DOKUZ EYLUL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ANALYZING SOURCE CODES AND
DETECTING SIMILARITIES

by
Fatma BOZYIGIT

June, 2015
iZMiR

ANALYZING SOURCE CODES AND
DETECTING SIMILARITIES

A Thesis Submitted to the
Graduate School of Natural and Applied Sciences of Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Master of

Science in Computer Engineering

by
Fatma BOZYIGIT

June, 2015
iZMIR

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “ANALYZING SOURCE CODES AND
DETECTING SIMILARITIES” completed by FATMA BOZYIGIT under
supervision of PROF. DR. ALPKUTand we certify that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Alp KUT

Supervisor

AN YAl BIRANT \(\Dmﬂp&[.llgi;gii\mﬂmﬁ

(Jury Member) (Jury Member)

Prof.Dr. Ayse OKUR

Director
Graduate School of Natural and Applied Sciences

il

ACKNOWLEDGEMENTS

I would like to thank to my supervisor, Prof. Alp KUT, for his support,
supervision and useful suggestions throughout this study. It has been a privilege to

work with him.

| am deeply grateful to my advisor, Asst. Prof. Deniz KILINC for his detailed and

constructive comments, and for his important support throughout this work.

Finally, I would like to offer my special thanks to my family for their continuous
support and encouragement throughout my studies.

Fatma BOZYIGIT

ANALYZING SOURCE CODES AND DETECTING SIMILARITIES

ABSTRACT

Plagiarism in academic institutions is often expressed as copying someone
else’s work (i.e., another students or from sources such as books). By reason of the
fact that innovations and developments are occurred in technology of late years,
massive increase of software applications is monitored. Concordantly, plagiarism
issue becomes more significant day by day. Plagiarism of programming source codes
is an undesirable situation in the many fields of software development world.
Especially in educational field, it is obviously realized that plagiarism in
programming courses increases consistently. The aim of this study is attempting to
answer questions such as “which codes are similar?”, “what similarity ratios are?” in
order to prevent plagiarism among college students who attend programming

courses.

There are many methods and tools are available to find similarities between
program codes. Generally traditional methods are preferable while detecting
similarities among source codes. One of these traditional methods is finding metrics
in software documents. However, different approaches are seen in recent years while
solving plagiarism problems. N-gram method that belongs Natural Language Process

(NLP) can be given as example of different approaches.

While developing the proposed methodology, metric extraction method
(fingerprint system), N-gram algorithm and Vector Space Model (VSM) were
considered. Information Retrieval (IR) System and Cosine Normalization (CN)

methods were utilized to calculate similarity ratios.

Experimental study was performed on datasets of two different kinds. First type
was created by collecting assignments of students who attend programming courses

in Software Engineering Department of Celal Bayar University. Second type is

yielded by changing source code examples in different forms. The results obtained
provide convincing evidence that the study is fit the purpose. The experimental

results about proposed methods give success when compared with the previous
methods.

Keywords: Plagiarism source code, software metrics, n-gram, vector space model,
cosine normalization.

KAYNAK KODLARIN ANALIZI VE BENZERLIK TESPIiT EDILMESI

0z

Akademik kurumlarda intihal konusu bir bagskasinin emeginin ¢alinmasi olarak
aciklanmaktadir. Son yillarda teknolojide meydana gelen yenilikler ve gelismeler
sebebi ile yazilim uygulamalari miktarinda oldukga biiylik artis gozlenmektedir.
Buna paralel olarak yazilim projelerinde ¢alinti konusu onemli bir sorun haline
gelmektedir. Bir programci tarafindan olusturulmus bir yazilimin bagkalar tarafindan
intihali yazilim diinyasinda bir¢ok alanda istenmeyen durumdur. Bu c¢alismada,
ozellikle egitim alaninda 6grenciler arasinda kod paylasiminin 6niine gegmek, ders
degerlendirirken haksizliklarin olusmasini engellemek amaci ile 6grenciler tarafindan
hazirlanmis olan yazilimlarin igerisinde hangilerinin benzerlik gosterdigi, benzerlik

oranlarinin ne oldugu gibi sorularin cevabinin bulunmas1 hedeflenmektedir.

Kaynak kodlar igerisinde benzerlik bulma konusunda hali hazirda kullanilan
bircok method ve arag vardir. Benzerlikleri ortaya ¢ikarma konusunda genellikle
geleneksel yontemler kullanilmaktadir. Bu geleneksel yontemlerden biri yazilima ait
metriklerin ¢ikarimi ve belirlenmesidir. Bu yontemle beraber son yillarda farkl
methotlar da ortaya ¢ikarilmistir. Bunlardan birisi dogal dil isleme alanina dahil olan

N-gram algoritmasidir.

Bu calisma gergeklestirilirken metrik ¢ikarma(parmak izi belirleme) yontemi, N-
gram algoritmasi, Vektor Uzay Modeli ve Kosiniis Normalizasyon yontemlerinden
faydalanilmistir. Bilgi elde etme sistemi (IR) ve Kosiniis Normalizasyon yontemi

benzerlik oranlarini hesaplamak icin kullanilmaktadir.

Deneysel ¢alismalar iki farkl tip veri seti iizerinde yapilmustir. Ilk veri seti Celal
Bayar Universitesi Yazilim Miihendisligi Boliimii 6grencilerine ait programlama
ddevlerinden olusmaktadir. ikinci veri seti ise belirli bir kodun farklilastirilmast ile

elde edilmis kaynak kodlar1 icermektedir. Elde edilen sonuclar ¢alismanin amacina

Vi

uygun bir sekilde gergeklestirildigini géstermektedir. Onerilen metodlara ait deneysel

sonuclar 6nceki metotlar ile karsilastirildiginda basarili sonuglar vermektedir.

Anahtar kelimeler: Kaynak kod hirsizlig1, yazilim metrikleri, N-gram algorimasi,

vektor uzay modeli, kosiniis normalizasyonu.

vii

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORMcooooiiiiiiiiiene e i
ACKNOWLEDGEMENTScoooiiieiese sttt sttt i
ABSTRACT ..ottt sttt re e r ettt e renreeneene e iv
OZ oottt ettt vi
LIST OF FIGURES ..ottt bbb Xi
LIST OF TABLES ...ttt sttt Xii
CHAPTER ONE - INTRODUCTIONcooiiiiiiitiieiiseneeeee e 1
R = T - | USSP 1
1.2 PUIMPOSE ...t 2
1.3 Organization 0f the TNESIScccveiiiieiiee e 2
CHAPTER TWO - RELATED WORKS ..ottt 4
2.1 LITErature REVIEWcciueeie ettt enes 4
2.2 Plagiarism Detection TOOISccueieeiiiieiiee e 7
CHAPTER THREE - PLAGIARISM ISSUE IN SOURCE CODES................. 10
3.1 Definition of PlagiariSmc.cooveiiiiiiieie e 11
3.2 Plagiarisim in SOftWare Areaccccoiveiiiieie e 12
3.3 Plagiarisim in EAUCALION ATEa.........cceiiiiiiiiiieiisieeieeee s 12
3.4 Relation Between Source Code Similarity and Source Code Plagiarism 14
34 CONCIUSTON ...ttt 15
CHAPTER FOUR - TEXT MINING.......cccoiiiiiiesr e 16
4.1 Description of TeXt MININGcccooiiiiiiiiie e 16

viii

4.2 Application Areas Of TeXt MININGccoiiiiriiiiiiieee e 17

4.3 Techniques of TEXE MININGcoviiiieieieie e 17
4.3.1 Naturel Language ProCeSSINGcccuevveruereeiieeie e sieeseesee e esee e e ens 17
4.3.1.1 N-gram AlIgOrithmcccoiiiiie e 19

4.3.2 Information Retrieval ... 21
4.3.3 Information EXIraCtionccccceveerieiieiieiieie e 22
4.3.4WED MINING ..ooieiieie e 23

4.4 Using of Vector Space Model in Text Miningccccccevvevevieenesie e 23
CHAPTER FIVE - EXTRACTING METRICS METHODScccovevveieene. 26
5.1 Definition of SOftWare MEtIICc.covveiiiiiiieiiseeee s 26
5.2 Using Software Metrics to Find Similarity between Source Codes................ 26
5.3 IMIBLIIC TYPBS. .ttt b bbbt 27
5.3.1 Programming Layout MEtriCcccccvevveiieiiiie e 27

5.3.2 Programming Style MEtriCc.ccoveiiiiieiieie e 30
CHAPTER SIX - THE EXPERIMENTAL STUDY ...coviiiiieeececeeeeeeee s 32
6.1 EXperimental DataSetS..........cccciveiieiieieeie e 32
6.1.1 Dataset Belog the Students HOMEWOrKccccovveieiieie i 32

6.1.2 MOAITIEd DALASELooveereeeeieireie et 33

6.2 Experimental RESUILS. ... 35
6.2.1 Results of Dataset Belog the Students Assignmentsccccceeeveenenen. 35

6.2.2 Experimental Results of Modified Dataset.............ccccceevveveeiieiieiecieinnn, 36

6.2.3 Comparing Results Our Tool with Other Similarity Program................. 38
CHAPTER SEVEN — APPLICATION ..ottt 39
7.1 Substring MatChing Part.........c.ccoiiiiiiiiiieeee e 39
711 N-gram RESUIESccveiuiiiiiiiiee e 40

7.1.2 VSM N-gram ReSUILSccooiiiiiiiieccc e 41

7.2 FINGEIPIINT PAIt......oiiiiiiiiiiieieeee e 42

7.2.1 MetriC Based WOIK.........cueieiieiiieiiesieiisieseeee e 42
CHAPTER EIGHT - CONCLUSION & FUTURE WORK ... 44
8.1 CONCIUSION ...ttt 44
8.2 FULUIE WOTK ...t 45
REFERENCQGES ettt 47

LIST OF FIGURES

Page
Figure 3.1 Work Plan of Copy Code Detection TOOIccccoevveiiiieiicseec e, 10
Figure 3.2 Comparing original and COPY COUE........cccvevrreereeiieiiese e 13
Figure 4.1 Flow diagram of TeXt MINING.........cccoviveriiiiriieiinieseene e 17
Figure 4.2 StepS OF NLP ... 19
Figure 4.3 Tri-grams in “ALGORITHM?”c.ccoceiiiiiiiiieie e 20
Figure 4.4 Information retrieval SYStemcoeviveiiiie i 22
Figure 4.5 Information extraction SYStEMcccveieiiieiieie e 22
Figure 4.6 WEeD IMININGcoviiiiiiie e 23
Figure 4.7 Vector Space MOdel ... 24
Figure 4.8 Document term MALFiCecvevuveiieiieieese e 24
Figure 5.1 Added blank 1iNeS COUE.........c.ciiiiiiiieiieie e 28
Figure 5.2 Comment WIItINg StYIEooviiiiiieie e 28
Figure 6.1 Comparing original and copy COAE (1)covrverereriieiieieiencneseeeeee e 34
Figure 6.2 Comparing original and copy €Ode (2)cccvvereeieiieeiiiie e, 34
Figure 6.3 Experimental result of dataset that contains of student’s homework 35
Figure 6.4 Percentage of copy code asSIgNMENTccocvvererierieneiese s 35
Figure 6.5 Similarity Results of the tool which is developed for this study 38
Figure 6.6 Similarity Results 0f JPLAGcccooveiiiie e 38
Figure 7.1 Similarity scores in dataset which consists of students assignments........ 40
Figure 7.2 Similarity scores in dataset which consists of five modified codes.......... 41
Figure 7.3 Bi-gram, Tri-gram and VSM Tri-gram results interfacec.ccceeee. 41
Figure 7.4 Screenshot of metric based SYStemccccccovveiicieiicie e, 43
Figure 7.5 Value of metrics in a code in dataset...........ccooeevvevieiieiicic e, 43

Xi

LIST OF TABLES

Page
Table 4.1 Tri-grams in STRING word and frequencies of substrings............c..c....... 20
Table 5.1 Programming Layout IMELIICSccveiueiiieiierie e 29
Table 5.2 Metric STY1 SUD-Dranches...........ccceiiiiiiiiiceee e 29
Table 5.3 Metric STY6 Sub-branches...........cccooiie, 29
Figure 5.4 Programming Style MetriCS........ccceovviiieiiiiie i 30
Figure 5.5 Metric PRO2 Sub-branches ..., 30
Figure 5.6 Metric PRO3 Sub-branches ..., 31
Figure 6.1 Document name synonyms and explanations.............ccccoceevvrinennnieennenn 33
Figure 6.2 Compare results of first datasetcccccvevevieiiciciecce e, 36
Figure 6.3 Tri-Gram and VSM Tri-Gram ReSUILScccoovevieiieiiiie e, 37

Xii

CHAPTER ONE
INTRODUCTION

1.1 General

Plagiarized code is a source code example which its source cannot be understood
in detail most of the times. If a license of software allows using entire or some parts
of source code, there is no problem while citing and using it. However, if citing or
appropriating a source code is not allowed, this is out of line in terms of ethics. This
issue is legally remarked in Intellectual and Artistic Works and while computer
programs are included in the scope of works of science, the owner of source code is
discussed as an author. Plagiarism of source code is an important problem that can be
faced every time, in everywhere. For example, using a source code of a program
which is developed specifically for a company without permission is a common
plagiarism situation. Another example can be seen in education area. Especially,
programming course instructors indicate that source code theft issues pose a major
problem while evaluating students’ projects and home-works. Accordingly, unfair

distributions can appear in grading.

Based on continuing development of technology, applications in field of software
increase correspondingly and plagiarism stands out as a big problem. There are many
methods to understand whether code is stolen or not and to prevent code theft. One
of these methods is evaluating a software tool which finds similarity ratios among
source codes. Already developed tools are available and have been using in many
fields such as education. For example, Plague, JPlag and YAP applications are well-
known tools. Many instructors in universities use these applications in order to check

whether the assignments in programming courses are copy or not.

The necessary steps to solve plagiarism problems on source codes are much
harder than natural language processing (NLP). The traditional method is extracting
source code metrics before similarity check. However, there are some disadvantages
in this traditional approach. For example, software metrics are programming

language dependent. Metrics which are created to specify characteristics of Java

programming language may not be appropriate for C or Pascal. Another
disadvantage is that the metric selection is not a trivial process and usually involves
setting thresholds in order to eliminate metrics which aren’t correlated to the

classification model.

1.2 Purpose

The aim of this study is to find the similarity ratios among source codes belonging
to a programming course and attempt to decide whether or not two or more programs
are plagiarized. To carry out study, N-gram algorithm, Vector Space Model (VSM)
and Information Retrieval (IR) system are utilized. Since N-gram algorithm is
language independent and does not contain disadvantages of traditional methods, it
has been selected in this study. Also, some metrics are extracted from the source
code examples.

In the previous studies it is utilized only bi-gram and tri-gram methods to check
the source codes are copy or not. In the thesis, bi-gram and tri-gram results are
placed into Vector Space Model and similarity ratios are found. Also some metrics
that give clue about the code writer are obtained. Furthermore, the fingerprint system
is touched on. Some software metrics are specified and value of them calculated to

scrutinize similarity results.

1.3 Organization of the Thesis

The rest of paper is organized as follows:

In Chapter 2, general information about related works and literature search about

workings in source code plagiarism issue.

Chapter 3 details plagiarism and how students create copy codes from the original

one.

Chapter 4 introduces the Text Mining and its methods in detail.
In Chapter 5, Fingerprint system and extracting metrics methods to find source

code similarity are described generally.

In Chapter 6, the experimental datasets that have created for the application and

experimental results are touched on.

Chapter 7 gives information about application which is developed for this study.

Chapter 8 concludes the paper and gives some information about future works.

CHAPTER TWO
RELATED WORKSs

2.1 Literature Review

Joy and Luck dwell on plagiarism in assignments of programming courses. They
explain plagiarism as out of favor making copy of documents or source codes. In the
study, it is claimed if students in the programming course are in high number,
detecting and controlling copies in assignments can be difficult. Also similarities
among programs don’t refer to plagiarism all the time. In the study, it is inspected
that how it can be decided about the code is copy or not. Source codes are divided
into tokens that take value as name, operator, loop etc.. After filtering out
unnecessary information, incremental comparison step is completed and similarity
ratios among codes are obtained. In incremental comparison step, pair of programs is
compared five times; in their original form, with the white spaces removed, with all
comments removed etc... So they provide obtaining more consistent similarity
results (Joy & Luck, 1999).

Jones indicates that plagiarism is an ethical problem can be faced always in the
academic area. It is also mentioned that trying to detect copy codes in programming
courses is so difficult for educators in terms of presenting proofs about copies,
wasting time and emotional burden because of charging a student as cheater. Jones
develop an application to give evidences of plagiarism to students. So, objection of
students and arguing between instructors and students can be terminated owing to
results of application. In metric based system, physical profiles that include general
parameters such as number of lines, words and characters are created at first. Then,
Helstead profiles that divide source code into tokens and store the frequencies of
tokens, is evaluated. Lastly, two profiles are combined and distances of patterns of

profiles from the each other computed (Jones, 2001).

Culwin and Thomas mention about plagiarism problem that increases in academic

institutions. They elaborate why students steal the information and show it as their

own while they do assignments. They perform a study to dissolve plagiarism. So,
their study helps instructors to understand which assignment is copy. The study
consist of four stage; collection, detection, confirmation and investigation. At
collection stage, students use web form submissions, so collection of assignment is
completed via Web. After collecting the data, detection stage is started and similarity
ratios among documents are obtained. At confirmation step, instructors should check
whether the similarity results are consistent. Because, two students whom similarity
ratio is high, may use same web site while doing assignments, so they cannot be
charged with plagiarism. The process is terminated with investigation step and
students who will be punished are determined. It is briefly pointed that revealing
proof of copy is so necessary to eliminate plagiarism in the study (Culwin &
Thomas, 2001).

Frantzeskou indicates that to solve authorship disputes in software area, not only
finding similarities among programs is enough, but also identifying source code
authors is necessary. So, she developed SCAP Method to specify owner of source
code. The author underscores that SCAP method is effective on all programming
language. Also, it is claimed that SCAP Method can work with simple profile
examples that include a few code lines and a few examples of profile is enough to get
good results. In SCAP, after finding N-gram frequencies, Simplified Profile
Intersection (SPI) value is counted. Value of SPI measures the intersection of source

code documents and gives a similarity ratio (Frantzeskou, 2007).

Khreisat has used N-gram algorithm with machine learning approach in Arabic
text classification study. After comparing N-gram results (1-gram, 2-gram etc.), tri-
gram has been decided by the author. The base of study has been obtaining tri-gram
frequencies. Their datasets contain Arabic text documents that was gathered from
online Arabic newspapers. Firstly, the pre-processing step has been completed to
distinguish punctuation marks, stop words from the documents. Then, N-gram
algorithm step has been started. For each document tri-gram profiles has been
generated for classification. The tri-gram results that belong each documents, has

been stored in text files. The last step has been calculating Mannathan and Dice
Measure for specifying the suitable category (Khreisat, 2008).

Cavnar and Trankle have preferred the N-gram method in their text classification
work, due to provide fault tolerance in textual. Usenet News Group articles have
been used while generating dataset. The corpus of working has depended on counting
and comparing N-gram frequencies. Firstly, the profiles has been created for each
category, then distance from the profile for documents in dataset have been
measured. Cavnar and Trankle have developed a simple distance measure system for
counting differences of documents from profiles. They have called it as “out of
place” measure. The distances that calculated with “out of place” measure have been
ranged and documents that have minimum distances, have placed suitable categories
(Cavnar and Trankle, 1994).

Study published by Keselj is one of the studies based N-gram algorithm. This
study have inspected source code documents which has been written with Pascal
programming language and have found similarities. After obtaining N-gram
frequencies, frequencies with the highest value have been chosen and eliminated the
other. Final step is counting Relative Distance value which is specific for Keselj’s
study. The owner of the test document detected among the authors which has been
identified previously (Keselj, 2007).

Krsul and Spafford developed a software analyzer program to automate the
coding of software metrics. The software analyzer extracted layout, style and
structure features from 88 C programs belonging to 29 known authors. A tool was
developed to visualize the metrics collected and help select those metrics that
exhibited little within-author variation, but large between-author variation.
Discriminant function analysis was applied on the chosen subset of metrics to
classify the programs by author. The experiment achieved 73% overall accuracy
(Krsul & Spafford, 1995).

MacDonell and Gray have automated authorship identification of computer

programs written in C++. Gray, Sallis and MacDonell 1998 developed a dictionary

based system called IDENTIFIED (Integrated Dictionary-based Extraction of Non-
language dependent Token Information for Forensic Identification, Examination, and
Discrimination) to extract source code metrics for authorship analysis. In MacDonell
and Gray’s 2001 work, satisfactory results were obtained for C++ programs using
case-based reasoning, feed-forward neural network, and multiple discriminant
analysis. The best prediction accuracy — at 88% for 7 different authors-- was
achieved using Case-Based Reasoning (MacDonell & Gray, 2001).

Focusing on Java source code, Ding and Samadzadeh investigated the extraction
of a set of software metrics that could be used to identify the author. A set of 56
metrics of Java programs was proposed for authorship analysis. The contributions of
the selected metrics to authorship identification were measured by canonical
discriminant analysis. Forty-six groups of programs were diversely collected. They
achieved a classification accuracy of 87.0% with the use of canonical variates (Ding
& Samadzadeh, 2004).

2.2 Tools Developed for Finding Source Code Similarities

JPlag uses the same comparison algorithm as YAP3, but with optimised run time
efficiency. In JPlag the similarity is calculated as the percentage of token strings
covered. One of the problems of JPlag is that files must parse to be included in the
comparison for plagiarism, and this causes similar files to be missed. Also, JPlag’s
user defined parameter of minimum-match length is set to a default number.
Changing this number can alter the detection results (for better or worse) and to alter
this number one may need an understanding of the algorithm behind JPlag (i.e RKR-
GST). JPlag is implemented as a web service and contains a simple but efficient user
interface. The user interface displays a list of similar file pairs and their degree of
similarity, and a display for comparing the detected similar files by highlighting their

matching blocks of source-code fragments.

Sherlock also implements a similar algorithm to YAP3. Sherlock converts

programs into tokens and searches for sequences of lines (called runs) that are

common in two files. Similarly to the YAP3 algorithm Sherlock searches for runs of
maximum length. Sherlock’s user interface displays a list of similar file pairs and
their degree of similarity, and indicates their matching blocks of source-code
fragments found within detected file pairs. In addition, Sherlock displays quick
visualisation of results in the form of a graph where each vertex represents a single
source-code file and each edge shows the degree of similarity between the two files.
The graph only displays similarity (i.e., edges) between files above the given user
defined threshold. One of the benefits of Sherlock is that, unlike JPlag, the files do
not have to parse to be included in the comparison and there are no user defined
parameters that can influence the system’s performance. Sherlock, is an open-source
tool and its token matching procedure is easily customisable to languages other than
Java. Sherlock is a stand-alone tool and not a web-based service like JPlag and
MOSS. A stand alone tool may be more preferable to academics with regards to
checking student files for plagiarism when taking into consideration confidentiality

issues.

MOSS (Measure of Software Similarity) is based on a string-matching algorithm
that functions by dividing programs into k-grams, where a k-gram is a contiguous
substring of length k. Each k-gram is hashed and MOSS selects a subset of these
hash values as the program’s fingerprints. Similarity is determined by the number of
fingerprints shared by the programs, i.e., the more fingerprints they share, the more
similar they are. For each pair of source-code fragments detected, the results
summary includes the number of tokens matched, the number of lines matched, and

the percentage of source-code overlap between the detected file pairs.

YAP3 converts programs into a string of tokens and compares them by using the
token matching algorithm, Running-Karp-Rabin Greedy-String-Tiling algorithm
(RKR-GST), in order to find similar source-code segments. YAP3 pre-processes the
source-code files prior to converting them into tokens. Pre-processing involves
removing comments, translating upper case letters to lower case, mapping synonyms
to a common form (i.e., function is mapped to procedure), reordering the functions

into their calling order, and removing all tokens that are not from the lexicon of the

target language (i.e., removing all terms that are not language reserved terms). YAP3
was developed mainly to detect breaking of code functions into multiple functions,
and to detect the reordering of independent source-code segments. The algorithm
works by comparing two strings (the pattern and the text) which involves searching
the text to find matching substrings of the pattern. Matches of substrings are called
tiles. Each tile is a match which contains a substring from the pattern and a substring
from the text. Once a match is found the status of the tokens within the tile are set to
mark. Tiles whose length is below a minimum-match length threshold are ignored.
The RKR-GST algorithm aims to find maximal matches of contiguous substring
sequences that contain tokens that have not been covered by other substrings, and

therefore to maximize the number of tokens covered by tiles.

CHAPTER THREE
PLAGIARISM ISSUE IN SOURCE CODES

With the development of technology, amount of software application have shown
huge increase. However, it is seen that a plagiarisim subject begins to be big trouble
in software area. We can see examples in generally big companies. While a company
pay a lot of money to software otomation, they want that the application must belong
only to them. However, other companies can take it and show themselves as owner
of software. This situation cause a big problems and actions or proceedings are
started. We can see other examples in education area. While students do their
programming homework or project, they can take other one’s works and show it as
their study. This bothers instructors and they get worried while charging a studeny as

cheater.

Source Code

Documents

{ A ,-'
\ (" Word Stemming, Metric | €——\ '
Internet 4 i
> Based System E—
! S

Detecting | Similarities

Results
Copy or not..
e A

Figure 3.1 Work plan of copy code detection tool

To prevent to theft of source codes, new methods are allways produced. The base
of this methods is finding similarity scores among source codes and analyzing the

results. It is determined to existence of copy codes in dataset after comparing

10

method’s outputs. Figure 3.1 shows that work plan of methods of copy code
detection tools.

3.1 Definition of Plagiarism

Plagiarism is presenting someone else’s work or ideas as own, with or without
their consent, by incorporating it into their work without full acknowledgement. All
published and unpublished material, whether in manuscript, printed or electronic
form, is covered under this definition. Plagiarism may be intentional or reckless, or
unintentional. Under the regulations for examinations, intentional or reckless

plagiarism is a disciplinary offence.

Plagiarism can take many forms, including the following;

e Word-by-word copying, which involves directly copying sentences or
chunks of sentences from other peoples work without providing quotations

and/or without appro priately acknowledging the original author.

e Paraphrasing, which involves closely rewriting (i.e. only changing some of
the words but not making enough changes) text written by another author

and appropriately citing the original author.

e Plagiarism of secondary sources, which involves referencing or quoting
original sources of text taken from a secondary source without obtaining

and looking up the original source.

e Plagiarism of the form of a source, is when the structure of an argument in
a source is copied without providing acknowledgments that the
‘systematic dependence on the citations’ was taken from a secondary
source. This involves looking up references and following the same

structure of the secondary source.

11

e Plagiarism of ideas, which involves using ideas originally expressed in a
source text without ‘any dependence on the words or form of the source’.
e Blunt plagiarism or authorship plagiarism which is taking someone else’s

work and putting another’s name to it.

3.2 Plagiarism in Software Area

Plagiarisim is a crime that is at issue not only in academic area but also in
literature, art and every field of industry. One of the plagiarism types is source code
theft. Source code theft is producing a new program by modifiying a software
application without permission of code owner. Development of an application needs
a lot of works and stealing all or a part of a program is unwanted situation by

programmers.

When it is compared with other text types, it can be said that a computer program
has more rule based. So, it must be more carefull while evaluating source code
documents to detect plagiarism. There are some tools are available to prevent code
thefts nowadays. These tools are concentrate on obtaining similarity among programs
or guessing who coder is. However, there is not available certain solution againist

source code cloning yet.

3.3 Plagiarism in Education Area

Plagiarized code is a modified and concerted version of original code which is
taken without permission of code owner. Especially, in education area, some
students, who attend programming courses, copy all or part of a program from other
students and submit the copy as their own work. When the copy code is inspected in
detail, it can be obviously seen that most of students only change the specific points
of program such as renaming variable names, adding comment lines, replacing code

blocks etc.., while creating copy codes.

At this stage of the study, it is performed a work with a team consisting of five

instructors. It is determined which parts of source code are generally modified by the

12

students while creating copy code. Instructors highlight that they realize the most
noticeable thing is renaming variables, functions and parameters when they inspect
copy codes. In this part, renaming is the most efficient step while generating dataset
that includes modified code examples to test study. For example, in Figure 1, both of
the program codes calculate the factorial of a number. While left one is original code,
the code in the right side is copy. At first glance, distinction in identifiers can be
realized easily. It is clearly seen that the name of parameter “input” is changed as
“inpt” and parameter “result” is changed as “rslt” while producing a new code from
the original one. Also, when looking at similarities among source codes, regulating
comment lines like removing, translating into another language etc... is efficient for
decreasing similarity ratio. In Figure 3.2, it is also seen that the comment line which

gives information about “factorial” method is removed at the right code.

ORGINAL CODE COPY CODE

class Calculation class Calculate

{
{
//Recursive function which
continucusly called itself to {
calculate factorial

int factor (int inpt)
int rslt;

int factorial(int input) if (inpt==0)

{
int result; return 1:
rslt = factorial (inpt-

if (input==0) 1) *inpt ;

return 1-
result = factorial(n-1) * n; return rslt;
return result;

}
H

public class Factor
public class Factorial { . . .
{ public static vold
main (String args[])
{
Calculate object ¢ = new
Calculate () ;

public static woid main (String
args[])
{

Calculation object & = new

Calculation(): int —
in inp =

int input _ cbject_c.fact(4);

object c.fact(4);
J - (4) System.out.println ("The

System.out.println ("The result: " + inpt);

factorial of the number is : " + }
input) ; }
}

}

Figure 3.2 Comparing original and copy code

13

As a result of inspections, the following steps are selected which are common
methods to generate copy source codes. These steps are;

e Renaming identifiers,

e Adding or removing blank lines,

e Modifying the comment lines,

e Changing parameter order in functions/methods,
e Removal of functions/methods,

e Adding or removing operator space.

3.4 Relation between Source Code Similarity and Source Code Plagiarism

Day by day, software plagiarism issue becomes apperant in many fields such as
universities, private corporation, corporate firms etc... To understand whether a code
IS copy, the similarity ratios between current code and other ones are counted.
Acording to similarity ratios among the source codes, it can be understood if the

program is plagiarized or not.

There is important point that similarities among source codes don’t always reflect
plagiarism issue. A developer can take a part of an open source code while coding
any project. Other example that if a programmer let to take a part or all of his code,
there is no problem to use it by the others. However, this subject can differ in
education area. Generally, instructors don’t prefer that students use other sources
completely in their homeworks, projects etc... Because they want to be fair while
evaluating the submissions. Of course, this approach is completely true in education
area because the homeworks is given to teach something not copy. Also, utilising
web while preapering a homework is inevitable. In fact, there is no affair in that
point. However, more than one students can use the same web site and can take the
same example while preapering their submission. When instructor check the
assignments to control if they are copy or not, s/he will see that the homeworks that

is obtained by same web sites is so similar and s/he will score them as copy.

14

Briefly, the similarity and plagiarism issues can get involved. However they are
not same subject. In education area, restrictions are used for that the students do their
homework with their efforts and don’t show other’s codes as their own. So, in this

area similarity and copy terms can be consideres synonyms inverse of other areas.

3.5 Conclusion

Eventually, plagiarism issue is so impartant nearly every parts of our life. In
literature area, an author doesn’t want his work to be in use by the other ones. A
scientist absolutely oppose if avent garde idea is mentioned in his articles is used by
the other persons without his permission of him or reference. A programmer who
developed special software, spends a lot of effort on merchantable programs. Of
course s’he doesn’t allow to be received his codes by the other developers. In this
study, the critical point is understanding if software product is copy or not. If people
or corporation let to use of their informations and inputs by the other, we can not
identify it as plagiarism. However, taking some parts or entire of source code is not

permitted, the plagiarism issue is revealed.

15

CHAPTER FOUR
TEXT MINING

4.1 Definition of Text Mining

To deduce valuable information from a text document, it is necessary to apply
some processes before. While applying these processes, methods belong to Text
Mining are used. Text mining or knowledge discovery from text (KDT) is mentioned
by Feldman et al. for the first time. It uses techniques from information retrieval,
information extraction as well as natural language processing (NLP) and connects
them with the algorithms and methods of KDD, data mining, machine learning and

statistics.

Generally, Text Mining works on documents that written by using natural
language.The methods of KDD clean the documents and eliminate unnecessary,
garbage datas from the text. In addition to cleaning process, it turns the unstructured
document to structured documents to use data mining techniques on it. Figure 4.1

shows the steps of Text Mining.

Text Mining can be inspected on two main classes:

e Understanding/Summarizing Text: One aim of text mining is extracting
valuable information. So, the key which is included by text can be

understood easily.

e Modelling with Text: Generally, text mining can be used to determine. A
system of shopping web site that predict customers’ behaviours can be
developed by using Text Mining methods. Contents of text are used as

input variable and the projected model is extracted by these informations.

16

Text
Documents

~~

Preprocessing

@

Cleaning
nontextual
entry

{

Obtaining
roots of words Roots

Cleaning
stopwords

@

Stopword

List

Structured
Data

Figure 4.1 Flow diagram of text mining

4.2 Application Area of Text Mining

Text Mining generally presents sollutions for needs of scientific researchs and

businesss world. It is used in many areas such as below.
Customer Relationship Management: It extracts information from emails, web

surfings, survey of all customers. These qualified informations can be used in

fathoming out customers’ need.

17

Detecting Frauds: Some personel informations are stored in big datawarehouses
such as health institutions and organizations, banks etc... These informations can be
stolen and used by the ill-wisher persons. However, with text mining methods it can

realize when it is anormal situations in system. So the problems can be overcome.

Scientific Research: When a subject want to be researched, necessary information

can be extracted from topic or contents of articles and publications.

Security: Text mining methods can be used for predicting cyber attacks, criminal
behaviours, terrorist attacks etc... If this situations can be understood early thanks to

text mining methods, it can be prevented easily.

4.3 Methods of Text Mining

4.3.1 Natural Language Processing

Natural Language Processing is a sub-branch of computer and language sciences.
Natural Language Processing is a theoretically motivated range of computational
techniques for analyzing and representing naturally occurring texts at one or more
levels of linguistic analysis for the purpose of achieving human-like language

processing for a range of tasks or applications.

Some of work areas of NLP are:

e Paraphrase an input text,
e Translate the text into another language,
e Answer questions about the contents of the text,

e Draw inferences from the text.

18

NLP works firstly taking texts as input. And parsing processes are started. After
parsing process the obtained parts of texts are evaluated and made sense of. Figure
4.2 shows the steps of NLP briefly.

Token Sentence
Definitions Definitions
Input Sentence
E -
S
State @
| S Rules Engine

Figure 4.2 Steps of NLP

4.3.1.1 N- gram Algorithm

N-gram algorithm obtains a substring combination and finds repeat ratios of this
substring in a character array which will be compared with other strings to find
similarity. Besides using in fields of natural language processing, owing to
technological development, N-gram algorithms have started to be wused in
programming languages. The algorithm inspects documents to categorize and to find
similarities. N-gram algorithm is recognized as one of the simplest and best efficient

method that finds similarity among strings.

An N-gram algorithm starts to work with dividing a text into substrings has length
of N that is specified by the user. When reached to N-1th element of string, process
is terminated. If value of N is one, it is called uni-gram. If value of N is two, it called
bi-gram. If value of N is three, it is called tri-gram. For example, to explain tri-gram,

the results in Table 4.1 can be shown.

19

Table 4.1 Tri-grams in STRING word and frequencies of substrings

N-Gram Frequencies
STR 1
TRI 1
RIN 1
ING 1

As shown in Table 4.1, at fourth character of STRING, grouping process is
terminated so, N-gram algorithm is completed. Substrings in specified text and
frequencies of them are held to compare two or more documents.

At indexing step, the documents are partitioned into N-grams, and then each N-
grams word is added to lists correspondingly. Figure 4.3 explains the indexing step
briefly. At search step, the query is also partitioned into N-grams, and for each of
them corresponding lists are scanned using the metric.

ATLGORITHM
|
[!
Tri-grams at 0% index Tri-grams at 1% index Tri-grams at n index
alg algida, algs... lgo lgoexam, Igonline... | .- thm | THM-100T™. .

Figure 4.3 Tri-grams in “ALGORITHM”

Briefly, in this algorithm, N-gram frequencies of two documents are compared
and distances between them are measured. The distance variable takes value between
0 and 1. While the value of distance closes to 1, it is deduced that similarity ratio

increases. Otherwise, this ratio decreases.

20

In this study, the reason of choosing N-gram algorithm is providing language
independent structure and obtaining accurate results while finding similarities among
source code documents. Value of N is specified as three and tri-grams in each source

codes are compared separately to obtain similarity ratios.
4.3.2 Information Retrieval

Information retrieval (IR) is the activity of obtaining information resources
relevant to an information need from a collection of information resources. Searches

can be based on metadata or on full-text (or other content-based) indexing.

An information retrieval process begins when a user enters a query into the
system. Queries are formal statements of information needs, for example search
strings in web search engines. In information retrieval a query does not uniquely
identify a single object in the collection. Instead, several objects may match the

query, perhaps with different degrees of relevancy.

An object is an entity that is represented by information in a database. User
queries are matched against the database information. Often the documents
themselves are not kept or stored directly in the IR system, but are instead

represented in the system by document surrogates or metadata.

Most IR systems compute a numeric score on how well each object in the
database matches the query, and rank the objects according to this value. The top

ranking objects are then shown to the user.

‘ }Docu ments

INDEXER

TOKENIZING H STEMMING
Stop
I Words I Eodinos

SEARCH
ENGINE

A 4

DISPLAY

Figure 4.4 Information retrieval system

21

4.3.3 Information Extraction

Extract method is discovering relevant information and ignoring non-relevant
information in a textual data. The inputs in this method are well defined text based
queries. At the end of this process link related information and output in a

predetermined format are obtained.

Figure 4.5 shows steps of Information Extraction Model. The model takes
documents and combined it query results. So, ranked documents are created. Shortly,
all processes in this model are created to complete extraction of partial knowledge in
the text.

v
Ay

Queries about Extraction
necessary information System

ot

Combine
Query Results

Ranked
Documents

Figure 4.5 Information extraction method

4.3.4 Web Mining
Development of technology causes enormous textual information on the Web.
For example, when we look for an information from the Web, we can find a lot of

sources such as books, videos, articles, blogger comments etc...

Briefly web mining can be defined as information retrieval of textual documents

and extraction of partial knowledge using the web.

22

Figure 4.6 Web mining method

4.4 Using of Vector Space Model in Text Mining

The representation of a set of documents as vectors in a common vector space is
known as the VSM and is fundamental to a host of information retrieval operations
ranging from scoring documents on a query, document classification and document
clustering. In this model, each dimension shows a separate term. All terms in vector
have a weight that is represented as “w”. According to query result, if a document
contains a term, value of weight is counted and takes a value different from 0. In
Figure 4.7, x and y show two documents that will be compared and wi, wzand ws

indicate the weight of terms in documents.

Figure 4.7 VVector space model

23

Weights of terms can be calculated by TFXIDF method. Term Frequency (TF)
represents frequency of a term in the document. Inverse Document Frequency (IDF)
gives information about the number of times that term occurs in all documents of

collection. Equation of (TF) and (IDF) are shown in Equation 4.1 and Equation 4.2.

__ Number of times term t appears in a document
TF (t) Total number of terms in the document (41)

IDF(t) — loge — Total Number of documents (4.2)

ber of documents with termtin it

T, T, T3
Dy |dy; diz dqy
Dz d21 d22 . dzt
Dn dnl dnz dnt

Figure 4.8 Document term matrices

Document term matrix is seen in Figure 4.8. In this matrix, T represents terms in

documents, D shows documents in datasets and d indicates the frequencies of terms
in documents.

After finding the weights of all terms in vector, some vector operations are used to
compare documents to specify how they are similar. Generally, cosine of the angle
between documents is calculated. This method is called Cosine Normalization.

Equation 4.3 shows formula of Cosine Normalization.

dldz

sim = cos = ————
di1,d2 Q 1d1l1 11dz211

(4.3)

24

CHAPTR FIVE
EXTRACTING METRIC METHODS

5.1 Definition of Software Metrics

Extracting software information about previous conditions of software and using
obtained outputs for predicting software’s future are so important in software
development life cycle. So, there are many knowledge about a program and
analyzing process can be done easily. Correspondingly, having detailed datas about
software life cycle provides convenience to project managers in decision stage.
Software metrics represent units about developed software to scale and control

quality of product.

Code line count, value of complexity, error rate, cohesion are example of software
metrics. These metrics are significant to have information about programs. Software

projects can be kept down thanks to software metrics.

5.2 Using Software Metrics to Find Similarity between Source Codes

Software metrics are not only used in steps of software development life cycle.
They are used in software plagiarism issues, because they give clues about source

codes. Characteristics of programmer can be obtained by using metrics.

Source code author identification is much harder than natural language authorship
attribution or writer identification (of handwriting) or even speaker recognition. The
traditional methodology that has been followed in this area of research is divided into
two main steps .The first step is the extraction of software metrics representing the
author’s style and the second step is using these metrics to develop models that are

capable of discriminating between several authors, using a classification algorithm.

There are certain patterns that developers inherently produce based on their

particular style of coding while still following the guidelines, rules and grammar of

25

the language. Similar to analyzing prose for authorship it can be identified certain
peculiarities in the styles of software developers and use these styles determine the

authorship found in the source code of developers.

General metric examples are;
e Total Lines Count
e Code Lines Count
e Comment Lines Count
e Whitespace Lines Count
e Code / Comment Ratio
e Code/ Total Ratio
e Function Code Lines Count
e Function Return Types Number (void, int, double...)
e Style of Variables(Camel or Pascal)
e Curly Bracket Count
e |f-Else Count
e Global Variables
e Local Variables
e Global/Local Variables Ratio
e Average Indentation
e For Count
e While Count

5.3 Metrics Types

Metrics can be inspected in two categories. Some metrics give information about

general view of source code such as indentation style, placing comment lines.

5.3.1 Settlement Metrics

Programming Layout Metrics gives information general view of source codes in

code editor. When it is looked at a source code for the first time, style of code owner

26

can be understood. For example when the code in Figure 5.1 is inspected, it can be
realized at first glance that coder puts blanks lines after all code lines. Also when the
looked at code in Figure 5.2, it can be easily said that programmer chooses to write
comments below the code lines. That means the owner of code in Figure 5.2 places
importance on commenting style. These types of metrics reflect the source code view
on the editor and is named as settlement metrics.

int strchk(char *sl)

{
char *ptrl;

ptrl = sl;
while (*ptrl != 0)
if (*ptrl++ == "\t’)

return(l);

return(0);
}
Figure 5.1 Added blank lines code

/* Checks the existence of \t in string */
int check for tab in string(string)

char *string;

{

char *character pointer;

/* Loop until found or we reach EOLN */
for (character pointer = string;*character pointer != NULL;)
{

/* check to see if we found TAB */

if (* (character pointer++) == 9)

{

/* Success!! */

return (TRUE) ;

}

Figure 5.2 Comment writing style

27

In Table 5.1,

Table 5.2 and Table 5.3, other examples of metrics and their

definitions are come up.

Table 5.1 Settlement metrics

Settlement Metric

Definition ‘

Metric ST1 It indicates the indentation style. It consists of 9 sub-metrics
Metric ST2 It shows if Else keyword is written as indented

Metric ST3 It shows that the variables written as indented

Metric ST6 It gives information about comment line indentation style
Metric ST7 It gives information about blank line counts

Table 5.2 Metric ST1 sub-branches

Metric ST1 Sub-

branch

Definition

Metric ST1a It shows indentation of block code lines.

Metric ST1b It counts number of open curly brackets that is used alone in a code line.
Metric ST1c It shows percentage of open curly bracket that is used alone in a code
Metric ST1d :'? \sl\r,{ows percentage of open curly bracket that is last element in a code
Metric ST1e :'? \cl:\gunts number of closed curly brackets that is used alone in a line.
Metric ST1f It shows percentage of closed curly bracket that is used alone in a code
Metric ST1g :'? \sl\;llows percentage of open closed bracket that is last element in a code
Metric ST1h :'? \s;.ves information about open curly brackets indentation style.

Metric ST1i It gives information about closed curly brackets indentation style.

Table 5.3 Metric ST6 sub-branches

Metric ST6 Sub-

branch

Definition

Metric STY6a Information about using frame while creating comment lines.
Metric STY6b It stores percentage of aligned comment lines in program.
Metric STY6¢ Block style comment lines to all code lines ratio.

28

5.3.2 Programming Style Metrics

This type of metrics dwell on context program codes. In this part of study, it is
dealed with points such as which type of naming style (camel, pascal, etc...), loop
(for, while, do-while, etc...) the programmer generally prefers while coding, what is
the count of average length of identifier names in code etc... This kind of
informations reveal the user’s characteristics while writing program codes. So,
depending on programmer style metrics, it can be easily found out who code owner
iIs. In this part, striking feature is information about naming styles. Table 5.4, Table
5.5 and Table 5.6 shows other Programming Style Metrics examples.

Table 5.4 Programming style metrics

Programming Tamm

Style Metric

Metric PRO1 Average program lines count.

Metric PRO2 It gives information about names of variables. It can be inspected in 4
sub-metrics.

Metric PRO3 It gives information about naming style of programmer. It can be
inspected in 4 sub-metrics.

Metric PRO4 Global variable count to local variable count ratio.

Metric PRO5 Global variable count to code line number ratio.

Metric PRO7 Ayni amaca hizmet eden while, for ve do dongiilerinin kullanilis 6ncelegi
bilgisini iceren metriktir.

Table 5.5 Metric PRO2 sub-branches
Metric PRO2 Definition
Sub-branch

Metric It gives information about average length of local variables.

PRO2a

Metric It gives information about average length of global variables.

PRO2b

Metric It gives information about average length of function names.

PRO2c

Metric It gives information about average length of function parameters’ names.
PRO2d

29

Table 5.6 Metric PRO3 sub-branches

Metric PRO3 Definition
Sub-branch

Metric It indicates whether the underscore is used in naming.

PRO3a

Metric It indicates whether the coder uses a synonyms of identifier names. (for
PRO3b example tepm->tmp)

Metric Percentage of count of variable names that are started with upper case.
PRO3c

Metric Percentage of count of function names that are started with upper case.
PRO3d

30

CHAPTER SIX
EXPERIMENTAL STUDY

6.1 Experimental Datasets

In this study, there are two datasets for experimental study.

First one is existing from students’ homework projects belong to Algorithm and

Programming Course.

Second one is modified dataset that is generated from a code example by
changing specied points in the code.

6.1.1 Dataset Belong the Students Homework

In this study, first of all N-gram algorithm is tried on two different datasets.
Datasets consist of programming assignments of students who attend Software

Engineering Department in Celal Bayar University.

In this part, first dataset includes five source code documents. These documents
are obtained by changing a code example that belong to student who takes Algorithm
and Programming Course. Five copy codes are derived from an original one. While
preapering the dataset contains five document, the aim is labeling the all code
documents from non-copy to copy. For this purpose, program is changed in in

various forms. Labels are respectively copy, very similar, similar, little similar, not

copy.

Second dataset contain all programming homeworks of freshmen and
upperclassmen. While freshmen do their assignments by using C programming

language, upperclassmen use C#.

Owing to N-gram algorithm provide flexibility for all programming language, all

document in dataset of this part can be easily compared.

31

6.1.2 Modified Dataset

In this part of the study, 63 different code examples are generated by modifying
the original code example as reported in the third section of paper. The documents
which are created to test the study and to view similarity scores are called according
to their alteration style. Table 6.1 shows all acronyms of documents names and

explanations.

Table 6.1 Document name synonyms and explanations

Document Name Explanation

Dg; Adding/Removing Blank Line

Dp, Renaming ldentifiers

Dpo Changing Parameter Order

Dygs Adding/Removing Operator Space

Dgpr Relocation of Functions

Dy Modifying Comment Lines

Dcq Adding/Removing Blank Line + Renaming ldentifiers

D, Adding/Removing Blank Line + Changing Parameter Order

D3 Adding/Removing Blank Line + Adding/Removing Operator Space

Dy Adding/Removing Blank Line + Relocation of Functions

D5 Adding/Removing Blank Line + Modifying Comment Lines

Do Adding/Removing Blank Line + Renaming Identifiers + Changing
Parameter Order

D¢y Adding/Removing Blank Line Renaming Identifiers +
Adding/Removing Operator Space

Dcg Adding/Removing Blank Line + Renaming Identifiers + Relocation of
Functions

Dcg Adding/Removing Blank Line + Renaming Identifiers + Modifying
Comment Lines

Dcs5y Adding/Removing Blank Line + Renaming + Parameter Order +
Operator Space + Functions + Comment Lines

In Table 6.1, first six documents are obtained by adding or removing blank line,
changing parameter orders in methods, adding or removing spaces between operators,
relocation of functions and modifying comments. Other 57 ones are generated by

combining of the six alteration steps. According to the Table 6.1, Dg; represents the

32

documents which are formed with additional blank lines among original source code
lines.

Dpg; demonstrates the code obtained from original source code by changing
identifiers’ names. Dpy Shows the a code document yielded by changing the location
of the parameters of methods in original code. For example, let’s look at the Figure
6.1 includes a method that finds the minimum between two numbers. While
“minFunction” method in original code includes parameters “param1” and “param2”

sequentially, the copy code this parameter order relocated.

public static int public static int
minFunction(int paraml, int minFunction (int param2, int
param?) paraml)
{ {
int minimum; int minimum;
if (paraml> param?2) if (param2 > paraml)
min = param?2; min = paraml;
else else
min = paraml; min = param?2;
return min; return min;
} }
Original Code Copy Code

Figure 6.1 Comparing original and copy code (1)

D, implies spacing out before or after operators. For example, it can be easily
realized in Figure 6.2. While code block at the left side of Figure don’t include any
space before or after operator, at the left it can be easily recognized that there are

Spaces between operators.

i=i+1 i=1i+4+1

submitted +=1 submitted 4= 1

X = x*2 - 1 X =x* 2 -1

hypot2 = x*x + y*y hypotZ = x * x +y * y

c = (at+b) * (a-b) c = (a+ b)) * (a - b)
QOriginal Code ‘ Copy Code ‘

Figure 6.2 Comparing original and copy code (2)

33

Dpgr indicates changing of place of functions or methods in code lines. For
example if a function starts at 57th code lines in original code, the student who
attempt to plagiarize can move it 3rd code lines to show code as different. In the
opinion of instructors, this is one of the most common methods among students
while attempting to copy a code. Dy is obtained by modifying comment lines as

contraction or rewriting in different language.

6.2 Experimental Results

6.2.1 Results of Dataset Belong the Students Assignments

While inspecting first dataset that is created by modifying a specified code, the
results are formed by Fuzzy Logic Approach as seen in Table 6.2. In deriving new
codes from original code, process is started with fundamental change and stopped
with little change in original code. Five categories are formed with changing original

code.

These categories are;
» Copy,

e Very similar,

e Similar,

e Little Similar,

e Not copy.

N-gram results of codes in each categories and the real values are compared to test
the accuracy of study. With consequence assessments, it is seen that real sequence
from copy to not copy in categories is the same with sequence formed with N-gram

algorithm.

34

Table 6.2 Compare results of first dataset

Document Original Document

Code 1 (Copy Code) 100%
Code 2 (Very Similar) 91.2%
Code 3 (Similar) 84.8%
Code 4 (Little Similar) 69.4%
Code 5 (Not Copy) 43.7%

While evaluating second dataset which contains homeworks of freshmen and
upperclassmen in this part of study, expected result is seeing effects of language
independence. Owing to N-gram algorithm expected results are obtained and
programming assignments which are written by two different language are grouped
correctly. With these results, it is realized that 42 of 195 assignments were copy.
These results can be seen in Figure 6.3 and Figure 6.4. To validate these sitiuations,
instructors of related courses discussed with students who cheater are according to
result of program. After discussions, most of students accepted that they took the
assignment from their friends and showed as their work. This results shows the
success of N-gram algorithm detecting similarities and it can be worked on any

documents, no matter which programming language is used.

Not-Copy Coce

Number of Homewort

0 50 100 150 200 250
Number of Homework Copy Code Not- Copy Code
W Seril 195 42 153

Figure 6.3 Experimental result of dataset that contains of student’s homework

35

m Copy Code = Not- Copy Code

<

N

Figure 6.4 Percentage of copy code assignment

6.2.2 Experimental Results of Modified Dataset

After creating dataset as mentioned in the previous section, Tri-gram and VSM
Tri-gram similarity ratios are obtained and the results are showed in Table 6.3. The
results of similarity ratios are between 0 and 1. When this value approximate to 1
from 0, it can be understood that the similarity is higher between two compared

documents.

After the codes in datasets are inspected by the instructors it is obviously seen that
VSM results are more consistent. For example, according to the instructors, adding
space before or after operators is not effective while attempting to change source
code. However, when it is looked at the Table 6.3, it can be realized that the
similarity ratio between D¢ and original document is low significantly beside VSM
Tri-gram result. Even the ratio of Dyg is smaller than D,y which consist of
adding/removing blank line and renaming identifiers. The other point the instructors
especially indicate that modifying comment is more effective than adding or
removing blank lines among the code lines. However in the tri-gram results, D ¢
and Dg;, has nearly same similarity score when they compare to original code and it
is obviously seen that the difference in similarity values of Dg; and Dy, are more
coherent in VSM Tri-Gram.

36

Table 6.3 Tri-Gram and VSM Tri-Gram results

Document(Original) Tri-Gram Result VSM Tri-Gram Result
Dp, 0.96 0.98
Dr: 0.86 0.88
Dcp 0.94 0.97
Dos 0.81 0.96
Drr 0.93 0.94
Dy 0.95 0.92
Do 0.82 0.90
D¢, 0.94 0.93
Dcs 0.80 0.94
Dcs 0.90 0.92
Dcs 0.94 0.91
D¢ 0.76 0.84
D¢y 0.72 0.83
Dcg 0.74 0.81
Dco 0.78 0.80
Dcqo 0.69 0.77
D¢ 0.69 0.66

As mentioned in Section 3.3, instructors claim that students generally choose only
one alteration type while trying to change source code. Commonly used alteration
types are leaving/removing blank lines among code lines, changing identifier names,
adding/removing comment lines and replacing of code blocks of methods.
accordance with the experimental test results, doing one of these changing is not
efficient while decreasing similarity ratio. If student combines all of six steps that
mentioned in Section 3.3, the similarity among original code and copy code
decreases significantly. However, this is difficult as creating new code, so instructors

claim that students don’t exert effort and waste their time to combine more than three

steps.

37

6.2.3 Comparing Results Our Tool with Other Similarity Program

When we compare our results for one dataset with JPLAG results, we realized that
the results are similar. Both of two tool extracts same copy codes. However, our tool
find more copy codes according to JPLAG. When we inspect the other copy codes
that is catched by out tool, we saw that similarity results are consistent. While
JPLAG found 4 copy in all dataset which contains 80 assignments, our n-gram tool
found 7 copy. Also JPLAG couldn’t parse 4 documents because of including

Turkish character, but tool developed for this study parsed all of code.

Figure 6.5 and 6.6 show the results of our tool and JPLAG for the same dataset.

Number of Not-Copy Codles |

Number of Copy Codes -

Number of Codes

0 10 20 30 40 50 60 70 80 90

Number of Not-Copy
Codes

W Seril 80 7 73

Number of Codes Number of Copy Codes

Figure 6.5 Similarity Results of the tool which is developed for this study

Number of Not-Copy Codes | N

Number of Copy Codes .

Numberof oces

0 10 20 30 40 50 60 70 80 90

Number of Not-Copy
Codes

W Seril 80 4 76

Number of Codes Number of Copy Codes

Figure 6.6 Similarity Results of JPLAG

38

CHAPTER SEVEN
THE APPLICATION

In this study, a system is developed for finding similarities between source code
documents. At the beginning, only N-gram algorithm is tried on two different
datasets. According to results, it can be easily seen that the algorithm is so effective
for not only documents natural language documents, but also source code documents.
Language independence provides flexibility while evaluating programs because it
doesn’t construct user to choose any programming language. N-gram algorithms can
work with every textual documents. So, first and second experimental results are

succesfull for analyzing source code documents.

In addition to N-gram algorithm, VSM is tried on N-gram terms on other datasets
that is constructed by modifying a source code in various forms. When VSM and N-
gram model is combined, it is realized that similarity results are more consistent. So

the study is improved by VSM in second experimental study part.

At the end of the study, a metric based system is developed. Firstly, metric types
that will be used in comparing source codes are specified. Then, an interface provide
to make an examination on two similar source code documents with evaluating

metrics’ results.

7.1 Substring Matching Part

In the application both substiring matching method (N-gram algorithm) and
fingerprint control method are tried on different datasets. N-gram model is choosen
for providing language independence. So the base of this study depends on N-gram

algorithm results.
Metric based system let only analyzing a source code that is written by constraint

programming languages. So, in this study only codes written by C programming
languages can be inspected by metric based method.

39

7.1.1 N-gram Results

In this study, the base method is N-gram algorithm to analyze source codes and
detecting similarities. Firstly, bi-gram and tri-gram sub-strings are obtained from the
source codes in document set. According to N-gram algorithm the similarity results
are revealed. According to similarity scores, it is possible to say that the program is

plagiarized or not.

Figure 7.1 shows the N-gram results of dataset that is mentioned in 6.1.1.

oy File Options About

Sot Detals

Type |Full Source v Agorthms | Trigram Selected Fle 11D |1

Do Derekpar2 Selected Fie 21D |35

™ Reset Detals | | ScComp

d Flename Developer! FieName2 Deveoper2 Agorthm Distance CompareSourcetyp
11585 132802001_SerhanSansevercs | SerhanSansevercs | 132802005_OguzhanYimaz cs OguzhanYimazcs | Trigram 0689428 Full Source
1702 132802001_SerhanSansever.cs ‘Serthmvucs ‘132802006_Bhun8d<aa EthemBekei cs Trigram 0604118 Full Source
11802 [132802001_SehanSansevercs | SehanSonsevercs | 132802008 Hasanikyolcs | Hasankyolcs | Tigram 0.408941 Ful Source
11900 132802001_SehanSansevercs | SehanSansevercs | 132802009_YasinArsian cs YasnAsiancs | Tigram 0.7824%6 Ful Source
157 [132802001_SehanSansevercs | SehanSansevercs |132802010_BetiiGomek cs BetiGomakcs | Tigam 0675901 Ful Source
1215 132002001 _SeshanSansevercs | SehanSansevercs | 132802011 AmelFathErasancs | AnmetFathErsda...| Tigram 0426257 Ful Source
120 | 132802001_SehanSansevercs | SehanSansevercs | 132802013 HasanCankavakcs | HasanCanKavak... | Tigram 0553645 Ful Source
12359 [132802001_SerhanSansevercs | SethanSansevercs |132802014_Kibralnce.cs [KGbakoscs | Tagram 0514508 Full Source
12452 132802001_SerhanSansever.cs 'Sevthaneevevoa ‘132802015_“@15&:\& YalgnSahin cs anom 0567169 Ful Source
12541 [132802001_ oo | cs |132802017 OginAdsay.cs [ognAdsaycs | Tigam 0674923 Ful Source
12616 132002001 _SeshanSansevercs | SehanSansevercs | 132802018 _Ad Tirkelcs ATukelcs | Tgem 0815758 | o Sosce
e 132802001_SehanSansevercs | SehanSansevercs | 132802019 EnesBaspnarcs | EnesBaspnarcs | Tigram 0701154 Ful Source
12809 |132802001_SehanSansevercs | SethanSansevercs |132802021_GazdeAkan cs GoteNancs | Tigram 0684864 | ol Source
12886 132802001_SerhanSansever.cs 'SerhanSansevercs ‘132802022_HamuKaoucu.cs HamzaKapucucs | Trigram 0,890776 Ful Source
12998 [132802001_SechanSansevercs | SehanSansevercs |132802023_ HiseynBtancs | HiseynEdancs | Tigram 0848077 Ful Source
13120 132802001_SerhanSansever.cs ‘Sefthmvucs ‘|32802024_kaaﬁbaca CankatAbacics | Trgram 0.549047 Full Source
12259 132802001_SehanSansevercs | SehanSansevercs | 132802025 OkguSezerkakancs | OkguSezerkakan... | Tigram 0467325 Ful Source
12359 [132802001_SerhanSansevercs | SethanSansevercs | 132802027 OkanDavet cs [OxanDevitcs | Tgram 0837698 Ful Source
1486 132002001 os |SehanSansevercs | 132802029 M o M yacs | Tigram 0443951 Full Source
13598 [132802001_SehanSansevercs |SehanSansevercs |1328020%0_SeenCarkoics | SerenGarkcics | Tigram 0.711656 Ful Source
13697 132002001_SehanSensevercs | SehanSansevercs | 132802031 GilbsharGelkcs | GabaharGelkes | Togram 0570133 Ful Source
12801 1132802001 _SehanSansevercs | SehanSonsevercs | 132802032 BatuhenGunaydings | BatuhanGunayd... | Tigam 0712023 Ful Source

Figure 7.1 Similarity scores in dataset which consists of students assignments

40

Figure 7.2 shows the N-gram results of dataset that is mentioned in 6.1.2.

P ———
Sot Detols
Tpe Rl Source v Mgothns | Tngam v Selected Fle 11D |3
Developr | Doveper2 Seected e 21D |5
][PR Detsis | [SreCome

P Fenane Deveoper] FleMame2 Deveope? Agorttm Detarce CompareSoucey

v I 12202000 Ay Havno HiSEe | MDizey 132002008, Kopya,_ Hasanyol_HWS92 Kopya Tigam ogs721 Ful Source
2 132802008_ADizey_HasenMoyol_HWSEc | AtDizey 1132802008 Ol _Hasenkyal_HW1 ¢ [ognal [Togram logsmnr |l Surce
» 132602008_ADiey_Hasanibyol HWSBe | MDuey (152802008 OraDiney_Hasnbyol HWSTc |OnaDiney | Trgn |osi0051 Fl Souce
@ 132802008 A Dizey_Hasanfkyol_HWSEc | AtDiney 132802008 YokoekDitey_Hosanivyol_HWS6 | YokoekDizey | Trgram 0627258 Fll Source
m [132802008_Kopye_Hasanicyd_HWs3e | Kopya (122802008 _ADizey_HasanBiyol HWS3e | MDizey | Tiam [ogs7n |l Seurce
% 132802008 Kopye_Hosantiod_ANS9e | Kepyn 1132802008 Orai_HasanAyol_HW1 ¢ |ogna [Tooram 1 |l Surce
7 132802008 _Kepya_Hasantioo_Wo3e | Kepya 132002008 OrtaDizey_Hasaniyol HWS7c | OrtaDisey Tigan l0sts927 Ful Source
53 132802008 _Kopys_Hassny_WSHe | Kopy 132802008 YoksekDitey_Hasondyol HWc |YikseDizey | Tgam 0517476 Fll Source
188 [132802008_Oeal_Hasantiool_W1e |0l 132802008 _ADizey_HasanBiyol AWSSc | MDizey Tigam logs7n | Fu Source
w7 [132802008_Ooa_Hassneo W1 | Ogel 1192802008 Kopyo_Hasankyo WS90 |Kopya [Togram 1 [l Surce
o) |132802008 Ol Hesantigol_H1e | O 132002008 OrtaDueey_Hasanyo HWS7c | OrteDiney Tigan osessy |l Source
52 132802008 Ond_Hosantkyol_HW1c | Ogeal 132802008 YokoekDitey_Hosanivyol_HWS6 | YokoekDizey | Trgram 0517476 Fll Source
7 [132802008_OtaDizey_HasanAyol_HW37c | OnaDizey 122802008 _ADizey_HasanBiyol AWS3e | MDizey | Tirm [os10051 |l Seurce
m 122602008 OvaDizey_Hasaniyol_HWS7< | OnaDizey 132802008 _Kopya_ HasanAeyol_HWS3.c [Kepye Tigam 0645537 [t Source
o 132802008 Ortainey_Hasanbiyol_HWS7c | OtaDizey | 132802008 Onil_HasanAbyol HW1 c |ogna Tigam (055927 Ful Source
5% [132802008_OaDizey_Hosaniyul_FW97c | Onabizey 1132802008 YiksskDitey_Hosonyol_HW36c |YiksokDizey | Trgrom 07907 [Pl Source
% (132802008 _YiksekDizey_Hasantkyol_HW.. | YoksekDuzey | 132002008 ARDizey_Masanyol W33 | AMDuzey | Tigam |os2ms8 |l Source
1% 132802006, Ytiksek Dizey_Hasankyol_HW.. | YiksekDuzey | 132002008 Kopya, HasenAyol_HWS9c | oy [Trram 017076 | P Source
18 132802008 _Yiksek Dizey_Hasancyol_HW.. | YoksekDiney | 132802008 Orioal_Hasansiycl_HW1 |onat Trgram 0517478 Fl Source
@ | 132802008 YokoekDizey_Hosontyl_HW.. |YikookDiney 132802008 OntDiey Howartbgo HWSTe |OteDizey | Trgam o707 |Fi o

*

Figure 7.2 Similarity scores in dataset which consists of five modified codes

7.1.2 VSM N-gram Results

In this part of study, N-gram results of each documents are seperately stored in
document term matrices in VSM. Acording to observations of instructors that place
into our study, VSM N-gram results are more reliable. In Figure 8.3 shows similarity

ratios between Blank Line document and other documents.

Blank Line java
Blank Line java
Blank Line java

Blank Line java

Parameter 0.885053728427
0.882467532467

| identfierjava | 0864798598943 .

0.84788273615635173

0.84788273615635179

|0.84670347515427091

0.83286615276804488

Filename |Blank Line java v
FileName1 FileName2 Bigram Trigram ~ VSM Trgram Lo
» Blank Line java Blank Line j 1 1 1
Blank Line java Blank Line, ... |0,993695271453... | 0.98107918710581643 | 0.99941880358773
|Bank Linejava | Parameter | 0.988791593695 | 0.97126839523475828 | 0.98690259285228
|Bank Lnejava | Onginaljava | 0.964273204903 | 0.9569025928521373 | 0.982166967044125
|Bank Lnejava | Relocation ... | 0.969527145359.. | 0.94709180098107915 | 0.95364400840925019
[Blank Lnejava | Comment java | 0.967425569176... | 0.9453398738612474 | 0.94709180098107315
|Blank Unejava | Blank Line. ... | 0.975831873905... | 0.90364400840925019 | 0.88246753246385
|Blank Linejava | Blank Line, . | 0,882467532467... | 0,84800259824618385 | 0.84788273615535179
| Operator Sp.__ | 0.885053728427 |0.826489709550027

| 0.826489709550027
| 0.814739165720653

0A074534270823840; e
>

Figure 7.3 Bi-gram, tri-gram and VSM tri-gram results interface

41

7.2 Fingerprint System Part

7.2.1 Metric Based System

In this part of study, distinctive software metrics in source codes are determined
firstly. The metrics that are choosen for this study;

e Total lines count(including blank lines),

e Total code lines count,

e Total comment lines count,

e Total variables count,

e Mean length of variable names,

e Ratio of camel variable naming,

e Ratio of pascal variable naming,

e Ratio of while usage,

e Ratio of for usage,

¢ Ratio of do-while usage,

e Total operator number count (+, -, *, =, <, >, <=etc...),
e Count of space before or after assignment operator,
e Compound operator count (++,--, ==, etc...),

e Double question operators count (??),

e Total curly bracket count,

e Percentage of usage of curly brackets in same line,

e Percentage of usage of curly brackets in below line.

42

e Options About

glmi | PrjectSummary | Gobel Varables | Comments | Souce Code | O erthens
(& 132804006 c Fll Source Code Preprocessed Source Code
- 132804007 ¢
132804008 #include <stdio.h> A j|tinclude stdic h
& 132804010c #include <stdlib.h> #include stdlib h
g :mo"" liat main() [=ain
& 132802030 I
- 132804002
- 132804003 ¢ char karaz; kazar
& 132804004 int secin, i, cizik,masa, dolu=0; secim i cizik masa dolu 0
& 132804006 int zestozan(10]= (0); estoran(10] 0
& 132804007 int sdelu=0; sdolu 0
- 132004008 ‘(’"
B 132804010
- 132804011 ¢
- 132804013 printf(MERU: \a"}i [printt = MEND n*
- 132804015¢ printf(® \"Tum misalari listelesek\" icin 1'e b [printf * \"Tum masalari listelemek\" icin 1'e basin \n"
- 132804016 printf(® \"Sigaza icilen bolumdeki masalari lis [printf * \"Sigara icilen bolumdeki masalari listelemek ve rezervi
& 132805003 printf(® \"Sigazi icilemeyen bolumdeki masalazi [printf * \“Sigaza icilemeyen bolumdeki misalazi listelemek ve zez
32005004, printf(® \"Cikis \" icin 4'e basin \n"); jprintf * \"Cikis \" icin {'e basin \n"
i#1 - printf(™ Seciminiz: *); [princf = Seciminiz: *
132805005 scanf ("%d", isecin); scanf "3d" isecim
132805006
- 132805007 ¢ svitch(secin) secim
& 132805008 {
- 132805011¢
5 132805012¢ gese b g s
{
:3]-132“0151: printf ("Sigara icilebilen Masalar:\n"); jprinc? “Sigara icilebilem Masalar:\n"
o 132805016 Tor(isd; ic8; it io is 4
- 142802001 ¢ {
- 142802002 princf (" Masa 8d",i#l); lprince = Masa bd" i 1
¥ 142802003 if (zestozan[il=0) restoranfi] 0
- 142802004 ¢ printf(™\t BOS\n"); [print "\v BOS\n"
2802006 else
g :m;,; printf(™\t DOLT\n"); [prince "\t DOLT\n"
]
- U2802009¢ neine# (Mo - Yl fprines mar
- 1U2002011 ¢ < : < »
- 10807
Figure 7.4 One of screenshots of metric based system
i?‘*“‘:” Project Summay | Gobal Vartles | Commerts | Source Code | Orly Kertfens
#-132804002¢
2132804003 Tota Lne Court 28 Ratio of Whie Usage “
132804004 ¢ p—
3 132804006 ¢ Total Code Count 151 Ratio of For Usage 3
132804007 Tota Commert Court 0 | RetodDolkage ‘
#- 132804008 ¢ 2
#-132804010¢ Total Whiespace Count 2500
#
- 132802030¢ _—
- 132804002¢ Total Operator Count 48
3 122804003 ¢ Court of Space Before or n
13280404 Tota Varabes Court 4 Hher Assrme Opertor
- 1200 Mean e Lengh of Vaisbes 5 Compound Opesto Court (13
- 132804007 5
¥ 132804008 Ratio of Camel Variable Naming |0 Double Question Operator Count 0
#-132804010¢
Pascal Variable Naming
3 12804011 Floffoscd 0
¥-132804013¢ r
1 122804015¢ Total Parartheses Count 10
3132804016 In Same Line 2
#132005003¢ Porartheses Usage
132605004 n Below Lne 8
3 132805005 ¢ Parantheses Usage
1132805006 ¢
- 132805007
#-132805008c
3-132805011c
#-132805012¢
3 132805015¢
3132805016
- 142802001¢
¥ 142802002¢
142802003 ¢
- 142802004 ¢
- 142802006 ¢

Figure7.5 Value of metrics in a code in dataset

43

CHAPTER EIGHT
CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this study, we analyzed source code documents and try to detect similarities
among them. In accordance with this purpose, we developed an application that can
work on documents written in any programming language. So, when we search the
literature, we understood that N-gram algorithm is one of the best alternatives to

reach our aim.

Mainly, the application has three separate parts. These parts are formed with

different datasets and methods.

In fact, core of our study is N-gram algorithm. So, we began with performing N-
gram algorithm on two different datasets. Experiments on first dataset showed us that
N-gram algorithm can truly categorize documents according to similarity results.
Also, we observed that how N-gram algorithm efficient in programs written in
programming language. When N-gram results were indicated, we saw that
documents of C and C# programming languages are grouped separately. When test
process was completed, results of first part of application demonstrated that our

application did its duty successfully.

In second part, we want to enhance our study results. So, we tried to combine
VSM with N-gram algorithm. After obtaining bi-gram and tri-gram terms from each
documents, they were placed into document term matrices. The distances of these
matrices from the each other were counted with using CN method and similarity
ratios are got. When VSM tri-gram results and tri-gram results were compared, it
seems pretty obvious that VSM tri-gram results are better than tri-gram results to

detect similarities.

44

Finally, we tried metric based system. In fact, this system can work with only
specified programming language. For example, if a metric based system is developed
for testing documents written by C Programming Language, it may not work on
documents that is created using Java Programming Language. So, we tried only C
source code documents to test metric based system. Before, we look at previous
studies in literature and we decided to software metrics that are generally are used in
finding similarities between source codes. We use this system for only checking
whose metrics are similar to each other. That is, this system doesn’t return any

similarity score, it enables inspection.

After all, it can be said that the application of this study attain our goal

successfully. In each step, it can be realized that we make our study better.

8.2 Future Work

Plagiarism in programming courses is a growing problem in education. The aim
of this study is attempting to find similar source codes. Although N-gram analysis is
a well-known technique in NLP, it has been utilizing in source code analysis for a
while. In this study, the reason of selecting N-gram method is providing language
independency. In this study, firstly, we utilized only bi-gram and tri-gram methods to
check the source codes are copy or not. Also, additional to n-grams, VSM is
constructed and weights of tri-grams of all documents are placed into document
matrices separately. Then, CSM scores are obtained between matrices in VSM.
When acquired tri-gram and VSM tri-gram results are compared, it is determined by
instructors that VSM tri-gram results give more accurate outcomes. Also, we touched

on fingerprint based system with calculating some specific metric values.

In future, we would like to integrate Word Net to our proposed method that
provides finding similarities among source code. Another future direction of
proposed study is generating a system that enables to build up greater datasets to test
the study.

45

REFERENCES

Aiken, A. (2014). Moss: A system for detecting software plagiarism. Retrieved (May
25, 2015) from www.theory.stanford.edu/~aiken/moss/

Bozyigit, F., Kiling, D., Kut, A. and Kaya, M. (2015). Bulanik mantik algoritmalar1
kullanarak kaynak kod benzerligi bulma. Akademik Bilisim 2015 (in press).

Brocardo, M. L., Traore, I. and Saad, S., Woungang, I|. (2013). Authorship
verification for short messages using stylometry. Conference on Computer,

Information and Telecommunication Systems (CITS).

Cavnar, W. and Trenkle, J. (1994). N-gram-based text categorization. 3rd Annual

Symposium on Document Analysis and Information Retrieval SDAIR-94.

Chen, X., Francia, B., Li, M., McKinnon, B. and Seker, A. (2004). Shared
information and program plagiarism detection. IEEE Transaction Engineering
Education, 50(7), 1545-1551.

Cosma, G. (2008). An approach to source-code plagiarism detection and
investigation using latent semantic analysis. PhD Thesis, University of Warwick,
UK.

Culwin, F. and Lancaster, T. (2001). Plagiarism issues for higher education. VINE,
31(2), 36 — 41.

Dale, R., Mois, H. and Somers, H. (2000). Handbook of NLP. New York: Marcel
Dekker.

Ding, H. and Samadzadeh, M. H. (2004). Extraction of java program fingerprints for
software authorship identification. The Journal of Systems and Software, 72(1),
49-57.

46

Fan, W., Wallace, L., Rich, S. and Zhang, Z. (2006). Tapping into the power of text
mining. Communications of ACM, 49(9), 76-82.

Feldman, R. and Dagan, I. (1995). Kdt - knowledge discovery in texts. In
Proceedings of the First International Conference on Knowledge Discovery
(KDD), 112-117.

Frantzeskou, G., Stamatatos, E., Gritzalis, S. and Chaski, C. E. (2007). Identifying
authorship by byte-level n-grams: the source code author profile (SCAP). Journal
of Digital Evidence, 6(1), 508-515.

Frantzeskou, G., Gritzalis, E., Stamatatos, E. and Katsikas, S. (2006). Effective
identification of source code authors by using byte-level informations. Artificial

Intelligence and Innovations, 204, 508-515.

Gray, A., Sallis, P. and Macdonell, S. (1997). Software forensics: extending
authorship analysis techniques to computer programs. Proceedings of the 3rd
Biannual Conference International Association of Forensic Linguists (IAFL'97).

Jones, E. L. (2001). Metrics based plagiarism monitoring. 6th Annual CCSC
Northeastern Conference, Middlebury, Vermont, 20-21.

Joy, M. and Luck, M. (1999). Plagiarism in programming assignments. IEEE Trans.
Educ., 42(1), 129-133.

Kaohsiung, T. (2010). Computational Collective Intelligence. Second International
Conference, ICCCI 2010.

Keselj, P. and Thomas, C. (2003). N-gram based author profiles for authorship
attribution. Proceedings of the Conference Pacific Association for Computational
Linguistics, PACLINGO3, 255-264.

47

Khreisat, L. (2006). Arabic text classification using N-gram frequency statistics a
comparative study. Proceedings of the International Conference on Data Mining
(DMIN2006), Las Vegas, USA, 78-82.

Kiling, D., Bozyigit, F., Kut, A. and Kaya, M. (2015). Overview of source code
plagiarism in programming courses. International Journal of Soft Computing and
Engineering (IJSCE), 5(2), 79-85.

Krsul, 1., and Spafford, E. (1997). Authorship analysis: identifying the author of a
program. Computers and Security, 16(3), 233-248.

Malpohl, G. (2006). JPlag: Detecting software plagiarism. Retrieved May 25, 2015
from http://www.ipd.uka.de:2222/index.html

Manning, C. D., Raghavan, P. and Schiitze, H. (2009). An introduction to

information retrieval. Cambridge, England: Cambridge University Press.

Martin, B. (1994). Plagiarism: a misplaced emphasis. Journal of Information Ethics,
3(2), 36-47.

Parker, A. and Hamblen, J. (1989). Computer algorithms for plagiarism detection.
IEEE Transaction Engineering Education, 32, 94-99.

Salton, G. (1971). The SMART retrieval system - experiments in automatic document

processing. NJ, Englewood Cliffs: Prentice-Hall.

Salton, G., Wong, A. and Yang, C. S. (1975). A vector space model for information
retrieval. Journal of the American Society for Information Science, 18(11), 613-
620.

Schleimer, S., Wilkerson, D. and Aiken, A. (2003). Winnowing: local algorithms for

document fingerprinting. Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, 76-85, New York, NY, USA.

48

http://www.ipd.uka.de:2222/index.html

Whale, G. (1988). Plague: plagiarism detection using program structure. Department
of Computer Science Technical Report 8805, University of NSW, Kensington,

Australia.

Wise, M. (1996). Yap3: improved detection of similarities in computer program and
other texts. SIGCSE Bulletin, 28(1), 130-134.

Vector space model. (2009). Retrieved May 25, 2015 from http://nlp.stanford.edu/IR-
book/html/htmledition/the-vector-space-model-for-scoring-1.html

49

	S22C-6e15062510270_0001
	10077543

