6545¢

OPTIMAL CONTROL OF DIGITALLY
CONTROLLED DC MOTORS

A Thesis Submitted to the
Graduate School of Natural and Applied Science of
Dokuz Eyliil University
In Partial Fulfillment of Requirements for
the Degree of Doctor of Philosophy in Electronics Engineering

by
Fatma GURBUZ

October, 1997
iZMiR



Ph.D. THESIS EXAMINATION RESULT FORM

We certify that we have read this thesis and that in our opinion it is fully adequate, in
scope and in quality, as a thesis for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. }glrﬁp AKPINAR
(Advisor)

(Committee Member)

Approved by the
Graduate School of Natural and Applied Sciences

UK

-— 3
Prof Dr. Cahit HELVACI

Director



ACKNOWLEDGMENTS

I would like to express my sincere thanks to my supervisor, Assoc. Prof. Dr. Eyiip
AKPINAR, for his continuous helps from the very begining of this thesis. I am also
indebted to him for his valuable suggestions, constructive criticisms and teachings on

the scientific moral.

I would also like to thank to my previous supervisors for every kind of help, with
whom [ studied before Assoc. Prof. Dr. Eyiip AKPINAR.

I greatly appreciate the patience, understanding and support of my husband during

this thesis. I especially thank to him for the help on the drawings of this thesis.



ABSTRACT

A linear model has been developed for the closed-loop control of dc motor fed by
class-C chopper in z-domain including the time variation of pulsewidth modulated
(PWM) waveform. This model has been used for the purpose of optimum design of
the parameters of the digital proportional-integral controllers employed in the current
and speed feedbacks. Therefore the entire system has been considered as a discrete
linear quadratic tracker problem with output feedback. Minimization of the nonlinear
cost function under the constraint of Lyapunov equation has been solved by using the
Simplex algorithm. In fact, simplex algorithm is for the unconstrained nonlinear
functions but it has been modified here to minimize the Lyapunov constrained cost

function.

The stability analysis of the overall system under the variation of the amplitude and
the chopping period of PWM waveform has been also investigated by using the root-
locus method and the Jury stability test. It has been observed that the linear model
developed here for the dc motor drive can be used to design the optimal values of

controller parameters in the stable operating region.

Finally, the real-time simulation of the closed-loop system has been carried out to
check the accuracy of the linear model develop in this thesis. For the real-time
simulation, pulsewidth modulated waveform at the output of the chopper has been
estimated by using the z-transformation. As a result, it has been observed that the
real-time simulation results are in a consistency with the results of the analysis of the

linear model.



OZET

C-smifi kiyic ile siiriilen dogru akim motorunun z-domain’de kapali-gevrim
kontrolu i¢in darbe geniglik bindirimli sinyalin zaman degisimini igeren dogrusal bir
model geligtirilmigtir. Bu model akim ve hiz geri beslemelerinde kullanilan sayisal
oransal-integral denetleyici parametrelerinin optimum tasarimm igin kullamlmigtir.
Dolayistyla tiim sistem, ¢ikis geribeslemeli kesikli dogrusal karesel bir izleyen
problemi olarak ele ahinmigtir. Dogrusal olmayan maliyet fonksiyonunun Lyapunov
esitlik kisit1 altinda en azlamasi simplex yontemi ile yapilmigtir. Simplex yontemi
ashnda kisitsiz dogrusal olmayan fonksiyonlar igin olmasmna ragmen burada
Lyapunov kisith maliyet fonksiyonlarinin en azlamas: igin geligtirilmigtir.

Darbe geniglik bindirimli sinyalin genlik ve periyodunun degigmesi halinde tiim
sistemin kararhlik analizi de root-locus yontemi ve Jury kararhlik testi ile
parametrelerinin kararh ¢aliyma bolgesindeki optimal degerlerini bulmak igin

kullanilabilecegi goriilmiistiir.

Son olarak, tezde gelistirilen dogrusal modelin gegerliligini gérmek i¢in kapali-
gevrim sisteminin gercek zamanda benzesimi yapilmgtir. Bunun igin kiyica
cikigindaki darbe geniglik bindirimli sinyal z-transform kullamlarak dretilmigtir.
Sonugta, gergek zaman benzesim sonuglarinin dogrusal modelin analiz sonuglanyla

uyumlu oldugu gézlenmistir.
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CHAPTER ONE
INTRODUCTION

The purpose of this thesis is to develop a linear model of the closed loop control of
dc motor fed by class-C chopper in z-domain including the time variation of
pulsewidth modulated (PWM) signal and then, using this model, to design the
optimum parameters of digital proportional-integral (PI) controllers employed in
current and speed feedbacks. The real-time simulation is also carried out to check the
accuracy of the model developed here. The stability analysis on the parameters of two
controllers under the variation of chopping frequency and amplitude of PWM
waveform is performed by using the root-locus method and the Jury stability test.

Although the dc machine is more expensive, the control principles and the
converter equipment required are somewhat simpler compared to ac machines. The
simplicity and flexibility of control of dc motors have made them suitable for
adjustable speed drive applications. Also fast torque response has favored their use in
high performance servo drives. The principal problem of a dc machine is its
commutators and brushes and the frequent maintanence required for its operation.
Thus, for several decades, attention has been diverted to develop ac drives as a viable
alternative to dc drives in many applications. However, today, a considerable
percentage of industrial drives use dc machines. These machines will retain its appeal
for at least another one or two decades, and will continue to meet industrial needs

(SEN, 1990).



The drive circuit used in this thesis is a class-C chopper. This circuit is widely used
especially in the speed control of dc motors in industry. It is also used in battery-
operated vehicles where energy saving and noise are the prime considerations (Sen,
1991). The early theoretical analysis studies related to choppers start in 1970’s. The
dynamic characteristics of a dc motor driven by thyristor choppers or rectifiers are
analyzed and compared with test results (Nitta, Okitsu, Suzuki & Kinouchi, 1970).
Dubey and Shepherd’s paper describes certain approximations which permit the
derivation of simple but analytical methods for the analysis of the dc series motor fed
by a chopper, having either pulsewidth control or current limit control (Dubey &
Shepherd, 1975). In the following years, digital simulation of dc motors driven by
chopper has been studied. In the paper (Damle & Dubey, 1975) dc motor driven by a
chopper is considered as an open loop system. The simulation was carried out by
using the average value of the output voltage of the chopper. In another study, the
output waveform of the chopper is taken as a square wave, and the computer

simulation is performed for the open loop drive (Turner, 1988).

A microprocessor-based speed control scheme for a separately excited dc motor
fed from a dc source is described in the paper (Kettleborough, Smith, Vadher &
Antunes, 1991). It combines armature voltage control with spillover field weakening
to provide smooth and precise control from standstill to speeds well above the base
value. The function of the microprocessor, in this work, is to control the “on” times of
the two choppers (one for armature control and one for field control) in order to vary
the armature and field voltages in accordance with the speed control requirements by

using the average value modeling of the choppers.

Since the dc motor is considered as a multi-input, multi-output system and the
closed loop control system is normally built with two loops in this thesis, all controller
parameters are not designed simultaneously to verify the system constraints by using
the classical control theory. Instead of that, the modern control techniques allows to
close the all feedback loops simultaneously in order to design the controller gains. In

high performance drive applications such as in the areas of robotics, machine tools,



and rolling mills, the drive systems are required that can provide fast dynamic
response, parameter insensitive control characteristics, and rapid recovery from speed
drop caused by impact loads. Therefore, in recent years, intense research efforts have

been focused on the use of modern control technique in drive systems (Bose, 1988).

Jing-Ping Jiang, Shen Chen and Pradip K. Sinha developed a unified methodology
for real-time speed conrol of a thyristor-driven dc motor. For this purpose an optimal
state feedback controller using the Kalman filter state estimation technique was
derived. It is followed by an adaptive control algorithm to compensate the effects of
noise and disturbance. The effectiveness of the optimal controller based on estimated
state variables is pointed out in the paper (Jing-Ping Jiang, Shen Chen & Pradip K.
Sinha, 1990).

The paper of Mota, Rognon and Le-Huy presents a digital position control system
using a dc motor fed by a four quadrant transistor chopper (Mota, Rognon & Le-Huy,
1984). Both the classical and state feedback approaches are considered in this paper.
Experimental results show that the classical control configuration, consisting of a
position control loop with an inner speed control loop, performs better than the state
feedback which is simpler to implement. The mean value of the chopper output

voltage is used for the modeling of chopper.

Al-Assadi and Al-Chalabi presented a design method to find the best tuning
parameters for a proportional-integral-derivative controller employed in a single
feedback loop (Al-Assadi & Al-Chalabi, 1987). The procedure presented in this paper
uses a time domain optimization technique to minimize the integral-squared-error
response to a step input. However, the method presented in this paper has been

criticized in (Fu, Olbrot & Polis, 1989).

Among all the other papers written on optimal control theory, in the paper of
Umanand and Bhat, the optimal theory is applied on the design of controller

parameter for the vector controlled induction-motor drive system viewed as a linear



quadratic tracker problem with output feedback, and the optimal and robust digital
current controller is designed for the vector-controlled induction motor drive system
(Umanand & Bhat, 1996).

In the paper of Muir and Neuman, pulsewidth modulation control of brushless dc
motors is implemented with digital servomechanisms for robotic applications (Muir &
Neuman, 1985). In this paper, it has been presented that the discrete-time state
equation of the brushless dc motor driven by a PWM waveform can be obtained under

the assumption that the pulse period is much smaller than the motor time-constants.

The principal techniques used for the stability analysis are root-locus method,
Routh-Hurwitz criterion or frequency response techniques such as Nyquist criterion
for the continuous time systems, and the applications of these methods are exist on
the adjustable speed drives. A stability study of a rectifier-inverter induction motor
drive system is performed by neglecting the harmonic content of the stator voltages
and applying Nyquist stability criterion to the small-displacement equations obtained
by linearization around the operating point (Lipo & Krause, 1969). The stability study
of the Fallside and Wortley’s paper uses eigenvalue loci and also the Routh-Hurwitz
criterion (Fallside & Wortley, 1969).

For discrete time systems, on the other hand, a standart method such as z-domain
analysis or pulse transfer function analysis in the s-domain in which the sampling
effect is not neglected yields useful results (Kojori, Lavers & Dewan, 1993). In this
thesis the first technique is used and the Jury stability test is applied. This method was

a time consuming technique until the recent development in computer technology.

As it can be recognized from the brief summary of papers given above, the dc
motor fed by a chopper is usually modeled by the average value of the armature
terminal voltage. However this modeling does not include the ripples due to chopping
of the armature voltage. In this thesis, time variation of PWM waveform is included

into the model developed here for the design of the controllers’ parameters for the



first time. The closed loop control of dc motor fed by a class-C chopper is considered
as a discrete linear quadratic tracker problem with output feedback. The output
feedback uses the only measurable states of the system and provides flexibility in
choosing the controller structure. The dc motor drive has been modeled to design the

optimal controller parameters by using this control theory first time.

The work presented in this thesis can be summarized as follows:

In Chapter 2, the closed loop control system is introduced firstly. Then the
modeling of each subsystem is given. The dc motor is considered as a two-input two-
output system. Since a class-C type chopper is used as a drive, its PWM output
waveform is given. The PWM driven dc motor state equation is derived in discrete
time domain. The PI controller is chosen for both the speed and current controllers in
the system and their discrete time state space models are obtained using the

trapezoidal integration rule.

In Chapter 3, first of all it is explained why optimal control and why output
feedback are selected. Then the closed loop system is formulated in a suitable form to
the Linear Quadratic Tracker design method with output feedback. The performance
index and optimal cost is given. Since the simplex method is used for the minimization
of the cost, an outline of the simplex method for nonlinear minimization is given. Also
a modification of the simplex method for the Lyapunov constrained problems is
developed. Further, finding the initial gains that stabilizes the system which is required
by simplex like any other minimization algorithm is given. Finally, optimal controller

gains and the results of the analysis using these gains are presented.

In Chapter 4, the amplitude and the chopping period of PWM signal are assumed
to be varying and the effect of them on the stability of overall system is investigated.
The effect of the amplitude of PWM signal on stability is searched by two techniques:
root-locus method and Jury stability test. It is seen that the results of both methods
are in consistency. On the other hand, stability analysis for the chopping period of



PWM signal is carried out by the Jury test only, because the characteristic equation of
the system is not linear in T. Stability limits obtained from root-locus and Jury test are
checked by analyzing the model of the system, also.

In Chapter 5, the real-time simulation of the system is carried out with the help of
Simulink which is a dynamic system simulation software in Matlab. The PWM
waveform is required to apply to the armature of the motor for the real-time
simulation. Thus, PWM waveform is generated by a dedicated program written in
Matlab using the z-transformation. Finally, real-time simulation results for the initial
and local optimum controller gains are given in order to compare with the results of

the analysis obtained in Chapter 3 from the linearized model.

In Chapter 6, the results and model developed in this thesis are discussed and the
future work that can be performed is presented.



CHAPTER TWO
MODELING OF THE SYSTEM IN Z-DOMAIN

2.1 Introduction

For precise speed control of servo systems, closed-loop control is normally used
because a closed-loop control system has the advantages of greater accuracy,
improved dynamic response, and reduced effects of load disturbances. Closed-loop
speed control system in this thesis consists of a separately excited direct current (DC)
motor, chopper, and current and speed controllers. Block diagram of the system is as
given in Figure 2 . 1. As it is seen from Figure 2 . 1, the closed-loop system has an
inner current loop and an outer speed loop. The reason for including an inner loop is
that a speed feedback with an inner current loop provides faster response to any
disturbances in speed command, load torque, and supply voltage (Rashid, 1993). In
Figure 2 . 1, the speed signal is fed into the digital controller using an analog to digital
(A/D) converter or optic encoders. Armature current can also be fed into the digital
controller using A/D converter or by sampling the armature current. These feedbacks
can include the transducers having linear gains (k; and k;) as shown in Figure 2 . 1.
The separately excited DC motor has been utilized in many industrial applications
where speed or torque must be controlled over a wide range, such as rolling mills,

paper mills, and machine tools (Slemon & Straughen, 1980).

The pulsewidth modulation (PWM) control of dc motor is implemented with
digital controllers governed by microprocessors, microcontrollers or personal
computers according to the complexity of the system. The digital control systems

have many advantages over analog counterparts because the hardware is simpler, it is



easy to change the control strategy and parameters using the software, and the entire

system is more reliable. The most proper algorithm to model the digital systems is to

use the difference equations and related transformations.

Speed Iref +

Controller

Wref +< ) N

A

Figure 2 . 1 Block diagram of the dc motor speed control system

2.2 Modeling of DC Motor

DC |.
Motor |42

E
> Current € 5 Chopper
Controller
Current
Transducer (k)
Speed
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The mechanical and electrical behaviour of a DC motor is described in continuous

time domain by the following well known equations (Krause, 1986).

v, =R, i, +1, S +E,
dt

E,=K,.ow

=T, +1 4B, w
dt

[
T, =K,.0.1,

where,

V. : Armature voltage (Volt)

-1

(2-2)

(2-3)

@4




R, : Armature resistance (Ohm)

1, : Armature current (Amper)

L, : Armature inductance (Henry)

E, : Back electromotive force voltage or speed voltage (Volt)

K.0 : Back electromotive force and torque constant (Volt/rd/sec or Nt-m/Amper)
w : Motor speed (rd/sec)

T. : Electromagnetic torque developed by the motor (Nt-m)

Tw : Load torque (Nt-m)

J : Total moment of inertia (kg-m?)

B, : Viscous friction constant (Nt-m/rd/sec).

Electrical and mechanical time constants of the motor are defined as t.=L./R. and
1=J/B,, respectively, and the electrical time constant is much smaller compared to the

mechanical time constant.

In this thesis, the field current is kept constant, thus K,¢ in Equation (2-2) and
Equation (2-4) will be taken constant. The effect of armature current on the saturation
has been neglected. Consequently, Equations (2-1) to (2-4) can be written in the

state-space form as follows
d|i,(t)| |-R,/L, -K,0/L,| [i. (1) N /L, O V, (1) @2-5)
dt|w(t)| | Ke/J  -B,/J ||w(t) 0 -1/JT||T.(®)

or in the compact form

S k()= A X O+ By U 0. 2-6)

where xn is the (2x1) state vector, A, is the (2x2) matrix consisting of motor
constants, By, is the (2x2) input matrix, up, is the (2x1) input vector and the subscript

m holds for motor. As it can be seen from Equation (2-5), the dc motor is modeled
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with two inputs such that armature voltage V, and load torque Ty are inputs. On the
other hand, rotor speed w and the armature current i, can be defined as the outputs

giving the following equation

w(t)] [0 1| i)
La(ﬂ]"[l 0}'[w(0} -7

or in the compact form
Y = Cm “Xm (2'8)

As a consequence of the Equations (2-5) and (2-7), the dc motor has been modelled
as a 2-input, 2-output system, in other words as a multi-input, multi-output (MIMO)

system.

2.3 Modeling of Chopper

Chopper is a nonlinear power electronics circuit which controls the power flow
from a constant input supply voltage and produces a chopped output voltage. It is
widely used for the control of the dc motors in the servo system and traction
applications because they have a number of advantages such as high efficiency,
flexibility in control, light weight, small size and fast response (Dubey, 1989; Sen,
1991).

In this thesis, class-C two quadrant chopper is used to drive the dc motor. This
type of chopper is used especially in applications where a smooth transition from
motoring to braking and vice versa is required. Class-C two quadrant chopper circuit
and its output voltage waveform is given in Figure 2 . 2. The output waveform is
called pulsewidth modulated waveform (PWM) because the chopping frequency (and
hence the chopping period T) is kept constant and the on-time t,, in which load is
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connected to input voltage is varied. As it can be observed from the output waveform
in Figure 2 . 2, the amplitude of the output is constant at the level of Kyum. However,
the time to, or the ratio t.,/T which is known duty cycle (8) can be changed via control
signals E.. Thus, the average output voltage changes.

In the modeling of chopper, the average value modeling (Wester & Middlebrook,
1973) and real time simulation usually have been used. In the average value modeling,
it is assumed that the average value of the PWM signal is applied to the armature of
the motor. Despite the system response has ripples due to pulsewidth modulation,
these ripples are not taken into account when the average value model is used. The
real time simulation can be used to simulate the chopper with the help of a digital
computer by integrating the differential equations governing the system dynamics.

/li
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Figure 2 . 2 Class-C chopper circuit and related waveforms

Since, in the closed-loop system, i.; and i, are related to current controller output
signal (E;) and the peak value of sawtooth signal (E.) as being observed in Figure 2 .

2, the following equations can be written

t, =—E for 0<E,<E, (2-9)
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w=T for Ec>Em (2-10)

As it is clearly seen from Equation (2-9) and Equation (2-10) the chopper has a
nonlinear characteristic and this nonlinear relation between input E. and output to, is

illustrated with Figure 2 . 3.

Figure 2 . 3 Input-output characteristic of chopper

In this thesis, it is assumed that the current controller’s output voltage (E.) is
limited to the peak value of the sawtooth signal (E.) providing linearity. Thus, under
this assumption, the transfer function of the chopper can be taken as a pure
gain, T/Eqy.

2.4. Modeling of DC Motor with Chopper Drive

The variable V.(t) in Equation (2-5) represents the amplitude of the voltage applied
to armature. The output voltage of the chopper is a function t., and the amplitude of
the voltage Kowm. Since the amplitude of voltage is kept constant, t, is the only
variable in the formulation. Therefore, the input variable in the motor model will be
related to t... Hence, the output of the controllers will be connected to the input of the
motor via this parameter. The chopper output voltage is sampled as it arises from zero
level to its magnitude. This sampling information enables to identify the duty cycle as

well as the modeling of controllers and motor in z-domain.

The general solution of Equation (2-6) is given below(Chen, 1984)
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t
X (1) = e*=(T0x () + [e*=MBu,, (A)dA (2-11)

to

where exp(Axt) is the matrix exponential. In Equation (2-11), the first element of the
input vector uy is the PWM signal which is the constant Kpem (volts) for the fraction
ta/T of each period, and zero for the remainder of each period. This is shown in
Figure 2 . 4. The sampling period is equal to the pulse period of the PWM signal and
it is assumed that PWM signal is sampled at the instants of nT, (n+1)T, (n+2)T, etc.
Let’s divide the sampling period, from te=nT to t=(n+1)T, into two intervals: first
interval is from to=nT to t=nT+t,(nT), second interval is from ty=nT+t,(nT) to
t=(n+1)T. In the first interval, pulsewidth t,.(nT) can vary from sampling period to
sampling period and pulse height is constant whereas in the second interval input is
zero. Then, the solution in the first interval of one period of the PWM signal can be
written as follows (Muir & Neuman, 1985)

Ton N
ultd 2y
) g 4
pwWT
0\ "
nT n+1OT n+2>T
T

Figure 2 . 4 Pulsewidth modulated signal

nT+t (nT)
X [0T + to, (nT)] = A=W TH=CED Dy (nT) + jeAm(“T”m(“TH)Bmum (A)dAr
nT

..(2-12)
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By substituting B, and un, described in Equation (2-6) into Equation (2-12) the

following equation can be written

nT+t (nT) 1 /L 0 Y ?\'
xm[nT +g, (nT)] — eAmtm(nT)Xm (IIT) + J' eA,,,(1'1T+tm(n’l‘)—},) a . a( ) da
J o -1/I|| T,

..(2-13)
Since V.(A) is equal to Kpwm in this interval, the following equation can be written

nT+t, (nT) K /L
X [BT + o (nT)] = eAel=CDx _(nT)+ | eAm@T*‘m(n“-’o[ o
L

nT

}dx (2-14)

If the integral variable A is changed to 8, so that nT+t_(nT)-A =9, then
d8 = —dA . In this case, for A=nT, 8 =1t_,(nT) and for A=nT+te(nT), 8§ =0. Thus

Equation (2-14) can be written as below

9 K,om/L
X [0T + top ()] = e*'="Dx (nT) + j eAm‘g[ pwm ajl(—dS) (2-15)
tm(nT) —TL /J

Furthermore, the integral boundries can be changed in order to eliminate the negative
sign. Hence, it is obtained that

t 0D K, /L
X[0T +1t,, (nT)] = e*'="Dx (nT) + { eAm’“dx[ j“;z /J“] (2-16)

In the second interval, that is the interval between [nT+t(nT) and (n+1)T], the

solution according to Equation (2-11) is

Xp[(n+DT)] = A= @Dy (1T + 1, (T))
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(DT /L, o0 ][v,(n
| eAm“"“)T‘“[ : H o{ )}dx (2-17)
T+t (nT) 0 -1/ I
Since V,(A)=0 in this interval

(n+1)T 0
Xp|(n+ DT = e =Dx (0T +t,,(aT)) + j eAm«"“)T*’“){ ]dx
nT+t, (nT) ~T,/J

..(2-18)

After taking the term independent of A out of the integral, the following equation is
obtained

(n+1)T 0
X[+ DT)] = =T Dy (0T +1,, (nT)) + =T j e'Am‘dx[ ]

T+, (nT) ~T /J
.(2-19)
Substituting x,[nT+t.,(nT)] in Equation (2-16) into Equation (2-19)
falD) K o / L
X[ (0 + DT] = et ehataltDy  (nT)+ I S VR
(n+)T 0
+etn(mDT j' e'Am’”dX[ } (2-20)
T+ (aT) ~T /¥

or equivalently

AT A(Tt('{))tm(nT)Ax Kpwm /L
= m m{1=ln(N o P a
Xu[(n+1DT] = e*="x,, (nT) +e ! e d?{ e ]
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(o+1)T 0
A (2-21)
_TL / J
nT+t, (o)

After taking the integral operation, it is obtained that

Arntm(n'l) — 0 / L
X n+DTl= eAmT nD+ eAm(T'“tm (nT)) € € pwm a
m[( ) ] xm( T) —A —TL /J

m

e An(@DT _ o —Ag 0T+, (aT)) 0
+efn( DT (2-22)
-A_ -T, /]
or equivalently
AT —_— An(T-t5(nT)) K /L
x_[(n+1)T] = e*=Tx_(nT) +42 © 5 4
o] M S o .
0 _ gAn(T-toM) [ @
+& ¢ (2-23)

Under the assumption that the sampling period is much smaller than the time-
constants of the system, matrix exponentials can be approximated by their first-order

series expansion, i.e. exp(AT) = I+AT. By using this approximation

~T, /] T, /J]

(2-24)

X[+ DT]=[I+A Tk, (0T) +t,, (nT)[prm / L"} +(T—-t,, (nT))[

rewriting
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K
"t on (nT)
Xp[(n+DT]=[I+A,T]x, (nT) + I LaT T (2-25)
—Lt (0T)——Ley Lt (nT
J on(n ) J J on(n )
or equivalently
K,./L, 0 Tt,(@T)
DT]=[1+A_ Tl (nT)+| *™ * on 2-26
sl 0Tl [ AT my +| e D D) 229

Finally, by substituting the state vector and motor matrix, and dropping T,
discrete-time state equation of the PWM driven DC motor is obtained as given below

] _[@a-R)/L KoT/L ][] [Kpm/La 0 ] [te
wl., | KoT/] (-BD/I||w] 0 -T/J} | T, |,

.(2-27)

The open loop chopper drive has been modeled in discrete time in above relations.
The advantage of this model to average value modeling in continuous time is that the

variation of PWM signal in time is properly represented here.

2.5 Modeling of Controllers

As it is obviously seen from the block diagram of the closed loop system (see
Figure 2 . 1), there are two controllers; one for speed and one for current control. For
both of the speed and current controllers, proportional-integral (PI) control is selected
because it stabilizes the drive, adjusts the damping ratio at the desired value, makes
the steady-state speed-error close to zero by integral action, and filters out noise again

due to the integral action (Dubey, 1989).
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The backward and forward difference or trapezoidal integration technique can be
employed to integrate the error signal in digital controllers. Mapping from s-plane to
z-plane according to backward difference, forward difference and trapezoidal
integration rule is as depicted in Figure 2 . 5 (Phillips & Nagle, 1984). As it is seen
from the Figure 2 . 5-b, according to backward difference, stable analog filters will
always result in stable digital equivalents and also some unstable analog filters give
stable ones. However, this mapping has a major disadvantage. The jw-axis in the s-
plane does not map to the unit circle in the z-plane, that is, frequency response may be
different from the analog filter. In the forward difference mapping, shown in Figure 2 .
5-c, left-balf plane in the s-domain maps to the region to the left of z=1. Thus,
because the interior of the unit circle represent the stability region in the z-plane, some
stable analog filters will give unstable digital ones. However, Figure 2 . 5-d represents
the mapping from s-plane to z-plane according to the trapezoidal rule. This mapping
eliminates the mentioned disadvantages above because the entire left-half of s-plane
maps to the interior of the unit circle in the z-plane. Thus it is the reason why this

method is commonly used in practice.

In this study, the transfer functions of both the current and speed controller are
obtained by using the trapezoidal integration rule which is also called Tustin method
or bilinear transformation (Franklin, Powell & Workman, 1990).

n@)

: [ %ﬁ@ o w

\ Re2)
\/

/

’//////

[ /' Region of
stability

@ ®) ©@ @

Figure 2 . 5 Mapping of the s-plane(a) according to backward difference(b),
forward difference(c), and trapezoidal rule(d) to the z-plane
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2.5.1 Modeling of Current Controller

A digital PI controller transfer function using the trapezoidal integration rule is
given in the form of (Phillips & Nagle, 1984)

K +K£I(z+l)
P 2(z-1

(2-28)

where K, is the proportional constant, K is the integral constant, and the T is the
sampling period. In this work, a unit delay term is used to include all the
computational and loop delays that may occur, and thus the current controller’s

transfer function, Gi(z), is taken as

Ki K;T(z+1)
Gy(z)=—2+—2—~
«(2) z z 2(z-))

(2-29)
where K,; is the proportional constant and Kj is the integral constant of the current
controller. Block diagram representation of this transfer function is depicted in Figure
2.6.

Iref 4 1 €y T z+1 € + ~ Ee
z ~ K
2 z-1
- +
ki -

Figure 2 . 6 Block diagram of the current controller
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From Figure 2 . 6, it can be written that

28);(2) = L (2) -k, -1,(2) (2-30)
and
€,i(2) :%gi—gen(z) (2-31)

where €; and € are the state variables of the current controller, L. is the output of
the speed controller and serves as current reference for current controller, and i, is the
actual current.

Since the time-shift property of the z-transform (for n=1) is

3" {zE(2)}=e(n+1)

where E(z) is the z-transform of e(n), after taking the inverse z-transformation of the

Equation (2-30) and Equation (2-31) it is obtained that

ey (n+1) =L (n)~k; -1, (n) (2-32)
and

2e,,(n+1)—2e,(n) = Te,(n+1)+ Tey;(n) (2-33)

respectively. Substituting Equation (2-32) into Equation (2-33)

e (0+1) =5 (1) 4 L) =y iy (0) + @) (234
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Finally Equation (2-32) and Equation (2-34) are rearranged in the state-space form

as given below

ex| | O Of|ey Lk Lt
_ A8 T T|| (2-35)
82i a+l T/2 1 82i a E _kl 'E la n
and, output equation is

E.(m=[K, K; El] (2-36)

2i

The difference equation of the current controller given above can be written as

given below in state-space form

E,(n+2) :Ec(n+l)+{Kpi +K, --ZT-}-{Iﬁ,f(ml)—k1 i, (@+ 1}

+{Kﬁ - K} (L ()~ k; -1, ()} (2-37)

2.5.2 Modeling of Speed Controller

Similar to that of current controller, speed controller transfer function, Ge(z), is

taken as

K .
Gy(z2)=—F +KuT(HD
z z 2(z-))

(2-38)

where K, is the proportional constant and Kj is the integral constant of the speed
controller. Block diagram representation of this transfer function is depicted in Figure
2.17.
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Figure 2 . 7 Block diagram of the speed controller

From Figure 2 . 7 it can be written that

ze,(2) = @ s (2) — k, -0(2) (2-39)
and
ezs(z)=-§—g—fgels(z) (2-40)

where g, and &, are the state variables of the speed controller, w.r is the speed

reference, o is the actual speed and I is the output of the speed controller.

By taking the inverse z-transformation of the Equation (2-39) and Equation (2-40) it
is obtained that

€1 (0 +1) = 0 e ()~ k; -0(D) (2-41)

and

2e,,(n+1)—-2¢,,(n) =Te, (n+1)+Te, (n) (2-42)

respectively. Substituting Equation (2-41) into Equation (2-42)
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2 (14D =8 ()4 0 (1) < - 0 (1) 4 51, (0) (243)

Finally, rearranging the Equation (2-41) and Equation (2-43) the state-space model

of the speed controller can be obtained as given below

€15 0 0 €5 1 —kz O rer
= : +H T T| (2-44)
€aslpy LI/2 1] €], > —kz'z ® |
and output equation is

Ly (m) =K, K][:;] (2-45)

n

The difference equation of the speed controller is as given below

I;(n+2)=1 ;(n+ 1)+{Kps +K,, —Z-} {Wee(n+1D) -k, -w(n+1)}

+{Kis %—Kps}- (W (1) ~ k, - w(n)} (2-46)



CHAPTER THREE
OPTIMAL CONTROLLER DESIGN WITH

OUTPUT FEEDBACK

3.1. Introduction

Classical control theory is not easy to apply on MIMO or multiloop systems, such
as the system in this thesis having 2-inputs and 2-outputs and also 2 loops. In order to
apply the classical control theory in MIMO systems, it is required a painstaking effort
using the approach of closing one loop at a time by graphical techniques. This is a
trial-and-error procedure, and it does not gurantee good results, or even closed-loop
stability (Lewis, 1992).

Modermn control techniques, on the other hand, can eliminate many of the
limitations of the classical control for multivariable feedback control systems. In pole-
assignment technique which is termed modern technique it is assumed that the pole
locations that yield the best control system are known. However, the designer may
not really know the desirable closed-loop pole locations. In such case pole assignment
technique can not be applied, therefore, the other modern control techniques, namely
optimal control methods, are required. An optimal control system is the system whose
performance is optimal in terms of some predefined performance criterion (Houpis &
Lamont, 1987). The performance criterion or performance index is selected to give
the best trade-off between performance and cost of control. In addition performance
index must always be a positive number or zero because then the best system may be

defined as the system that minimizes this index (Saadat, 1993; Dorf,1992). Therefore,
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the suitable performance index widely used in optimal control systems is the quadratic
performance index. It is a linear combination of the quadratics of the states and the

inputs of the system. Therefore it is called the Linear Quadratic (LQ) approach.

Modern design techniques are fundamentally time-domain techniques since they
use state-space model, whereas classical control design is a frequency-domain
technique. In fact, the power of modern control is due to fact that state-space model
can represent a MIMO system as well as a single-input single-output (SISO) system.
However, in real design problems only some of the states are available because some
state components may be too expensive to obtain or even impossible to measure.
Therefore state-feedback is usually impossible to implement in practice and the
measured outputs should be used for feedback purposes, which is called output
feedback. In addition, output feedback design provides the flexibility in choosing the
controllers any desired structures (Lewis, 1992; Umanand & Bhat, 1996). The output
feedback problem is a new era and is still the focus of research. One disadvantage of
the output feedback problem is being nonlinear whereas the state feedback is linear.
According to Huang & Li (Huang & Li, 1989) the fundamental problems on optimal

output feedback have not been answered and still occupy control system theorists.

There are two basic techniques on control system design using the available
outputs. In one technique, a state feedback controller whose control law is u=-Kx is
first designed. Then, the measured output y(t) is used to estimate the nonavailable
states. Finally, the state estimate X(t) is used in the state variable feedback controller
as if it were exactly equal to x(t); that is, it is set to u=—-K.X. In order to estimate
the state from y(t), observer is used. However the estimation of the nonavailable
states will depend on the accuracy with which the system parameters are known. The
other technique for output-feedback design is to deal only with the available outputs
and to develop the related formulations depending on them. In this technique, control
law is u=-Ky (Lewis, 1992; Umanand & Bhat, 1996). In this study, the output

feedback is chosen to design the controller parameters.
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In the following sections, first the LQ tracker with output feedback formulation of
the entire system will be given. Then SIMPLEX algorithm which is used for the
minimization of the performance index will be outlined. Later, finding the optimum
controller gains using the SIMPLEX method in MATLAB (MathWorks, 1993) will
be given. Finally, the analysis of the mode! for optimal gains will be presented.

3.2. Formulation of the Entire System as a Linear Quadratic (LQ) Tracker
with Output Feedback

In Chapter 2, state-space model of each block of the system was given. If the
model of each block is examined, it can be observed that the entire system has 6
states. These are i,, ®, €15, €2, €15, and €. In addition the system has two external
inputs. Therefore the entire system can be represented in state-space form with 6

states and 2 inputs. Let’s define the state vector of the entire system as

. T
X(n):[la O ) €y Ey st]

and the external inputs as

rm)=[oq T.]

where superscript T denotes the matrix transpoze. On the other hand, since the system
is closed-loop it has some internal inputs or variables. For example, E. which is the
output of current controller is the input to the chopper at the same time. Thus the
variable E. appears in the models of both current controller and chopper driven DC
motor. Therefore by linking the internal variables like E. in the models of blocks, state
space form of the entire system can be obtained in terms of x(n) and r(n) only. The

model of the closed-loop system obtained in this way is given below
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G-1

In the case of output feedback, since the control law is u = —-K-y where y is the

available outputs, the controller gains that will be optimized should be available as a

separate matrix K. For this purpose, the first term in the rigth-hand side of the

Equation (3-1) can be partitioned into two parts giving the following equation

~n+1

'(L,-R,T)/L, -K,0oT/L, 0 0

K,oT/J J-B,T)/J 0 0

N 0 T/2 1

0 -k, 0 0

i 0 -k,-T/2 0 0
I Kpym T Kpwm T

pwm pwm

0 0 —F=——K, ————K;
0 0 a OSW a OSW
L0 0 0 0
00 0 0
00 0 0
0 0 0 0

S O O ©

T/2

o1,
Ol |lo
0] (ey
0] |ey
Of {ey
1] [&x ],
0 |[i,
0 ()]
K || B
IKis €24
2 €6
0 LSZs
0 -




[0 0
0 -T/J

0 0

+

0 0

1 0

| T/2 0

Rewriting Equation (3-2)
i, | '(L,-R,T)/L, -K,oT/L, 0
® K,0T/J (J-B, 1)/} 0
ey | | -k -T/2 0 T/2 1
€1 0 -k, 0
€25l L 0 -k, -T/2 0
(Kpom T ]

E E '{Kpisli +Kii82i} 0

a sw 0

+ Kpssls +Kis£':2s 0

T 0

E' {Kpsels +Ki3828} 1
([ T/2

28

(3-2)

0 0], ]
0 O0||o
0 O]|ey
0 0f|ey
0 Of ey
T/2 1] &5,
0
-T/J
0 [ "’f} (3-3)
0 [T |,
0
0 .

By substituting Equations (2-36) and (2-45) into Equation (3-3), the following

form of the model for closed loop system , which is proper for LQ tracker design with

output feedback, is obtained.
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i, | 'L, -R,T)/L, -K,oT/L, 0 0 0 0][i,]
® K,0T/J (J-B,DH/] 0 0 0 Ol|o
€4 _ -k, 0 0 0 O O0fley
€y ~k,-T/2 0 T/2 1 0 0|ey
815 0 '—k2 0 O 0 O Sls
826 s L 0 ~k,-T/2 0 0 T/2 1]|e, |
0 Koom T "o 0
0 LaOESW 0 -T/J
H 1 0 .{I'ﬂ + 0 0 [m“’f] (3-4)
T/2 0 EL |0 0 lTl
0 0 1 0
o o /2 0 |
or in the compact form
x(n+1)=Ax(n)+Bu(n)+Er(n) (3-5)

where x is the (6x1) state vector, A is the (6x6) system matrix, B is the (6x2) control
matrix, u is the (2x1) control input, E is the (6x2) input matrix, and r is the (2x1)

external or reference input.

From the Equation (3-4) and Equation (3-5), control input is defined as

Iref
u(n) =[E } (3-6)

Since the control law for the output feedback is of the form

u(n)=-K.y(n) 3-7
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the linear gains which are the relation between u(n) and y(n) can be obtained from

Equation (2-36) and Equation(2-45) as follows

€45
|:Iref:] - 0 0 Ky K | Bai (3-8)
E, | -K; K 0 0 €
€2 n
where
- 0 0 -K, -Kj (3-9)
-K,i K 0 0

This formulation also provides the content of output vector y(n)

y(n) = (3-10)

825 n

The relation between state variables and the output variables can be defined as

follows
[, ]
£y 0 01 0 0 0||am
€5 _ 000100 18&u G-11)
€1 0 00 01 0f|ey
€25 |, 0 0 0 0 0 1]iey
_82s_n

In compact form

y(n)=C.x(n) (3-12)
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The performance output of the system, z, is selected as

2 = [ﬂ (3-13)

and the relation between the state variables and performance output of the system is
defined below

i, ]
o
| (01 000 O0fey (3-14)
i,|. 1 000 0 0]|ey
€
_825 n
or in compact form
z(n)=Hx(n). (3-15)

The difference between reference input and performance output is defined as the

tracking error, e,, that is

e(n) = r(n) — z(n) (3-16)

Finally, block diagram representation of the LQ tracker model of the system with
output feedback is as shown in Fig (3-1).
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Ax+Bu +Er H s
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- eﬂ

y= €,

€

K ~ ¢

Figure 3 . 1 Block diagram representation of the system as an LQ tracker with output
feedback

3.3. The Performance Index and Optimal Cost

In Section 3.2, DC motor control system has been formulated as an LQ tracker
problem with output feedback. The objective now is to determine the gain matrix K
which minimizes a specified performance index. In this thesis, in order to minimize the

tracking error e,, a quadratic performance index is chosen as given below

I, =13 @, +ﬁnTRﬁn)+—;-ETV€+—;—ZZ gk, (3-17)

1
2 n=0 J

where € denotes the steady-state error while €, denotes the error deviation and
e, = €, +¢. Note that performance index weights both &, and € but separately.

This is suboptimal in the sense that minimizing J. does not minimize a quadratic
function of the total error e, but it does generally result in excellent tracker designs
(Lewis, 1992).

From the definition of error in terms of steady-state error and error deviation and

in terms of reference input and performance output as given in Equation (3-16), the
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error deviation can be related to the state deviation X, by using the Equation (3-15)

as given below

€ =e,—¢
=(r—-H-x )-(r-H-X)
=r—-H-x,-r+H-X
=-H(x, —X)
=-HX (3-18)

n

After substituting Equation (3-18) into Equation (3-17) the following equation can

be obtained
=1 (% TQx. + 1. TRT, )+ L& Va4 k.’ 3-19
c _EZ(xn an+un un)+5e e+522gg ij ( - )
n=0 i j

where Q = H'H and Q and R are the symmetric state and input weighting matrices,

respectively, to be selected by the designer but the selection of Q and R is only weakly
connected to the performance specifications (Franklin et al; Egami,Wang & Tsuchiya,
1985). Therefore, a certain amount of trial and error is usually required with an
interactive computer program before a satisfactory design results. However, some
hints can be given for the choice which is based on the relative importance of the
various states and controls because Q and R affect the time-domain response. If the
elements of Q is chosen as a large value, the resulting gain K leads to a faster
response of the system and vice versa. Similarly, the larger elements of R provides the
slower system response. On the other hand, some weight will almost always be
selected for the control in order that the components of the control vector will be

limited in magnitude such that the design is physically realizable.
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In Equation (3-19), V is the steady-state error weighting matrix. Since the PI
controllers are used in both speed and current loop, steady-state error will be zero.

Thus, V can be set to zero in performance index.

The last term in the performance index covers the weighting of the k; elements of
the control gain matrix K. Since some of the terms in the gain matrix K given in
Equation (3-9) are zero, minimization without a weight on zero elements may give
neither very small nor zero elements at the end of optimization. In order to obtain
zero or very small values on those elements after completing the minimization, these
zero elements can be weighted with a very large value of g;. Thus, minimization will

result very small values of k; and they can be set to zero during the implementation

stage.

As it can be observed from Figure 3 . 1, the control deviation can be written in

terms of the state deviation as given below
1, =-KCX, (3-20)

The cost in the following formulation can be obtained after the substitution of
Equation (3-20) into Equation (3-19)

5, = %ZinT(Q +C"KTRKC)R, +-21—ETVE +—;—ZZgijkij2 (3-21)
n=0 i ]

subject to the closed-loop dynamics of the deviation given in the following equation

as
=A% (3-22)

where A, is the closed-loop matrix and it is the (6x6) matrix in Equation (3-1).
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Now, suppose that it can be found a constant positive definite matrix P such that

Xt P-% %7 P, =-%,T(Q+CTKTRKO)Z, (3-23)
Then
e T pe oT poasylar 1 2
T, ——EZ(XH1 ‘P-%,, %, -P-xn)+5e VE+‘2'ZZ&jkij (3-24)
n=0 i i
or equivalently
_lor > , o T > 1 ¢ 1 2
Jc —E‘XO ‘P'Xo +Xm .P'Xm +5e Vé—l—gzzgljku (3-25)
i

By substituting the Equation (3-22) into the Equation (3-23) the following result
will be obtained

%, "(A,"PA, ~P+Q+C'K"RKC)X_ =0 (3-26)

Since this must hold for all initial conditions, the following equation known as discrete

Lyapunov equation must be satisfied

A,PA,-P+Q+C"KTRKC =0 (3-27)

If the closed-loop system is asymptotically stable, then the X, goes to zero with n.

In addition, when the plant starts at rest, the initial value of the state deviation is as

follows

%, =—X=(A,-D"-E-r (3-28)
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Thus the cost given in Equation (3-25) can be written as given below

I, =liT-P-§+l'e“TVE+lZZgi.ki-2 (3-29)
2 2 2444570
or
1 1 —T 1 2
] = Etrace(PX) +5 e Vet EZZ gk, (3-30)
ij
where
X=%-%"
X=—(A,-D'Er
A=A-BKC

and P is a positive definite matrix.

For any fixed gain matrix K if there exists a positive definite P that satisfies the
Lyapunov equation, then the cost J. for the closed loop system is given in terms of P
by the Equation (3-30). Therefore LQ tracker design with output feedback is the
determination of the optimal feedback gain K by minimizing the optimal cost function
in Equation (3-30) subject to the algebric constraint given in Equation (3-27).

In order to find suitable gains K for closed-loop stable system it is necessary for
(yJQ,A) to be detectable and (AB) to be controllable (Lewis,1992). The
determination of observability is preferred to the determination of detectability since
observability is easier to check than detectability and the detectability of (\/6 LA) is

guranteed by its observability. For the pair (A,B) to be controllable, the rank of the
following matrix must be equal to 6 for the system given in Equations (3-4), (3-8) and
(3-11).
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[B AB A’B ... A¥'B]

For the pair (Ja ,A) to be observable, the rank of the matrix given below must be

equal to 6 again for the system.

T A
AQ
AGQ)

3.4. LQ Tracker Design with Output Feedback

In the preceeding two sections the necessary formulation related to the LQ tracker
design was given. It is shown that the LQ tracker design is the minimization of
Equation (3-30) under the constraint in Equation (3-27). This section covers the
solution method of the problem. Since SIMPLEX method is used as the minimization
method, first of all, simplex optimization algorithm will be outlined then the usage of
the simplex algorithm for the constrained optimization problem will be given. Finally
the optimum controller gains obtained by using the simplex method will be presented.

3.4.1 Simplex Algorithm for Optimization

Simplex method, which is also called downhill simplex method (Press, Flannery,
Teukolsky & Vetterling, 1992), is an unconstrained nonlinear optimization method.
This method should not be confused with the simplex method for linear programming
problems (Luenberger, 1973). The method requires only function evaluations not

derivatives for the minimization of a function, and has been found to work particularly
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well if the number of variables does not exceed five or six (Walsh, 1979). In this

study, the number of variables estimated by using the optimization program is four.

Simplex which gives the name to the method is a geometrical figure formed by a
set of nt+1 points (or vertices), in n dimensional space, and all their interconnecting
line segments, polygonal faces etc. Thus, simplex is a triangle in two dimensions and it
is a tetrahedron in three dimensions. Simplex method is based on the idea of
comparing the values of the objective function at the n+1 vertices of a general simplex
and moving this simplex gradually towards the optimum point during the iterative
process (Rao, 1984). Reflection, contraction and expansion are the three operations

used for this movement. Graphical representations of them are given in Figure 3 . 2.

high

simplex at reflection reflection and expansion contraction

beginning of step @ ® ©

Figure 3 . 2 Possible outcomes in the simplex method

In the current simplex, let
X, be the vertex with the highest function value,
x; be the vertex with the lowest function value,

X, be the centroid of all the vertices except xu, i.e.

1 n+1
X, =— ) X;. (3-31)
D i 1izh

Also let x;, x. and X, are the points obtained from the reflection, expansion and

contraction operations.
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It is expected the point x, obtained by reflecting the point x, in the opposite face to
have the smallest value. If this is the case, it can be constructed a new simplex by
rejecting the point x;, from the simplex and including the new point x,. This is the
reflection operation. Mathematically the reflected point x, is given by

X, =(1+a)x, —ax, (3-32)

where >0 is the reflection coefficient.

If a reflection process gives a point x, for which the function has the value smaller

than the f{x;), generally it can be expected to decrease the function value further by

moving along the direction xo to x,. Thus x, is expanded to x by the relation

X, =YX, + (1 - Y)xo (3'33)

where y>1 is the expansion constant.

If the reflection process gives a point x, for which f(x;)>f(xy), then contraction is

made as follows

X, =B.x, +(1-PB)x, (3-34)

where 3 is the contraction constant and 0<B<1. a=1, B=0.5 and y=2 are the values

suggested for the reflection, contraction and expansion factors, respectively.

Using the reflection, expansion and contraction operations outlined above, simplex
algorithm starts with an initial simplex and searches the minimum (local, at least) until

a convergence criterion satisfy.
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Convergence criterion is that the calculations terminate whenever the standart
deviation of the function at the n+1 vertices of the current simplex is less than some
prescribed small quantity (Rao, 1984; Walsh, 1979).

The flowchart of the simplex algorithm (Nelder & Mead, 1965) for the

minimization of unconstrained nonlinear function of f{x) is given in Figure 3 . 3.

3.4.2 Using the Simplex Algorithm for Constrained Optimization

Simplex algorithm which is outlined in Section 3.4.1 and available in Matlab
Optimization Toolbox (Grace, 1992) is for the optimization of unconstrained
problems. The Lyapunov equation which is a constraint function can be easily solved
with the ‘dlyap’ function of Matlab Control System Toolbox (MathWorks, 1993).
The simplex algorithm in Matlab Optimization Toolbox is modified in order to solve
the constrained optimization problem having the Lyapunov equation as a constraint

function.

Optimal cost is a function of the positive definite matrix P and the controller gain
matrix K in which the parameters will be optimized. Positive definite matrix P can be
obtained from the solution of Lyapunov equation at the specified value of K. Thus at
the begining for any initial K, Lyapunov equation is solved for P. Then cost is
evaluated for these P and K. This cost is saved. After that, according to the simplex
algorithm given in Figure 3 . 3, optimum K is searched. Also during this search
process, Lyapunov equation is solved for the matrix P before the every cost
evaluation operation at every step of simplex algorithm. Process is terminated in the
same manner mentioned in Section 3.4.1. The controller gain matrix K obtained in this
way minimizes the cost function and satisfies the Lyapunov equation as a constraint.
The flowchart of the nonlinear optimization with constraint (Lyapunov equation)
using the simplex algorithm is given in Figure 3 . 4.
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Start with any set of n+1 points x;, Xs,...,X,+ defining the current simplex.
Specify values for o, B, and y

Find xy, and x; such that f(x,)=max [f(x;)] and f(x;)=min[f(x))],
where i=1,2,...,n+1

Find the centroid x, using Eq. (3-31)

_

Find x; by reflection

f Is f(x)>1(x;)? Yes

Is f(x;) < f(x))? )

T

Find x, by expansion

for all i except h=i

No

Replace xy, in X;, Xo,...,Xn+1 DY X;

( Ts f(xe) < £0x)? )
Yes
Replace Xn in X1, X2,..05Xn41 by Xe

._( Has the minimum reached? ),
W)
F Y Yes
Stop

Replace x;, int Xy, X,,....Xp11 bY Xe

——( Is f(x;) < f(xy)? )’—

No

l

Find x, by contraction

4
(Bt <sow)? )

Yes
Set all x; = (x;+x1)/2

Figure 3 . 3 Flowchart of the simplex optimization algorithm
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Specify values for a, B, and v

Start with any set of n+1 points x;, Xy, ..., Xn+1 defining the current simplex.

and evaluate the f(x;)

Solve Lyapunov equation for P;’s for the values of x;’s

where i=1,2,....n+1

Find x;, and x; such that f(x,)=max [f(x;)] and f(x))=min[f(x;)],

Find the centroid x, using Eq. (3-31)

.\ 4
Find x; by reflection

Solve Lyapunov equation for P for
the value of x, and evaluate f(x,)

A 4

( Is f(x,) < f(x,)?\ No Is f(x,)>f(x.)? Yes
/ for all i except h=i
Yes

Find x, by expansion

*
Solve Lyapunov equation for P for

the value of x, and evaluate f(x.)

.

No

( Is fi(x,) < f(x)? ) Replace x;, in x;, Xa,..., X1 by X;

Yes
Replace x, in %, Xa,...,Xs+1 bY X

—( Ts f(x;) < f(x:)? )4___

,_C Has the minimum reached? \,
/
’ Yes
Stop
No
Set x,=x;

Yes

®
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@ ®

Find x, by contraction

Solve Lyapunov equation for P for
the value of x, and evaluate f(x.)

Replace X, ifl X, Xs,....%om by %o ( Ts f(xe) < f(x)? )

Yes
Set all X = (xi+x1)/ 2

Figure 3 . 4 Flowchart of the simplex algorithm for Lyapunov constrained functions

3.4.3 The Initial Values of Variables

Like any other minimization algorithm, SIMPLEX method also require an initial
value of variables. Finding an initial gain Kimea that stabilizes the system to start the
search procedure is a major problem. One way to find a stabilizing gain is to use
discrete root-locus techniques by closing one loop at a time in the control system

while this is a trial-and-error procedure (Lewis, 1992).

Let’s first consider the current loop given in Figure 3 . 5 below

v

| \m T ton L2 L
Gl Eer ten(@

Figure 3 . 5 Inner current loop of the system

Open loop function of the inner loop, i.e. G.i(z), is
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Gu(d) = Gy(a) -2

3-35
ESW ton (Z) ( )

where G.i(z) is given in explicit form in Equation (2-29). The transfer function

L.(z)/tr(2) is obtained from the state space model of the motor given in Equation (2-

27) after substituting the parameters defined in Section 3.4.4.

L, 2391z-2391
t(z) z* -1998z+0998

Thus open loop function of the inner loop G.i(z) is obtained as

2K . +K.Tz+K.T-2K . —
Gaj(z):{( pi it )Z ii p]}. T .{ 2391(2 1)

22(z—1) E, (z%-1998z+0998

swW

} (3-36)

Since the loop has two controller parameters, one of them should be chosen, then
the other will be searched by root-locus technique for stable operation. The
proportional constant of the current controller K; is chosen as the value of 10. Thus

the characteristic equation of this loop is
1+G.(z)=0

After rearranging

19925-107%(z+1) _
273 —3.9962% +2.3941z — 03985

1+K (3-37)

i .

or in the compact form
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numi(z) _

deni(z)

When the commands given below are entered into the Matlab, root locations

corresponding to the different values of Kj; are obtained and given in Table 3. 1.
numi=1.9925e-6*{1 1];

deni=[2 -3.996 (1.9956+0.3985) -0.3985];
[R.Kii]=rlocus(numi,deni),

Table 3. 1 Root locations of the inner loop for different values of Kj

Rootl Root2 Root3 Kii
1.0010 0.7209 0.2761 0

1.0010 0.7209 0.2761 7.5024¢-002
0.9934 0.7314 0.2732 7.5024¢+002
0.9661 0.7671 0.2648 3.0147¢+003
0.9639 0.7698 0.2643 3.1671e+003
0.9616 0.7727 0.2637 3.3273e+003
0.9590 0.7759 0.2631 3.4955¢+003
0.9563 0.7792 0.2625 3.6723¢+003
0.9533 0.7829 0.2618 3.8580e+003
0.9500 0.7869 0.2612 4.0531e+003
0.9464 0.7912 0.2604 4.2580e+003
0.9423 0.7960 0.2597 4.4733¢+003
0.9378 0.8013 0.2589 4.6995¢+003
0.9326 0.8073 0.2581 4.9372¢+003
0.9266 0.3141 0.2573 5.1868¢+003
0.9194 0.8222 0.2564 5.4491e+003
0.9103 0.8322 0.2555 5.7247¢+003
0.8971 0.8463 0.2545 6.0141e+003
0.8722 + 0.01651 0.8722-0.01651 0.2535 6.3183e+003
0.8728 +0.0351i 0.8728-0.0351i 0.2525 6.6378¢+003
0.8733 + 0.0473i 0.8733 - 0.0473i 0.2514 6.9734¢+003
0.8739 + 0.0574i 0.8739-0.0574i 0.2503 7.3260e+003
0.8744 + 0.0663i 0.8744 - 0.0663i 0.2491 7.6965¢+003
0.8750 + 0.0744i 0.8750-0.0744i 0.2479 8.0857¢+003
0.8757 +0.0821i 0.8757-0.0821i 0.2466 8.4945¢+003
0.8763 +0.0895i 0.8763 - 0.0895i 0.2453 8.9241e+003
0.8770 + 0.0965i 0.8770 - 0.0965i 0.2439 9.3753e+003
0.8777 + 0.1034i 0.8777-0.1034i 0.2425 9.8494¢+003
0.8783 +0.1086i 0.8783 -0.1086i 0.2414 1.0229¢+004
0.8800 +0.1228i 0.8800-0.1228i 0.2380 1.1374e+004



0.8847 +0.1569i 0.8847-0.1569i 0.2286 1.4779¢+004
0.8962 +0.2219i 0.8962-0.2219i 0.2057 2.4027e+004
0.9172 +0.31751 0.9172-0.3175i 0.1636 4.5307¢+004
0.9495 +0.44491 0.9495 - 0.4449i 0.0990 9.0748¢+004
0.9974 +0.6252i 0.9974-0.6252i 0.0031 1.9565¢+005
1.0700 + 0.9145i 1.0700 - 0.9145i -0.1419 4.8225¢+005
1.1619 + 1.3579i 1.1619 - 1.3579i -0.3258 1.2445¢+006
1.2484 +1.9265i 1.2484 - 1.9265i -0.4987 2.8381e+006
1.3207 +2.6340i 1.3207 - 2.6340i -0.6434 5.8072¢+006
1.3805 +3.58911 1.3805 - 3.5891i -0.7631 1.1527e+007
1.4280 + 5.0030i 1.4280 - 5.0030i -0.8579 2.3510e+007
1.4616 + 7.2544i 1.4616 - 7.2544i -0.9251 5.1053¢+007
1.4819 +11.0546i 1.4819-11.0546i -0.9658 1.2079¢+008
1.4921 +17.7122¢ 1.4921 -17.7122i -0.9863 3.1298¢+008

From the root locations in Table 3. 1, it is observed that K; must be chosen
approximately greater than 0.075 and less than 90748 for stable operation. In order to
identify the lower limit precisely, the interval of K; between 0 and 750 is expanded
with the step length of 10 by the following commands

Kii=0:10:750;
R=rlocus(numi,deni,Kii);

[abs(R) Kii']

The absolute values of root locations are presented in Table 3. 2.

Table 3. 2 The absolute values of roots of the inner loop for Kj; in the range (0-750)

|Root1| |Root2| Root3| Kj

1.0010 0.7209 0.2761 0

1.0009 0.7210 0.2761 10.0000
1.0008 0.7212 0.2760 20.0000
1.0007 0.7213 0.2760 30.0000
1.0006 0.7214 0.2760 40.0000
1.0005 0.7216 0.2759 50.0000
1.0004 0.7217 0.2759 60.0000
1.0003 0.7219 0.2758 70.0000
1.0002 0.7220 0.2758 80.0000
1.0001 0.7221 0.2758 90.0000
1.0000 0.7223 0.2757 100.0000



0.9999
0.9998
0.9997
0.9996
0.9995
0.9994
0.9993
0.9992
0.9991
0.9990
0.9989
0.9988
0.9987
0.9986
0.9985
0.9984
0.9983
0.9982
0.9981
0.9980
0.9979
0.9978
0.9977
0.9976
0.9975
0.9974
0.9973
0.9972
0.9971
0.9970
0.9969
0.9968
0.9967
0.9966
0.9965
0.9964
0.9963
0.9962
0.9961
0.9960
0.9959
0.9958
0.9957
0.9956
0.9955
0.9954
0.9952
0.9951
0.9950

0.7224
0.7225
0.7227
0.7228
0.7230
0.7231
0.7232
0.7234
0.7235
0.7237
0.7238
0.7239
0.7241
0.7242
0.7244
0.7245
0.7246
0.7248
0.7249
0.7251
0.7252
0.7253
0.7255
0.7256
0.7258
0.7259
0.7260
0.7262
0.7263
0.7265
0.7266
0.7267
0.7269
0.7270
0.7272
0.7273
0.7274
0.7276
0.7277
0.7279
0.7280
0.7281
0.7283
0.7284
0.7286
0.7287
0.7289
0.7290
0.7291

0.2757 110.0000
0.2756 120.0000
0.2756 130.0000
0.2756 140.0000
0.2755 150.0000
0.2755 160.0000
0.2755 170.0000
0.2754 180.0000
0.2754 190.0000
0.2753 200.0000
0.2753 210.0000
0.2753 220.0000
0.2752 230.0000
0.2752 240.0000
0.2751 250.0000
0.2751 260.0000
0.2751 270.0000
0.2750 280.0000
0.2750 290.0000
0.2749 300.0000
0.2749 310.0000
0.2749 320.0000
0.2748 330.0000
0.2748 340.0000
0.2747 350.0000
0.2747 360.0000
0.2747 370.0000
0.2746 380.0000
0.2746 390.0000
0.2746 400.0000
0.2745 410.0000
0.2745 420.0000
0.2744 430.0000
0.2744 440.0000
0.2744 450.0000
0.2743 460.0000
0.2743 470.0000
0.2742 480.0000
0.2742 490.0000
0.2742 500.0000
0.2741 510.0000
0.2741 520.0000
0.2741 530.0000
0.2740 540.0000
0.2740 550.0000
0.2739 560.0000
0.2739 570.0000
0.2739 580.0000
0.2738 590.0000
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0.9949
0.9948
0.9947
0.9946
0.9945
0.9944
0.9943
0.9942
0.9941
0.9940
0.9939
0.9938
0.9937
0.9936
0.9935
0.9934

0.7293
0.7294
0.7296
0.7297
0.7299
0.7300
0.7301
0.7303
0.7304
0.7306
0.7307
0.7309
0.7310
0.7311
0.7313
0.7314

As it can be
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0.2738 600.0000
0.2737 610.0000
0.2737 620.0000
0.2737 630.0000
0.2736 640.0000
0.2736 650.0000
0.2735 660.0000
0.2735 670.0000
0.2735 680.0000
0.2734 690.0000
0.2734 700.6000
0.2734 710.0000
0.2733 720.0000
0.2733 730.0000
0.2732 740.06000
0.2732 750.0000

clearly recognize from the list of the magnitudes of root locations

given in Table 3. 2, K; can be selected greater than 110 in order to keep the system

stable.

Similarly, the following commands are entered into the Matlab in order to expand

the interval between 45000 and 90000 with the step length of 1000 to find the upper

limit precisely.

Kii=45000:1000:90000;

R=rlocus(numi,deni, Kii);
[abs(R) (Kii*1e-4)']

The absolute values of roots are given in Table 3. 3.

Table 3. 3 The absolute values of roots of the inner loop for K in the range (45000~
90000)

|Rootl| |Root2] |Root3] K;*10*

0.9700 0.9700
0.9720 0.9720
09740 0.9740
0.9760 0.9760

09779 0.9779

0.1641 4.5000
0.1624 4.6000
0.1607 4.7000
0.1590 4.8000
0.1573  4.9000



09798
0.9818
0.9837
0.9856
0.9874
0.9893
0.9912
0.9930
0.9948
0.9966
0.9984
1.0002
1.0020
1.0037
1.0055
1.0072
1.0090
1.0107
1.0124
1.0141
1.0157
1.0174
1.0191
1.0207
1.0224
1.0240
1.0256
1.0272
1.0288
1.0304
1.0320
1.0336
1.0352
1.0367
1.0383
1.0398
1.0414
1.0429
1.0444
1.0459
1.0474

0.9798
0.9818
0.9837
0.9856
0.9874
0.9893
0.9912
0.9930
0.9948
0.9966
0.9984
1.0002
1.0020
1.0037
1.0055
1.0072
1.0090
1.0107
1.0124
1.0141
1.0157
1.0174
1.0191
1.0207
1.0224
1.0240
1.0256
1.0272
1.0288
1.0304
1.0320
1.0336
1.0352
1.0367
1.0383
1.0398
1.0414
1.0429
1.0444
1.0459
1.0474

0.1556
0.1540
0.1524
0.1508
0.1492
0.1476
0.1460
0.1445
0.1429
0.1414
0.1399
0.1384
0.1369
0.1355
0.1340
0.1326
0.1311
0.1297
0.1283
0.1269
0.1255
0.1242
0.1228
0.1214
0.1201
0.1188
0.1174
0.1161
0.1148
0.1135
0.1122
0.1110
0.1097
0.1084
0.1072
0.1060
0.1047
0.1035
0.1023
0.1011
0.0999

5.0000
5.1000
5.2000
5.3000
5.4000
5.5000
5.6000
5.7000
5.8000
5.9000
6.0000
6.1000
6.2000
6.3000
6.4000
6.5000
6.6000
6.7000
6.8000
6.9000
7.0000
7.1000
7.2000
7.3000
7.4000
7.5000
7.6000
7.7000
7.8000
7.9000
8.0000
8.1000
8.2000
8.3000
8.4000
8.5000
8.6000
8.7000
8.8000
8.9000
9.0000
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According to the data collected in Table 3. 2 and Table 3. 3, Kj can be selected in

the range between 110 and 60000 for the stable operation of the inner loop, and it is

chosen as 500 in this study.
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When the speed loop is closed one parameter of the speed controller should be
kept constant. For this reason K, is chosen at the value of 1. Now, the characteristic
polynomial including K;, as varying parameter can be obtained as given in Equation

(3-38) from Mathcad (MathSoft, 1994) via the program kinitial given in Appendix 1.

(2.9462755181510 1.7 5.8778196587210°° + 5.907282413910°°.7%) Kis ..
+2° _ 3.997817484817° + 6.193226730952* - 4.591776462917° ...
+1.595260826422% — .199011166043z + 1.1755639317410°* (3-38)

Afier rearranging the Equation (3-38) it is obtained in the form of

nums(z) _

1+K
dens(z)

where

nums(z) = 5.9072824139-107° - 2% +2.94627551815-107"! . z— 587781965872-107°
dens(z) = z° — 3.99781748481- z° + 619322673095 - z* — 459177646291 z*

+159526082642 - 22 — 0199011166043 - z + 1.17556393174-10~*

The following commands written in Matlab provides the root locations with

respect to the values of K;; denoted in the last column in Table 3. 4.

nums=[0 0 0 0 5.9072824139¢-9 2.94627551815¢e-11 -5.87781965872¢-9];
dens=[1 -3.99781748481 6.19322673095 -4.59177646291...
1.59526082642 -0.199011166043 1.17556393174¢-4];

[R,Kis]=rlocus(nums,dens);

Table 3. 4 Root locations of the system for different values of K;,

Rootl Root2 Root3 Root4 Root5 Rooté K
1.6000 0.9994 0.9949 0.7300 0.2729 0.0006 0
1.0000 0.9994 0.9949 0.7300 0.2729 0.0006 9.9940e-003

1.0000 0.9994 0.9949 0.7300 0.2729 0.0006 1.6228¢-002



1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

0.9999

0.9999

0.9998

0.9997 + 0.0002i
0.9997 + 0.0003i
0.9997 + 0.0005i
0.9997 + 0.0007i
0.9997 + 0.0009i
0.9997 +0.0011i
0.9997 +0.0015i
0.9997 + 0.0019i
0.9997 + 0.0024i
0.9997 + 0.0025i
0.9997 + 0.0028i
0.9997 + 0.0034i
0.9997 + 0.0050i
0.9998 + 0.0079i
1.0002 + 0.0133i
1.0011 + 0.0228i
1.0037 + 0.0384i
1.0099 + 0.0615i
1.0208 + 0.0897i
1.0363 + 0.1208i
1.0579 + 0.1565i
1.0589 +0.1579i
1.0599 + 0.1594i
1.0608 + 0.1609i
1.0618 +0.1624i
1.0628 + 0.1639i
1.0638 + 0.1654i
1.0649 + 0.1669i
1.0659 + 0.1684i
1.0670 + 0.1700i
1.0680 +0.1715i
1.0691 +0.1731i
1.0702 + 0.1746i
1.0713 +0.1762i
1.0724 +0.1778i
1.0735 +0.1794i
1.0746 + 0.1810i
1.0758 +0.1826i
1.0769 + 0.1842i
1.0781 +0.1858i

0.9994

0.9994

0.9994

0.9994

0.9994

0.9994

0.9995

0.9995

0.9996

0.9997 - 0.0002i
0.9997 - 0.0003i
0.9997 - 0.0005i
0.9997 - 0.0007i
0.9997 - 0.0009i
0.9997 - 0.0011i
0.9997 - 0.0015i
0.9997 - 0.0019i
0.9997 - 0.0024i
0.9997 - 0.0025i
0.9997 - 0.0028i
0.9997 - 0.0034i
0.9997 - 0.0050i
0.9998 - 0.0079i
1.0002 - 0.0133i
1.0011 - 0.0228i
1.0037 - 0.0384i
1.0099 - 0.0615i
1.0208 - 0.0897i
1.0363 - 0.1208i
1.0579 - 0.1565i
1.0589 - 0.1579i
1.0599 - 0.1594i
1.0608 - 0.1609i
1.0618 - 0.1624i
1.0628 - 0.1639i
1.0638 - 0.1654i
1.0649 - 0.1669i
1.0659 - 0.1684i
1.0670 - 0.1700
1.0680 - 0.1715i
1.0691 -0.1731i
1.0702 - 0.1746i
1.0713 - 0.1762i
1.0724-0.1778i
1.0735 - 0.1794i
1.0746 - 0.1810i
1.0758 - 0.1826i
1.0769 - 0.1842i
1.0781 - 0.1858i

0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950

0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7300
0.7299
0.7296
0.7288
0.7264
0.7197
0.7035
0.6726
0.6215
0.5116
0.5027
0.4920
0.4776
0.4493 - 0.01371
0.4486 - 0.0339i
0.4478 - 0.0461i
0.4470 - 0.0558i
0.4462 - 0.0641i
0.4454 - 0.0716i
0.4446 - 0.07851
0.4438 - 0.0849i
0.4430 - 0.0910i
0.4422 - 0.09671
0.4413 - 0.1022i
0.4405 - 0.1075i
0.4397 - 0.1126i
0.4388 - 0.1176i
0.4380 - 0.1224i
0.4371 -0.1271i

0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2729 0.0006
0.2730 0.0006
0.2732 0.0005
0.2739 0.0003
0.2758 -0.0002
0.2810 -0.0015
0.2928 -0.0042
03177 -0.0091
0.3931 -0.0177
0.4005 -0.0182
0.4097 -0.0186
0.4226 -0.0191

0.4493 + 0.0137i -0.0195
0.4486 +0.0339i -0.0200
0.4478 + 0.0461i -0.0205
0.4470 + 0.0558i -0.0209
0.4462 +0.0641i -0.0214
0.4454 + 0.0716i -0.0219
0.4446 + 0.0785i -0.0225
0.4438 +0.0849i -0.0230
0.4430 + 0.0910i -0.0235
0.4422 +0.0967i -0.0241
0.4413 +0.1022i -0.0246
0.4405 +0.1075i -0.0252
0.4397 + 0.1126i -0.0258
0.4388 +0.1176i -0.0263
0.4380 + 0.1224i -0.0269
0.4371 +0.1271i -0.0276
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2.6351e-002

4.27882-002

6.9478¢-002

1.1282¢-001

1.8319¢-001

2.9746¢-001

4.8300e-001

7.8429¢-001

1.2735¢+000
2.0679¢+000
3.3578¢+000
5.4523e+000
8.8534¢+000
1.4376¢+001
2.3343¢+001
3.7904e+001
6.1548+001
9.9940e+001
1.0763e+002
1.3083¢+002
2.0086e+002
4.1222¢+002
1.0501e+003
2.9730e+003
8.7369¢+003
2.5569¢+004
7.0167¢+004
1.6691¢+005
3.5062¢+005
7.1091¢+005
7.3002¢+005
7.4965¢+005
7.6980e-+005
7.9049¢+003
8.1174e+005
8.3356¢+003
8.5596¢+005
8.7897¢+003
9.0260e+005
9.2686¢+005
9.5177e+005
9.7735¢+005
1.0036¢+006
1.0306¢+006
1.0583e+006
1.0868¢+006
1.1160e+006
1.1460¢+006
1.1768¢+006




1.0793 +0.1875i 1.0793 - 0.1875i 0.9950 0.4362 - 0.1317i 0.4362 +0.1317i -0.0282
1.0805 +0.1891i 1.0805-0.1891i 0.9950 0.4353 - 0.1362i 0.4353 +0.1362i -0.0288
1.0817 +0.1908i 1.0817-0.1908i 0.9950 0.4345 - 0.1406i 0.4345 +0.1406i -0.0295
1.0829 +0.1924i 1.0829-0.1924i 0.9950 0.4336 - 0.1450i 0.4336 + 0.1450i -0.0301
1.0841 +0.1941i 1.0841 - 0.1941i 0.9950 0.4327 - 0.1493i 0.4327 + 0.14931 -0.0308
1.0853 +0.1958i 1.0853 -0.1958i 0.9950 0.4318 - 0.1535i 0.4318 +0.1535i -0.0314
1.0866 + 0.1975i 1.0866 - 0.1975i 0.9950 0.4309 - 0.1576i 0.4309 +0.1576i -0.0321
1.0879 +0.1992i 1.0879-0.1992i 0.9950 0.4300 - 0.1617i 0.4300 + 0.16171 -0.0328
1.0891 +0.2009i 1.0891 - 0.2009i 0.9950 0.4290 - 0.1658i 0.4290 +0.1658i -0.0336
1.0904 + 0.2026i 1.0904 - 0.2026i 0.9950 0.4281 - 0.1698i 0.4281 + 0.16981 -0.0343

1.0916 +0.20411
1.0949 + 0.20851
1.1041 + 0.22051
1.1259 + 0.2478i
1.1653 + 0.2943i

1.0916 - 0.2041i
1.0949 - 0.2085i
1.1041 - 0.2205i
1.1259 - 0.2478i
1.1653 - 0.2943i

0.9950
0.9950
0.9950
0.9950
0.9950

0.4273 - 0.1733i
0.4249 - 0.1831i
0.4184 - 0.2083i
0.4035 - 0.2601i
0.3776 - 0.3382i

0.4273 +0.1733i -0.0349
0.4249 +0.1831i -0.0368
0.4184 + 0.2083i -0.0423
0.4035 +0.26011 -0.0560
0.3776 + 0.3382i -0.0831

1.2233 + 0.3587i 1.2233-0.3587i 0.9950 0.3411 - 0.4349i 0.3411 + 0.43491 -0.1260
1.3013 + 0.4409i 1.3013 - 0.4409i 0.9950 0.2930 - 0.5468i 0.2930 +0.5468i -0.1858
1.4011 +0.5421i 1.4011 -0.5421i 0.9950 0.2312 - 0.6736i 0.2312 + 0.6736i -0.2617

1.5243 + 0.6639i
1.6733 + 0.8087i
1.8514 + 0.9806i
2.0640 + 1.1853i
2.3193 + 1.4315i1
2.6318 + 1.7339i
3.0275 +2.1187i
3.5519 +2.6314i
4.2759 +3.3431i

1.5243 - 0.6639i
1.6733 - 0.8087i
1.8514 - 0.9806i
2.0640 - 1.1853i
2.3193 - 1.43151
2.6318 - 1.7339i
3.0275-2.1187i
3.5519-2.6314i
4.2759 - 3.3431i

0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950

0.1528 - 0.8154i
0.0537 - 0.9734i
-0.0718 - 1.1502i
-0.2316 - 1.3509i
-0.4373 - 1.5837i
-0.7068 - 1.8643i
-1.0692 - 2.2214i
-1.5714 - 2.7051i
-2.2831 - 3.3912i

0.1528 +0.8154i -0.3514
0.0537 +0.9734i 0.4511
-0.0718 + 1.1502i -0.5564
-0.2316 + 1.35091 -0.6620
-0.4373 + 1.5837i -0.7613
-0.7068 + 1.8643i -0.8473
-1.0692 +2.2214i -0.9139
-1.5714 +2.7051i -0.9583
-2.2831 +3.3912i -0.9828
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The stable operation can be performed by chosing K;, in the range given below

0483 <K, <1050

and that value is chosen 5 in this study.

Finally, the initial values are collected in the matrix given below which is a proper

form for the optimization

X o o -1-5
il 7 _j0 500 0 0
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3.4.4 MATLAB Solution of the Optimization

In this study, 110V, 2.5 hp, 1800 rpm a separately excited DC motor having the

following parameters is used:

R.=1 ohm

L,=46 mH

J=0.093 kgm’
B,=0.008 Nt-m/rd/sec
K=0.55 V/rad/sec.

The other parameters related to the system are given below;

Sampling period, T=0.0001 sec

Amplitude of PWM signal, Kyu=110 V

Peak value of the sawtooth waveform, E,=12 V
Reference speed, w80 rad/sec

Load torque, T;=0

In addition, the linear gains of current and speed transducers (k; and k;) have been

chosen unity.

Finally, the optimization parameters used in simplex algorithm are given below

Reflection coefficient, o=0.75
Contraction coefficient, f=0.5

Expansion contant, y=1.6.

In this section, numerical solution of the minimization problem given in Equation
(3-30) subject to the constraint in Equation (3-27) will be given. For the solution of

the minimization problem, simplex algorithm has been used. When the simplex
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algorithm is used, the zero elements of the gain matrix can be set to zero, and the
optimal values for the non-zero elements of the gain matrix K can be obtained by
minimizing the performance index. In other words, g; weightings in Equation (3-30)
are not used with the Simplex method. Furhermore, V can also be set to zero in
Equation (3-30) because the error at the output of PI controller is zero at steady-

state. As a consequence, the problem becomes to the minimizing of the
1
J, = trace(PX) (3-39)

subject to the constraint
A, PA_-P+Q+C"K"RKC =0 (3-40)

Solution of the optimization problem is obtained by a number of programs or
routines written in Matlab. The list of these routines is given in Appendix 1. Using
these routines with different state weighting matrices given below, the optimal
controller gain matrices are obtained. In the state weighting matrix Q,, the error

deviations on current and speed responses are equally weighted.

1 0 0 0 0 O]

01 0 0 0 O

00 0 01 0 O 01 0
Ql: ’ R=

0001 0 0 O 0 01

00 0 0 0 oI

00 0 0 01 O]

The controller gains are computed from the optimization routine and given below

[ o 0 095744 —3.6026
ortl 1 _10137 -52524 0 0
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Optimum cost J; is 7.5013%10° whereas initial cost is 8.1397%10°,

In the state weighting matrix Q, given below, the error deviation of speed is

dominantly weighted against the error deviation of current.

1 0 0 0 0 O]
010 0 0 0 O
0 0 0 01 0 O 01 O
QZ = 2 R:
0 0 01 0 0 O 0 01
0 0 0 0 0 01
0 0 0 0 01 O]
initial cost is 3.2260%10’.

The controller gains for this weighting matrix are

[ o 0 ~12172 -48778
°f2 T _10668 -50093 0 0

and optimum cost J, is 2.7767%107,

3.5. Results of Analysis

In this section, the model developed for the closed-loop control of dc drive is used
to analyze the system. The set of equation in discrete time domain given in Equation
(3-4), (3-6) and (3-15) are solved altogether. The relation between duty cycle and the
control voltage is depicted in Figure 2.3. The duty cycle is limited by the PI controller.
This limitation is not included in the model developed in Chapter 3. Because this
linearized model will be used to design the optimal controllers and to analyze the
stability. Therefore the analysis of the system here will be obtained in the case of
linear relation defined between duty cycle and control signal (unlimited duty cycle),
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and nonlinear relation as a result of including the limitation on duty cycle (limited duty
cycle). The results are divided into two sections. Both sections will cover the result of
the analysis obtained by using the initial value of controller parameters, Kiniia1 and two
local optimal values (Ko and Kop2) estimated by the simplex algorithm for nonlinear

optimization.
3.5.1. Results of Analysis with Unlimited Duty Cycle
Figure 3 . 6, Figure 3 . 7 and Figure 3 . 8 show the rotor speed, armature current

and reference current with respect to time for the initial value of PI parameters given

in Section 3.4.3. In the analysis of the model, the duty cycle is not limited.

anallzi {i=1e+004 Hz; Kps=1, Kis=5, Kpi=10. Kll==200)
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Figure 3 . 6 Speed response for Kiyiat with unlimited duty cycle

Figure 3 . 6 presents the rotor speed in terms of rad/sec with respect to time in
terms of second. In closed loop system the reference speed is set to 80 rad/sec and
load torque is assumed to be zero. The motor is started from standstill by means of

controllers. The rotor accelerates in 0.4 seconds to reach at its maximum speed. After
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taking an overshoot around 20 rad/sec over the setting value, it slows and settles

down 80 rad/sec at steady state.

Figure 3 . 7 shows the motor armature current with respect to time. Since the back
emf is zero at the stanstill, the motor demands high starting current as it is seen in
Figure 3 . 7. As the rotor accelerates the back emf given in Equation (2-2) increases
and the armature current decreases. The maximum value of starting current is limited
only by the armature resistance since the output of speed controller is not limited.
That is the reason why the armature current given in this figure arises to its maximum
with a sharp rise time. The settling time of the response follows that value in the
response of rotor speed. The armature current settles down around 1 A at steady state

because of inclusion of damping coefficient into the model in Equation (2-3).

anallz1 {f=10+004 Hz; Kpa=1, Kie=6, Kpi=10, Ki=588)

Figure 3 . 7 Armature current variation for Kiia With unlimited duty cycle
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It can be clearly shown that the actual current in Figure 3 . 7 follows the reference

current in Figure 3 . 8 dictated by the speed controller.

analiz (:=10+004 Hz; Kps=1, Kle=5, Kpl=10. KII=500)

Figure 3 . 8 Reference current variation for Kiyia with unlimited duty cycle

In this part of results, the analysis will be carried out for two local optimum value
of cost function. The optimal values of controllers are given in Section 3.4.4. These
two local optimum values are obtained because two different state weighting matrices
are used through the optimization. If these weighting matrices given in Section 3.4.4
are treated, it can be recognized that the error estimated over the area between the
actual speed and reference speed is more minimized in the case of Kyy. Figure 3 . 9
and Figure 3 . 12 show the rotor speed in terms of rad/sec with respect to time for
optimal value of K11 and Ko, respectively. The results in Figure 3 . 9 and Figure 3 .
12 clearly present that the area between actual and reference speed in Figure 3 . 12 is
lower. The peak time in Figure 3 . 9 is greater than that of Figure 3 . 12. The
overshoot of rotor speed in the case of Ko is greater than that value given in Figure
3.12.
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analizi {f=1e+804 Hz; Kpe=0.0574, Kis=3.803, Kpl=10.14, KIl=82§ 2}
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Figure 3 . 9 Speed response for K,y with unlimited duty cycle

Figure 3 . 10 and Figure 3 . 13 show the motor armature current for K, and Ko
respectively. As it can be clearly observed from the state weighting matrices given in
Section 3.4.4, the error estimated over the arca between the actual current and
reference current is calculated through the optimization by keeping the weighting
coefficient constant. The reference currents for Ko and Koy are given in Figure 3 .
11 and Figure 3 . 14 respectively. The actual currents are following the reference

currents as it is expected.
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Figure 3 . 10 Armature current variation for Ko with unlimited duty cycle
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Figure 3 . 11 Reference current variation for K with unlimited duty cycle
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Figure 3 . 12 Speed response for Ko, with unlimited duty cycle
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Figure 3 . 13 Armature current variation for Koy, with unlimited duty cycle
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analizi {I=1e+004 Hz, Kps=1.217, Ki=4 878, Kp-10.687, KI=500.9)
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analizi {f=1e+004 Hz; Kps=1217, Kis=4 870, Kpl=-10.47, KI-500.9)

tima

Figure 3 . 14 Reference current variation for Ko, with unlimited duty cycle

3.5.2 Results of Analysis with Limited Duty Cycle

In this analysis, the duty cycle is limited to 0.9 at maximum value. The results will
be presented for Kintiat, Kopt1 and Kopp, and they will be compared with the results
obtained from the real time simulation given in Chapter 5. This comparison has been
performed in order to identify the validity of the model developed in Section 3.2.

Figure 3 . 15 to Figure 3 . 18 show the variation of rotor speed, armature current,
reference current and duty cycle in time for Kinuiar. The duty cycle stays at 0.9 level for
a while to accelerate the rotor from standstill to the steady-state as it is shown in
Figure 3 . 18. After getting a low level on E,, the duty cycle decreases to a level
around 0.2. During this period the rotor accelerates and armature current decreases to

reach at the steady-state values.
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Figure 3 . 15 Speed response for Kinsia with limited duty cycle

When the envelope of speed obtained from the model developed in this thesis is
compared with the envelope of speed obtained from the real time simulation given in
Chapter 5, it is observed that the figures are similar to each other. The maximum
value of speed from real time simulation is 106.8 rad/sec whereas the maximum value
of speed from model is 108.6 rad/sec. In other words the percentage error is less than
2. This result proves the validity of the model developed in this thesis.
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Figure 3 . 17 Reference current variation for Kinia with limited duty cycle
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Figure 3 . 18 Duty cycle variation for Kinitia

Figure 3 . 19 to Figure 3 . 22 presents the variation of rotor speed, armature
current, reference current and duty cycle in time for K. Varying the optimal
controller gains with the state weighting matrices do not change the maximum value
of the armature current in the case of the analysis with limited duty cycle. However, in
the case of the analysis with unlimited duty cycle, the maximum values of armature
currents take place at different levels for Kiniial, Kopt1 and Koo as it is seen from Figure
3.7, Figure 3 . 10 and Figure 3 . 13.
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Figure 3 . 19 Speed response for Ko with limited duty cycle

Since the duty cycle is limited to 0.9, the voltage applied to the armature is limited
too. This limitation on armature voltage provides the rise time of armature current
during starting period higher than that value obtained from the unlimited duty cycle as
it can be observed from Figure 3 . 20 and Figure 3 . 10.

The duty cycle is not allowed to take some values more than 0.9 in the simulation
even if the E. is greater than the peak value of sawtooth. Therefore the actual current
follows the reference current with a time delay, as it can be seen from Figure 3 . 20

and Figure 3 . 21.
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Figure 3 . 20 Armature current variation for Koy with limited duty cycle
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Figure 3 . 21 Reference current variation for K1 with limited duty cycle
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Figure 3 . 23 to Figure 3 . 26 show the variation of rotor speed, armature current,
reference current and duty cycle in time for K. As it can be recognized from Figure
3 . 23 and Figure 3 . 26, the rotor speed decelerates after the duty cycle jumps from

09t00.1.
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Figure 3 . 22 Duty cycle variation for Ko
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Figure 3 . 23 Speed response for Ky, with limited duty cycle
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Figure 3 . 25 Reference current variation for Koy with limited duty cycle
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Figure 3 . 26 Duty cycle variation for Koy



CHAPTER FOUR
STABILITY ANALYSIS

4.1 Introduction

The stability analysis of discrete-time systems can be carried out by using two
different techniques. One of them is the direct stability analysis in z-domain such as
Jury test, Schur-Cohn criterion etc., whereas the other covers the techniques used for
continuous-time systems after some certain modifications are made. The later includes
the Routh-Hurwitz criterion, root-locus method and the frequency-response

techniques.

During the design of the controller parameters using optimal control mentioned in
previous chapter, the amplitude and the chopping period of PWM signal are
considered at constant level. In this chapter, these two parameters are assumed to be

varying and the effect of them on the stability of overall system will be investigated.

As it will be shown later in this chapter, characteristic equation of the system
including Kywm as a variable can be obtained as a linear function of K. However, the
characteristic equation as a function of T can not be obtained as a linear function.
Thus, the stability analysis of the system for the amplitude of PWM signal can be
carried out by root-locus and it is investigated by both root-locus and jury test in this
study. However, the stability analysis of the system for the varying chopping period is
performed by only jury test.
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In the following sections of this chapter, the stability analysis of the system will be
given for the amplitude control of PWM signal by root-locus method and for the
control of amplitude and chopping period of PWM signal by using Jury test. In

addition the consistency of the results are being shown.

4.2 Stability Analysis for the Amplitude Control of PWM Signal by Root-

Locus

In Chapter 3 the state equation of the system was obtained in the form of

x(n+1)=A-x(n)+B-x(n)+E-r(n)

where u(n) = -K:y(n) and y(n) = C-x(n). Thus for the closed-loop system it can

be written that

x(n+1) = A-x(n)- BKC-x(n) + E-1(n)
x(n+1) =[A -BKC]-x(n) +E-1(n)
x(n+1)=A,-x(n)+E-r(n)

The last equation is the compact form of the Equation (3-1). The characteristic

equation of the system is
det(zI-A.)=0 @-1)

The program chrceq k.mcd of which list is given in Appendix 2 was written in
Mathcad in order to obtain the characteristic equation as a function of Kowm. In this
program, 12 digits after decimal point is taken into consideration for precision. In this
study, 3 and 7 digits after decimal point were considered but the results with these
precisions were carrying enormous error in the calculation of characteristic equation.

Therefore they have been kept out of the investigation.
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As a consequence characteristic equation is obtained as

2% —3.99781748481z° + 599345318022z —3.99345390603z> + 0.997818210612z>
+K o (181612318841-107 2* — 543929597164 107 2* + 543129677584 107 2

— 180919241724 -107% z + 1.06842730978 - 107%)
(4-2)

If Equation (4-2) is divided by the terms

2% —3.99781748481z> +5.99345318022z* —3.99345390603z> + 0.9978182106122>

the proper form of the equation for root-locus analysis can be obtained as follows

num(z)

14K, 2
PY® den(z)

(43)

where

num(z) = 181612318841-1072z* — 543929597164 -107 23

+5.43129677584-1073 2% — 180919241724 -10~2 z + 1.06842730978 - 10~°
and

den(z) = z° — 3997817484812 +5.99345318022z"* — 399345390603z

+09978182106122>

Now, it is possible to find the root-locus of the system as the Kpwm is a varying
parameter. Various K,wn and corresponding root locations can be obtained with the
aid of rlocus function available in Matlab Control System Toolbox. The commands for

this purpose in Matlab are given below:

num=[0 0 1.81612318841e-3 -5.43929597164e-3 5.43129677584¢-3 ...



74

-1.80919241724e-3 1.06842730978e-6];
den=[1 -3.99781748481 5.99345318022 -3.99345390603 0.997818210612 0 O},

[R,Kpwm]=rlocus(num,den)

After these commands are entered into the Matlab, the root locations and the

corresponding amplitude values of PWM signal are obtained as given Table 4. 1.

Table 4. 1 Absolute values of roots for Kpwm

Root 1 Root 2 Root 3 Root 4 Root 5 Root 6 Koum=10%*

0 0 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0

0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 -0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.00151 0.9995 - 0.00151 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 - 0.00151 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.00001 1.0013 0.9995 + 0.00151 0.9995 - 0.00151 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 - 0.00151 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.00001 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.00001 1.0013 0.9995 + 0.0015i1 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.00001 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.00001 1.0013 0.9995 + 0.0015i 0.9995 - 0.00151 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 - 0.00151 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 +0.00151 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 +0.0015i1 0.9995 - 0.00151 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 +0.0015i 0.9995 - 0.00151 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0000i 0.0000 - 0.0000i 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0001i 0.0000 - 0.0001i 1.0013 0.9995 + 0.0015i 0.9995 - 0.0015i 0.9976 0.0000
0.0000 + 0.0001i 0.0000 - 0.0001i 1.0012 0.9995 + 0.0015i 0.9995 - 0.00151 0.9976 0.0000
0.0000 + 0.0002i 0.0000 - 0.0002i 1.0012 0.9995 + 0.0016i 0.9995 - 0.0016i 0.9976 0.0001
0.0001 + 0.0004i 0.0001 - 0.0004i 1.0010 0.9994 + 0.0017i 0.9994 - 0.00171 0.9977 0.0002
0.0004 + 0.00061 0.0004 - 0.0006i 1.0007 0.9990 + 0.0020i 0.9990 - 0.0020i 0.9981 0.0005
0.0005 + 0.0006i 0.0005 - 0.00061 1.0007 0.9990 + 0.0020i1 0.9990 - 0.0020i 0.9982 0.0005
0.0005 + 0.0006i 0.0005 - 0.00061 1.0007 0.9990 + 0.0020i 0.9990 - 0.0020i 0.9982 0.0005
0.0005 + 0.00061 0.0005 - 0.00061 1.0007 0.9989 + 0.0021i 0.9989 - 0.0021i 0.9982 0.0006
0.0006 + 0.0006i 0.0006 - 0.00061 1.0006 0.9989 + 0.0021i 0.9989 - 0.0021i 0.9983 0.0006
0.0006 + 0.0006i 0.0006 - 0.00061 1.0006 0.9988 + 0.0022i 0.9988 - 0.0022i 0.9983 0.0007
0.0006 + 0.0006i 0.0006 - 0.00061 1.0006 0.9988 + 0.0022i 0.9988 - 0.0022i 0.9984 0.0007
0.0007 + 0.0006i 0.0007 - 0.00061 1.0006 0.9988 + 0.0022i 0.9988 - 0.0022i 0.9984 0.0007
0.0007 + 0.0006i 0.0007 - 0.00061 1.0006 0.9987 + 0.0023i 0.9987 - 0.0023i 0.9985 0.0008
0.0007 +0.0006i 0.0007 - 0.0006i 1.0005 0.9986 + 0.0023i 0.9986 - 0.0023i 0.9985 0.0008
0.0008 + 0.0006i 0.0008 - 0.00061 1.0005 0.9986 + 0.0024i 0.9986 - 0.0024i 0.9985 0.0009
0.0008 + 0.0005i 0.0008 - 0.00051 1.0005 0.9985 + 0.0024i 0.9985 - 0.0024i 0.9986 0.0009
0.0009 -+ 0.0005i 0.0009 - 0.00051 1.0005 0.9985 + 0.0025i 0.9985 - 0.0025i 0.9986 0.0010
0.0009 + 0.00051 0.0009 - 0.00051 1.0004 0.9984 + 0.00261 0.9984 - 0.0026i 0.9987 0.0010
0.0010 + 0.0004i 0.0010 - 0.0004i 1.0004 0.9983 + 0.0026i1 0.9983 - 0.00261 0.9987 0.0011
0.0011 + 0.0004i 0.0011 - 0.00041 1.0004 0.9983 + 0.0027i 0.9983 - 0.0027i 0.9988 0.0012
0.0011 + 0.0003i 0.0011 - 0.00031 1.0004 0.9982 + 0.0027i 0.9982 - 0.0027i 0.9988 0.0012
0.0011 0.0013 1.0003 0.9981 + 0.0028i 0.9981 - 0.0028i 0.9988 0.0013
0.0009 0.0016 1.0003 0.9980 + 0.0029i 0.9980 - 0.0029i 0.9989 0.0014
0.0009 0.0018 1.0003 0.9980 + 0.0029i 0.9980 - 0.002%1 0.9989 0.0015
0.0008 0.0020 1.0003 0.9979 + 0.0030i 0.9979 - 0.00301 0.9990 0.0015
0.0008 0.0024 1.0002 0.9977 + 0.0032i 0.9977 - 0.0032i 0.9990 0.0018
0.0007 0.0038 1.0001 0.9970 + 0.0036i 0.9970 - 0.0036i 0.9992 0.0025
0.0006 0.0077 0.9997 0.9951 + 0.0041i 0.9951 - 0.0041i 0.9997 0.0046
0.0006 0.0080 0.9997 - 0.0001i 0.9949 + 0.0041i 0.9949 - 0.0041i 0.9997 + 0.00011 0.0048
0.0006 0.0085 0.9997 - 0.0001i 0.9947 + 0.0041i 0.9947 - 0.0041i 0.9997 + 0.0001i 0.0050
0.0006 0.0089 0.9997 - 0.00021 0.9945 + 0.0040i 0.9945 - 0.0040i 0.9997 + 0.00021 0.0052
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has a pole outside the unit circle when Kpwm is less than approximately 4.6 and greater
than approximately 1003. However, in order to find the exact values of Kgwm which
are the limit on the stability, the following command is entered to expand the interval
of Kowm between 1 and 5 with the step length of 0.5. The amplitude of the complex
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0.1462

0.1539
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0.2123
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0.4168
0.5014 + 0.0568i
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0.9942 + 0.00401
0.9940 + 0.00391
0.9938 + 0.0039i
0.9935 + 0.0038i
0.9933 + 0.00371
0.9930 + 0.0035i
0.9927 + 0.00331
0.9924 + 0.0031i
0.9921 +0.0028i
0.9917 + 0.0024i
0.9914 + 0.0018i
0.9910 + 0.00071
0.9889

0.9876

0.9865

0.9854

0.9843

0.9813

0.9725

0.9463

0.8567

0.8491

0.8410

0.8323

0.8230

0.8130

0.8023

0.7907

0.7780

0.7642

0.7489

0.7320

0.7129

0.6909

0.6649

0.6324

0.5861

0.5014 - 0.0568i

0.5014-0.1186i

0.5014 - 0.1593i

0.5014 - 0.1928i

0.5014 - 0.2223i

0.5014 - 0.2495i

0.5014 - 0.2749i

0.5014 - 0.2992i

0.5014 - 0.3186i

0.5014 - 0.3710i

0.5014 - 0.4968i

0.5014 - 0.7591i

0.5014 - 1.2531i

0.5014-2.1378i

0.5014 -3.6911i

poles are obtained as follows in this interval.

Kown=1:0.5:5;

0.9942 - 0.0040i
0.9940 - 0.00391
0.9938 - 0.0039i
0.9935 - 0.0038i
0.9933 - 0.0037i
0.9930 - 0.0035i
0.9927 - 0.0033i
0.9924 - 0.0031i
0.9921 - 0.00281
0.9917 - 0.0024i
0.9914 - 0.0018i
0.9910 - 0.0007i
0.9923
0.9928
0.9931
0.9933
0.9935
0.9938
0.9943
0.9947
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
0.9949
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0.9950
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0.9950
0.9950
0.9950
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0.9950
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0.9950
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0.9950

0.9997 + 0.0002i
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0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 + 0.00041
0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 -+ 0.0004i
0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 -+ 0.0004i
0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 + 0.00041
0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 + 0.0004i
0.9997 -+ 0.0005i
0.9997 + 0.00051
0.9997 + 0.0005i
0.9997 + 0.0005i
0.9997 + 0.0005i1
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If the list of the root locations given above is examined, it is seen that the system

0.0054
0.0057
0.0060
0.0062
0.0065
0.0068
0.0071
0.0075
0.0078
0.0082
0.0086
0.0089
0.0094
0.0098
0.0102
0.0107
0.0112
0.0126
0.0169
0.0300
0.0693
0.0723
0.0753
0.0785
0.0819
0.0853
0.0890
0.0927
0.0967
0.1008
0.1050
0.1095
0.1142
0.1190
0.1241
0.1293
0.1348
0.1405
0.1465
0.1527
0.1592
0.1660
0.1730
0.1804
0.1880
0.1946
0.2145
0.2746
0.4560
1.0034
2.6552
7.6406



R=rlocus(num,den,K;um)
[abs(R) Kpwm']
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Table 4. 2 Absolute values of roots for Kywm in the range (1-5)
abs(Root1) abs(Root2) abs(Root3) abs(Root4) abs(Root5) abs(Root6) _Kywm

0.9985
0.9979
0.9975
0.9970
0.9965
0.9961
0.9956
0.9951
0.9947

The third pole is not in the unit circle during K

0.9985
0.9979
0.9975
0.9970
0.9965
0.9961
0.9956
0.9951
0.9947

1.0005
1.0003
1.0002
1.0001
1.0000
0.9999
0.9998
0.9997
0.9997

0.9986
0.9989
0.9991
0.9992
0.9993
0.9994
0.9995
0.9996
0.9997

0.0010
0.0009
0.0007
0.0007
0.0007
0.0007
0.0006
0.0006
0.0006

0.0010
0.0019
0.0029
0.0038
0.0048
0.0057
0.0066
0.0076
0.0085

<3

pwm —

1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000
5.0000

. Therefore, in order to

keep the system in the stable region, the amplitude of PWM signal should be chosen

greater than 3.

The other command given below is expanding the range between 450 and 600 with

the step size of 5 to find the exact value of maximum PWM amplitude keeping the

system in stable region. This command also returns the amplitude of the complex

poles in the first 6 columns and the last column shows the value of corresponding

Kpwn.

Kpwm=450:5:600;

R=rlocus(num,den,Kpum)
[abs(R) Kpwm]

Table 4. 3 Absolute values of roots for Kywm in the range (450-600)
abs(Root1) abs(Root2) abs(Root3) abs(Root4) abs(Root3) abs(Root6) _ Kiun

0.9037
0.9087
0.9137
0.9187
0.9236
0.9285
0.9334

0.9037
0.9087
0.9137
0.9187
0.9236
0.9285
0.9334

0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997

0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997

0.9950
0.9950
0.9950
0.9950
0.9950
0.9950
0.9950

0.0006
0.0006
0.0006
0.0006
0.0006
0.0006
0.0006

450.0000
455.0000
460.0000
465.0000
470.0000
475.0000
480.0000
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0.9382 0.9382 0.9997  0.9997 0.9950  0.0006 485.0000
0.9430 0.9430 0.9997  0.9997 0.9950  0.0006 490.0000
0.9478 0.9478 0.9997  0.9997 0.9950  0.0006 495.0000
0.9526 0.9526 0.9997  0.9997 0.9950  0.0006 500.0000
0.9574 0.9574 0.9997  0.9997 09950  0.0006 505.0000
0.9621 0.9621 0.9997  0.9997 0.9950  0.0006 510.0000
0.9668 0.9668 0.9997  0.9997 0.9950  0.0006 515.0000
09715 0.9715 0.9997  0.9997 0.9950  0.0006 520.0000
0.9762 0.9762 0.9997  0.9997 0.9950  0.0006 525.0000
0.9808 0.9808 0.9997  0.9997 0.9950  0.0006 530.0000
0.9854 0.9854 0.9997  0.9997 0.9950  0.0006 535.0000
0.9900 0.9900 0.9997  0.9997 0.9950  0.0006 540.0000
0.9946  0.9946 0.9997  0.9997 0.9950  0.0006 545.0000
0.9991 0.9991 0.9997  0.9997 0.9950  0.0006 550.0000
1.0037  1.0037 0.9997  0.9997 0.9950  0.0006 555.0000
1.0082 1.0082 0.9997  0.9997 0.9950 0.0006 560.0000
1.0127 1.0127 0.9997 09997 0.9950  0.0006 565.0000
1.0172 1.0172 0.9997  0.9997 0.9950  0.0006 570.0000
1.0216 1.0216 0.9997  0.9997 0.9950  0.0006 575.0000
1.0260 1.0260 0.9997  0.9997 0.9950 0.0006 580.0000
1.0305 1.0305 0.9997  0.9997 0.9950  0.0006 585.0000
1.0349 1.0349 09997  0.9997 0.9950  0.0006 590.0000
1.0392 1.0392 0.9997  0.9997 0.9950  0.0006 595.0000
1.0436 1.0436 0.9997  0.9997 0.9950  0.0006 600.0000

For the value of K,wm, greater than 550, the system has two poles which are
outside the unit circle denoting unstability. Thus it can be recognized that the upper
limit of Kwm Will be 550 for the stable operation.

As a consequence of the stability analysis by root-locus, it can be concluded that

K,wm must be kept in the range given below:

3.0 < Kpm < 550.

The analysis results of the system for Kywn=545 in stable region and Kpwym=555 in
the unstable region without any limit on duty cycle are presented in Figure 4 . 1,
Figure 4 . 2, Figure 4 . 3 and Figure 4 . 4.

Figure 4 . 1 and Figure 4 . 2 give the speed and current response, respectively, for
the amplitude value of 545 of PWM signal. In these figures both the speed and current

responses settle down and this denotes the stable operation for that value of Kywm.
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Figure 4 . 3 and Figure 4 . 4 show the speed and current responses for the

amplitude value of 555 of PWM signal respectively. As it is seen from these figures,

both the speed and current responses are increasing in time and this shows the

unstable operation.
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Figure 4 . 3 Rotor speed for Kpwm=555



80

z 'una- analizi {=10+004 Hz; Kpam=5855)
B : T T T L) T T T
a_. ................................................................................................
[ T R S feememrmen ] m .. D R
2_ ...............................................................................................
=
2a
=1
S
) SO ......... _ ......... ......... ......... ......... ......... .......
aF----- _ ......... ......... .......... ........ ......... ......... ........
I ] T e e LT Pervinemen fasnsmrmrn Lurormenan Amememanan Sermraan
I I S S S B S NN S
o} a2 a4 0.8 as | 1.2 14 18
thrio

Figure 4 . 4 Armature current for Kpwm=555

4.3 Jury Stability Test

Jury stability test is a stability criterion for discrete-time systems that is similar to
the Routh-Hurwitz criterion in continuous-time systems. It is applied to the
characteristic equation written as a function of z. Since the system has 6 state-
variables, sixth order characteristic equation of the system can be obtained in the form
of

Q(z) = a5z’ +a52° +a,z* +a,7° +2,2° +2,2 +2,=0 (4-4)

where as>0. If this inequality is not satisfied, Q(z) is multiplied by -1. Then the table

below is formed.
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Table 4. 4. Jury table for the 6th order system in thesis

z° z' z z Al z 2
<h| a1 a as a4 as 13
s as ¥} a3 a Q4 Qo

bo b b, bs by bs
bs b bs b, b; bo
Co €1 C2 C3 C4

Cs C3 C2 C1 Co

d d; d» ds

s da d do

€o €1 €2
where
b= "ok, (4-5)
Ag Ay
by bsy
Cp = , 4-6
oy b @*-6)
d, = Co Cyx , @7
do dyy
= , 4-8
Cx d, d, (4-8)

According to Jury’s test, the following conditions must be satisfied for the stability

1) Q(1)>0 (4-9)
2) (-1°Q(-1)>0 (4-10)
3) [ao| < as 4-11)

4) [bo| > |bs| (4-12)
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5) [co| > [ea] (4-13)
6) |do| > |ds| @-14)
7) leo| > fea] (4-15)

Note that for the 6th-order system, there are total 7(6+1) constraints.
4.3.1 Stability Analysis for the Amplitude Control of PWM Signal

In Section 4.2, characteristic equation including K, as a varying parameter was
obtained and given in Equation (4-2). After rearranging Equation (4-2) in the form of
Equation (4-4), the coefficients in Equation (4-4) can be obtained as given below

ag=1D6242730978-10° " Kpwm
a,=180919241724.10°> Kpwm
a,=997818210612 + 5.43129677584- 10> Kpwm
a;=-399345390603 - 543979597164 10> Kpwm

a,=599345318022 + 1.81612318841-10" Kpvm
as= 399781743481

as=1,

Using these values, the other coefficients in Table 4. 4 are obtained by using
Mathcad. The by’s (k=0,1,...,5) which are defined in Equation (4-5) are

b0 :=1.1415369162810 2. K% - 1.

bl :=-1.93299058723 10"°-K? + 3.99781748481

b2 :=- 1.81505709218 10 >-K + 580294580283 10"°-K* - 5.99345318022
b3 :=5.43502925643 103K — 5.81149236208 107°-K2 + 3.99345390603
b4 1=-5.4248932067810 K + 1.9403956124210 °-K* - 997818210612

b5 :=1.80492103986 10 >.K
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where K is used instead of K, hereafter until the end of this section in order to keep

the coefficient equalities short.

The other coefficients ci’s (k=0,1,...4) in Equation (4-6) are

0 :=1.30310653123 10 4. K* — 3257742243210 5 K% + 1.

¢l :=-2.2065801141410 21.K* 1 9.7934414421510 5K - 3.99781748481...
+]- (3.5022608665110 2.k?) | + 1.8009830822910°% K

2 :=1.0487212882610 1 K3 + 6.6242768571 1021 K* - 9.8156084447410 8.2 ...
+]-(539281188452103 K | + 5.99345318022

3 1=~ 1.0467654686210 "1 K> — 6.6340330699910 2. K* + 3.2818507852610 K2 ...
+5.3826804899610 >-K — 3.99345390603

o4 :=3.48270266488 107 2. K3 1 2.21503322377 10721 K* - 194153465874 10 °-K? ...

+[- (1.79085168507.103.K) | + 997818210612
The di’s (k=0,1,2,3) in Equation (4-7) are as follows

d0 :=-4.90637048432-10 2. K® _ 1.21292177412-10 2 -K® + 1.0625354757-10° 1. k* ..
+ % (9.71875964704-105-K2) | + 4.35881857107-10° + 3.57388884774-10 K ...

+ (1139042005128 10 1. K — 154286042224 10 2K 4 1.35315094519.10 K

dl :=1.4691728248710 - K2 1 3.6455647813110 2 .K® - 3.1935628344810° 1. k* ..
+4.6286003737610732.K7 - 4.0594419435210 20K’ + 2.9174438861410 °-K ..

+4.14705713571 10 "L K3 - 1.3076454133610 2 — 1.0721637189410° 2K

42 =-4.62862456672-10 32K — 1.46643611835 10" 1. K8 _ 3.65236824706. 10 2. K6 ...

+4.059435545.-10"2°. K7 + 3.19952275191- 10 1. K* _ 4.12287030728 107 11.K3 ...
+[-(2.91926300518-105.K2) | + 1.07216197474 102K + 1.30764525461.10">



d3 :=1.54288461522 107 32.K7 + 4.87900341191- 10 2.k % 1 1.2197252417.10 B.K® ..
+[[- (13531245195 102.K) | - 1.0684953947. 10 ™. K* ] + 1.36623411844 10 1. K3 .
+9.73695174216 10°6.K? - 3.57387140583 10 2K — 4.35881698352 10>

Finallly, the coefficients e.’s (k=0,1,2) in Equation (4-8) are

€0 1= 1.63399641547-10 "*.K + 1.29691281097-10 %-K> 1 2.8323175936 10 1%-K? ...
+(-2.10526267157-10°57.K3) _ 1.27007891017.10 2. K® + 1.54723047165 10" 8.K° .
+(-3.51036769834 10 2.K7) — 4.21424801861- 10 16K + 2.67797035977.10° 5K 16 .
+ (-7.46580711026 10" %°-K ) _ 1.65504350601- 10 8. K2  2.89967787006 10 *6.K° .
+ (- 1.60755308632:10 3.K?) 1 3.68389085167-10° - K™ 1 8421107052410 76.K*° .
+(-3.56188980044. 10 -K*) + 1.38396823247.10° 1

el :=-3.26799477921-10 K — 2.59382328308 10" 1°.K> _ 5.66463612711- 10" K2 .
+ (276791467211 10° ™) 1 421052158846 10757 K3  2.54015555968 10 24.K® ...
+ (0300445818352 10 18.K®) 4 7.02073790107 10 2. K + 8.42848842034 10 . K" .
+(-5.35593595295 10 %.K'¢) 1 1.49315970063 10" %.K'* 1 3.31008406154 10" 8.k *2 ..
+ (- 579935057485 1026 X 1°) 1 3.21510620078 107.K® — 7.36777844956 10 . k!

+ (- 1.68421991224 10 - K * ) 4 7.12377325693 10" . K*

€2 = 1.63399409175 10 "*.K + 1.29691082699 10 *-X* + 2.83231250227-10 -x? ...
+ (- 2.10525948644 10 7. K®) _ 1.27007698409 10 4. K5 1 1.54722811791.10 B.K5 .
+(-3.51037071474 10 .K7) — 421424153583 10" 5.K° + 2.6779662987.10 %5.K 6 __
+ (-7.46579974599 10" °.K) _ 1.65504100072 10 *.K 2  2.8996734767.1036.K1° .
+ (- 1.60754774877-10 2. K®) + 3.68388197237-10° . K 1 842109427529 10" 6. K" ..
+ (- 3.5618843792910" 1.k*) + 1.38399002782 10" 1

Stability condition 1 given in Equation (4-9), i.e. the value of characteristic

equation at z=1, gives the polynomial
Q(1)=-8-10"? +267978-102-K
It is clear that Q(1) is positive if Kyum is greater than 2.9853.

Stability condition 2 given in Equation (4-10) gives the polynomial below
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Q(-1) = 159829001449 + 1.44969767804-107> - K

and if Kywm is greater than -1102.5, Q(-1) takes positive values.

Stability condition 3 requires the following inequality

106842730978 * 10 ° K | < 1

The solution of this inequality yields that

Kpwm < 935955
and

Kpwm <-935955.

Having the coefficients in Jury table, the K, ranges which provide the stability
conditions 4 to 7 in Section 4.3 has been computed by using a dedicated program
written in Matlab. This program is named in the juryk.m and given in Appendix 2. The

logic used to find the solution of inequality, for example |b,|> |bs|, is as follows:

First, the roots of bytbs=0 and be-bs=0 are found. Then the only real ones of these
roots are considered since Kywm is real. Later, these real roots are sorted in ascending
order and a region between two neighbour roots is selected. If the inequality is
verified at a trial point in the selected region, then this region is a solution region of

the inequality.

According to the result of juryk.m, the stability condition 4 in Equation (4-12)

gives the solution regions for Kywn as follows

Kpwm < -1.581e+009,
=554 < Ky < 554,



and

Kpwm > 1.581e+009

The stability condition 5 in Equation (4-13) is satisfied in the following regions for
K.

-1.572e+009 < Kpom < -1.572e+009,
-9.36e+005 < Kywm < -1103,
-1.216 < Kpwm < 550.9,

and

555.1 <Kpwm < 9.36e+005

The stability condition 6 in Equation (4-14) requires the following regions for
prm.

Kpwm <-1.581e+009,
-1.572e+009 < Kpwm < -1.572e+009,
-9.36e+005 < Kpmm < -9.36€+005,
-1102 < Kpum < -554,
-1.216 < Kpwm < -0.8569,
-0.1018 < Ky < 550.9,
550.9 < Kpwm < 554,
9.36e+005 < Kpwm < 9.36€+005,
and

Kowm > 1.581e+009

Finally, the stability condition 7 in Equation (4-15) is satisfied in the following
regions for Kywm.

Kpwm <-1.581e1009,
-1.567e+009 < Kpum < -9.369¢+0035,



87

-9.3526+005 < Ky < -1103,

-1102 <Kpwm < -554,

-553.6 < Kpgm < -1.216,

-0.8569 < Kpwm <-0.1018,

0.4403 < Kpwm < 549.7,

550.9 < Kpum < 550.9,

554 < Kpwm < 9.356e+005,

9.379¢+005 < Kpwm < 1.579¢+009,
and

Kpwm > 1.581e+009

The solution region that satisfies the all stability conditions from 1 to 7 is obtained
by taking the intersection of the solution regions of each stability condition.
Meanwhile, since stability condition 1 requires K,wm>2.9853, we may interested in
only positive regions of solution intervals in the results. Therefore, from the
intersection of the all solution intervals, for the stability of closed-loop system Kpwm

must be in the region

2.9853<K pumy<549.7.

Note that the results of the jury’s stability test are consistent with the results of the
stability analysis obtained from the root-locus method.

4.3.2 Stability Analysis for the Chopping Period Control
In order to make the stability analysis for the chopping period (T) by jury test, the
characteristic equation including T as a varying parameter must be obtained. This is

accomplished in Mathcad by the file chrceq_t.mcd presented in Appendix 2.

From the file chrceq t.mcd, characteristic polynomial with respect to T is as

follows
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6, (21.8251519T — 4.0)-2° + (6.0+ 1927.27816 T + 49891.4212T) 2" ...

-5912.7854 T — 49792.5822T% — 4.0 + 4285.49167.T3) - ...

5956.43571T + 736568.879 T + 1.0+ 324090.307- T — 38303.9972T2)-2 ..
-1992.75362 T + 1473137.76 T + 264200562 T2 - 4285.49167.T3) 2 ...

-324090.307-T° + 11785.102T> + 736568.879 T*) (4-16)

+ + + + N

As it is clearly observed from Equation (4-16), the characteristic equation of the
system is not in the proper form for the stability analysis that would be carried out by

root-locus technique.

After the characteristic equation is rearranged in the form of Equation (4-4) the

polynomial coefficients a;’s (k=0,1,2,...,6) are obtained as follows;

ap = - 324090.307-T° + 11785.102-T* + 736568.879- T*

ay = -1992.75362-T + 1473137.76. T + 264200562 T - 4285 49167-T°

2, = $956.43571.T 4 T36568.879-T* + 1.0+ 324090307 T° - 38303.9972- T
a; = - 5912.7854°T — 49792 5822-T° - 40 + 4285 49167-T°

ay =50+ 192727816 T + 49891 4212.T2
as = 21.8251519-T - 40

a =1

By using the coefficients a.’s (k=0,1,2...,6) given above, the other coefficients in
Jury table are obtained via Mathcad again. They are given in below:

The by’s (k=0,1,2...,5) defined in Equation (4-5) are

b0 = 542533714304 T° — 477429668588 T  + 122395605947-T° ~ 76388746974T ...
+138888630.862T" - 1.
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bl = 1.085067428611012- T° — 480586228381 T  + 38210156286.0T° — 10080789352.8T ...
+(957195191.423T* — 23484804.8548T° — 21.8251519402T) + 4.

b2 = 542533714304.T° - 124567519956.T° + 20620716741.4T — 2381103028.19T" ...
+69873112.6142T — 381063191523 T — 6. — 1927.27816737T

b3 = 315655979232 - 38064552791.6T° + 118326244820 T + 1326519500.7T" ..
+ (- 68390703.8981 T°) + 26521739131 T° + 5912.78541375T + 4.

b4 = -32953836.8513T" - 14749752901.0T + 36748468230.2T° + 20444537.7758T ...
+109014.609631T — 5956.43571763T - 1.

b5 = 16075727.7103T° — 114927334698 T + 155785836302 T - 73560.4643914T° ...
+1992.75362319T

The coefficients ¢¢’s (k=0,1,...,4) in Equation (4-6) are

c0 = - 118977749779 T* + 1.9106796379 101 T® - 4.426605442741012-T° ..
+3.91280372286 1013-T” + 290275691199: T° + 2.9434283115610%-T'C ...
+(-5.18043382836 102- T'°) + 3.60746573866 105 T'* - 1.25159281293103-T" .
+ 22425438715 102- T*? — 2.00254850069 1021-T*! + 9.235086448061019-T™ ..
+((-2.12153618799 1018- T%) + 1 + 293175763.879 T%) — 3971067.00274 T

cl = -23855611622.2T" + 3.37326386037107- T° ~ 2.91444839979102- T° _..
+ (- 4.13955359903105-T") + 2014.57877513T + 1.30780362222102T° ..
+ (-630354772.611T°) + 117961483932 T + 5.8868566231410%3- T ...
+((-7.78777614364105- T*) + 3.8298390717610%- T'*) — 9082167100910 T" ..
+(1.3830775323710%2- T - 2.06280032036 102 T*') + 2.1134112443310%°-T™° ...
+ (- 1.1812684051610"- T°) - 4.
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c2 = 128863378101 T* — 8.7310291952 1017-T° + 1.89298239425 1014.T® ..
+7.85634290327-1015-T" — 6043.73632539 T — 7.85298492196 10'2.T° ..
+ (353557565.641- T — 11450376.3797 T°) + 2.94342831156 108-T'® _..
+ (-2.59021691418 102-T**) - 117833657445 102 T + 6.65153167521- 1022 T" .
+ (- 2.63079866955 1022 T'%) + 6. + 4.65080673876 102 ' _..
+ (- 5.00269403856 102 T'*) + 2.97964360343 101°- T’

3 := -139880511826. T + 6.34394295953107- T* - 3.697774518311014-T° ...
+ (- 2.51899598521015-T") + 6043.73632539T + 1.070099185451013-T° ...
+11902882.6303T° + 3396575.59066T> + 1.712540108551021- T ...
+ ((-2.215833850491022- T™) + 2.4970371958710%2- T™) - 9.60637580654102L-T™2 ..
+1.070203297521021- T + 9.76154733966101- T™ - 1.6390235439410'-T° - 4.

4 = 1.+ 467734665997 T" — 1.13712816468 10V-T* + 1.87568814695 101 T° ..
+ (- 130056932254 10%5-T") — 2014.57877513 T - 4.44021504467 10°-T° _
+(-28281439.54 T°) + 228719.39854 T + 1.99372829639 102 T™* ..
+ (- 2.55644904832 102-T") + 1.15421382725 102-T" - 206702478446 102! T
+ 1.0547006755 102- T" + 4.21916593595 107- T

1

and the coefficients di’s (k=0,1,2,3) in Equation (4-7) are

dO := 1.54857677182 1083-T* - 2.18276699881 102L. T® + 1.39975596836 1017-T° ..
+ (-3.84649470837.1018-T") + 4029.15755026 T — 2.11758552863 1015 T° .,
+ 156446089836 T> — 124581004438 T + 8.12275445923 1032. T*
+2.97754471886 101 T - 423153926222 102-T® - 3.85166528128 108.T'? .
+ 3.28600447634 10%- T - 6.48270154808 10%- T + 2.01583471535 10°2. T
+ (-4.9260040731- 109 T*') + 829903823211 10%- T** - 6.13921150044 10%. T .
+ 1.80570805542 1027 T*! ~ 372210830478 10%5- T™ + 4.16296032777-108-T° ...
+1.1040592039 10%- T2 - 9.84594662151- 10%-T" + 2.14663598276 1037. T'® ..
+1.21070492634 10%-TY7 + 8.66377022529 10%.T°> - 3.04964711931 1047-T°! .
+ 4.80735282263 10Y- T - 4.4744422534710- T + 272618004495 1047-T® .
+ (- 1.13695762724 1047-T%) - 732272035205 10%- T"¢
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dl = - 464839179739 103 T* + 6.79133187456 102.- T® — 3.06846918824 1017-T° _..
+4.96347233749 1018 T” ~ 120874726508 T + 5.43809251515105-T° .,
+ (- 446776441147 T°) + 37374301.3313 T> + 2.97004266133 103.T* __.
+ (-2.43167806675 10°2- T**) + 5.17972099564 10%°-T" + 181911438013 10%.T" .
+2.87791308246 10%- T - 6.06611238384 10%- T + 1.36037477702 108-T* ..
+ (- 6.52187894985 10" T*') + 1.05994914035 10%-T** — 146070401847 104.T> .
+ (-3.54139543096 102- T'") + 8.93608565568 10%-T'* — 1.13094909635 10%-T° ...
+2.82806370526 10%- T + 7.77506260959 10%8-T" + 2.1879747343 1657-T"® _..
+(-4.13791050121 10%6- T'7) + 1.73275404506 1047- T* - 534192319785 10%7-T°' ..
+7.285354931111047-T° - 579790106626 1047- T + 3.0043928263 107-T** ..
+ (- 108197263938 1047-T>') + 1.11210013867 103-T*°

d2 = 465065745497 1013-T* — 7.00053715594 1021 T® + 1.98700494092 1017-T® ..
+1.0451237949510'8- T7 + 12087.4726508 T - 4.5230903405510'5-T° ...
+ 4243459631.02 T° - 37374301.3313 T — 8.8602725285110%3-T" ..
+3.9339014517710%2- T - 8.68981065088 10°- T + 6.95802669651 10%8- T** ..
+ (- 1.81805422073 10%- T?) + 5.19958791252 10%5- T - 823845987475 10%2- T ..
+3.96344021807 1041- T2 — 930701123164 10%-T* + 1.08449992598 10%-T> ...
+ 1.7842580670710%7- T - 6.77755436997 10%-T™ + 1.0123893179210%-T° ...
+ (- 1.69670020227 10%- T?) + 1.45883117036 10%-T™ - 1.15788095854 103-T'® ..
+ 429771463966 10%- T + 8.66377022529 10%- T>? — 2.28723533948 1047- T°! ..
+ 234152409895 1047- T>® — 9.74032755626 10%-T% — 1.3602342402510%-T>* ...
+3.49839714101 10%- T + 2.19592925721 103 T'°

d3 = - 155084242939 103 T* + 2.39461457752 10" T® — 3.18297178281016-T° __.
+(-2.18631868333 1018-T") — 4029.15755026 T + 1.20258928953 10857 ..
+ (- 1340156117.99T°) + 124581004438 T + 5.155183010910%-T" ..
+ (- 181967867983 10%2- T™*) + 3.9749455197310°0. T* - 4.9796952525710%8. T .
+ (- 1.63066252636 10%- T*®) + 4.4540206627410%- T — 7.00306340599 102 T .
+2.60482899787 1041- T*! - 8.01849610122 104 T>* + 9.4496165177510%. T> ..
+ (- 454008474417 10%- ') + 1.56402088463 10%- T — 2.97872228769102- T ...
+ 533014935165 10%- T - 127362251677 10%-T™ + 6.99296349504 107 T'® ..
+ (- 124095822617 10%-T'7) + 504073904019 10%. T*! — 1.9146110786710%- T .
+5.00227822666 10%- T — 58310591552 10%- T + 3.8918350863410%-T° ..
+ (- 633298964556 10°- T'°)

The coefficients €, €1, €; in Jury table could not have been calculated by means of

Mathcad because Mathcad could not compute the results from such a large input
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arguments and gave error. In order to overcome this problem, di’s are transferred to
the Matlab then e’s are computed by using a dedicated program, namely juryt.m,
written in Matlab.

After having the all coefficients defined in Jury table, the stability conditions given
in Equations (4-9) to (4-15) are checked in order.

Characteristic polynomial at z=1 gives the polynomial below

Q(1) =1-107 - T? + 294627551816 - T*

and the characteristic polynomial at z=-1 is

Q(-1) =16 +11781.9205236198 - T + 99585.1644071- T> — 8570.98332554 - T*

+2946275518156-T*

If it is taken into account that negative T is meaningless, it is seen that stability

condition 1 and 2 are provided for all positive values of T.

The values of T which provide the conditions 3 to 7 are found by the file juryt.m.
The file juryt.m also uses a similar logic with the juryk.m mentioned in Section 4.4.

The stability condition 3 gives the solution regions for T as follows

-0.008297< T < 0.01096,
0.03731< T <0.04214,

and
0.399976< T < 0.400023

The stability condition 4 requires the solution regions for T given below



T <-0.02301,
-0.0004928< T < 0.0005114,
0.05029< T <0.3951,
and
T > 0.4046

The stability condition 5 is satisfied with the following regions for T

T <-0.04027,

-0.008297< T < -0.001008,

0< T < 0.0004969,

0.0005165< T < 0.01096,

0.03731< T <0.04214,

0.399976< T < 0.400023,
and

T>0.544

The stability condition number 6 requires the following solution regions

T < -0.1076,

-0.08159< T <-0.04589,

-0.02598< T < -0.008538,

-0.008237< T < -0.001018,

-0.0004928< T <0,

0< T < 0.0004969,

0.0004969< T < 0.0005114,

0.008072< T < 0.009256,
and

T>1.812

93
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Finally,the stability condition number 7 gives the solution regions

T < -0.1689,
-0.1689< T <-0.1626,
-0.01393< T <-0.01136,
-0.001882< T < -0.0006432,
-0.0006432< T < -0.0004678,
-0.0004678< T < -0.0004516,
-0.0004516< T <0,
0< T < 0.0006084,
0.0006084< T < 0.002766,
0.002766< T < 0.008429,
0.008429< T < 0.01261,
0.01261< T < 0.06025,
0.06025< T <0.1179,
0.1179< T < 1.589,

and

1.888< T <2.325
Since negative period is not practical case, we may not take into account negative
value of period in the results above. Thus stability conditions 3 and 4 give the solution
region
0<T<0.0005114
or in terms of frequency (Hz)

19554 <f<ow

When this solution is combined with the result of stability condition 5, it is limited

to
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0 <T <0.0004969

or in terms of frequency (Hz)

201247 <f<w

This solution region is not changed by the result of stability condition 6 and 7. As a
consequence it is decided that chopping frequency must be kept in the range given

below

2012.47Hz<f< 0.

In order to control the result obtained from the stability analysis, the system will be
analyzed without any limit on duty cycle for the frequency of 2010 Hz and 2020 Hz

one of which is in stable and the other one is in the unstable region.

Figure 4 . 5 and Figure 4 . 6 give the speed and current responses respectively for
the chopping frequency of 2010 Hz. As it is seen from these figures, both the speed

and current responses are increasing in time and this shows the unstability.
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Figure 4 . 5 Speed of the motor showing unstability

anallzi {{=2010 Hz; {pwm=110}
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Figure 4 . 7 and Figure 4 . 8 show the speed and current responses for the
chopping frequency of 2020 Hz. In these figures both the speed and current response
settle down and this denotes the stable operation for 2020 Hz.

analizi {{=2020 Hz; Kpwm=110)
120 s ; T : T T T T T

Figure 4 . 7 Speed of the motor showing stability
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Figure 4 . 8 Armature current denoting stability
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CHAPTER FIVE
REAL TIME SIMULATION OF THE SYSTEM

5.1 Introduction

Real-time simulation is a type of dynamic simulation of nonlinear systems. It can be
used to analyze the system in detail after designing the controller parameters using the
linearized model of the nonlinear system. Therefore, this detailed simulation can
display the discrepancies between the linearized model and real system responses. The
model given in Chapter 2 is developed to design the controller parameters by
including the variation of PWM waveform in time into the model. The real time
simulation mentioned in this chapter is carried out with the help of the software
named Simulink (MathWorks, 1993) which is a program for simulating dynamic
systems. This program uses the block diagrams to represent the DC motor drive. The
numeric integration is performed by using the fifth order Runga-Kutta method in this
study.

5.2 Real-time Simulation of the Closed-Loop Control of DC Drive

In this section, the closed-loop control of a seperately excited DC motor given in
Figure 2.1 will be simulated in z-domain with the help of Simulink. The Simulink
model of the system, named classc, is given in Figure 5 . 1. The linear gains of current
and speed transducers have been chosen unity. The transfer functions of the speed and
current controllers in z-domain are given in Equation (2-29) and (2-38). These

functions obtained as a result of applying trapezoidal rule in integration will be
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employed to represent the PI controllers in dedicated blocks in Figure 5 . 1. The
reference speed and load torque are defined as the step functions in their own blocks.
These steps could be applied at any time during the simulation of the system. The step
change of these inputs has been specified after the begining of time at zero value.
These two blocks have been identified by Step Fen and Step Fenl in Figure S . 1.

L]

‘ Output3
|I|—_:': ss*Kisje-2"Kps4
StepFen — -2

Sum Speed Controller Step Fend

utd L
+ hTss Kiijz-2"KpitT W Ea | Cutput
nill = (=] [wE
Current Cortraller

Surm To WDFKSPBBe From Wgrkspace DC Motor-z

Output2

Figure 5 . 1 Block diagram representation of the real-time simulation model

Another block in Figure 5 . 1 is dedicated for the transfer function of dc motor
having 2 inputs and 2 outputs. This transfer function in z-domain is obtained in two
steps. The first step computes the transfer function H(s) in s-domain from the state

space model of the machine described in Section 2.2. Rewriting this state space forms;
d|i,(0)| |[-R./L, -K,0/L, | i, (t) N 0 1/L,|[TL(b)
dtlwt)| | Ko/J  -B,/J ||w®)]| |-1/T 0 ||V.(®)

or in the compact form

%Xm(t) = Am 'xm(t) +Bmm 'um(t)
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numiz
deniz

Dis. Transfer Fon +
+ _.El

Sum2 I:lUt_Ia.
nJmez
den2z
III _ Dig. Transfer Fend
El [ InTL
In_Ea "~ numaz
dende

Dis. Transfer Fcn2 +
is. Transfer N .

num4dz |
dendz

Dis. Transfer Fcn3

Figure 5 . 2 DC Motor-z subsystem in the Simulink model

and the output equation

w(t)| |0 1 . i,(t)
i, |1 0] |w®)

or in the compact form
Ym = Cm X

m

Therefore
H(s)=C_-(sI-A_)"-B_,
The second step converts the transfer function from s-domain into z-domain. The

transfer function in s-domain is accomplished in the program classcm given in

Appendix 3 by using the function ss2tf of the Matlab Control System Toolbox. Then
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another function, named c2dm, of the same toolbox is used in order to obtain discrete

transfer function from that value of it in s-domain.

Finally, the PWM waveform has been generated by comparing the output of
current controller E. to the sawtooth waveform. This comparison is performed by
receiving the value of E; from the simulation program running in Simulink package.
The computation of the duty cycle depending on this value and peak value of
sawtooth wave is made in a dedicated program written in Matlab. After receiving the
duty cycle as a result of this computation, the PWM waveform has been generated
and the data is transfered to the Simulink in order to continue to the simulation of the
system. The detail of the estimation of PWM waveform is given in Section 5.2.1
below. This communication between Simulink and dedicated program is carried out
via the blocks (To Workspace and From Workspace) given in Figure 5 . 1 once in

every sampling period.
5.2.1 Estimation of PWM Waveform Using z-transformation

Let the number of samples in one period of the PWM signal be n which is integer.
The number of samples during the high level of PWM waveform is the nearest integer
to the value of t./T; ratio where T; is the sampling period used for the estimation of
the PWM waveform.

If it is assumed that the PWM signal is high at the beginning of a period, then the

z-transform of the PWM signal over one period whose amplitude is K,wm Volts can be
written by using the definition of z-transform (Phillips & Nagle, 1984) as given below;

V.(2) =K, -{l-zO +1:27 +1- 22 4+ 1. 270D 0. 27 +---+0-z“(“'1)}

(3-3)

where the variable nos is the nearest integer to the value of ton/Ts.
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If Equation (5-3) is multiplied and divided by 2", the following equation is obtained

127 +1-2°2 +1- 2" 4+ 1. 277" + 0. 27 +N+O.ZO}
VA

V.(2) =K, { =

(5-4)

Both Equation (5-3) and Equation (5-4) define the z-transform of the PWM
waveform over one period. After finding the z-transform of the PWM waveform in
the program zzkare given in Appendix 3, the PWM waveform has been generated by
using the inverse z-transform of Equation (5-4), which is the advantage over Equation

(5-3), in the program classcm written in Matlab.
5.3 Results of the Real-time Simulation

In this section, the simulation results for the controller gains of Kinita, Kopt1 and
Kopz Will be given in order to compare with the results of the analysis made in Chapter
3 by using the linear model.

Figure 5 . 3 to Figure 5 . 6 show the variation of rotor speed, armature current,
reference current and duty cycle in time for K. When these figures are compared
with the Figure 3.15 to Figure 3.18 given in Section 3.5.2, the rise time, peak value
and settling time of figures are almost the identical within the error in the range of
2%.
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Figure 5 . 7 to Figure 5 . 10 present the variation of rotor speed, armature current,

reference current and duty cycle in time for Koy;.
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Figure 5 . 11 to Figure 5 . 14 show the variation of rotor speed, armature current,

reference current and duty cycle in time for Kqpeo.
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CHAPTER SIX
CONCLUSION AND FURTHERWORK

6.1 Conclusions

In this thesis, first, a linear model of the closed-loop control of the dc motor fed by
a class-C chopper in z-domain has been developed for the purpose of controller
design. This model includes the time variation of pulsewidth modulated waveform at
the output of the chopper. After establishing the model, the entire system has been
considered as a discrete linear quadratic tracker problem with output feedback and the
minimization has been performed on the cost function to obtain the optimum
controller gains that stabilizes the system. Minimization requires the initial values of
the variables. The root-locus method has been used for finding the initial values of the
variables that stabilizes the system.

Two different state weighting matrices are considered for the optimum controller
design. In the one of them, the error deviations on current and speed responses are
equally weighted (Q;) whereas in the other, the error deviation of speed is dominantly
weighted against the error deviation of current (Q,). The effects of these weightings
are observed in the analysis results in Section 3.5.1 and Section 3.5.2. The speed
response for Koy in Figure 3.12 which corresponds to the state weighting matrix Q,
has less error deviation than the speed response for the K in Figure 3.9 corresponds

to the Q.
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The analysis in Section 3.5.2 was carried out with limited duty cycle. Therefore the
maximum value of the armature current waveforms in Figures 3.20 and 3.24 does not
change for Q; and Q,, but the effect of the different weighting matrices can still be

observed on the response times of the armature current waveforms.

As it is recognized from the results of analysis, the controller gains obtained as
optimum values are very close to the initial values of the controller gains. In other
words, the optimization method used in this thesis provided the local optimum values.
This is the characteristic property of the hillclimbing methods which is a general term

covering the method used in this thesis.

In Chapter 4, the effect of the variation of the amplitude and the chopping period
of PWM waveform on the stability of overall system has been investigated. Stability
limits obtained from root-locus method and the Jury test are confirmed by analyzing
the model of the system. The linear model developed here for dc motor drive can be

used to design optimal value of controllers in the stable operating region.

In Chapter 5, the real-time simulation of the system is performed to check the
accuracy of the linear model developed in this thesis, and it is observed that the real-

time simulation results and the analysis results of the linear model are in consistency.

6.2 Furtherwork

The following future works can be carried out on the basis of the study done in this

thesis:

1) The genetic algorithm for numerical optimization of constrained problems
(GENOCOP) has been developed by Zbigniev Michalewicz (Michalewicz, 1996) to
find the global optimum of a function with additional linear equalities and inequalities
constraints (Man, Tang & Kwong, 1996). The nonlinear cost function derived here
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with Lyapunov equation can be optimized after some modifications made on current

program available (Michalewicz, 1996).

2) The controller design method presented in this thesis can also be improved to

apply on the alternative current machines as another future work.



APPENDIX 1
COMPUTER PROGRAMS FOR OPTIMAL

CONTROLLER DESIGN

This Appendix gives the list of the Matlab files referred in Chapter 3 in addition to
the explicit form of the cost function given in Equation (3-39).

tezana.m is the main program that finds the optimum controller gains using the
SIMPLEX algorithm. State and input weighting matrices and initial K matrix are set
in this routine. Then, it searches the controllability of (A, B) and the observability of

(\[6 , A), after that starts the searching process of finding the optimal gain matrix
according to SIMPLEX method.

The file named mtrpcsen.m defines the motor parameters used in this thesis.
sysparam.m file includes some other system parameters except motor, such as
chopper frequency, amplitudes of PWM and sawtooth signal, reference speed and

load torque.

tezofmdl.m includes the system matrices given in Equations (3-5), (3-7), (3-12)
and (3-15).

The function file positdef.m examines the positive definiteness of the matrix which

is input to the function. It controls the positive definiteness of P during minimization
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process. Positive definiteness of a matrix is decided according to the Sylvester’s

criterion (Ogata, 1990).

tezana.m and dtractez.m call the tezfunl.m for the evaluation of the cost function

given in Equation (3-39).

dtractez.m is the simplex optimization routine that minimizes the cost function in
Equation (3-39) subject to the Lyapunov constraint in Equation (3-40). This routine is
obtained from the modification of a routine of MATLAB Optimization Toolbox
named fmins in order to include a constraint defined by Lyapunov equation. In
dtractez.m, Lyapunov equation is solved for P before the every evaluation of the cost

function.

tezana.m
% Main program which finds the contoller gains in the system

clear;
format short
mtrpcsen
sysparam
tezofmdl

Q=1

© © o o o©

© ©o ©o o ~ o
O -

o o o =

- o ©o © © o
- o ©o ©o o



R=[.1 O
0 .1];

Kps=1,;

Kis=5;

Kpi=10;

Kii=500;

Kinitial=[ 0 0 -Kps -Kis
Kpi -Kii 0  0];

K=Kinitial

Ac=A-B*K*C,

initial eigenAc=(eig(Ac));

Act=Ac",

Ct=C,

Kt=K";

Clyap=Q+Ct*Kt*R*K*C;
P=dlyap(Act,Clyap);

positdef(P)
initialcost=tezfun1(K,A,B,C,E,F,r,Q,R P)

[m,n]=size(A);
controllability=rank(ctrb(A,B))
if controllability==n
disp('(A,B) is controllable’)
else
disp('(A,B) is NOT controllable')
end
disp(' ')
karekokQ=sqrtm(Q);
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observability=rank(obsv(karekokQ,A))

if observability==n

disp('(kokQ,A) is observable')

else

disp('(kokQ,A) is NOT observable')

end

options={];
Pbos=1,

[Kopt,options]=dtractez('tezfunl' K, options,[],A,B,C,E,F,r,Q,R,Pbos);

Q
R

Nref
TL
format short e
Kinitial
initialcost
Kopt
optcost=options(8)

format short

% DC motor parameter values

cle

Ra=1;
La=46e-3,

mtrpcsen.m
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J=0.093;
Bv=0.008;
Kafi=0.55;

taua=La/Ra;

taum=J/Bv;

rlab="Bv= J= Kafi= La= Ra='
clab="deger";
prmt=str2mat(Bv, J, Kafi, La, Ra),

printmat(prmt,'motor’,rlab,clab);

disp(‘Electrical time constant (La/Ra) is ')
taua

disp(‘'and mechanical time constant(J/Bv) is ')
taum

disp('second.")

sysparam.m

% The parameters used in the model of the system

f=le4,

T=1/f, % Chopping period
Kpwm=110; % Amplitude of PWM signal
Esw=12; % Amplitude of sawtooth signal
Nref=80; % Reference speed

TL=0; % Load torque
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tezofmdl.m

% This file gives the matrices in the model given below
%

% x(k+1) = A*x(k)+B*u(k)+Er(k)

% y(k) = C*x(k)+Fr(k)

% z(k) = H*x(k)

% u(k) = -K*y(k)

%

% where r=[Nref;TL] and u = [ Iref, Ec]

apl1=(La-Ra*T)/La; ap12=-Kafi*T/La;
ap21=Kafi*T/J; ap22=(J-Bv*T)/J;

A=[apll apl2 0 00 O
ap2l ap22 0 0 0 O
-1 0 000 O
-T/2 0 T21 0 0
0 -1 0 00 O
0 -T/2 0 0T 1]
B=[0 Kpwm*T/(La*Esw);0 0;1 0; T/2 0;0 0;0 0];
C=[001000
000100
000010
000001];
E=[0 0; 0 -T/J; 0 0;0 0; 1 0; T/2 0];
F=[0 00 0:0 0;0 0];



H=[100000
010000];
r=[Nref,TL];

positdef.m

function positdef(A)

% Determines if the matrix A is positive definite or not

[m,n]=size(A);
LeadMinors=[];
fori=1:n
minor = det(A(1:,1:1));
LeadMinors=[LeadMinors;minor];
end
LeadMinors;

if all(LeadMinors>0)
disp(' positive definite')
else
disp('NOT positive definite')
disp(' press any key")
pause

end
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tezfunl.m

function costezl=tezfun1(K,A,B,C.E,F,r,Q,R P9)

Ac=A-B*K*C,
Bc=E-B*K*F,
I=eye(size(A)),
xbar=[-inv(Ac-I)]*Bc*r

X=xbar*xbar",

costez1=0.5*trace(P9*X),

dtractez.m

function [x, options] = dtractez(funfcn,x,options,grad,P1,P2,P3,P4,P5,P6,P7,P8 P9)
%
% This function implements the SIMPLEX optimization algorithm of the function

% funfcn under the constraint of discrete Lyapunov equation
%

if nargin<3, options=[]; end
options=foptions(options);
prnt=options(1);
tol=options(2);
tol2=options(3);
if (round(prnt) ~= prnt )

if nargin<4, grad=0; end

tol = prnt; tol2 = 1e10; pmt = grad,

end
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evalstr = [funfcn);
if ~any(funfcn<48)
evalstr=[evalstr, '(x'];
for i=1:nargin - 4
evalstr = [evalstr," P',int2str(i)];
end
evalstr = [evalstr, ')'];

end

n = prod(size(x));
if (~options(14))
options(14) = 200*n;

end

% Set up a simplex near the initial guess.
xin = x(©);
v = 0.975%*xin;
x()=v
Ac=P1-P2*x*P3;
eigen Ac=eig(Ac)
Act=Ac';
Ct=P3";
Kt=x',
Clyap=P7+Ct*Kt*P8*x*P3;
P9=dlyap(Act,Clyap);
positdef(P9)
X
fv = eval(evalstr)
forj=1:n
]

y = xin,



if y(G) ~= 0
y() = 1.025*y();
end
v=[vyl;
x()=y
Ac=P1-P2*x*P3;
eigen_Ac=eig(Ac)
Act=Ac';
Kt=x/
Clyap=P7+Ct*Kt*P8*x*P3;
P9=dlyap(Act,Clyap),
positdef(P9)
f = eval(evalstr);
fv=[fv f];
end
[fv,j1 = sort(fv)
v=v(.,j)
cnt =n+1;
if prat
cle
format compact
format short e
home
cnt
disp(‘initial )
disp(' )
v
f

end

alpha =0.75; beta=0.5; gamma = 1.6,
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[n,np1] = size(v),
onesn = ones(1,n);
ot=2:nntl;

on=1:m;

% Iterate until the diameter of the simplex is less than tol.
while cnt < options(14)

if max(max(abs(v(:,ot)-v(:,onesn)))) <= tol & max(abs(fv(1)-fv(ot))) <= tol2,
break, end

% One step of the Nelder-Mead simplex algorithm

vbar = (sum(v(:,on)")/n)'; % Mean value
vr = (1 + alpha)*vbar - alpha*v(:;,n+1);
x()=vr
Ac=P1-P2*x*P3;
Act=Ac',
Kt=x,
Clyap=P7+Ct*Kt*P8*x*P3;
P9=dlyap(Act,Clyap),
positdef(P9)
fr = eval(evalstr);
cnt=cnt + 1;
vk = vr; tk = fr; how = 'reflect ",
if fr < fv(n)
if fr < fv(1)
ve = gamma*vr + (1-gamma)*vbar;
x(:) =ve
Ac=P1-P2*x*P3;
Act=Ac',
Ki=x';



else

Clyap=P7+Ct*Kt*P8*x*P3;
P9=dlyap(Act,Clyap);
positdef(P9)

fe = eval(evalstr);

cnt=cnt + 1;

if fe <fv(1)

vk = ve; tk = fe;

how = 'expand ',

end

end

vt = v(;,nt+1); ft = fv(nt+1);
iffr<ft

vt=vr, ft =1r;
end
vc = beta*vt + (1-beta)*vbar;
x(:)=vc
Ac=P1-P2*x*P3;
Act=Ac";
Kt=x';
Clyap=P7+Ct*Kt*P8*x*P3;
P9=dlyap(Act,Clyap);
positdef(P9)
fc = eval(evalstr),
cnt=cnt+ 1,
if fc < fv(n)

vk = v¢; tk = fc;

how = 'contract’;
else

forj=2n

V() = (G 1D + VD)2,
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end

end

v(;,n+1) = vk;
fu(n+1) = fk;

x(2) = v(.,))
Ac=P1-P2*x*P3;
Act=Ac',
Kt=x/,
Clyap=P7+Ct*Kt*P8*x*P3;
P9=dlyap(Act,Clyap);
positdef(P9)
fv(j) = eval(evalstr),
end
cnt = cnt + n-1;
vk = (v(;,1) + v(;,n+1))/2;
x(:)=vk
Ac=P1-P2*x*P3;
Act=Ac';
Kt=x',
Clyap=P7+Ct*Kt*P8*x*P3;
P9=dlyap(Act,Clyap);
positdef(P9)
fk = eval(evalstr),
cnt =cnt + 1;
how = 'shrink °;

[fv,j] = sort(fv),

cnt

V= V(:,j);

if prt

home
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cnt
disp(how)
disp(* )
v
fv
end
end
x(1)=v(,1),

if prat, format, end
options(10)=cnt;
options(8)=min(fv);
if cnt=roptions(14)
if options(1) >=0
disp(['Warning: Maximum number of iterations
(,int2str(options(14)),") has been exceeded']);
disp("' (increase OPTIONS(14)).)
end

end

analizl.m

% Analyze the closed loop system by solving the state-space model according to a

% given controller gain matrix . This program does not limit the duty cycle.

clear

mtrpcsen
sysparam
tezofmdl



Kps =1.2172;
Kis = 4.8778;
Kpi = 10.668,;
Kii = 500.93;

K=[0 0 -Kps -Kis
Kpi Ki 0 0]

t=0;

tfinal=2;
x0=[0;0;0;0;0;0];
akim={[];

hiz=[J;
kontrolinput=[];

zaman=[];

while t<=tfinal
cikis=H*x0;
akim=[akim cikis(1)};
hiz=[hiz cikis(2)];
u = -K*C*x0;
kontrolinput=[kontrolinput u];
xk = A*x0 + B*u + E*r;

x0 = xk;
zaman={zaman t];
t=t+T
end
Iref=kontrolinput(1,:);

Ec=kontrolinput(2,:);

figure
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[dzaman, dhiz]=stairs(zaman,hiz);

plot(dzaman,dhiz, k')

grid

ylabel('Speed')

xlabel('time")

title(['analiz1 (£=',num2str(1/T), ' Hz; Kps=', num2str(Kps),', Kis=',num2str(Kis),...
', Kpi=, num2str(Kpi),', Kii=',num2str(Kii),")'])

figure

[dzaman,dakim]=stairs(zaman,akim),

plot(dzaman, dakim, k')

grid

ylabel(‘Current’)

xlabel('time")

title(['analiz1 (f=,num2str(1/T), ' Hz; Kps=, num2str(Kps),', Kis=',num2str(Kis),...
', Kpi=', num2str(Kpi),', Kii=',num2str(Kii),")'])

figure

[dzaman, diref]=stairs(zaman, Iref);

plot(dzaman,diref,'k")

grid

ylabel('Iref")

xlabel('time’)

title(['analizl (f=',num2str(1/T), ' Hz; Kps=', num2str(Kps),', Kis=',num2str(Kis),...
' Kpi=', num2str(Kpi),", Kii=',num2str(Kii),")'])

anlzltd.m

% Analyze the closed loop system by solving the state-space model according to a
% given controller gain matrix . This program limits the duty between 0.1 and 0.9.



clear
mtrpcsen
sysparam

tezofindl

Kps=1; Kis=5;
Kpi = 10; Kii = 500;

K=[0 0 -Kps -Kis
-Kpi -Kii 0 O];

t=0;

tfinal=2;
x0={0;0,0;0,0;0];
akim={],

hiz=[];
kontrolinput=[};

zaman={];

while t<=tfinal

cikis=H*x0;

akim=[akim cikis(1)];

hiz=(hiz cikis(2)];

u = -K*C*x0;

ifu(2)/Esw >=0.9
u(2)=0.9*Esw;

end

if u(2)/Esw <= 0.1
u(2)=0.1*Esw;

end
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kontrolinput=[kontrolinput u];
xk = A*x0 + B*u + E*r;
x0 = xk;
zaman={zaman t],
t=1+T
end
Iref=kontrolinput(1,:);
Ec=kontrolinput(2,:);

figure

[dzaman, dhiz]=stairs(zaman,hiz);

plot(dzaman,dhiz,'k")

grid

ylabel('Speed")

xlabel('time")

title(['anlzltd (f=',num2str(1/T), ' Hz; Kps=', num2str(Kps),', Kis=',num2str(Kis),...
', Kpi=', num2str(Kpi),', Kii=',num2str(Kii),")'])

figure

[dzaman,dakim]=stairs(zaman,akim);

plot(dzaman, dakim, ')

grid

ylabel("Current')

xlabel('time")

title(['anlzitd (f=',num2str(1/T), ' Hz; Kps=', num2str(Kps),', Kis=',num2str(Kis),...
', Kpi=', num2str(Kpi),', Kii=',num2str(Kii),")'])

figure
[dzaman,dduty]=stairs(zaman,Ec/Esw),
plot(dzaman, dduty,'k")

ylabel('duty’)
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xlabel('time")

title(['anlzltd (£=',num2str(1/T), ' Hz; Kps=', num2str(Kps),', Kis=',num2str(Kis),...
", Kpi=', num2str(Kpi),’, Kii=',num2str(Kii),")'])

axis([O tfinal 0 1])

figure

[dzaman, diref]=stairs(zaman,Iref),

plot(dzaman,diref;'k")

grd

ylabel('Tref")

xlabel('time')

title(['anizltd (Kps=', num2str(Kps),', Kis=',num2str(Kis),...
', Kpi=', num2str(Kpi),', Kii=',num2str(Kii),")'])

kinitial.med

Computes the characteristic equation, which is used in finding the matrix Kinisar, of the

closed loop system as a function of K.

La :=0.046 Ra:=1 1:=0.093 Bv :=0.008

Kafi :=0.55 T Z=(10)—4 Kpwm =110 Esw =12

Kpi :=10 Kii :=500 Kps =1 Kis =1

z:=1

aiy = 2-RaT al2 :=- [Kafi- L 21 = Kafi- L a2 =3 BT
La La J J

all =0.997826086957 al2 =-0.001195652174

a21 = 5.91397849462410 * a22 =0.999991397849
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Closed-loop system matrix defined in Equation (3-1) is evaluated for all the
variables given above except Kis

0.997826086957 - 0.001195652174 1101010 11010500 0 0
004612  0.04612
5.91397849462410 *  0.999991397849 0 0 0 0
-1 0 0 0 1 Kis
A= 10 o 10* . 10" 10*Kis
2 2 2 2
-1 0 0 0 0
0 -10% 0 0 Wt
2 2
[z 0000 0]
0z0000
1..|002000
° 0 R 20000 0]
0000z0 020000
00000 z| 002000
000z00|
0000z0
00000 z]

The matrix (zI-A):

2 997826086957 1.19565217410°3 -.199275362319 -9.96376811594 0 0
-5.9139784946210°* z— 999991397849 0 0 0 0
1. 0 z 0 1. -1.Kis
5010° 0 5010° z— 1. 50107 -5.010°Kis
0 1. 0 0 z 0
0 50107 0 0 5010° z- 1.
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The statement det(zl-A) is as given below:

25 — 3.99781748481-7° + 6.19322673095 2" — 4.59177646291.7° + 1.595260826427° ...
+(- 199011166043 7) + 2.9462755181510 1.z Kis + 1.1755639317410°* ...
+ (- 5.87781965872 10 Kis ) + 5.9072824139 10" Kis

If it is arranged so that the terms including Kis and the others are grouped
separately, it is obtained that

(294627551815 10" 1.2 - 5.87781965872 10°° + 5.9072824139 10°%-22) Kis ..
+78  3.997817484817 + 6.193226730952° — 4.59177646291 7" ...
+1.595260826422% — 199011166043z + 1.1755639317410°*

Explicit Form of the Cost Function

The explicit form of the cost function given in Equation (3-39) is obtained with the
help of the Mathcad and is given below:

Ty +B, -N
%M(P.X)r_ ( L2 v ref)
2-(K,) 'prm -Kii -Kjs

’{pll 'prm Kn 'Kis Ty +pn1 'prm 'Kii -Kjs By "Nper

P12 *Nier 'Ka(P°prm -Kii 'Kis +P14 -Egw -Kis ‘R, -TL +P14 -Eow -Kis -Nrer ‘R, -By

+P14 * Egw Kis * Npog * (Ko@) + D16 - Kpwm *Kii * Tr, + P16 * K - K 'Bv'Nref}

+ N et
2'Ka(P‘prm -Kji -Kis

{21 K pwm *Kii *Kis T, + P21 *Kpwm *Kii “Kis *By *Nier

+P22 *Nyef ’Kaq"prm -Kiji ‘Kjs + P24 ‘Eow "Kis 'Ry ‘TL +P24 - Esw -Kis *Nyer ‘R, -By
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+P24 *Egw *Kis ‘Noer (K a®? +P26 K pym *Kii T, +P26 “Kpwm - Kii By 'Nref}

+ Esw (Ra 'TL +Nref 'Ra 'Bv +Nref(Ka(P)2

P41 'prm ‘K Ky T,
2'(Ka(P)2 'prm2 'Kii2 Kis {

P4y 'prm 'Kii 'Kis 'Bv 'Nref +Pa 'Nref 'Ka(P'prm Ku 'Kis +Puy 'Esw 'Kis 'Ra 'TL
+P44 'Esw 'Kis 'Nref ‘R, By +pyy 'Esw 'Kis 'Nref '(Kaq))z
+P4s 'prm'Kii 'TL+p46'prm'Kii ‘By 'Nref}

(Ty +B, -N¢)
+ Loy o '{p6l‘prm°Kii'Kis°TL+p61'prm'Kii'Kis'Bv'Nref

2'(Ka(P)2 'Ki52 ‘Kpwm K

+P62 *Nref 'Ka(P'prm -Kiji ‘Kis +Pes ‘Eow -Kis 'Ry -TL, +Pes ‘Egw -Kijs ‘Nper ‘R, By
+P64 *Egw *Kis ‘Niyof '(Ka(P)z +Pss6 'prm ‘K T +Pes ‘prm -Kj By 'Nref}

where py’s are the matrix elements of the positive definite matrix P and Ny denotes

the reference speed.



APPENDIX 2
COMPUTER PROGRAMS FOR STABILITY

ANALYSIS

This Appendix includes the Matlab and Mathcad files referred in Chapter 4. The
Matlab files have the extension m, whereas Mathcad files’s extensions are mcd.

juryk.m

% Finds the solutions of the inequalities given in stability condition 4 to 7
% in Jury test for the amplitude of PWM signal.

%

% Stability condition number 4:

% abs(b0) > abs(b5)

% Stability condition number 5:
% abs(c0) > abs(c4)

% Stability condition number 6:
% abs(d0) > abs(d3)

% Stability condition number 7:
% abs(e0) > abs(e2)

%

%

clear

bsol=[1.14153691628e-12 0 -1];



bsag={0 1.80492103986¢-3 0];

csol=[1.30310653123e-24 0 -3.2577422432¢-6 0 1];
csag=[2.21503322377e-21 3.48270266488e-12 -1.94153465874¢-9 ...
-1.79085168507¢-3 0.997818210612];

dsol=[-4.90637048432e-42 -1.54286042224e-32 -1.21292177412¢-23 ...

1.35315094519¢-20 1.0625354757e-11 -1.39042095128e-11 ...
-9.71875964704e-6 3.57388884774e-3 4.35881857107e-3];

dsag=[4.87900341191e-42 1.54288461522e-32 1.2197252417e-23 ...
-1.3531445195e-20 -1.0684953947e-11 1.36623411844e-11 ...
9.73695174216e-6 -3.57387140583e-3 -4.35881698352¢-3];

esol=[2.67797035977e-85  8.4211070524e-76 -7.46580711026e-69 ...
-2.10526267157e-57 -1.65504350601e-48 3.68389085167¢-45 ...
2.89967787006e-36 -1.60755308632e-33 -1.27007891017e-24 ...
-3.51036769834e-24 1.54723047165¢-18 -4.21424801861e-16 ...
-3.56188980044¢e-13 1.29691281097¢-10 2.8323175936¢-10 ...

1.63399641547¢-10 1.38396823247e-11];

esag=[2.6779662987e-85 8.42109427529¢-76 -7.46579974599¢-69 ...
-2.10525948644e-57 -1.65504100072e-48 3.68388197237¢-45 ...
2.8996734767e-36 -1.60754774877¢-33 -1.2700769840%¢-24 ...
-3.51037071474e-24 1.54722811791e-18 -4.21424153583¢-16 ...
-3.56188437929¢-13 1.29691082699%¢-10 2.83231250227¢-10 ...

1.63399409175e-10  1.38399002782¢-11};

format long e
disp(' )
disp(* According to the stability condition number 4:')
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disp(' ")
esitszlk(bsol,bsag)
disp(' )]

disp(' According to the stability condition number 5:")
disp(' ")

esitszlk(csol,csag)

disp(* )

disp(* According to the stability condition number 6:")
disp(' ")

esitszlk(dsol,dsag)

disp(" )]

disp(' According to the stability condition number 7:")
disp(' )
esitszlk(esol,esag)

format short

esitszlk.m

function esitszlk(bsol,bsag)
%
% Finds the solution of the inequality like abs(bsol) > abs(bsag) for Kpwm.

kok1=roots(bsol-bsag);
kok2=roots(bsol+bsag);
kokler=[kok1;kok2];
koksayisi=length(kokler);



kokler=gercel(kokler);
koksirali=sort(kokler);
koksirali=natekrar(koksirali);
gercelkoksayisi=length(koksirali);

saglamanoktalari=koksirali(1)-1;

for i=1:(gercelkoksayisi-1)
saglamanoktasi=(koksirali(i)+koksirali(i+1))/2;
saglamanoktalari=[ saglamanoktalari saglamanoktasi};

end

saglamanoktalari=[saglamanoktalari koksirali(gercelkoksayisi)+1];

koksirali=koksirali',

for i=1:gercelkoksayisi+1
if abs(polyval(bsol,saglamanoktalari(i))) > ...
abs(polyval(bsag,saglamanoktalari(i)))
if(i==1)
disp(['Kpwm <, num2str(koksirali(1))])
disp(' ')
elseif(i=(gercelkoksayisi+1))

disp(['Kpwm > ' num2str(koksirali(gercelkoksayisi))])

disp(' ")
else
disp([num2str(koksirali(i-1)),' < Kpwm <',...
num2str(koksirali(i))])
disp(' ")
end

end

end
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gercel.m

function gercelkokler=gercel(a)

% Returns the only real elements of the vector a which may have

% both real and complex elements

L
for i=1:length(a)
if imag(a(1))==0
gercelkokler(j)=a(i);
=L
end
end

gercelkokler=gercelkokler';

natekrar.m

function b=natekrar(a)

% Removes the repeated elements of the vector a of which elements are

% sorted and returns the different elements of ain b.

boyut=length(a);
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while j <= boyut-1

if a(j)==a(j+1)
i R R

else
i=i+1,;
it
b(i)=a();
end

end

juryt.m

% Finds the solutions of the inequalities given in stability
% condition 3 to 7 in jury test for period of PWM signal.
%

% Stability condition number 3:

% abs(a0) < a6

% Stability condition number 4:
% abs(b0) > abs(b5)

% Stability condition number 5:
% abs(c0) > abs(c4)

% Stability condition number 6:
% abs(d0) > abs(d3)

% Stability condition number 7:
% abs(e0) > abs(e2)

%

% Calls the function czm_t.m.

%

clear

a0=[736568.879 -324090.307 11785.102 0 0];
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26=[0 0 0 0 1];

b0=[542533714304 -477429668588 122395605947 -7638874697.4 ...
138888630.862 0 0 0 -1];
b5=[0 0 0 16075727.7103 -11492733.4698 1557858.36302 ...
-73560.4643914 1992.75362319 0];

c0=[2.94342831156e23 -5.18043382836e23 3.60746573866€23 ...
-1.25159281293e23 2.2425438715e22 -2.00254850069¢21 ...
9.23508644806e19 -2.12153618799¢18 1.910679637%¢16 ...
3.91280372286¢13 -4.42660544274e12 290275691199 ...
-11897774977.9  293175763.879 -3971067.00274 0 1];

c4=[0 0 1.99372829639¢22 -2.55644904832e22 ...
1.15421382725e22 -2.06702478446¢21 1.0547006755€20 ...
4.21916593595e17 -1.13712816468el17 -1.30056932254e15 ...
1.87568814695¢14 -4.44021504467¢12 46773466599.7 ...
-28281439.54  228719.39854  -2014.57877513 1];

d0=[8.66377022529e46 -3.04964711931e47 4.80735282263e47 ...

-4.47444225347e47 2.72618004495e47 -1.13695762724e47 ...
3.28600447634e46 -6.48270154808e45 8.29903823211e44 ...
-6.13921150044e43 2.01583471535e42 -4.9260040731¢40 ...
1.1040592039¢40 -9.84594662151e38 2.14663598276e37 ...
1.21070492634¢€36 -7.32272035205e34 8.12275445923€32 ...
2.97754471886e31 -4.23153926222e29 -3.85166528128¢28 ...
1.80570805542¢27 -3.72210830478¢e25 4.16296032777¢23 ...
-2.18276699881e21 -3846494708370000000 139975596836000000 ...
-2117585528630000 15485767718200 1564460898.36 ...
-12458100.4438  4029.15755026 O],



d1=[1.73275404506e47 -5.34192319785e47 7.28535493111e47 ...
-5.79790106626e47 3.0043928263e47 -1.08197263938e47 ...
2.87791308246e46 -6.06611238384e45 1.05994914035e45 ...

-1.46070401847e44 1.36037477702e43 -6.52187894985e41 ...

2.82806370526€39 7.77506260959¢38 2.1879747343e37 ...

-4.13791050121e36
-2.43167806675¢32
-3.54139543096€27

6.79133187456¢21

1.11210013867¢35
5.17972099564e30
8.93608565568e25
4.96347233749¢18

2.97004266133€33 ...
1.81911438013e28 ...
-1.13094909635¢24 ...
-3.06846918824¢17 ...

5.43809251515e15 -4.64839179739%¢13 -4.46776441147¢9 ...
3.73743013313e7 -1.20874726508¢4 0],

d2=[8.66377022529¢46 -2.28723533948e47 2.34152409895¢47 ...

-9.74032755626e46 -1.36023424025e¢46 3.49839714101e46 ...
-1.81805422073e46 5.19958791252e45 -9.30701123164e44 ...
1.08449992598e44 -8.23845987475e¢42 3.96344021807e41 ...
-1.69670020227¢40 1.45883117036€39 -1.15788095854¢38 ...
4.29771463966e36 2.19592925721e34 -8.86027252851€33 ...
3.93390145177¢32 -8.68981065088e30 6.95802669651€28 ...
1.78425806707e27 -6.77755436997¢25 1.01238931792¢24 ...
-7.00053715594e21 1.04512379495e18 1.98700494092¢17 ...

-4.52309034055e15 4.65065745497e13 4.24345963102¢9 ...
-3.73743013313e¢7 1.20874726508¢4 O],

d3=[0 5.04073904019¢44 -1.91461107867e46 5.00227822666€46 ...
5.8310591552e46 3.89183508634e46 -1.63066252636¢46 ...
4.45402066274¢45 -8.01849610122e¢44 9.44961651775¢43 ...
-7.00306340599e42 2.60482899787e¢41 5.33014935165€39 ...
-1.27362251677e39 6.99296349504e37 -1.24095822617¢36 ...
-6.33298964556e34 5.1551830109¢33 -1.81967867983e32 ...
3.97494551973e30 4.97969525257e28 -4.54008474417€25 ...
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1.56402088463e25 -2.97872228769¢23 2.39461457752¢21 ...

-2186318683330000000 -31829717828000000 1202589289530000 ...

-15508424293900 -1340156117.99 12458100.4438 ...
-4029.15755026 0};

dOkare=conv(d0,d0);
d3kare=conv(d3,d3);
e0=dOkare-d3kare;

d0d2=conv(d0,d2);
d1d3=conv(d1,d3);
e2=d0d2-d1d3;

format long e

disp(' According to the stability condition number 3')
disp(' ")

czm_t(a0,a6,1)

disp(' )]
disp(' According to the stability condition number 4')
disp(' )

czm_t(b0,b5,0)

disp(’ )
disp(' According to the stability condition number 5')
disp(' )

czm_t(c0,c4,0)

disp( )
disp(* According to the stability condition number 6')
disp(* )

143



czm_t(d0,d3,0)

disp(’ )
disp(' According to the stability condition number 7')
disp(' ")

czm_t(e0,e2,0)

format short

czm_t.m

function czm_t(bsol,bsag,thrd)

%

% If thrd=1, finds the solution of the inequality
% abs(bsol) < bsag

%

% Otherwise, finds the solution of the inequality
% abs(bsol) > abs(bsag)

%

kok1=roots(bsol-bsag),
kok2=roots(bsol+bsag);
kokler=[kok1;kok2];
koksayisi=length(kokler);

kokler=gercel(kokler);
koksirali=sort(kokler),
koksirali=natekrar(koksirali);
gercelkoksayisi=length(koksirali);

saglamanoktalari=koksirali(1)-1;



for i=1:(gercelkoksayisi-1)
saglamanoktasi=(koksirali(i)+koksirali(i+1))/2;
saglamanoktalari=[saglamanoktalari saglamanoktasi];

end

saglamanoktalari=[saglamanoktalari koksirali(gercelkoksayisi)+1];

koksirali=koksirali',

for i=1:gercelkoksayisi+1

if(thrd=1)
if abs(polyval(bsol,saglamanoktalari(i))) < ...
polyval(bsag,saglamanoktalari(i))
if(i=1)
disp(['T <', num2str(koksirali(1))])
disp(' ')
elseif(i==(gercelkoksayisi+1))
disp(['T > ', num2str(koksirali(gercelkoksayisi))])
disp(' ")
else
disp([num2str(koksirali(i-1)), '< T <',...
num?2str(koksirali(i))])
disp(’ ')
end
end
else

if abs(polyval(bsol,saglamanoktalari(i))) > ...
abs(polyval(bsag,saglamanoktalari(i)))
ifi==1)
disp(['T <", num2str(koksirali(1))])
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disp(' ")
elseif(i==(gercelkoksayisi+1))
disp(['T >, num2str(koksirali(gercelkoksayisi))])

disp(' ")

else
disp([num2str(koksirali(i-1)), '< T <',...

num2str(koksirali(i))])

disp(' ")

end

end
end
end
chreceq_k.mecd

Computes the characteristic equation of the closed loop system by keeping

the Kywm as a parameter.

La:=0.046 Ra:= J:=0.093 Bv:=0.008
Kafi :=0.55 T:=(10)"* Kpwm =110 Esw =12
Kpi:=10 Kii:=500 Kps =1 Kis :=5
z:=1
_J-BvT

al1:=12-RaT al2:=- (Kaﬁl) 221 =KafiL a22 = ]

La La J
all =0.997826086957 al2=-0.001195652174

221 =5.9139784946240 * 422 =0.999991397849
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4 -4
0.997826086957 - 0.001195652174 Xpwm-10 -10 Kpwm-10 ~-500 0
0.04612 0.046 12
5.91397849462410*  0.999991397849 0 0 0 0
-1 0 0 0 1 5
A= -10* 0 10 . 10¢ 1045
2 2 2
-1 0 0 0
-4 -4
0 -10 0 0 0
2 2 ]
[z 0000 0]
0z0000
00z000
7zl =
000z00
0000z0
100000 z|
[z 0000 0]
0z0000
00z000
—A
000z00
0000z0
100000 z|
The matrix (zI-A):
z— 997826086957 1.19565217410'3 -1.811594202910"3-me —9.0579710]4490'2-prm 0
~5.913978494620‘4 z - .999991397849 0 0 0
1. 0 z 0 -1
50107 0 .5.0107 z- 1 -50107°
0 1. 0 0 z
0 50107 0 0 -5.0107
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The statement det(zl-A) is as given below:

2 — 3.997817484817 + 5.993453180227" — 3.993453906032 + 9978182106127 ...

+ 5.4312967758410_3-prm-z2 - 1.8091924172410'3-prm-z+ 1.0684273097810'6-prm .

+1.8161231884110 > Kpwm-z* - 5.4392959716410 > Kpwm 2>

chrceq_t.mcd

Computes the characteristic equation of the closed loop system by keeping

T as a varying parameter.

La :=0.046 Ra:= J:=0.093 Bv :=0.00¢
Kafi :=0.55 T :=0.0001 Kpwm =110 Esw:=12
Kpi:=10 Kii:=500 Kps =1 Kis =5
Z:=1

La—RaT Kaﬁl Kpwm T-Kpi Kpwm T-Kii 0 0
La La La-Esw La-Esw
Kafi L - BvT 0 0 0 0
J ]
A= -1 0 0 0 Kps Kis
T o T | T-Kps T-Kis
2 2 2 2
0 -1 0 0 0 0
0 I 0 0 T 1
2 2
[0046- 1T 0.55._ T 110-T-10 110-T-500 0
0.046 70046/  0.046:12  0.046-12
055 T 0093 0008T 0 0 o o
0.093 0.093
-1 0 0 0 1 5
A= T T T1 T.5
-1.= 0 l 1 2 22
2 2 2 2
0 -1 0 0 0 o0
0 T 0 0 T 1
| 2 2
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200000 0000 0]
020000 0450000
g.2|002000 002000
000200 0004200l
{0000zo 000020
©0000z] 00000z
The matrix (zI-A) is
[z- 1.0+ 21.7391304T 11.9565217T -1992.75362T -99637.6812T 0 0
-5.91397849T  z— 1.0+ 8.6021505410 2. T 0 0 0 0
1. 0 z 0 -1 -5,
5T 0 5T z—1.  -5T -25T
1. 0 0 z 0
5T 0 0 5T z-1. |

Characteristic equation with respectto T is:

-1992.75362T-z + 21.8251519°-T + 6.02* - 4.0Z° + 26420.05621%z+ 5956.43571T-Z" ...
+(-38303.99721% 2) + 324090.307T% 2 + 736568.879T* 2+ 1473137.76I* 2.+ 736568 879T* ...
+1.02% + 49891.42122% T2 - 49792.5822° T% _ 5912.7854T-2 + 1927.27816T-7" ...
+(-4285.491671%.2) + £ - 4.07° - 324090.307T° + 11785.102T% + 42854916717



APPENDIX 3
COMPUTER PROGRAMS FOR REAL-TIME

SIMULATION

This appendix gives the list of the programs mentioned in Chapter 5 for the real

time simulation of dc drive.

Logic of the Simulation Program

In the simulation program, the minimum duty cycle is read in. This minimum duty
cycle is saved for the variable dutymin in the program classcm. Then, the z-transform
of PWM waveform is computed by using the duty ratio, period and amplitude of the
waveform. This is accomplished via the routine zzkare. Then the data which defines
the PWM waveform at the sampling instants are generated and thus the block of
“From Workspace” will be released for the simulation step. Finally, the model
presented in Figure 5.1 is simulated for the first period. After this simulation step the
level of output of current controller will be available in the matrix E. due to the block
“To Workspace”. Thus the duty cycle required for the subsequent simulation step can

be determined. These steps are repeated until the end of the simulation time.

classcm.m

%
% Simulates the closed-loop speed control of the DC
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% motor driven by a class-C chopper in z-domain
% Note: T/Ts and adim/Ts should be integer.
%

clear;

mtrpcsen;

sysparam;

adim=T, % duty control interval
tilk=0;
tfinal=2;

xi=],

dutymin=0.1;
dutyvektor=dutymin;
duty=dutymin;
Ts=duty*T/4;
Tss=Ts;

Kps=1;
Kis=5;
Kpi=10;
Kii=500;

set_param('classc/Step Fen', 'After', Nref)

apl1=-Ra/La; ap12=-Kafi/La,
ap21=Kafi/J, ap22=-Bv/J,

Am=[ap11 ap12;ap21 ap22];
Bm={0 1/La;-1/] 0],

Cm=[0 1;1 0];

Dm=[0 0,0 0];
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[numTL, denTL}=ss2tf{Am,Bm,Cm,Dm,1); % s~-domain tr. fnc. due to TL
[numVa, denVa]=ss2tf{ Am,Bm,Cm,Dm,2); % s-domain tr. fnc. due to Va

[dnumTL, ddenTL J=c2dm(numTL,denTL,Tss,'zoh'");
[doumVa, ddenVa}=c2dm(numVa,denVa,Tss,'zoh'),
%
%[dnumTL, ddenTL]=c2dm(numTL,denTL, Tss,'tustin');
%[dnumVa, ddenVal=c2dm(numVa,denVa,Tss,'tustin’),
%

numlz=dnumVa(2,:);
denlz=ddenVa,
num2z=dnumTL(2,:);
den2z=ddenTL;
num3z=dnumTL(1,:);
den3z=ddenTL;
num4z=dnumVa(1,:);
dendz=ddenVa;

%
tekrar=adim/T;

[numchop, denchop]=zzkare(T, duty, Ts, Kpwm, tekrar);
[Ea, Xa]=dimpulse(numchop, denchop, adim/Ts);,
tf=0:Ts:(adim-Ts);

%

% writing to file

fidwrite=fopen('sonuc’, 'w'),
fprintf{fidwrite, '%4.4f %4.4f\n', [], [1);
fclose(fidwrite);
fidappend=fopen('sonuc’, 'a’);

fidwriteEa=fopen('sonucEa’, 'w'),
fprintf{fidwriteEa, '%4.4f\n', []);



fclose(fidwriteEa);
fidappendEa=fopen(‘'sonucEa’, 'a’),

fidwritedty=fopen('sonucdty’, 'w");
fprintf(fidwritedty, '%4.4f\n, duty);
fclose(fidwritedty);
fidappenddty=fopen('sonucdty’, 'a’),
%

tol=1e-3; minstep=Tss; maxstep=TSss;
i=0;
oran=adim/Tss;
tson=oran*Tss;
while (tson<=tfinal)
[t,x,N]=rk45('classc',[tilk (tson-Ts)],xi,[tol minstep maxstep]);
i=it1;
sx=size(X),
xi=x(sx(1),:); % last row of x
tN=[t NJ;
fprintf{fidappend, 'Y64.8f %4.8f %4.8f %4.8f %4.8f\n', tN');
fprintf{fidappendEa,'%4.4f\n',Ea’);
hatasabit=Ec(sx(1));
alfa=hatasabit/Esw;
%

if(alfa<dutymin) duty=dutymin;
elseif(alfa>(1-dutymin)) duty=(1-dutymin);

else duty=alfa;

end

%

fprintf{fidappenddty,'%4.4f\n’,duty’);
tilk=oran*i*T'ss

tson=oran*(i+1)*Tss;
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[numchop, denchop]=zzkare(T,duty, Ts, Kpwm, tekrar);
[Ea, Xa]=dimpulse(numchop, denchop, (tson-tilk)/Ts);
tf=tilk: Ts:(tson-Ts);

end

fclose(fidappend);
fclose(fidappendEa),
fclose(fidappenddty);

disp(’ Data files has been closed’)
load sonuc;

load sonucdty;

figure
plot(sonuc(:,1),sonuc(:,2),’k’)
grid;
ylabel('Speed(rad/sec)');
xlabel('time(sec)')

figure
plot(sonuc(;,1),sonuc(:,3),k")
grid;

ylabel('Armature current(A)'),
xlabel('time(sec)")

figure
plot(sonuc(:,1),sonuc(:,4),’k")
grid,

ylabel('Reference current(A)");
xlabel('time(sec)")
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figure

zaman=[0:T:tfinal];

[dzaman, dsonucdty]=stairs(zaman,sonucdty);
plot(dzaman,dsonucdty,'k")

ylabel('duty cycle')

xlabel('time(sec)’)

title(['classcm.m (f=', num2str(1/T),' Hz)'])
axis(f02 0 17)

zzkare.m

function [nz, dz]=zzkare(T,duty, Ts, genlik, tekrar)
% Returns the z-transform of the PWM signal whose period,
% duty cycle, amplitude and the number of period of the signal

% to be generated are the input arguments to the function

n=T/Ts,; % number of samples in one period
N=n*tekrar;

samplels=floor(T*duty/Ts);

sampleOs=n-samplels;

numper T=[ones(1,samplels) zeros(1,sample0s)];

num=numperT;
for i=1:(tekrar-1)
num=[num numperT];

end

nz=genlik*num;
dz=[1 zeros([L,(N-D)D};
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