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İZMİR



M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled "TWO-DIMENSIONAL DOA ESTIMATION

USING ARBITRARY ARRAYS" completed by PETER NYONGESAH OBIMO

under supervision of ASST. PROF. DR. ÖZGÜR TAMER and we certify that in our

opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master

of Science.

.............................................................................

Asst. Prof. Dr. Özgür TAMER

Supervisor

........................................................................ ........................................................................

Prof. Dr. Yeşim ZORAL Asst. Prof. Dr. Nalan ÖZKURT

Jury Member Jury Member

Prof. Dr. Özgür ÖZÇELİK
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TWO-DIMENSIONAL DOA ESTIMATION USING ARBITRARY ARRAYS

ABSTRACT

Wireless communication is gaining popularity with plethora of applications

occasioning a crunch in bandwidth capacity. This has necessitated exploitation of

higher frequency bands with higher spectral availability. However, higher frequencies

results in higher data rates with higher user density leading to multipath fading and

cross-channel interference which degrades bit error rate (BER). This research

proposes techniques of addressing these challenges through estimation of direction of

arrival (DOA) of user signals.

Specifically, the research focuses on two-dimensional (2D) DOA estimation using

arbitrary arrays. Description of adaptive antenna array with factors that influence

DOA estimation is comprehensively covered. Consequently, for conducting DOA

estimation, coprime array is considered using MUltiple SIgnal Classification

(MUSIC) algorithm. Two one-dimensional (1D) DOA estimation methods;

DEcompose and COMbine (DECOM) and Unfolded Coprime Linear Array (UCLA)

are proposed followed by 2D DOA estimation methods, for which; Coprime L-shaped

Array (CLSA) and Unfolded Coprime L-shaped Array (UCLSA) methods coupled

with a novel low-complexity 2D MUSIC algorithm are considered. Finally, virtual

array interpolation technique using nuclear norm minimization is used to interpolate

holes in difference co-array of coprime array to increase degrees of freedom (DoF) of

the array without increasing physical sensor elements.

It was established that UCLA performed better than DECOM. Equally, UCLSA

outperformed CLSA. DECOM and CLSA consider each coprime sub-array separately

thereby losing the intrinsic mutual information of the array, a characteristic that is

preserved in UCLA and UCLSA. Virtual interpolated array exhibited greater DoF

thereby resolving 2MN −N sources with only M + N −1 sensors.
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DÜZENSİZ ANTEN DİZİLERİ İLE İKİ BOYUTLU GELİŞ AÇISI

KESTİRİMİ

ÖZ

Kablosuz iletişim, bant genişliği kapasitesinde bir daralmaya neden olan çok

sayıda uygulama ile popülerlik kazanıyor. Bu, daha yüksek spektral kullanılabilirliğe

sahip daha yüksek frekans bantlarının kullanılmasını gerektirmiştir. Bununla birlikte,

daha yüksek frekanslar, daha yüksek kullanıcı yoğunluğu ile daha yüksek veri hızları

ile sonuçlanır ve bu da çok yollu zayıflamaya ve bit hata oranını (BER) azaltan çapraz

kanal girişimine yol açar. Bu araştırma, kullanıcı sinyallerinin geliş açısı

kestiriminenin (DOA) tahmini yoluyla bu zorlukların ele alınmasına yönelik teknikler

önermektedir.

Spesifik olarak, araştırma, rastgele diziler kullanarak iki boyutlu (2D) DOA

dayanmaktadır. DOA tahminini etkileyen faktörlerle birlikte uyarlanabilir anten

dizisinin tanımı kapsamlı bir şekilde ele alınmaktadır. Sonuç olarak, DOA tahminini

yürütmek için, çoklu sinyal sınıflandırması (MUSIC) algoritması kullanılarak ortak

dizi düşünülür. İki tek boyutlu (1D) DOA tahmin yöntemi; ayrıştırmak ve

birleştirmek (DECOM) ve açılmamış eş asal doğrusal dizi (UCLA) ve ardından 2D

DOA tahmin yöntemleri önerilmiştir, bunun için; eş asal L-şekilli dizi (CLSA) ve

Katlanmamış eş asal L-şekilli dizi (UCLSA) yöntemleri, yeni bir düşük karmaşıklıklı

2D MUSIC algoritması ile birleştirildi. Son olarak, nükleer norm minimizasyonunu

kullanan sanal dizi enterpolasyon tekniği, fiziksel sensör elemanlarını artırmadan

dizinin serbestlik derecesini (DoF) artırmak için ortak asal dizinin fark eş dizisindeki

delikleri enterpolasyon yapmak için kullanılır.

UCLA’nın DECOM’dan daha iyi performans gösterdiği tespit edildi. Aynı şekilde,

UCLSA, CLSA’dan daha iyi performans gösterdi. DECOM ve CLSA, her bir asal

alt diziyi ayrı ayrı ele alır ve böylece dizinin içsel karşılıklı bilgisini kaybeder; bu,

UCLA ve UCLSA’da korunan bir özelliktir. Sanal enterpolasyonlu dizi, daha fazla

DoF sergileyerek 2MN −N kaynaklarını yalnızca M + N −1 sensörlerle çözer.
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CHAPTER ONE

INTRODUCTION

1.1 Background and Motivation

There is an avalanche of wireless devices leading to an exponential rise in data

generation. The net effect being a crunch in the bandwidth capacity. Fifth generation

(5G) or mm-wave communication for instance, coupled with artificial intelligence,

and big data analytics is geared towards achieving diversified ecosystem through a

technology called internet of everything (IoE) which will ensure interconnection of

people, processes, things, and data to enable their intelligent communication with no

human intervention (Santacruz et al., 2020; Kubba & Hoomod, 2019; Miraz et al.,

2015). According to IDC forecasts, the interconnected devices are growing

exponentially with an estimation of having 75 billion of these by 2025 which will be

generating over 79.4 ZB of data (Al-Sarawi et al., 2020).

One of the drivers of the aforementioned advancements is the wireless

communication technologies. In this sector, the focus is on optimizing wireless

networks for enhanced capacity, fidelity, quality of service, spectral efficiency, link

reliability and low-power operation. Although it might be demanding to realise all the

above features in a single network, a tradeoff for an optimal operation is possible.

A number of techniques have been embraced as a means of realising the

aforementioned features. These techniques include redesigning of the antenna

system, employing enhanced modulation, multiple access and switching techniques,

spectral efficiency algorithms, channel coding and new error correction and detection

protocols (Giordani et al., 2020; Ilderem, 2019).

Redesigning of the antenna system has led to development of smart antennas

(adaptive antenna arrays) that have a dynamic beam-forming characteristic, a property

that enhances channel capacity and spectrum efficiency through multipath and

co-channel interference suppression (Misra et al., 2018; Bhobe & Perini, 2001).
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One of the parameters of an adaptive array that has realised a lot of attention

recently is the direction of arrival (DOA) estimation of a user signal. This is the

process of determining the direction from which propagating electromagnetic waves

impinge on an antenna array. Nonuniform antenna array geometries like L-shaped

array (LSA), Cross-shaped array (CSA) and sparse array geometries like nested

arrays, coprime linear arrays (CLA), Coprime L-shaped arrays (CLSA) etc when used

for DOA estimation, presents excellent results compared to the regular array

geometries like uniform linear array (ULA), uniform circular array (UCA), uniform

rectangular (planar) arrays (URA) etc which in addition, have some limitations when

applied practically. This is because nonuniform arrays, have the advantage of

avoiding coupling problem and at the same time providing high degrees of freedom

(DOFs). Therefore, nonuniform array geometries are preferred due to enhanced

performance compared to the regular ones with the same number of sensor elements,

(Li et al., 2018).

There are numerous DOA estimation algorithms that have been proposed of which

include: beamforming, subspace and parametric approaches. These algorithms offer

varying performances in terms of estimation accuracy, resolution capability and

computational complexity (Chung et al., 2014). Therefore, the choice of any

algorithm would mostly depend on the performance preferences as well as limitations

either in terms of resolution, computational complexity or the type of arrays to which

they may be applied.

Balabadrapatruni (2012) used uniform linear array (ULA) to perform analysis on

two categories of algorithms namely classical ( non-subspace) e.g. Delay-and-Sum

(DS), Maximum Likelihood (ML) and Capon’s Minimum Variance Distortionless

Response (MVDR) techniques and subspace methods e.g. Multiple Signal

Classification (MUSIC), root-MUSIC and estimation of signal parameters via

rotational invariance technique (ESPRIT). In his findings, he noted that the former

category which depends on spatial spectrum, are simple to implement but have poor

resolutions despite being suitable in circumstances where the signal properties are

unknown. On the contrary, the latter - which have also been deeply analysed by Reaz

2



et al. (2012) - have been categorised as super-resolution algorithms due to their

superior performances. Other comparative studies by Dhope et al. (2013); Li et al.

(1993) for instance, that majored on subspace algorithms particularly MUSIC,

MVDR, State-Space Realization (SSR) and ESPRIT over ULA antenna in the

presence of white Gaussian noise asserted that the subspace algorithms have greater

performance in terms of sensor array processing, spectral analysis, and general

parameter estimation.

While comparing MUSIC and ESPRIT algorithms over adaptive antenna arrays,

Lavate et al. (2010) found out that MUSIC algorithm has a higher accuracy and

stability and resolution than ESPRIT. This therefore gives MUSIC a wider application

in adaptive arrays especially where user separation through SDMA for cellular

communication is required. Moreover, Dongarsane & Jadhav (2011); Gupta & Kar

(2015) investigated the factors that affects DOA estimation using MUSIC algorithm

on ULA for which the authors opined that the resolution of DOA estimation improves

as number of snapshots, number of array elements and signal-to-noise ratio (SNR)

increases.

Most of the aforementioned high-resolution DOA estimation algorithms perform

efficiently only on regular array geometries. However, MUSIC is regarded as one of

the most representative technique due to its high resolution and flexibility for even

arbitrary arrays (Sun et al., 2018). DOA analysis using arbitrary arrays is realising a

lot of attention due to greater performances in two-dimensions (2D) and by applying

L-shaped coprime array (CLSA) for instance, lesser computation complexity can be

realised. Coprime array concept has been used by several authors in analysis of

nonuniform array. For instance, Kwizera et al. (2017); Zhou et al. (2013) used

DEcompose and COMbine (DECOM) method for coprime array to perform a

comparison between ULA and nonuniform coprime linear array (NCLA) for which

they observed that the latter’s performance is superior to that of the former for DOA

estimation applications. On the other hand, Unfolded Coprime Linear Array (UCLA)

concept used by Zhang et al. (2020, 2019) seemed more promising than the DECOM

method. In these two different scenarios, UCLA method is seen to present higher

3



DOF and aperture with suppressed ambiguous DOAs in the power pseudo-spectra.

In Wang et al. (2017) 2D DOA estimation of multiple signals for coprime planar

arrays (CPAs) was conducted for which a computationally efficient 1D partial spectral

search approach based on MUSIC algorithm was proposed. Furthermore, Yang et al.

(2017) proposed a novel method for 2D DOA estimation using CLSA geometry with

MUSIC algorithm with an aim of eliminating angle ambiguity. The same analysis was

further advanced by Hu et al. (2015) using propagator method (PM). Their proposed

methods seemed rather computationally complex as in both scenarios, conventional

MUSIC method is applied. Li et al. (2018) proposed an UCLSA method for analysing

L-shaped coprime arrays, a method that was also adopted by Zhang et al. (2019) but

with a novel low complexity MUSIC-like algorithm method that seem promising since

it offered automatic angle-pairing and low computational complexity.

In DOA estimations, the problem is not only to estimate angles of arrival (AoA),

but to also find the maximum number of sources that can be resolved at the least cost

possible with the lowest computations to ensure greater speeds. For this reason,

virtual array interpolation has been proposed as a way of resolving more sources than

sensor elements. Interpolation techniques like SS-MUSIC, positive definite Toeplitz

completion, array interpolation, `1 minimization or LASSO can be used for

interpolating the sensors for the holes in the co-array. The only drawback in using

them is that they will require additional tuning parameters like matrix vectorisation,

matrix reshaping, spatial smoothing or discretization of parameter space into a dense

grid respectively resulting in computational complexity. Liu et al. (2016) proposed a

novel low complexity method for interpolating the holes in the difference co-array

using nuclear norm minimization. This method was also adopted by Hosseini & Sebt

(2017) due to its simplicity and better performance.

This research focuses on achieving three major DOA estimation objectives namely

realisation of greater DOF, superior DOA estimations using arbitrary arrays and lastly

being able to resolve more sources than sensors. Therefore, coprime array geometries

as well as interpolated virtual arrays will be used coupled with MUSIC algorithm.
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1.2 Purpose and Aims of the Thesis

The purpose of this research is to perform two-dimensional (2D) DOA estimation of

an impinging electromagnetic waves using arbitrary antenna arrays. The research focus

on conducting 2D DOA estimation using coprime L-shaped array even with a missing

element making them arbitrary arrays. Specifically, it shall focus on analysis of a

sparse array namely unfolded coprime L-shaped array (UCLSA) for DOA estimation

using MUSIC and a novel MUSIC-like algorithm which transforms a 2D spectral peak

searching problem to 1D as a way of reducing the computational complexity involved

in 2D estimations thereby increasing the speed, resolution and efficiency. Further, the

analysis will encompass interpolation of a coprime linear array (CLA) and to apply

co-array MUSIC for its DOA estimation with an aim of increasing the Degrees of

Freedom (DOF) of the antenna to enable resolving of more signal sources than the

number of sensor elements.

1.3 Objectives

The main objective of this research is to model and perform DOA estimation using

arbitrary antenna arrays. The specific objectives include the following:

(i) To provide an understanding of adaptive beamforming, a case for smart antenna

systems, and highlight its benefits in wireless communication system.

(ii) To investigate essential features that influence the source localization with an

aim of capitalizing on ways of ensuring low computational complexity in

determination of the angle of arrival.

(iii) To model and analyze sparse array geometry specifically coprime array using

DECOM and UCLA methods for 1D and CLSA and UCLSA methods for 2D

DOA estimation respectively using the coprime principle.

(iv) To perform virtual array interpolation for coprime array using nuclear norm
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minimization method.

(v) To utilize MUSIC algorithm, a high-resolution DOA estimation technique, to

simulate and evaluate the performance of the aforementioned models in

MATLAB program with a view of enhancing the robustness and capacity of the

network while at the same time reducing interference.

1.4 Scope of the Thesis

The scope of this research ranges from mathematical modelling of the signal data

for sparse array geometry specifically coprime array in the conventional way, novel

methods for 2D MUSIC algorithm to virtual array interpolation method for enhancing

the DOF and consequently aperture of the array without increasing physical sensor

elements. The concept is developed from a coprime nonuniform linear array for 1D

DOA estimation and improved through coprime L-shaped array for 2D DOA

estimation using unfolded coprime L-shaped array (UCLSA) for 2D DOA estimation

providing automatic ambiguity elimination and finally nuclear norm minimization

method used for interpolation of the co-array.

1.5 Organization of the Thesis

This thesis is organised into five chapters. Firstly, chapter one presents the

background and motivating factors to carry out the research. The chapter

consequently proceeds to present the purpose, aims and objectives of the research. In

chapter two, the description of DOA estimation including an overview of smart

antenna system is presented. Further, factors that influence the performance of DOA

estimation are discussed. The chapter ends by giving a perspective on the sparse

arrays specifically coprime theory and L-shaped antenna arrays. In chapter three,

mathematical models for three classes of array geometries:- DECOM and UCLA for

1D DOA estimation, CLSA and UCLSA for 2D DOA estimation and thirdly virtual
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array interpolation for co-array MUSIC algorithm are generated. The 1D geometries

have been considered since they are the basis to which 2D DOA estimation is

anchored. Chapter four presents the simulation results as conducted in MATLAB

program. This chapter ends by presenting the discussion of the results where

individual model as well as comparison among the geometry classes is conducted.

Lastly, in chapter five, inferences, recommendations, conclusion and future work is

presented.
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CHAPTER TWO

INTRODUCTION TO DIRECTION OF ARRIVAL ESTIMATION

Since its inception in 1897 by Guglielmo Marconi who successfully transmitted

telegraphy signals using electromagnetic waves to a distance of merely over 100

meters (Andersen, 2017; Falciasecca & Valotti, 2009), wireless communication has

gone through major transformations to today’s most preferred, most advanced and

fastest growing technology. In a wireless communication system, the signals are

transmitted through electromagnetic waves capable of travelling even in free space

without the use of any physical medium like enhanced electrical conductors or

wires.(Bhalla & Bhalla, 2010). This communication system operates through a

subsystem that directs the transmitted and received electromagnetic waves called

antennas.

An efficient and effective wireless communication system ensures interference

suppression, capacity enhancement, power efficiency, ability to support multimedia

services, spectral efficiency, quality of service (QoS), high Speeds or throughput,

reliability, multiple networks compatibility and capital and operational expenditure

optimization (Renukadas & Beed, 2016; Ramiro & Hamied, 2011; Saunders &

Aragón-Zavala, 2007). Practically, it is not easy to achieve all of the aforementioned

parameters in every single system. A trade-off is normally inevitable.

The increasing demand for the spectrum for instance, has resulted in full

exploitation of the low-end spectrum leaving only one option of exploring the higher

frequency bands with higher spectral availability. The major challenge is that higher

frequencies results in higher data rates with higher user density leading to multipath

fading and cross-interference which degrades the bit error rate (BER) which further

results in poor quality of service (QoS) (Balabadrapatruni, 2012).

Multipath fading comes as a result of the transmitted signal being blocked by

obstacles along the path leading to reflection, scattering and absorption as well as

superimposition of undesired signals (Dai et al., 2006). As a result, the signal reaches
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the destination through different paths leading to phase mismatch as some paths

creates delays. Consequently, co-channel interface is the inference caused between

two wireless communication channels operating at the same frequency (Lee, 1986).

These are illustrated in Figure 2.1.

Figure 2.1 Interference in wireless communication system

The combination of these described inferences coupled with path absorption and

any other cause for signal degradation is referred to as path loss. To solve the above

challenges and as a way of embracing technological advancements for effective and

efficient wireless communication systems, a number of techniques have been

embraced among which include redesigning the antennas, employing enhanced

modulation, multiple access and switching techniques, spectral efficiency algorithms,

channel coding and new error correction and detection protocols.

2.1 Antenna Array

An antenna is an electrical device (circuit) that enables radiation or reception of

electromagnetic signals in a wireless communication system. Balanis (2016), Balanis

(1969) and Dhande (2009) elaborates the important antenna parameters as

polarization, radiation pattern, half-power beam width, radiation density, radiation
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intensity, radiation power density, directivity, gain and bandwidth.

A set of similar or different antenna elements having individual amplitude and phase

relation may be arranged in a manner to produce a certain desired radiation pattern.

Such an arrangement containing N spatially separated antenna elements is referred to

as an antenna array. A simple antenna array may contain as few as two elements like

for the case of cellular telephony tower to as many as tens of elements as for case

for radio telescope arrays with the general principle being: the more the elements, the

better the performance. On the contrary, increase in the number of elements leads to

computational complexity of the array. Therefore, a tradeoff is inevitable.

Phased antenna arrays are widely preferred since they provide a high gain as

compared to ordinary antenna element. Importantly, they provide the capability of

producing diverse, narrow and steerable beam, which means the array can be steered

so that it is most sensitive in the desired direction and by so doing ensures

cancellation of interfering signals from undesired directions. Figure 2.2 illustrates the

two common types of uniform antenna arrays.

Figure 2.2 Typical uniform antenna array configurations

2.1.1 Smart Antenna

The antenna was initially thought of as a passive circuit element where its

operating characteristics was predetermined at the initial design and manufacture

which meant that the operating characteristics were fixed for each antenna. This kind
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of antenna is referred to as switched beam antenna. Currently, as a way of tackling the

challenges of multipath fading, cross-interference and general path loss as highlighted

in Chapter 1, the antenna is viewed as an integral part of the circuit and therefore

designed in a manner that it can automatically change the direction of beam-forming

(radiation pattern) thereby suppressing the interference and at the same time

optimizing the capacity of the network. An antenna with such features is called an

adaptive antenna system.

Figure 2.3 Smart antenna types: (a) Switched beam (b) Adaptive array

As illustrated in Figure 2.3 (a), a switched beam antenna radiates equally in all

directions leading to interference and high power dissipation. Figure 2.3 (b) is of an

adaptive array radiating along the desired user direction only and therefore able to

achieve automatic interference cancellation while dissipating very low power among

other positive features.

Adaptive array system is a scenario-based antenna with infinite number of

beamforming patterns that are adjustable in real time. The beamforming is

automatically achieved through a digital signal processor system and phase shifter for

automatic adjustments (Lakshmi & Sivvam, 2017; Bellofiore et al., 2002). An

adaptive array has the ability to effectively locate and track different types of signals

through the use of new signal-processing algorithms thereby allowing it to

dynamically minimize system interferences like multi-path and co-channel; and

maximize the intended signal reception. This combination is capable of automatically
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detecting the direction of arrival (DOA) of the intended signals and on the other hand

suppress the interfering signals and noise. Figure 2.4 shows an illustration of an

adaptive array.

Figure 2.4 A simplified adaptive antenna array structure

2.2 DOA Estimation

Direction of arrival (DOA) is a terminology used to describe the direction from

which a propagating electromagnetic wave arrives at the receiver preferable array

elements. It is a localization procedure in which the azimuth and/or elevation angle(s)

of the desired source signals in a wireless communication system is estimated with an

aim of optimizing the performance of the system by enhancing capacity, throughput

and interference cancellation (Barodia, 2017).

DOA can be estimated in 1D, where either elevation or azimuth angle is

determined or 2D where both the elevation and azimuth angles are determined. Yan

et al. (2015) states that in practice, 2D DOA estimation is of more importance than

the former because it provides more information about the location of the incoming

signals. DOA estimation is never a straight forward process. There are normally

practical challenges which include decomposing multiple source signals having
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different amplitudes, additive white Gaussian noise corrupting the signal, clutters and

signal multipath problems to deal with.

The principle of DOA estimation is important and has found applications in the

fields of : wireless communications, sonar systems, geophysical applications like

radio astronomy, navigation and tracking of objects and seismic estimations; signal

processing in acoustics, radar tracking and rescue & emergency assistance devices as

well as in biomedical engineering (Gentilho et al., 2020; Kiani & Pezeshk, 2015;

Bhuiya et al., 2012).

DOA estimation is preformed by algorithms through determination of phase

difference (time delay) of the arrival of signals (plane wave-front) at individual array

elements. By determining this delay, it is possible to determine the angular direction

from which the signal is arriving as illustrated in Figure 2.5 of uniform linear array

where elements are arranged along x−axis with a uniform separation distance d.

Figure 2.5 Uniform linear array

To illustrate the process of DOA estimation, it is assumed that the received signal at

the reference element x0 given by

S 0 (t) = e j2π f0t (2.1)

Consequently, the second array element, x1 receives the same signal after a time delay.

If the time delay is τ, then the second array element receives a signal represented as

S 1 (t) = S 0 (t− τ) = e j2π f0t . e− j2π f0τ (2.2)
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Delay time, τ is given by

τ =
dsinθ

c
=

dsinθ
f0λ0

(2.3)

Where: c represents the velocity of electromagnetic wave with a wavelength of λ0 and

f0 is the baseband frequency.

The problem then becomes an estimation problem since the exact difference of the

plane wave-fronts cannot be determined. For 2D DOA estimation on the other hand,

the receiving antenna array needs to be in at least two dimensions.

2.3 DOA Estimation Parameters

2.3.1 Coordinate System

In this thesis, 3D Cartesian plane technique which has three coordinates namely

x,y, and z will be considered. This method considers the angular incoming or outgoing

electromagnetic signals in a three-dimensional space. Therefore, the spatial spherical

coordinates are transformed into 3D Cartesian coordinates for analysis. For the case of

this thesis, again, the elevation angle will be represented by θ while the azimuth angle

will be represented by φ. Consequently, the radial distance between the source(s) and

the antenna elements will be denoted as r.

The 3D spherical representation shown in Figure 2.6 is converted through

cylindrical coordinates to respective Cartesian plane coordinates given as.
x = dxsin(θ)cos(φ)

y = dysin(θ)sin(φ)

z = dzcos(φ)

(2.4)
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Figure 2.6 3D spherical coordinate representation

2.3.2 Power Spectrum

The DOA estimation method to be adopted is one based on the power spectrum

peak detection. Several authors have proposed unique algorithms for estimating the

peaks of the power spectrum. Since the actual power spectrum cannot be computed,

an approximated values which are equally sufficient are used and are called

pseudo-spectrum. The most popular pseudo-spectra used are for 1D and 2D DOAs

which are determined with the number of planes the power is resolved. The

illustrations are as shown in Figure 2.7.

Figure 2.7 Illustration of 1D and 2D DOA estimation spectral peak searches
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2.4 DOA Estimation Algorithms

Several DOA estimation algorithms have been proposed for 1D and 2D estimations

(Liu et al., 2018). Devendra & Manjunathachari (2015) and Dhope et al. (2013) for

instance, discussed different DOA estimation methods in detail where they

categorized DOA estimation approaches into two major classes namely quadratic

types and subspace decomposition types. Among the proposed algorithms,

subspace-based approach is preferred due to its higher resolution and less

computational complexity as opposed to maximum likelihood (ML) approach (Jaafer

et al., 2018; Gentilho et al., 2020).

Several subspace DOA estimation algorithms have been developed which can

further be categorized as summarized in the flow diagram of Figure 2.8. Maximum

likelihood methods like Capon (Minimum Variance Distortionless Response) and

Bartlett depend highly on the physical size of array aperture, leading to poor

resolution and low estimation accuracy. On the other hand, subspace methods

especially MUSIC is more accurate with high resolution, and at the same time not

limited to physical size of array aperture (Jaafer et al., 2018; Gentilho et al., 2020;

Dhope et al., 2013).

Figure 2.8 Types of subspace DOA estimation algorithms (Devendra & Manjunathachari, 2015)
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2.5 MUSIC Algorithm

Multiple Signal classification (MUSIC) DOA estimation algorithm was first

proposed by Schmidt in 1979 (Joshi & Dhande, 2014). This algorithm provides

higher resolution based on exploiting the eigen-structure of input covariance matrix of

the signal under analysis. The covariance matrix is decomposed into eigenvectors of

signal and noise subspaces respectively and due to the orthogonality of the two, the

direction of the source(s) is computed from the steering vectors of the noise subspace

(Tayem & Kwon, 2005).

MUSIC is considered a super-resolution algorithm which is able to resolve very

close sources due to the perfect orthogonality of signal and noise subspaces for

scenarios where SNR is sufficiently high. Apart from presenting high resolution,

MUSIC also performs better with arbitrary array geometries (Yan et al., 2015).

2.5.1 Factors Affecting MUSIC Algorithm DOA Estimation

According to Dhope et al. (2013); Gupta & Kar (2015); Sharma et al. (2015) and

Barodia (2017), DOA estimation is affected by both the behavior of the incoming

signals and estimation environment. The major factors that affect the resolution of

estimated angle are as follows.

� Signal to Noise Ratio (SNR): For low noise environments, the resolution of the

estimated DOAs is higher as opposed to when the SNR is high.

� Array Aperture: Array aperture is the effective antenna surface oriented

perpendicular to the impinging electromagnetic waves. Therefore, the larger the

aperture the higher the DOF and therefore higher resolution and accuracy in

estimation. The aperture can physically be extended by adding more sensors

although this can lead to additional hardware costs as well as slower operations

due to high computational complexity for the signal processor. Another way of
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extending the aperture is by extending the inter-element spacing which should

be done cautiously for conventional arrays as it is bounded at half-wavelength to

avoid the occurrence of cyclical ambiguous direction-cosine estimates according

to spatial Nyquist sampling theorem (Zoltowski & Wong, 2000).

� Sources inter-spacing Distance: When estimating multiple number of sources,

there inter-spacing distance is a factor of consideration as it determines the array

geometry and the estimation algorithm that can be applied. For instance, most

classical algorithms require modification to enable estimation of number of

sources greater than the number of array elements.

� Number of Snapshots: Snapshots which is the number of signal samples per unit

time is directly proportional to the resolution of the estimated DOA. Super

resolution DOA estimators like MUSIC operate perfectly even with few

snapshots. However, conventional estimators would require higher number of

snapshots to perform better.

� Coherency of the signal sources: MUSIC algorithm performs for non-coherent

sources. For coherent sources, the signal covariance matrix is no longer a

non-singular matrix. For this condition, the original super-resolution algorithm

will not be suitable.

� Inter-element Spacing: Conventionally, the sensor spacing between adjacent

elements is maintained not more than half-wavelength of the propagating wave.

To ensure no spatial aliasing responsible for mutual coupling and lower array

aperture (Zhang et al., 2020). Mutual coupling is undesirable because it

degrades the performance of the estimator. MUSIC algorithm cannot perform

well with inter-element spacing of more than half wavelength. In such scenario,

false peaks (ambiguous DOAs) emerge.

� Number of Array Elements: In conventional DOA estimation algorithms, the

number of resolvable source DOAs are dependent on the number of array sensors.

The number of sensor elements further affects the array aperture (Zhao et al.,

2019).
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CHAPTER THREE

METHODOLOGY

The research aims at analyzing non-regular array geometries. Coprime array, one

of the sparse array geometries is analysed in detail. The aim is to perform analysis of

coprime array using different methods, both 1D and 2D, including virtual array

interpolation to determine how sparse arrays can be used for extended degrees of

freedom (DOF) for resolving of more sources than sensors. In all the methods,

MUSIC, a super resolution algorithm is used. The breakdown of the workflow is

shown in Figure 3.1.

Figure 3.1 Execution procedure

3.1 Sparse Arrays

An array in which sensor elements are nonuniformly placed according to a unique

principle with the aim of increasing the DOF of the antenna is referred to as sparse

array (Hu et al., 2013). They can be classified as those with closed-form sensor

locations like coprime arrays, generalized coprime arrays, nested arrays, and

super-nested arrays and those with no closed-form sensor locations (irregular arrays)
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like minimum hole arrays (MHA) and minimum redundancy arrays (MRA) (Hosseini

& Sebt, 2017). Sparse arrays have the advantage of resolving more signal sources

than the number of sensor elements which is occasioned by their increased aperture

and DOF.

3.1.1 The Coprime Concept

This is a concept of realising closed-form sparse array called coprime. It is derived

from the prime number theory. The Coprime integer pairs are numbers with only

integer 1 as their common divisor and no other.

The coprime array concept was first put forth by Pal & Vaidyanathan (2011) where

array elements arranged according to a pair of coprime integers is analyzed in detail.

Bush & Xiang (2017) expanded the concept to analyse an n-tuple array, elaborating that

any n multiple number of sets of pairwise coprime integers can be modelled thereby

expanding the coprime array concept from just a pair to suggesting that the set can be

imagined to be as large as the largest prime number which is actually infinity.

In Qin et al. (2015), different generalised coprime configurations have been

discussed for DOA estimation. Many researchers have of late given a lot of attention

to coprime array concept due to its computational simplicity and ease of

implementation (Zhang et al., 2020).

3.2 DECOM Method for Nonuniform Linear Array

DECOM is a diminutive of decompose and combine. This is one of the DOA

estimation methods for analysing coprime linear arrays. It is performed in two steps.

Firstly, the nonuniform coprime linear array (NCLA) is decomposed to its respective

uniform linear sub-arrays 1 and 2 in accordance with coprime integer pair. This

process allows the application of MUSIC algorithm in each sub-array separately.

Secondly, DOA estimation is realised by combining the MUSIC results of the two
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sub-arrays (Kwizera et al., 2017; Zhou et al., 2013).

Consider two coprime integer pair M and N where M < N. The sensors are spaced

in accordance with multiples of these integers. This arrangement has the merit of

increasing the aperture area and degrees of freedom (DOF). The constraint is that the

inter-sensor spacing will exceed half wavelength and therefore there tends to be

occurrence of cyclical ambiguous direction-cosine estimates according to spatial

Nyquist sampling theorem (Tayem & Kwon, 2005). The array geometry is shown in

Figure 3.2.

Figure 3.2 (a) Nonuniform Coprime linear array(NCLA) (b) Decomposed coprime linear sub-arrays

Generally speaking, a nonuniform linear array would require additional analysis

techniques for it to be used in DOA estimation. However, with the coprime concept

and the virtue that the matrices can be analyzed in a decomposed form, it is easy to

analyze the nonuniform array shown in Figure 3.2(a) into its n respective uniform linear

sub-array components as shown in Figure 3.2(b). Therefore, the method is referred to

as DECOM because it entails decomposing the nonuniform array into its respective

uniform linear arrays followed by DOA estimation through combining the MUSIC

results of the linear arrays.
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3.2.1 Data Model

It is assumed that P uncorrelated far-field narrowband signals {sp(t)}Pp=1 with same

wavelength λ impinge on the nonuniform linear array in a manner that pth signal makes

an angle of {θk}
P
p=1 where θp ∈ (00,900) or φp ∈ (00,1800) for elevation and azimuth

estimations respectively. The total received signal to the array for tth snapshot can be

expressed as

x(t) = As(t) + n(t) (3.1)

This is decomposed for individual signals received by each sub-array as.

xM(t) = AMs(t) + nM(t) (3.2a)

xN(t) = ANs(t) + nN(t) (3.2b)

Where: s(t) = [s1(t), s2(t), ..., sP(t)]T is the signal vector for t = 1,2, ..., J snapshots;

nM(t) and nN(t) are the additive white Gaussian noise vectors assumed to have zero

mean, and variance σ2
n and independent of sources and A is the manifold matrix for

the respective sub-arrays given by AM∈ C
M×P and AN∈ C

N×P and are Vandermonde

matrices which can be individually expressed as

AM = [αM(θ1),αM(θ2), ...,αM(θP−1),αM(θP)] (3.3a)

AN = [αN(θ1),αN(θ2), ...,αN(θP−1),αN(θP)] (3.3b)

The corresponding steering vectors of the above matrices along positive and negative

x axis respectively is expressed for the range p = 1,2, ...,P as

αM(θ1) = [α0
M(θp), ...,αM−1

M (θp)]T (3.4a)

αN(θ1) = [α0
N(θp), ...,αN−1

N (θp)]T (3.4b)

Where αn
M(θp) = e−1 jnηd1sinθp and αn

N(θp) = e−1 jnηd2sinθp for η = 2π
λ , db denotes

d1 = N λ
2 or d2 = M λ

2 with n representing the position (or the number) of sensor under

consideration.
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3.2.2 1D DOA Estimation using DECOM with MUSIC Algorithm

To apply MUSIC algorithm, the first step is to compute the covariance matrix of the

above two sub-array signals. The covariance matrix of the total received signal for 2D

MUSIC is computed as

RXXM = E[xM(t)xH
M(t)] = AME[s(t)sH(t)]AH

M + E[nM(t)nH
M(t)]

= AMRS S MAH
M + σ2

nI
(3.5a)

RXXN = E[xN(t)xH
N (t)] = AN E[s(t)sH(t)]AH

N + E[nN(t)nH
N (t)]

= ANRS S NAH
N + σ2

nI
(3.5b)

Where: RS S = diag[σ2
1,σ

2
2, . . . ,σ

2
P] represents the received signal power with each

individual source represented by σ2
p while σ2

n is the noise power and I is an identify

matrix. Since the exact covariance matrix cannot be solved, an approximate value is

used given as

R̂XXM =
1
J

J∑
t=1

xM(t)xH
M(t) (3.6a)

R̂XXN =
1
J

J∑
t=1

xN(t)xH
N (t) (3.6b)

From the expression of the estimated value covariances, if eigenvalue

decomposition (EVD) is conducted, the signal and noise subspaces are established

respectively as

R̂XXM =

[
ÛsM ÛnM

] Λ̂sM 0

0 Λ̂nM


ÛH

sM

ÛH
nM

 = ÛsMΛ̂sMÛH
sM + ÛnMΛ̂nMÛH

nM (3.7a)

Where the subspaces are complex matrices of sizes ÛsM ∈ C
M×P and ÛnM ∈ C

M×(M−P)

and source and noise powers are also complex matrices of sizes Λ̂sM ∈C
P×P and Λ̂n =∈

C[(M−P)]×[M−P] respectively, and

R̂XXN =

[
ÛsN ÛnN

] Λ̂sN 0

0 Λ̂nN


ÛH

sN

ÛH
nN

 = ÛsNΛ̂sNÛH
sN + ÛnNΛ̂nNÛH

nN (3.7b)

Where the subspaces are complex matrices of sizes ÛsN ∈ C
N×P and ÛnN ∈ C

N×(N−P)

and source and noise powers are also complex matrices of sizes Λ̂sN ∈C
P×P and Λ̂n =∈
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C[(N−P)]×[N−P] respectively.

FMUS ICM (θ) =
1∣∣∣∣αH

M(θ)ÛnMÛH
nMαM(θ)

∣∣∣∣ (3.8a)

FMUS ICN (θ) =
1∣∣∣αH

N (θ)ÛnNÛH
nNαN(θ)

∣∣∣ (3.8b)

From the spectra function, a search for the peaks (maximas) is conducted to

establish estimated DOAS.

3.3 Unfolded Coprime Linear Array, (UCLA) Method

In this method, a nonuniform coprime linear array is unfolded according to its

coprime integer pair to form sub-arrays 1 and 2. As opposed to DECOM, the array is

unfolded from the origin where the elements of each sub-array are arranged

separately towards the positive and negative side of the axis respectively as shown in

Figure. 3.3.

Figure 3.3 (a) Nonuniform coprime linear array (NCLA) (b) Unfolded coprime linear array (UCLA)

This unfolded coprime array geometry, as opposed to uniform linear or DECOM

methods, is preferred because of the following advantages (Zhao et al., 2019; He et al.,

2020):
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� It helps in increasing the number of sensor elements for higher degrees of freedom

(DOF) thereby allowing detection of more sources than the number of sensors.

� It ensures retention of the intrinsic mutual information of the arrays thereby an

all-array detection may be applied leading to superior performance.

� There is automatic pairing of the estimated DOAs unlike a scenario for DECOM

where each sub-array is used separately.

3.3.1 Data Model

The model assumes a total of P uncorrelated far-field narrowband signals {sp (t)}Pp=1

of wavelength λ impinging on the array such that the pth signal makes an angle of

{θ}Pp=1 where θp ∈ (00, 900). Besides, if the total signal received by each sub-array in

either axis is expressed as {xb}
2
b=1 where b denotes the side of the sub-array considered

where 1 denote positive side and 2 negative side respectively, then the received signal

of the bth sub-array in x directions for tth snapshot is expressed as

xb(t) = Abs(t) + nb(t) (3.9)

Where: s(t) = [s1(t), s2(t), ..., sP(t)]T is the signal vector t = 1,2, . . . , J is the number of

snapshots; nb(t) is the additive white Gaussian noise vectors of the form µn = 0 and

Var = σ2
n; Ab∈ C

(N or M)×P is the manifold matrix for bth sub-array along x-axis, and

is of a Vandermonde matrix which can be further expressed in the form:-

Ab = [αb(θ1),αb(θ2), ...,αb(θP−1),αb(θP)] (3.10)

The corresponding steering vectors of the above matrices for the angle directions

along positive and negative x axis respectively is expressed for the range p = 1,2, . . . ,P

as

α1(θ1) = [α0
1(θp), . . . ,αM−1

1 (θp)]T (3.11a)

α2(θ1) = [α−(N−1)
2 (θp), . . . ,α0

2(θp)]T (3.11b)

Where αn
b(θp) = e−1 jηdbsinθp for η = 2π

λ , db denotes d1 = N λ
2 and d2 = M λ

2 with n

representing the position (or the number) of sensor under consideration.
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3.3.2 1D DOA Estimation with UCLA Method Using MUSIC Algorithm

As established above, the received signals in either sub-arrays are combined to

generate the total signal as

x(t) =

x1(t)

x2(t)

 =

A1

A2

s(t) +

n1(t)

n2(t)

 = As(t) + n(t) (3.12)

Where Ax =
[
AT

1 , AT
2

] T
= [α (θ1) ,α (θ2) , . . . ,α (θP−1) ,α (θP)]. The corresponding

steering vector is given by α
(
θp

)
=

[
αT

1

(
θp

)
, αT

2

(
θp

)]T
. In the same spirit, the total

noise is modelled as a collective of the noises in two sub-arrays as n =
[
nT

1 , nT
2

] T
.

The covariance matrix is then computed as

RXX = E
[
x(t)xH (t)

]
= AE

[
s (t)sH (t)

]
AH + E

[
n (t)nH (t)

]
= ARssAH +σ2

nI (3.13)

The approximate covariance matrix is genrated as in Equation 3.14.

R̂XX =
1
J

J∑
t=1

x(t)xH(t) (3.14)

Eigenvalue decomposition (EVD) is performed on Equation 3.14 to establish signal

and noise subspaces respectively as shown.

R̂XX =

[
Ûs Ûn

] Λ̂s 0

0 Λ̂n


ÛH

s

ÛH
n

 = ÛsΛ̂sÛH
s + ÛnΛ̂nÛH

n (3.15)

Where the subspaces are complex matrixes of sizes Ûs =∈ C[N+M]×P and

Ûn =∈ C[N+M]×[(N+M)−P] and source and noise powers are also complex matrices of

sizes Λ̂s =∈ CP×P and Λ̂n =∈ C[(N+M)−P]×[(N+M)−P] respectively. Finally, the spectral

function is expressed as

FMUS IC(θ) =
1∣∣∣αH(θ)ÛnÛH

n α(θ)
∣∣∣ (3.16)
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3.4 Coprime L-Shaped Antenna Arrays

2D DOA estimation requires a multidimensional array. These arrays include

uniform planar like rectangular and circular, nonuniform planar, L-shaped, coprime

L-shaped etc. Among them, coprime L-shaped has proved to be simple in

implementation and effective in DOA estimating. This has led to many researchers

giving it great attention through which algorithms deemed to be computationally

efficient being proposed (Dong et al., 2017).

DOA estimation algorithms that work with L-shaped arrays can be classified into

two. The first class are those algorithms able to resolve signal sources that are less

than the number of sensor elements. Most of these estimate the AoAs corresponding

to each uniform linear sub-array (ULA) by application of 1D DOA estimation

algorithms to the received data or reconstructed data of each sub-array. The resultant

angles needs additional pairing since angle-pairing is not automatic. The second

category are those that resolves AoAs with ability of automatic angle pairing.

Examples of such algorithms include joint SVD, parallel factor analysis and effective

array aperture extension methods. The second class are those that are able to resolve

signal sources equal to or greater than the number of sensor elements.

A coprime L-shaped array (CLSA) comprises of two uniform L-shaped sub-arrays

1 and 2 paired along each other in x− y plane for instance, where sub-array 1 and 2

consists of 2M−1 and 2N −1 elements respectively for M < N and M and N being a

coprime integer pair and the element at the origin being shared for alignments in

either direction for either sub-array. (Dong et al., 2017; Yang et al., 2017; Hu et al.,

2015). Therefore, the total number of elements for the array then becomes

2M + 2N − 3. Letting the wavelength of the signal under consideration to be λ, then

the inter-sensor spacing for sub-array 1 and 2 can be expressed as d1 = N λ
2 and

d2 = M λ
2 respectively. The array size is therefore given by total number of sensors per

axis times the sensor interspacing distance, (M − 1)N λ
2 + (N − 1)M λ

2 . The model

geometry is shown in Figure 3.4.
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Figure 3.4 (a) Coprime L-shaped array (CLSA) geometry (b) Decomposed sub-arrays 1 and 2

3.4.1 Data Model

Consider K uncorrelated far-field narrowband signals sk(t)K
k=1 with same

wavelength λ impinging on the L-shaped array above. The elevation and azimuth

angles of the signal to the array is {θk & φk}
K
k=1 respectively where θk ∈ (00, 900) and

φk ∈ (00, 1800) and k is the signal under consideration. The total signal received by

the entire array can be analyzed by considering each L-shaped sub-array separately.

Firstly, the uniform sub-array with the elements 2M−1 with d1 = N λ
2 is considered

xM(t) = AMxs(t) + nMx(t) (3.17a)

yM(t) = AMys(t) + nMy(t) (3.17b)

Where: s (t) = [s1 (t) , s2 (t) , . . . , sK (t)]T is the signal vector t = 1,2, . . . , J is the

number of snapshots; nMx (t) and nMy (t)∈ CM×K are the additive white Gaussian

noise vectors with zero mean (µ = 0) and variance, Var = σ2
n and independent of

sources AMx and AMy∈ C
M×K are manifold matrices for each sub-array along x− and

y− axes respectively and are of the Vandermonde matrices form which is further

expressed as

AMx = [αMx(θ1,φ1),αMx(θ2,φ2), ...,αMx(θK−1,φk−1),αMx(θK ,φK)] (3.18a)

AMy = [αMy(θ1,φ1),αMy(θ2,φ2), ...,αMy(θK−1,φK−1),αMy(θK ,φK)] (3.18b)
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The corresponding steering vectors of the above matrices for the angle directions along

positive x− and y− axes respectively is expressed for the range k = 1,2, . . . ,K as

AMx =
[
α0

Mx(θ1,φ1),α1
Mx(θ2,φ2), . . . ,αM−2

Mx (θK−1,φK−1),αM−1
Mx (θK ,φK)

]T
(3.19a)

AMy =
[
α0

My(θ1,φ1),a1
My(θ2,φ2), . . . ,αM−2

My (θK−1,φK−1),αM−1
My (θK ,φK)

]T
(3.19b)

where αn
Mx(θk,φk) = e jηndbsinθkcosφk and αn

My(θk,φk) = e jηndbsinθksinφk for η = 2π
λ , db

denoting d1 = N λ
2 for sub-array 1 and d2 = M λ

2 for sub-array 2 respectively and n is

the position (the number) of the sensor under consideration. Consequently, sub-array

2 contains N elements in both x and y directions and can be modelled in the same

manner as above leading to received signal given by

xN(t) = ANxs(t) + nNx(t) (3.20a)

yN(t) = ANys(t) + nNy(t) (3.20b)

3.4.2 MUSIC Algorithm for 2D DOA Estimation with CLSA

To apply MUSIC algorithm for the spectral peak searching, the sub-arrays are

considered separately, and the final spectra merged for automatic pairing of the

estimated angles. This eliminates ambiguity in the spectrum and the paired angles

considered true DOAs. Consider Equation3.17a and Equation3.17b, the total received

signal for sub-array 1 is expressed as

zM(t) =

AMx

AMy

s(t) +

nMx(t)

nMy(t)

 = AMs(t) + nM (3.21)

Where AM =
[
AT

Mx, AT
My

]T
=

[
αM(θ1,φ1), . . . ,αM(θk,φk)

]
∈ C2M×K and

αM(θk,φk) =
[
αT

Mx(θk,φk), αT
My(θk,φk)

]T
. Similarly, the total noise is modelled as

nM =
[
nT

Mx, nT
My

]T
. The covariance matrix of the total received signal for 2D MUSIC

is given as

RZZM = E
[
zM(t)zH

M (t)
]

= AME
[
s (t)sH (t)

]
AH

M + E
[
nM (t)nH

M (t)
]

= AMRssAH
M +σ2

nI
(3.22)
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Approximation of the covariance matrix is applied due to complexity in determination

of the actual covariance matrix. This approximate value is described by

R̂ZZM =
1
J

J∑
t=1

zM(t)zH
M (t) (3.23)

Lastly, eigenvalue decomposition (EVD) is conducted to establish signal and noise

subspaces respectively as shown.

R̂ZZM =

[
ÛsM ÛnM

] Λ̂sM 0

0 Λ̂nM


ÛH

s

ÛH
n

 = ÛsMΛ̂sMÛH
sM + ÛnMΛ̂nMÛH

nM (3.24)

Where the subspaces are complex matrixes of sizes ÛsM =∈ CM×K and

ÛnM =∈ C[2M×[2M−K] and source and noise powers are also complex matrices of sizes

Λ̂sM =∈ CK×K and Λ̂n =∈ C[2M−K]×[2M−K] respectively. MUSIC power spectral

function can then be expressed as

PMUS ICM (θ,φ) =
1∣∣∣αH

M(θ,φ)ÛnMÛH
nMαM(θ,φ)

∣∣∣ (3.25)

Consequently, considering the second sub-array, from Equation( 3.20a) and

Equation( 3.20b) it will as well yield

PMUS ICN (θ,φ) =
1∣∣∣αH

N (θ,φ)ÛnNÛH
nNαN(θ,φ)

∣∣∣ (3.26)

Merging the two spectra above, true DOAs automatically pair up leaving the

ambiguous DOAs which in most cases are represented with weaker power maxima

values in the spectrum.

3.4.3 MUSIC-Like Low Complexity Method

A low complexity method (Zhang et al., 2019; Gong et al., 2018) is used to

estimate DOA where the 2D problem is reduced to 1D spectral peak searching

through a transformation defined by two factors given by
γk = sinθkcosφk for γk ∈ (−1,1)

βk = sinθksinφk for βk ∈ (0,1)
(3.27)
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Using the above transformation, the manifold matrices represented in Equation ( 3.18a)

and Equation ( 3.18b) can be rewritten as

AxM = [αxM(γ1),αxM(γ2), ...,αxM(γK−1),αxM(γK)] (3.28a)

AyM = [αyM(β1),αyM(β2), ...,αyM(βK−1),αyM(βK)] (3.28b)

With their respective steering vectors becoming

α(γk)
xM = [α0

x1(γk), ...,αM−1
x1 (γk)]T (3.29a)

α(βk)
yM = [α0

y1(βk), ...,αM−1
y1 (βk)]T (3.29b)

Consequently, the respective elements in either vectors transform to αn
xM (γk) = e jηnd1γk

and αn
yM(βk) = e jηnd1βk respectively. With the above transformation, the two items

to be searched, are independent of each other and therefore, as suggested by Zhang

et al. (2019); Tayem & Kwon (2005); Zhang et al. (2017), 1D spectral peak searching

algorithms can be applied. For 2D MUSIC, the covariance matrix of the received signal

is expressed as

RZZM = E
[
zM(t)zH

M (t)
]

= AE
[
s (t)sH (t)

]
AH + E

[
nM (t)nH

M (t)
]

= ARssAH +σ2
nI

(3.30)

Since the exact covariance matrix cannot be solved, an approximation of the same is

used as

R̂ZZM =
1
J

J∑
t=1

zM(t)zH
M (t) (3.31)

From the expression of the estimated value covariances, if eigenvalue decomposition

(EVD) is conducted, then the signal and noise subspaces are established respectively

as.

R̂ZZM =

[
Ûs ÛnM

] Λ̂s 0

0 Λ̂nM


 ÛH

s

ÛH
nM

 = ÛsΛ̂sÛH
s + ÛnMΛ̂nMÛH

nM (3.32)

To estimate γk ∈ (−1,1) and βk ∈ (0,1) , first the covariance matrix is redefined as

R̂ZZM =
1
J

J∑
t=1

xM (t)

yM (t)

 [xH
M (t) yH

M (t)
]

=

R̂XXM R̂XY M

R̂YXM R̂YY M

 (3.33)

Where J is the number of snapshots and R̂XXM = 1
J
∑J

t=1 xM(t)xH
M(t) ∈

CM×M, R̂YY M = 1
J
∑J

t=1 yM(t)yH
M(t) ∈ CM×M, R̂XY M = 1

J
∑J

t=1 xM(t)yH
M(t) ∈ CM×M
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and R̂YXM = 1
J
∑J

t=1 yM(t)xH
M(t) ∈ CM×M are covariance matrices of received signals in

the directions of the subscripts indicated. It is possible to find the eigenvalue

decomposition (EVD) for R̂XX.

R̂XXM =

[
ÛsxM ÛnxM

] Λ̂sxM 0

0 Λ̂nxM


ÛH

sxM

ÛH
nxM


= ÛsxMΛ̂sxM ÛH

sxM
+ ÛnxMΛ̂nxM ÛH

nxM

(3.34)

Where the signal and noise subspaces are complex matrixes of sizes Ûsx =∈ CM×K

and Ûnx = ∈ CM×[M−K]. It is noted that the steering vector is identical with the signal

subspace and orthogonal to the noise subspace Ûnx. Therefore, the peak search

function, γk, (k = 1,2 . . . ,K) is modelled as

PM (γ) =
1∥∥∥ÛH

nxMαx (γ)
∥∥∥2 ,γ ∈ (−1,1) (3.35)

The γ̂k which corresponds to K peaks is assumed to be the estimation of γ. With the

value of γ̂k, it is possible to estimate βk as follows.

PM(β) =
1∥∥∥∥∥∥∥∥ÛH

nM

αxM (γ̂k)

αyM (β)


∥∥∥∥∥∥∥∥

2 ,β ∈ (0,1) (3.36)

In the second function, ax(γ̂k) is a constraint to the spectrum calculation. This

constraint enables an automatic matching of the azimuth to its corresponding

elevation angle pairs (Zhang et al., 2019). The final angle pairs are expressed as

θ̂kM = sin−1
(√

γ̂k + β̂k

)
(3.37)

φ̂kM = tan−1
(
β̂k

γ̂k

)
(3.38)

To get the true DOAs, the estimated AoAs are computed with respect to sub-array 2.

Finally, the estimated DOAs are generated by combining and pairing the two spectra

DOAs.

3.5 Unfolded Coprime L-shaped Array (UCLSA)

An unfolded coprime L-shaped array (UCLSA) geometry is composed of two

L-shaped uniform linear arrays arranged in a manner that the coprime elements form

32



two sub-arrays 1 and 2 respectively which are aligned orthogonal to each other on the

plane considered (Zhang et al., 2019; Gong et al., 2018). The number of elements for

each sub-array are chosen according to coprime integer pair say M and N where

M < N. The structure can be imagined as four uniform linear arrays (ULAs) or two

L-shaped arrays stretching from the origin with the element at the origin being the

reference element and therefore shared by all the sub-arrays.

Assuming the sub-arrays to be two L-shaped, then, sub-array 1 can be viewed to

be made up of elements aligned in positive x and y directions with a total number of

elements of 2M − 1. Consequently sub-array 2 has its elements aligned in negative x

and y directions with a total number of elements of 2N−1. It then follows that the total

number of elements in the array is 2M + 2N −3.

If the wavelength of the signal under consideration is λ, then the inter-sensor spacing

can be expressed as d1 = N λ
2 and d2 = M λ

2 for sub-array 1 and 2 respectively. The array

size is therefore given by total number of sensors per axis times the sensor inter-spacing

distance, (M − 1)N λ
2 + (N − 1)M λ

2 , (Zhang et al., 2019; Pal & Vaidyanathan, 2011; Li

& Zhang, 2017; Vaidyanathan & Pal, 2010; Zhang et al., 2018; Wang et al., 2017). A

generalized UCLSA structure is shown in Figure 3.5.

Figure 3.5 Unfolded coprime L-shaped array (UCLSA) geometry
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3.5.1 Data Model

Suppose K uncorrelated far-field narrowband signals {sk(t)}Kk=1 of wavelength λ

impinge on the array in a manner that kth signal makes an elevation and azimuth

angle of {θk and φk}
K
k=1 where θk ∈ (00, 900) and φk ∈ (00, 1800) respectively. Further,

suppose the base-band total signal received by each sub-array in either axis is

expressed as {xb and yb}
2
b=1 where b denotes the side of the sub-array considered.

Letting 1 denote positive side and 2 negative side respectively. The received signal of

the bth sub-array in x directions for tth snapshot is expressed as

x1(t) = Ax1s(t) + nx1(t) (3.39a)

x2(t) = Ax2s(t) + nx2(t) (3.39b)

Where s (t) = [s1 (t) , s2 (t) , . . . , sK (t)]T is the signal vector t = 1,2, . . . , J is the number

of snapshots nx1(t) and nx2(t) are the additive white Gaussian noise vectors assumed to

have zero mean, and variance σ2
n and independent of sources and Axb∈ C

(N or M)×K is

the manifold matrix for bth sub-array along x-axis, is a Vandermonde matrix and can

be individually expressed as

Ax1 = [αx1(θ1,φ1), αx1(θ2,φ2), ...,αx1(θK−1,φK−1), αx1(θK ,φK)] (3.40a)

Ax2 = [αx2(θ1,φ1), αx2(θ2,φ2), ..., αx2(θK−1,φK−1), αx2(θK ,φK)] (3.40b)

The corresponding steering vectors of the above matrices for the angle directions along

positive and negative x axis respectively is expressed for the range k = 1,2, ...,K as

αx1(θ1,φ1) =
[
α0

x1(θk,φk), ...,αM−1
x1 (θk,φk)

]T
(3.41a)

αx2(θ1,φ1) =
[
α−(N−1)

x2 (θk,φk), ...,α0
x2(θk,φk)

]T
(3.41b)

where αn
xb(θk, φk) = exp

[
j η n db sinθk cosφk

]
for η = 2π

λ ,db denotes d1 =

N λ
2 or d2 = M λ

2 and n is the position (the number) of sensor under consideration.

Similarly, received signal of the bth sub-array in y directions for tth snapshot is

expressed as

y1(t) = Ay1s(t) + ny1(t) (3.42a)

y2(t) = Ay2s(t) + ny2(t) (3.42b)
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Where s (t) = [s1 (t) , s2 (t) , . . . , sK (t)]T is the signal vector t = 1,2, . . . , J is the

number of snapshots ny1(t) and ny2(t) are the additive white Gaussian noise vectors

assumed to have zero mean, and variance σ2
n and independent of sources and

Ayb∈ C
(N or M)×K is the manifold matrix for bth sub-array along y-axis, is a

Vandermonde matrix and can be individually expressed as

Ay1 = [αy1(θ1,φ1), αy1(θ2,φ2), ...,αy2(θK−1,φK−1), αy1(θK ,φk)] (3.43a)

Ay2 = [αy2(θ1,φ1), αy2(θ2,φ2), ..., αy2(θK−1,φK−1), αy2(θK ,φK)] (3.43b)

The corresponding steering vectors of the above matrices for the angle directions along

positive and negative y axis respectively is expressed for the range k = 1,2, . . . ,K as

αy1(θ1,φ1) =
[
α0

y1(θk,φk), . . . ,αM−1
y1 (θk,φk)

]T
(3.44a)

αy2(θ1,φ1) =
[
α−(N−1)

y2 (θk,φk), . . . ,α0
y2(θk,φk)

]T
(3.44b)

where αn
yb(θk,φk) = exp

[
j η n db sinθk sinφk

]
for η = 2π

λ , db denotes d1 = N λ
2 or d2 =

M λ
2 and n is the position of sensor under consideration.

3.5.2 2D DOA Estimation with UCLSA using MUSIC Algorithm

The total received data is leveraged in estimation of DOA using MUSIC algorithm.

Therefore, first the received signal is combined to yield total received signal z(t).

Pairing shall then be applied and removal of phase ambiguity. From the all array

MUSIC analysis stated by Gong et al. (2018), signals from x-axis and y-axis are

combined to create the resultant total received signal z(t).

x(t) =

x1(t)

x2(t)

 =

Ax1

Ax2

s(t) +

nx1(t)

nx2(t)

 = Axs(t) + nx(t) (3.45a)

y(t) =

y1(t)

y2(t)

 =

Ay1

Ay2

s(t) +

ny1(t)

ny2(t)

 = Ays(t) + ny(t) (3.45b)

Where:

Ax =
[
AT

x1, AT
x2

] T
= [αx(θ1,φ1), αx(θ2,φ2), . . . ,αx(θK−1,φK−1), αx(θK ,φK)] and

Ay =
[
AT

y1, AT
y2

]T
= [αy(θ1,φ1), αy(θ2,φ2), . . . ,αy(θK−1,φK−1),αy(θK ,φK)], with their
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respective steering vectors given as

αx(θk,φk) =

[
αT

x1(θk,φk), αT
x2(θk,φk)

]T
and αy(θk,φk) =

[
αT

y1(θk,φk), αT
y2(θk,φk)

]T
.

The total amalgamated signal therefore becomes

z(t) =

x(t)

y(t)

 =

Ax

Ay

s(t) +

nx(t)

ny(t)

 = As(t) + n(t) (3.46)

Where A =
[
AT

x , AT
y

]T
=

[
α(θ1,φ1), . . . , α(θK ,φK)

]
∈ C2(N+M)×K and α(θk,φk) =[

αT
x (θk,φk), αT

y (θk,φk)
] T

. Similarly, the total noise is modelled as a collective of the

noises in four directions of the array where both the positive and negative x− axis

noises and positive and negative y− axis noise are summed separately as

nx =
[
nT

x1 , nT
x2

] T
and ny =

[
nT

y1 , nT
y2

] T
to yield total noise as n =

[
nT

x , nT
y

]T
. The

covariance matrix of the total received signal for 2D MUSIC algorithm is modelled as

RZZ = E
[
z(t)zH (t)

]
= AE

[
s (t) sH (t)

]
AH + E

[
n (t)nH (t)

]
= ARssAH + σ2

nI (3.47)

Since the exact covariance matrix cannot be solved, an approximation of the same is

used as

R̂ZZ =
1
J

J∑
t=1

z(t)zH(t) (3.48)

From the expression of the estimated value covariances, if eigenvalue decomposition

(EVD) is conducted, signal and noise subspaces are established respectively as shown

R̂ZZ =

[
Ûs Ûn

] Λ̂s 0

0 Λ̂n


ÛH

s

ÛH
n

 = ÛsΛ̂sÛH
s + ÛnΛ̂nÛH

n (3.49)

Where the signal and noise subspaces are complex matrices of sizes

Ûs = ∈ C2(N+M)×K and Ûn = ∈ C[2(N+M)]×[2(N+M)−K] respectively. Consequently the

signal and noise powers are also complex matrices of sizes Λ̂s = ∈ CK×K and

Λ̂n = ∈ C[2(N+M)−K]×[2(N+M)−K]. Finally, the spectral function is expressed as

PMUS IC(θ,φ) =
1∣∣∣αH(θ,φ)ÛnÛH

n α(θ,φ)
∣∣∣ (3.50)

From the spectrum function, the true DOAs are the one represented by the greater

maximas.
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3.5.3 MUSIC-Like Low Complexity Method for UCLSA

As proposed by Zhang et al. (2019) and Gong et al. (2018), a low computational

complexity method for estimating 2D DOA using UCLSA is possible. This method

employs all the sub-arrays in the search algorithm and uses a transformation that

helps in reducing the estimation complexity and thereby reducing the total

implementation cost. The method entails reducing the 2D problem to 1D which is less

complex to perform spectral peak searching. Consider a transformation defined by

γk = sinθkcosφk and βk = sinθksinφk for γk ∈ (−1,1) and βk ∈ (0,1) respectively. The

steering vectors defined by Eq. 3.41 and Eq. 3.44 becomes.

αx1(γk) =
[
α0

x1(γk), ...,αM−1
x1 (γk)

]T
(3.51a)

αx2(γk) =
[
α−(N−1)

x2 (γk), ...,α0
x2(γk)

]T
(3.51b)

αy1(βk) =
[
α0

y1(βk), ...,αM−1
y1 (βk)

]T
(3.51c)

αy2(βk) =
[
α−(N−1)

y2 (βk), ...,α0
y2(βk)

]T
(3.51d)

Consequently, the respective elements in either vectors transform to αn
xb (γk) = e jηndbγk

and αn
yb(βk) = e jηndbβk respectively. With the above transformation, the two items to

be searched, are independent of each other and therefore, as suggested by Zhang et al.

(2019); Tayem & Kwon (2005) and Zhang et al. (2017), 1D spectral peak searching

algorithms can be applied. For 2D MUSIC, the covariance matrix of the received signal

is expressed as

RZZ = E
[
z(t)zH (t)

]
= AE

[
s (t)sH (t)

]
AH + E

[
n (t)nH (t)

]
= ARssAH + σ2

nI (3.52)

Since the exact covariance matrix cannot be solved, an approximation of the same is

used as

R̂ZZ =
1
J

J∑
t=1

z(t)zH(t) (3.53)

From the expression of the estimated value covariances, if eigenvalue decomposition

(EVD) is conducted, signal and noise subspaces are established respectively as

R̂ZZ =

[
Ûs Ûn

] Λ̂s 0

0 Λ̂n


ÛH

s

ÛH
n

 = ÛsΛ̂sÛH
s + ÛnΛ̂nÛH

n (3.54)
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To estimate γk ∈ (−1,1) and βk ∈ (0,1) , firstly, the covariance matrix is redefined as

R̂ZZ =
1
J

J∑
t=1

x (t)

y (t)

 [xH (t) yH (t)
]

=

R̂XX R̂XY

R̂YX R̂YY

 (3.55)

Where: R̂XX = 1
J
∑J

t=1 x(t)xH(t) ∈ C(M+N)×(M+N), R̂YY = 1
J
∑J

t=1 y(t)yH(t) ∈

C(M+N)×(M+N), R̂XY = 1
J
∑J

t=1 x(t)yH(t) ∈ C(M+N)×(M+N) and

R̂YX = 1
J
∑J

t=1 y(t)xH(t) ∈ C(M+N)×(M+N) are covariance matrices of received signals in

the directions of the subscripts indicated and J is the number of snapshots. It is

possible to find the eigenvalue decomposition (EVD) for R̂XX.

R̂XX =

[
Ûsx Ûnx

] Λ̂sx 0

0 Λ̂nx


ÛH

sx

ÛH
nx

 = ÛsxΛ̂sxÛH
sx + ÛnxΛ̂nxÛH

nx (3.56)

Where the signal and noise subspaces are complex matrixes of sizes Ûsx = ∈C(N+M)×K

and Ûnx = ∈ C[(N+M)]×[(N+M)−K]. Since the steering vector is identical with eh signal

subspace and orthogonal to the noise subspace Ûnx ,the peak search function, γk (k =

1,2 . . . , K) can be defined as

P (γ) =
1∥∥∥ÛH

nxαx (γ)
∥∥∥2 , γ ∈ (−1,1) (3.57)

It is then assumed that the γ̂k corresponding to the K peaks is the estimation of γ. With

the value of γ̂k, it is possible to estimate βk as follows.

P (β) =
1∥∥∥∥∥∥∥∥ÛH

n

αx(γ̂k)

αy(β)


∥∥∥∥∥∥∥∥

2 , β ∈ (0,1) (3.58)

In the second function, αx(γ̂k) is a constraint to the spectrum calculation thereby

enabling automatic pair matching of the azimuth and elevation angles (Zhang et al.,

2019). The final angle pairs are expressed as

θ̂k = sin−1
(√

γ̂k + β̂k

)
(3.59)

φ̂k = tan−1
(
β̂k

γ̂k

)
(3.60)
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3.6 Virtual Array Interpolation Method

Array interpolation is a signal processing technique that maps arbitrary antenna

structure to a uniform array (Li et al., 2014). In practical applications like DOA

estimation, line spectrum estimation, super resolution, beamforming and coprime

spatial filter bank design (Liu et al., 2016), sparse array structures like nested and

coprime arrays which are unions of two uniform ULAs with different inter-element

spacing are preferred to normal ULAs because of their ability to identify more

sources due to their increased DOF (Guo et al., 2018). However, the co-array of these

sparse arrays normally have holes which prevents the conventional algorithms from

estimating DOAs. To fill the holes, virtual array interpolation technique is necessary.

3.6.1 Coprime co-array Interpolation

This is a method of DOA estimation using augmented coprime array with a sole

objective of increasing the aperture and DOF of the conventional coprime array to

ensure increased number of resolvable sources. A ULA of M number of elements can

resolve up to M − 1 sources only using the conventional DOA estimation algorithms.

Sparse arrays like coprime, however; have the ability to resolve signal sources of up to

O(MN) using only O(M + N) sensor elements for which M & N are coprime integer

pairs and M < N (Chen et al., 2020; Liu et al., 2016; Hassan et al., 2018; Liu et al.,

2017; Hosseini & Sebt, 2017). However, the coprime arrays as described and used

in the previous sections fails to reach this target. This is because, the virtual coprime

co-array produces a contiguos ULA at the near centre and nonuniform linear array with

holes at either ends, which is symmetric on either directions. Furthermore, algorithms

like MUSIC only utilises data from the contagious ULA co-array section but discarding

the far end elements characterised by holes.

The principle of array interpolation enables the filling of the holes in the co-array

to increase the DOF beyond that captured in the contiguous ULA section of the array

and thereby transforming a virtual symmetric nonuniform linear array (VSNLA) to a
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filled uniform linear array (ULA) Liu et al. (2017).

Interpolation techniques like SS-MUSIC, positive definite Toeplitz completion,

array interpolation, `1 minimization or LASSO can be used for interpolating the

sensors for the holes in the co-array. The only drawback in using them is that they

will require additional tuning parameters like matrix vectorisation, reshaping, spatial

smoothing or discretization of parameter space into a dense grid respectively resulting

in computational complexity.

Nuclear norm minimization technique which is preferred because it is

computationally tractable, free from predefined dense grids, positive definite

requirements, and requires no additional tuning parameters will be adopted for

interpolating holes of the difference co-array (Hosseini & Sebt, 2017; Liu et al., 2016;

Hassan et al., 2018).

3.6.2 Signal Model

Assume a coprime array consisting of sensor elements described by a coprime

integer pair M and N for M < N; M,N ∈ N+. In this description, each coprime integer

subsets S2M = {0, M, 2M, . . . , (2M − 1)N} and SN = {0, N, 2N, . . . , (N − 1)M} can be

viewed as independent ULA sub-arrays with 2M & N element respectively. The

location of the sensors can be represented by p× d where d = λ/2 and λ being the

wavelength of the impinging signal and p belongs to the set

S = {0, M, 2M, . . . , (2M−1)N}∪ {0, N, 2N, . . . , (N −1)M} (3.61)

The total physical elements in a coprime set is therefore 2M + N −1.

A unique set called a difference array, D needs to be defined to enable full

exploitation of the coprime array DOF. From the above coprime integer set S, D is

generated as

D = {p1− p2 | p1, p2 ∈ S} (3.62)

The sensor location for the difference set D is given by D×d. D is a viewed as a virtual
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symmetric nonuniform linear array (VSNLA) with holes. The holes in this set limits

the utilisation of the full DOF of the array and at the same time hinders the application

of conventional DOA estimation algorithms that only performs on ULA matrix data.

A central contiguous ULA segment can be extracted from the difference array D

which is given by

U = {m | {−|m|, . . . ,−3,−2−1,0,1,2,3, . . . , |m|} ⊆ D} (3.63)

This ULA is a subset of the difference array D, which means, if used for DOA

estimation, it has less DOF, which will limit the resolvable sources. The aim is to

achieve maximum DOF and restructure the co-array in a way that subspace

algorithms can be applied. This then means that the difference array has to be

exploited since it contains the maximum achievable DOF for the sparse array.

Therefore the ULA containing maximum D is the integer set given by

V = {m | min(D) ≤ m ≤ max(D)} (3.64)

Figure 3.6 (a) represents the coprime array for M = 2 and N = 5. Its corresponding

co-array is represented in (b) and its augmented array in (c) where p1 and p2 represents

the number of sensors at level 1 and level 2 respectively as described by Vaidyanathan

& Pal (2011).
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Figure 3.6 (a) Coprime Array Configuration; (b) Difference co-array with contagious ULA cenrally

placed (marked in red); (c) Augmented coprime array with filled "holes"

From the definitions and descriptions above, the cardinalities of S, D, U, and V can

be summarised as Equation 3.65.

|S| = 2M + N −1 (3.65a)

|D| = 3MN + M−N (3.65b)

|U| = 2MN + 2M−1 (3.65c)

|V| = 4MN −2N + 1 (3.65d)

Assume that K far-field narrowband uncorrelated signals sk(t)K
k=1 with the same

wavelength λ impinge on the array at an elevation angle of {θk}
K
k=1 where

θk ∈ (−900,900). The total received signal in the coprime array can be modelled as

xS(t) = Ask(t) + n(t) (3.66)

where all the used symbols having the same meaning as in data models of the

previously described sections. The covariance matrix of the above received signal is

given as

RXX = E
[
xS(t)xH

S (t)
]

= AE
[
s (t)sH (t)

]
AH + E

[
n (t)nH (t)

]
= ARS S AH +σ2

nI (3.67)

Where: A is the manifold matrix with its corresponding steering vector given as

A = [αS(θ1),αS(θ2), ...,αS(θK−1),αS(θK)] and αS(θk) = [α0(θk), . . . ,αM+N−1(θk)]T and
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αS(θk) = e−1 jηpdsinθk for η = 2π
λ ; RS S = diag[σ2

1,σ
2
2, . . . ,σ

2
K] represents the received

signal power with each individual source represented by σ2
k and σ2

n being the noise

power.

Normally, it is not possible to calculate the exact covariance, therefore an estimated

value given by R̂XX = 1
J
∑J

t=1 xS(t)xH
S

(t) where J is the total number of snapshots is

used.

The auto-correlations of sensor output signal evaluated at lags defined by D, U and

V can be denoted by RDD, RUU and RVV respectively.

The objective then becomes to interpolate the VSNLA provided by set D to the

virtual uniform linear array (VULA) set V. This then allows application of co-array

MUSIC algorithm while utilising the full DOF provided by the difference co-array set

D.

3.6.3 Array Interpolation using Nuclear Norm Minimization

Nuclear norm minimization is a low complexity interpolation method that does not

require either vectorization or spatial smoothing operations as a way of reducing

computational complexity. The process of retrieving covariance matrix RVV from the

received signal data covariance RSS is a convex case problem of nuclear norm

minimisation (Hosseini & Sebt, 2017; Liu et al., 2016; Hassan et al., 2018). This can

be achieved through semidefinite programming using the CVX programming

developed by Grant et al. (2009).

R̃NN
VV =

arg min

R̃VV ∈C |V
+|×|V+|

‖R̃VV‖∗ (3.68a)

Subject to R̃VV = R̃H
VV; (3.68b)

〈R̃VV〉p1,p2 = 〈R̃VV〉p1−p2 (3.68c)

Where: ‖ · ‖∗ represents the nuclear norm of a given matrix. Further, for p ∈ S, the

triangular bracket notation 〈RSS〉p is used to denote the value of the signal at the
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support location p; p1, p2 ∈ V
+ = {p | p ∈ V, p ≥ 0} and

〈RVV〉p1,p2 = E[〈RVV〉p1〈RVV〉∗p2].

Consequently, nuclear norm minimization is applied where the number of

resolvable signal sources is equivalent to the number of positive lags in the virtual

array V and is given by

L =
(|V| −1)

2
=

[(4MN −2N + 1)−1]
2

= 2MN −N (3.69)

The optimal solution of the above equation contains Hermitian Toeplitz matrix RVV.

This covariance matrix can be directly applied in the co-array MUSIC algorithm for

DOA estimation through following the conventional MUSIC algorithm procedure of

first performing eigen value decomposition (EVD) to obtain the signal and noise

subspaces, US and UN respectively followed by searching the steering matrices in the

specified angle range and finally computing the Co-array MUSIC spectral function.
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CHAPTER FOUR

SIMULATIONS AND DISCUSSIONS

MATLAB simulations, performance analysis and comparisons of different

geometries described in Chapter 3 are conducted. For purposes of uniformity and

ease of analysis, the narrow band far field signals are considered in all cases. Practical

case signals for wireless fidelity (Wi-Fi) operating at a frequency of 2.4 GHz:

802.11b/g/n, a service platform which has greatest demand especially for internet of

things (IoT) is considered. The elevation and azimuth angles are taken in the range of,

θk ∈ (00,900) and θk ∈ (00,1800) respectively.

The simulations are subdivided into three parts. The first is 1D DOA estimations

featuring DECOM and CLSA geometries and the second is 2D DOA estimations

featuring CLSA and UCLSA geometries all of which MUSIC algorithm was applied.

Lastly, virtual array interpolation for coprime nonuniform linear array for which

co-array MUSIC algorithm was used for estimation the DOAs was considered.

In each scenario, the approach taken followed the parameter sequence as

enumerated below

� Variation of signal to noise ratio (SNR)

� Variation of the number of snapshots

� Variation of the number of sensor elements

� Variation of signal arrival angles for specific scenarios.

� Estimating the DOAs with contagious ULA data as well as for interpolated

co-array data using co-array MUSIC for interpolation case.

� RMSE for each case was determined as a performance metric.
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4.1 MUSIC Algorithm Implementation Procedure in MATLAB

The steps for implementation of MUSIC algorithm in MATLAB program are

highlighted as in flow diagram Figure 4.1.

Figure 4.1 Implementation of MUSIC algorithm in MATLAB program
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4.2 Simulation Results for DECOM Method for Nonuniform Linear Array

Simulations were carried out to evaluate the performance of DECOM using MUSIC

algorithm with respect to varying environmental and array structural parameters. The

1D power pseudo-spectra maxima plots are used as pointers for the estimated DOAs

and further RMSE evaluated between estimated and the actual DOA values.

4.2.1 Simulation 1: Variation of SNR

In this Simulation, DECOM(4,5) is used to estimate the direction of arrival with

respect to the SNR. Firstly, a single DOA is estimated in two different environments

where SNR values of -5 and 20 were used for actual DOA of 600. Consequently,

multiple source were estimated using DECOM(5,7), still with with respect to the SNR

of -5 and 20 values with actual DOAs of 600 and 680. In these two case scenarios, the

number of snapshots was held constant at J = 200.

Figures 4.2 & 4.3 represents MATLAB plots for estimating DOA with SNR of −5

and 20 respectively from which it was observed that the latter figure with the higher

SNR gave a higher resolution DOA estimates than the former. The same simulation

was repeated for multiple signal sources as shown in plots of Figures 4.4 & 4.5

respectively.

It was observed that when estimating multiple DOAs with DECOM method,

higher SNR values gives distinctive DOAs as opposed to when estimating with lower

SNR values. A point to note was ambiguous DOAs that characterised the power

pseudo-spectrum. To identify the true DOAs, the automatically paired DOAs are

selected form the isolated ones which represents the ambiguous AoAs.
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Figure 4.2 DECOM (4,5) DOA estimation for 600 for SNR=-5

Figure 4.3 DECOM (4,5) DOA estimation for 600 for SNR=20
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Figure 4.4 DECOM(5,7) DOA estimation for 600& 680 for SNR=-5

Figure 4.5 DECOM(5,7) DOA estimation for 600& 680 for for SNR=20
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4.2.2 Simulation 2: Variation of Number of Snapshots

The performance of DECOM geometry is in this Simulation investigated for varying

number of snapshots with a constant S NR = 5. As in Simulation 1, the first pair of

Simulations investigates the performance of one source and the second pair investigates

multiple sources. actual DOAs used were 600 for DECOM (4,5) and 600 680 for

DECOM (5,7) respectively.

Figures 4.6 & 4.7 shows the curves for number of snapshots 100 and 1000

respectively. When the number of snapshots is 100, the resolution is low and there are

several ambiguous DOA maximas. When snapshots is increased to 1000, the

resolution improves and the estimator also tends to perform with fewer ambiguous

DOAs.

Figures 4.8 & 4.9 represents multiple sources estimation with snapshots of 100 and

1000 respectively. It can be seen that the latter curves with higher snapshots gave better

resolution as opposed to the former. When the snapshots are lower, it is not easier to

distinguish sources when the distance of separation is very small. This improves by

increasing the number of snapshots.
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Figure 4.6 DECOM (4,5) DOA estimation for 600 for snapshots=100

Figure 4.7 DECOM (4,5) DOA estimation for 600 for snapshots=1000
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Figure 4.8 DECOM (5,7) DOA estimation for 600 & 680 for snapshots=100

Figure 4.9 DECOM (5,7) DOA estimation for 600 & 680 for snapshots=1000
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4.2.3 Simulation 3: Error Analysis for DECOM

The root mean square error (RMSE) was calculated as the performance metric for

the estimation method. As expressed in (Zhou et al., 2013; Bhuiya et al., 2012; Li &

Zhang, 2017), for one dimensional angle estimation methods, RMSE is expressed as

RMS E =
1
L

 1
K

L∑
l=1

K∑
k=1

(θ̂(l)
k − θk)

2


1/2

(4.1)

Where L is the Monte Carlo number of trials conducted, θ̂ is the approximated angle

and θ is the actual DOA and K represents the number of signals. DECOM geometry

with varying number of sensors were compared while varying SNR and number of

snapshots in the first and second instances respectively.

In Figure 4.10, the number of snapshots were held constant at 200 and for

Figure 4.11, SNR was constant at 5. In each instance 1000 Monte-Carlo trials were

performed. It was established that in both cases, increasing the number of sensors

reduces the errors in estimation.

Figure 4.10 Performance of DECOM geometries with varying SNR
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Figure 4.11 Performance of DECOM geometries with varying Snapshots

4.3 Simulation Results for 1D UCLA with MUSIC Algorithm

4.3.1 Simulation 1: Variation of SNR

Simulations for UCLA geometry using MUSIC algorithm was conducted while

varying the values performance parameters. Figures 4.12 & 4.13 represents power

pseudo-spectra for UCLA geometries of (3,4), (4,5), (5,7) and (9,7) plotted with SNR

values of -5 and 20 respectively for actual DOA of 600 at a constant number of

snapshots of J = 200. In both scenarios, there were no ambiguous DOAs. However,

the plots generated with higher value of SNR produced higher resolutions and better

estimations.

In a repeat simulation, two distinct incoherent sources were used with actual DOAs

at 600 & 680 while holding the other parameters constant. Figure 4.14 represents shows

the DOA maximas for SNR=-5 and Figure 4.15 represents that of SNR=20. Again, it

was observed that the estimator with higher SNR had higher resolution.
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Figure 4.12 Performance of UCLA geometries for 600 for S NR = −5

Figure 4.13 Performance of UCLA geometries for 600 for S NR = 20
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Figure 4.14 Performance of UCLA geometries for 600 & 680 for S NR = −5

Figure 4.15 Performance of UCLA geometries for 600 & 680 for S NR = 20
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4.3.2 Simulation 2: Varying the Number of Snapshots

This Simulation intended to investigate the performance of different UCLA

geometries with varying number of snapshots. Figure 4.16 & 4.17 represents curves

for estimating a single actual DOA of 600 with number of snapshots of 100 and 1000

respectively for constant SNR of -5. It was observed that when the number of

snapshots is small and the number of sensors are also few, the estimator produces

inconspicuous spectral peaks. By increasing number of snapshots as well as numbers

of sensors results to conspicuous peaks with almost no errors.

Figure 4.16 UCLA(4,5) DOA estimation for 600 for snapshots=100
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Figure 4.17 UCLA(4,5) DOA estimation for 600 for snapshots=1000

A repeat of the aforementioned Simulation was performed for multiple sources of

actual DOAs of 600 & 680. Figures 4.18 & 4.19 represents estimation for number

of snapshots of 100 and 100 respectively where it was observed that higher number

of snapshots presented better resolution with less prominent ambiguous DOAs in the

spectrum.
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Figure 4.18 UCLA(5,7) DOA estimation for 600 & 680 for snapshots = 100

Figure 4.19 UCLA(5,7) DOA estimation for 600 & 680 for snapshots = 1000
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4.3.3 Simulation 3: Error Analysis for UCLA

UCLA performance analysis using root mean square error (RMSE) as the

performance metric is considered. As suggested in subsec. 4.2.3, the following

formula is adopted for error analysis.

RMS E =
1
L

 1
K

L∑
l=1

K∑
k=1

(θ̂(l)
k − θk)

2


1/2

(4.2)

Where L is the Monte Carlo number of trials conducted, θ̂ is the approximated angle

and θ is the actual DOA and K is the number of sources.

RMSE for different UCLA geometries were computed for varying SNR and

number of snapshots and their respective graphs plotted as in Figure 4.20 and

Figure 4.21 respectively with the former having the number of snapshots held

constant at 200, and the latter, SNR was constant at 5. In each instance 1000

Monte-Carlo trials were performed with actual DOA of 600. It was established that in

both cases, UCLA geometries with higher sensors gave lower errors.

Figure 4.20 Performance of UCLA geometries with varying SNR
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Figure 4.21 Performance of UCLA geometries with varying Snapshots

Additionally, RMSE analysis was conducted for different arrival angles for UCLA

geometries at a constant SNR=5 and J = 1024 with 1000 Monte Carlo trials. In

Figure 4.22, UCLAs (3,5),(3,4),(4,5) and (5,6) were considered for arrival angle of a

span of (00 − 900) where it was observed that generally, estimating lower angles have

low errors and using many sensors also reduces the errors.

4.4 Simulation 4: Performance Comparison between DECOM and UCLA

Performance comparison was conducted using the RMSE as the performance metric

for different geometries of DECOM and UCLA which are all 1D methods. In all

instances, 1000 Monte-Carlo trials were considered. Figure 4.23 considered varying

SNR from −10− 10 in steps of 2 with a constant number of snapshots of J = 1024

for actual DOA of 600. It was observed that for both DECOM and UCLA, the errors

exponentially reduce with increase in SNR. In the same spirit, if the same number of
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Figure 4.22 Performance analysis for varying arrival angles for UCLA

sensors is considered for both DECOM and UCLA geometries, the latter registered

lower errors as opposed to former.

Figure 4.24 shows a repeat of the previous Simulation, this time holding SNR

constant at 5 and varying number of snapshots from 100− 1100 in steps of 100. The

results were again observed to favor UCLA as opposed to DECOM. A common

observation to both the geometries was that the errors reduce exponentially with

increase in number of snapshots but at a slower rate as opposed to varying SNR in the

former Simulation.
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Figure 4.23 Performance comparison for DECOM and UCLA by varying SNR

Figure 4.24 Performance comparison between DECOM and UCLA by varying snapshots
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It was observed that UCLA geometry registered lower RMSE as opposed to

DECOM for all the parameters investigated. It emerged that both the structures’

performances increase with increase in number of snapshots and SNR. Furthermore,

it was established that in either scenario, a structure with larger number of elements

performs better than when the elements are less. In practical scenarios, it is normally

a trade-off between the cost and performance function. For instance, although array

with many elements would have better performance, it is normally a trade-off

between the cost of implementation and the operational complexity that would in

return affect the speed.
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The performance comparison for the 1D DOA estimation methods using MUSIC

algorithm with DECOM and UCLA is summarized in Table 4.1.

Table 4.1 Performance comparison of DECOM and UCLA methods

Parameter DECOM UCLA

Operation

Operates on each sub-array

separately thereby losing the

intrinsic mutual information of

the array.

Utilizes signals from two

sub-arrays simultaneously

therefore preserving the intrinsic

mutual information of the array

Computation

Complexity

Computationally intensive since

each sub-array is analyzed

separately

Less computations involved

since the analysis is done

simultaneously for all sub-arrays

Angle

Pairing

Achieved by combination DOAs

of two sub-arrays
Automatic angle-pairing

RMSE

DOAs estimation performed

with each sub-array separately.

This means lesser elements

(half) used in each case leading

to higher errors

Very low since two sub-arrays

are considered simultaneously

leading to estimation with higher

number of sensors.

Performance

Associated with ambiguous

DOAs due to the inter-sensor

spacing of greater than

half-wavelength

Achieves very high resolution

with suppressed ambiguous

DOAs

Signal

detection

Can detect sources of K ≤ 1
2 MN

with only M + N −1 sensor

elements

Can detect sources of K ≤ 1
2 MN

with only M + N −1 sensor

elements
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4.5 Simulations Results for CLSA Using MUSIC Algorithm

Simulations were carried out to evaluate the performance of CLSA using both

MUSIC and MUISC-like low complexity algorithms with respect to varying

environmental and array structural parameters. The power pseudo-spectra maxima

plots are used as pointers for the estimated DOAs and further RMSE evaluated

between estimated and the actual DOA values.

4.5.1 Simulation 1: Estimation of Single DOA with CLSA

In this Simulation CLSA(4,5) is considered for SNR=5 and number of snapshots

of J=200. actual DOA under consideration is (θ,φ) = (600,600). Figure 4.25 shows

the spectral peak for sub-array 1 of M elements which shows a successful 2D DOA

estimation with no ambiguous angles.

Figure 4.25 CLSA(4,5) sub-array 1 spectral peak for (θ,φ) = (600,600)

Consequently, Figure 4.26 shows the plot for the second sub-array representing the

number of elements N = 5. It is again observed that the sub-array ia able to estimate

the DOA, with no ambiguities just as the first sub-array.
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Figure 4.26 CLSA(4,5) sub-array 2 spectral peak for (θ,φ) = (600,600)

4.5.2 Simulation 2: Estimation of Multiple DOAs with CLSA

Three close sources of elevation angles, θ = [600, 640, 680] and azimuth angles,

φ = [600, 640, 680] were estimated using CLSA(4,5) with the snapshot number of

J = 200 and S NR = 5. Figure 4.27 (a) & (b) represents the spectral peaks for sub-arrays

1 and 2 respectively. It was observed that in estimation of multiple DOAs, there were

emergent of ambiguous angles. Sub-array 1 which estimates with lesser number of

elements is seen to have very prominent ambiguous DOAs than sub-array 2 which has

higher elements than the former by 1.

Figure 4.27 Multiple DOA estimation with CLSA(4,5)
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Further, CLSA(9,11) is used to estimate 11 sources as shown in Figure 4.28. It was

established that in both scenarios, all the sources were estimated correctly, however;

the estimation resolution when the sensors are less than sources was seen to be lower

and with many ambiguous DOAs as in (a) as opposed to when the number of sensors

is equal to sources as in (b).

Figure 4.28 Multiple DOA estimation with CLSA(9,11)

4.5.3 Simulation 3: CLSA Performance Analysis

For the performance analysis of 2D CLSA method using MUSIC algorithm,

RMSE is used as the performance metric. Further, since the conventional 2D method

is computationally complex, a MUSIC-like low complexity method is adopted which

transforms the 2D problem to 1D.

A single DOA is considered in CLSA(4,5) with S NR = 5 and snapshots, J = 200.

The actual DOA chosen was (θ,φ) = (600,600). Figure 4.29 & 4.30 represents gamma

and beta peak searches respectively. It was observed that in each plots there emerged

several unpaired ambiguous peaks but with only one paired peak for the two plots in

each graph respectively. The matching peak values are the ones considered since they

are the ones that represent the actual DOAs under estimation.
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Figure 4.29 Estimation of transformation parameters gamma and beta

The values of gamma and beta was then used to calculate the estimated elevation

and azimuth angles for which RMSE was calculated using the formula

RMS E =

1
L

L∑
l=1

1
K

K∑
k=1

[(θ̂(l)
k − θk)

2
+ (φ̂(l)

k −φk)
2
]


1/2

(4.3)

Where K represents the number of sources, L represents the number of independent

Monte-Carlo trials and θ̂(l)
k and ∅̂(l)

k are the estimated elevation, θk and azimuth, ∅k

angles respectively in the lth Monte-Carlo Simulation.

For the above single trial, the RMSE for each sub-array may be calculated as

sub-array 1: Est. theta, θ̂ = 60.7459 & Est.phi, φ̂ = 60.3203 RMS EM = 0.8117

(4.4a)

sub-array 2: Est. theta, θ̂ = 60.1410 & Est.phi, φ̂ = 60.1240 RMS EN = 0.1878

(4.4b)
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Figure 4.30 Estimation of transformation parameters gamma and beta

4.6 Simulation Results for 2D DOA Estimation Using UCLSA

Simulations were carried out to evaluate the performance of CLSA using both

MUSIC and MUISC-like low complexity algorithms with respect to varying

environmental and array structural parameters. The power pseudo-spectra maxima

plots are used as pointers for the estimated DOAs and further RMSE evaluated

between estimated and the actual DOA values.

4.6.1 Simulation 1: Single DOA Estimation with UCLSA

A single DOA estimation was performed for UCLSA(4,5) for actual DOA of

elevation and azimuth angles, (θ,φ) = (600,600) respectively where the number of

snapshots was chosen as, J = 200, and S NR = 5. In Figure 4.31, it was observed that

UCLSA with MUSIC algorithm managed to estimate with high accuracy a single

DOA with totally no ambiguous peaks.
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Figure 4.31 UCLSA(4,5) estimation of a single DOA

Further, the above Simulation was repeated for different number of sensors and

Figure 4.32 (a) and (b) was generated which showed that if the elements are very few,

there is a conspicuous ambiguous DOA which disappears with increase in number of

sensors.

Figure 4.32 Signle DOAs estimation using UCLSA

4.6.2 Simulation 2: Multiple Sources Estimation with UCLSA(4,5)

Figure 4.33 shows the spectral peaks when UCLSA(4,5) was used for estimating

five sources having a separation angles of less than 30. the elevations and azimuth
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angles were set at (θ,φ) = {[600; 620; 650; 670; 700], [600; 620; 650; 670; 700]} for

J = 200 and S NR = 5. It was observed that all the five sources were estimated with

high accuracy and no ambiguous DOAs appearing.

Figure 4.33 Multiple Sources estimation using UCLSA

In the same spirit, the above Simulation was repeated for 11 sources and varying

the number of sensors from 9 to 16. Figure 4.34 (a) and (b) showed that in both cases,

the sources were successfully identified, however; when the number of sensors are less

than that of the sources, the resolution is very low as in Figure 4.34 (a). Increasing the

number of sensors to surpass that of the sources increases resolution and reduces the

estimation errors as evident in Figure 4.34 (b).

Figure 4.34 Estimation of multiple DOAs using UCLSA
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4.6.3 Simulation 3: UCLSA Performance Analysis

As previously indicated in the CLSA geometry performance analysis, UCLSA

performance analysis followed the same method as described for CLSA, where the

RMSE was used as performance metric where the low computational complexity

MUSIC-like method was employed that transforms the 2D problem to 1D.

A single DOA was considered for UCLSA(4,5) choosing the other parameters as;

S NR = 5 and snapshots, J = 200 and actual DOA, (θ,φ) = (600,600). Figure 4.35

& 4.36 represents gamma and beta peak spectra respectively. It was observed that the

gamma was estimated with very sharp single peak and no any other ambiguous peaks

appearing while for beta, it was also estimated with a fairly sharp peak.

Figure 4.35 Gamma spectral search plot for UCLSA(4,5)
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Figure 4.36 Beta spectral search plot for UCLSA(4,5)

4.7 Simulation 4: Performance Comparison between CLSA and UCLSA

RMSE was used as a performance metric for the 2D DOA estimations. The low

complexity MUSIC-like method together with the 2D RMSE formula in Equation (4.3)

was applied for 50 Monte-Carlo trials in two scenarios: First for varying SNR value

from −10 to 10 in steps of 5 while holding all other parameters constant for number

of snapshots of 200 and sensor elements of 9. In the second simulation, all other

parameters were held constant as in the previous simulation but varying number of

snapshots from 100 to 600 in steps of 100 with SNR of 5.

Figures 4.37 and 4.38 shows the plots for varying SNR and number of snapshots

respectively where it is observed that generally, increase in SNR and number of

snapshots leads to reduction in errors. Moreover, UCLSA has lower angle errors

compared to CLSA.

74



Figure 4.37 RMSE for varying SNR in CLSA(4,5) and UCLSA(4,5)

Figure 4.38 RMSE for Varying Number of Snapshots in CLSA(4,5) & UCLSA(4,5)
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The performance of the 2D DOA estimation methods is summarized in Table 4.2.

Table 4.2 Performance comparison of CLSA and UCLSA

Parameter CLSA UCLSA

Realization

Operates on each sub-array

separately leading to lose of

intrinsic mutual information of

the array.

Utilizes the signals from all the

sub-arrays simultaneously

thereby preserving the intrinsic

mutual information of the array

Computation

Complexity

Computationally intensive since

each sub-array is analyzed

separately

Lesser computations involved

since total signals from all

sub-arrays is used

simultaneously

Angles

Pairing

Achieved by manually

combining DOAs of two

sub-arrays

Actualised automatically

RMSE

Higher errors since each

sub-array is analyzed separately

thus the estimator ’sees’ less

number of sensors

Low errors since all the sensors

are considered simultaneously.

Performance

Associated with ambiguous

DOAs due to the inter-sensor

spacing being greater than

half-wavelength

Higher resolution possible with

suppressed ambiguous DOAs

Signal

detection

Detects sources of K ≤ 1
2 MN

with only 2M + 2N −3 sensors

Detects sources of K ≤ 1
2 MN

with only 2M + 2N −3 sensors

4.8 Simulation Results for Virtual Array Interpolation Method

Simulations were carried out to evaluate the performance of arrays with interpolated

elements using both co-array MUSIC algorithm with respect to varying environmental
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and array structural parameters. The power pseudo-spectra maxima plots are used as

pointers for the estimated DOAs and further RMSE evaluated between estimated and

the actual DOA values.

4.8.1 Simulation 1: Comparison of Non-augmented & Augmented co-arrays

Coprime array with elements (M = 2; N = 5), alternatively known as Coprime(2,5),

was used for this Simulation. First, the contiguous ULA of the difference co-array was

used to generate the covariance matrix RUU and in another instance, the interpolation

of virtual array performed to fill the holes in the original difference co-array as a way of

utilizing the entire DOF of the array and used to generate covariannce matrix RVV. The

10 actual DOAs to be resolved were equally spaced between the linespace −0.45to0.45

in the normalised scale of sin(θ). Further, the number of snapshots was chosen as,

J = 200, and S NR = 5. As show in Figure 4.39 and Figure 4.40, it was observed that

in both the instances, all the sources were resolved successfully.

Figure 4.39 DOA Estimation with RUU co-array MUSIC for 10 sources
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Figure 4.40 DOA Estimation with RVV co-array MUSIC for 10 sources

The above Simulation was repeated by increasing the number of sources to 2MN −

N = 15 which is the maximum number that can be resolved by the cardinal set V.

Figure 4.41 DOA Estimation with RUU co-array MUSIC for 15 sources
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Figure 4.42 DOA Estimation with RVV co-array MUSIC for 15 sources

As illustrated in Figure 4.41 and Figure 4.42 respectively, the contiguous ULA

covariance matrix data represented by RUU was only able to resolve 11 sources

whereas the filled (interpolated) virtual difference co-array covariance matrix data

RVV resolved all the 15 sources successfully.

In another instance, 10 sources were placed with an asymmetric distances of

separation. Coprime(4,5) was used to resolve the sources for number of snapshots and

SNR of 200 and 5 respectively. Figure 4.43 and 4.44 represents the outputs for the

contiguous ULA and interpolated co-array matrix data respectively. In both cases, the

sources were resolved successfully.

Figure 4.43 DOA Estimation of Asymmetrically placed Sources for Coprime(4,5) Using RUU co-array
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Figure 4.44 DOA Estimation of Asymmetrically placed Sources for Coprime(4,5) Using RVV co-array

4.8.2 Simulation 2: DOA Estimation with Selected Interpolated Arrays

For the first part of this Simulation, sensor elements of the coprime array were set

as M = 3 and N = 5 and sources = 15 while keeping the other parameters constant

as in Simulation 1 above. Figure 4.45 shows the output where it is observed that the

estimator resolved all the 15 sources successfully.

Figure 4.45 DOA Estimation with Coprime(3,5) RVV co-array MUSIC for 15 sources

Consequently, in the second part of the Simulation, the coprime elements were set

as M = 4 and N = 5 and sources = 20 with the other parameters remaining constant.

Figure 4.46 shows the output where it was observed that the estimator resolved all the
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20 sources successfully.

Figure 4.46 DOA Estimation with Coprime(4,5) RVV co-array MUSIC for 20 sources

4.9 Simulation 3: Performance Evaluation of Interpolated Coprime Arrays

RMSE was calculated as the performance metric for the virtual interpolated array.

In the first instance, the number of snapshots were held constant at 200 and SNR

varied from -5 to 15 in steps of 5. The two sparse array geometries taken as a

representation were coprime(2,5) and coprime(4,5). The sources were set to 10 and

20 for Coprime(2,5) and Coprime(4,5) respectively.

Tables 4.3 & 4.4 show the RMSE values for 10 Monte Carlo runs for each geometry

respectively.
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Table 4.3 RMSE vs SNR for Interpolated Co-array MUSIC Algorithm Using Coprime(2,5)

SNR

Trial -5 0 5 10 15

1 0.0027395 0.0030299 0.0014785 0.0015638 0.0018356

2 0.0030653 0.0027353 0.0007943 0.0018452 0.0014103

3 0.0030717 0.0020172 0.0025201 0.0018939 0.0019134

4 0.0028915 0.0021420 0.0020907 0.0019924 0.0009914

5 0.0031855 0.0027389 0.0024767 0.0019022 0.0014484

6 0.0029133 0.0024731 0.0015091 0.0019821 0.0015883

7 0.0032205 0.0017158 0.0021594 0.0022299 0.0015482

8 0.0026893 0.0024716 0.0024954 0.0026428 0.0012206

9 0.0031252 0.0030156 0.0016349 0.0009521 0.0018446

10 0.0029449 0.0016085 0.0020388 0.001312 0.0015937

Avg. 0.0029847 0.0023948 0.00191979 0.0018316 0.0015395

Table 4.4 RMSE vs SNR for Interpolated Co-array MUSIC Algorithm Using Coprime(4,5)

SNR

Trial -5 0 5 10 15

1 0.0017773 0.0016619 0.0011668 0.0014724 0.0014753

2 0.0014627 0.0016785 0.0015005 0.0016766 0.0014103

3 0.0021342 0.0015729 0.001408 0.0015418 0.0014923

4 0.0018558 0.0017105 0.0015645 0.001684 0.0011956

5 0.0023968 0.0016255 0.0016359 0.0014352 0.0013147

6 0.0023854 0.0015698 0.0016619 0.0013715 0.0014415

7 0.0020491 0.0012843 0.0013831 0.0011483 0.0013795

8 0.0019083 0.0018868 0.0016006 0.001421 0.001598

9 0.0016101 0.0017974 0.0015887 0.0016738 0.0011234

10 0.0018008 0.001738 0.0017118 0.0014529 0.0012285

Avg. 0.0019381 0.001653 0.0015222 0.0014878 0.0013659
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Different RMSE curves for DECOM, UCLA and interpolated array were plotted in

the same plane at same operating parameters for performance comparison as shown in

Figure 4.47.

Figure 4.47 RMSE for varying SNR in DOA Estimation Using DECOM, UCLA & Interpolated Arrays

The following observations and inferences were made:

a. Increase in SNR reduces the RMSE.

b. Increasing the number of sensors increases the number of resolvable sources and

at the same time improves the overall performance.

c. Interpolated array registered the lowest RMSE followed by UCLA and lastly

DECOM that registered the highest RMSE values.

Consequently, the number of snapshots was varied from 100 to 600 in steps of 100

while keeping SNR constant at 5 and all the other parameters unchanged as in the case

for varying SNR. Tables 4.5 & 4.6 shows the generated RMSE for Coprime(2,5) and

Coprime(4,5) respectively for 10 Monte-Carlo trails.
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Table 4.5 RMSE vs Snapshots for Interpolated Co-array MUSIC Algorithm Using Coprime(2,5)

Number of Snapshots

Trial 100 200 300 400 500 600

1 0.003419 0.001479 0.001914 0.001131 0.001063 0.001176

2 0.003023 0.0007943 0.001472 0.00141 0.001227 0.0007542

3 0.003328 0.002520 0.002167 0.001383 0.001264 0.001279

4 0.002621 0.002091 0.001416 0.001214 0.001091 0.0005663

5 0.002662 0.002477 0.0008064 0.001278 0.001418 0.0005875

6 0.002479 0.001509 0.001906 0.001153 0.001497 0.001163

7 0.002788 0.002159 0.001318 0.001468 0.001055 0.0007306

8 0.002081 0.002495 0.001613 0.0009972 0.0008209 0.001100

9 0.002509 0.001635 0.001275 0.00158 0.000813 0.0006992

10 0.002411 0.002039 0.001537 0.00150 0.001207 0.001142

Avg. 0.0027321 0.001920 0.001542 0.001311 0.0011456 0.000920

Table 4.6 RMSE vs Snapshots for Interpolated Co-array MUSIC Algorithm Using Coprime(4,5)

Number of Snapshots

Trial 100 200 300 400 500 600

1 0.002059 0.001167 0.001123 0.001262 0.0008807 0.0007587

2 0.002141 0.001501 0.001304 0.000793 0.000755 0.0008367

3 0.002002 0.00141 0.001370 0.001095 0.0007824 0.0007936

4 0.001584 0.001565 0.001165 0.001063 0.00097 0.000654

5 0.001973 0.001636 0.0009861 0.0009058 0.001045 0.0009786

6 0.001516 0.001662 0.0006826 0.001033 0.001004 0.000875

7 0.001901 0.001383 0.001218 0.001097 0.000812 0.0008402

8 0.002117 0.001601 0.001335 0.001116 0.0008575 0.000749

9 0.002160 0.001589 0.001424 0.0009348 0.0009045 0.0008356

10 0.002188 0.001712 0.001090 0.001330 0.0009674 0.000837

Avg. 0.00196 0.00152 0.001170 0.001063 0.00090 0.000816
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The tabulated data for varying snapshots was represented in a plot of Figure 4.48 for

which DECOM and UCLA coprime arrays were also plotted for a better comparison

with the interpolated array in the same figure. It was observed that an increase in the

number of snapshots as well as the number of sensors reduces the errors recorded but in

general, interpolated array recorded the least RMSE followed by UCLA and DECOM

in that order.

Figure 4.48 RMSE for varying Number of Snapshots in DOA Estimation Using DECOM, UCLA &

Interpolated Arrays
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CHAPTER FIVE

CONCLUSION AND FUTURE WORK

5.1 Conclusion

5.1.1 1D DOA Estimation Methods

In 1D scenario, both DECOM and UCLA structures can be considered as

high-resolution arrays structures especially if implemented with MUSIC algorithm.

However, different performance indicators throughout this analysis have emerged to

favour UCLA geometry. For instance, It was found out that when the SNR is lower

and sources are closer, the resolution of estimation reduces. Increasing the sensor

elements number as well as SNR improves the estimation resolution and detection of

the individual sources.

DECOM operates decomposes the signals in each sub-array and processes this

data separately thereby losing the intrinsic mutual information of the array whereas

for UCLA the the signal information from all the sub-arrays are processed

simultaneously therefore preserving the intrinsic mutual information of the array

leading to automatic pairing, reduction in ambiguous maximas and reduced RMSEs.

On the same note, DECOM method is viewed as a computationally intensive and time

consuming method since each sub-array data follows the whole procedure to estimate

the DOAs independently, a case that is avoided in UCLA since it amalgamates all the

signals from both sub-arrays before processing.

5.1.2 2D DOA Estimation Methods

In 2D DOA estimation methods, the two geometries analyzed are seen to be

providing high resolutions with less errors. A point to note is that UCLSA , unlike

CLSA, has the ability to suppress ambiguous DOAs and automatically pair the

elevation angles with the azimuths.
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The CLSA method operates on each sub-array separately thereby losing the intrinsic

mutual information of the array leading to ambiguous DOAs on the the spectrum. This

method also requires physical pairing of the DOAs estimated by the separate sub-arrays

and at the same time it is seen as a computationally complex method as the sub-array

data is processed separately. In the contrary, UCLSA method processes the total signal

simultaneously thereby preserving the intrinsic mutual information of the array leading

to automatically paired DOAs, very limited ambiguous DOAs in the spectrum as well

as low RMSEs as opposed to CLSA

5.1.3 DOA Estimation Using Virtual Array Interpolation

Application of virtual array interpolation for sparse arrays increases the DOF of

the array thereby enabling the array to resolve more sources. This is important

especially for practical applications since it helps in increasing the aperture arbitrarily

without adding physical sensors which reduces the computational complexity and

hence increases the overall array response time. More specifically, nuclear norm

minimization method does not require matrix vectorisation, spatial smoothing or

discretization of parameter space into a dense grid respectively all which when

applied leads to computational complexity.

5.2 Future Work

Coprime array, one of the sparse array geometries has provided a platform for

computationally less complex 2D DOA estimation. Virtual interpolated co-array is

proving productive in resolution of more sources than sensors. Focus should therefore

be on finding an interpolating algorithm with much lesser complexity than the one

applied here. Further, interpolation of arrays in multidimensional with automatic

angle pairing is an area of future focus. Coprime L-shaped array (CLSA) can as well

be considered for different orientations like cross-shaped for purposes of determining

an optimal orientation.
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APPENDICES

Appendix 1: Acronyms and Abbreviations

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

5G Fifth Generation

BER Bit Error Rate

CLA Coprime Linear Array

CLSA Coprime L-shaped Arrays

CPA Coprime Planar Arrays

CRB Cramer-Rao Bound

CRLB Cramer-Rao Lower Bound

CSA Cross shaped Array

CVX Matlab Software for Disciplined Convex Programming

DECOM Decomposition and Combination

DOA Direction of Arrival

DOF Degrees of Freedom

DS Delay-and-Sum

ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques

EVD Eigenvalue Decomposition

GHz Gega Hertz
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IoE Internet of Everything

IoT Internet of Things

LSA L-shaped Array

MHA Minimum Hole Arrays

ML Maximum Likelihood

MRA Minimum Redundancy Arrays

MUSIC Multiple Signal Classification

MVDR Minimum Variance Distortionless Response

NCLA Nonuniform Coprime Linear Array

QoS Quality of Service

RMSE Root Mean Square Error

SNR Signal to Noise Ratio

SULA Sparse Uniform Linear Array

UCA Uniform Circular Array

UCLA Unfolded Coprime Linear Array

UCLSA Unfolded Coprime L-shaped Array

ULA Uniform Linear Array

VSNLA Virtual Symmetric Nonuniform Linear Array

VULA Virtual Uniform Linear Array

Wi-Fi Wireless Fidelity

WSF Weighted Subspace Fitting

ZB Zetabytes
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Appendix 2: Symbols

| · | Absolute value

[·]H Transpose conjugate

[·]T Transpose

∈ Is member of a given set

λ Wavelength

‖·‖ Frobenius norm

A Set A

C Set of complex numbers

O(·) Bachmann-Landau or asymptotic notation

φ Predominantly used to refer to azimuth angle

σ Signal or noise standard deviation

⊆ Is a subset of

I Identity matrix

O Null matrix

θ Predominantly used to refer to elevation angle

Bold letters Vectors (matrices)

diag [·] Diagonal matrix

E[·] Statistical expectation

Hatted letters Approximated values

‖·‖∗ Nuclear norm

σ2 Signal or noise (variance) power
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