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PARAMETER FREE VERSION OF FNDBSCAN ALGORITHM 

 

ABSTRACT 

 

More data exists every day compared to the previous days. If they can be 

evaluated, more data means more opportunities. Therefore, all data must be separated 

into clusters correctly and the right information from these clusters must be obtained. 

Having the correct clusters depends on the clustering algorithm which is used. There 

are many clustering algorithm which are separated into five main groups. The density 

based methods are very important among the groups of clustering methods, as they 

can find arbitrary shapes.  

 

An advanced model of the DBSCAN (Density Based Spatial Clustering of 

Applications with Noise) algorithm called FNDBSCAN Gaussian Means 

(FNDBSCAN-GM) is offered in this study. The main contribution of FNDBSCAN-

GM is to find the parameters automatically and to divide the data to clusters robustly.  

 

This algorithm has been developed using Matlab R2015b. The effectiveness of 

FNDBSCAN-GM has been demonstrated on overlapping datasets (six artificial and 

two real life datasets). The performance of this is compared to the percentage of a 

correct classification and a validity index. Our experiments show that this new 

algorithm is more preferable and a more robust algorithm. 

 

Keywords: Data clustering, DBSCAN, FNDBSCAN, GMEANS. 
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FNDBSCAN ALGORİTMASININ GİRDİ PARAMETRESİZ VERSİYONU 

 

ÖZ 

 

Her gün, bir önceki gün ile kıyaslandığında daha çok veri mevcuttur.Bu veriler 

değerlendirilebilirse, daha çok veri daha çok fırsat anlamına gelir.Bu nedenle tüm 

veriler kümelere doğru olarak bölünmeli ve bu kümelerden doğru bilgiler 

çıkarılmalıdır.Doğru kümelere sahip olmak kullanılan kümeleme algoritmasına 

bağlıdır. Bir çok kümeleme algoritması bulunmaktadır ve bunlar beş temel gruba 

ayrılırlar. Yoğunluk tabanlı metotlar, farklı şekillerdeki kümeleri bulabilmeleri 

sayesinde bu beş temel grup arasında çok önemlidir.  

 

Bu çalışmada, DBSCAN (Density Based Spatial Clustering of Applications with 

Noise) algoritmasının ileri bir modeli olan FNDBSCAN Gaussian Means 

(FNDBSCAN-GM) algoritması önerilir.FNDBSCAN-GM algoritmasının temel 

katkısı girdi parametrelerini otomatik olarak bulmak ve veriyi kümelere gürbüz bir 

şekilde bölmektir. 

 

FNDBSCAN-GM algoritması Matlab R2015b program kullanılarak 

geliştirilmiştir.Bu algoritmanın etkinliği, çakışan verİ kümeleri üzerinde (6 yapay 

veri kümesi ve 2 gerçek zamanlı veri kümesi) gösterilmiştir.Bu algoritmanın 

performansı doğru sınıflama yüzdesi ve bir geçerlilik indeksi kullanılarak 

kıyaslanmıştır. Deneylerimiz bu algoritmanın daha tercih edilebilir ve gürbüz bir 

algoritma olduğunu gösterir. 

 

Anahtar kelimeler: Veri kümeleme, DBSCAN, FNDBSCAN, GMEANS. 
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CHAPTER ONE 

INTRODUCTION 

 

Today, the popularity of cloud technology, internet of things applications and big 

data concepts are steadily increasing. In addition to the size of the resulting data, the 

necessity of making it meaningful is also important. Different methods and 

researches are becoming widespread and applied. Clustering is one of the methods 

commonly used in applications in the process to reach knowledge. The aim of 

clustering is to collect data with similar properties in the same cluster and separate 

data with different properties.  

 

Many algorithms were developed to improve density based algorithms: 

 

Elbatta and Ashour developed DMDBSCAN (2013). DBSCAN does not consider 

the different cluster densities. In DMDBSCAN, local ε value is found at first. After 

that, DBSCAN is run. This problem is solved using k-dists. In k-dist method, the 

distance between a point and its k
th

 nearest neighbor is taken into account. kth 

nearest neighbors are found for each point. After they are sorted, sharp change in 

sorted values gives us the value of local ε. Thus, each cluster has its own ε value. For 

each value of ε, DBSCAN algorithm is executed. DMDBSCAN finds clusters with 

different densities. The time complexity of DMDBSCAN algorithm is O(n
2
). 

 

Duan et al. developed LDBSCAN to handle different densities (2007). 

LDBSCAN considers different regions which have different densities unlike 

DBSCAN algorithm. The concepts of local outlier factor (LOF) and local 

reachability density are used in this algorithm (Breunig et al., 2000). Clusters are 

detected in a data using them. Noises are also detected using LOF. The time 

complexity of LBSCAN is same with LOF's. 

 

DBSCAN finds homogeneous clusters. This is an undesirable result for data 

analysis. Ram et al. developed EDBSCAN in 2009 by using the concepts of density 

variance and homogeneity index (Ram et al., 2009). Density variation of a core 
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object and densities of all core object's ε neighborhood are compared. Expansion of 

clusters is done if the density variance of a core object is less than a specified 

threshold and the difference between the nearest and farthest objects within ε 

neighborhood. Queue data structure is used in EDBSCAN algorithm. 

 

Liu et al. developed VDBSCAN in 2007. They use some methods to estimate 

parameters before DBSCAN algorithm as in DBSCAN-GM (Liu et al., 2007). 

VDBSCAN calculates the distances between any point and its kth nearest neighbor. 

After calculating k-dists for each point, they are sorted in ascending order. They are 

plotted and i
th

 sharp change at the plotted graphic corresponds to εi. Marked points 

which are assigned to any cluster before are not processed. Only non-marked points 

are processed in each iteration. If any point is non-marked after running DBSCAN 

for each εi, the point is marked as an outlier. VDBSCAN can also find clusters with 

different densities. The run time complexity of VDBSCAN is same with DBSCAN's. 

 

Smiti and Eloudi combined DBSCAN algorithm with fuzzy set theory and they 

developed soft-DBSCAN algorithm (2013). Fuzzy c-means (FCM) algorithm was 

developed by Bezdek et al. in 1984. Distances between objects and cluster centers 

are calculated in this method. A point belongs to the nearest center with a high 

membership degree and it belongs to the farthest center with a low membership 

degree. But FCM has problems. Soft-DBSCAN finds noises unlike to FCM and it is 

robust unlike to DBSCAN. In this algorithm, Mahalanobis distance is used for 

calculating distances between any point and any center. Through this technique, 

different shaped clusters can be found unlike Euclidean distance technique. More 

dense clusters can be generated by soft-DBSCAN. The time complexity of Soft-

DBSCAN algorithm is nearly two times of FCM's.  

 

DBSCAN calculates all pair distances between any two points. These calculations 

increase the time complexity. Therefore, Mai et al. developed Active-DBSCAN 

algorithm (2013). A budget limitation B, the number of objects N and the number of 

steps b are taken as input. Number of similarity is updated according to b and B. 
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Distance between any two points is considered if it is less than or equal to the limit of 

B. Active-DBSCAN decreases the total cost. 

 

Liu developed FDBSCAN algorithm in 2006. Initially, objects are sorted 

according to their coordinates. Then the neighbors of objects are searched. If the 

number of neighbors of any object is not less than Minpts, the object is core. 

Otherwise it is noise.  If there is an intersection between the neighborhoods of any 

two core objects p and q, p and q are in the same cluster in DBSCAN algorithm. But 

in FDBSCAN algorithm, p, q and their neighbors are in the same cluster. So, the time 

complexity of FDBSCAN algorithm is much less than O (nlogn) (Liu, 2006). 

 

Babu and Viswanath developed the fast generalization of Parzen-Window 

approach in 2008. It is a non-parametric density estimation method. Counted leaders 

method is used to create prototypes. Estimation of prototypes are done by kernel 

function using the number of patterns which belong to the prototype and other 

prototypes. The prototypes are divided into clusters using DBSCAN algorithm. The 

execution time of this algorithm is less than DBSCAN algorithm. A threshold is 

input parameter for finding leaders in this algorithm. For each pattern in the data set, 

the distance between a dense leader and the pattern is calculated. If the distance is 

less than the threshold, the pattern is a leader which is in neighborhood of the dense 

leader.  

 

Borah and Bhattacharyya develop DDSC algorithm in 2008. Local densities of 

clusters are taken into account in this algorithm. Algorithm starts from a cluster with 

a homogeneous core object (Borah & Bhattacharyya, 2008).  Until there are not exist 

homogeneous core object, all of them is included to the cluster. After that, densities 

are looked. If an important change exists in densities, adjacent regions differ. The 

initial single cluster is separated into different clusters according to densities. DDSC 

needs minimal requirements of domain knowledge (Nasibov & Ulutagay, 2009). 

Computational complexity of DDSC is O(nlogn). 
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Pei et al. develop DECODE algorithm (2009). It can separate clusters 

automatically. Itis based on a reversible jump Markov Chain Monte Carlo (MCMC) 

(Sajana et al., 2016). Through the reversible jump MCMC, number of processes and 

thresholds are estimated and clusters are separated according to these thresholds. But 

it has higher time complexity than DBSCAN. 

 

In this study, an algorithm to make the DBSCAN parameter free has been 

proposed. There are six sections in this article. Fuzzy logic has been explained in the 

second section. Clustering algorithms which are necessary for this study have been 

explained in the third section of this thesis. The proposed algorithm, called 

FNDBSCAN-GM, is described in Section 4. The results from our experiments have 

been demonstrated in Section 5. The article will be concluded in Section 6. 
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CHAPTER TWO 

FUZZY LOGIC 

 

2.1 Overview 

 

Values of 0 and 1 are used to determine everything in computer language. But in 

real life, there can be many cases which cannot be determined with only 0 and 1 

values. When someone ask ‘how's the weather?’, results can be changed according to 

people. And, the weather can be hot, cold, warm, too hot or too cold. For this 

purpose, the idea of fuzzy logic is proposed by L. A. Zadeh (1965). Through the 

fuzzy logic, multivalued clusters are used instead of binary clusters. While in 

classical approach, any temperature is the element of a set or not, any temperature 

belongs to more than one cluster with different membership degrees in fuzzy logic. 

Membership degrees are between 0 and 1 (including 0 and 1). The membership 

degree of at least one member in the cluster must be 1. 

 

If any problem involves uncertainty, fuzzy logic gives better results than crisp 

methods. A fuzzy logic application consists of three basic steps (Figure 2.1). Crisp 

inputs are converted to fuzzy inputs in fuzzification step. Fuzzy inputs are processed 

in the fuzzy rule base in inference step. There are two models most commonly used 

for fuzzy inference systems: Mamdani and Takagi Sugeno Kang. Fuzzification and 

inference system are the same in both models. The difference between these two 

models is output membership function (Yılmaz & Arslan, 2005). Mamdani type 

fuzzy model is less complex than Takagi-Sugeno. As a result of this process, fuzzy 

outputs are obtained. These fuzzy outputs are mapped to crisp outputs in 

defuzzification step. 

 

 

Figure 2.1 Steps of Fuzzy Logic 
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2.2 Fuzzy Sets 

 

In crisp approach, a member is whether the element of a cluster or not. However, 

each member belongs to all clusters with membership degrees in fuzzy approach. 

 

Let    be the membership function of the set A. Ս is universal set.  is defined 

from Ս to [0,1] interval. In crisp approach,       may be 0 or 1. However,       

may be a value in the range of [0,1] in fuzzy approach. There are various types of 

membership functions. Triangle (Figure 2.2) and trapezoid (Figure 2.3) membership 

functions are the most commonly used functions. 

 

The membership function of a trapezoidal (a,b,c,d) fuzzy interval (a≤b≤c≤d)  is as 

given in Equation (2.1). 

 

 

Figure 2.2 Triangle membership function 

 

                                            

 
 
 

 
 

        
   

   
         

   

   
         

        

                                             (2.1) 

 

The membership function of a triangular (a,b,c) fuzzy interval (a≤b≤c) is as given 

in Equation (2.2). 
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Figure 2.3 Trapezoid membership function 
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2.2.1 Arithmetic Operations for Triangle Fuzzy Numbers 

 

Let K = (        ) and M = (        ) are two triangle numbers.  

 

Addition:  

K (+) M = (             ,       ). 

 

Subtraction:  

K (-) M = (                   ). 

 

Multiplication:  

If K>0, M>0, 

K(×)M ≈ (         .  ,      ). 

 

If K<0, M>0, 

K(×)M ≈ ( (            ,      ). 
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If K<0, M<0, 

K(×)M ≈ (         .  ,      ). 

 

     Division:  

If K>0, M>0, 

K(÷)M ≈ (             ,       ). 

 

If K<0, M>0, 

K(÷)M ≈  (                     ). 

 

If K<0, M<0, 

K(÷)M ≈ (             ,       ). 

 

2.2.2 Arithmetic Operations for Trapezoid Fuzzy Numbers 

 

Let K = (           ) and M = (           ) are two trapezoid numbers. 

 

Addition:  

K (+) M = (                   ). 

 

Subtraction:  

K (-) M = (                       ). 

 

Multiplication:  

If K>0, M>0, 

K(×)M ≈ (            ,            ). 

 

If K<0, M>0, 

K(×)M ≈  (                          ). 

 

If K<0, M<0, 

K(×)M ≈ (            ,             ). 
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     Division:  

If K>0, M>0, 

K(÷)M ≈ (              ,              ). 

 

If K<0, M>0, 

K(÷)M ≈ (            ,                ). 

 

If K<0, M<0, 

K(÷)M ≈ (             ,               ). 
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CHAPTER THREE 

CLUSTERING ANALYSIS 

 

3.1 Overview 

 

The terms of clustering and classification are the concepts which are confused. 

But they are different from each other. In classification, the number of groups and 

the characteristics of groups are known in advance. Classification is a supervised 

learning technique. Objects are placed in the classes which have known properties. In 

clustering, objects are grouped according to their properties. Clustering is an 

unsupervised learning technique. Objects which have similar properties are in the 

same cluster. The similarity between clusters is lowest. So, each cluster is a 

collection of similar objects.  

 

3.2 Cluster Validity Indices 

 

In cluster analysis, most closely elements are in the same cluster and dissimilar 

elements are in the different clusters. Discovering interesting relationships for 

datasets and determining the patterns are aimed with this way. There are several 

methods in the literature for clustering. When different methods are applied, datasets 

can be split into different clusters even if the number of clusters is same. Cluster 

validity indices are used for evaluating the quality of the clustering resulting from the 

methods applied, measuring the performance, finding the correct number of clusters. 

They are based on the similarity between the elements in each cluster. Compactness, 

separateness, overlapping are the measures taken into account in these indices. 

 

Compactness measures the closeness of the cluster elements. Elements in the 

cluster must be close to one another. Compared to elements in other clusters, 

elements in the same cluster must show maximum similarity with each other. 

 

Separateness measures the distance between any two sets. Clusters should be as 

different from each other and they should be dissimilar as much as possible.  
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Classical indices have limited capability for computing the measures of 

compactness and separateness. Taking into account the overall geometry between 

sets, Zadeh proposes a new measure; 'overlapping' (1972). Overlapping indicates that 

any two classes are nearly identical to each other and how much overlap. 

 

Overlapping must be low, compactness and separateness must be high for a good 

clustering. 

 

Cluster validity indices in the literature are divided into 3 groups: 

 

1- Cluster validity indices only taking into account the degree of cluster membership. 

 

2- Cluster validity indices taking into account both cluster membership degree and 

the values of the data. 

 

3- Others. 

 

Wang and Zhang (Wang & Zhang, 2007) reaches the result that cluster validity 

index which is in group 1 is very sensitive to noisy. The most widely used indices are 

partition coefficient (PC), partition entropy (PE), Fukuyama-Sugeno (FS), Xie-Beni 

(XB) index (XBI). 

 

There is some information about most cited studies on cluster validity indices in 

Table 3.1. 
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Table 3.1 Descriptions of most cited studies about cluster validity indices 

Title Description 

A Validity 

Measure for 

Fuzzy 

Clustering (Xie 

and Beni, 1991) 

 

To measure the overall average compactness and separateness, a 

validity function CS is defined and a new fuzzy validity criterian is 

developed in this study. 

 

Used validity function is tested in color image segmentation to detect 

recognition of IC wafer defects although detecting is impossible 

using gray scale image processing. But more developments must be 

to use this validity criterian. 

 

On Cluster 

Validity for the 

Fuzzy C-Means 

Model (Bezdek 

& Pal, 1995) 

 

They investigate what impact clustering results are and they develop 

a new index (Extended FCM Xie-Beni). It is compared with 4 

validity indices (Partition Entropy, Partition Coefficient, Fukuyama-

Sugeno, Xie-Beni). They investigate the effect of weighting 

exponent m in fuzzy c-means. 

 

Data, input parameters and their algorithmic protocols are important 

for clustering results. Some validity indices give surprising and 

unpredictable results.  Fukuyama-Sugeno measure is much more 

unreliable and Xie-Beni index is the most reliable index for different 

values of weighting exponent m. 

 

Performance 

Evaluation of 

Some 

Clustering 

Algorithms and 

Validity Indices 

(Maulik & 

Bandyopadhyay, 

2002) 

Validity index I is described to obtain maximum value when the 

number of clusters, which gives optimal result, is achieved. 

 

When experiments are perforned with different validity indices, it is 

found that the new index can find the optimal nuber of clusters. 
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Table 3.1 Descriptions of most cited studies about cluster validity indices (cont.) 

Validity index 

for crisp and 

fuzzy clusters 

(Pakhira et al., 

2004) 

 

A cluster validity index (PBM) is developed to attain its maximum 

value when the data is properly clustered. PBM index can work for 

both crisp and fuzzy clustering. So, this index may be used to obtain 

the appropriate number of clusters. 

 

K-means and EM algorithms are used in this study. The superiority 

of the PBM index is obtained when compared to the indices of 

Davies–Bouldin, Dunn and the Xie–Beni. 

 

A 

new cluster vali

dity index for 

the fuzzy c-

mean (Rezaee et 

al., 1998) 

 

A new validity index CWB (Compose Within And Between 

scattering) is developed to measure the separation between clusters 

and the cohesion within clusters. FCM algorithm is used to perform 

clustering. 

PC, PE, XB, FS and CWB validation indices were evaluated.  All 

studies yielded positive results for CWB. 

 

On 

fuzzy cluster val

idity indices 

(Wang & Zhang, 

2007) 

 

In this study, comparisons between validity indices were made using 

Fuzzy C-Means clustering algorithm on data sets (18 different 

validity indices and 16 data sets). Indices are divided into three 

categories. The first category uses only membership values (PC, PE, 

WPE, MPC, KYI, P were studied in this study). The second category 

uses U matrix and the dataset itself (FS, XB, K, T, SC, FHV, APD, 

PD, PCAES, SVI, CWB, PBMF, SCG, D, GD, F). The third category 

uses Bayesian score and Rhee&Oh. 

 

The first category which uses only membership values are very 

sensitive to the noises. Some of the indices in the second category 

are insensitive to noises. The used indices don't recognize optimal 

cluster number correctly. 

 

 

http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=S1IsfP43byXZIwoNR7F&page=1&doc=8
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=S1IsfP43byXZIwoNR7F&page=1&doc=8
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=S1IsfP43byXZIwoNR7F&page=2&doc=12
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=S1IsfP43byXZIwoNR7F&page=1&doc=8
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=S1IsfP43byXZIwoNR7F&page=2&doc=12
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=S1IsfP43byXZIwoNR7F&page=2&doc=12
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=S1IsfP43byXZIwoNR7F&page=1&doc=8
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=S1IsfP43byXZIwoNR7F&page=1&doc=8
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Table 3.1 Descriptions of most cited studies about cluster validity indices(cont.) 

A Cluster 

Validity Index 

for Fuzzy 

Clustering  (Wu 

& Yang, 2005) 

 

PCAES (Partition coefficient and exponential separation) index is 

proposed in this study. It is used for measuring the whether the 

cluster has the ability of well identified or not. Compactness and 

separateness measures are used for each cluster.  They implement the 

FCM clustering algorithm. 

 

PCAES is compared with PE, PC, FS, MP, XB, FHV, SC. It gives 

good results for noisy environments due to compactness and 

separateness measures. 

 

 

3.3 Crisp Clustering 

 

There are many clustering algorithms and they are divided into five main groups 

according to the methods they use as in Figure 3.1. 

 

The first method is the partitioning based clustering algorithms. In these 

algorithms, one cluster covering all objects is handled initially. Objects divided into 

clusters iteratively. from the roots to the leaves. Most popular partitioning based 

clustering algorithms are K-Means (MacQueen, 1967), K-Medoids (Kaufman & 

Rousseeuw, 1987) and K-Modes (Huang, 1998). 

 

Secondly, is the hierarchical clustering. A tree structure is used. It can formed into 

two approaches: Agglomerative and Divisive. In agglomerative approach, the 

structure is merged from the leaves to the root. In divisive approach, the structure is 

partitioned from the roots to the leaves. Some well-known hierarchical based 

clustering algorithms are BIRCH (Balanced Iterative Reducing and Clustering using 

Hierarchies) (Zhang et al., 1996), CURE (Clustering Using REpresentatives) (Guha 

et al., 2001), ROCK (RObust Clustering using linKs) (Guha et al., 2000), Chamelon 

(Karypis et al., 1999). 
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Figure 3.1 Clustering Methods 

 

Thirdly, is the density based clustering. Objects are categorized as core, border or 

noise. Neighborhoods are considered for each object. They can discover clusters with 

different shapes unlike other algorithms. Most popular density based clustering 

algorithms are DBSCAN (Ester et al., 1996) and OPTICS (Ordering Points To 

Identify the Clustering Structure) (Ankerst et al., 1999). 

 

The fourth method is grid based clustering. Clusters are formed based on the grid 

structure (Sajana et al., 2016). Time complexity is not linked with number of data in 

grid based algorithms. Thus, this type of clustering algorithms is fast. Most popular 

grid based clustering algorithms are STING (STatistical INformation Grid) (Wang et 

al., 1997), CLIQUE (CLustering In QUEst) (Agrawal et al., 2005) and WaveCluster 

(WAVElet based CLUSTER) (Sheikholeslami et al., 1998). 
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The fifth and the last one is model based clustering. Data objects are associated 

with each other based on some strategies. Two approaches are used in this type of 

algorithms: the neural network and the statistical approaches. Most popular model 

based clustering algorithm is the EM (Expectation-Maximization) (Dempster et al., 

1977).  

 

3.3.1 Density Based Clustering Algorithms 

 

Density based clustering is one type of the clustering algorithms. Clusters are 

created according to the density of objects in density based algorithms. Clusters with 

arbitrary shapes cannot be discovered using the other clustering methods.  

 

The most-known density based algorithm is DBSCAN (Density-Based Spatial 

Clustering of Applications with Noise). Clustering is an important subject for people 

who deal with data. Seeing a combination of data with similar characteristics is 

needed. Algorithms are developed for this purpose. The main goal is obtaining 

accurate clustering. When DBSCAN algorithm is examined, it is seen that there is 

some weaknesses (Figure 3.2). Some challenges of DBSCAN are mentioned below: 
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Figure 3.2 Classification of methods which are possible solutions for DBSCAN 

 

Densities in clusters may be different. But DBSCAN separates data to clusters 

with similar densities. It forces clusters to be in similar density. A Dynamic Method 

for Discovering Density Varied Clusters (DMDBSCAN), a Local-Density Based 

Spatial Clustering Algorithm with Noise (LDBSCAN) and an Enhanced Density 

Based Spatial Clustering of Applications with Noise (EDBSCAN) are developed for 

separating data to clusters with different densities. 

 

The biggest problem of DBSCAN is that it requires input parameters (ε and 

Minpts). This problem limits the algorithm. It is dependent on user. So, it is not self-

completion and self-controlled. Results vary according to the parameters entered. 

Finding the best values of ε and Minpts is not easy especially in large data sets. 

DBSCAN-GM and Varied Density Based Spatial Clustering of Applications with 

Noise algorithm (VDBSCAN) are developed for this purpose.  

 

When any high value of Minpts is entered in DBSCAN algorithm, the number of 

clusters is found lower. When low value of Minpts is entered, the number of clusters 
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is high. Minor changes in the input variables change the results too. So, DBSCAN is 

not robust. Fuzzy Neighborhood Density Based Spatial Clustering of Applications 

with Noise algorithm (FNDBSCAN) and Soft-DBSCAN are developed to overcome 

this deficiency.  

 

DBSCAN loses much time while estimating input parameters appropriately and 

making calculations between points. Active-DBSCAN, Fast-DBSCAN (FDBSCAN) 

and Fast Parzen-Window algorithms are developed for decreasing calculations 

between points. 

 

3.4 Fuzzy Clustering 

 

Systems that use fuzzy clusters or fuzzy logic are called fuzzy systems. Fuzzy 

clusters are used in the phases like system definition, determination of the 

parameters. The most important advantage of fuzzy logic is that people use the 

language which they use in everyday life. 

 

In the literature, the most-known clustering algorithm based on fuzziness is Fuzzy 

C-Means algorithm. 

 

3.4.1 Fuzzy C-Means (FCM) Algorithm 

 

Fuzzy C-Means algorithm has proposed by Dunn in year 1974 and it is developed 

by Bezdek in 1981 (Ester et al., 1996). It is used for determining the structures of the 

clusters. The number of clusters must be known before clustering. Through the 

fuzziness, a point may belong to two or more clusters. 

 

Initially, membership matrix U is randomly generated. Cluster centers represent 

each cluster. X={x(1), x(2), ..., x(N)} is the set of points. The distance from any 

point to each cluster center is calculated. Euclidean distance is used for calculating 

the distances as in Equation (3.1). In this Equation, k is the number of clusters. 

 

                                                                (3.1) 
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Distances are calculated for each point. New center of each cluster is calculated 

using the Equation (3.2). m is the degree of fuzziness and it can be in the range of 

[0,∞). For any point i, the jth custer center is calculated using Equation (3.2). 

 

                                                      
            

 

   

         
   

                  (3.2) 

 

After calculating the new centers of clusters, membership matrix is updated. This 

iteration is continued until the membership matrix is not change (or as long as the 

change is greater than epsilon entered). 

 

Any point is a member with a degree of membership in the range of [0,1] interval 

to each cluster. The total degree of membership of any point to each cluster is 1. 

Point has a higher degree of membership to the cluster center which is nearest. Point 

has a lower degree of membership to the cluster center which is farther. Clusters 

found by the FCM are circular. So, FCM can not find the clusters which has different 

shapes.  
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CHAPTER FOUR 

PRELIMINARIES OF PROPOSED ALGORITHM 

 

Maximizing the variation between clusters and minimizing the variation within 

clusters are the main goals of clustering. For these goals, there are several clustering 

algorithms which are used for discovering knowledge from data. In this chapter, 

clustering algorithms which we used in this study are examined. 

 

4.1 DBSCAN Algorithm 

 

DBSCAN was developed by Ester et al. in 1996 (Ester et al., 1996). The concepts 

of density reachable, density connected object and connectivity are used in 

DBSCAN. Through these concepts, clusters with different densities can be 

discovered. 

 

DBSCAN needs two parameters, ε and Minpts, as inputs. For each point in dataset 

D, the ε neighborhood of point p is as in Equation (4.1). ε neighborhood of each 

point in database D is searched (Ulutagay & Nasibov, 2012). While the distance 

between p and q is calculated, Euclidean distance formula is used as given in 

Equation (4.2), where m is the dimension of the points. After that, the distance 

between any two points is found whether it is smaller than ε or not. All density 

connected points create a cluster (Pei et al., 2009). 

 

                                          Nε(p)=  {  D | dist(p,q) ≤ ε}              (4.1) 

                         dist(p, q)=( (p1-q1)
2
+(p2-q2)

2
+ ... +(pm-qm)

2
 )

1/2
             (4.2) 

 

All points are classified as core point, border point or noise point. If p D is a core 

point, it must have Minpts number of points at least within ε neighborhood as in 

(4.3). 

 

                                              N(p; ε) | ≥ Minpts                                (4.3) 
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A border point is in the neighborhood of a core point but it has fewer points than 

the value of Minpts within ε neighborhood. Finally, a noise point is neither a core nor 

a border point.  

 

Computational complexity of DBSCAN is O(n
2
). If a spatial index is used in the 

algorithm, the complexity can be reduced to O (nlogn) (Liu et al., 2007). The 

flowchart of DBSCAN algorithm is as in Figure 4.1. The pseudo-code of the 

DBSCAN algorithm is described in Algorithm 1.  

 

 

Figure 4.1 Flowchart of DBSCAN algorithm 

 

Algorithm 1. DBSCAN algorithm 

Step 1: Get ε and Minpts. 

Step 2: Mark all points as unclassified. 

Step 3: Set t=1. 

Step 4: Find a core point p which is unclassified within the 

neighborhood of ε and with Minpts limit. 
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Step 5: The point is marked as classified.  

Step 6: The point is assigned to a new empty cluster Ct. 

Step 7: Find all unclassified points which are within ε neighborhood. 

They are called as a set of seeds.  

Step 8: Get a point q in the set of seeds. The point q is assigned to a 

cluster Ct. Remove the point from set of seeds and mark as classified. 

Step 9: If q is a core point within ε neighborhood and with Minpts limit, 

add all unclassified points which are in the ε neighborhood of q to the set 

of seeds. 

Step 10: Go to 8 while the set of seeds is not empty. 

Step 11: The value of t is increased by 1 and go to Step 4 while core 

points can be found. 

Step 12: Unclassified points are noise point. All points are classified. 

Step 13: End.  

 

4.2 FNDBSCAN Algorithm 

 

Nasibov and Ulutagay proposed FNDBSCAN algorithm by including fuzziness to 

DBSCAN algorithm in 2009 (Nasibov & Ulutagay, 2009). It uses fuzzy 

neighborhood relation. In this algorithm, ε1 and ε2 are input parameters. 

 

Fuzzy logic is based on fuzzy sets and subsets. In crisp approach, an object is 

whether a member of a set or not. But in fuzzy approach, each object has a 

membership degree and it is an element of each cluster with a membership degree. 

Fuzzy logic is used in uncertainty problems. It increases sensitivity. FNDBSCAN 

benefits from this advantage of fuzziness. Two clusters which have different 

locations of points are the same according to DBSCAN. But they are different in 

FNDBSCAN because of fuzzy neighborhood cardinality (Figure 4.2). If points of a 

cluster are closer to the core point, this cluster is tighter than the other clusters which 

have farther points. So, FNDBCAN is more robust than DBSCAN.  
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Figure 4.2 x1 and x2 points are dissimilar for fuzzy neighborhood cardinality (Nasibov & Ulutagay, 

2009) 

 

For i th point, xi is (xi1, xi2, xi3, …, xim). Here, m is the dimension of points. xk
min

 

and xk
max

 are calculated as in Equations (4.4-4.6). 

 

                                   k=1,…, m;  i=1,…, n; j=1, …, n                        (4.4)  

                                                 xk
min

 = min xik               (4.5)  

                                                 xk
max

=max xik               (4.6) 

 

Using these values xk
min 

and xk
max

 , the coordinates of points xik are normalized as 

in Equation (4.7). d(xi
'
,xj

'
) is the distance between normalized values of xi and xj 

(4.8). dmax is the maximum distance between the normalized distances (4.9). 

 

                                                 xik
'
= 

       
   

   
       

      
                                    (4.7) 

                                      d(xi
'
,xj

'
) = (      

     
    

    )
1/2 

                                  (4.8) 

                                           dmax= max ( d(xi
'
,xj

'
) )              (4.9) 

 

     There can be used different neighborhood membership functions such as in 

Equations (4.10-4.12). 

 

                                  
(xj)=  

  
        

    
              

           

                       (4.10) 

                                         
(xj)=max{1 – k 

        

    
 , 0}                      (4.11) 

                                        
(xj)= exp    

        

    
                          (4.12) 
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For each point xiin dataset D, FN(xi, ε1) denotes the neighborhood set of point xi 

within ε1 minimal threshold value, which is created as in Equation (4.13). ε2 is the 

normalized value of Minpts in this algorithm and it is specified as in Equation  

(4.15). ωmax is the maximum of ωi (i=1...n). ωi is the cardinality of a point in the 

neighborhood of ε and it is calculated as in Equation (4.14). 

 

                                                 = {q D, Np(q) ≥ ε1}                             (4.13) 

                                                 ωi = |N(xi; ε)|                        (4.14) 

                                           ε2 = Minpts / ωmax             (4.15) 

 

It combines the advantages of DBSCAN and NRFJP algorithms. The time 

complexity of FNDBSCAN is higher than DBSCAN's, less than NRFJP's (Ulutagay 

and Nasibov, 2013). The flowchart of FNDBSCAN algorithm is as in Figure 4.3. 

FNDBSCAN is robust like NRFJP. The pseudo-code of the FNDBSCAN algorithm 

is described in Algorithm 2. 

 

Algorithm 2. FNDBSCAN algorithm 

Step 1: Get ε1 and ε2. 

Step 2: Mark all points as unclassified. Set t to 1. 

Step 3: Find a fuzzy core point p which is unclassified within neighborhood of 

ε1 and with ε2 limit. 

Step 4: Mark p as to be classified. Assign p to a new cluster Ct. 

Step 5: Create an empty set of seeds S. Put all unclassified points within ε1 

neighborhood into the set of S. 

Step 6: Get an unclassified point q in the S. Mark q as to be classified. Assign 

q to the Ct and is removed from the set of S. 

Step 7: If q is fuzzy core point within the ε1 neighborhood and with ε2 limit, 

add all unclassified points which are in ε1 neighborhood of q to the set of S.   

Step 8: Repeat Step 6 and 7 while the set of S is not empty. 

Step 9: If there is still a point unclassified, it is noise. 

Step 10: End. 
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Figure 4.3 Flowchart of FNDBSCAN algorithm 

 

4.3 K-MEANS Algorithm 

 

J.B. MacQueen proposed K-Means algorithm in 1967 (MacQueen, 1967). It is one 

of the most frequently used clustering algorithms. 

 

The number of clusters k must be entered as an input parameter in this algorithm. 

Data is divided to k clusters. Cluster similarity is measured by the average value of 

the coordinates of objects in the cluster and it is the center of gravity of the cluster 

(Xu & Wunsch, 2005). Therefore, the name of this algorithm is ‘k-means’. 
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In this algorithm, the first step is determining the coordinates of k centers. This 

can be done by various methods. For example, random values or the coordinates of 

first k objects can be assigned to these centers. After that, Euclid formula is used for 

calculating distances between objects and centers as in Euation (4.16). Objects are 

assigned to the closest centers. The coordinates of centers are updated continuously. 

These processes are continued as long as the difference between the new coordinates 

of centers with the previous. 

 

                                                           
  

    )
1/2

                      (4.16) 

 

K-means algorithm has some weaknesses: 

 

 It needs an input parameter ‘k’. Results vary according to the value of k. 

 It is very sensitive to the noises. 

 It can be used for numerical data. 

 It does not give good results in overlapping sets. 

 

The pseudo-code of the K-Means algorithm is described in Algorithm 3. 

 

Algorithm 3. K-MEANS algorithm 

Step 1: Let k be the number of clusters. 

Step 2: Determine the coordinates of centers for k clusters. 

Step 3: Calculate the distances between each point and cluster center. 

Step 4: Each point is assigned to the nearest center. 

Step 5: Calculate new cluster centers with new points. 

Step 6: If there is a difference between new centers and previous 

centers, go to Step 3. 

Step 7: End. 

 

 

The flowchart of K-MEANS algorithm is as in Fig 4.4. 
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Figure 4.4 Flowchart of KMEANS algorithm 

 

4.4 GAUSSIAN MEANS Algorithm 

 

Hamerly and Elkan developed Gaussian Means (GMEANS) algorithm in 2003. 

Finding the optimal value of k in K-Means algorithm is a important problem to 

provide best clustering. Small changes in k may lead to big changes in clustering. So, 

automatic estimation of k will be best solution. Gaussian Means algorithm achieves 

this. 

 

Gaussian Means algorithm is based on a statistical test to make decision for the 

number of clusters. If Gaussian distribution cannot be provide with the number of 

clusters, the number of clusters is increased by one. K-Means algorithm is run for 

each increasing of it while there is not gaussian distribution. 
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k is started with a smallest value, for example 1. It tries to find the correct number 

of clusters and it can find. The flowchart of GMEANS algorithm is as in Figure 4.5. 

The pseudo-code of the Gaussian Means algorithm is described in Algorithm 4. 

 

Algorithm 4. G-MEANS algorithm 

Step 1: S={si} is the set of the centers. 

Step 2: Use K-Means algorithm for initial set of centers. 

Step 3: Apply a statistical test for all data points which are assigned to each 

center to find out whether these data points follow Gaussian distribution or not. 

Step 4: If there is Gaussian distribution for si,keep si. Otherwise replace it with 

two centers. 

Step 5: Repeat Step 2 while new centers are added. 

Step 6: End. 

 

 

Figure 4.5 Flowchart of GMEANS algorithm 
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4.5 DBSCAN-GM Algorithm 

 

Smiti and Elouedi developed DBSCAN-GM algorithm in 2012 by combining 

DBSCAN and Gaussian-Means algorithms (Smiti & Elouedi, 2012). Through G-

Means, DBSCAN-GM does not need to enter the values of ε and Minpts in contrast 

to DBSCAN and it finds noises in contrast to Gaussian-Means (Hammerly & Elkan, 

2003). It is effective in large data sets.  

 

The first target of DBSCAN-GM is finding the number of clusters. The second 

target is finding the values of ε and Minptsj for j th cluster. Finally, DBSCAN 

algorithm is run and clusters are found.  

 

For finding ε and Minptsj, we need to calculate the values of radius and volume 

for each cluster. The maximum distance between the j
th

 center and the points which 

are assigned to that center gives radius rj. The average value of radius rj is taken as ε. 

After that, Minpts value is calculated for each cluster using Equation (4.19). In 

Equation (4.17) and Equation (4.19),n is the number of objects, nj is the number of 

objects in j th cluster, cj is the center j, xij is the point which is assigned to j th cluster 

and Vj is total volume of cluster j. 

 

                                                    rj =  
          

  
   

  
             (4.17) 

                                                           = 
 

 
 ∏   

                        (4.18) 

                                                           = 
    

 

  
               (4.19) 

 

The time complexity of DBSCAN-GM algorithm is higher than DBSCAN 

(approximately three times of DBSCAN's). The flowchart of DBSCAN-GM 

algorithm is as in Figure 4.6.  
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Figure 4.6 Flowchart of DBCAN-GM algorithm 

 

The pseudo-code of the DBSCAN-GM algorithm is described in Algorithm 5. 

 

Algorithm 5. DBSCAN-GM algorithm 

Step 1: To find each point which belongs to the same cluster center has 

a Gaussian distribution, use a statistical test. 

Step 2: If the data look Gaussian, the cluster center does not change.  

Step 3: If the data does not look Gaussian, assign two centers to the 

cluster instead of the center. 

Step 4: Until there is no change, go to Step 1. 

Step 5: Calculate radius r for each cluster.  

Step 6: Choose the minimum one for the value of global ε. 

Step 7: Find local Minpts for each cluster. 
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Step 8: Apply DBSCAN algorithm. 

Step 9: End. 
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CHAPTER FIVE 

FNDBSCAN-GM ALGORITHM 

 

FNDBSCAN-GM algorithm is the combination of fuzziness, DBSCAN algorithm 

and Gaussian Means (G-Means) algorithm. DBSCAN, the fuzzy version of 

DBSCAN (FNDBSCAN) and G-Means algorithms are mentioned above. 

FNDBSCAN-GM takes advantages of them. It benefits from FNDBSCAN for 

robustness and G-Means to avoid the need of inputs. 

 

Firstly, each point is normalized using Equation (4.7). All distances between 

points are calculated as in Equation (4.8). If there is not any knowledge about the 

number of clusters, the number of clusters which is called k  is started with 1 

(Otherwise, k is started from the known number). To find the correct value of k for 

obtaining optimal clustering, Gaussian Means algorithm is run. If there is Gaussian 

distribution, the right number for the data is reached and temporary clusters and 

cluster centers are calculated using K-Means algorithm. The square of the distance 

between center jc  and point ijx  is divided by the number of points which belongs to 

center j . Radius of each cluster is the square root of the division and it is calculated 

as in Equation (5.1). Global 
1  is the minimum element of radii. After that, total 

volumes for each center are calculated as in Equation (5.2). Then, i2  values are 

calculated (Equation (5.3)). Global 
2  is the smallest ε2j (Equation (5.4)). 

 

                                              
          

  
   

  
,                                             (5.1) 

                                                    
 

 
   

 ,                      (5.2) 

                                                   

   
   

  

    
,                      (5.3) 

                                                                                       (5.4) 

 

FNDBSCAN code is now run because parameters that it needs are found.  
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The flowchart of FNDBSCAN-GM algorithm is as in Figure 5.1. 

 

 

Figure 5.1 Flowchart of FNDBSCAN-GM algorithm 

 

The pseudo-code of the FNDBSCAN-GM algorithm is described in Algorithm 6. 

 

Algorithm 6. FNDBSCAN-GM algorithm 

Step 1: S={si} is the initial set of centers. 

Step 2: Normalize the data points between 0 and 1. 

Step 2: Use K-Means algorithm for initial set of centers. 

Step 3: Apply a statistical test for all data points which are assigned to 

each center to find out whether these data points follow Gaussian 

distribution or not. 

Step 4: If there is Gaussian distribution for si,keep si. Otherwise replace 

with two centers. 

Step 5: Repeat Step 2 while new centers are added. 

Step 6: Calculate radius r. 

Step 7: Calculate ε1 and ε2. 

Step 8: Mark all points as unclassified. Set t to 1. 

Step 9: Find a fuzzy core point p which is unclassified within 

neighborhood of ε1 and with ε2 limit. 

Step 10: Mark p as to be classified. Assign p to a new cluster Ct. 
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Step 11: Create an empty set of seeds S. Put all unclassified points 

within ε1 neighborhood into the set of S. 

Step 12: Get an unclassified point q in the S. Mark q as to be classified. 

Assign q to the Ct and is removed from the set of S. 

Step 13: If q is fuzzy core point within the ε1 neighborhood and with ε2 

limit, add all unclassified points which are in ε1 neighborhood of q to the 

set of S.   

Step 14: Repeat Step 6 and 7 while the set of S is not empty. 

Step 15: If there is still a point unclassified, it is noise. 

Step 16: End. 
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CHAPTER SIX 

EXPERIMENTAL RESULTS 

 

In cluster analysis, most closely elements are in the same cluster and dissimilar 

elements are in the different clusters. Discovering interesting relationships for 

datasets and determining the patterns are aimed with this way. There are several 

methods in the literature for clustering. When different methods are applied, datasets 

can be split into different clusters even if the number of clusters is same. Cluster 

validity indices are used for evaluating the quality of the clustering, measuring the 

performance, finding the correct number of clusters. Therefore, there are many 

cluster validity criteria in the literature (Nasibov & Ulutagay, 2009). In this study, 

algorithms have compared using the validity index below (Eq. 6.1). k is the number 

of clusters. centeriis the center of cluster Ci. n is the number of data points. i takes the 

integer values between 1 and k-1 interval.  j takes the values (i+1, k) interval. 

 

                              
                      

                      
  

 

 
               
   
   

                     
            (6.1) 

 

Methods are analyzed using percentage of correct classification (PCC). We need 

to know 4 concepts for this analyzing: True-Positive (TP), True-Negative (TN), 

False-Positive (FP), False-Negative (FN). If a point which belongs to cluster i is 

assigned to cluster i, the value of TP is increased by 1. If a point which does not 

belong to cluster i is assigned to cluster i, the value of FP is increased by 1. If a point 

which does not belong to cluster i is not assigned to cluster i, the value of TN is 

increased by 1. If a point which belongs to cluster i is not assigned to cluster i, the 

value of FN is increased by 1. Accuracy is the ratio of TP+TN to TP+TN+FP+FN as 

in Equation (6.2). 

 

                                    Accuracy = 
     

           
  × 100%                                   (6.2) 

 

Methods have been tested on six artificial and two real datasets which we found 

from internet. There are information about artificial datasets (Table 6.1)and real 
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datasets (Table 6.2) which we used in this study and results of experiments on these 

datasets in Table 6.3 and Table 6.4. FNDBSCAN-GM algorithm gave a hundred 

percent correct results for all of the artificial datasets and it is successful for real life 

datasets. While DBSCAN is successful for most of the data, K-MEANS has never 

been successful for these overlapping datasets. 

 

Table 6.1 Sizes and cluster numbers of artificial datasets 

Datasets Size Cluster Number 

Spiral-1 200 x 2 2 

Wave 287 x 2 2 

Spiral-1 312 x 2 3 

Face 320 x 2 4 

Moon 514 x 2 4 

Ring 800 x 2 2 

 

Table 6.2 Sizes and cluster numbers of real datasets 

Datasets Size Cluster Number 

Iris 150 x 4 3 

Indian 768 x 9 8 

 

Table 6.3 Experiments on artificial datasets 

Datasets 

K-MEANS DBSCAN FNDBSCAN-GM 

pcc (%) val pcc (%) val pcc (%) val 

Spiral-1 43.5 
0.1947

4 
100 0.7938 100 0.14811 

Wave 73.519 
0.2603

4 
100 

0.3428

4 
100 0.046763 

Spiral-2 54.915 4.3081 78 23.932 100 0.1034 

Face 86.5625 
0.2672

7 
100 

0.3147

7 
100 0.068099 
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Table 6.3 Experiments on artificial datasets (cont.) 

Moon 65.078 
0.1666

8 
71.09375 

0.2190

1 
100 0.024041 

Ring 46 
0.2066

8 
100 88.631 100 7.4895 

 

There are results of experiments on real life datasets (Iris, Indian) in Table 2. Iris 

dataset has 150 flowers data. The number of attributes is 4. Indian dataset has 768 

data. The number of attributes is 9. We see that PCC values of FNDBSCAN-GM 

algorithm are greater than the others.  

 

Figure 6.1, Figure 6.2 and Figure 6.3 show the outputs we obtained from artificial 

datasets. Parameters that give best results were entered for DBSCAN algorithm and 

the number of clusters is entered for K-MEANS algorithm. The quality of 

FNDBSCAN-GM is understood especially from Figure 6.2 and Figure 6.3. It finds 

overlapping clusters effectively. 

 

Table 6.4 Experiments on real life datasets 

Datasets 

K-MEANS GMEANS DBSCAN 
DBSCAN-

GM 

FNDBSCAN-

GM 

pcc 

(%) 
val 

pcc 

(%) 
val 

pcc 

(%) 
val 

pcc 

(%) 
val 

pcc 

(%) 
val 

Iris 
95.2

7 

1.4

8 
97.67 0.27 

98.3

3 
0.33 98.55 0.26 98.59 0.067 

Indian 
78.1

5 

3.1

7 
72.58 3.43 

97.6

0 
1.91 99 2.20 99.82 0.002 
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Spiral-1 Dataset Wave Dataset 

  

  

  
Figure 6.1 Experiments for Spiral-1 dataset and Wave dataset 
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Spiral-2 Dataset Face Dataset 

  

  

 
 

Figure 6.2 Experiments for Spiral-2 dataset and Face dataset 
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Moon Dataset Ring Dataset 

  

  

  

Figure 6.3 Experiments for Moon dataset and Ring dataset 
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Table 6.5 and Table 6.6 show the input parameters which give correct results in 

FNDBSCAN and DBSCAN algorithms. There are 170 (ε1, ε2) input parameters for 

FNDBSCAN algorithm in Table 3 and94 (ε, Minpts) input parameters for DBSCAN 

algorithm in Table 4. The number of parameters which give correct results for 

FNDBSCAN algorithm is greater than the number of parameters which give correct 

results for DBSCAN algorithm. According to this result, we can infer that the 

probability of finding the right parameters of FNDBSCAN-GM algorithm is greater 

than DBSCAN-GM’s. Therefore, FNDBSCAN-GM algorithm is more robust than 

DBSCAN-GM algorithm. 

 

Table 6.5 Input parameters of FNDBSCAN algorithm to obtain good result for wave dataset  

FNDBSCAN 

ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2 

0.97 0 0.92 0.04 0.94 0.09 0.95 0.14 0.96 0.19 

0.96 0 0.91 0.04 0.92 0.09 0.94 0.14 0.95 0.19 

0.95 0 0.90 0.04 0.91 0.09 0.92 0.14 0.94 0.19 

0.94 0 0.97 0.05 0.90 0.09 0.91 0.14 0.92 0.19 

0.92 0 0.96 0.05 0.97 0.10 0.90 0.14 0.91 0.19 

0.91 0 0.95 0.05 0.96 0.10 0.97 0.15 0.90 0.19 

0.90 0 0.94 0.05 0.95 0.10 0.96 0.15 0.97 0.20 

0.97 0.01 0.92 0.05 0.94 0.10 0.95 0.15 0.96 0.20 

0.96 0.01 0.91 0.05 0.92 0.10 0.94 0.15 0.95 0.20 

0.95 0.01 0.90 0.05 0.91 0.10 0.92 0.15 0.94 0.20 

0.94 0.01 0.97 0.06 0.90 0.10 0.91 0.15 0.92 0.20 

0.92 0.01 0.96 0.06 0.97 0.11 0.90 0.15 0.91 0.20 

0.91 0.01 0.95 0.06 0.96 0.11 0.97 0.16 0.90 0.20 

0.90 0.01 0.94 0.06 0.95 0.11 0.96 0.16 0.97 0.21 

0.99 0.02 0.92 0.06 0.94 0.11 0.95 0.16 0.96 0.21 

0.98 0.02 0.91 0.06 0.92 0.11 0.94 0.16 0.95 0.21 

0.97 0.02 0.90 0.06 0.91 0.11 0.92 0.16 0.94 0.21 

0.96 0.02 0.97 0.07 0.90 0.11 0.91 0.16 0.92 0.21 

0.95 0.02 0.96 0.07 0.97 0.12 0.90 0.16 0.91 0.21 

0.94 0.02 0.95 0.07 0.96 0.12 0.97 0.17 0.90 0.21 

0.92 0.02 0.94 0.07 0.95 0.12 0.96 0.17 0.97 0.22 

0.91 0.02 0.92 0.07 0.94 0.12 0.95 0.17 0.96 0.22 

0.90 0.02 0.91 0.07 0.92 0.12 0.94 0.17 0.95 0.22 

0.97 0.03 0.90 0.07 0.91 0.12 0.92 0.17 0.94 0.22 

0.96 0.03 0.97 0.08 0.90 0.12 0.91 0.17 0.92 0.22 

0.95 0.03 0.96 0.08 0.97 0.13 0.90 0.17 0.91 0.22 

0.94 0.03 0.95 0.08 0.96 0.13 0.97 0.18 0.90 0.22 

0.92 0.03 0.94 0.08 0.95 0.13 0.96 0.18 0.97 0.23 

0.91 0.03 0.92 0.08 0.94 0.13 0.95 0.18 0.96 0.23 
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Table 6.5 Input parameters of FNDBSCAN algorithm to obtain good result for wave dataset (cont.) 

0.90 0.03 0.91 0.08 0.92 0.13 0.94 0.18 0.95 0.23 

0.97 0.04 0.90 0.08 0.91 0.13 0.92 0.18 0.94 0.23 

0.96 0.04 0.97 0.09 0.90 0.13 0.91 0.18 0.92 0.23 

0.95 0.04 0.96 0.09 0.97 0.14 0.90 0.18 0.91 0.23 

0.94 0.04 0.95 0.09 0.96 0.14 0.97 0.19 0.90 0.23 

 

Table 6.6 Input parameters of DBSCAN algorithm to obtain good result for wave dataset  

DBSCAN 

ε Minpts ε Minpts Ε Minpts ε Minpts ε Minpts 

0.04 0 0.13 1 0.12 3 0.07 6 0.10 9 

0.05 0 0.04 2 0.13 3 0.08 6 0.11 9 

0.06 0 0.05 2 0.05 4 0.09 6 0.12 9 

0.07 0 0.06 2 0.06 4 0.10 6 0.13 9 

0.08 0 0.07 2 0.07 4 0.11 6 0.10 10 

0.09 0 0.08 2 0.08 4 0.12 6 0.11 10 

0.10 0 0.09 2 0.09 4 0.13 6 0.12 10 

0.11 0 0.10 2 0.10 4 0.08 7 0.13 10 

0.12 0 0.11 2 0.11 4 0.09 7 0.11 11 

0.13 0 0.12 2 0.12 4 0.10 7 0.12 11 

0.04 1 0.13 2 0.13 4 0.11 7 0.13 11 

0.05 1 0.04 3 0.06 5 0.12 7 0.11 12 

0.06 1 0.05 3 0.07 5 0.13 7 0.12 12 

0.07 1 0.06 3 0.08 5 0.09 8 0.13 12 

0.08 1 0.07 3 0.09 5 0.10 8 0.12 13 

0.09 1 0.08 3 0.10 5 0.11 8 0.13 13 

0.10 1 0.09 3 0.11 5 0.12 8 0.13 14 

0.11 1 0.10 3 0.12 5 0.13 8 0.13 15 

0.12 1 0.11 3 0.13 5 0.09 9  

 

Comparison of time complexities is as in Table 6.7. n is the number of objects. K 

is the number of clusters. I is the number of iterations and d is the number of 
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attributes. The end time of FNDBSCAN-GM and G-MEANS algorithms varies 

depending on the number of iterations repeated to find the number of clusters. 

 

Table 6.7 Time comparisons 

 TIME COMPLEXITY 

K-MEANS O(nKId) 

DBSCAN O(nlogn) 

DBSCAN-GM 3.O(nlogn) 

FNDBSCAN O(n
2
) 

FNDBSCAN-GM O(n
2
) 
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CHAPTER SEVEN 

CONCLUSION AND FUTURE WORK 

 

Clustering groups the data according to similarities of their properties. After 

applying a clustering algorithm, the data with different properties must be in different 

clusters. The importance of clustering is great because of obtaining knowledge from 

data. Therefore, the algorithm to be used in clustering is important. For this aim, a 

clustering algorithm is developed in this study. 

 

In this thesis, a density based clustering algorithm, called FNDBSCAN-GM, has 

been proposed. It is a fuzzy version of DBSCAN-GM algorithm and a parameter free 

version of FNDBSCAN algorithm. Comparisons between the algorithms of K-

MEANS, G-MEANS, DBSCAN, DBSCAN-GM and FNDBSCAN-GM have been 

made. Using percentage of correct classification (PCC), the algorithms have been 

analyzed. To compare FNDBSCAN-GM with the other clustering algorithms, the six 

artificial (Spiral-1, Wave, Spiral-2, Face, Moon, Ring) and two real (Iris, Indian) 

datasets which are found from internet have been used. Our experiments show that 

FNDBSCAN-GM algorithm finds clusters with a hundred percent accuracy for all of 

the artificial datasets and it is successful for real life datasets. While DBSCAN is 

successful for most of the datasets, K-MEANS has never been successful for these 

overlapping datasets. Most of the results in fuzzy approach are better than the results 

of crisp approach. Therefore, FNDBSCAN-GM is a more preferable algorithm than 

many algorithms. 

 

Although FNDBSCAN-GM has many advantages, the time complexity of it is not 

good enough especially for big data. Time complexity of FNDBSCAN-GM will be 

reduced as a future work. 
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