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A NEW AND EFFICIENT METHOD FOR SYNTHETIC DATA 

GENERATION WITH GENERATIVE ADVERSARIAL NETWORKS 

ABSTRACT 

Machine learning models, especially deep neural networks, need sufficient data for 

successful training. In case of insufficient data, the training of the model fails. 

Moreover, imbalanced datasets are also an important problem that reduces the 

performance of the classification system. In such cases, we need to increase the data 

in the dataset of the classes which have few data. Classical data augmentation methods 

do this by changing the data that we have. Existing data is duplicated by some 

techniques such as rotating, scaling, etc. However, no new data is synthesized by this 

approach. In areas where the dataset is very constrained, this solution would not work. 

We need to generate new data based on limited data in such cases. It is possible to 

generate synthetic new data using the Generative Adversarial Networks (GAN). Thus, 

sufficient training data can be provided for the deep learning model developed. 

In this thesis, new synthetic ECG data were produced for MIT-BIH Arrhythmia 

Database using a new GAN-based method. The proposed method considers the cluster 

structure of individual classes. As a result of the study, the dataset was increased with 

new synthetic data. The performance of the developed systems was examined with 

different experiments which were conducted by using different training sets but the 

same test data. It has been observed that the success of the deep learning system has 

increased using the proposed GAN-based synthetic data augmentation method when 

compared with classical GAN-based method.  

Keywords: Dataset, data augmentation, generative adversarial neural networks, 

artificial neural network, ecg 
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ÇEKİŞMELİ ÜRETİCİ AĞ KULLANILARAK SENTETİK DATA 

ÜRETMEDE YENİ VE VERİMLİ BİR METOD 

ÖZ 

Yapay zekâ modelleri, özellikle derin sinir ağları, eğitim esnasında yeterli sayıda 

veriye ihtiyaç duyarlar. Verilerin yetersiz olduğu durumlarda modelin eğitimi başarısız 

olur. Ayrıca sınıflar arası veri dengesizliği de sınıflandırıcı sistemin eğitiminde 

başarısızlığa yol açan önemli bir problemdir. Böyle durumlarda bu sınıflar için veri 

kümesindeki verileri arttırmamız gerekmektedir. Klasik veri arttırma yöntemleri 

elimizdeki verileri değiştirerek yapılır. Mevcut verilerin benzerleri oluşturulur, yeni 

veriler üretilmez. Veri kümesinin çok kısıtlı olduğu alanlarda bu çözüm işe yaramaz. 

Böyle durumlarda elimizdeki sınırlı verilerden yeni veriler üretmemiz gerekir. 

Çekişmeli Üretici Ağ (ÇÜA) kullanılarak sentetik yeni veriler üretmek mümkündür 

ve böylece oluşturulan derin öğrenme modelinin çalışması için yeterli eğitim verisi 

sağlanabilir.  

Bu tezde, MIT-BIH Arrhythmia veri tabanı üzerinde yeni bir ÇÜA yaklaşımı 

kullanılarak sentetik ECG verileri üretilmiştir. Özellikle az kayıt içeren veri sınıfları 

için sentetik veri üretilmesi amaçlanmıştır. Önerilen bu yeni yaklaşımda belli bir sınıfa 

ait verilerin öbek dağılımları baz alınmıştır. Çalışma sonucunda elde edilen sentetik 

veriler ile eksik veri kümeleri arttırılmıştır. Geliştirilen sistemlerin başarımları her 

birinde farklı bir eğitim verisinin kullanıldığı farklı deneylerle incelenmiştir. Önerilen 

yeni yaklaşımla veri artırımı sonrası elde edilen derin öğrenme başarısının klasik GAN 

tabanlı yönteme göre arttığı gözlemlenmiştir. 

Anahtar Kelimeler: Veri kümesi, veri arttırma, çekişmeli üretici ağ, yapay sinir ağı, 

ekg  
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CHAPTER 1 

INTRODUCTION 

 
 Today, with the enormous increase in the processing power of computer processor 

units (CPU) and graphics processor units (GPU), the use of artificial intelligence in 

our daily lives has become widespread. In addition, with the development of the 

internet and massive storage media, it has become easy to obtain and collect data from 

numerous sources including electronic sensors, cameras, etc. In some cases, data 

collection can be problematic. For example, in medical arena, patients' data are not 

shared for privacy and security purposes. Therefore, in such areas, the inability to find 

sufficient data on diseases is a big problem for artificial intelligence-based projects. 

This is mostly due to the fact that enormous amount of data is needed to successfully 

train AI models. If our dataset is insufficient, the model's success rate against the test 

data remains low. In such cases, it is necessary to increase the existing data set with 

data augmentation methods. (Hoelzemann, Sorathiya & Van Laerhoven, 2021; Perez 

& Wang, 2017). 

 

 Another problem that negatively affects the successful training of machine learning 

algorithms is related to data imbalance problem. The large number of differences 

between data samples in different classes in the dataset leads to this problem. This 

problem causes the over-numbered classes to be learned more effectively during the 

training phase and dominate the classes fewer data samples. As a result, the classifier 

algorithms cannot adequately learn the problem producing erroneous results. The 

study in (Sun, Wong & Kamel, 2009) provides information about what the imbalance 

problem is and how to fix it. Moreover, the imbalance problem is not specific to 

classification algorithms. In a study by (López, Fernández, García, Palade & Herrera, 

2013), the problems that imbalance data poses for data mining are discussed. In 

another article (Tanha, Abdi, Samadi, Razzaghi & Asadpour, 2020), different 

approaches for solving the imbalance problem are compared in multi class datasets. 
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 In classical data augmentation methods, similar data is produced by changing the 

data in the dataset (Mikolajczyk & Grochowski, 2018). Various augmentation methods 

are selected and used according to the type and structure of the data. The data can be 

one-dimensional for audio files, while for images, the data is two-dimensional. It is 

multidimensional in tabular data. Some methods have also been applied for data 

augmentation of audio files (Nanni, Maguolo & Paci, 2020). More common studies 

have been done for images (Wong, Gatt & Stamatescu, 2016) and some studies have 

been done on the text (Bayer, Kaufhold & Reuter, 2022; J. Wei & Zou, 2019).  

 

 In literature, the common point of all shared studies is the importance of data 

augmentation. Despite the development of modern data augmentation methods, 

research on classical methods continues today. Another recent study has compared 

these classical methods to images (Nanni, Paci, Brahnam & Lumini, 2021). As with 

images, classical data augmentation methods have been used and compared in another 

study (S. Wei et al., 2020) for one-dimensional signals such as audio files. In another 

study (Lashgari, Liang & Maoz, 2020) one-dimensional signals were generated made 

for electroencephalography (EEG) signals. In artificial intelligence, the model's 

response to the data set is very important. Small differences in the data set greatly 

affect the model's running performance. In another study (Cubuk, Zoph, Mane, 

Vasudevan & Le, 2019), new algorithms applied automatically instead of manually 

performing data augmentation methods have been developed. 

 

 Modern approaches for data augmentation methods are mostly based on Variational 

Autoencoders (VAE) and Generative Adversarial Neural networks (GAN). VAE can 

be used not only for data augmentation but also for classification and feature extraction 

purposes (Metlapalli, Muthusamy & Battula, 2020). As with classical methods, the 

data model in the input may vary in modern methods. In a study (Metlapalli et al., 

2020), image-based data was processed. In (Zhu, Wu, Latapie, Yang & Yan, 2021), 

the cross-correlation of audio and video together was investigated by changing the 

encoder and decoder structure of the VAE. GAN is generally more successful in data 

synthesis than VAE, but VAE is still being used in many data synthesis applications. 

For example, in (Saldanha, Chakraborty, Patil, Kotecha, Kumar & Nayyar, 2022), 
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biomedical sound signals that were obtained from lung sounds from ICBHI respiratory 

sounds database (Rocha, Filos, Mendes, Serbes, Ulukaya, Kahya, Jakovljevic, 

Turukalo, Vogiatzis, Perantoni, Kaimakamis, Natsiavas, Oliveira, Jácome, Marques, 

Maglaveras, Pedro Paiva, Chouvarda & de Carvalho, 2019) were synthesized with 

several VAE models to produce new data.  

 

 GAN is a generative machine learning model. After the first GAN paper 

(Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville & 

Bengio,2014) was published, many studies have been done on GAN, and GAN has 

been adapted to many fields. In addition to image synthesis applications, it has been 

the subject of many studies from audio synthesis to tabular data synthesis. A study 

(Donahue, McAuley & Puckette, 2018) has been done to synthesize data from raw 

audio files. In this work, WaveGAN and SpecGAN are introduced. It creates images 

in the frequency domain from audio files and synthesizes new data from these images. 

Then it returns to the time domain again and new sound files are created. In addition, 

other studies (Wu, Chrysos & Cevher, 2022) are currently being conducted on raw 

sound synthesis. In addition, the study by (Xu et, Skoularidou, Cuesta-Infante & 

Veeramachaneni, 2019) has introduced conditional tabular GAN (CTGAN) in 

synthesizing tabular data with GAN. When synthesizing tabular data, it does not take 

into account previous values. In this case, if data is continuous and sequential like an 

ECG signal then it cannot be synthesized with CTGAN. For such continuous 

sequential data, recurrent neural network (RNN) or long short-term memory (LSTM) 

based GAN models should be used (Mogren, 2016; Ouyang, Zhang, Ma & Agam, 

2018). 

 

 In this thesis study, a new GAN-based method is developed to synthesize ECG 

signals with LSTM-GAN architecture using MIT-BIH Arrhythmia Database (Moody 

& Mark, 2001). The results show that the ECG data can be classified more successfully 

with the 1D convolutional neural network (CNN) classifier by training it on data sets 

which are augmented by the proposed method.  
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 This thesis consists of five main parts. Chapter 1 is the introductory part. In this 

section, the aim of the thesis, literature research, and suggestions are given. In Chapter 

2, data augmentation methods are examined based on classical and modern 

approaches. Chapter 3 describes the GAN structure. In Chapter 4, the new data 

augmentation method is presented, and the conducted experiments and results obtained 

are given. Chapter 5 is the discussion part. The conclusion of this thesis is made in 

Chapter 6. 
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CHAPTER 2 

DATA AUGMENTATION 

 

 The main purpose of data augmentation is to support the model with enough data 

to make more accurate predictions. Where the data set is insufficient, the model cannot 

learn enough and gives low accuracy results for test data in real life. It is said that the 

model cannot be generalized enough. In such cases, data augmentation methods should 

be applied to the dataset. 

 

 
Figure 2.1 Data augmentation visualization for MNIST handwritten digits database (Gandhi, 2021) 

  

 The previous chapter mentioned that data augmentation methods would be 

examined under two main headings. The first of these is classical data augmentation 

methods and the second is modern data augmentation methods. The easiest way to 

describe data augmentation methods is to make use of data augmentation methods used 

for images. Because the process on the images gives visual outputs and the obtained 

results are more understandable for the readers. However, since ECG signal synthesis 

will be examined in this thesis, signal augmentation methods should also be 

mentioned. Thus, image and signal augmentation methods are explained in this 

chapter. 
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2.1 Classical Data Augmentation Methods for Image Processing 
 

 Classical data augmentation methods obtain different data by only changing the 

existing data. In this method, new data is not synthesized. Hence, this application for 

use in deep learning influences the results, but it is not always as effective as modern 

methods. Representing of grayscale digital images is defined in a 2-D array. "($, &) 

function defines the image that has ( rows and ) columns. Where (x, y) defines the 

discrete coordinates of the image and each element is called a pixel. 

 

"($, &) = 	 +
"(0, 0) ⋯ "(0, ) − 1)
⋮ ⋱ ⋮

"(( − 1, 0) ⋯ "(( − 1,) − 1)
2	 (2.1) 

 
 

 In the color image (RGB), spatial domains of Red, Green, and Blue are defined 

separately for each function.  

 

"!($, &) = 	 +
"(0, 0) ⋯ "(0, ) − 1)
⋮ ⋱ ⋮

"(( − 1, 0) ⋯ "(( − 1,) − 1)
2	 (2.2) 

 

""($, &) = 	 +
"(0, 0) ⋯ "(0, ) − 1)
⋮ ⋱ ⋮

"(( − 1, 0) ⋯ "(( − 1,) − 1)
2	 (2.3) 

 

"#($, &) = 	 +
"(0, 0) ⋯ "(0, ) − 1)
⋮ ⋱ ⋮

"(( − 1, 0) ⋯ "(( − 1,) − 1)
2	 (2.4) 

 

 By performing mathematical operations on the pixel values of functions, changes 

in the image are obtained. These operations are flip, rotation, translation, scale, crop, 

and Gaussian Noise. 
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2.1.1 Flip  
 

 With this data augmentation method, the image is flipped vertically or horizontally. 

As a result of these translations, two different images are obtained. To flip the image 

vertically, the following mathematical operation is applied (2.2). Flipping the image 

horizontally is applied (2.3). The result obtained is shown in Figure 2.2. 

 

! "$%&'(()*($, &) = "(M − 	x	 − 	1, y)
(",$)∈'!"

(2.5) 
 

! "+%&'(()*($, &) = "(x, N − y − 1)
(",$)∈'"$

(2.6) 
 

 

Figure 2.2 From the left, the original image, flipped horizontally, and flipped vertically 

 

2.1.2 Rotation  
 

 Rotation is done by rotating a pixel in the desired direction, then positioning it in 

its new place and applying it to the entire image. The point to be noted here is that if 

the image is not square, there will be losses in the image. The mathematical structure 

of the rotation process and its results on the images are shown below. 

 
 
 

($, &) = 7{(9, :)} (2.7) 
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$ = 9=>?@ + :?BC@
(2.8)

& = −9?BC@ + :=>?@
 

 

E
$
&
1
F = +

=>?@ ?BC@ 0
−?BC@ =>?@ 0
0 0 1

2 E
9
:
1
F (2.9) 

 

 

Figure 2.3 The images are rotated by 90, 180, and 270 degrees clockwise 

 

2.1.3 Translation 
 

 The image is introduced to another region without being rotated in the translation 

process. How much transport will be made is decided by H, and H- values. The main 

thing to note in this operation is that the resulting image should be larger than the input 

image to avoid loss if there is a piece of information at the edge of the image. 

 

$ = 9 + H,
& = : + H- (2.10) 

E
$
&
1
F = 	 +

1 0 H,
0 1 H-
0 0 1

2 E
9
:
1
F (2.11) 
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Figure 2.4 From the left of the original image, translated to the right, and upwards 
 

2.1.4 Scale 
 

 The image is scaled in two directions, outward or inward. When scaling outward, 

the output image size will be larger than the original image size and the overflowing 

parts of the image will be cut off. Therefore, some data loss may occur. Inward scaling, 

on the other hand, will reduce the output image, so the outer parts of the image should 

be filled with black pixels.  

 

$ = =,9
(2.12)

& = =-:
 

 

E
$
&
1
F = +

=, 0 0
0 =- 0
0 0 1

2 E
9
:
1
F (2.13) 

 

 

Figure 2.5 From the left of the original image, scaled two images 



 

10 
 

 

2.1.4 Crop 
 

 Instead of scaling, a random point is selected in the image, and scaling is made at 

the origin of this point. Part of the outward growing image is cut off. This process 

allows us to obtain different variations from the same image. Its mathematical 

expression is the same as scaling. 

 

 

Figure 2.6 From the left original image, cropped from top left of, and the middle 
 

2.1.4 Gaussian Noise  
 

 In cases where the data set was insufficient, it was examined that the existing data 

should be increased by changing it. In some cases, the data is so clear and smooth that 

in such cases, deep learning models memorize the data more than necessary and lose 

the ability to generalize for test data. It is an undesirable situation. It is a data 

augmentation method to add some noise to the seamless data and change its structure. 

Gaussian noise is generally preferred for this process due to its balanced distribution. 

On the next page, both Gaussian noise and Salt and paper noise are added to the 

original image. 

 

I($, &) = "($, &) + C($, &) (2.14) 
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C($, &) = 	
1

J√2LΣJ
N.

/
0(,.2)

!4"#(-.2) (2.15) 

 

 

Figure 2.7 From the left of the original image, gaussian noise, and salt and paper noise 
 

2.2 Classical Data Augmentation Methods for Signal Processing 
 

 Digital signals are represented by logic 1s and 0s, but analog signals cannot be 

represented by only these two values. Because they have intermediate values between 

these. Therefore, they must first be converted to quantized signal form. For this work, 

a method called sampling is used. Signals are generally one-dimensional structures 

obtained by sampling at a predetermined frequency. Audio signals, ECG signals, 

Voltage signals, etc. are in this structure. 

 

 

Figure 2.8 Sampling Method (Nassar, 2001) 
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P(H) = 	 Q R(H − ST5)
6

78.6

(2.16) 

$5(H) = $(H). P(H) = $(H). Q R(H − ST5)
6

78.6

(2.17) 

$5(H) = Q $(ST5)R(H − ST5)
6

78.6

(2.18) 

 

 First, an impulse train is created as in (2.16) and then this generated signal is 

multiplied by the input signal. As a result, the output in (2.18) occurs. Thus, the analog 

signal is transferred to digital. The following shows how an audio signal looks in a 

digital environment. 

 

 

Figure 2.9 An audio signal that is sampled by 44.1Khz 

 

 Digital signals are kept in a 1D array in the computer environment. These signals, 

whose sampling frequency is known beforehand, can be visualized with the values in 

the array as in Figure 2.9. After this stage, data augmentation methods can be applied 

to digitized signals. These methods are time-shifting, time stretching, pitch scaling, 

noise addition, low/high/band-pass filters, and polarity inversion 

 

2.2.1 Time-shifting 
 

 Time-shifting is the simplest of signal augmentation methods. The signal is only 

shifted in the time axis left or right and new modified data is obtained. The original 

signal and time shift are shown in Figure 2.10. 
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Figure 2.10 An original signal on top and a time-shifted signal on the bottom 

 

2.2.1 Time stretching 
 

 With this operation, the time component of the signal is changed, and the pitch 

component is not touched. The signal is either slowed down or sped up over time. This 

is the inverse operation of pitch scaling. 

 

Figure 2.11 Time stretched audio signal 

 

2.2.3 Pitch scaling 
 

 The pitch of a signal is changed with this method. Considering that this process is 

applied to the audio signal, the musical notes in the signal do not change in time. But 
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Music notes are changed at the specified level. That is, this method changes the 

frequency of a signal without changing the time information. A pitch-shifted audio 

signal is shown below. 

 

 

Figure 2.12 Pitch-shifted signal 

 

2.2.4 Noise addition 
 

 As described in the method of adding noise for images, sometimes too clear 

information puts the model overfitting. This is true for signals. The model trained with 

perfect signals loses its generalization feature. Thus, the test performance decreases. 

In such cases, noise is added to the signals. An audio signal that is with added noise 

below. 

 

 

Figure 2.13 Noise added signal 
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2.2.5 Low/High/Band-pass filters 
 

 Except that the data is clean, the model cannot be adequately trained due to 

unwanted noise while collecting some data. In such cases, the data is filtered according 

to the type of noise. Below is a low-pass filter applied to an audio signal. 

 

 

Figure 2.14 A signal that is applied to a low-pass filter 

 

2.2.6 Polarity inversion 
 

 In this method, the input signal is multiplied by -1 to change the polarization. The 

signal is only inverted on the Y axis. There is no change in the time axis. In data such 

as audio signals, there is no difference in the sound heard, but the signal is changed in 

structure. Below is the block diagram explaining how this is done, and polarity 

inversion is applied to the audio signal. 

 

Figure 2.15 Block diagram of polarity inversion 
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Figure 2.16 Polarity inverted signal below 

 

2.3 Modern Data Augmentation Methods  
 

 With the methods described so far, the data set has been increased by making 

changes. Consider a deep learning model that aims to classify human photographs. In 

the current dataset, there are not any data for men or women with blond hair, wavy 

hair, large eyes, or small lips. This model can be trained with current data, but 

generalizability against external test data will be very poor. Because for the model, 

people can only have straight hair, small eyes, not blonde, and not small lips. The 

wavy-haired person may not perceive the hairstyle in the image or may interpret it 

differently. Human photographs with different hairstyles cannot be produced with 

classical data augmentation methods since this is a very complex task. 

 

 Another example can be given in music synthesis. For example, Gibson electric 

guitars and Fender Telecaster electric guitars have different sounds and tones even if 

they play the same notes. For an application where guitar sounds are tried to be 

separated, using only one brand or one model guitar sound causes the system to lose 

its generalization feature. Synthesizing new data in a tone that resembles guitar sounds 

other than the only brand-model guitar sound available is quite difficult. 

 

 VAE and GAN have capable of synthesizing new data. In this section, these modern 

data augmentation approaches are explained.  
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2.3.1 Variational Auto Encoders (VAE) 
  

 Variational Autoencoder (Kingma & Welling, 2013) is a kind of Autoencoder (AE) 

model. AE tries to compress and reconstruct the data. It does this with the Encoder and 

decoder layers. There is a hidden layer between these two layers. This layer is called 

the bottleneck layer. There is some loss as data is compressed and regenerated. The 

structure of an AE is given below. 

 

Figure 2.17 Example of Autoencoder structure 

 In the example image in Figure 2.17, the encoder part consists of an input layer with 

nine neurons, a hidden layer with five neurons, and a hidden layer (bottleneck) with 

three neurons. The decoder part is a hidden layer with three neurons, a hidden layer 

with five neurons, and an output layer with nine neurons. While 1% data loss is a big 

problem in some applications, 10% loss is not a problem in some applications. With 

this working method, AE can be used in feature extraction, dimension reduction, and 

image coloring/completion applications, but for applications where data loss is 

important, for example, file compression, etc. cannot be used. 
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 The difference between VAE from AE is that it provides the opportunity to generate 

new data with layers that make two probabilistic distributions in the bottleneck layer. 

For VAE, this layer is called latent space. These layers extract the mean and variance 

vectors of the input. Then, after delivering this information to the sampled latent 

vector, they decode the data. Below is the structure of the VAE. 

 

 

Figure 2.18 Example of Variational Autoencoder structure (Jordan, 2018) 

 

 

Figure 2.19 Variational Autoencoder latent space structure (Jordan, 2018) 
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 The mean and variance values are deterministic, but the sampled latent vector is 

nondeterministic. This prevents the rearrangement of weights with the back-

propagation algorithm. In order to eliminate this problem, it is necessary to produce it 

deterministic with the help of random noise that a random number produced from a 

standard normal distribution with ε=epsilon, epsilon mean 0 and variance 1, partial 

derivative in terms of Mean and Std with the back-propagation method. 

 

max
9,;

Y<9(=|,) [log P;($|_)] (2.19) 

log P@($|_) = a?@(b(_|$)	||	P(_) + ℒ(@, d; $, _) (2.20) 

log P@($|_) ≥ ℒ(@, d; $, _) = Y<9(_|$)[log P;($|_)] − 	a?@(b(_|$)	||	P(_)) (2.21) 
 

 Input x, which is converted to z format in Latent Space, is converted back with the 

decoder network. This process is the same as in autoencoder, but the difference is that 

VAE's loss function is standard MSE + Kullback-Leibler divergence (2.21). Thanks to 

this structure of the latent space, the data changes, and the VAE can synthesize new 

data. Figure 2.20 shows the images synthesized by VAE using the CelebA dataset (Liu 

et al., 2014). 

 

 

Figure 2.20 Variational Autoencoder-based synthesized human faces (Dai & Wipf, 2019) 

 

2.3.1 Generative Adversarial Neural Networks (GAN) 
 

 One of the important developments in the field of artificial intelligence in the 21st 

century is GAN. When it was first published (Goodfellow et al., 2014), it 
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revolutionized generative networks. Because although the results of VAE were 

successful, GAN gave much better results. VAE basically tries to compress the data 

and then reconstruct it. At this stage, depending on the size of the latent space, data is 

lost, albeit unintentionally. For example, the images that VAE synthesizes are blurry 

or the audio files it synthesizes have unwanted noise. With its structure different from 

VAE, GAN avoids this loss problem, which may cause problems for some 

applications. This is much more realistic images, sound, etc. It allows us to synthesize 

data. Below are human faces that have never lived on earth, synthesized with GAN. 

 

 

Figure 2.21 Human face generation with GAN (Karras et al., 2018) 

 

 If enough sample data is given to the GAN, it can make a new painting that does 

not exist on earth (Zhang, Gu, Zhang, Bao, Chen, Wen, Wang & Guo, 2021), compose 

music (Mukherjee & Mulimani, 2022), produce anime characters (Shang et al., 2022), 

pose guided person image generation (Siarohin, Sangineto, Lathuiliere & Sebe, 2017), 

convert an image into super-resolution (Wang, Jiang, Yi, Han & He, 2020), synthesize 

real images from photorealistic images (J. Zhang, Zhang, Li & He, 2021). It can also 

synthesize text into images (Tao, Tang, Wu, Jing, Bao & Xu, 2020). It produces a 

picture just like a painter with a few keywords. In the next chapter, the structure, types, 

and mathematical model of the GAN are examined in depth. 
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CHAPTER 3 

GENERATIVE ADVERSARIAL NETWORKS (GAN) 
 

 A question people tried to solve in the 1950s can computers think like humans? The 

famous mathematician and computer scientist Alan Turing posed this question 

(Turing, 1950). Turing announced a game genre called "imitation game" in his paper. 

According to this game, a human and a computer are hidden in a room. In another 

room, there is a human subject. The computer or real human answers the questions 

asked by the subject. The subject tries to identify who gave this answer. If the subject 

does not notice the difference, the computer wins. In the future, with the development 

of technology and the acceleration of computers, computers have won this game many 

times. 

  

 The essentials of machine learning were laid out by Warren S. McCulloch & Walter 

Pitts in 1943 by mathematical modeling of the neural structure (McCulloch & Pitts, 

1943). The foundations of machine learning were laid by McCulloch & Walter Pitts’ 

mathematical neuron model. According to this model, each input is multiplied and 

summed by coefficients called synaptic weights. This total is given to the neuron. It is 

revealed whether it can activate the neuron after it is added with the bias value. If this 

sum is higher than the neuron's spark value, the neuron becomes active and produces 

an output. If it is less than the spark value, the neuron will not output. An image of this 

model is given in Figure 3.1. 

 

I($/, $0$A… , $B) = I($) =Q$C

B

C8/

(3.1) 

& = "hI($)i = 	 j
1	B"	I($) ≥ 0
0	B"I($) < 0 (3.2) 
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Figure 3.1 McCulloch-Pitts neuron model 

 

 The weakness of this mathematical model was that it could work for a single layer. 

Because in the training phase, the data must be given to the system many times and 

the weights must be rearranged. At that time, in multi-layer structures, it was not 

known how to do this for each layer. This problem was solved by a publication 

published in the 1970s (Linnainmaa, 1976). With the back-propagation algorithm, the 

weights in all layers could be updated backward. Currently, this algorithm is still used 

in most artificial intelligence applications. 

 

Figure 3.2 Multi-layer perceptron model 
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=
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qIC

lGhIDi"7 (3.6) 

nD7 ← nD7 − t
qp
qnD7

(3.7) 

 

 During the training, this algorithm calculates the total error (3.4) and layer errors 

(3.5) for each node by using backward partial derivatives to calculate (3.6) the error in 

each neuron after the feed-forward process (3.3) and updates the weights one by one 

(3.7) for billion times. For this reason, it needs computers with very high processing 

power. The development of computers in the last two decades has allowed artificial 

intelligence models to be trained enough to be used in everyday life. But artificial 

intelligence applications still use classification, prediction, noise removal, self-

learning, etc. It was still not possible for computers to generate data. After the initial 

cessation of VAE, GAN broke ground in this area.  

 

3.1 Original GAN 
 

 GAN is based on a very bright idea. It consists of two neural networks. These are 

generator and discriminator. The generator generates random data and sends it to the 

discriminator. Discriminator checks how much this generated data overlaps with the 

original data from dataset. If the generated data is too far from the original data, it 

learns the data in the dataset and trains itself while rearranging the weights of the 

generator with the back-propagation algorithm. In other words, two neural network 

models compete. This situation continues throughout the training period. When the 
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randomly generated data starts to become like the real data in the dataset, new data is 

synthesized. Consider, for example, the famous handwriting dataset MNIST. All zero 

digits are trained by the discriminator. Random images produced by the generator are 

back-propagated according to the errors that occur after the classification error. The 

generated random image will gradually start to resemble the zero images in the dataset 

but will not be the same. Because the new zero image produced in the generator is like 

blending all the zero images in the dataset. Thus, new data is synthesized. The structure 

of the GAN is shown in Figure 3.3. 

 

Figure 3.3 Generative Adversarial Network structure 
 

 In order to understand the mathematical structure behind the GAN, some definitions 

must first be made. Thus, mathematical expressions and their definitions are given in 

the table 3.1 below. After these definitions, GAN will be explained part by part. 
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Table 3.1 GAN's Formula Notation 

Mathematical Notation Meaning 

$		 Real data from dataset 

_  Latent space vector 

u(_)  Fake data 

a($)  Discriminator's evaluation for real data 

a(u(_))  Discriminator's evaluation for fake data 

pvv>v($, &)  Error Between x and y 

 
 

3.1.1 The Discriminator  
 

 The general purpose of Discriminator is to label the generated fake data is false if 

it is false, and true if it is true. It does this by learning the data in the dataset. A loss 

function is required for this structure. This function is given below (3.8). 

 

wH = pvv>v(a($),1) + pvv>v(a(u(_)),0) (3.8) 
 

The error in the function here calculates the error of two inputs statistically. If the error 

is acceptable, discriminator will label it true, otherwise false. 
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3.1.2 The Generator  
 

 The purpose of the generator is to deceive the discriminator with the fake data it 

generates. These two networks are constantly in conflict. This is where the name 

Adversarial comes from. The loss function for the generator is defined in (3.9). 

 

w" = pvv>v(a(u(_)),1) (3.9) 
 

 The generator starts with a random data at the beginning and is trained with the 

back-propagation algorithm in each iteration. The purpose of the Generator is to 

produce fake data as close to reality as possible. Therefore, this error is expected to 

decrease as the model is trained. Since the problem here is binary classification 

problem, it is necessary to define the above functions as binary cross entropy. 

 

x(P, b) = 	Y,~J(,)[−y>Ib($)] (3.10) 
 

 There are two neural networks and thus two loss functions in the GAN structure. 

When (3.8) and (3.9) are combined with (3.10), the following nested loss function is 

formed. 

 

min
"
max
H

|(a, u) = 	Y,~J$%&%(,)[y>Ia($)] +	 Y=~J'(=)[log	(1 − a(I(_)))] (3.11) 

 

 As can be understood from (3.11), Discriminator and Generator compete 

constantly. While the discriminator tries to raise its own error, the generator tries to 

reduce its own error. This is fixed at an optimal point at the end of the competition. 

This point is called the Nash equilibrium. When this point is reached from the model, 

fake data is produced. 
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 After GAN was first announced, it met with high interest by people and developed 

rapidly. Over time, thanks to new studies on GAN, this structure has changed and as a 

result, the success of the outputs it produces has increased. The evolution of the image 

data synthesized by GAN between 2014 and 2018 is shown in Figure3.4. 

 

 

Figure 3.4 Progress of GAN generated synthetic images (Öngün, 2020) 

 

3.2 Deep Convolutional GAN (DCGAN) 
 

 Original GAN that published in 2014 (Goodfellow et al., 2014) contains simple 

multi-layer perceptron models both discriminator and generator side. Thanks to the 

development of deep learning and the use of the convolution operator with machine 

learning, many difficult problems have been solved. For example, thanks to the 

features obtained with the convolution operator in image classification, the 

classification process is performed successfully. Convolution helps us not only for 

images, but also for signal or audio data. The mathematical formula of the discrete 

time convolution operator is given below (3.12). 

 

&[C] = 	 Q $[S]ℎ[C − S]
6

78.6

(3.12) 
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Figure 3.5 1D Convolution Example 

 

 Where $ represents the input signal and ℎ represents the kernel matrix. This matrix 

is predetermined in such a way that it can extract the desired feature. Sometimes the 

data set can be two-dimensional. In such cases, it is necessary to apply the 2D 

convolution process. Mathematical formula of 2D convolution is given in (3.13). 

 

&[}, C] = $[}, C] ∗ ℎ[}, C] = 	 Q Q $[S, y]ℎ[} − S, C − y]
6

78.6

6

K8.6

(3.13) 

 

 DCGAN (Radford et al., 2015) has a convolution structure in both the generator 

and discriminator parts. In this way, GAN incorporates some innovations provided by 

the convolution process. These are super-resolution, denoising and deconvolution. 

Figure3.6 shows how the convolution process is done for the generator. 
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Figure 3.6 2D Convolution example for generator (Radford et al., 2015) 

 

 

Figure 3.7 Real and Synthetic 1D signal generated by DCGAN 
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CHAPTER 4 

METHODOLOGY AND RESULTS 
 

 In this thesis, new ECG data were synthesized from MIT-BIH Arrhythmia Database 

(Moody & Mark, 2001) using a new GAN-based method. Results were obtained using 

Python programming language and Kaggle working environment. The t-Distributed 

Stochastic Neighbor Embedding (t-SNE) method was used to visually examine the 

structure of the original and newly generated data. The cross-correlation between the 

newly produced ECG signals and the original signals were investigated to learn the 

similarities between them. In the MIT-BIH Arrhythmia Database, each record is 

represented by 187 samples and the 188th data is reserved for the label of that record. 

The MIT-BIH Arrhythmia Database is an unbalanced dataset. It consists of five classes 

in total. The classes and their data distributions are given in Table 4.1 and Figure 4.1. 

 

Table 4.1 MIT-BIH Arrhythmia Database Classes 

Class Number of data  

0- Normal 72471 

1- Atrial Premature 2223 

2- Premature ventricular contraction 5788 

3- Fusion of ventricular and normal 641 

4- Fusion of paced and normal 6431 
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Figure 4.1 MIT-BIH Arrhythmia Database Classes 

 

 When the data set is examined, it can be understood that the Normal class has a 

large majority with 87% of data, while the Fusion of ventricular and normal Class has 

very few data (1%). This will create an underfitting problem for other classes except 

Normal, Fusion of ventricular and normal, and Fusion of paced and normal classes for 

a device that involves machine learning inside designed to process ECG signal. These 

few data classes need to be supported by generating synthetic data for them. This 

chapter consists of four sub-sections. These are ECG Synthesizing models and 

methods, proposed data generation method, Mathematical analysis for synthetic data 

and Classification performances and Results. 

 
 The data distribution structure of the data sets can be visually observed with t-SNE. 

This stochastic mathematical structure outputs probabilistic distributions of 

multidimensional data by reducing it into two dimensions. In this way, information 

about how much and by which method the data sets should be classified is revealed. 

When we look at the Dataset with t-SNE, it seems that some classes are nested. Nesting 

is observed in Premature ventricular contraction and Fusion of ventricular and normal 

82%

3%
7%

1%
7%

Normal

Artial Premature

Premature ventricular contraction

Fusion of ventricular and normal

Fusion of paced and normal
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classes. This is not a good situation for linear or nonlinear classifiers. The t-SNE output 

of the MIT-BIH Arrhythmia Database is shown in Figure 4.2.   

 

 

Figure 4.2 t-SNE output of MIT-BIH Arrhythmia Database  

 

 In this study, signals were synthesized using the LSTM-GAN structure (G. Zhu et 

al., 2019) shown in Figure 4.3. The generator structure of the model consists of an 

input layer with size 187, a hidden layer with size 128 and a single output layer. On 

the Discriminator side, an input layer size of 187, a hidden layer size of 256 and a 

single output layer are selected. Rectified linear unit (Relu) is used for activation 

functions in both parts.  
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Figure 4.3 Structure of LSTM-GAN 

 

 For all studies, the GAN model was trained for individual classes using 3000 epochs 

on Kaggle platform. Examples of both the original signal and the generated synthetic 

signal for each class are presented side by side except Normal Class (Class 0) in Figure 

4.4. 

 

 

 

 

 



 

34 
 

 

 

 

 

Figure 4.4 Real vs Synthetic data 
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4.1 Proposed Data Generation Method 
 

 It is a fact that in some data sets, there may be distinct clusters within a specific 

class or some of these clusters may be very close to some clusters of other classes. This 

situation can be easily seen from t-SNE output. In such a case, data separation becomes 

a difficult problem. As an example, consider a dataset of animal images containing 

classes, e.g. cats, foxes, dogs, seals etc. In the class of cats, however, there may be 

subclasses of different cat types such as Abyssinian Cat, American Bobtail Cat Breed, 

Chartreux Cat Breed etc. These are clusters within the same class. If the GAN is trained 

to produce new synthetic data using the cat class as a single entity, which is the 

classical use of GAN-based data generation, we will end up with new data that is 

somewhat a mix of all types. This is an undesirable situation because the newly 

synthesized data will have no resemblance to real cat data. This could lead to a 

potential problem. For example, a Somali cat is very similar to a fox; i.e. they are very 

close to each other in t-SNE output. It is therefore possible that the data synthesized 

from the cat class as a single entity will contain some samples that could be easily 

mixed with fox class.  

 

 In order to test the efficiency of the proposed method, we need two classes with 

unbalanced data distribution. When each class in the MIT-BIH Arrhythmia Database 

is examined with the help of t-SNE as shown in Figure 4.5, it is seen that Premature 

ventricular contraction and Fusion of ventricular and normal classes (Class 2 and Class 

3) are suitable for this experiment. It can also be seen that these two classes are very 

close to each other, even mix in some places. This is not a desirable situation for a 

classification system.  
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Figure 4.5 t-SNE output of original data in Class 2 and Class 3. Blue dots: Class2, Red dots: Class3 

 

 The amount of data in the Fusion of ventricular and normal class is 641, while that 

of Premature ventricular contraction class is 5788. Due to this unbalance situation, 600 

new synthetic data from Fusion of ventricular and normal class were produced by the 

original GAN-based method, i.e. a single GAN for the entire class, and added to the 

dataset. When the number of synthesized data starts to exceed the amount of data in 

the class, the variance of these new synthesized data starts to increase, thus moving 

away from the original data. This reveals the confusion of classes. Figure 4.6 shows 

this problem clearly. 
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Figure 4.6 t-SNE output of Class 2 and Class 3 after data augmentation 3 by Original GAN method. 

Blue dots: Class2, Red dots: Class3 

   

 In order to solve this problem, possible clusters in each class should be examined. 

The t-SNE output of the original data in Fusion of ventricular and normal class (Class 

3) is given in Figure 4.7. If the data distribution is examined, it is clearly seen that this 

class consists of two distinct clusters. 
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Figure 4.7 t-SNE output of original data in Class 3 

 

 If 600 new data are synthesized for this class using original GAN-based approach, 

the situation in Figure 4.8 emerges. As an empirical phenomenon, it has been observed 

that while too much data has been synthesized from one cluster, almost no data has 

been synthesized from the other cluster. This is due to the fact that one of the clusters 

dominate the other one in data size. In other words, an unbalanced data generation has 

occurred for these clusters. In addition, producing a large amount of data from only 

one cluster corrupts the variance of the data in that class. In order to overcome these 

problems, the classes in the dataset should be divided into clusters and new data should 

be synthesized for each cluster separately by a different GAN. For this process, Inverse 

t-SNE method (Tran et al., 2019) was used. According to this approach, it is necessary 

to find clusters with DBSCAN code in MATLAB, defining t-SNE indexes and go back 

from the t-SNE output to original data.  
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Figure 4.8 t-SNE output for Class 3 after data augmentation by Original GAN method. Blue dots: 

Class2, Red dots: Class3 

 

 After this separation is achieved and new data are synthesized with our proposed 

GAN method, i.e. a separate GAN for each cluster, the result in Figure 4.9 is obtained. 

This result is exactly as desired.   

 

 

Figure 4.9 t-SNE output for Class 3 after data augmentation for 2 clusters. Blue dots: original data in 

Class3, Red dots: synthetic data for the 1st cluster, Yellow dots: synthetic data for the 2nd cluster    

 

 t-SNE output for Premature ventricular contraction and Fusion of ventricular and 

normal classes after data augmentation with the proposed method is given in Figure 
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4.10. If the results are examined carefully, it will be easily noticed that the classes are 

not mixed with each other. This will increase the success of classifier algorithms.  

 

 

Figure 4.10 t-SNE output of data distribution of Class 2 and Class 3 after data augmentation by the 

proposed method. Blue dots: Class2, Red dots: Class3 augmented by proposed data generation method 

  

 Next the situation for more clusters is investigated. It is possible that the bigger 

cluster in Class 3 can be seen as consisting of two clusters although they are not exactly 

distinct. In this case, Class 3 consists of 3 clusters and 3 different GANs are created to 

generate new data for each of them. t-SNE output for the data distribution in this case 

is shown in Figure 4.11. When the t-SNE results are carefully examined, they are seen 

to be similar to the results in Figure 4.9.  
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Figure 4.11 t-SNE output for Class 3 after data augmentation for 3 clusters. Blue dots: original data in 

Class3, Red dots: synthetic data for the 1st cluster, purple dots: synthetic data for the 2nd cluster, Yellow 

dots: synthetic data for the 3rd cluster    

 

 When these data are combined with Class 2, t-SNE output given in Figure 4.12 is 

obtained. When the data distribution in this case is examined, it is seen to be similar to 

the one in Figure 4.10. The conclusion to be drawn from here is that while synthesizing 

data separately for well separated clusters provides successful results, no benefits are 

obtained for non-distinct and/or close clusters.  
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Figure 4.12 t-SNE output of 3 separated Class 3 and 2 with new approximation. Blue dots: Class 2, Red 

dots: Class 3 

 

4.2 Classification Performances 
 

 Synthetic data generation serves to solve the unbalanced data and inefficient 

training problems of deep learning classifiers. After the examination of synthesized 

data with t-SNE visualization and mathematical analysis, the classification 

performance of the classifier which is trained with augmented data is examined. For 

this classification process, a single classifier model based on 1D CNN structure was 

used. The reason for using the same classifier in all these experiments is for making 

the results obtained to be independent from using different types of classifiers. The 

structure of the model is given in Figure 4.13. 
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Figure 4.13 1D CNN Model 

 

 Four different experiments are conducted for the classification of Class 2 and Class 

3 and the classification results of them are given in four tables below. The dataset of 

Class 2 is not touched in all these experiments. The test of the classifier in each 

experiment is done by using real data, not synthesized ones. Table 4.2 shows the results 

for the case where only original datasets are used (Experiment 1). The results of the 

case where the dataset of Class 3 is augmented by the original GAN-based method is 

represented in Table 4.3 (Experiment 2). Table 4.4 displays the results when the Class 

3 dataset is assumed to contain two clusters and thus augmented by two different 

GANs (Experiment 3). The results of the experiment where the Class 3 dataset is 

augmented by three different GANs based on the assumption that it consists of 3 

clusters (Experiment 4). The confusion matrices for all these four experiments are 

presented in Figures 4.14 to 4.17. 
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Table 4.2 Classification results of Experiment 1 

 Precision Recall F1-Score Amount of Data 

Class 2 0.98 0.99 0.98 1448 

Class 3 0.88 0.82 0.85 162 

     

Accuracy   0.97 1610 

Macro Avg 0.93 0.90 0.92 1610 

Weighted Avg 0.97 0.97 0.92 1610 

 

Table 4.3 Classification results of Experiment 2 

 Precision Recall F1-Score Amount of Data 

Class 2 0.97 0.99 0.98 1448 

Class 3 0.89 0.69 0.78 162 

     

Accuracy   0.96 1610 

Macro Avg 0.93 0.90 0.88 1610 

Weighted Avg 0.96 0.96 0.96 1610 

 

 

 

 

 



 

45 
 

Table 4.4 Classification results of Experiment 3 

 Precision Recall F1-Score Amount of Data 

Class 2 0.98 0.99 0.98 1448 

Class 3 0.87 0.83 0.85 162 

     

Accuracy   0.97 1610 

Macro Avg 0.93 0.91 0.92 1610 

Weighted Avg 0.97 0.97 0.92 1610 

 

Table 4.5 Classification results of Experiment 4 

 Precision Recall F1-Score Amount of Data 

Class 2 0.98 0.99 0.98 1448 

Class 3 0.87 0.83 0.85 162 

     

Accuracy   0.97 1610 

Macro Avg 0.93 0.91 0.92 1610 

Weighted Avg 0.97 0.97 0.97 1610 
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Figure 4.14 Confusion matrix of Experiment 1 

 

Figure 4.15 Confusion matrix of Experiment 2 



 

47 
 

 

Figure 4.16 Confusion matrix of Experiment 3 

 

Figure 4.17 Confusion matrix of Experiment 4 
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 If the results in Table 4.2 are carefully examined, it will be noticed there is an 

unbalanced dataset problem for Class 2 and Class 3. To solve this issue, when data is 

synthesized for Class 3 by a single GAN, the results in Table 4.3 are obtained. A 

decrease in classification performance can easily be observed. The reason for this is 

the mixed in the data in Figure 4.6. When the data is synthesized with the proposed 

method, the results in Table 4.4 appear. When the data is examined in detail, it is seen 

that the performance is as high as the original state while the unbalanced problem has 

also been resolved. Table 4.5 shows the classification results of separating a single 

cluster into more than one part and synthesizing separate data for each part separately. 

If the values in the table are examined carefully, it can be seen that results very similar 

to those in Table 4.4 were obtained and no significant improvement was observed in 

the performance metrics. This shows that the proposed data generation model could 

lead to successful results when the data is synthesized for distinct clusters in a class. 

Dividing single clusters into more than one part does not improve performance when 

this method is applied. In addition, the division of single clusters into more parts 

creates a disadvantage with the time and energy consumed during the training process.  
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CHAPTER 5 

DISCUSSION 
 

 The proposed new data synthesis method uses inverse t-SNE method for effective 

synthetic data generation. This method provides two main benefits. First, the classes 

may contain distinct clusters and some of these clusters may outnumber others. In such 

cases, large clusters dominate the others; therefore, a small number of synthetic data 

is generated by GAN from the smaller clusters. In addition, some of the newly 

generated data could be different from data in that class. Such data synthesis obviously 

cannot represent real data properly. With the new data synthesis method proposed in 

this thesis, this problem could be avoided, and more realistic data be synthesized by 

preventing large clusters from dominating smaller ones. Second, sometimes there can 

be mixed data between two classes. A classifier probably would make some mistakes 

when separating these parts. If data from intermingled regions are synthesized and 

reproduced, the error rate will increase even more. Avoiding generating data from 

these regions would increase the success of the classifier. This is possible in our 

proposed method because we can choose for which clusters, we generate new synthetic 

data. 

 

 As a downside, the proposed data synthesis method may be difficult to apply to 

datasets containing large number of clusters due to time and computational 

complexities. In another situation, clusters of some classes may not have enough data 

to feed the GAN. In such cases, it would be more accurate to synthesize data from the 

entire class using a single GAN, i.e., with the original GAN-based data augmentation. 

When all classes of the MIT-BIH Arrhythmia Database are examined, it is revealed 

that there are 745 clusters. Separating these clusters one by one and synthesizing data 

with 745 GANs, one for each cluster, would take incredibly long time.  
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 MATLAB, Python language and Kaggle environments were used in all studies. The 

same classifier model was used for all experiments. The aim is to make the 

performance of the proposed method independent from using different types of 

classifiers. The results in Table 4.3 are obtained when trying to separate Class 2 and 

Class 3 where Class 3 data is augmentation with original GAN-based approach, i.e., 

with a single GAN. When the values were carefully examined, it is observed that the 

classifier performance has decreased. The reason for this decrease is that one cluster 

in Class3, which have more data, dominate the other cluster, and thus the newly 

generated synthetic data loses its reality structure. The new data generation method 

proposed in this thesis solve this problem. With this model, Class3 is divided into two 

distinct clusters and data synthesis is made for each cluster separately by a different 

GAN. The result obtained are shown in Figure 4.9, which is the blue colored data in 

the image represent the original Class3 data, the other colored ones represent the newly 

synthesized data. When this image is carefully examined, it is noticed that the newly 

generated data produced now is very similar to the actual data of Class 3, and the new 

result is totally different than Figure 4.8. 

 

 Classifier algorithms can be used to test the dataset that was created with the newly 

synthesized data. In this study, the 1D Convolutional Neural Network model in Figure 

4.13 was used. The success of the CNN model is as in Table 4.4 when it is desired to 

separate Class2 with this new data. As a result of this test, it has been shown that the 

imbalance problem in the dataset is resolved, and the success of the classifier has 

improved according to Table 4.3. Perhaps the following question can be asked here. 

So, does dividing the clusters into small pieces and synthesizing data from each piece 

increase my performance? The t-SNE result of this experiment is shown in Figure 4.11 

that Class3 divided into three clusters and then, after merging Class2 with this new 

Class 3, the newly generated data and it’s the t-SNE result are shown in Figure 4.12. 

When these two classes are tried to be classified with same CNN architecture, the 

results in Table 4.5 are obtained. No significant success was observed when the results 

were compared with Table 4.4. From this point of view, while obtaining clusters from 

classes and synthesizing data with GAN increases performance, obtaining smaller data 

sets from clusters and synthesizing data with GAN does not contribute to success. 
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CHAPTER 6 

CONCLUSION 
 

 The aim of this thesis is to develop a new and efficient GAN-based data 

augmentation method to be used for the training of deep neural networks in both scarce 

data and unbalanced data set situations. The method, which is developed as an 

alternative to classical GAN-based data augmentation, uses the data structure of a 

given class which is observed by t-SNE method. As the application of the method, 1D 

ECG signals were synthesized by using the signals in MIT-BIH Database. The effect 

of the method on the performance of the classification system is tested and compared 

with each other for different augmented training data sets. It has been shown that there 

is an improvement in the classifier results when data is augmented by the proposed 

method.  This method could be used by researchers for data augmentation purposes in 

many situations where a class consists of several distinct data clusters. 
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