”.
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Figure 6.11 FuzzyArtemis “Analyze” screen.

6.3.4 Experimental Study

The experimental study consists of two steps. It is aimed to show that novel fuzzy
ID3 approaches working on linguistic data have good performances at least as
classical fuzzy ID3 approach working on numeric data. In the first step, the
performance behaviour of three approaches is analyzed by using a fixed threshold
value (6, = 0.75) and different T-operators. In the second step, the performance
behaviour of of three approaches is examined by using various T-operators and

different thresholds. The experimental study is supported by statistical analysis.

6.3.4.1 Study of The Behaviour of Fuzzy ID3 Induction Process on Numerical
Data, Fuzzy ID-L-WABL and Fuzzy ID3-LR

The behaviour of classical Fuzzy ID3, Fuzzy ID-L-WABL, and Fuzzy ID3-LR
approaches are analyzed by using T-operators on six well-known data sets. Then, the
behaviour of different t-operators on fixed threshold results for three different
approaches are obtained. It is aimed to show that the results handled from proposed
approaches for linguistic data has good performance at least as the results handled
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from Fuzzy 1D3 Induction process for the classical approach. Triangular fuzzy
numbers (defined in Subchapter 2.2.2) are consisted of the following steps:
Step 1. Each attribute’s value is assigned as the center (b).
Step 2. Each center value is multipled with a random number generated
between (0-0.20). This random number represents [;; or r;; which is defined in
Subchapter 5.2.

Step 3. Then, left (a) value is computed with the substraction of [;; from b and

the right value is computed with the summation of r;; with right (c).

The set-up parameters are given in Table 6.9 for three methods.

First method is defined as classical Fuzzy 1D3 Induction Process (FID3). In this
approach, fuzzification is done by using fuzzy c-means algorithm. Second method
indicates Fuzzy ID3 Algorithm Based on Linguistic Data by using WABL
Defuzzification. Fuzzy c-means (FCM) algorithm is used again in order to get

membership degrees.

Then, Fuzzy ID3-L-WABL is applied in order to achieve the fuzzy decision tree.
Hence, third method works directly on fuzzy data. It uses FKM-F algorithm to
perform the fuzzification phase. Then, the non-parametric reasoning methods (given
in Table 3.1) are applied to the six data sets for both three approaches to examine the

performances of the classification.

The accuracy rates are obtained for the three methods. The performance results

are given in Table 6.10, Table 6.11 and Table 6.12, respectively.

It is seen that Wdbc has the highest performance result with 91.57%, which is
obtained from tha adaptation of FID3-L-WABL and Bounded Product/Sum
reasoning among the other approaches. Iris data set has best accuracy rate with

95.33% FID3-L-WABL and Zadeh reasoning among all reasoning methods.
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Table 6.9 Set up of the methods parameters

Methods Algorithm Parameters

FCM:c=3 classes
Fuzzy ID3 Induction Process | 6 = 0.75
1 (FID3) max depth=11
Non-parametric operatos given in
Table 3.1.
FCM: c=3 classes
WABL:
Fuzzy ID3 Algorithm Based on | k = 0;s = 1.0;

Linguistic Data By Using ¢, =cg =050

WABL Defuzzification FID3: 6, = 0.75

Method (FID3-L-WABL) max depth=11
Reasoning:Non-parametric  operatos
given in Table 3.1.
FKkM: c=3 classes
L-R fuzzy data used for Method 2.
FID3: 6, = 0.75
max depth=11
Non-parametric operatos given in
Table 3.1.

Fuzzy ID3 Algorithm for L-R
3 Fuzzy Data
(Fuzzy ID3-LR)

Moreover, while Ring data set has the best performance with 74.88% FID3-L-
WABL and Algebraic Product/Sum reasoning, it has the least performance with
49.64% FID3-LR and Bounded Product/Sum reasoning.

Table 6.10 Accuracy rates (%) obtained from FID3

Zadeh Algebraic Bounded Nonparametric

Datasets Product/Sum Product/Sum Hamacher (1 =0)
Wdbc 90.51 91.04 91.39 84.18
Iris 94.00 94.00 94.00 94.00
Pima 73.56 74.86 70.70 72.78
Ring 73.00 74.55 63.49 68.99
Sonar 73.08 63.11 71.64 58.72
Phoneme 73.67 73.59 73.33 73.17

Also, Sonar has 77.89% accuracy rate with FID3-LR and Algebraic Product/Sum
reasoning. Phoneme has the highest accuracy rate with 74.91% for FID3-L-WABL

and Algebraic Product/Sum reasoning.
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Table 6.11 Accuracy rates (%) obtained from FID3-L-WABL

Zadeh Algebraic Bounded Nonparametric

Datasets Product/Sum Product/Sum Hamacher 4 =90
Wdbc 90.87 79.82 91.57 73.83
Iris 95.33 94.67 94.67 94.67
Pima 72.91 73.82 69.66 73.56
Ring 74.14 74.88 64.61 68.88
Sonar 73.10 74.08 73.09 64.41
Phoneme 74.70 74.91 73.58 74.48

The experimental study is encouraged by the statistical tests. The Aligned
Friedman is performed to check whether there are statistical differences among the
performances of reasoning methods. Also, Wilcoxon signed rank test is applied to
make the comparison among the methods. It is aimed to show that the performances
of the proposed approaches, FID3-L-WABL and FID3-LR, have as good

performance as classical Fuzzy ID3 in general.

Table 6.12 Accuracy rates (%) obtained from FID3-LR

Datasets Zadeh Q:gg%za;}gum E?gg L(Ij cegSum Ezrr]:;;r: er:?irij@)
Wdbc 90.16 90.86 90.86 91.04
Iris 55.33 33.99 33.33 50.67
Pima 65.75 65.75 65.10 66.01
Ring 51.08 49.76 49.64 49.76
Sonar 74.03 77.89 57.75 74.99
Phoneme 70.65 70.65 70.65 70.65

According to the result of the Aligned Friedman test, it is seen that p-value equals
to 0.008 as given in Table 6.13. It shows that there are significant differences among
the results (a=0.05). Then, Wilcoxon signed rank test is applied to the approaches in
order to test the comparison among the reasoning methods on three induction
approaches as FID3-L-WABL, FID3-LR, and classical FID3. The results of this test
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for six well-known selected data sets are given in Table 6.14. (L_ implies FID3-L-
WABL, L2 implies FID3_LR).

Table 6.13 Friedman aligned ranks results to test the performance of reasoning methods

Friedman aligned

ranks
Algorithm Rank Algorithm Rank Algorithm Rank Total N 6
Zadeh 7.50 Zadeh_L 9.50 Zadeh_L2 4.33 Test
Algebraic Algebraic Algebraic Statistic 2530
Product/Sum 8.33 Product/Sum_L 9.0 ProduthISum_L 4.67
Bounded
Bounded Bounded
Product/Sum 6.58 Product/Sum_L 7.83 Produth/Sum_L 217 Asymptotic
Sig.
Parglr?wrt;tric Non Parametric Non Parametric (2 sided 0.008
5.25 Hamacher_L 6.92 Hamacher_L2 5.42 test)
Hamacher
(1=0) (A=0) (A=0)
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It is seen that there is no significant difference between the results of Zadeh
operator applied with FID3-L-WABL and FID3-LR with p value, 0.075. In addition,
the results of Zadeh operator applied with classical FID3 and FID3-LR with p value,

0.075 shows that there is no significant difference.

Hence, it is concluded that there is no significant difference for the pairs of
Algebraic Product/Sum operator results obtained from FID3-L-WABL and FID3-LR,
classical FID3 and FID3-LR. P values handled from the tests are given as 0.249 and
0.173, respectively. Non-Parametric Hamacher operator’s results got from FID3-L-
WABL and FID3-LR, classical FID3 and FID3-LR, respectively. These two pairs’

comparisons have p-values as 0.463.

Yet, it is observed that Bounded Product/Sum operator’s results got from FID3-L-
WABL and FID3-LR, classical FID3 and FID3-LR are significant difference with p-
value as 0.028, respectively. It is observed that FID3-LR achieved better results with
Bounded Product/Sum reasoning operator than FID3-L-WABL and classical FID3

approaches.

It is seen that there is significant difference between the results of Non Parametric
Hamacher and Bounded Product/Sum produced with FID3-LR (p-value, 0.043). It is
seen that Bounded Product/Sum operator has better results with p value, 0.022. There
is significant difference between the results obtained from Non Parametric Hamacher
and Algebraic Product/Sum operators with FID3-L-WABL (p value, 0.043).

The results of Algebraic Product/Sum operator with FID3-L-WABL has better
results than the results of Non Parametric Hamacher operator with FID3-L-WABL.
Classical FID3 with Non Parametric Hamacher operators achieves better results than
classical FID3 with Zadeh and Bounded Product/Sum operators with p value, 0.022.

As a summary, it is observed that there are no differences between the results of
classical FID3, FID3-L-WABL and FID3-LR in general situation. Linguistic

approaches have good performance no fewer than numerical approach. Yet, Fuzzy
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ID3-LR has better performance than FuzzylD3-L-WABI and classical FuzzylD3 for

Bounded Product/Sum operator’s results.
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V.

Table 6.14 Wilcoxon signed rank tests on different threshold for general situation.

Sum
of Sum of 7 test Exact sig. Sum of Sum of 7 test Exact sig.
Comparison Negati Positive Hypothesis statistic (1-tailed) | Decision Comparison Negativ Positive Hypothesis statistic (1-tailed) Decision
ve Ranks p value e Ranks Ranks p value
Ranks
Algebraic Product/Sum_L2 vs Zadeh_L2 Hy:Mp =0 It is not Non Parametric Hamacher vs.Zadeh Hy:Mp, =0 Lo
(Mb=MzapeH_L2-MALGEBRAIC/RODUCT-SUM_L2) 6.00 Al Hy:Mp, #0 -0.365 0.715 rejected (Mp=MzApEH-M NON PARAMETRIC HAMACHER) 150 00 Hi:M, #0 2023 0.043 Itis rejected
Bounded Product/Sum vs. Algebraic
Bounded Product/Sum_L2 vs. Zadeh_L2 Hy:Mp, =0 0.138 It is not Product/Sum Hy:M, =0 0.686 It is not

13.00 2.00 -1.483 . 9.0 6.0 -0.405 .
(Mb=MzApEH_L2-MBOUNDED/RODUCT-SUM_L2) Hy:Mp #0 rejected (Mp=MALGEBRAIC/RODUCT-SUM- Hy:Mp #0 rejected

MBgouNDED/RODUCT-5UM)

Non Parametric Hamacher vs. Algebraic

Non Parametric Hamacher_L2 vs. Zadeh_L2 Hy:Mp = 0.686 It is not Product/Sum Hy: M, = 0.043 I
(Mbp=MzaDEH_L2-M NON PARAMETRIC HAMACHER_L2) 90 6.0 Hy:Mp #0 -0.405 rejected [ (Mp=MaLceBraiciPrRODUCT-M NON PARAMETRIC 150 00 Hi:M, #0 -2:023 Itis rejected
HAMACHER)
Bounded Product/Sum_L2 vs Algebraic Non Parametric Hamacher vs. Bounded
Product/Sum _L2 100 00 Hy:Mp, =0 1.826 0.068 It is not Product/Sum 100 50 Hy:M, =0 0.500 It is not
(Mb=MaLcEBRAIC/RODUCT-SUM_L2- MBOUNDED/RODUCT- : : H:M, #0 . rejected (Mp=MgounpeprrobucT-M NON PARAMETRIC . . H:Mp,#0 -0.674 rejected
SuM_L2) HAMACHER)
Non Parametric Hamacher_L2 vs. Algebraic
Product/Sum_L2 Hy:Mp =0 0.465 . Zadeh_L vs. Zadeh_L2 Hy:Mp =0 0.075 It is not
(Mb=MaLcEBRrAICIPRODUCT_L2-M NON PARAMETRIC 30 70 H:Mp, #0 0730 rI:)jI:crt]:(; (Mb=MzapeH_L2-MzapEH_L) 2.0 190 Hi:M, #0 1782 rejected
HAMACHER_L2)
Non Parametric Hamacher_L2 vs.Bounded
Product/Sum_L2 Hy:Mp = 0.043 Itis Zadeh vs. Zadeh_L2 Hy:Mp, = 0.075 It is not
(Mb=MgounbEeb/ProDUCT_L2-M NON PARAMETRIC 0.0 150 Hy:Mp #0 -2.023 rejected (Mp=MzapeH_L2-MzaDEH) 2.0 190 Hy:Mp, # 0 1782 rejected
HAMACHER_L2)
Algebraic Product/Sum_L vs Algebraic
Algebraic Product/Sum_L vs. Zadeh_L 8.0 13.0 Hy:Mp = 0524 0.600 It is not Product/Sum_L2 5.0 16.0 Hy:Mp, = 1153 0.249 It is not

(Mb=MzApEH_L-MALGEBRAIC/RODUCT-SUM_L) H;:M, #0 rejected (Mb=MALGEBRAIC PRODUCT/SUM_L2" H;:M, #0 rejected
MALGEBRAIC PRODUCT/SUM L)

Algebraic Product/Sum vs Algebraic
Bounded Product/Sum_L vs. zadeh_L Hy:Mp = 0.116 It is not Product/Sum_L2 Hy:Mp, = R 0.173 It is not
(Mb=MzapgH_L-MeoUNDED/RODUCT-SUM_L) 18.0 3.0 H;:M, #0 1.572 rejected (Mb=MALGEBRAIC PRODUCT/SUM_L2" 40 17.0 H;:M, #0 1.363 rejected

MaLcesrAIC PRODUCTISUM)

Bounded Product/Sum_L vs. Bounded

Non Parametric Hamacher_L vs. Zadeh_L Hy:Mp = It is not _ Hy: M, = L
(Mb=MzapEH_L-M NON PARAMETRIC HAMACHER_L) 1.0 2.0 H:M, #0 1782 0.075 rejected Product/Sum_L2 (Mo=Msounoeo 0.0 21.0 H:M, #0 -2.201 0.028 Itis rejected
PRODUCT/SUM LZ'MBOUNDED PRODUCT/SUM., L)
Bounded Product/Sum_L vs. Algebraic Bounded Product/Sum vs. Bounded
Product/Sum_L Hy:Mp, =0 0.500 It is not Product/Sum_L2 Hy:M, =0 0.028 N
(Mp=MatcesrAIC/RODUCT-SUM_L- MBOUNDED/RODUCT- 10.0 50 H;:M, #0 -0.674 rejected (Mb=MgounpEp PrRODUCT/SUM_L2-MBOUNDED 0.0 210 H;:M, #0 2.201 Itis rejected
SUM, L) PRODUCTISUM)
Non Parametric Hamacher_L vs. Algebraic ) Non Parametric Hamacher_L vs. Non )
Product/Sum_L Hy:Mp, =0 0.043 Itis © Hy:Mp =0 0.463 It is not
_ 15.0 0.0 -2.023 . Parametric Hamacher_L2 7.0 14.0 -0.734 .
(Mp=MaccesraiciProDUCT_L-M NON PARAMETRIC H;:M, #0 rejected _ H;:M, #0 rejected
(Mp=MnpHAMACHER_L2-MNPHAMACHER L)
HAMACHER L)
Non Parametric Hamacher_L vs. Bounded .
Product/Sum_L 9.0 6.0 Ho: M, = -0.405 0.686 Itis not N atametic S:nr?ggﬁz: ¥ 7.0 14.0 Hy: My, = 0734 0.463 Itis not
Mb=Mgounbeo/ProbucT_L-M NON PARAMETRIC : : Hy:Mp #0 . rejected _ - : . Hy:M, # 0 . rejected
(Mb=MnpHAMACHER_L2-MNPHAMACHER)
HAMACHER_L
Algebraic Product/Sum vs. Zadeh 6.0 9.0 Hy:Mp = -0.405 It is not Bounded Product/Sum vs. Zadeh 13.0 20 Hy:Mp = 1.483 It is not

(Mp=MzapeH-MaLcEBRAIC/RODUCT-SUM) Hy:Mp # 0 0.686 rejected (Mb=MzApEH-MBOUNDED/RODUCT-SUM) Hy:Mp # 0 0.138 rejected




6.3.4.2 Study of the behaviour of different t-operators on different threshold values
for classical Fuzzy 1D3, Fuzzy ID3-L-WABL, and Fuzzy ID3-LR

In this study, classical Fuzzy ID3 (FID3), Fuzzy ID3-L-WABL, (FID3-L-WABL)
and Fuzzy-LR with different threshold values between the range 0.60-0.90 are
performed for the induction of fuzzy decision tree. Then, four non-parametric T-
operators are worked on reasoning process. It is aimed to show that the performance

of different T-operators on these three approaches.

Iris data set

Iris data set performance results for three approaches are given in Table 6.15,
Table 6.16, and Table 6.17, respectively.

While classical FID3 approach with 0.82 threshold is performed for the induction
process on Iris data set, Algebraic Product/Sum operator has the higest accuracy rate

with 96.67% among the other non-parametric operators.

While FID3-L-WABL approach with 0.82 threshold is performed for the
induction process on Iris data set, Algebraic Product/Sum operator has the higest

accuracy rate with 96.67% among the other non-parametric operators.

While FID3-LR approach with 0.60 threshold is performed for the induction
process on Iris data set, Non parametric operator has the higest accuracy rate with
76.00% among the other non-parametric operators. FID3-LR approach has the lowest

accuracy rates among non-parametric T-operators.
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Table 6.15 Iris data set performance results (%) different t-operators on different threshold results
for classical Fuzzy ID3 (FID3).

Threshold Zadeh PQESEJ?Sm Prligldzsgim Har':lwzgher
0.60 94.00 94.00 94.00 94.00
0.61 94.00 94.00 94.00 94.00
0.62 94.00 94.00 94.00 94.00
0.63 94.00 94.00 94.00 94.00
0.64 94.00 94.00 94.00 94.00
0.65 94.00 94.00 94.00 94.00
0.66 94.00 94.00 94.00 94.00
0.67 94.00 94.00 94.00 94.00
0.68 94.00 94.00 94.00 94.00
0.69 94.00 94.00 94.00 94.00
0.70 94.00 94.00 94.00 94.00
0.71 94.00 94.00 94.00 94.00
0.72 94.00 94.00 94.00 94.00
0.73 94.00 94.00 94.00 94.00
0.74 94.00 94.00 94.00 94.00
0.75 94.00 94.00 94.00 94.00
0.76 94.00 94.00 94.00 94.00
0.77 94.00 94.00 94.00 94.00
0.78 94.00 94.00 94.00 94.00
0.79 94.00 94.00 94.00 94.00
0.80 94.00 94.00 94.00 94.00
0.81 95.33 94.67 94.67 94.67
0.82 94.67 96.67 95.33 94.00
0.83 95.33 93.33 93.33 88.00
0.84 94.67 95.33 94.67 88.00
0.85 94.67 95.33 94.67 88.00
0.86 94.67 95.33 94.67 88.00
0.87 94.67 95.33 94.67 88.00
0.88 94.67 95.33 94.67 88.00
0.89 94.67 95.33 94.67 88.00
0.90 94.67 95.33 94.67 88.00
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Table 6.16 Iris data set performance results (%) different t-operators on different threshold results
for Fuzzy ID3-L-WABL (FID3-L-WABL).

Threshold Zadeh_L ProglL?cett/)Srilr%_L Progggtr/]gli?n_L Hamgfh_er_L
0.60 95.33 94.67 94.67 94.67
0.61 95.33 94.67 94.67 94.67
0.62 95.33 94.67 94.67 94.67
0.63 95.33 94.67 94.67 94.67
0.64 95.33 94.67 94.67 94.67
0.65 95.33 94.67 94.67 94.67
0.66 95.33 94.67 94.67 94.67
0.67 95.33 94.67 94.67 94.67
0.68 95.33 94.67 94.67 94.67
0.69 95.33 94.67 94.67 94.67
0.70 95.33 94.67 94.67 94.67
0.71 95.33 94.67 94.67 94.67
0.72 95.33 94.67 94.67 94.67
0.73 95.33 94.67 94.67 94.67
0.74 95.33 94.67 94.67 94.67
0.75 95.33 94.67 94.67 94.67
0.76 95.33 94.67 94.67 94.67
0.77 95.33 94.67 94.67 94.67
0.78 95.33 94.67 94.67 94.67
0.79 95.33 94.67 94.67 94.67
0.80 95.33 94.67 94.67 94.67
0.81 94.00 96.00 95.33 94.00
0.82 96.00 96.67 95.33 91.33
0.83 96.00 95.33 93.33 88.00
0.84 96.00 95.33 93.33 88.00
0.85 96.00 95.33 93.33 88.00
0.86 96.00 95.33 93.33 88.00
0.87 96.00 95.33 93.33 88.00
0.88 96.00 95.33 93.33 88.00
0.89 96.00 96.00 93.33 88.00
0.90 96.00 96.00 93.33 88.00
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Table 6.17 Iris data set performance results (%) different t-operators on different threshold results
for FuzzylD3-LR (FID3-LR) approach.

Threshold Zadeh_L Progljft?gifw_L Progsgtr/lgﬁiw_l_ Hamgfﬁer_L
0.60 70.67 71.33 33.99 76.00
0.61 67.33 65.33 33.33 74.02
0.62 65.33 50.33 33.33 70.00
0.63 65.33 50.33 33.33 70.00
0.64 65.33 50.33 33.33 70.00
0.65 64.66 55.99 33.33 68.66
0.66 63.33 49.33 33.33 66.66
0.67 63.33 49.33 33.33 66.66
0.68 63.33 49.33 33.33 66.66
0.69 62.67 45.33 33.33 65.99
0.70 62.66 42.00 33.33 63.33
0.71 61.33 36.66 33.33 60.00
0.72 61.33 36.66 33.33 57.33
0.73 55.33 34.66 33.33 51.33
0.74 55.33 33.99 33.33 50.67
0.75 55.33 33.99 33.33 50.67
0.76 55.33 33.99 33.33 50.67
0.77 55.33 33.99 33.33 50.67
0.78 49.33 33.33 33.33 47.33
0.79 49.33 33.33 33.33 47.33
0.80 38.67 33.33 33.33 39.33
0.81 38.67 33.33 33.33 39.33
0.82 33.33 33.33 33.33 33.33
0.83 33.33 33.33 33.33 33.33
0.84 33.33 33.33 33.33 33.33
0.85 33.33 33.33 33.33 33.33
0.86 33.33 33.33 33.33 33.33
0.87 33.33 33.33 33.33 33.33
0.88 33.33 33.33 33.33 33.33
0.89 33.33 33.33 33.33 33.33
0.90 33.33 33.33 33.33 33.33
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The Friedman aligned ranks as a non-parametric statistical procedure is applied to
detect statistical differences among a group of results on 31 thresholds value between
0.60-0.90. for three approaches. The test results performed on both approaches have
significant p-value, 0.000 as given in Table 6.18. It is seen that there are significant

differences among the results (a=0.05).

Wilcoxon signed rank tests are applied into the Iris data set to test the comparison
among the reasoning methods. It is seen that the results of Non Parametric Hamacher
operator are better than the results of Zadeh operator produced with classical FID3
(p-value, 0.001), significantly. Bounded Product/Sum operator has worse
performance than Algebraic Product/Sum operator with classical FID3 (p value,
0.004).

The performance of Algebraic Product/Sum operator and Bounded Product/Sum
operator is better than the performance of Non Parametric Hamacher operator with
classical FID3 (p value, 0.002). The performance of Zadeh operator is higher than
Algebraic Product/Sum operator, Bounded Product/Sum operator, and Non
parametric Hamacher operator with FID3-L-WABL’s performances (p value, 0.000).
Bounded Product/Sum operator, and Non parametric Hamacher operator give better
results than Algebraic Product/Sum operator with FID3-L-WABL (p value, 0.000).
Hence, Non parametric Hamacher operator with FID3-L-WABL works better than

Bounded Product/Sum results.

Table 6.18 Friedman aligned ranks test for Iris data set.

Friedman aligned
. . . ranks
Algorithm Rank Algorithm Rank Algorithm Rank Total N 31
Zadeh 7.23 Zadeh L 11.69 Zadeh_L2 3.11 | Test Statistic | 303.9
Algebraic Algebraic Algebraic (df) (11)
Product/Sum 7.63 Product/Sum_L 1031 Product/Sum L2 2.11
Bounded Bounded Bounded
Product/Sum 711 Product/Sum_L 9.23 Product/Sum_L2 1.50 .
Non Asymptotic
Parametric Non Parametric Non Parametric Sig. (2 sided | 0.000
6.27 Hamacher_L 8.53 Hamacher L2 3.27 test)
Hamacher
(1=0) (2=0) (2=0)
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It is observed that the performance of Algebraic Product/Sum operator, Bounded
Product/Sum operator is higher than Zadeh operator with FID3-LR’s performance (p
value, 0.000) as FID3-L-WABL approach. Yet, Non parametric Hamacher operator
with FID3-LR has better perfomance than Zadeh operator with FID3-LR (p value,
0.000).

Bounded Product/Sum operator has a worse performance than Algebraic
Product/Sum operator with FID-LR (p value, 0.000). The performance of Non
Parametric Hamacher operator is better than Algebraic Product/Sum and Bounded

Product/Sum operators’ performances with FID3-LR (p value, 0.000).

Zadeh, Bounded Product/Sum, and Algebraic Product/Sum with FID3-L-WABL’s
performances are better than Zadeh operator with FID3-LR performance (p value,
0.000). Zadeh, Bounded Product/Sum, Algebraic Product/Sum, and Non Parametric
Hamacher operator with FID3-L-WABL’s performances are better than Algebraic
Product/Sum’s with FID3-LR’s peformance (p value, 0.000). In a similar manner,
Zadeh, Bounded Product/Sum, Algebraic Product/Sum, and Non Parametric
Hamacher operator with FID3-L-WABL’s performances are better than Bounded
Product/Sum with FID3-LR’s peformance (p value, 0.000). Zadeh, Bounded
Product/Sum, Algebraic Product/Sum, and Non Parametric Hamacher operator with
FID3-L-WABL’s performances are also better than Non Parametric Hamacher
operator with FID3-LR’s peformance (p value, 0.000).

It is observed that the performance of Zadeh operator with FID3-L-WABL is
better than Zadeh operator, Algebraic Product/Sum, Bounded Product/Sum, and Non
parametric Hamacher with classical FID3. Algebraic Product/Sum operator with
FID3-L-WABL has also better results than Zadeh operator, Algebraic Product/Sum,
Bounded Product/Sum, and Non parametric Hamacher with classical FID3. Hence,
Bounded Product/Sum with FID3L-WABL’s performance does not have any
significant difference than Zadeh (p value, 0.372), Algebraic Product/Sum (p

80



value,0.454), Bounded Product/Sum operator (p value, 0.454) with classical FID3’s
performances. Non-Parametric with FID3-L-WABL has better performance than it.

Zadeh, Algebraic Product/Sum, Bounded Product/Sum, and Non parametric
Hamacher operators with classical FID3 have better performance than Zadeh
operator with FID3-LR (p value, 0). Zadeh, Algebraic Product/Sum, Bounded
Product/Sum, and Non parametric Hamacher operators with classical FID3 have

better performance than Algebraic Product/Sum operator with FID3-LR (p value, 0).

Zadeh, Algebraic Product/Sum, Bounded Product/Sum, and Non parametric
Hamacher operators with classical FID3 have better performance than Bounded
Product/Sum operator with FID3-LR (p value, 0). Zadeh, Algebraic Product/Sum,
Bounded Product/Sum, and Non parametric Hamacher operators with classical FID3
have better performance than Non parametric Hamacher operator with FID3-LR (p

value, 0).

Phoneme data set

Phoneme data set performance results for three approaches are given in Table
6.19, Table 6.20, and Table 6.21, respectively.

While classical FID3 approach with the threshold range 0.60-0.63 is performed
for the induction process on Phoneme data set, Non Parametric Hamacher operator

has the higest accuracy rate with 75.22% among the other non-parametric operators.

While FID3-L-WABL approach in (0.72-0.74) threshold ranges is performed for
the induction process on Iris data set, Algebraic Product/Sum operator has the higest

accuracy rate with 75.54% among the other non-parametric operators.

While FID3-LR approach with 0.60 threshold is performed for the induction
process on Phoneme data set, Non parametric Hamacher operator has the higest

accuracy rate with 77.01% among the other non-parametric operators.
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Table 6.19 Phoneme data set performance results (%) different t-operators on different threshold
results for classical FuzzylD3(FID3)

Threshold Zadeh A};%)J?t'/c Bounded Product/ NP_
sum Sum Hamacher
0.60 75.09 75.26 74.41 75.22
0.61 75.09 75.26 74.41 75.22
0.62 75.09 75.26 74.41 75.22
0.63 75.09 75.26 74.41 75.22
0.64 74.48 74.63 74.15 73.98
0.65 74.48 74.46 74.07 73.89
0.66 74.50 74.48 74.07 73.72
0.67 74.50 74.67 74.09 73.74
0.68 74.50 74.67 74.09 73.74
0.69 74.46 74.57 74.09 73.65
0.70 74.32 74.43 74.11 73.70
0.71 74.46 74.48 74.13 73.79
0.72 74.50 74.50 74.15 73.39
0.73 74.52 74.48 74.15 73.89
0.74 74.52 74.48 74.15 73.89
0.75 73.67 73.59 73.33 73.37
0.76 71.93 71.84 71.89 71.65
0.77 70.65 70.65 70.65 70.65
0.78 70.65 70.65 70.65 70.65
0.79 70.65 70.65 70.65 70.65
0.80 70.65 70.65 70.65 70.65
0.81 70.65 70.65 70.65 70.65
0.82 70.65 70.65 70.65 70.65
0.83 70.65 70.65 70.65 70.65
0.84 70.65 70.65 70.65 70.65
0.85 70.65 70.65 70.65 70.65
0.86 70.65 70.65 70.65 70.65
0.87 70.65 70.65 70.65 70.65
0.88 70.65 70.65 70.65 70.65
0.89 70.65 70.65 70.65 70.65
0.90 70.65 70.65 70.65 70.65
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Table 6.20 Phoneme data set performance results (%) different t-operators on different threshold
results for FuzzylD3-L-WABL (FID3-L_WABL).

Algebraic Bounded NP
Threshold Zadeh_L PSrSrcTi]lith/ Psrsgliclz_t/ Hamach_er_L
0.60 74.49 75.22 74.37 75.02
0.61 74.49 75.22 74.37 75.02
0.62 74.49 75.22 74.37 75.02
0.63 74.49 75.22 7441 74.94
0.64 74.30 74.30 74.15 73.98
0.65 74.35 74.35 74.06 73.72
0.66 74.39 74.46 74.07 73.38
0.67 74.42 74.54 74.07 73.82
0.68 74.43 74.54 74.07 73.82
0.69 74.56 74.65 74.09 73.91
0.70 74.89 74.98 74.13 74.20
0.71 75.09 75.27 74.13 74.57
0.72 75.28 75.54 74.15 74.79
0.73 75.28 75.54 74.17 74.79
0.74 75.28 75.54 74.17 74.80
0.75 74.70 74.91 73.58 73.48
0.76 74.17 74.41 73.24 73.87
0.77 74.07 74.28 72.96 73.89
0.78 74.07 74.28 72.96 73.89
0.79 74.04 74.24 72.96 73.87
0.80 72.39 72.43 71.80 72.26
0.81 71.11 71.21 70.95 71.11
0.82 71.11 71.21 70.95 71.11
0.83 70.65 70.65 70.65 70.65
0.84 70.65 70.65 70.65 70.65
0.85 70.65 70.65 70.65 70.65
0.86 70.65 70.65 70.65 70.65
0.87 70.65 70.65 70.65 70.65
0.88 70.65 70.65 70.65 70.65
0.89 70.65 70.65 70.65 70.65
0.90 70.65 70.65 70.65 70.65
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Table 6.21 Phoneme data set performance results (%) different t-operators on different threshold
results for Fuzzy-LR (FID3-LR).

Threshold Zadeh_L2 ProdAl:?:'f/bS?rlﬁ_LZ Procligu?:li/nsdueg_LZ Ham;\lcigr_Lz
0.60 76.02 75.46 70.97 77.01
0.61 75.81 75.15 70.97 76.04
0.62 75.41 74.17 70.97 74.83
0.63 75.41 74.17 70.97 74.83
0.64 74.47 73.24 70.65 73.91
0.65 74.46 73.24 70.65 73.91
0.66 74.46 73.24 70.65 73.91
0.67 74.46 73.24 70.65 73.91
0.68 74.46 73.24 70.65 73.91
0.69 73.29 72.50 70.65 73.01
0.70 73.29 72.50 70.65 73.01
0.71 72.50 71.85 70.65 72.21
0.72 70.65 70.65 70.65 70.65
0.73 70.65 70.65 70.65 70.65
0.74 70.65 70.65 70.65 70.65
0.75 70.65 70.65 70.65 70.65
0.76 70.65 70.65 70.65 70.65
0.77 70.65 70.65 70.65 70.65
0.78 70.65 70.65 70.65 70.65
0.79 70.65 70.65 70.65 70.65
0.80 70.65 70.65 70.65 70.65
0.81 70.65 70.65 70.65 70.65
0.82 70.65 70.65 70.65 70.65
0.83 70.65 70.65 70.65 70.65
0.84 70.65 70.65 70.65 70.65
0.85 70.65 70.65 70.65 70.65
0.86 70.65 70.65 70.65 70.65
0.87 70.65 70.65 70.65 70.65
0.88 70.65 70.65 70.65 70.65
0.89 70.65 70.65 70.65 70.65
0.90 70.65 70.65 70.65 70.65
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The Friedman aligned ranks as a non-parametric statistical procedure is applied to
detect statistical differences among a group of results on 31 thresholds value between
0.60-0.90. for three approaches. The test results performed on both approaches have
significant p-value, 0.000 as given in Table 6.22. It is seen that there are significant

differences among the results (a=0.05).

Table 6.22 Friedman aligned ranks test for Phoneme data set.

Friedman aligned
. . . ranks
Algorithm Rank Algorithm Rank Algorithm Rank Total N 31
Test
Zadeh 7.50 Zadeh_L 8.48 Zadeh_L2 637 | statistic | 151722

Algebraic 297 Algebraic 9.79 Algebraic 415 (df) (11)
Product/Sum ) Product/Sum_L ' Product/Sum_L2 '

Bounded Bounded Bounded
Product/Sum 571 Product/Sum_L 669 Product/Sum_L2 ree .

Non ) _ Asymptotic
Parametric Non Parametric Non Parametric Sig. (2 sided | 0.000
H 5.60 Hamacher_L 7.31 Hamacher_L2 5.15 test)

amacher
(1=0) (2=0) (A=0)

Then, Wilcoxon signed rank tests are applied into the phoneme data set to test the
comparison among the reasoning methods. It is seen that the results of Algebraic
Product/Sum operator are better than the results of Zadeh operator produced with
classical FID3 (p-value, 0.014), significantly. Bounded Product/Sum and Non
Parametric Hamacher operators with classical FID3 have worse performance than
Zadeh operator with classical FID3 (p value, 0.000).

The performance of Algebraic Product/Sum operator is better than Bounded
Product/Sum operator with classical FID3 (p value, 0.000). Non parametric
Hamacher operator with FID3-L-WABL’s performance is better than Algebraic
Product/Sum operator with FID3-L-WABL’s performance (p value, 0.000).

Bounded Product/Sum operator and Algebraic Product/Sum operator with FID3-
L-WABL’s works better than Zadeh’s operator with FID3-L-WABL. Non parametric
Hamacher operator with FID3-L-WABL’s performance is better than Zadeh operator
with FID3-L-WABL’s performance (p value, 0.000). Algebraic Product/Sum
operator with FID3-L-WABL’s performance is better than Non parametric Hamacher

operator with FID3-L-WABL’s performance. Nonetheless, = Non parametric
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Hamacher operator with FID3-L-WABL works better than Bounded Product/Sum
operator (p value, 0.000).

The performance of Non Parametric Zadeh operator is better than Algebraic
Product/Sum, Bounded Product/Sum, Non parametric Hamacher operators’
performances with with FID3-LR (p value, 0.000). Algebraic Product/Sum works
better than Bounded Product/Sum with FID3-LR (p value, 0.000). Non parametric
Hamacher operators with FID3-LR works better than Algebraic Product/Sum and
Bounded Product/Sum with FID3-LR.

Zadeh operator (p value, 0.000), Algebraic Product/Sum operator (p value, 0.000),
Bounded Product/Sum operator (p value, 0.000) and Non parametric Hamacher
operator (p value, 0.000) with FID3-L-WABL have better performance than Zadeh
operator with FID3-LR.

Zadeh operator (p value, 0.000), Algebraic Product/Sum operator (p value, 0.000),
Bounded Product/Sum operator (p value, 0.000) and Non parametric Hamacher
operator (p value, 0.000) with FID3-L-WABL have better performance than
Algebraic Product/Sum operator with FID3-LR.

Zadeh operator (p value, 0.000), Algebraic Product/Sum operator (p value, 0.000),
Bounded Product/Sum operator (p value, 0.000) and Non parametric Hamacher
operator (p value, 0.000) with FID3-L-WABL have better performance than
Bounded Product/Sum operator with FID3-LR.

While Non parametric Hamacher operator (p value, 0.000) with FID3-LR have
better results than Algebraic Product/Sum operator (p value, 0.000) and Bounded
Product/Sum operator (p value, 0.000) with FID3-L-WABL. Yet, Non parametric
Hamacher operator with FID3-LR has worse performance than Hamacher operator
with FID3- L-WABL (p value, 0.000).
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Zadeh, Bounded Product/Sum, Algebraic Product/Sum and Non Parametric
Hamacher operators with classical FID3 performances are worse than Zadeh operator
with FID3-L-WABL performance (p value, 0.000). In a similar manner, Zadeh,
Bounded Product/Sum, Algebraic Product/Sum and Non Parametric Hamacher
operators with classical FID3 performances are worse than Algebraic Product/Sum
operator with FID3-L-WABL performance (p value, 0.000).

Bounded Product/Sum with FID3-L-WABI performance is worse than Bounded
Product/Sum (p value, 0.019) and Non Parametric Hamacher (p value, 0.013)
operators with classical FID3 performances’.

However, Non Parametric Hamacher operator with FID3-L-WABL has better
performance than Bounded Product/Sum (p value, 0,001) and Non Parametric

Hamacher operators (p value, 0.002) with classical FID3.

It is observed that Zadeh (p value, 0.013) and Algebraic Product/Sum (p value,
0.005) operators with classical FID3 performances’ are better than Zadeh with Fuzzy
ID3-LR performance. Zadeh (p value, 0.000), Bounded Product/Sum(p value, 0.000),
Algebraic Product/Sum(p value, 0.000), and Non Parametric Hamacher (p value,
0.000) operators with classical FID3 performances are better than Algebraic
Product/Sum with FID3-LR performance. None the less, Bounded Product/Sum (p
value, 0.000) with FID3-LR performance is better than Zadeh, Bounded
Product/Sum, Algebraic Product/Sum and Non Parametric Hamacher operators with

classical FID3 performances (p value, 0).

Non Parametric Hamacher operators with FID3-LR perfoms better than Algebraic
Product/Sum (p value, 0.000).

Pima data set

Pima data set performance results for three approaches are given in Table 6.23,
Table 6.24, and Table 6.25, respectively.
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While classical FID3 approach with the threshold 0.60 is performed for the
induction process on Pima data set, Zadeh operator has the higest accuracy rate with
76.04% among the other non-parametric operators. While FID3-L-WABL approach
with 0.69 threshold is performed for the induction process on Pima data set, Zadeh
operator has the higest accuracy rate with 75.64% among the other non-parametric
operators. While FID3-LR approach with 0.62 threshold is performed for the
induction process on Pima data set, Non parametric Hamacher operator has the higest

accuracy rate with 75.52% among the other non-parametric operators.

The Friedman aligned ranks as a non-parametric statistical procedure is applied to
detect statistical differences among a group of results on 31 thresholds value between
0.60-0.90. for three approaches. The test results performed on both approaches have
significant p-value, 0.000 as given in Table 6.26. It is seen that there are significant

differences among the results («=0.05).

Then, Wilcoxon signed rank tests are applied into the pima data set to test the
comparison among the reasoning methods. It is seen that the results of Algebraic
Product/Sum operator are better than the results of Zadeh operator produced with

classical FID3 (p-value, 0.000), significantly.

Bounded Product/Sum and Non Parametric Hamacher operators with classical
FID3 have worse performance than Zadeh operator with classical FID3 (p value,
0.000). In a similar manner, Bounded Product/Sum and Non Parametric Hamacher
operators with classical FID3 have worse performance than Algebraic Product/Sum
operator with classical FID3 (p value, 0.000). On the other hand, Non Parametric
Hamacher operators with classical FID3 has better performance than Bounded

Product/Sum operator (p value, 0.007).
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Table 6.23 Pima data set performance results (%) different t-operators on different threshold results
for classical FuzzylD3 (FID3).

Algebraic
Threshold Zadeh PrSOSrl:]Ct/ Pr%gﬁgggim Har':lwzgher
0.60 74.48 74.35 74.35 74.35
0.61 74.48 74.35 74.35 74.35
0.62 74.48 74.35 74.35 74.35
0.63 74.22 73.69 73.96 73.44
0.64 74.35 73.70 73.83 73.05
0.65 75.39 75.26 74.74 73.44
0.66 75.78 75.52 74.87 73.70
0.67 76.04 75.39 75.13 73.31
0.68 75.26 74.74 74.22 71.88
0.69 75.52 75.39 74.35 72.27
0.70 74.74 74.47 73.44 71.35
0.71 74.34 74.47 72.78 71.48
0.72 74.48 75.12 71.61 70.83
0.73 74.34 74.60 71.61 72.52
0.74 74.08 74.60 71.22 72.65
0.75 73.56 74.86 70.70 72.78
0.76 73.56 75.64 70.18 72.78
0.77 73.56 75.64 70.18 72.78
0.78 73.43 75.64 70.05 7291
0.79 72.91 74.99 69.92 73.17
0.80 73.17 74.86 70.05 73.17
0.81 73.04 74.47 69.92 73.17
0.82 7252 73.69 69.40 73.04
0.83 72.39 73.56 69.27 72.78
0.84 72.65 74.08 69.66 71.87
0.85 69.79 72.00 67.32 68.48
0.86 68.10 70.05 66.41 67.45
0.87 68.49 69.66 66.15 67.58
0.88 68.36 69.79 65.76 67.32
0.89 68.23 69.92 65.76 67.97
0.90 68.10 69.53 65.76 67.19
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Table 6.24 Pima data set performance results (%) different t-operators on different threshold results
for FuzzylD3-L-WABL (FID3-L-WABL).

Bounded

Threshold Zadeh_L Pro’g'f;%ﬁﬁ L Product/ Hamgsh_er L
- Sum_L -
0.60 74.22 74.22 74.35 74.35
0.61 74.22 74.22 74.35 74.35
0.62 74.22 74.22 74.35 74.35
0.63 73.57 73.18 73.70 72.66
0.64 73.57 73.18 73.70 72.66
0.65 75.00 73.83 74.47 72.53
0.66 74.87 73.57 74.48 72.27
0.67 74.99 73.83 73.70 7253
0.68 74.99 73.69 73.69 72.27
0.69 75.64 74.74 74.21 73.44
0.70 74.73 73.56 72.78 72.26
0.71 74.21 74.21 71.61 72.39
0.72 74.08 74.34 71.22 73.57
0.73 74.21 73.56 70.80 73.83
0.74 73.95 73.82 70.31 73.70
0.75 72.91 73.82 69.66 73.56
0.76 72.39 73.82 69.40 73.57
0.77 72.26 73.69 69.40 73.17
0.78 72.26 73.95 69.27 73.57
0.79 71.61 73.69 69.14 72.39
0.80 71.35 73.17 68.75 72.26
0.81 70.96 72.78 68.10 72.00
0.82 70.83 72.52 67.97 72.00
0.83 70.96 7291 68.23 71.87
0.84 71.48 72.65 67.84 71.87
0.85 69.79 71.61 67.32 69.53
0.86 70.57 71.61 67.58 68.75
0.87 70.57 71.61 67.58 68.75
0.88 69.66 71.09 67.19 68.49
0.89 69.01 70.44 67.06 68.75
0.90 68.23 69.78 66.28 68.23
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Table 6.25 Pima data set performance results (%) different t-operators on different threshold results
for classical Fuzzy-LR (FID3-LR).

Threshold Zadeh_L Progll?:tlljsr?;_L Progggtr/lgﬁiw_l_ Hamgsﬁer_L
0.60 75.13 73.83 65.50 7447
0.61 74.73 73.30 65.24 74.73
0.62 7447 73.56 65.10 75.52
0.63 7447 72.91 65.10 7551
0.64 74.60 72,53 65.10 75.39
0.65 74.08 7121 65.10 75.12
0.66 74.60 71.48 65.10 75.38
0.67 74.60 71.00 65.10 75.25
0.68 74.34 70.08 65.10 75.25
0.69 73.95 70.56 65.10 74.99
0.70 72.78 69.79 65.10 7447
071 72.39 69.39 65.10 73.56
0.72 69.66 67.31 65.10 70.18
0.73 67.32 66.41 65.10 67.32
0.74 66.53 65.88 65.10 66.79
0.75 65.75 65.75 65.10 66.01
0.76 65.10 65.10 65.10 65.10
0.77 65.10 65.10 65.10 65.10
0.78 65.10 65.10 65.10 65.10
0.79 65.10 65.10 65.10 65.10
0.80 65.10 65.10 65.10 65.10
0.81 65.10 65.10 65.10 65.10
0.82 65.10 65.10 65.10 65.10
0.83 65.10 65.10 65.10 65.10
0.84 65.10 65.10 65.10 65.10
0.85 65.10 65.10 65.10 65.10
0.86 65.10 65.10 65.10 65.10
0.87 65.10 65.10 65.10 65.10
0.88 65.10 65.10 65.10 65.10
0.89 65.10 65.10 65.10 65.10
0.90 65.10 65.10 65.10 65.10
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Table 6.26 Friedman aligned ranks test for Pima data set.

Friedman aligned
ranks
Algorithm | Rank Algorithm Rank Algorithm Rank Total N 31
Zadeh 10.06 Zadeh L 8.11 Zadeh L2 481 | Test (Sdtgtistic 2(217)96
Algebraic Algebraic Algebraic
Product/Sum 10.65 Product/Sum_L 8.66 Product/Sum_L2 2.29
Bounded Bounded Bounded
Product/Sum 6.52 Product/Sum_L 576 Product/Sum_L2 173 .
Non Asymptotic
Parametric Non Parametric Non Parametric Sig. (2 sided 0.000
6.65 Hamacher_L 7.03 Hamacher_L2 5.74 test)
Hamacher
(1=0) (A=0) (A=0)

While Algebraic Product/Sum (p-value, 0.004) and Bounded Product/Sum (p-
value, 0.000) operators with FID3-L-WABL has better performance than Zadeh with
FID3-L-WABL, Non Parametric Hamacher (p-value, 0.000) has worse performance
than it. Algebraic Product/Sum with FID3-L-WABL has better performance than
Bounded Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value,
0.000) with FID3-L-WABL. Hence, Non Parametric Hamacher with FID3-L-WABL
(p-value, 0.000) has better performance than Bounded Product/Sum operator with
FID3-L-WABL.

Zadeh with FID3-LR performs better than Algebraic Product/Sum (p-value,
0.000) and Bounded Product/Sum (p-value, 0.000) operators with FID3-LR. But,
Non Parametric Hamacher with FID3-LR works better than Zadeh with FID3-LR.

Algebraic Product/Sum with FID3-LR has a better performance than Bounded
Product/Sum (p-value, 0.000) operator with FID3-LR. Non Parametric Hamacher
with FID3-LR works better than Algebraic Product/Sum (p-value, 0.000) and
Bounded Product/Sum (p-value, 0.000) with FID3-LR.

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000) with
FID3-L-WABL has better performance than Zadeh with FID3-LR. In a similar
manner, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000) with
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FID3-L-WABL has better performance than Algebraic Product/Sum with FID3-LR.
Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000) with
FID3-L-WABL also has better performance than Bounded Product/Sum with FID3-
LR. Additionaly, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000),
Bounded Product/Sum (p-value, 0.001), and Non Parametric Hamacher (p-value,
0.000) with FID3-L-WABL has better performance than Non Parametric Hamacher
with FID3-LR.

Zadeh (p-value, 0.000) and Algebraic Product/Sum (p-value, 0.000) operator with
classical FID3 have better performance than Zadeh operator with FID3-L-WABL.
On the other hand, Zadeh operator with FID3-L-WABL has better performance than
Bounded Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value,
0.000) with classical FID3.

Algebraic Product/Sum with FID3-L-WABL has better performance than Zadeh
(p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded Product/Sum (p-
value, 0.000), and Non Parametric Hamacher (p-value, 0.000) with classical FID3.

Yet, Bounded Product/Sum (p-value, 0.010) and Non Parametric Hamacher (p-
value, 0.007) with classical FID3 have better performance than Bounded
Product/Sum with FID3-L-WABL. However, Bounded Product/Sum (p-value,
0.001) with classical FID3 has better performance than Non Parametric
Hamacherwith FID3-L-WABL.

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000)
operators with classical FID3 have better performance than Zadeh operator with
FID3-LR. In a similar manner, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-
value, 0.000), Bounded Product/Sum (p-value, 0.000), and Non Parametric
Hamacher (p-value, 0.000) operators with classical FID3 have better performance
than Algebraic Product/Sum operator with FID3-LR. Zadeh (p-value, 0.000),
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Algebraic Product/Sum (p-value, 0.000), Bounded Product/Sum (p-value, 0.000),
and Non Parametric Hamacher (p-value, 0.000) operators with classical FID3 also
have better performance than Bounded Product/Sum operator with FID3-LR. Finally,
Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.002), and Non Parametric Hamacher (p-value, 0.002)
operators with classical FID3 have better performance than Non Parametric

Hamacher operator with FID3-LR.

Ring data set

Ring data set performance results for three approaches are given in Table 6.27,
Table 6.28, and Table 6.29, respectively.

While classical FID3 approach with the threshold 0.72 is performed for the
induction process on Ring data set, Algebraic Product/Sum operator has the higest

accuracy rate with 75.07% among the other non-parametric operators.

While FID3-L-WABL approach with 0.69 threshold is performed for the
induction process on Ring data set, Algebraic Product/Sum operator has the higest

accuracy rate with 75.01% among the other non-parametric operators.

While FID3-LR approach with 0.60 threshold is performed for the induction
process on Ring data set, Non parametric Hamacher operator has the higest accuracy

rate with 62.54% among the other non-parametric operators.

The Friedman aligned ranks as a non-parametric statistical procedure is applied to
detect statistical differences among a group of results on 31 thresholds value between
0.60-0.90. for three approaches. The test results performed on both approaches have
significant p-value, 0.000 as given in Table 6.30. It is seen that there are significant

differences among the results (a=0.05).
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Table 6.27 Ring data set performance results (%) different t-operators on different threshold results

for classical FuzzylD3 (FID3).

Threshold Zadeh ﬁlgsgl:?tlf Bounded Product/ NP_
sum Sum Hamacher
0.60 70.20 7041 65.97 65.08
0.61 72.36 72.34 66.11 65.96
0.62 72.57 72.38 66.15 65.69
0.63 72.50 72.41 66.14 65.53
0.64 72.78 72.78 66.39 65.12
0.65 73.01 73.09 66.49 65.05
0.66 73.21 74.01 66.70 65.68
0.67 73.43 73.44 66.70 65.59
0.68 73.84 73.95 66.64 66.88
0.69 74.84 74.95 66.19 68.31
0.70 74.82 74.95 65.59 68.68
0.71 74.82 75.01 75.01 69.18
0.72 74.61 75.07 64.72 69.22
0.73 73.20 74.43 63.72 68.77
0.74 73.55 74.81 63.82 69.01
0.75 73.00 74.55 63.49 66.99
0.76 71.20 73.18 62.41 68.00
0.77 71.74 74.42 61.55 68.14
0.78 68.47 73.88 58.93 65.53
0.79 65.05 69.36 57.23 62.69
0.80 64.20 69.66 56.66 62.32
0.81 63.26 69.27 55.99 61.65
0.82 62.15 68.51 55.30 60.55
0.83 59.41 64.27 54.20 58.28
0.84 56.53 60.00 52.95 55.93
0.85 49.51 49.51 49.51 49.51
0.86 49.51 49.51 49.51 49.51
0.87 49,51 49.51 49.51 49.51
0.88 49.51 49.51 49.51 49.51
0.89 49.51 49.51 49.51 49.51
0.90 49,51 49.51 49.51 49.51
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Table 6.28 Ring data set performance results (%) different t-operators on different threshold results

for FuzzylD3-L-WABL(FID3-L-WABL).

Threshold Zadeh_L APIrgcfc?J?tI/C Bounded Product/ NP_
- sum L Sum_L Hamacher_L
0.60 69.82 70.20 66.03 65.30
0.61 71.85 72.31 66.30 66.26
0.62 71.99 72.54 66.34 66.27
0.63 71.96 72.54 66.32 65.86
0.64 72.00 72.59 66.34 65.70
0.65 72.11 72.58 66.45 65.50
0.66 72.24 72.74 66.59 65.32
0.67 73.04 73.55 66.97 66.49
0.68 73.53 74.03 66.91 67.77
0.69 74.24 75.01 70.43 69.07
0.70 74.30 74.73 66.11 68.95
0.71 74.27 74.63 65.56 69.05
0.72 74.31 74.39 65.58 68.97
0.73 74.41 74.96 65.39 69.11
0.74 74.51 74.95 65.04 68.78
0.75 74.14 74.88 64.61 68.88
0.76 73.45 74.41 63.69 68.70
0.77 64.14 67.38 56.73 62.07
0.78 53.43 55.07 50.86 52.65
0.79 52.35 53.47 50.68 51.73
0.80 49.51 49.51 49.51 49.51
0.81 49,51 49.51 49.51 49.51
0.82 49.51 49.51 49.51 49.51
0.83 49,51 49.51 49.51 49.51
0.84 49.51 49.51 49.51 49.51
0.85 49,51 49.51 49.51 49.51
0.86 49.51 49.51 49.51 49.51
0.87 49.51 49.51 49.51 49.51
0.88 49.51 49.51 49.51 49.51
0.89 49,51 49.51 49.51 49.51
0.90 49.51 49.51 49.51 49.51
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Table 6.29 Ring data set performance results (%) different t-operators on different threshold results
for Fuzzy ID3-LR (FID3-LR).

Threshold Zadeh_L ProAdEJ(il/)Sriir%_L Progggtr)gﬁ(rjn_L Hamgsﬁer_L
0.60 60.34 63.38 53.55 62.54
0.61 60.04 62.86 53.55 62.09
0.62 59.60 63.08 53.58 62.08
0.63 59.06 63.16 53.58 62.08
0.64 58.65 62.78 51.49 61.72
0.65 58.22 62.16 51.00 61.02
0.66 57.86 61.96 50.99 60.86
0.67 57.86 61.96 50.99 60.86
0.68 57.30 61.99 50.98 60.73
0.69 54.72 57.29 50.57 56.31
0.70 54.91 57.34 50.57 56.42
0.71 51.58 52.51 50.01 51.86
0.72 53.15 52.76 50.14 52.11
0.73 51.08 49.76 49.64 49.76
0.74 51.08 49.76 49.64 49.76
0.75 51.08 49.76 49.64 49.76
0.76 51.08 49.76 49.64 49.76
0.77 51.08 49.76 49.64 49.76
0.78 51.08 49.76 49.64 49.76
0.79 51.08 49.76 49.64 49.76
0.80 51.08 49.76 49.64 49.76
0.81 49.51 49.51 49.51 49.51
0.82 49.51 49.51 49.51 49.51
0.83 49.51 49.51 49.51 49.51
0.84 49.51 49.51 49.51 49.51
0.85 49.51 49.51 49.51 49.51
0.86 49.51 49.51 49.51 49.51
0.87 49.51 49.51 49.51 49.51
0.88 49.51 49.51 49.51 49.51
0.89 49.51 49.51 49.51 49.51
0.90 49.51 49.51 49.51 49.51
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Then, Wilcoxon signed rank tests are applied into the ring data set to test the

comparison among the reasoning methods.

It is seen that the results of Algebraic Product/Sum operator are better than the
results of Zadeh operator produced with classical FID3 (p-value, 0.000),
significantly. Bounded Product/Sum and Non Parametric Hamacher operators with
classical FID3 have worse performance than Zadeh operator with classical FID3 (p
value, 0.000).

In a similar manner, Bounded Product/Sum and Non Parametric Hamacher
operators with classical FID3 have worse performance than Algebraic Product/Sum
operator with classical FID3 (p value, 0.000). Yet, Non Parametric Hamacher
operators with classical FID3 has better performance than Bounded Product/Sum
operator (p value, 0.004).

While Algebraic Product/Sum (p-value, 0.004) operator with FID3-L-WABL has
better performance than Zadeh with FID3-L-WABL, Bounded Product/Sum (p-
value, 0.000) and Non Parametric Hamacher (p-value, 0.000) has worse performance
than it. Algebraic Product/Sum with FID3-L-WABL has better performance than
Bounded Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value,
0.000) with FID3-L-WABL. Hence, Non Parametric Hamacher with FID3-L-WABL
(p-value, 0.000) has better performance than Bounded Product/Sum operator with
FID3-L-WABL.

Zadeh with FID3-LR performs better than Bounded Product/Sum (p-value, 0.000)
operators with FID3-LR. But, Algebraic Product/Sum (p-value, 0.014) and Non
Parametric Hamacher (p-value, 0.015) with FID3-LR works better than Zadeh with
FID3-LR.

Algebraic Product/Sum with FID3-LR is better performance than Bounded
Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value, 0.000)
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operator with FID3-LR. Non Parametric Hamacher with FID3-LR works better than
Bounded Product/Sum (p-value, 0.000) with FID3-LR.

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000) with
FID3-L-WABL has better performance than Zadeh with FID3-LR.

In a similar manner, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value,
0.000), Bounded Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-
value, 0.000) with FID3-L-WABL has better performance than Algebraic
Product/Sum with FID3-LR.

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000) with
FID3-L-WABL also has better performance than Bounded Product/Sum with FID3-
LR. Additionally, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000),
Bounded Product/Sum (p-value, 0.001), and Non Parametric Hamacher (p-value,
0.000) with FID3-L-WABL has better performance than Non Parametric Hamacher
with FID3-LR.

Table 6.30 Friedman aligned ranks test for Ring data set.

Friedman aligned
ranks
Algorithm Rank Algorithm Rank Algorithm Rank Total N 31
Test
Zadeh 9.81 Zadeh_L 7.69 Zadeh L2 3.97 Statistic 213-1242

Algebraic 10.48 Algebraic 8.74 Algebraic 426 (df) (11)
Product/Sum ) Product/Sum L ) Product/Sum L2 )

Bounded Bounded Bounded
Product/Sum 6.98 Product/Sum_L 6.11 Product/Sum_L2 265 .

Non Non _ Asymptotic
Parametric Parametric Non Parametric _Sig. (2 0.000
Hamacher 7.19 Hamacher L 6.27 Haznjcfgyu 3.84 sided test)

(4=0) (4=0) B
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Zadeh (p-value, 0.000) and Algebraic Product/Sum (p-value, 0.000) operator with
classical FID3 have better performance than Zadeh operator with FID3-L-WABL.
On the other hand, Zadeh operator with FID3-L-WABL has better performance than
Bounded Product/Sum (p-value, 0.005) with classical FID3.

Algebraic Product/Sum with FID3-L-WABL has better performance than Zadeh
(p-value, 0.021), and Algebraic Product/Sum (p-value, 0.005) with classical FID3.

Algebraic Product/Sum with FID3-L-WABL has worse performance than
Bounded Product/Sum (p-value, 0.0001).

Yet, Bounded Product/Sum (p-value, 0.010) and Non Parametric Hamacher (p-
value, 0.007) with classical FID3 have better performance than Bounded
Product/Sum with FID3-L-WABL. However, Bounded Product/Sum (p-value,
0.001) with classical FID3 has better performance than Non Parametric
Hamacherwith FID3-L-WABL.

Zadeh (p-value, 0.000) and Algebraic Product/Sum (p-value, 0.000) with
classical FID3 have better performance than Non Parametric Hamacher with FID3-
L-WABL.

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000)
operators with classical FID3 have better performance than Zadeh operator with
FID3-LR.

In a similar manner, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value,
0.000), Bounded Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-
value, 0.000) operators with classical FID3 have better performance than Algebraic
Product/Sum operator with FID3-LR.
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Also, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000)
operators with classical FID3 have better performance than Bounded Product/Sum
operator with FID3-LR.

Finally, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000),
Bounded Product/Sum (p-value, 0.002), and Non Parametric Hamacher (p-value,
0.002) operators with classical FID3 have better performance than Non Parametric

Hamacher operator with FID3-LR.

Sonar data set

Sonar data set performance results for three approaches are given in Table 6.31,
Table 6.32, and Table 6.33, respectively.

While classical FID3 approach with the threshold 0.88 is performed for the
induction process on Sonar data set, Zadeh operator has the higest accuracy rate with
75.49% among the other non-parametric operators.

While FID3-L-WABL approach with 0.86 threshold is performed for the
induction process on Sonar data set, Bounded Product/Sum operator has the higest

accuracy rate with 77.39% among the other non-parametric operators.

While FID3-LR approach with 0.88 threshold is performed for the induction
process on Sonar data set, Non parametric Hamacher operator has the higest

accuracy rate with 77.42% among the other non-parametric operators.

The Friedman aligned ranks as a non-parametric statistical procedure is applied to
detect statistical differences among a group of results on 31 thresholds value between
0.60-0.90. for three approaches. The test results performed on both approaches have
significant p-value, 0.000 as given in Table 6.34. It is seen that there are significant

differences among the results (a=0.05).
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Table 6.31 Sonar data set performance results (%) different t-operators on different threshold results
for classical Fuzzy ID3 (FID3).

Threshold Zadeh ﬁlrg;(;)l:?tlf Bounded Product/ NP_
sum Sum Hamacher
0.60 73.60 73.61 73.61 73.61
0.61 73.60 73.61 73.61 73.61
0.62 73.60 73.61 73.61 73.61
0.63 73.60 73.61 73.61 73.61
0.64 73.60 73.61 73.61 73.61
0.65 73.60 73.61 73.61 73.61
0.66 73.60 73.61 73.61 73.61
0.67 73.60 73.61 73.61 73.61
0.68 73.60 73.61 73.61 73.61
0.69 74.09 73.61 74.09 73.61
0.70 74.09 73.12 74.10 72.14
0.71 74.56 72.65 72.62 71.19
0.72 73.59 67.39 72.64 63.99
0.73 72.61 67.39 70.68 63.99
0.74 73.08 63.11 71.16 58.72
0.75 73.08 63.11 71.64 58.72
0.76 72.60 63.11 70.69 58.72
0.77 74.03 64.54 72.11 59.20
0.78 74.03 64.54 72.11 59.20
0.79 74.03 56.74 71.14 53.83
0.80 74.03 56.74 72.57 52.39
0.81 74.03 51.02 72.57 48.58
0.82 72.60 46.63 70.65 46.63
0.83 72.60 46.63 70.65 46.63
0.84 73.55 46.63 70.64 46.63
0.85 72.60 46.63 69.69 46.63
0.86 74.07 54.92 71.15 48.58
0.87 74.54 69.79 72.59 55.75
0.88 75.49 69.79 72.58 56.72
0.89 74.53 68.83 71.63 59.62
0.90 74.54 74.05 71.15 62.50

102



Table 6.32 Sonar data set performance results (%) different t-operators on different threshold results
for FuzzID3-L-WABL (FID3-L-WABL).

Algebraic Bounded NP
Threshold Zadeh_L PSrL?I‘(lj’]LiCI:_t/ PSrL?I‘(lj’]LiCI:_t/ Hamacﬁer_L
0.60 73.14 73.62 73.62 73.62
0.61 73.14 73.62 73.62 73.62
0.62 73.14 73.62 73.62 73.62
0.63 73.14 73.62 73.62 73.62
0.64 73.14 73.62 73.62 73.62
0.65 73.14 73.62 73.62 73.62
0.66 73.14 73.62 73.62 73.62
0.67 73.14 73.62 73.62 73.62
0.68 73.14 73.62 73.62 73.62
0.69 73.62 73.62 74.11 72.65
0.70 73.62 73.62 74.09 72.15
0.71 73.61 73.14 73.11 70.19
0.72 72.62 72.16 72.62 67.74
0.73 73.10 72.16 72.62 65.84
0.74 73.10 73.59 73.58 64.41
0.75 73.10 74.08 73.09 64.41
0.76 73.58 73.12 73.09 63.94
0.77 75.01 74.55 74.99 64.41
0.78 75.01 74.55 74.99 65.39
0.79 75.01 67.72 74.99 58.08
0.80 75.01 56.77 74.52 50.94
0.81 74.05 46.63 74.52 46.63
0.82 75.02 46.63 75.01 46.63
0.83 75.49 52.82 75.48 51.87
0.84 75.97 52.82 75.96 51.87
0.85 75.97 46.63 75.96 46.63
0.86 76.45 50.44 77.39 47.58
0.87 76.45 62.64 76.42 49.05
0.88 76.93 62.15 76.42 50.99
0.89 75.49 67.86 76.42 55.31
0.90 75.98 74.05 75.46 57.68
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Table 6.33 Sonar data set performance results (%) different t-operators on different threshold results
for FuzzylD3-LR (FID3-LR).

Threshold Zadeh_L Proglj’;t/)srﬁlr%_L Progggtr/]gli?n_L Hamgfh_er_L
0.60 65.89 70.73 63.94 69.77
0.61 65.89 70.73 63.94 69.77
0.62 66.86 69.76 63.94 68.30
0.63 66.86 69.76 63.94 68.79
0.64 66.86 69.76 63.94 68.79
0.65 65.89 62.44 63.94 60.99
0.66 65.59 62.44 63.94 60.99
0.67 68.27 62.52 65.37 63.02
0.68 69.70 65.38 66.32 63.48
0.69 70.19 65.38 66.32 63.48
0.70 70.19 65.38 66.32 62.51
0.71 69.23 72.52 61.08 69.65
0.72 70.19 71.20 60.60 65.91
0.73 72.09 71.70 57.74 68.28
0.74 73.06 77.39 57.74 73.08
0.75 74.03 77.89 57.75 74.99
0.76 74.97 76.92 57.75 73.56
0.77 76.92 77.43 56.77 75.02
0.78 75.98 76.93 56.77 75.97
0.79 76.96 77.41 56.77 75.49
0.80 76.96 77.41 57.25 73.10
0.81 76.48 77.41 57.25 74.53
0.82 76.95 77.40 57.72 75.48
0.83 76.46 77.40 57.72 75.48
0.84 76.93 77.40 57.72 74.54
0.85 77.42 78.85 57.72 76.96
0.86 76.93 78.37 56.76 75.04
0.87 78.62 79.33 55.30 77.89
0.88 76.92 76.45 54.82 75.96
0.89 75.49 75.97 54.82 76.46
0.90 76.92 75.51 53.87 76.46
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Then, Wilcoxon signed rank tests are applied into the sonar data set to test the

comparison among the reasoning methods.

It is seen that the results of Zadeh operator with classical FID3are better than the
results of produced by Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000)
operators with classical FID3. Bounded Product/Sum operator with classical FID3
have better performance than Algebraic Product/Sum operator with classical FID3 (p
value, 0.000).

In a similar manner, Non Parametric Hamacher operators with classical FID3
have worse performance than Bounded Product/Sum(p value, 0.000) and Algebraic

Product/Sum (p value, 0.000) operators with classical FID3.

Algebraic Product/Sum (p-value, 0.019) and Non Parametric Hamacher (p-value,
0.000) with FID3-L-WABL has worse performance than Zadeh with FID3-L-
WABL. Bounded Product/Sum (p-value, 0.000) with FID3-L-WABL has better
performance than Algebraic Product/Sum with FID3-L-WABL.

Hence, Non Parametric Hamacher with FID3-L-WABL (p-value, 0.000) has
worse performance than Algebraic Product/Sum and Bounded Product/Sum operator
with FID3-L-WABL.

Zadeh with FID3-LR is better performance than Bounded Product/Sum (p-value,
0.000) and Non Parametric Hamacher (p-value, 0.004) operators with FID3-LR.
And, Algebraic Product/Sum (p-value, 0.000) and Bounded Product/Sum (p-value,
0.000) with FID3-LR Zadeh with FID3-LR work better than Non Parametric
Hamacher with FID3-LR Zadeh with FID3-LR.

Non Parametric Hamacher (p-value, 0.000) with FID3-LR has better performance
than Bounded Product/Sum (p-value, 0.000) with FID3-LR .
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Table 6.34 Friedman aligned ranks test for Sonar data set.

Friedman aligned ranks
Algorithm | Rank | Algorithm Rank Algorithm | Rank Total N 31
Zadeh 7.27 Zadeh_L 8.16 Zadeh_L2 7.34 Stl—teizttic 101.591
Algebraic Algebraic Algebraic (df) (11)
Product/Su 5.13 Product/Sum 7.42 Product/S 8.00
m L um L2
Bounded Bounded Bounded
Product/Su 6.89 Product/Sum 9.60 Product/S 242
m L um L2
Non Asymptotic
Non Non Parametri Sig. (2 sided 0.000
Parametric Parametric c test)
Hamacher 4.2l Hamacher_L 5.34 Hamacher 6.23
(A=0) (A=0) L2
(4=0)

While Zadeh (p-value, 0.031) and Bounded Product/Sum (p-value, 0.041) with
FID3-L-WABL has better performance than Zadeh with FID3-LR, Non Parametric
Hamacher (p-value, 0.001) with FID3-L-WABL has a worse performance than
Zadeh with FID3-LR.

Algebraic Product/Sum (p-value, 0.000) with FID3-LR has a better performance
than Non Parametric Hamacher (p-value, 0.001) with FID3-L-WABL.

Also, Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.024) with
FID3-L-WABL has better performance than Bounded Product/Sum with FID3-LR.

While Zadeh (p-value, 0.001), and Bounded Product/Sum (p-value, 0.001) with
FID3-L-WABL has better performance than Non Parametric Hamacher with FID3-
LR, Non Parametric Hamacher (p-value, 0.001) with FID3-LR has a Dbetter
performance than Non Parametric Hamacher with FID3-L-WABL.

Zadeh (p-value, 0.011), Algebraic Product/Sum (p-value, 0.000), Bounded
Product/Sum (p-value, 0.000), and Non Parametric Hamacher (p-value, 0.000)
operator with classical FID3 have worse performance than Zadeh operator with
FID3-L-WABL. On the other hand, while Algebraic Product/Sum operator with
FID3-L-WABL works worse than Zadeh (p-value, 0.007)  with classical FID3, it
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works better than Algebraic Product/Sum (p-value, 0.004) and Non Parametric
Hamacher (p-value, 0.000) with classical FID3.

Bounded Product/Sum with FID3-L-WABL has a better performance than Zadeh
(p-value, 0.000), Algebraic Product/Sum (p-value, 0.000), Bounded Product/Sum (p-
value, 0.000), and Non Parametric Hamacher (p-value, 0.000) with classical FID3.

Non Parametric Hamacher with FID3-L-WABL has a better performance than
Zadeh (p-value, 0.000), Bounded Product/Sum (p-value, 0.000) with classical FID3.

Algebraic Product/Sum (p-value, 0.006) and Non Parametric Hamacher (p-value,
0.000) operators with classical FID3 have better performance than Zadeh operator
with FID3-LR.

Algebraic Product/Sum with FID3-L-LR has a better performance than Algebraic
Product/Sum (p-value, 0.005) and Non Parametric Hamacher (p-value, 0.001) with
classical FID3.

Bounded Product/Sum with FID3-LR has a worse performance than Zadeh,
Algebraic Product/Sum (p-value, 0.000) and Bounded (p-value, 0.003) with classical
FID3.

While Non Parametric Hamacher with FID3-LR has a worse performance than
Zadeh (p-value, 0.023) with classical FID3, it has a better performance than
Algebraic Product/Sum (p-value, 0.030) and Non Parametric Hamacher (p-value,
0.001) with classical FID3.

Wdbc data set

Wdbc data set performance results for three approaches are given in Table 6.35,
Table 6.36, and Table 6.37, respectively.
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While classical Fuzzy ID3 approach with the threshold 0.88 is performed for the
induction process on Wdbc data set, Algebraic Product/Sum operator has the higest

accuracy rate with 93.67% among the other non-parametric operators.

While Fuzzy ID3-L-WABL approach with 0.90 threshold is performed for the
induction process on Wdbc data set, Bounded Product/Sum operator has the higest

accuracy rate with 94.55% among the other non-parametric operators.

While Fuzzy ID3-LR approach with threshold range 0.88-0.90 is performed for
the induction process on Wdbc data set, Algebraic Product/Sum operator has the

higest accuracy rate with 94.38% among the other non-parametric operators.

The Friedman aligned ranks as a non-parametric statistical procedure is applied to
detect statistical differences among a group of results on 31 thresholds value between
0.60-0.90 for three approaches. The test results performed on both approaches have
significant p-value, 0.000 as given in Table 6.38. It is seen that there are significant

differences among the results (o=0.05).

Then, Wilcoxon signed rank tests are applied into the Wdbc data set to test the
comparison among the reasoning methods. It is seen that the results of Zadeh
operator with classical FID3 are worse than the results of produced by Bounded
Product/Sum (p-value, 0.000) with classical FID3. Zadeh with classical FID3 has
better performance than Non Parametric Hamacher (p-value, 0.000) with classical
FIDS3.

While Bounded Product/Sum operator with classical FID3 has a better
performance than Algebraic Product/Sum operator with classical FID3 (p value,
0.000), Non Parametric Hamacher operator has a worse performance than Algebraic
Product/Sum operator with classical FID3 (p value, 0.000). In a similar manner, Non
Parametric Hamacher operator with classical FID3 has a worse performance than

Bounded Product/Sum (p value, 0.000) operator with classical FID3.
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Table 6.35 Wdbc data set performance results (%) different t-operators on different threshold results
for classical Fuzzy ID3 (FID3).

Threshold Zadeh APIE(;?(?J;I? Bounded Product/ NP_
sum Sum Hamacher
0.60 88.23 89.46 89.81 85.95
0.61 88.23 89.46 89.81 88.40
0.62 88.23 89.46 89.81 88.23
0.63 89.98 90.51 90.86 85.95
0.64 89.98 90.51 90.86 85.95
0.65 89.98 90.51 90.86 85.95
0.66 89.98 90.51 90.86 85.95
0.67 89.98 90.51 90.86 85.95
0.68 89.98 90.51 90.86 85.95
0.69 89.98 90.51 90.86 85.95
0.70 89.98 90.51 90.86 85.95
0.71 89.98 90.51 90.86 85.95
0.72 89.98 90.51 90.86 85.95
0.73 89.98 90.51 90.86 85.95
0.74 90.51 91.04 91.39 84.18
0.75 90.51 91.04 91.39 84.18
0.76 90.34 90.86 91.39 83.82
0.77 91.39 91.74 92.09 83.12
0.78 91.39 91.74 92.09 83.12
0.79 91.03 80.77 92.09 74.63
0.80 91.74 69.54 92.62 64.80
0.81 91.74 69.54 92.62 64.80
0.82 91.38 46.73 92.79 46.73
0.83 91.74 57.96 92.79 54.80
0.84 92.44 69.89 92.09 62.17
0.85 92.09 69.89 92.09 62.87
0.86 92.09 69.89 92.27 62.70
0.87 91.92 81.22 91.92 68.18
0.88 92.97 82.62 92.09 65.90
0.89 92.79 93.67 92.09 72.58
0.90 92.79 93.67 92.09 73.63
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Table 6.36 Wdbc data set performance results (%) different t-operators on different threshold results
for Fuzzy ID3-L-WABL (FID3-L-WABL).

Algebraic Bounded NP
Threshold Zadeh L Product/ Product/ Hamacher L
Sum_L Sum_L -
0.60 88.23 89.46 89.81 88.40
0.61 90.16 90.33 90.51 85.95
0.62 90.16 90.33 90.51 85.95
0.63 90.16 90.33 90.51 85.95
0.64 90.16 90.33 90.51 85.95
0.65 90.16 90.33 90.51 85.95
0.66 90.16 90.33 90.51 85.95
0.67 89.98 89.98 90.51 85.95
0.68 89.98 89.98 90.51 85.95
0.69 89.98 89.98 90.51 84.89
0.70 89.98 89.98 90.51 84.89
0.71 89.98 89.98 90.51 85.89
0.72 89.98 78.75 90.51 75.60
0.73 89.98 78.75 90.51 75.60
0.74 90.87 79.82 91.57 73.83
0.75 90.87 79.82 91.57 73.83
0.76 92.10 69.36 92.62 65.15
0.77 92.10 69.36 92.62 65.15
0.78 92.10 69.36 92.62 65.15
0.79 92.10 69.36 92.62 65.15
0.80 92.10 69.36 92.62 65.15
0.81 92.62 57.96 92.62 54.98
0.82 92.45 46.91 92.45 46.91
0.83 92.45 69.54 92.62 60.24
0.84 92.62 69.89 92.62 60.07
0.85 92.80 69.89 92.62 60.94
0.86 92.62 71.47 92.27 56.03
0.87 92.62 71.82 92.27 56.21
0.88 92.62 59.89 92.27 51.47
0.89 94.20 94.38 93.67 73.44
0.90 94.55 94.38 93.85 75.74
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Table 6.37 Wdbc data set performance results (%) different t-operators on different threshold results
for Fuzzy ID3-LR (FID3-LR).

Threshold Zadeh_L ProAdE];?gilr%_L Progagt?gﬁgn_L Ham';lfh_er_L
0.60 90.16 90.86 90.86 91.04
0.61 90.16 90.86 90.86 91.04
0.62 90.16 90.86 90.86 91.04
0.63 90.16 90.86 90.86 91.04
0.64 90.16 90.86 90.86 91.04
0.65 90.16 90.86 90.86 91.04
0.66 90.16 90.86 90.86 91.04
0.67 90.16 90.86 90.86 91.04
0.68 90.16 90.86 90.86 91.04
0.69 90.16 90.86 90.86 91.04
0.70 90.16 90.86 90.86 91.04
0.71 90.16 90.86 90.86 91.04
0.72 90.16 90.86 90.86 91.04
0.73 90.16 90.86 90.86 91.04
0.74 90.16 90.86 90.86 91.04
0.75 90.16 90.86 90.86 91.04
0.76 90.16 90.86 90.86 91.04
0.77 90.16 90.86 90.86 91.04
0.78 90.16 90.86 90.86 91.04
0.79 90.16 90.86 90.86 91.04
0.80 90.16 90.86 90.86 91.04
0.81 90.16 90.86 90.86 91.04
0.82 90.16 90.86 90.86 91.04
0.83 90.16 89.98 89.63 88.58
0.84 91.39 90.16 89.10 88.05
0.85 92.62 90.33 88.05 87.67
0.86 92.62 90.33 88.05 87.99
0.87 92.44 93.14 47.17 90.86
0.88 93.15 94.38 37.26 91.92
0.89 93.15 94.38 37.26 91.92
0.90 92.97 94.38 37.26 92.09
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Algebraic Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value,
0.000) with FID3-L-WABL have worse performance than Zadeh with FID3-L-
WABL. Bounded Product/Sum (p-value, 0.001) with FID3-L-WABL has a better
performance than Zadeh operator with FID3-L-WABL. Hence, Non Parametric
Hamacher with FID3-L-WABL (p-value, 0.000) has a worse performance than
Algebraic Product/Sum operator with FID3-L-WABL. But, Bounded Product/Sum
with FID3-L-WABL has a better performance than Algebraic Product/Sum operator
(p-value, 0.000) and Non-Parametric Hamacher (p-value, 0.000) with FID3-L-
WABL.

Zadeh with FID3-LR is worse performance than Algebraic Product/Sum (p-value,
0.000) operator with FID3-LR. And, Algebraic Product/Sum with FID3-LR works
better than Bounded Product/Sum (p-value, 0.000) with FID3-LR Zadeh. Also, Non
Parametric Hamacher with FID3-LR has a better perfomance than Bounded
Product/Sum (p-value, 0.000) with FID3-LR Zadeh.

While Zadeh (p-value, 0.004) and Bounded Product/Sum (p-value, 0.000) with
FID3-L-WABL have better performance than Zadeh with FID3-LR, Algebraic
Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value, 0.000) with
FID3-L-WABL have worse performance than Zadeh with FID3-LR.

Table 6.38 Friedman aligned ranks test for Wdbc data set.

Friedman aligned ranks
Algorithm Rank Algorithm Rank Algorithm Rank Total N 31
Zadeh 5.77 Zadeh_L 7.77 Zadeh_L2 6.29 Test Statistic | 189.11
Algebraic . ) (df) (11)
Algebraic Algebraic
Pmdrl#:tlsu 6.19 Product/Sum_L 4.32 Product/Sum_L2 8.19
Bounded
Bounded Bounded
Product/Su 9.26 Product/Sum_L 9.35 Product/Sum_L2 731 .
m - - Asymptotic
Non Non - Sig. (2 sided 0.000
Parametric 223 Parametric 156 N:;E;gﬁg?etlgc 9.15 test)
Hamacher ‘ Hamacher_L : (A= O_) i
(A=0) (A=0) B

While Zadeh (p-value, 0.000) and Bounded Product/Sum (p-value, 0.000) with
FID3-L-WABL have better performance than Zadeh with FID3-LR, Algebraic
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Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value, 0.000) with
FID3-L-WABL have worse performance than Algebraic Product/Sum with FID3-
LR.

Zadeh (p-value, 0.016) and Bounded Product/Sum (p-value, 0.002) with FID3-L-
WABL have better performance than Bounded Product/Sum with FID3-LR. Yet,
Algebraic Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value,
0.000) with FID3-L-WABL also has worse performance than Bounded Product/Sum
with FID3-LR.

While Bounded Product/Sum (p-value, 0.011) with FID3-L-WABL has better
performance than Non Parametric Hamacher with FID3-LR, Algebraic Product/Sum
(p-value, 0.000) and Non Parametric Hamacher (p-value, 0.000) with FID3-LR has a
better performance than Non Parametric Hamacher with FID3-L-WABL.

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.009), and Non
Parametric Hamacher (p-value, 0.000) operator with classical FID3 have worse
performance than Zadeh operator with FID3-L-WABL. On the other hand, Bounded
Product/Sum operator with classical FID3 works better than Zadeh (p-value, 0.000)
with FID3-L-WABL.

Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.006), and Bounded
Product/Sum (p-value, 0.000) with classical FID3 have better performance than
Algebraic Product/Sum with FID3-L-WABL. But, Algebraic Product/Sum with
FID3-L-WABL has better performance than Non Parametric Hamacher (p-value,
0.000) with classical FID3.

In a similar manner, Zadeh (p-value, 0.000), and Algebraic Product/Sum (p-value,
0.006) with classical FID3 have better performance than Bounded Product/Sum with
FID3-L-WABL. But, Bounded Product/Sum with FID3-L-WABL has a better

performance than Non Parametric Hamacher (p-value, 0.000) with classical FID3.
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Zadeh (p-value, 0.000), Algebraic Product/Sum (p-value, 0.009), Bounded
Product/Sum (p-value, 0.000) and Non Parametric Hamacher (p-value, 0.000)
operator with classical FID3 have better performance than Non Parametric Hamacher
operator with FID3-L-WABL.

Bounded Product/Sum (p-value, 0.000) with classical FID3 has a better
performance than Zadeh with FID3-LR. But, Zadeh with FID3-LR has a better

performance than Non Parametric Hamacher (p-value, 0.000) with classical FID3.

Zadeh (p-value, 0.029), Algebraic Product/Sum (p-value, 0.000) and Non
Parametric Hamacher (p-value, 0.000) with classical FID3 have worse performance
than Algebraic Product/Sum with FID3-LR.

Bounded Product/Sum with FID3-LR has a better performance than Algebraic
Product/Sum (p-value, 0.035) and Non Parametric Hamacher (p-value, 0.002) with
classical FID3. Yet, Bounded Product/Sum with classical FID3 has a better
performance than Bounded Product/Sum with FID3-LR.

Non Parametric Hamacher (p-value, 0.000) with FID3-LR performs better than
Algebraic Product/Sum with classical FID3.

6.3.4.2 Conclusion

In this study, novel two fuzzy decision tree approaches for linguistic data are
proposed. In daily life, words are used for the communication. Especially, this
century is the evolution of the information. This information is stored as words. It is
necessary to solve the relations among the words and sentences. This study aims to
seek novel ways to find the rules among the data stored as words. In addition, it gives
a methodology in order to solve the classification problem for fuzzy data

warehouses.
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In the first approach, L-R fuzzy data is used then WABL method for
Defuzzification is adapted and it is applied. Fuzzy c-means algorithm is also used in
order to handle membership degrees. After the fuzzification phase, fuzzy ID3
approach is applied. It is seen that FID3-L-WABL approach has a good performance
not less than classical FID3. In second approach, L-R fuzzy data is adapted into
FuzzylD3 algorithm, directly. FID3-LR uses FKM-F algorithm for the fuzzification
phase. It is observed that the comparisons have shown that this approach has a better

performance in some different reasoning approaches.

The behaviour of this approach by using 31 threshold value changes in the range
0.60-0.90 is analyzed for 6 well known data sets. It is seen that FID3-L-WABL and
FID3-LR with different T-operators have better behaviour on some data sets (lris

data set, Phoneme data set) than classical FID3.

It is observed that Iris data set has the maximum accuracy rates of 96.67% for
Algebraic Product/Sum with classical FID3 and Algebraic Product/Sum FID3-L-
WABL while 6, = 0.75. Wdbc data set has the highest accuracy rate with 94.55%
for Bounded Product/Sum with FID3-L-WABL while 6, = 0.75. While Sonar data
set has the highest accuracy rate 77.42% for Non-parametric Hamacher with FID3-
LR(6, = 0.75), Pima data set has the highest accuracy rate 76.04% for Non-

parametric Hamacher with classical FID3(6, = 0.75).

Phoneme data set has the maximum accuracy rate of 77.01% for Non-parametric
Hamacher with FID3-LR. Lastly, Ring has the highest performance for Non-
Parametric Hamacher with FID3-LR.

Four small data sets (lris, Wdbc, Sonar, Pima) have good performances on
classical FID3, Fuzzy-L-WABL, and Fuzzy-LR on different T-operators. Hence,
Fuzzy-LR has better performance than the other approaches for large data sets

(Phoneme, and Ring).
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In the future, several works remains to be addressed. This study can directly be
applied to the data set which is defined as linguistics. Moreover, a synergy can be
adapted into the study between overlap functions and decomposition strategies for
linguistic data approach. Finally, linguistic summary can be adapted in to the

reasoning procedure in order to find the important rules.
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CHAPTER SEVEN
CONCLUSION

In this work, a fundamental solution is proposed to solve the geographic
classification problem and the effects of different T-operators on its reasoning
procedure on numeric data is investigated in this problem solution. In addition, two
novel fuzzy ID3 approaches working on linguistic data have been proposed. The first
one is FID3-L-WABL (Fuzzy ID3 Algorithm Based on Linguistic Data by Using
WABL Defuzzification Method) which is a novel version of the known Fuzzy
Interactive Dichotomizer 3 (Fuzzy ID3) classification algorithm working on
linguistic data. The second one is FID3-LR (Fuzzy ID3 Algorithm for L-R Fuzzy
Data) which is a mixture of FKM-F (Fuzzy k-means Clustering Model for Fuzzy
data) clustering algorithm working on L-R fuzzy data and Fuzzy Interactive
Dichotomizer 3 (Fuzzy 1D3) classification algorithms.

Fuzzy c-means algorithm and FKM-F were performed in MATLAB 2014a. The
codes for the experiments, FuzzylD3 by using T-operators, FID3-L-WABL, and
FID3-LR, have been developed in the MS Visual Studio C# IDE for the experimental
study (intel i7, 2.4 GHz, 4 Gb RAM). OliveDeSoft is designed for current and future
studies to analyze the olive oil quality and geographic characterization. In addition,
fuzzy 1D3 algorithm has been designed as an integrated software system called as

Fuzzy Artemis.

The fundamental idea of the FID3-L-WABL is to work on fuzzy data. In this
approach, L-R (Left-Right) fuzzy number is used. Each fuzzy number is defuzzified
by using WABL (Weighted Averaging Based on Levels). Then, it is adapted with
Fuzzy c-means algorithm to achieve the fuzzification. Consequently, Fuzzy ID3
algorithm is applied. In other words, FID3-L-WABL is worked on linguistic dataset
to provide a classification system. It is flexible. WABL is used to calculate the
average representative of a fuzzy number. WABL approach is the most robust
mathematical model among the defuzzificaiton methods. It supports the performance

of FID3 algorithm to obtain the rules within the linguistic dataset.
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The other proposed algorithm, FID3-LR, works directly on L-R (Left-Right)
fuzzy data. The fuzzificaiton is done by FkM-F. FKM-F is a fuzzy clustering
algorithm which is presented for L-R (Left-Rigt) fuzzy data. It uses a weighted
dissimilarity measure to compute the distances between two fuzzy L-R data. It
handles membership degrees for each cluster whose number is specified before. This

approach is convenient if the database is defined as linguistic.

These two novel approaches are supported with the different non-parametric T-
opeators on reasoning procedure. Computational experiments are performed and,
these experiments are encouraged by statistical analyses. After experiments with
various T-operators on six different datasets, the proposed approaches that give

better results have been observed.

To summarized, in this thesis;

Fuzzy ID3 algorithm (FID3) has been discoursed and a geographic classification
problem for virgin olive oil is analyzed by using different T-operators on reasoning

phase.

A software called as OliveDeSoft is proposed in order to classify the olive oil

samples.

Fuzzy ID3 algorithm (FID3) has been achieved and a novel FID3 algorithm,
called FID3-L-WABL, of which is linguistic variant has been proposed. WABL
defuzzification method is used to defuzzify L-R fuzzy data.

FID3-LR algorithm is suggested on the basis of Fuzzy ID3 algorithm which works

directly on L-R fuzzy data. It works fundamentally on linguistic databases to solve

the classification problems.
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A software called FuzzyArtemis is presented to succeed in the experimental study
for Fuzzy ID3, Fuzzy ID3-L-WABL, and Fuzzy ID3-LR.

Fuzzy c-means (FCM) algorithm and FkM-F are performed in MATLAB 2014a.

The codes for the experiments, FuzzylD3 by using T-operators, FID3-L-WABL,
and FID3-LR, have been developed in the MS Visual Studio C# IDE for the
experimental study (intel i7, 2.4 GHz, 4 Gb RAM). They have been designed and
integrated into a software.

In the future, OliveDeSoft can be improved to determine the quality of virgin
olive oil and the charaterization of olive oil as a tool of geographic indications for
olive oil sector in Turkey. The proposed algorithms can also be applied directly into
linguistic databases. Moreover, a synergy can be adapted into the study between
overlap functions and decomposition strategies for linguistic data approach. Finally,
linguistic summary can be adapted into the reasoning procedure to make the
summarization of the linguistic data sets by evaluatig the rule base. In the light of
these aims, FuzzyArtemis can be improved.
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