

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ANALYZING SOURCE CODES AND

DETECTING SIMILARITIES

by

Fatma BOZYİĞİT

June, 2015

İZMİR

ANALYZING SOURCE CODES AND

DETECTING SIMILARITIES

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Master of

Science in Computer Engineering

by

Fatma BOZYİĞİT

June, 2015

İZMİR

iii

ACKNOWLEDGEMENTS

I would like to thank to my supervisor, Prof. Alp KUT, for his support,

supervision and useful suggestions throughout this study. It has been a privilege to

work with him.

I am deeply grateful to my advisor, Asst. Prof. Deniz KILINÇ for his detailed and

constructive comments, and for his important support throughout this work.

Finally, I would like to offer my special thanks to my family for their continuous

support and encouragement throughout my studies.

Fatma BOZYĠĞĠT

iv

ANALYZING SOURCE CODES AND DETECTING SIMILARITIES

ABSTRACT

 Plagiarism in academic institutions is often expressed as copying someone

else‟s work (i.e., another students or from sources such as books). By reason of the

fact that innovations and developments are occurred in technology of late years,

massive increase of software applications is monitored. Concordantly, plagiarism

issue becomes more significant day by day. Plagiarism of programming source codes

is an undesirable situation in the many fields of software development world.

Especially in educational field, it is obviously realized that plagiarism in

programming courses increases consistently. The aim of this study is attempting to

answer questions such as “which codes are similar?”, “what similarity ratios are?” in

order to prevent plagiarism among college students who attend programming

courses.

 There are many methods and tools are available to find similarities between

program codes. Generally traditional methods are preferable while detecting

similarities among source codes. One of these traditional methods is finding metrics

in software documents. However, different approaches are seen in recent years while

solving plagiarism problems. N-gram method that belongs Natural Language Process

(NLP) can be given as example of different approaches.

 While developing the proposed methodology, metric extraction method

(fingerprint system), N-gram algorithm and Vector Space Model (VSM) were

considered. Information Retrieval (IR) System and Cosine Normalization (CN)

methods were utilized to calculate similarity ratios.

 Experimental study was performed on datasets of two different kinds. First type

was created by collecting assignments of students who attend programming courses

in Software Engineering Department of Celal Bayar University. Second type is

v

yielded by changing source code examples in different forms. The results obtained

provide convincing evidence that the study is fit the purpose. The experimental

results about proposed methods give success when compared with the previous

methods.

Keywords: Plagiarism source code, software metrics, n-gram, vector space model,

cosine normalization.

vi

KAYNAK KODLARIN ANALİZİ VE BENZERLİK TESPİT EDİLMESİ

ÖZ

Akademik kurumlarda intihal konusu bir başkasının emeğinin çalınması olarak

açıklanmaktadır. Son yıllarda teknolojide meydana gelen yenilikler ve gelişmeler

sebebi ile yazılım uygulamaları miktarında oldukça büyük artış gözlenmektedir.

Buna paralel olarak yazılım projelerinde çalıntı konusu önemli bir sorun haline

gelmektedir. Bir programcı tarafından oluşturulmuş bir yazılımın başkaları tarafından

intihali yazılım dünyasında birçok alanda istenmeyen durumdur. Bu çalışmada,

özellikle eğitim alanında öğrenciler arasında kod paylaşımının önüne geçmek, ders

değerlendirirken haksızlıkların oluşmasını engellemek amacı ile öğrenciler tarafından

hazırlanmış olan yazılımların içerisinde hangilerinin benzerlik gösterdiği, benzerlik

oranlarının ne olduğu gibi soruların cevabının bulunması hedeflenmektedir.

Kaynak kodlar içerisinde benzerlik bulma konusunda hali hazırda kullanılan

birçok method ve araç vardır. Benzerlikleri ortaya çıkarma konusunda genellikle

geleneksel yöntemler kullanılmaktadır. Bu geleneksel yöntemlerden biri yazılıma ait

metriklerin çıkarımı ve belirlenmesidir. Bu yöntemle beraber son yıllarda farklı

methotlar da ortaya çıkarılmıştır. Bunlardan birisi doğal dil işleme alanına dâhil olan

N-gram algoritmasıdır.

Bu çalışma gerçekleştirilirken metrik çıkarma(parmak izi belirleme) yöntemi, N-

gram algoritması, Vektör Uzay Modeli ve Kosinüs Normalizasyon yöntemlerinden

faydalanılmıştır. Bilgi elde etme sistemi (IR) ve Kosinüs Normalizasyon yöntemi

benzerlik oranlarını hesaplamak için kullanılmaktadır.

Deneysel çalışmalar iki farklı tip veri seti üzerinde yapılmıştır. Ġlk veri seti Celal

Bayar Üniversitesi Yazılım Mühendisliği Bölümü öğrencilerine ait programlama

ödevlerinden oluşmaktadır. Ġkinci veri seti ise belirli bir kodun farklılaştırılması ile

elde edilmiş kaynak kodları içermektedir. Elde edilen sonuçlar çalışmanın amacına

vii

uygun bir şekilde gerçekleştirildiğini göstermektedir. Önerilen metodlara ait deneysel

sonuçlar önceki metotlar ile karşılaştırıldığında başarılı sonuçlar vermektedir.

Anahtar kelimeler: Kaynak kod hırsızlığı, yazılım metrikleri, N-gram algoriması,

vektör uzay modeli, kosinüs normalizasyonu.

viii

CONTENTS

 Page

M.Sc THESIS EXAMINATION RESULT FORM ... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZ ... vi

LIST OF FIGURES .. xi

LIST OF TABLES ... xii

CHAPTER ONE - INTRODUCTION ... 1

1.1 General ... 1

1.2 Purpose ... 2

1.3 Organization of the Thesis ... 2

CHAPTER TWO - RELATED WORKS .. 4

2.1 Literature Review .. 4

2.2 Plagiarism Detection Tools ... 7

CHAPTER THREE – PLAGIARISM ISSUE IN SOURCE CODES 10

3.1 Definition of Plagiarism .. 11

3.2 Plagiarisim in Software Area .. 12

3.3 Plagiarisim in Education Area ... 12

3.4 Relation Between Source Code Similarity and Source Code Plagiarism 14

3.4 Conclusion ... 15

CHAPTER FOUR - TEXT MINING ... 16

4.1 Description of Text Mining ... 16

ix

4.2 Application Areas of Text Mining .. 17

4.3 Techniques of Text Mining ... 17

4.3.1 Naturel Language Processing .. 17

 4.3.1.1 N-gram Algorithm .. 19

4.3.2 Information Retrieval ... 21

4.3.3 Information Extraction ... 22

4.3.4 Web Mining .. 23

4.4 Using of Vector Space Model in Text Mining .. 23

CHAPTER FIVE – EXTRACTING METRICS METHODS 26

5.1 Definition of Software Metric ... 26

5.2 Using Software Metrics to Find Similarity between Source Codes 26

5.3 Metric Types .. 27

5.3.1 Programming Layout Metric ... 27

5.3.2 Programming Style Metric .. 30

CHAPTER SIX - THE EXPERIMENTAL STUDY .. 32

6.1 Experimental Datasets ... 32

6.1.1 Dataset Belog the Students Homework ... 32

6.1.2 Modified Dataset ... 33

6.2 Experimental Results... 35

6.2.1 Results of Dataset Belog the Students Assignments 35

6.2.2 Experimental Results of Modified Dataset .. 36

6.2.3 Comparing Results Our Tool with Other Similarity Program 38

CHAPTER SEVEN – APPLICATION .. 39

7.1 Substring Matching Part .. 39

7.1.1 N-gram Results .. 40

7.1.2 VSM N-gram Results .. 41

x

7.2 Fingerprint Part .. 42

7.2.1 Metric Based Work .. 42

CHAPTER EIGHT - CONCLUSION & FUTURE WORK 44

8.1 Conclusion .. 44

8.2 Future Work ... 45

REFERENCES ... 47

xi

LIST OF FIGURES

Page

Figure 3.1 Work Plan of Copy Code Detection Tool .. 10

Figure 3.2 Comparing original and copy code ... 13

Figure 4.1 Flow diagram of Text Mining... 17

Figure 4.2 Steps of NLP ... 19

Figure 4.3 Tri-grams in “ALGORITHM” .. 20

Figure 4.4 Information retrieval system ... 22

Figure 4.5 Information extraction system .. 22

Figure 4.6 Web Mining .. 23

Figure 4.7 Vector Space Model ... 24

Figure 4.8 Document term matrice .. 24

Figure 5.1 Added blank lines code ... 28

Figure 5.2 Comment writing style ... 28

Figure 6.1 Comparing original and copy code (1) ... 34

Figure 6.2 Comparing original and copy code (2) ... 34

Figure 6.3 Experimental result of dataset that contains of student‟s homework 35

Figure 6.4 Percentage of copy code assignment .. 35

Figure 6.5 Similarity Results of the tool which is developed for this study 38

Figure 6.6 Similarity Results of JPLAG .. 38

Figure 7.1 Similarity scores in dataset which consists of students assignments 40

Figure 7.2 Similarity scores in dataset which consists of five modified codes.......... 41

Figure 7.3 Bi-gram, Tri-gram and VSM Tri-gram results interface 41

Figure 7.4 Screenshot of metric based system ... 43

Figure 7.5 Value of metrics in a code in dataset .. 43

xii

LIST OF TABLES

Page

Table 4.1 Tri-grams in STRING word and frequencies of substrings 20

Table 5.1 Programming Layout Metrics .. 29

Table 5.2 Metric STY1 Sub-branches .. 29

Table 5.3 Metric STY6 Sub-branches .. 29

Figure 5.4 Programming Style Metrics .. 30

Figure 5.5 Metric PRO2 Sub-branches .. 30

Figure 5.6 Metric PRO3 Sub-branches .. 31

Figure 6.1 Document name synonyms and explanations ... 33

Figure 6.2 Compare results of first dataset .. 36

Figure 6.3 Tri-Gram and VSM Tri-Gram Results ... 37

1

CHAPTER ONE

INTRODUCTION

1.1 General

Plagiarized code is a source code example which its source cannot be understood

in detail most of the times. If a license of software allows using entire or some parts

of source code, there is no problem while citing and using it. However, if citing or

appropriating a source code is not allowed, this is out of line in terms of ethics. This

issue is legally remarked in Intellectual and Artistic Works and while computer

programs are included in the scope of works of science, the owner of source code is

discussed as an author. Plagiarism of source code is an important problem that can be

faced every time, in everywhere. For example, using a source code of a program

which is developed specifically for a company without permission is a common

plagiarism situation. Another example can be seen in education area. Especially,

programming course instructors indicate that source code theft issues pose a major

problem while evaluating students‟ projects and home-works. Accordingly, unfair

distributions can appear in grading.

Based on continuing development of technology, applications in field of software

increase correspondingly and plagiarism stands out as a big problem. There are many

methods to understand whether code is stolen or not and to prevent code theft. One

of these methods is evaluating a software tool which finds similarity ratios among

source codes. Already developed tools are available and have been using in many

fields such as education. For example, Plague, JPlag and YAP applications are well-

known tools. Many instructors in universities use these applications in order to check

whether the assignments in programming courses are copy or not.

The necessary steps to solve plagiarism problems on source codes are much

harder than natural language processing (NLP). The traditional method is extracting

source code metrics before similarity check. However, there are some disadvantages

in this traditional approach. For example, software metrics are programming

language dependent. Metrics which are created to specify characteristics of Java

2

programming language may not be appropriate for C or Pascal. Another

disadvantage is that the metric selection is not a trivial process and usually involves

setting thresholds in order to eliminate metrics which aren‟t correlated to the

classification model.

1.2 Purpose

The aim of this study is to find the similarity ratios among source codes belonging

to a programming course and attempt to decide whether or not two or more programs

are plagiarized. To carry out study, N-gram algorithm, Vector Space Model (VSM)

and Information Retrieval (IR) system are utilized. Since N-gram algorithm is

language independent and does not contain disadvantages of traditional methods, it

has been selected in this study. Also, some metrics are extracted from the source

code examples.

In the previous studies it is utilized only bi-gram and tri-gram methods to check

the source codes are copy or not. In the thesis, bi-gram and tri-gram results are

placed into Vector Space Model and similarity ratios are found. Also some metrics

that give clue about the code writer are obtained. Furthermore, the fingerprint system

is touched on. Some software metrics are specified and value of them calculated to

scrutinize similarity results.

1.3 Organization of the Thesis

The rest of paper is organized as follows:

In Chapter 2, general information about related works and literature search about

workings in source code plagiarism issue.

Chapter 3 details plagiarism and how students create copy codes from the original

one.

3

Chapter 4 introduces the Text Mining and its methods in detail.

In Chapter 5, Fingerprint system and extracting metrics methods to find source

code similarity are described generally.

In Chapter 6, the experimental datasets that have created for the application and

experimental results are touched on.

Chapter 7 gives information about application which is developed for this study.

Chapter 8 concludes the paper and gives some information about future works.

4

CHAPTER TWO

RELATED WORKs

2.1 Literature Review

Joy and Luck dwell on plagiarism in assignments of programming courses. They

explain plagiarism as out of favor making copy of documents or source codes. In the

study, it is claimed if students in the programming course are in high number,

detecting and controlling copies in assignments can be difficult. Also similarities

among programs don‟t refer to plagiarism all the time. In the study, it is inspected

that how it can be decided about the code is copy or not. Source codes are divided

into tokens that take value as name, operator, loop etc.. After filtering out

unnecessary information, incremental comparison step is completed and similarity

ratios among codes are obtained. In incremental comparison step, pair of programs is

compared five times; in their original form, with the white spaces removed, with all

comments removed etc… So they provide obtaining more consistent similarity

results (Joy & Luck, 1999).

Jones indicates that plagiarism is an ethical problem can be faced always in the

academic area. It is also mentioned that trying to detect copy codes in programming

courses is so difficult for educators in terms of presenting proofs about copies,

wasting time and emotional burden because of charging a student as cheater. Jones

develop an application to give evidences of plagiarism to students. So, objection of

students and arguing between instructors and students can be terminated owing to

results of application. In metric based system, physical profiles that include general

parameters such as number of lines, words and characters are created at first. Then,

Helstead profiles that divide source code into tokens and store the frequencies of

tokens, is evaluated. Lastly, two profiles are combined and distances of patterns of

profiles from the each other computed (Jones, 2001).

Culwin and Thomas mention about plagiarism problem that increases in academic

institutions. They elaborate why students steal the information and show it as their

5

own while they do assignments. They perform a study to dissolve plagiarism. So,

their study helps instructors to understand which assignment is copy. The study

consist of four stage; collection, detection, confirmation and investigation. At

collection stage, students use web form submissions, so collection of assignment is

completed via Web. After collecting the data, detection stage is started and similarity

ratios among documents are obtained. At confirmation step, instructors should check

whether the similarity results are consistent. Because, two students whom similarity

ratio is high, may use same web site while doing assignments, so they cannot be

charged with plagiarism. The process is terminated with investigation step and

students who will be punished are determined. It is briefly pointed that revealing

proof of copy is so necessary to eliminate plagiarism in the study (Culwin &

Thomas, 2001).

Frantzeskou indicates that to solve authorship disputes in software area, not only

finding similarities among programs is enough, but also identifying source code

authors is necessary. So, she developed SCAP Method to specify owner of source

code. The author underscores that SCAP method is effective on all programming

language. Also, it is claimed that SCAP Method can work with simple profile

examples that include a few code lines and a few examples of profile is enough to get

good results. In SCAP, after finding N-gram frequencies, Simplified Profile

Intersection (SPI) value is counted. Value of SPI measures the intersection of source

code documents and gives a similarity ratio (Frantzeskou, 2007).

Khreisat has used N-gram algorithm with machine learning approach in Arabic

text classification study. After comparing N-gram results (1-gram, 2-gram etc.), tri-

gram has been decided by the author. The base of study has been obtaining tri-gram

frequencies. Their datasets contain Arabic text documents that was gathered from

online Arabic newspapers. Firstly, the pre-processing step has been completed to

distinguish punctuation marks, stop words from the documents. Then, N-gram

algorithm step has been started. For each document tri-gram profiles has been

generated for classification. The tri-gram results that belong each documents, has

6

been stored in text files. The last step has been calculating Mannathan and Dice

Measure for specifying the suitable category (Khreisat, 2008).

Cavnar and Trankle have preferred the N-gram method in their text classification

work, due to provide fault tolerance in textual. Usenet News Group articles have

been used while generating dataset. The corpus of working has depended on counting

and comparing N-gram frequencies. Firstly, the profiles has been created for each

category, then distance from the profile for documents in dataset have been

measured. Cavnar and Trankle have developed a simple distance measure system for

counting differences of documents from profiles. They have called it as “out of

place” measure. The distances that calculated with “out of place” measure have been

ranged and documents that have minimum distances, have placed suitable categories

(Cavnar and Trankle, 1994).

Study published by Keselj is one of the studies based N-gram algorithm. This

study have inspected source code documents which has been written with Pascal

programming language and have found similarities. After obtaining N-gram

frequencies, frequencies with the highest value have been chosen and eliminated the

other. Final step is counting Relative Distance value which is specific for Keselj‟s

study. The owner of the test document detected among the authors which has been

identified previously (Keselj, 2007).

Krsul and Spafford developed a software analyzer program to automate the

coding of software metrics. The software analyzer extracted layout, style and

structure features from 88 C programs belonging to 29 known authors. A tool was

developed to visualize the metrics collected and help select those metrics that

exhibited little within-author variation, but large between-author variation.

Discriminant function analysis was applied on the chosen subset of metrics to

classify the programs by author. The experiment achieved 73% overall accuracy

(Krsul & Spafford, 1995).

MacDonell and Gray have automated authorship identification of computer

programs written in C++. Gray, Sallis and MacDonell 1998 developed a dictionary

7

based system called IDENTIFIED (Integrated Dictionary-based Extraction of Non-

language dependent Token Information for Forensic Identification, Examination, and

Discrimination) to extract source code metrics for authorship analysis. In MacDonell

and Gray‟s 2001 work, satisfactory results were obtained for C++ programs using

case-based reasoning, feed-forward neural network, and multiple discriminant

analysis. The best prediction accuracy – at 88% for 7 different authors-- was

achieved using Case-Based Reasoning (MacDonell & Gray, 2001).

Focusing on Java source code, Ding and Samadzadeh investigated the extraction

of a set of software metrics that could be used to identify the author. A set of 56

metrics of Java programs was proposed for authorship analysis. The contributions of

the selected metrics to authorship identification were measured by canonical

discriminant analysis. Forty-six groups of programs were diversely collected. They

achieved a classification accuracy of 87.0% with the use of canonical variates (Ding

& Samadzadeh, 2004).

2.2 Tools Developed for Finding Source Code Similarities

JPlag uses the same comparison algorithm as YAP3, but with optimised run time

efficiency. In JPlag the similarity is calculated as the percentage of token strings

covered. One of the problems of JPlag is that files must parse to be included in the

comparison for plagiarism, and this causes similar files to be missed. Also, JPlag‟s

user defined parameter of minimum-match length is set to a default number.

Changing this number can alter the detection results (for better or worse) and to alter

this number one may need an understanding of the algorithm behind JPlag (i.e RKR-

GST). JPlag is implemented as a web service and contains a simple but efficient user

interface. The user interface displays a list of similar file pairs and their degree of

similarity, and a display for comparing the detected similar files by highlighting their

matching blocks of source-code fragments.

Sherlock also implements a similar algorithm to YAP3. Sherlock converts

programs into tokens and searches for sequences of lines (called runs) that are

8

common in two files. Similarly to the YAP3 algorithm Sherlock searches for runs of

maximum length. Sherlock‟s user interface displays a list of similar file pairs and

their degree of similarity, and indicates their matching blocks of source-code

fragments found within detected file pairs. In addition, Sherlock displays quick

visualisation of results in the form of a graph where each vertex represents a single

source-code file and each edge shows the degree of similarity between the two files.

The graph only displays similarity (i.e., edges) between files above the given user

defined threshold. One of the benefits of Sherlock is that, unlike JPlag, the files do

not have to parse to be included in the comparison and there are no user defined

parameters that can influence the system‟s performance. Sherlock, is an open-source

tool and its token matching procedure is easily customisable to languages other than

Java. Sherlock is a stand-alone tool and not a web-based service like JPlag and

MOSS. A stand alone tool may be more preferable to academics with regards to

checking student files for plagiarism when taking into consideration confidentiality

issues.

MOSS (Measure of Software Similarity) is based on a string-matching algorithm

that functions by dividing programs into k-grams, where a k-gram is a contiguous

substring of length k. Each k-gram is hashed and MOSS selects a subset of these

hash values as the program‟s fingerprints. Similarity is determined by the number of

fingerprints shared by the programs, i.e., the more fingerprints they share, the more

similar they are. For each pair of source-code fragments detected, the results

summary includes the number of tokens matched, the number of lines matched, and

the percentage of source-code overlap between the detected file pairs.

YAP3 converts programs into a string of tokens and compares them by using the

token matching algorithm, Running-Karp-Rabin Greedy-String-Tiling algorithm

(RKR-GST), in order to find similar source-code segments. YAP3 pre-processes the

source-code files prior to converting them into tokens. Pre-processing involves

removing comments, translating upper case letters to lower case, mapping synonyms

to a common form (i.e., function is mapped to procedure), reordering the functions

into their calling order, and removing all tokens that are not from the lexicon of the

9

target language (i.e., removing all terms that are not language reserved terms). YAP3

was developed mainly to detect breaking of code functions into multiple functions,

and to detect the reordering of independent source-code segments. The algorithm

works by comparing two strings (the pattern and the text) which involves searching

the text to find matching substrings of the pattern. Matches of substrings are called

tiles. Each tile is a match which contains a substring from the pattern and a substring

from the text. Once a match is found the status of the tokens within the tile are set to

mark. Tiles whose length is below a minimum-match length threshold are ignored.

The RKR-GST algorithm aims to find maximal matches of contiguous substring

sequences that contain tokens that have not been covered by other substrings, and

therefore to maximize the number of tokens covered by tiles.

10

CHAPTER THREE

PLAGIARISM ISSUE IN SOURCE CODES

With the development of technology, amount of software application have shown

huge increase. However, it is seen that a plagiarisim subject begins to be big trouble

in software area. We can see examples in generally big companies. While a company

pay a lot of money to software otomation, they want that the application must belong

only to them. However, other companies can take it and show themselves as owner

of software. This situation cause a big problems and actions or proceedings are

started. We can see other examples in education area. While students do their

programming homework or project, they can take other one‟s works and show it as

their study. This bothers instructors and they get worried while charging a studeny as

cheater.

Figure 3.1 Work plan of copy code detection tool

To prevent to theft of source codes, new methods are allways produced. The base

of this methods is finding similarity scores among source codes and analyzing the

results. It is determined to existence of copy codes in dataset after comparing

11

method‟s outputs. Figure 3.1 shows that work plan of methods of copy code

detection tools.

3.1 Definition of Plagiarism

Plagiarism is presenting someone else‟s work or ideas as own, with or without

their consent, by incorporating it into their work without full acknowledgement. All

published and unpublished material, whether in manuscript, printed or electronic

form, is covered under this definition. Plagiarism may be intentional or reckless, or

unintentional. Under the regulations for examinations, intentional or reckless

plagiarism is a disciplinary offence.

Plagiarism can take many forms, including the following;

 Word-by-word copying, which involves directly copying sentences or

chunks of sentences from other peoples work without providing quotations

and/or without appro priately acknowledging the original author.

 Paraphrasing, which involves closely rewriting (i.e. only changing some of

the words but not making enough changes) text written by another author

and appropriately citing the original author.

 Plagiarism of secondary sources, which involves referencing or quoting

original sources of text taken from a secondary source without obtaining

and looking up the original source.

 Plagiarism of the form of a source, is when the structure of an argument in

a source is copied without providing acknowledgments that the

„systematic dependence on the citations‟ was taken from a secondary

source. This involves looking up references and following the same

structure of the secondary source.

12

 Plagiarism of ideas, which involves using ideas originally expressed in a

source text without „any dependence on the words or form of the source‟.

 Blunt plagiarism or authorship plagiarism which is taking someone else‟s

work and putting another‟s name to it.

3.2 Plagiarism in Software Area

Plagiarisim is a crime that is at issue not only in academic area but also in

literature, art and every field of industry. One of the plagiarism types is source code

theft. Source code theft is producing a new program by modifiying a software

application without permission of code owner. Development of an application needs

a lot of works and stealing all or a part of a program is unwanted situation by

programmers.

When it is compared with other text types, it can be said that a computer program

has more rule based. So, it must be more carefull while evaluating source code

documents to detect plagiarism. There are some tools are available to prevent code

thefts nowadays. These tools are concentrate on obtaining similarity among programs

or guessing who coder is. However, there is not available certain solution againist

source code cloning yet.

3.3 Plagiarism in Education Area

 Plagiarized code is a modified and concerted version of original code which is

taken without permission of code owner. Especially, in education area, some

students, who attend programming courses, copy all or part of a program from other

students and submit the copy as their own work. When the copy code is inspected in

detail, it can be obviously seen that most of students only change the specific points

of program such as renaming variable names, adding comment lines, replacing code

blocks etc.., while creating copy codes.

At this stage of the study, it is performed a work with a team consisting of five

instructors. It is determined which parts of source code are generally modified by the

13

students while creating copy code. Instructors highlight that they realize the most

noticeable thing is renaming variables, functions and parameters when they inspect

copy codes. In this part, renaming is the most efficient step while generating dataset

that includes modified code examples to test study. For example, in Figure 1, both of

the program codes calculate the factorial of a number. While left one is original code,

the code in the right side is copy. At first glance, distinction in identifiers can be

realized easily. It is clearly seen that the name of parameter “input” is changed as

“inpt” and parameter “result” is changed as “rslt” while producing a new code from

the original one. Also, when looking at similarities among source codes, regulating

comment lines like removing, translating into another language etc… is efficient for

decreasing similarity ratio. In Figure 3.2, it is also seen that the comment line which

gives information about “factorial” method is removed at the right code.

Figure 3.2 Comparing original and copy code

14

As a result of inspections, the following steps are selected which are common

methods to generate copy source codes. These steps are;

 Renaming identifiers,

 Adding or removing blank lines,

 Modifying the comment lines,

 Changing parameter order in functions/methods,

 Removal of functions/methods,

 Adding or removing operator space.

3.4 Relation between Source Code Similarity and Source Code Plagiarism

Day by day, software plagiarism issue becomes apperant in many fields such as

universities, private corporation, corporate firms etc… To understand whether a code

is copy, the similarity ratios between current code and other ones are counted.

Acording to similarity ratios among the source codes, it can be understood if the

program is plagiarized or not.

There is important point that similarities among source codes don‟t always reflect

plagiarism issue. A developer can take a part of an open source code while coding

any project. Other example that if a programmer let to take a part or all of his code,

there is no problem to use it by the others. However, this subject can differ in

education area. Generally, instructors don‟t prefer that students use other sources

completely in their homeworks, projects etc… Because they want to be fair while

evaluating the submissions. Of course, this approach is completely true in education

area because the homeworks is given to teach something not copy. Also, utilising

web while preapering a homework is inevitable. In fact, there is no affair in that

point. However, more than one students can use the same web site and can take the

same example while preapering their submission. When instructor check the

assignments to control if they are copy or not, s/he will see that the homeworks that

is obtained by same web sites is so similar and s/he will score them as copy.

15

Briefly, the similarity and plagiarism issues can get involved. However they are

not same subject. In education area, restrictions are used for that the students do their

homework with their efforts and don‟t show other‟s codes as their own. So, in this

area similarity and copy terms can be consideres synonyms inverse of other areas.

3.5 Conclusion

Eventually, plagiarism issue is so impartant nearly every parts of our life. In

literature area, an author doesn‟t want his work to be in use by the other ones. A

scientist absolutely oppose if avent garde idea is mentioned in his articles is used by

the other persons without his permission of him or reference. A programmer who

developed special software, spends a lot of effort on merchantable programs. Of

course s/he doesn‟t allow to be received his codes by the other developers. In this

study, the critical point is understanding if software product is copy or not. If people

or corporation let to use of their informations and inputs by the other, we can not

identify it as plagiarism. However, taking some parts or entire of source code is not

permitted, the plagiarism issue is revealed.

16

CHAPTER FOUR

TEXT MINING

4.1 Definition of Text Mining

To deduce valuable information from a text document, it is necessary to apply

some processes before. While applying these processes, methods belong to Text

Mining are used. Text mining or knowledge discovery from text (KDT) is mentioned

by Feldman et al. for the first time. It uses techniques from information retrieval,

information extraction as well as natural language processing (NLP) and connects

them with the algorithms and methods of KDD, data mining, machine learning and

statistics.

Generally, Text Mining works on documents that written by using natural

language.The methods of KDD clean the documents and eliminate unnecessary,

garbage datas from the text. In addition to cleaning process, it turns the unstructured

document to structured documents to use data mining techniques on it. Figure 4.1

shows the steps of Text Mining.

Text Mining can be inspected on two main classes:

 Understanding/Summarizing Text: One aim of text mining is extracting

valuable information. So, the key which is included by text can be

understood easily.

 Modelling with Text: Generally, text mining can be used to determine. A

system of shopping web site that predict customers‟ behaviours can be

developed by using Text Mining methods. Contents of text are used as

input variable and the projected model is extracted by these informations.

17

Figure 4.1 Flow diagram of text mining

4.2 Application Area of Text Mining

 Text Mining generally presents sollutions for needs of scientific researchs and

businesss world. It is used in many areas such as below.

Customer Relationship Management: It extracts information from emails, web

surfings, survey of all customers. These qualified informations can be used in

fathoming out customers‟ need.

18

Detecting Frauds: Some personel informations are stored in big datawarehouses

such as health institutions and organizations, banks etc… These informations can be

stolen and used by the ill-wisher persons. However, with text mining methods it can

realize when it is anormal situations in system. So the problems can be overcome.

Scientific Research: When a subject want to be researched, necessary information

can be extracted from topic or contents of articles and publications.

Security: Text mining methods can be used for predicting cyber attacks, criminal

behaviours, terrorist attacks etc… If this situations can be understood early thanks to

text mining methods, it can be prevented easily.

4.3 Methods of Text Mining

4.3.1 Natural Language Processing

Natural Language Processing is a sub-branch of computer and language sciences.

Natural Language Processing is a theoretically motivated range of computational

techniques for analyzing and representing naturally occurring texts at one or more

levels of linguistic analysis for the purpose of achieving human-like language

processing for a range of tasks or applications.

Some of work areas of NLP are:

 Paraphrase an input text,

 Translate the text into another language,

 Answer questions about the contents of the text,

 Draw inferences from the text.

19

NLP works firstly taking texts as input. And parsing processes are started. After

parsing process the obtained parts of texts are evaluated and made sense of. Figure

4.2 shows the steps of NLP briefly.

Figure 4.2 Steps of NLP

4.3.1.1 N- gram Algorithm

N-gram algorithm obtains a substring combination and finds repeat ratios of this

substring in a character array which will be compared with other strings to find

similarity. Besides using in fields of natural language processing, owing to

technological development, N-gram algorithms have started to be used in

programming languages. The algorithm inspects documents to categorize and to find

similarities. N-gram algorithm is recognized as one of the simplest and best efficient

method that finds similarity among strings.

An N-gram algorithm starts to work with dividing a text into substrings has length

of N that is specified by the user. When reached to N-1th element of string, process

is terminated. If value of N is one, it is called uni-gram. If value of N is two, it called

bi-gram. If value of N is three, it is called tri-gram. For example, to explain tri-gram,

the results in Table 4.1 can be shown.

20

Table 4.1 Tri-grams in STRING word and frequencies of substrings

 N-Gram Frequencies

N-Gram

Frequencies

STR 1

TRI 1

RIN 1

ING 1

As shown in Table 4.1, at fourth character of STRING, grouping process is

terminated so, N-gram algorithm is completed. Substrings in specified text and

frequencies of them are held to compare two or more documents.

At indexing step, the documents are partitioned into N-grams, and then each N-

grams word is added to lists correspondingly. Figure 4.3 explains the indexing step

briefly. At search step, the query is also partitioned into N-grams, and for each of

them corresponding lists are scanned using the metric.

Figure 4.3 Tri-grams in “ALGORITHM”

Briefly, in this algorithm, N-gram frequencies of two documents are compared

and distances between them are measured. The distance variable takes value between

0 and 1. While the value of distance closes to 1, it is deduced that similarity ratio

increases. Otherwise, this ratio decreases.

21

In this study, the reason of choosing N-gram algorithm is providing language

independent structure and obtaining accurate results while finding similarities among

source code documents. Value of N is specified as three and tri-grams in each source

codes are compared separately to obtain similarity ratios.

4.3.2 Information Retrieval

Information retrieval (IR) is the activity of obtaining information resources

relevant to an information need from a collection of information resources. Searches

can be based on metadata or on full-text (or other content-based) indexing.

An information retrieval process begins when a user enters a query into the

system. Queries are formal statements of information needs, for example search

strings in web search engines. In information retrieval a query does not uniquely

identify a single object in the collection. Instead, several objects may match the

query, perhaps with different degrees of relevancy.

An object is an entity that is represented by information in a database. User

queries are matched against the database information. Often the documents

themselves are not kept or stored directly in the IR system, but are instead

represented in the system by document surrogates or metadata.

Most IR systems compute a numeric score on how well each object in the

database matches the query, and rank the objects according to this value. The top

ranking objects are then shown to the user.

Figure 4.4 Information retrieval system

22

4.3.3 Information Extraction

Extract method is discovering relevant information and ignoring non-relevant

information in a textual data. The inputs in this method are well defined text based

queries. At the end of this process link related information and output in a

predetermined format are obtained.

Figure 4.5 shows steps of Information Extraction Model. The model takes

documents and combined it query results. So, ranked documents are created. Shortly,

all processes in this model are created to complete extraction of partial knowledge in

the text.

Figure 4.5 Information extraction method

4.3.4 Web Mining

Development of technology causes enormous textual information on the Web.

For example, when we look for an information from the Web, we can find a lot of

sources such as books, videos, articles, blogger comments etc…

 Briefly web mining can be defined as information retrieval of textual documents

and extraction of partial knowledge using the web.

23

Figure 4.6 Web mining method

4.4 Using of Vector Space Model in Text Mining

The representation of a set of documents as vectors in a common vector space is

known as the VSM and is fundamental to a host of information retrieval operations

ranging from scoring documents on a query, document classification and document

clustering. In this model, each dimension shows a separate term. All terms in vector

have a weight that is represented as “𝑤”. According to query result, if a document

contains a term, value of weight is counted and takes a value different from 0. In

Figure 4.7, x and y show two documents that will be compared and 𝑤1, 𝑤2 and 𝑤3

indicate the weight of terms in documents.

Figure 4.7 Vector space model

24

Weights of terms can be calculated by TF×IDF method. Term Frequency (TF)

represents frequency of a term in the document. Inverse Document Frequency (IDF)

gives information about the number of times that term occurs in all documents of

collection. Equation of (TF) and (IDF) are shown in Equation 4.1 and Equation 4.2.

 ()

 (4.1)

 ()

 (4.2)

Figure 4.8 Document term matrices

Document term matrix is seen in Figure 4.8. In this matrix, T represents terms in

documents, D shows documents in datasets and d indicates the frequencies of terms

in documents.

 After finding the weights of all terms in vector, some vector operations are used to

compare documents to specify how they are similar. Generally, cosine of the angle

between documents is calculated. This method is called Cosine Normalization.

Equation 4.3 shows formula of Cosine Normalization.

 (4.3)

25

CHAPTR FIVE

EXTRACTING METRIC METHODS

5.1 Definition of Software Metrics

Extracting software information about previous conditions of software and using

obtained outputs for predicting software‟s future are so important in software

development life cycle. So, there are many knowledge about a program and

analyzing process can be done easily. Correspondingly, having detailed datas about

software life cycle provides convenience to project managers in decision stage.

Software metrics represent units about developed software to scale and control

quality of product.

Code line count, value of complexity, error rate, cohesion are example of software

metrics. These metrics are significant to have information about programs. Software

projects can be kept down thanks to software metrics.

5.2 Using Software Metrics to Find Similarity between Source Codes

Software metrics are not only used in steps of software development life cycle.

They are used in software plagiarism issues, because they give clues about source

codes. Characteristics of programmer can be obtained by using metrics.

Source code author identification is much harder than natural language authorship

attribution or writer identification (of handwriting) or even speaker recognition. The

traditional methodology that has been followed in this area of research is divided into

two main steps .The first step is the extraction of software metrics representing the

author‟s style and the second step is using these metrics to develop models that are

capable of discriminating between several authors, using a classification algorithm.

There are certain patterns that developers inherently produce based on their

particular style of coding while still following the guidelines, rules and grammar of

26

the language. Similar to analyzing prose for authorship it can be identified certain

peculiarities in the styles of software developers and use these styles determine the

authorship found in the source code of developers.

General metric examples are;

 Total Lines Count

 Code Lines Count

 Comment Lines Count

 Whitespace Lines Count

 Code / Comment Ratio

 Code / Total Ratio

 Function Code Lines Count

 Function Return Types Number (void, int, double…)

 Style of Variables(Camel or Pascal)

 Curly Bracket Count

 If-Else Count

 Global Variables

 Local Variables

 Global/Local Variables Ratio

 Average Indentation

 For Count

 While Count

5.3 Metrics Types

Metrics can be inspected in two categories. Some metrics give information about

general view of source code such as indentation style, placing comment lines.

5.3.1 Settlement Metrics

Programming Layout Metrics gives information general view of source codes in

code editor. When it is looked at a source code for the first time, style of code owner

IR / IE

System

Documents

source

Ranked

Documents

Web

Query

Spider

27

can be understood. For example when the code in Figure 5.1 is inspected, it can be

realized at first glance that coder puts blanks lines after all code lines. Also when the

looked at code in Figure 5.2, it can be easily said that programmer chooses to write

comments below the code lines. That means the owner of code in Figure 5.2 places

importance on commenting style. These types of metrics reflect the source code view

on the editor and is named as settlement metrics.

int strchk(char *s1)

{

char *ptr1;

ptr1 = s1;

while(*ptr1 != 0)

if(*ptr1++ == ’\t’)

return(1);

return(0);

}

Figure 5.1 Added blank lines code

/* Checks the existence of \t in string */

int check_for_tab_in_string(string)

char *string;

{

char *character_pointer;

/* Loop until found or we reach EOLN */

for(character_pointer = string;*character_pointer != NULL;)

{

/* check to see if we found TAB */

if(*(character_pointer++) == 9)

{

/* Success!! */

return(TRUE);

}

Figure 5.2 Comment writing style

28

In Table 5.1, Table 5.2 and Table 5.3, other examples of metrics and their

definitions are come up.

Table 5.1 Settlement metrics

Settlement Metric Definition

Metric ST1 It indicates the indentation style. It consists of 9 sub-metrics

Metric ST2 It shows if Else keyword is written as indented

Metric ST3 It shows that the variables written as indented

Metric ST6 It gives information about comment line indentation style

Metric ST7 It gives information about blank line counts

Table 5.2 Metric ST1 sub-branches

Metric ST1 Sub-

branch

Definition

Metric ST1a It shows indentation of block code lines.

Metric ST1b It counts number of open curly brackets that is used alone in a code line.

Metric ST1c It shows percentage of open curly bracket that is used alone in a code

row.

Metric ST1d It shows percentage of open curly bracket that is last element in a code

row.

Metric ST1e It counts number of closed curly brackets that is used alone in a line.

Metric ST1f It shows percentage of closed curly bracket that is used alone in a code

row.

Metric ST1g It shows percentage of open closed bracket that is last element in a code

row.

Metric ST1h It gives information about open curly brackets indentation style.

Metric ST1i It gives information about closed curly brackets indentation style.

Table 5.3 Metric ST6 sub-branches

Metric ST6 Sub-

branch

Definition

Metric STY6a Information about using frame while creating comment lines.

Metric STY6b It stores percentage of aligned comment lines in program.

Metric STY6c Block style comment lines to all code lines ratio.

29

5.3.2 Programming Style Metrics

 This type of metrics dwell on context program codes. In this part of study, it is

dealed with points such as which type of naming style (camel, pascal, etc...), loop

(for, while, do-while, etc…) the programmer generally prefers while coding, what is

the count of average length of identifier names in code etc… This kind of

informations reveal the user‟s characteristics while writing program codes. So,

depending on programmer style metrics, it can be easily found out who code owner

is. In this part, striking feature is information about naming styles. Table 5.4, Table

5.5 and Table 5.6 shows other Programming Style Metrics examples.

Table 5.4 Programming style metrics

Programming

Style Metric

Tanım

Metric PRO1 Average program lines count.

Metric PRO2 It gives information about names of variables. It can be inspected in 4
sub-metrics.

Metric PRO3 It gives information about naming style of programmer. It can be
inspected in 4 sub-metrics.

Metric PRO4 Global variable count to local variable count ratio.

Metric PRO5 Global variable count to code line number ratio.

Metric PRO7 Aynı amaca hizmet eden while, for ve do döngülerinin kullanılış önceleği
bilgisini içeren metriktir.

Table 5.5 Metric PRO2 sub-branches

Metric PRO2

Sub-branch

Definition

Metric
PRO2a

It gives information about average length of local variables.

Metric
PRO2b

It gives information about average length of global variables.

Metric
PRO2c

It gives information about average length of function names.

Metric
PRO2d

It gives information about average length of function parameters’ names.

30

Table 5.6 Metric PRO3 sub-branches

Metric PRO3

Sub-branch

Definition

Metric

PRO3a

It indicates whether the underscore is used in naming.

Metric

PRO3b

It indicates whether the coder uses a synonyms of identifier names. (for

example tepm->tmp)

Metric

PRO3c

Percentage of count of variable names that are started with upper case.

Metric

PRO3d

Percentage of count of function names that are started with upper case.

31

CHAPTER SIX

EXPERIMENTAL STUDY

6.1 Experimental Datasets

In this study, there are two datasets for experimental study.

First one is existing from students‟ homework projects belong to Algorithm and

Programming Course.

Second one is modified dataset that is generated from a code example by

changing specied points in the code.

6.1.1 Dataset Belong the Students Homework

In this study, first of all N-gram algorithm is tried on two different datasets.

Datasets consist of programming assignments of students who attend Software

Engineering Department in Celal Bayar University.

In this part, first dataset includes five source code documents. These documents

are obtained by changing a code example that belong to student who takes Algorithm

and Programming Course. Five copy codes are derived from an original one. While

preapering the dataset contains five document, the aim is labeling the all code

documents from non-copy to copy. For this purpose, program is changed in in

various forms. Labels are respectively copy, very similar, similar, little similar, not

copy.

Second dataset contain all programming homeworks of freshmen and

upperclassmen. While freshmen do their assignments by using C programming

language, upperclassmen use C#.

Owing to N-gram algorithm provide flexibility for all programming language, all

document in dataset of this part can be easily compared.

32

6.1.2 Modified Dataset

In this part of the study, 63 different code examples are generated by modifying

the original code example as reported in the third section of paper. The documents

which are created to test the study and to view similarity scores are called according

to their alteration style. Table 6.1 shows all acronyms of documents names and

explanations.

Table 6.1 Document name synonyms and explanations

Document Name

Explanation

 Adding/Removing Blank Line

 Renaming Identifiers

 Changing Parameter Order

 Adding/Removing Operator Space

 Relocation of Functions

 Modifying Comment Lines

 Adding/Removing Blank Line + Renaming Identifiers

 Adding/Removing Blank Line + Changing Parameter Order

 Adding/Removing Blank Line + Adding/Removing Operator Space

 Adding/Removing Blank Line + Relocation of Functions

 Adding/Removing Blank Line + Modifying Comment Lines

 Adding/Removing Blank Line + Renaming Identifiers + Changing

Parameter Order

 Adding/Removing Blank Line Renaming Identifiers +

Adding/Removing Operator Space

 Adding/Removing Blank Line + Renaming Identifiers + Relocation of

Functions

 Adding/Removing Blank Line + Renaming Identifiers + Modifying

Comment Lines

 … …………………………………………………………………………..

 … …………………………………………………………………………..

 Adding/Removing Blank Line + Renaming + Parameter Order +

Operator Space + Functions + Comment Lines

In Table 6.1, first six documents are obtained by adding or removing blank line,

changing parameter orders in methods, adding or removing spaces between operators,

relocation of functions and modifying comments. Other 57 ones are generated by

combining of the six alteration steps. According to the Table 6.1, represents the

33

documents which are formed with additional blank lines among original source code

lines.

 demonstrates the code obtained from original source code by changing

identifiers‟ names. shows the a code document yielded by changing the location

of the parameters of methods in original code. For example, let‟s look at the Figure

6.1 includes a method that finds the minimum between two numbers. While

“minFunction” method in original code includes parameters “param1” and “param2”

sequentially, the copy code this parameter order relocated.

Figure 6.1 Comparing original and copy code (1)

 implies spacing out before or after operators. For example, it can be easily

realized in Figure 6.2. While code block at the left side of Figure don‟t include any

space before or after operator, at the left it can be easily recognized that there are

spaces between operators.

Figure 6.2 Comparing original and copy code (2)

34

 indicates changing of place of functions or methods in code lines. For

example if a function starts at 57th code lines in original code, the student who

attempt to plagiarize can move it 3rd code lines to show code as different. In the

opinion of instructors, this is one of the most common methods among students

while attempting to copy a code. is obtained by modifying comment lines as

contraction or rewriting in different language.

6.2 Experimental Results

6.2.1 Results of Dataset Belong the Students Assignments

While inspecting first dataset that is created by modifying a specified code, the

results are formed by Fuzzy Logic Approach as seen in Table 6.2. In deriving new

codes from original code, process is started with fundamental change and stopped

with little change in original code. Five categories are formed with changing original

code.

These categories are;

 Copy,

 Very similar,

 Similar,

 Little Similar,

 Not copy.

N-gram results of codes in each categories and the real values are compared to test

the accuracy of study. With consequence assessments, it is seen that real sequence

from copy to not copy in categories is the same with sequence formed with N-gram

algorithm.

35

Table 6.2 Compare results of first dataset

Document Original Document

Code 1 (Copy Code) 100%

Code 2 (Very Similar) 91.2%

Code 3 (Similar) 84.8%

Code 4 (Little Similar) 69.4%

Code 5 (Not Copy) 43.7%

While evaluating second dataset which contains homeworks of freshmen and

upperclassmen in this part of study, expected result is seeing effects of language

independence. Owing to N-gram algorithm expected results are obtained and

programming assignments which are written by two different language are grouped

correctly. With these results, it is realized that 42 of 195 assignments were copy.

These results can be seen in Figure 6.3 and Figure 6.4. To validate these sitiuations,

instructors of related courses discussed with students who cheater are according to

result of program. After discussions, most of students accepted that they took the

assignment from their friends and showed as their work. This results shows the

success of N-gram algorithm detecting similarities and it can be worked on any

documents, no matter which programming language is used.

Figure 6.3 Experimental result of dataset that contains of student‟s homework

0 50 100 150 200 250

Number of Homework

Copy Code

Not- Copy Code

Number of Homework Copy Code Not- Copy Code

Seri 1 195 42 153

36

Figure 6.4 Percentage of copy code assignment

6.2.2 Experimental Results of Modified Dataset

After creating dataset as mentioned in the previous section, Tri-gram and VSM

Tri-gram similarity ratios are obtained and the results are showed in Table 6.3. The

results of similarity ratios are between 0 and 1. When this value approximate to 1

from 0, it can be understood that the similarity is higher between two compared

documents.

After the codes in datasets are inspected by the instructors it is obviously seen that

VSM results are more consistent. For example, according to the instructors, adding

space before or after operators is not effective while attempting to change source

code. However, when it is looked at the Table 6.3, it can be realized that the

similarity ratio between and original document is low significantly beside VSM

Tri-gram result. Even the ratio of is smaller than which consist of

adding/removing blank line and renaming identifiers. The other point the instructors

especially indicate that modifying comment is more effective than adding or

removing blank lines among the code lines. However in the tri-gram results,

and has nearly same similarity score when they compare to original code and it

is obviously seen that the difference in similarity values of and are more

coherent in VSM Tri-Gram.

21%

79%

Copy Code Not- Copy Code

37

Table 6.3 Tri-Gram and VSM Tri-Gram results

Document(Original)

Tri-Gram Result

VSM Tri-Gram Result

 1 1

 0.96 0.98

 0.86 0.88

 0.94 0.97

 0.81 0.96

 0.93 0.94

 0.95 0.92

 0.82 0.90

 0.94 0.93

 0.80 0.94

 0.90 0.92

 0.94 0.91

 0.76 0.84

 0.72 0.83

 0.74 0.81

 0.78 0.80

 0.69 0.77

… … …

… … …

 0.69 0.66

As mentioned in Section 3.3, instructors claim that students generally choose only

one alteration type while trying to change source code. Commonly used alteration

types are leaving/removing blank lines among code lines, changing identifier names,

adding/removing comment lines and replacing of code blocks of methods. In

accordance with the experimental test results, doing one of these changing is not

efficient while decreasing similarity ratio. If student combines all of six steps that

mentioned in Section 3.3, the similarity among original code and copy code

decreases significantly. However, this is difficult as creating new code, so instructors

claim that students don‟t exert effort and waste their time to combine more than three

steps.

38

6.2.3 Comparing Results Our Tool with Other Similarity Program

When we compare our results for one dataset with JPLAG results, we realized that

the results are similar. Both of two tool extracts same copy codes. However, our tool

find more copy codes according to JPLAG. When we inspect the other copy codes

that is catched by out tool, we saw that similarity results are consistent. While

JPLAG found 4 copy in all dataset which contains 80 assignments, our n-gram tool

found 7 copy. Also JPLAG couldn‟t parse 4 documents because of including

Turkish character, but tool developed for this study parsed all of code.

Figure 6.5 and 6.6 show the results of our tool and JPLAG for the same dataset.

Figure 6.5 Similarity Results of the tool which is developed for this study

Figure 6.6 Similarity Results of JPLAG

0 10 20 30 40 50 60 70 80 90

Number of Codes

Number of Copy Codes

Number of Not-Copy Codes

Number of Codes Number of Copy Codes
Number of Not-Copy

Codes

Seri 1 80 7 73

0 10 20 30 40 50 60 70 80 90

Number of Codes

Number of Copy Codes

Number of Not-Copy Codes

Number of Codes Number of Copy Codes
Number of Not-Copy

Codes

Seri 1 80 4 76

39

CHAPTER SEVEN

THE APPLICATION

 In this study, a system is developed for finding similarities between source code

documents. At the beginning, only N-gram algorithm is tried on two different

datasets. According to results, it can be easily seen that the algorithm is so effective

for not only documents natural language documents, but also source code documents.

Language independence provides flexibility while evaluating programs because it

doesn‟t construct user to choose any programming language. N-gram algorithms can

work with every textual documents. So, first and second experimental results are

succesfull for analyzing source code documents.

 In addition to N-gram algorithm, VSM is tried on N-gram terms on other datasets

that is constructed by modifying a source code in various forms. When VSM and N-

gram model is combined, it is realized that similarity results are more consistent. So

the study is improved by VSM in second experimental study part.

At the end of the study, a metric based system is developed. Firstly, metric types

that will be used in comparing source codes are specified. Then, an interface provide

to make an examination on two similar source code documents with evaluating

metrics‟ results.

7.1 Substring Matching Part

 In the application both substiring matching method (N-gram algorithm) and

fingerprint control method are tried on different datasets. N-gram model is choosen

for providing language independence. So the base of this study depends on N-gram

algorithm results.

 Metric based system let only analyzing a source code that is written by constraint

programming languages. So, in this study only codes written by C programming

languages can be inspected by metric based method.

40

7.1.1 N-gram Results

In this study, the base method is N-gram algorithm to analyze source codes and

detecting similarities. Firstly, bi-gram and tri-gram sub-strings are obtained from the

source codes in document set. According to N-gram algorithm the similarity results

are revealed. According to similarity scores, it is possible to say that the program is

plagiarized or not.

Figure 7.1 shows the N-gram results of dataset that is mentioned in 6.1.1.

Figure 7.1 Similarity scores in dataset which consists of students assignments

41

Figure 7.2 shows the N-gram results of dataset that is mentioned in 6.1.2.

Figure 7.2 Similarity scores in dataset which consists of five modified codes

7.1.2 VSM N-gram Results

In this part of study, N-gram results of each documents are seperately stored in

document term matrices in VSM. Acording to observations of instructors that place

into our study, VSM N-gram results are more reliable. In Figure 8.3 shows similarity

ratios between Blank Line document and other documents.

Figure 7.3 Bi-gram, tri-gram and VSM tri-gram results interface

42

7.2 Fingerprint System Part

7.2.1 Metric Based System

In this part of study, distinctive software metrics in source codes are determined

firstly. The metrics that are choosen for this study;

 Total lines count(including blank lines),

 Total code lines count,

 Total comment lines count,

 Total variables count,

 Mean length of variable names,

 Ratio of camel variable naming,

 Ratio of pascal variable naming,

 Ratio of while usage,

 Ratio of for usage,

 Ratio of do-while usage,

 Total operator number count (+, -, *, =, <, >, <= etc…),

 Count of space before or after assignment operator,

 Compound operator count (++,--, ==, etc…),

 Double question operators count (??),

 Total curly bracket count,

 Percentage of usage of curly brackets in same line,

 Percentage of usage of curly brackets in below line.

43

Figure 7.4 One of screenshots of metric based system

Figure7.5 Value of metrics in a code in dataset

44

CHAPTER EIGHT

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this study, we analyzed source code documents and try to detect similarities

among them. In accordance with this purpose, we developed an application that can

work on documents written in any programming language. So, when we search the

literature, we understood that N-gram algorithm is one of the best alternatives to

reach our aim.

Mainly, the application has three separate parts. These parts are formed with

different datasets and methods.

In fact, core of our study is N-gram algorithm. So, we began with performing N-

gram algorithm on two different datasets. Experiments on first dataset showed us that

N-gram algorithm can truly categorize documents according to similarity results.

Also, we observed that how N-gram algorithm efficient in programs written in

programming language. When N-gram results were indicated, we saw that

documents of C and C# programming languages are grouped separately. When test

process was completed, results of first part of application demonstrated that our

application did its duty successfully.

In second part, we want to enhance our study results. So, we tried to combine

VSM with N-gram algorithm. After obtaining bi-gram and tri-gram terms from each

documents, they were placed into document term matrices. The distances of these

matrices from the each other were counted with using CN method and similarity

ratios are got. When VSM tri-gram results and tri-gram results were compared, it

seems pretty obvious that VSM tri-gram results are better than tri-gram results to

detect similarities.

45

Finally, we tried metric based system. In fact, this system can work with only

specified programming language. For example, if a metric based system is developed

for testing documents written by C Programming Language, it may not work on

documents that is created using Java Programming Language. So, we tried only C

source code documents to test metric based system. Before, we look at previous

studies in literature and we decided to software metrics that are generally are used in

finding similarities between source codes. We use this system for only checking

whose metrics are similar to each other. That is, this system doesn‟t return any

similarity score, it enables inspection.

After all, it can be said that the application of this study attain our goal

successfully. In each step, it can be realized that we make our study better.

8.2 Future Work

Plagiarism in programming courses is a growing problem in education. The aim

of this study is attempting to find similar source codes. Although N-gram analysis is

a well-known technique in NLP, it has been utilizing in source code analysis for a

while. In this study, the reason of selecting N-gram method is providing language

independency. In this study, firstly, we utilized only bi-gram and tri-gram methods to

check the source codes are copy or not. Also, additional to n-grams, VSM is

constructed and weights of tri-grams of all documents are placed into document

matrices separately. Then, CSM scores are obtained between matrices in VSM.

When acquired tri-gram and VSM tri-gram results are compared, it is determined by

instructors that VSM tri-gram results give more accurate outcomes. Also, we touched

on fingerprint based system with calculating some specific metric values.

In future, we would like to integrate Word Net to our proposed method that

provides finding similarities among source code. Another future direction of

proposed study is generating a system that enables to build up greater datasets to test

the study.

46

REFERENCES

Aiken, A. (2014). Moss: A system for detecting software plagiarism. Retrieved (May

25, 2015) from www.theory.stanford.edu/~aiken/moss/

Bozyigit, F., Kılınç, D., Kut, A. and Kaya, M. (2015). Bulanık mantık algoritmaları

kullanarak kaynak kod benzerliği bulma. Akademik Bilişim 2015 (in press).

Brocardo, M. L., Traore, I. and Saad, S., Woungang, I. (2013). Authorship

verification for short messages using stylometry. Conference on Computer,

Information and Telecommunication Systems (CITS).

Cavnar, W. and Trenkle, J. (1994). N-gram-based text categorization. 3rd Annual

Symposium on Document Analysis and Information Retrieval SDAIR-94.

Chen, X., Francia, B., Li, M., McKinnon, B. and Seker, A. (2004). Shared

information and program plagiarism detection. IEEE Transaction Engineering

Education, 50(7), 1545-1551.

Cosma, G. (2008). An approach to source-code plagiarism detection and

investigation using latent semantic analysis. PhD Thesis, University of Warwick,

UK.

Culwin, F. and Lancaster, T. (2001). Plagiarism issues for higher education. VINE,

31(2), 36 – 41.

Dale, R., Mois, H. and Somers, H. (2000). Handbook of NLP. New York: Marcel

Dekker.

Ding, H. and Samadzadeh, M. H. (2004). Extraction of java program fingerprints for

software authorship identification. The Journal of Systems and Software, 72(1),

49-57.

47

Fan, W., Wallace, L., Rich, S. and Zhang, Z. (2006). Tapping into the power of text

mining. Communications of ACM, 49(9), 76-82.

Feldman, R. and Dagan, I. (1995). Kdt - knowledge discovery in texts. In

Proceedings of the First International Conference on Knowledge Discovery

(KDD), 112–117.

Frantzeskou, G., Stamatatos, E., Gritzalis, S. and Chaski, C. E. (2007). Identifying

authorship by byte-level n-grams: the source code author profile (SCAP). Journal

of Digital Evidence, 6(1), 508-515.

Frantzeskou, G., Gritzalis, E., Stamatatos, E. and Katsikas, S. (2006). Effective

identification of source code authors by using byte-level informations. Artificial

Intelligence and Innovations, 204, 508-515.

Gray, A., Sallis, P. and Macdonell, S. (1997). Software forensics: extending

authorship analysis techniques to computer programs. Proceedings of the 3rd

Biannual Conference International Association of Forensic Linguists (IAFL'97).

Jones, E. L. (2001). Metrics based plagiarism monitoring. 6th Annual CCSC

Northeastern Conference, Middlebury, Vermont, 20-21.

Joy, M. and Luck, M. (1999). Plagiarism in programming assignments. IEEE Trans.

Educ., 42(1), 129–133.

Kaohsiung, T. (2010). Computational Collective Intelligence. Second International

Conference, ICCCI 2010.

Keselj, P. and Thomas, C. (2003). N-gram based author profiles for authorship

attribution. Proceedings of the Conference Pacific Association for Computational

Linguistics, PACLING03, 255-264.

48

Khreisat, L. (2006). Arabic text classification using N-gram frequency statistics a

comparative study. Proceedings of the International Conference on Data Mining

(DMIN2006), Las Vegas, USA, 78-82.

Kılınç, D., Bozyiğit, F., Kut, A. and Kaya, M. (2015). Overview of source code

plagiarism in programming courses. International Journal of Soft Computing and

Engineering (IJSCE), 5(2), 79-85.

Krsul, I., and Spafford, E. (1997). Authorship analysis: identifying the author of a

program. Computers and Security, 16(3), 233-248.

Malpohl, G. (2006). JPlag: Detecting software plagiarism. Retrieved May 25, 2015

from http://www.ipd.uka.de:2222/index.html

Manning, C. D., Raghavan, P. and Schütze, H. (2009). An introduction to

information retrieval. Cambridge, England: Cambridge University Press.

Martin, B. (1994). Plagiarism: a misplaced emphasis. Journal of Information Ethics,

3(2), 36–47.

Parker, A. and Hamblen, J. (1989). Computer algorithms for plagiarism detection.

IEEE Transaction Engineering Education, 32, 94–99.

Salton, G. (1971). The SMART retrieval system - experiments in automatic document

processing. NJ, Englewood Cliffs: Prentice-Hall.

Salton, G., Wong, A. and Yang, C. S. (1975). A vector space model for information

retrieval. Journal of the American Society for Information Science, 18(11), 613-

620.

Schleimer, S., Wilkerson, D. and Aiken, A. (2003). Winnowing: local algorithms for

document fingerprinting. Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, 76–85, New York, NY, USA.

http://www.ipd.uka.de:2222/index.html

49

Whale, G. (1988). Plague: plagiarism detection using program structure. Department

of Computer Science Technical Report 8805, University of NSW, Kensington,

Australia.

Wise, M. (1996). Yap3: improved detection of similarities in computer program and

other texts. SIGCSE Bulletin, 28(1), 130–134.

Vector space model. (2009). Retrieved May 25, 2015 from http://nlp.stanford.edu/IR-

book/html/htmledition/the-vector-space-model-for-scoring-1.html

	S22C-6e15062510270_0001
	10077543

