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ABSTRACT 

 

Developing Novel Targeted Therapies Towards High Grade Glioma (HGG) by 

Using Omics Data Integration Approaches 

 

 Gliomas are the brain tumors that develop in glial cells and present severe 

challenges based on intertumoral heterogeneity associated with different subtypes, 

further leading to poor prognosis and outcomes for patients. This study was conducted 

to utilize the transcriptomics and DNA methylation datasets available to researchers 

to arrive at conclusions that can be utilized for either screening novel targets or use 

already established drugs that can target the specific gene signatures associated with 

low grade gliomas (LGGs), which develop into high grade gliomas (HGGs) or 

Glioblastoma multiforme (GBM). We identified co-expression modules and their 

associated pathways for specific subtypes of LGG IDH mut pTERT-, IDH mut 

pTERT+, IDH wt pTERT-, and IDH wt pTERT+. We constructed co-expression 

modules based on these subtypes and found common and different enriched pathways 

as synapse pathways and immune-related pathways, respectively. We further explored 

the differentially expressed genes (DEGs) and found a gene signature of upregulated 

GNG12 and downregulated PLCB1, GRIA2, GABRA3, and GNAL after mapping 

DEGs on our co-expression modules of interest. This gene signature was included in 

our drug-gene interaction analysis, leading us to 4 drugs (Vemurafenib, Vanadium 

Pentoxide, Imatinib, and Cisplatin,) that can target 4 out of 5 genes. Therefore, we 

recommend exploring the synergistic effects of the combination of these drugs against 

low and high grade gliomas. We also integrated transcriptomics and DNA methylation 

data to develop networks including epigenetic factors that can be targeted in a subtype 

specific manner. Our analysis revealed that PRMT5 can be used as a target irrespective 

of the LGG subtype and WEE1 is a specific target for IDH wt regardless of pTERT 

status. The specific chemical inhibitors of these targets being available could facilitate 

translation of our findings into preclinical settings. 

 

Keywords: Glioblastoma, Lower Grade Glioma, Transcriptomics, Co-expression 

Analysis, DNA Methylation, Bioinformatics Pipeline, Drug-Gene Interaction 

 

ÖZET 



Omics Veri Entegrasyon Yaklaşımlarını Kullanarak Yüksek Dereceli Gliomaya 

(HGG) Yönelik Yeni Hedefli Tedavilerin Geliştirilmesi 

Gliomalar, glial hücrelerde gelişen beyin tümörleridir ve farklı alt tiplerle ilişkili 

intertümörel heterojenite  tedaviyi zorlaştırıcı bir faktör olup, hastalar için kötü 

prognoza ve sonuçlara yol açar. Bu çalışma, araştırmacıların kullanımına açık olan 

transkriptomik ve DNA metilasyon veri setlerinden yararlanılarak  yüksek dereceli 

gliomalar (HGG) / glioblastoma multiforme’ye (GBM) dönüşme potansiyeline sahip 

düşük dereceli gliomalar (LGG) ile ilişkili spesifik gen imzalarını hedef alabilen 

önceden belirlenmiş ilaçların kullanılmasını veya yeni terapi hedeflerinin belirlenmesi 

amaciyla gerçekleştirilmiştir. Bu amaçla, LGG IDH mut pTERT-, IDH mut pTERT+, 

IDH wt pTERT- ve IDH wt pTERT+'nin spesifik alt tiplerinde  ortak ekspresyon 

modüllerini ve bunlarla ilişkili yolakarı belirledik. Bu alt tiplere dayanarak ortak gen 

ifade modülleri oluşturduk ve sırasıyla sinaps yolakları ve bağışıklıkla ilgili yolaklar 

gibi ortak ve farklı zenginleştirilmiş yolaklar bulduk. Diferansiyel olarak eksprese 

edilen genleri (DEG'ler) daha ileri düzeyde araştırdık ve DEG'leri ilgili ortak 

ekspresyon modüllerinde haritaladıktan sonra ifadesi artmış GNG12 ve ifadesi azalmış 

PLCB1, GRIA2, GABRA3 ve GNAL'den oluşan bir gen imzası belirledik. Bu gen 

imzasının ilaç-gen etkileşimi analizimize dahil edilmesi bizi 5 genden 4'ünü hedef 

alabilen 4 ilaca (Vemurafenib, Vanadyum Pentoksit, Imatinib ve Cisplatin) 

yönlendirdi. Bu nedenle, bu ilaçların kombinasyonunun düşük ve yüksek dereceli 

gliomalara karşı sinerjistik etkilerinin araştırılmasını öneriyoruz. Ayrıca alt tipe özgü 

bir şekilde hedeflenebilecek epigenetik faktörleri içeren ağlar geliştirmek için 

transkriptomik ve DNA metilasyon verilerini entegre ettik. Analizimiz, PRMT5'in 

LGG alt tipinden bağımsız bir hedef olarak kullanılabileceğini ve WEE1'in, pTERT 

durumuna bakılmaksızın IDH wt için spesifik bir hedef olduğunu ortaya çıkardı. Bu 

hedeflerin spesifik kimyasal inhibitörlerinin mevcut olması bulgularımızı klinik öncesi 

çalışmalarda kullanım açısından faydalı kılmaktadır. 

 

Anahtar Kelimeler: Glioblastoma, Düşük Dereceli Glioma, Transkriptomik, Ko-

ekspresyon Analizi, DNA Metilasyonu, Biyoinformatik, İlaç-Gen Etkileşim 

 

1. INTRODUCTION 

Glioblastoma, also known as glioblastoma multiforme (GBM) is an extremely 

aggressive type of brain tumor initiating in the glial cells of the brain. These cells 



inherently are involved in maintaining the structural stability of the neurons, which are 

the fundamental operational units of the nervous system (Hanif et al., 2017). The 

complex nature of Glioblastoma raises several difficulties in the selection of treatment 

modalities according to the attributes of the surroundings of the brain as well (Akter 

et al, 2021). The issues leading to such difficulties include the phenomena of 

immunosuppression, challenges within the drug development, the recurrence of the 

disease, location of tumor and its functional impact, the tumor microenvironment, 

limited treatment options, resistance to available therapeutic options, heterogeneity of 

the tumor, blood brain barrier, and invasive nature of the tumor. In order to deal with 

aforementioned hurdles, the expertise of a wide range are necessitated including 

oncologists, neurologists, researchers, and medical experts (Wu et al, 2021). For 

enhancing the treatment outcomes for the patients, several elements including 

inventive treatments such as immunotherapies and precision drugs along with 

progression in understanding the genetic foundations and molecular signatures of 

Glioblastoma are required (Ganipineni et al, 2018).. 

Integrative omics analysis encompasses the understanding and merging of the 

data obtained from different advanced biological domains including metabolomics, 

proteomics, transcriptomics, and genomics among others. This methodology provides 

a unique and deep perspective on the profiles of biological systems towards specific 

scenarios which has the capacity to empower the research to further elucidate the 

intricate biological systems and significant understanding of entities involved in 

different diseases (Nice et al, 2018). The integrative omics analysis gives rise to the 

construction of prognostic models, annotation of genome functionalities, facilitation 

in exploration of novel drugs, tailored medical approaches, investigations in disease 

mechanisms, and identification of molecular biomarkers (Misra et al, 2019). The 

strategy has specially been utilized in helping clinicians and researchers in untangling 

the biological phenomena to further our understanding of the diseases and to 

incorporate that information in patient well being as the goal (Karczewski & Snyder, 

2018). 

 

The comprehensive study of Ribonucleic acid (RNA) molecules in tissues or 

cells is called transcriptomics, which has been considered indispensable for identifying 

the various subsets of different cancers based on expression of genes i.e. transcripts 

(Maniatis et al, 2021). The subsets obtained from gene expression data forming 



clusters can lead to insights informing the diversity of individual cancers, which can 

further help in individualizing the therapeutic strategies efficiently (Valdes-Mora et al, 

2018). The detailed applications of transcriptomics are exploration of gene expression 

profiling and its association with targeted therapies, functional enrichment analysis, 

differential gene expression analysis, unsupervised clustering and integration with 

other omics data for patient characterization (Supplitt et al, 2021). The sophisticated 

computational techniques along with the gene expression patterns obtained from 

transcriptomics analysis facilitate the researchers in diagnosis, treatment strategies, 

empowering comprehension, and investigate the molecular diversity of different 

cancers based on pinpointing the subsets within heterogeneous cancers such as 

Glioblastoma (Fan et al, 2020).  

There are other types of omics data which have been used for exploring the 

biological systems informing the gene expression profiles further in different scenarios 

such as methylation status of DNA molecules. The methyl groups are attached to DNA 

molecules which inherently store the genetic information and constitute the 

chromosomes. This modification of DNA can govern changes in structure of 

chromatin and influences the accessibility of molecular machinery such as RNA 

polymerases to DNA molecules, preventing the cellular apparatus from initiating the 

process of transcription or gene expression (Bock, 2012; Ramsey et al., 2010). The 

epigenetic regulation of the genome can be delineated from the datasets related to 

DNA methylation along with the mechanistic details of genetic pathways, subtypes, 

biomarkers, and gene expression. Therefore, this modification of DNA which can be 

identified on genomic scale utilizing various platforms holds significant importance in 

unveiling gene activity and subsequently the molecular signatures arising from the 

activity or inactivity of various genes in states such as normal or diseased conditions 

(Horvath et al, 2013). The tailored strategies can be formulated on the plausible 

therapeutic targets obtained from the epigenomic data (Li et al, 2015). 

The molecular changes occurring across different cancer types along with the 

characterization of the genetic data from cancer patients are the major objectives of 

The Cancer Genome Atlas (TCGA), which is the pioneering project undertaken to 

study cancer genomes (Tomczak et al, 2015). The extensive datasets from TCGA 

projects contain a plethora of data involving the whole cancer genomes, 

transcriptomes, epigenomes, and proteomes along with the information obtained from 

the clinical features of the patients. The clinical application and molecular 



investigations on cancers at the molecular levels have been impacted profoundly upon 

utilizing these datasets as the cancer biology field has been revolutionized due to deep 

knowledge obtained from TCGA datasets (Wang et al, 2016). More recent applications 

of TCGA datasets involve the determination of survival related markers and 

application of deep learning methods to predict the drug response (Nicolle et al, 2019; 

Shen et al, 2023). 

Since glioblastoma possesses a more significant threat as a disorder due to 

challenges mentioned previously along with the fact that aggressive forms of the 

disease have restricted treatment avenues, more tailored approaches toward 

molecularly identified subtypes of the disease are required to overcome these 

challenges. This study is designed to include integrated omics methodology to merge 

the transcriptomics and DNA methylation profiles of different clusters obtained from 

differentiated molecular subtypes of glioblastoma arising from TCGA datasets. The 

major aim of the study is to develop and implement an approach to identify the 

significant molecular pathways and the genes associated with the progression of low 

grade gliomas along with the potential plausible therapeutic agents. The gene 

expression patterns arising from transcriptomics data and its compilation with the 

DNA methylation data showcasing the epigenetic alterations in cancers, researchers 

can attain a multifaceted comprehension of the disease (Du et al, 2023), which is 

important in determining the treatment strategies tailored to molecular signatures of 

the cancer subtype.  

The implementation of the sophisticated computational methods can help 

dissect the gene expression and DNA methylation trends in different genetic subtypes 

which can further be aligned with the severity of the disease (Binder et al, 2019). With 

the usage of unsupervised clustering techniques, molecular subcategories for cancers 

can be discerned, which can mirror the disparities found in the biological responses, 

signaling pathways and cellular mechanisms (Zhu et al, 2023). The subsequent gene 

list obtained within each clustered cohort in subtypes can undergo the functional 

enrichment analysis which can help in determination of the disrupted biological 

pathways fueling the progression of the disease (Timmons et al, 2015). These 

bioinformatics pipelines can facilitate the identification of direct pathways involved in 

specific conditions of the disorder. The integration of omics approaches therefore can 

lead to certain hits which can be used as potential targets in therapeutic interventions 

or biomarkers (Lund et al, 2017; Song et al, 2019). Therefore, the use of omics 



technologies and their integration has the potential for customized or refined treatment 

strategies. 

As glioma is a complex disorder with complex genetic subtypes, the 

transcriptomics and DNA methylation data should provide an in-depth view of the 

molecular signatures of the disease based on genetic profiles of the patients. Then the 

integration of these two types of omics data can facilitate the potent targets which can 

be utilized for tailored therapeutic strategies. Therefore, we employed the integration 

of these molecular datasets and implicated molecular patterns from low grade gliomas 

to not only recognize the genes that exhibit differential expression but also the 

significant epigenetic changes as well. We also executed a bioinformatics based search 

to identify several drugs that can target the genes expressed differentially in one of the 

genetic subtypes of gliomas. 

 The significance of this study emanates from the utilization of the TCGA data 

which is considered the gold standard among researchers in identifying the molecular 

patterns of various cancers. The specific outcomes of this study has the capacity to 

inform the targetable pathways associated with genetic subtypes of gliomas through 

comprehensive and integrated omics approach utilized in this study. The molecular 

characteristics and a narrow list of genes with the distinct subtypes can help unravel 

the diverse and complex molecular pathways involved in the progression of LGGs to 

HGGs, and the information can be used by both researchers and medical practitioners. 

Moreover, a detailed and integrated approach can not only amplify the effectiveness 

of the treatment but also can decrease the undesired impacts due to utilization of the 

molecular targets that contribute to proliferation of the disease (Paananen & Fortino, 

2020). In summary, this study can facilitate the identification of driver genes, 

molecular and biological pathways along with the potential targets for glioma 

subtypes. We integrated the transcriptomics and DNA methylation of LGG TCGA 

dataset and external transcriptomics and methylation data of normal samples to arrive 

at conclusions dictating the molecular drivers of the disease. We also observed the 

drug-gene interactions focusing on the genes identified as up-regulated or down-

regulated in one of the subtypes of lower grade glioma, further highlighting the 

importance of bioinformatic pipelines and their utilization in targeting pathways 

associated with different forms of glioma. 

  



2. LITERATURE REVIEW 

2.1. Overview of Gliomas 

 

The brain tumors likely originating in the glial cells of the brain are termed as 

gliomas. These cells are responsible for providing the nourishment and support to the 

functional units of the nervous system i.e. neurons. Different types of gliomas 

depending on the types of cells the tumors originate from include ependymomas, 

oligodendrogliomas, and astrocytomas (Whitfield & Huse, 2022). The grading of the 

gliomas from Grade I to IV is based on the potential for growth of the tumor and its 

aggressiveness (Zhuge et al, 2020). The slow growing and least aggressive tumors of 

gliomas are considered Grade I, with Grade IV representing the most severe form of 

the disease (Zhuge et al, 2020).  

The most common symptoms of the gliomas are numbness in the limbs, speech 

difficulties, changes in the vision capabilities, seizures, and headaches (Dono et al, 

2020). The symptoms vary depending on the location of the tumors. Furthermore, the 

conventional treatment options available for gliomas include chemotherapy, radiation 

therapy, and surgery and are considered the first line of defense against the disease and 

depends on the overall health of the patient, location and grade of the tumor along with 

other factors (Schaff & Mellinghoff, 2023). The advanced forms of therapies for 

gliomas also exist and include stem cell therapy, molecular targeted therapy, 

immunotherapy, oncolytic virus therapy, and electric field therapy (Xiong & Wang, 

2019). 

 

2.2. Overview of LGG and GBM 

 

 Since LGGs can turn into GBM, we integrated the relevant literature to both 

LGGs and GBM in our study. As mentioned previously glioma is a term which acts as 

an umbrella for describing multiple types of brain tumors and usually Grade IV 

gliomas with the most aggressive presentation are termed Glioblastoma. Such types of 

tumors are also known as Glioblastoma Multiforme (GBM), due to their extreme 

heterogeneity. Lower Grade Gliomas (LGGs) correlate with younger age, while GBM 

typically occurs in adults and accounts for more than 60 % of the brain tumors 

presented in tumors of the brain in all adults (Grech et al, 2020). The higher incidence 

rates along with the resistance to treatment modalities and significantly higher 



recurrence rates  make GBM one of the deadliest cancers. The astrocyte Grade II and 

Grade III tumors, Grade IV Glioblastomas, and Grade II and Grade III 

oligodendrogliomas comprise the adult diffuse Gliomas according to the World Health 

Organization (WHO) (Louis et al, 2016).  

Glioblastoma is rarely metastasized and is known to invade the nearby areas of 

the brain, but remains the most deadly and invasive glioma (Paolillo et al, 2018). The 

diagnostic reproducibility is limited for glioblastoma and the histologic diagnosis is 

also prone to changes depending on the clinicians (Kan et al, 2020). The de novo or 

primary GBM is the most common and aggressive form of the disease with secondary 

GBM less prevalent and initiating at lower-grade as astrocytoma but has been known 

to become Grade IV tumor as well (Urbańska et al, 2014; Nguyen et al, 2021). The 

pathogenic features of glioblastoma are diverse. The current failures in treatment are 

also associated with immunosuppression. Therefore, the long term survival of the 

patients is hard to achieve (Shergalis et al, 2018). 

 

2.3. Incidence Rate and Survival for LGG and GBM 

 

 The neuroepithelial tumors of CNS are gliomas with varying behaviors ranging 

from LGG as tumors that are more or less resectable to the aggressive phenotypes 

including diffuse intrinsic pontine gliomas (DIPGs) and GBMs having the worse 

prognosis of all (Farmanfarma et al, 2019). LGGs likely occur in early childhood and 

high grade gliomas tend to occur at later stages. Normally LGG are graded as Grade I 

and Grade II with different types including mixed, diffuse, pleomorphic, giant cell, 

pilomyxoid, pilocytic forms along with desmoplastic infantile ganglioglioma, and 

oligodendrogliomas (McKhann & Duffau, 2019). The pediatric LGG annual incidence 

rate is calculated as 1.3-2.1 per 100,000 in the United States (Miguel Llordes et al, 

2023). The adult LGG is considered more common as compared to pediatric LGG with 

cases rising up to 9.1-12.5 per 100,000 in the United States (Lin et al et al, 2021). The 

cases of adult LGG occur from 2nd to 4th decade of life as most cases are diagnosed 

during this period (Diwanji et al, 2017). 

Among malignant brain and central nervous system tumor histopathologies, 

glioblastoma comprise 14.2 percent of all tumors and 50.1 percent of all the malignant 

forms of the tumors in the United States (Ostrom et al, 2022). It is also more prevalent 

in males as compared to females with males affected at 1.6 fold more than females 



(Chen et al, 2021). The White ethnic patients are at 2-fold higher risk for glioblastoma 

compared to  the Black patients (Ruhban et al, 2019). The latest age-adjusted incidence 

rate for Glioblastoma was calculated as 3.22 per 100,000 population in the United 

States (Ostrom et al, 2019). The 5-year survival rate for Glioblastoma is 4-5% (Batash 

et al, 2017). The largest cumulative study calculating the survival rate for 

Glioblastoma over a period of 10 years concluded that the ten year survival rate of 

Glioblastoma is 0.71% (Tykocki & Eltayeb, 2018). This data indicates that 

glioblastoma is a lethal disorder and treatment strategies need improvement to increase 

the survival rate of the patients (Janjua et al, 2021). 

 

2.4. Clinical Presentation of LGG and GBM 

  

 The histology and the location of the lesion determine the presentation of LGG 

clinically in children and adults (Byrne et al, 2017). High grade lesions show 

progressive symptoms rapidly and low grade lesions present with insidious onset 

spanning over several months. The long history of seizures is also associated with low 

grade lesions which are known to be refractory to the antiepileptic treatments 

(Piotrowski & Blakeley, 2015). The malignant gliomas present with more than 30 % 

cases having seizures with low grade lesions having more seizures (Samudra et al, 

2019). Other signs associated with LGG are aphasia or hemisensory deficits and 

hemiparesis as focal neurologic deficits along with mental status changes, balance 

changes, and headaches as higher intracranial pressure (Forst et al, 2014). 

The course of the disease of glioblastoma is determined upon the factors such 

as tissue destruction and the extent of edema along with epilepsy and tumor location. 

These are the reasons why the clinical presentation for glioblastoma is not typical. 

Standard treatment options can still help in preserving the cognitive functioning and 

quality of life for the patients despite the fatal prognosis for glioblastoma. However, 

the decrease in cognition and decline in quality of life occur rapidly once the treatments 

start failing and lead to severe outcomes (Palmer et al, 2021; McKinnon et al, 2021; 

Bruhn et al, 2022). 

 Headache is the the most common symptom with presentation in one-third of 

the patients which results from the intracranial pressure occuring at night or patient 

awakening with dullness (Palmieri et al, 2021). At the time of diagnosis, heightened 

intracranial pressure can further cause slowing of neurocognition, vomiting, nausea, 



fatigue, and dizziness. Using steroids such as dexamethasone can lead to amelioration 

of the symptoms caused by increased intracranial pressure (Grant, 2019).  

Glioblastoma can also originate from the brain stem and lead to pediatric 

glioblastoma with patients typically presenting with occlusive hydrocephalus, 

dysphagia, and cranial nerve palsies or combination of these symptoms (Alther et al, 

2020). Glioblastoma is associated with tropism in the brain, however, cases with liver, 

bone, lymph nodes, pleura, and lung metastasis are also found (Achi et al, 2023). 

Therefore, the follow up procedures required to obtain information from other parts of 

the body are also not required in patients presented with diagnosis of glioblastoma. 

Moreover, the glioblastoma patients can be donors for organ transplantation as cancer 

transmission risk is minimal in such scenarios (Warrens et al, 2012; Zhu et al, 2020). 

 

2.5. Intrinsic Risk Factors for Gliomas and GBM 

 

 Gliomas can develop without inheritance within a family but there are familial 

gliomas as well that follow the Mendelian pattern (Louis et al, 2016). Malignant 

gliomas have been explored using genome wide studies to explore the genetic risks for 

the development of brain tumors (Ostrom et al, 2019). Such studies indicated that there 

are 25 susceptibility-asscoiated genomic loci across the incidence variance for glioma 

in adults encompassing approximately 30 % of the factors, with 70 % remaining 

unknown (Kinnersley et al, 2015; Ostrom et al, 2019). Somatic mutations plat a major 

role in the tumorigenesis of glioma (Howell et al, 2018), as explained in the following 

sections.  

Apart from the age, other intrinsic risk factors associated with a small 

proportion of gliomas include hereditary syndromes of cancer including Turcot 

syndrome, neurofibromatosis I and II types along with Li-Fraumeni syndrome 

(Mutiarayani, 2023). Brain tumors including pilocytic astrocytoma and brainstem 

astrocytoma are mainly associated with NF1 gene as autosomal dominant syndromes 

or Neurofibromatosis type 1 (NF1) (D’Angelo et al, 2019). NF2 syndrome is 

associated with either somatic or germline mutations in NF2 gene which is a tumor 

suppressor gene. These mutations give rise to cranial meningiomas and cranial nerve 

schwannomas which are the tumors of the peripheral and central nervous system 

(CNS) (Tabor et al, 2023). The mutations in TP53 tumor suppressor gene lead to Li-

Fraumeni syndrome (Rocca et al, 2022) .In Li-Fraumeni syndrome, the germline 



mutations in TP53 have been associated with neuroepithelial tumors of the CNS, 

which have been found to be more common in females as compared to males (Xiong 

et al, 2020).  

The Turcot syndrome is associated with mutations in APC gene which acts in 

repairing DNA (Khattab & Monga, 2022). The mutations in NF1 and NF2 are linked 

with neurofibromatosis I and II types (Aldape et al, 2015).  The cases of more than 

one patient of glioblastoma in one family are rare, which makes the identification of 

risk loci difficult in the relatives of the patients (Molinaro et al, 2019).  

The risk alleles for gliomagenesis have been observed from population based 

genome wide association studies including RTEL1, TERT, AF, EGFR, and TP53 

(Wrensch et al, 2019). Both RTEL1 and TERT function in the telomere maintenance 

and risk alleles are specific for histological classification and diagnosis at older age 

(Walsh et al, 2013). The genome wide linkage investigations also yielded no 

significant high penetrance variants that can be linked with the risk of glioblastoma 

(Walsh et al, 2013). However, for gliomas, recently researchers identified DMBT1, 

ZCH7B3, and HP1BP3 as non-coding variants after surveillance of the genomic 

landscape using CRISPR knockdown approach (Choi et al, 2023).  

 

2.6. Subtypes of LGG or GBM Based on Genetic Mutations 

 

 The mutations in oncogenes and tumor suppressors are known to drive the 

process of carcinogenesis and in the case of gliomas and glioblastoma, there are 

several genes that have been linked with the disease-status based on their mutation 

status and can be used as markers for classification of the disease (Whitfield & Huse, 

2022). 

 

2.6.1. IDH Wild Type and IDH Mutant Gliomas or GBM 

  

The discovery of mutations in the isocitrate dehydrogenase 1 (IDH1) gene 

marked a significant milestone in the understanding of the molecular pathology 

underlying  glioblastoma and gliomas in general. Initially, a particular point mutation 

in the IDH1 gene, R132H, in samples of glioblastoma patients was found  (Parsons et 

al, 2008). Later, the mutations in IDH1 and IDH2 genes were associated with higher 

survival rates in glioblastoma patients as compared to patients with wild-type IDH1 or 



IDH2 genes (Yu et al, 2010). It was further understood that the features including 

prognosis and clinical characteristics also differ for patients with IDH mutations as 

compared to patients with wild-type IDH genes (Mondesir et al, 2016). 

IDH1 enzyme is found in the cytoplasm, while IDH2 and IDH3 enzymes reside 

in the matrix of mitochondria. These are the critical enzymes responsible for oxidative 

stress resistance and citric acid cycle (Bergaggio & Piva, 2019). The most commonly 

found mutation of IDH1 in gliomas is R132H (Parsons et al, 2008). The current WHO 

classification of glioblastoma includes IDH wildtype (wt) and IDH mutant (mut), with 

IDH wt tumors displaying necrosis, microvascular proliferation, mitotic activity, 

diffuse growth pattern, cellular polymorphism, nuclear atypia, differentiation, and 

more prominently poor survival (Dono et al, 2020; Motomura et al, 2023).  

The development of most low grade glioma (LGG) tumors are associated with 

the IDH1 or IDH2 mutations, as these are considered the earliest events in this 

transformation (Dono et al, 2021). Like in glioblastoma, IDH mutation leads to overall 

longer survival in LGG patients, while at the same time being associated with the 

malignant transformation of the tumors (Leu et al, 2016). IDH wt LGGs are considered 

heterogeneous with varying outcomes reported in clinical analyses. Furthermore, the 

inclusion of EGFR amplification, H3F3A mutation, and TERT promoter mutation in 

this subtype of LGG leads to worse prognosis (Vuong et al, 2019). 

The three variants of IDH wt glioblastoma are epithelial-like GBM, 

gliosarcoma, and giant cell GBM (Louis et al, 2016). The epithelial-like GBM 

manifests as mesencephalic masses with BRAF V600E mutation and is more common 

in young people and children (Broniscer et al, 2014). Furthermore, this subtype lacks 

PTEN loss and EGFR amplification, as well (Alexandrescu et al, 2016). The CDKN2A 

deletion is found in Gliosarcoma (IDH wt) with less common EGFR amplification and 

TP53 mutations (Lowder et al, 2019). Moreover, giant cell GBMs are also reported to 

lack the CDKN2A deletion and EGFR amplification, but entail TP53 and PTEN 

mutations (Ogawa et al, 2020). IDH mut glioblastoma exhibit susceptibility to 

treatment with temozolomide as compared to IDH wt form (SongTao et al, 2012).  

 

2.6.2. 1p/19q co-deletion 

 

The concurrent deletion of both the short arm of chromosome 1 (1p) and the 

long arm of chromosome 19 (19q), known as 1p/19q co-deletion, represents an early 



genetic event, along with IDH1/2 mutations, contributing to the initiation of glioma 

and influencing overall survival outcomes. (Jenkins et al., 2006). Almost all LGGs that 

have 1p/19 codeletion also have IDH1 or IDH2 mutations  (Labussiere et al., 2010). 

Many studies have shown that the LGGs with both 1p/19 codeletion and IDH 

mutations, has best prognosis (Kujas et al., 2005; Jenkins et al., 2006; Tews et al., 

2006; Iwamoto et al., 2008), but the underlying mechanism is still unclear.  

Tews et al. (2006) demonstrated that the genes located on deleted arms (1p/19) 

were differentially expressed between codel and non-codel samples, giving rise to the 

thought that the improved prognosis of patients with 1p/19q co-deleted gliomas may 

be attributed to at least some of these genes.  

 

2.6.3. TERT Promoter Mutations 

 

 TERT encodes a telomerase enzyme responsible for inhibiting the shortening 

of the ends of chromosomes, thereby regulating the cellular aging process. It is also 

found as dysregulated in different cancers (Colebatch et al, 2019). The presence of 

either of two mutations (C228T or C250T) in the promoter of TERT gene (TERTp) 

have been identified as a marker for worse prognosis for glioblastoma (Powter et al, 

2021). The TERTp mutation status is associated with elderly patients presenting Grade 

II/III glioma with 40 % frequency, further implicating that the correlation of TERTp 

mutation with pathology of glioma can be utilized not only as a prognostic feature but 

can be targeted for therapy as well (Fujimoto et al, 2021; Aquilanti et al, 2023).  

 In LGG IDH wt tumors with pTERT mutation leads to clustering of tumor 

samples with GBM based on DNA methylation profiling, implying that pTERT 

mutation is involved in increasing the invasiveness and severity of the disease 

(Fujimoto et al, 2021). Therefore, it is suggested that the clinical analysis of pTERT 

mutation in astrocytic gliomas (LGG) displaying features of glioblastoma are required 

for the diagnosis of diffuse astrocytic LGG. 

 

2.6.4. EGFR Amplification 

 

  The EGFR mutation in gliomas usually leads to EGFR amplification with 

EGFRvIII variant being the most common (Garima et al, 2022). The genetic loci of 

EGFR is Chr7 (7p12) and encodes the receptor tyrosine kinase functioning at the 



surface of the cells (Romano & Bucci, 2020). The EGFR degradation and 

internalization is impaired upon EGFRvIII variant activation which further causes the 

activation of anti-apoptotic signaling mitotic pathways associated with the 

tumorigenic capacity of GBM (Hoogstrate et al, 2022). Both EGFRvIII and EGFR 

amplification have been implicated in worsening the prognosis for young patients but 

EGFR overexpression is also specifically linked with poor survival in older patients 

(Chi et al, 2020). In LGG IDH wt (diffuse astrocytoma), EGFR mutations or 

amplification are also reported as clinically instructional, but the use of EGFR specific 

or pathway specific inhibitors have been utilized for glioblastoma with EGFR 

amplification (Yang et al, 2022). 

 

2.6.5. PTEN Mutation 

 

 PTEN is a tumor suppressor gene and loss of its function has been associated 

with carcinogenesis. The PTEN protein is involved in catalyzing the removal of a 

phosphate group from the inositol ring present in PIP3 phospholipid. This reaction 

leads to the production of PIP2 and is critical for inhibiting the AKT signaling pathway 

(Yang et al, 2020). In quiescent and differentiated cells, the PI3K/AKT pathway is 

dormant, however its activation can lead to positive regulation of cell cycle which is 

required for carcinogenesis (Jiang et al, 2020). The PTEN loss disturbs the lipid 

phosphatase function via the PI3K/AKT pathway and leads to aggressive phenotypes 

which can be targeted for therapy as well (Choi et al, 2021). Moreover, PTEN deleted 

or mutant gliomas including LGG are known to have very aggressive phenotype, 

worse prognosis and therapeutic resistance (Zhang et al, 2021). Another study 

indicated that the PTEN mutant LGG showed highest malignancy comparable to 

GBM, which can be used as an independent prognostic factor for the disease especially 

in the case of IDH with PTEN mutant cases (Zhang et al, 2021). 

 

2.7. Transcriptomics Profiling for LGG 

 

 Cancers are heterogenous disorders with varying degrees of diversity at 

genomic, transcriptomic, and proteomic levels. Therefore, in order to not only 

accurately characterize the pathogenesis of the disease, but also to understand the 

heterogeneity, transcriptome-wide analysis and profiling can be useful (Fan et al, 



2020). The changes in gene expression levels monitored by utilizing the next-

generation sequencing technologies including RNA sequencing can result in 

quantifying the high throughput parallels in multiple scenarios. Therefore, phenotypic 

alterations occurring at molecular level can be monitored in the perspective of systems 

biology (Cieślik & Chinnaiyan, 2018; Fan et al, 2020). According to transcriptomic 

profiling, CRY2, HDAC1, DCLRE1B, and KPNA2 genes have been identified as a 

transcriptomic signature for LGG utilizing the Chinese Glioma Genome Atlas 

(CGGA) datasets. The same study identified the DNA repair and cell cycle related 

biological process as dysregulated highly in LGG (Zeng et al, 2019). 

 The IDH and TP53 mutant cases of LGG were profiled based on integration of 

genomics and transcriptomics data to identify the biological pathways and it was 

discovered that the metastases, invasion, immune function, and neuron function 

related functions were enriched in LGG patients based on selected genes which can be 

targeted to increase the possible survival outcomes of these patients (Liu et al, 2022). 

Another study utilized the transcriptomics analysis to separate the LGG patients into 

two groups of ferroptosis-related clusters (FRC), and concluded that ferroptosis was a 

major driving force behind forming the tumor microenvironment in LGG (Tu et al, 

2022). Therefore, transcriptomics profiling can be utilized in identifying the unknown 

features associated with the tumor heterogeneity based on different parameters and in 

the field of LGG biology, has a distinct utilization which should be explored to identify 

the potential drug targets. 

 Multiple samples can be included to identify the gene expression patterns using 

the method of WGCNA, which can cluster the genes in the form of modules displaying 

the similar patterns of gene expression (Langfelder & Horvath, 2008). The relationship 

between the modules and specific traits associated with the samples can then be 

explored. Yang et al in 2018 identified the novel prognostic targets such as NUSAP1 

and GPR65 that can be utilized as genetic therapeutic strategies against GBM. The 

study arrived at their conclusion by utilizing the WGCNA based module construction 

strategy using Differentially Expressed Genes (DEGs) from transcriptomics data from 

liquid biopsy samples of GBM (Yang et al, 2018). 

 

2.8. DNA Methylation Profiling for LGG 

 



 The epigenetic changes have been identified as significant in identifying the 

cancers, therefore another element of genetic regulation can be used in investigating 

the common biomarkers (Guo et al, 2019). The genome region rich in CpG 

dinucleotides are usually linked with the promoters of the genes and DNA methylation 

of these nucleotides (CpG islands) found in the promoters dramatically silences the 

expression of the genes (Caiafa & Zampieri, 2005).  

The changes in the levels of DNA methylation of promoter regions containing 

CpG islands can either be hypermethylated leading to gene silencing or 

hypomethylation causing overexpression of the genes. One of the epigenetic 

alterations observed in cancers is DNA methylation which functions in the regulation 

of genomic functions and plays an important role in tumorigenesis (Davalos & 

Esteller, 2023). It has the potential to be utilized in clinical practice for diagnosis and 

prognosis of various cancers (Liu et al, 2019). The methylation status of genes are 

associated with their expression levels as observed for various forms of gliomas 

(Dabrowski & Wojtas, 2019). For example, for lower grade glioma (LGG) and 

glioblastoma (higher grade), MGMT promoter methylation is considered a prognostic 

factor and is also associated with the survival rates of the patients suffering these 

diseases (Brandner et al, 2021; Haque et al, 2022). 

 Several studies have been conducted to identify the subtypes of gliomas or 

glioblastoma based on DNA methylation profiles of the patients. In 2013, Brennan et 

al identified 6 subtypes of glioblastoma  based on DNA methylation profiles (Brennan 

et al, 2013). For diffuse adult LGG, Ferreyra et al  (2021) studied 166 cases for 

genome-wide DNA methylation and associated methylation classes with IDH 

mutation status and with other genetic factors such as 1p/19q deletion. IDH wt gliomas 

could also be sub-categorized in the DNA methylation analysis for different molecular 

signatures (Ferreya et al, 2021). Recently, according to IDH1 mutation status, three 

genes were identified based on methylation-driven expression: STEAP3, CMYA5, and 

ARL9 for LGG (Guo et al, 2022). Therefore, DNA methylation profiling adds another 

layer of framework to the guidance in prognosing the diseases such as GBM and LGG. 

 

2.9. Multi-Omics Data Integration for Biological Insights 

 

The integration of multiple data forms originating at high throughput and large 

scale such as genomics, transcriptomics, DNA methylation profiles, and proteomics, 



can be integrated in the form of biological pathways or networks which can provide 

an overview at systems biology level (Subramanian et al, 2020). These approaches 

have the capacity to combine the individual type of omics data simultaneously leading 

to comprehension of interplay between different molecules with information flow 

from one layer of information to another with the goal of bridging the genotype to 

phenotype gap inherently present in biology (Guo et al, 2021). The field of multi omics 

analysis is growing fast which has resulted in the development of various platforms, 

methods and tools for interpretation, visualization, and data analysis of multi omics 

data (Huang et al, 2017; Rappoport & Shamir, 2018; Wu et al, 2019). 

The omics data can either be generated through biological experiments 

conducted in the laboratory or is readily available from different sources and databases 

such as The Cancer Genome Atlas (TCGA), International Cancer Genomics 

Consortium (ICGC), Cancer Cell Line Encyclopedia (CCLE), Molecular Taxonomy 

of Breast Cancer International Consortium (METABRIC), or Omics Discovery Index 

(OmicsDI), and archives such as National Center for Biotechnology Information 

(NCBI) and Gene Expression Omnibus (GEO) (Subramanian et al, 2020). The major 

biological questions asked in multi omics analysis involve the classification or 

subtyping of diseases based on multi-omics profiling along with the prediction of 

driver genes responsible for triggering diseases which can be used as biomarkers as 

well, and to derive the biological insights behind the disease mechanisms (Li et al, 

2021). The methods or tools utilized for multi-omics approaches are subdivided into 

categories such as multivariate methods, correlation-based analysis, similarity based 

methods, fusion, bayesian or network based approaches (Subramanian et al, 2020). 

The network based integration approaches can provide the gene prioritization 

for cancers and their integrated framework. The gene aberrations along with alterations 

in epigenetics and further downstream players such as microRNAs and subsequent 

protein expression can be integrated in the network interactions (Li et al, 2021). The 

network-diffusion model utilizes the per-sample method for directing the network 

deriving the gene ranking at population level based on the aggregates of the individual 

rankings with the goal of outputting the global ranking for each sample (Subramanian 

et al, 2020). Another clustering method based on Neighborhood analysis for multi-

omics data is dependent on the similarity based analysis and is constructed upon the 

already established methods. It constructs the interpatient similarity matrix distances 

for the individual omic datasets and then integrates the data from multiple omics into 



a single matrix, which is then separated based on spectral clustering (Demirel et al, 

2022). This method can be utilized for partial datasets as well, making it useful in 

scenarios where complete datasets are missing (Rappoport, N., & Shamir, 2019). 

The underlying mechanisms associated with cancer can be deeply investigated 

with respect to drug targets or biomarkers that can be identified using pathway-based 

integration of omics data (Kim et al, 2019). The enrichment of pathways and over-

representation can be derived from the biological entities such as metabolites, proteins, 

and genes to link with the already existing biological information in such methods 

(Tseng et al, 2015). The pipeline of such methods includes the utilization of DEGs or 

proteins along with their significance in the data sets based on statistical inference and 

then the over-representation analysis is performed based on certain thresholds to 

compose the background lists, depending on the number of proteins or transcripts in 

the reference proteome or transcriptome (Eichner et al, 2014). Any combination of 

genotypic, transcriptomic, DNA methylation, proteomics, or metabolomics data can 

be integrated to provide biological insights depending on the research question and 

appropriate parameters used in the integration or mapping of one dataset to another 

(Subramanian et al, 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

3. MATERIALS AND METHODS 

 

3.1. Transcriptomics Data Collection and Preprocessing 

 

We downloaded the expression data of the lower-grade glioma (LGG) cohort 

using the TCGABiolinks package (Colaprico et al, 2016). TCGABiolinks enables 

researchers to query, download, prepare and perform integrative analysis using TCGA 

data. We first queried NCI's Genomic Data Commons (GDC) portal for the TCGA-

LGG project,  gene expression quantification data type, Illumina HiSeq platform and 

legacy data using the “GDCquery” function. After creating our query, both gene 

expression and clinic data were downloaded using the “GDCdownload” function and 

prepared with “GDCprepare” function. The GDCprepare function creates a 

SummarizedExperiment (SE) (Huber et al, 2015) object for downstream analysis.  

We divided our samples into two separate groups according to their IDH 

mutation status: IDH mutant and IDH wildtype (Figure 3.1). These expression 

matrices were then normalized and filtered with “TCGAanalyze_Normalization” 

(geneInfo) and “TCGAanalyze_Filtering” (quantile method, qnt.cut 0.25) functions 

respectively. We constructed sample clustering trees using the average method and 

removed the outliers. The number of samples in IDH mutant and IDH wild type 

subtypes of LGG along with the number of genes after normalization and filtering 

pipelines are shown in Figure 3.1. One outlier was excluded from IDH mutant and 5 

outliers were excluded from IDH wild type samples. The selected modules with 

respective colors as differentiating a parameter are also given in Figure 3.1. The RNA-

sequencing data exhibits non-normal distribution characteristics, warranting modeling 

approaches such as Poisson or negative binomial distributions for an accurate 

representation (de Torrenté et al, 2020). Prior to constructing weighted gene 

coexpression networks we  normalized RNA-sequencing data with the voom 

methodology (Law et al, 2014) from the limma library in R (Ritchie et al, 2015) and 

investigated the gene quality. The voom function calculates the mean-variance of the 

log-counts and creates each observation's precision weight. This transformation 

enables us to perform comparative analysis with WGCNA which were developed for 



microarray analyses. Employing voom transformation on RNA-seq data is a common 

practice in computational biology (Wang et al. 2017, Breen et al. 2019, Ota et al. 2021, 

Michlmayr et al. 2020, Singhania et al. 2018). To ensure robustness in our analysis, 

we employed the median absolute deviation (MAD) as a reliable metric of variability. 

This choice was motivated by the need to address situations where two genes exhibit 

minimal variations in expression levels among patients, leading to strong correlations 

in WGCNA analysis. 

 

3.2. Construction of the Weighted Gene Co-expression Network (WGCNA) 

 

Scale-free undirected co-expression networks were constructed using the 

WGCNA library in R (Langfelder & Horvath, 2008; Niu et al, 2023). Soft threshold 

power beta values were determined using the “pickSoftThreshold” function on the 

scale-free topology criterion. The suggested β is the lowest value where R2 is bigger 

than 0.8 (Hou et al, 2019). In accordance with this criterion, we selected beta values 

“6” and “12” for the IDH mut cohort and the IDH wt cohort, respectively. Setting the 

module size to 30 and the merge cut height to 0.25, we have constructed the gene 

modules with the correlation network methodology. 

 

Figure 3.1. Module construction and clinically significant module detection by 

Weighted Gene Co-expression Network Analysis (WGCNA). 

 



3.3. Identification of Clinically Significant Modules 

 

We related the co-expression modules to clinical traits to identify clinically 

significant modules. This relationship is based on the eigengene network 

methodology. The module eigengene (E) is the first principal component of a given 

module and they are defined as the summary of each module (Langfelder & Horvath, 

2008). These eigengenes are associated with the external traits (clinical information) 

to determine most significant associations. TCGA clinical information contains 110 

features in the clinical data frame which is a collection of data related to patient 

diagnosis, demographics, exposures, laboratory tests, and family relationships. In this 

study we aimed to explore gene expression modules related to significant molecular 

alterations and we prioritized 8 features (of 110) that have prognostic value in clinical 

implications to identify clinically significant modules. These 8 features are: 

Chr7gain.Chr10Loss, Chr19_20.co.gain, TERT.promoter.status, 

TERTexpression.log2, TERTexpression.status, ATRX.status, Telomere.Maintenance 

and BRAF.V600E.status. We identified a module as significant if its correlation value 

with the TERT.promoter.status was above 0.5 or below -0.5. 

 

3.4. Functional Enrichment Analysis 

 

To better understand the biological mechanisms behind the modules of interest, 

module genes were extracted and converted to Entrez identifiers. Functional 

enrichment analysis was performed using the Database for Annotation, Visualization, 

and Integrated Discovery (DAVID) platform to perform enrichment analysis 

(Sherman et al, 2022). 

 

3.5. Differential Gene Expression Analysis 

 

Differential gene expression analysis (DEA) is a widely used application to 

elucidate differentially expressed genes (DEGs) across two or more conditions. We 

analyzed differential expressed genes in LGG IDH wt samples and LGG IDH wt 

samples compared to solid tissue normal (STN). In addition we have compared two 

lower grade glioma subtypes with each other to detect differentially expressed genes 

between them. The TCGA-LGG cohort does not contain normal samples. We used the 



Solid Tissue Normal (STN) samples from the TCGA-GBM cohort. Same 

preprocessing steps were applied as stated in section 3.1. 

Differential gene expression analysis was performed using the 

“TCGAanalyze_DEA” function (TCGABiolinks package) with the “exactTest'' 

method. The false discovery date (FDR) threshold was set at 0.01 and the absolute 

logarithmic fold change (logFC) was set to 1. We further screened the genes in the 

selected modules (IDH wt pTERT- blue and IDH mut pTERT- greenyellow) on 

matching DEGs lists (normal tissue vs LGG IDH wt, normal tissue vs LGG IDH mut 

and IDH mut vs. IDH wt). In addition, the genes enriched in common pathways 

between greenyellow and blue modules were inscribed. We focused on blue module 

genes as these were observed in distinct components of the common pathways, 

 

3.6. Drug-gene Interactions 

 

An association between a medicine and a genetic variation that may have an 

impact on a patient's response to the treatment. This phenomenon is known as a drug-

gene interaction (DGI). We tested drugs that were altering the expression of previously 

selected genes using the Drug Gene Budger (DGB) tool (Wang et al, 2019). Using the 

CRowd Extracted Expression of Differential Signatures dataset (Wang et al, 2016), 

drugs that have inhibitory or activatory effects on up-regulated or down-regulated 

genes respectively were chosen in our investigation. 

 

3.7. Data Collection and Preprocessing for DNA Methylation 

 

The TCGA-LGG (Brain Lower Grade Glioma) DNA methylation data from 

Illumina Human Methylation 450 platform (legacy data) were queried, downloaded 

and prepared with “GDCquery”, “GDCdownload” and “GDCprepare” functions of the 

TCGABiolinks package (Colaprico et al, 2016) respectively. The downloaded data 

was the beta values (β) of raw methylation data. Beta values represent the estimated 

levels of methylation, determined by the ratio of intensities between methylated and 

unmethylated alleles. These values range from 0 to 1, where 0 signifies no methylation 

(unmethylated) and 1 indicates complete (full) methylation. The TCGA-LGG 

methylation samples were divided into four groups according to their IDH and TERT 



promoter mutation status. We created four different beta matrices for  subgroups: IDH 

mut TERTp mt, IDH mut TERTp wt, IDH wt TERTp mt and IDH wt TERTp wt. 

The DNA methylation data of the Glioblastoma Multiforme (TCGA-GBM) 

cohort were downloaded and 2 Solid Tissue Normal (STN) samples in this dataset 

were extracted. The probes with beta values missing for both of these normal samples 

were filtered. To increase our normal sample size we searched the literature for more 

normal samples of brain methylation data. Capper et al in 2018 reported a study 

including various central nervous system (CNS) tumors and a variety of control 

samples (Capper et al, 2018). The methylation data was obtained using Illumina 

Human Methylation 450 platform and was aligned to hg19, which is compatible with 

TCGA-LGG and TCGA-GBM methylation data. From the control samples of various 

CNS normal tissues we decided to use hemispheric cortex samples (CONTR, HEMI). 

We downloaded the beta matrix from the Gene Expression Omnibus (GEO) 

(GSE90496) and extracted 6 hemispheric cortex samples (samples 382 - 387).  

We further filtered the probe names compatible with the probes coming from 

TCGA-GBM STN samples and merged them into a beta matrix.  A sample clustering 

tree was constructed with the average method to observe sample similarities as they 

are coming from different studies. We used the ChAMP package (Morris et al, 2014) 

to impute missing values with the champ.impute function and normalized with the 

champ.norm functions using BMIQ method (Teschendorff et al, 2013). On Illumina 

bead arrays, there are two types of probe designs (type I and type II) with different 

hybridisation chemistries. This difference affects distributions of probes coming from 

different types. Type II probes show a reduced dynamic range and this can lead to a 

bias in the selection of type-I over type-II probes. To avoid this technical effect, 

normalization of probes against the type-II probe bias is recommended 

(Dedeurwaerder et al, 2011). After normalization, we visualized normalized data with 

QC.GUI. 

Normal brain expression data is necessary to perform differential expression 

analysis (DEA). Unfortunately there were no normal samples in the TCGA-LGG 

cohort and there were only 5 normal samples in the TCGA-GBM cohort. To make our 

DEA more effective we decided to use the Genotype-Tissue Expression (GTEx) 

project data. The GTEx portal serves as an extensive public repository for exploring 

tissue-specific gene expression and regulation. It encompasses data from 54 non-

diseased tissue sites, involving the analysis of nearly 1000 individuals. (Carithers & 



Moore, 2015). We  decided to use brain cortex expression data. The TCGABiolinks 

package makes users able to use TCGA data and GTex data for downstream analysis. 

We queried brain tissue data from both TCGA and GTex projects using the 

“TCGAquery_recount2” function and obtained Summarized Experiment (SE) objects 

separately.  

We only selected the "Brain - Cortex" samples from GTex SE. As GTex data 

is available as counts and were aligned to hg38, we have queried, downloaded and 

prepared TCGA - LGG data in "STAR - Counts" workflow for consistency. The counts 

were scaled and the number of reads were checked. We then created subgroups of 

LGG data according to their IDH and TERT promoter mutation status. We gathered 

four subgroups: IDH mut TERTp mt, IDH mut TERTp wt, IDH wt TERTp mt, and 

IDH wt TERTp wt. Before starting the analysis we replaced Universally Unique 

Identifiers (UUIDs) with TCGA barcodes and subgroups were merged with normal 

samples separately using the rownames. All of these count matrices were normalized 

(by geneLength method) and filtered (by quantile method, qnt.cut=0.25) before 

performing differential expression analysis. 

 

 

3.8. Differential Gene Expression Analysis with GTex data 

 

Differential gene expression analysis was performed on previously created 

subgroups separately to obtain differentially expressed genes between normal samples 

and LGG samples with different molecular subtypes. To perform DEA we used the 

“TCGAanalyze_DEA” function with the limma pipeline and the glmLRT method 

(TCGABiolinks package). “Voom” argument was set to TRUE, false discovery rate 

cut (fdr.cut) was set to 0.01 and logarithmic fold change cut (logFC.cut) was set to 2. 

We removed the duplicated Ensenmbl gene identifiers and converted them to the 

HUGO symbols using the Biomart package (Drost & Paszkowski, 2017) and 

visualized the results using the “TCGAVisualize_volcano” function. 

 

3.9. Differentially Methylated Regions Analysis 

 

For each subgroup created previously we created Summarized Experiment 

(SE) objects as the input for the analysis. SE objects consist of features as rows 



(rowRanges), samples in columns (colData) and values as matrix (assays). We 

performed differentially methylated regions analysis using the “TCGAanalyze_DMC” 

function. We set the differential mean methylation cut (diffmean.cut) to 0.30 and 

adjusted p-value cut (p.cut) to 0.01. To annotate the differentially methylated CpGs 

we used Illumina HumanMethylation450 BeadChip [UBC enhanced annotation v1.0] 

data frame (GPL16304). The first 22 rows of this data frame contain column 

explanations, so we have duplicated the file but cleaned the informative rows in the 

second document. In this data frame we were specifically interested in 

“Distance_closest_TSS'' and “Closest_TSS_gene_name'' columns.  The closest TSS 

gene names were obtained from the UCSC knownGene table. There is an estimation 

that 4% of probes have the same distance from more than one TSS. In this case, the 

annotated gene name of the first gene which appears in the UCSC knownGene table 

was utilized.  We filtered out probes that contained known SNPs and hit the XY 

chromosomes. For the purpose of this study we fıltered probes at 50kB downstream or 

upstream from the closest gene. In this case for some genes there were multiple 

differentially methylated probes. To obtain genes based on differential methylation 

values we aggregated DMC results by median function of the dplyr package in R 

(Wickham et al, 2019). At the end we obtained differentially methylated genes 

(DMGs) for each LGG subgroup. 

 

3.10. Integration of DEGs and DMGs 

 

In order to obtain both differentially expressed and differentially methylated 

genes in each subgroup we integrated our results from previous sections. For a better 

visualization we filtered DEGs and DMGs by adjusted p-value (< 0.01). For DEGs, 

logFC threshold was set to 2 and for DMGs DNAmethylation difference threshold was 

set to 0.3. 

 

3.11. Network Analysis 

 

Gene markers identified by differential expression and differential methylation 

analysis, methylation driven genes (MDGs), were mapped onto STRING v10 [T800] 

(Szklarczyk et al, 2015) and on the Cytoscape (Kohl et al, 2011) to incorporate our 

findings with the known interactions. We then selected the first neighbors of the 



identified MDGs for better understanding of disease mechanisms. Considering the 

objectives of our study, we further searched MDGs and their first neighbors on the 

EpiFactors (Medvedeva et al, 2015; Marakulina et al, 2023) database for the genes 

which are part of protein complexes playing a role as epigenetic factors. We reduced 

the network structures to epigenetic factor focused smaller networks as the biological 

networks are large, complex and contain a number of different molecular system 

signatures such as signal transduction, and gene regulation. We color coded the 

network as red (hypermethylated and downregulated MDGs), green (hypomethylated 

and upregulated MDGs) and blue (genes in the epigenetic factor protein complexes). 

 

3.12. Perturbation Profiling 

 

DepMap is a large-scale functional genomic profiling consortium to map the 

landscape of cancer vulnerabilities. The genetic perturbation platform specifically 

aims to screen mammalian cells and identify genetic alterations changing the 

phenotype, by perturbing genes with different approaches including CRISPR/Cas9 

constructs. Cancer dependencies were modeled using analytical methods such as 

CERES (Meyers et al, 2017) and CHRONOS dependency score (Dempster et al, 

2021). 

After detecting the large module structures in each subtypes, we screened the 

gene effect  on the DepMap portal using CRISPR (DepMap Public 22Q4+Score, 

Chronos) data and diffuse glioma models.  

 

  



4.  RESULTS 

 

4.1. Pre-processing of TCGA-LGG RNASeq Dataset and Construction of 

Weighted Gene Co-expression Networks 

 

The TCGA-LGG cohort expression matrix contained 21,022 genes and 513 

samples. 419 of these samples were IDH mut and 94 of them were IDH wt. We 

preprocessed RNASeq data of TCGA-LGG subtypes separately. After filtering and 

normalization steps 14,893 genes were left in each group. We detected five outliers in 

the TCGA IDH mut group (Figure 4.1a) and one outlier in the IDH wt group (Figure 

4.1b) and removed them. Sample dendrograms show transcriptionally different 

samples compared to other samples. The dendrogram signifies the division of complex 

data into meaningful and differentiated clusters of transcriptionally relevant cohorts. 

 

Figure 4.1a. Sample dendrogram of IDH mutant samples to detect outliers. 

 



 

Figure 4.1b. Sample dendrogram of IDH wt samples to detect outliers. 

 

Weighted gene expression networks were constructed with selected soft-

thresholding powers (IDH mut subgroup: 6; IDH wt subgroup: 12). The modules were 

identified with the hierarchical clustering method and each module was color-labeled. 

Figure 4.2a-b are showing cluster dendograms of IDH mut and IDH wt samples 

respectively. 28 modules were constructed in the LGG IDH mut group and 14 modules 

were constructed in the LGG IDH wt group. Genes that have not been clustered in any 

module were collected in the "Grey'' module (LGG IDH mut: 1055 genes, LGG IDH 

wt: 6314 genes). The clustered dendrograms show the genes as branches and the 

branch clusters are detected as modules as shown in the figure below. The branch 

height and module colors are highlighted in the cluster dendrogram. The visualization 

platform simplified the differentiation of the clusters and the processing of the 

complex raw data can be observed (Figure 4.2a-b). 

 

 



 

Figure 4.2a. Hierarchical clustering of genes with module colors for IDH mut 

samples. 

 

Figure 4.2b. Hierarchical clustering of genes with module colors for IDH wt 

samples. 

 

4.2. Identification of Clinically Significant Modules 

 

We further the observed module-trait relationships correlation to discover 

clinically significant modules. The threshold value was set to 0.5 for positive 

correlations and -0.5 for negative correlations. The IDH mutant group did not show 

correlation for  Chr19_20.co.gain or BRAF.V600E.status features thus we discarded 

these columns for simplicity. As TERT promoter mutations are shared by 



glioblastomas and oligodendrogliomas, but with two different prognostic outcomes, 

we concentrated on modules that correlated with TERT promoter mutation status. 

For the LGG IDH wt subgroup, blue module (No. of genes: 1622, cor: 0.61, p-

val: 2e-10), green module (No. of genes: 655, cor: 0.60, p-val: 5e-10), and tan module 

(No. of genes: 102, cor: 0.59, p-val: 9e-10) showed a positive correlation with TERT 

promoter mutation status. Yellow module (No. of genes: 830, cor: -0.53, p-val: 7e-08) 

and salmon module (No. of genes: 100, cor: -0.51, p-val: 4e-07) had negative 

correlation values that were below the threshold (Figure 4.3a).  

For the LGG IDH mut subgroup, green module (No. of genes: 1032, cor: 0.86, 

p-val: 8e-124), salmon module (No. of genes: 391, cor: 0.68, p-val: 2e-58), blue 

module (No. of genes: 1354, cor: 0.54, p-val: 3e-33), darkgreen module (No. of genes: 

64, cor: 0.52, pval: 8e-31), and lightgreen module (No. of genes: 106, cor: 0.52, p-val: 

2e-30) showed positive correlation with TERT promoter mutation status. White 

module (No. of genes: 36, cor: -0.64, p-val: 4e-50) and greenyellow module (No. of 

genes: 538, cor: -0.57, p-val: 1e-37) showed negative correlation values that were 

below the threshold (Figure 4.3b). 

The clinically relevant modules are showcased in the figures 4.3a-b as the rows 

indicate the modules detected through WGCNA and the columns indicate the clinical 

features selected in our study. The Pearson correlation values above 0.5 and below -

0.5 were selected for stipulating the clinically significant modules. The darker shades 

of the color green and red highlight the clinically significant modules with lower and 

higher Pearson correlation values respectively. 

 

 

 



 

Figure 4.3a. Module-Trait relationship plot for LGG IDH mut samples. 



 

Figure 4.3b. Module-Trait relationship plot for LGG IDH wt samples. 

 

 

 

 



4.3. Enrichment Analysis for Modules of Interest 

 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 

was conducted on the selected modules and the results are summarized in Table 4.1. 

For IDH wt group, we observed immune-related pathways enrichment in modules that 

are negatively correlated with the pTERT status (pTERT-) while synaptic and 

glutamatergic pathways enrichment in modules that are  positively correlated 

(pTERT+) with the pTERT status. For IDH mut group, we observed cellular 

differentiation and proliferation, and synaptic pathways enrichment in modules that 

are negatively correlated with the pTERT status (pTERT-) while metabolomic and 

immune-related pathways enrichment in modules that are  positively correlated 

(pTERT+) with the pTERT status.  Despite being enriched in similar pathways, IDH 

wt pTERT+ blue module and IDH mut pTERT-greenyellow module have inverse 

correlations with pTERT status as observed in Table 4.1. The table shows identifiers 

of the statistically significant modules and their enriched pathways. We identified the 

biological pathways behind the “clinically significant” modules observed in Figures 

4.3a-b. 

 

Table 4.1. KEGG pathway enrichment of the clinically significant modules. 

IDH mutation 

status 

pTERT 

status 

(correlation) Module Term p-value Bonferroni 

Wildtype 

Negative 

Yellow 

hsa04060:Cytokine-cytokine receptor 

interaction 2.37E-10 7.29E-08 

hsa04064:NF-kappa B signaling pathway 8.00E-08 2.46E-05 

hsa04620:Toll-like receptor signaling 

pathway 1.68E-06 0.0005 

hsa04650:Natural killer cell mediated 

cytotoxicity 2.28E-06 0.0007 

hsa04062:Chemokine signaling pathway 2.62E-06 0.0008 

Salmon 

hsa05235:PD-L1 expression and PD-1 

checkpoint pathway in cancer 0.0106 0.8196 

hsa04660:T cell receptor signaling pathway 0.0161 0.9265 

hsa04630:JAK-STAT signaling pathway 0.0501 0.9997 

hsa04662:B cell receptor signaling pathway 0.0663 0.9999 

hsa04625:C-type lectin receptor signaling 

pathway 0.0997 0.9999 

Positive Tan 

hsa04621:NOD-like receptor signaling 

pathway 1.61E-10 1.34E-08 

hsa04622:RIG-I-like receptor signaling 

pathway 6.66E-06 0.0006 



hsa04625:C-type lectin receptor signaling 

pathway 0.0052 0.3486 

hsa04620:Toll-like receptor signaling 

pathway 0.0052 0.3486 

hsa04062:Chemokine signaling pathway 0.0399 0.9658 

Green 

hsa04724:Glutamatergic synapse 1.07E-06 0.0003 

hsa04921:Oxytocin signaling pathway 3.44E-06 0.0009 

hsa04022:cGMP-PKG signaling pathway 4.03E-05 0.0116 

hsa04010:MAPK signaling pathway 4.49E-05 0.0129 

hsa04725:Cholinergic synapse 0.0004 0.1027 

hsa04728:Dopaminergic synapse 0.0005 0.1226 

Blue 

hsa04721:Synaptic vesicle cycle 1.19E-18 3.77E-16 

hsa04727:GABAergic synapse 5.60E-13 1.77E-10 

hsa04724:Glutamatergic synapse 3.30E-11 1.04E-08 

hsa04723:Retrograde endocannabinoid 

signaling 5.64E-11 1.78E-08 

hsa04728:Dopaminergic synapse 5.40E-10 1.71E-07 

hsa04080:Neuroactive ligand-receptor 

interaction 8.20E-10 2.59E-07 

hsa04024:cAMP signaling pathway 9.60E-08 3.03E-05 

Mutant 

Negative 

White 

hsa05202:Transcriptional misregulation in 

cancer 0.0537 0.9903 

hsa04024:cAMP signaling pathway 0.0682 0.9974 

hsa04014:Ras signaling pathway 0.0765 0.9988 

Greenyellow 

hsa04724:Glutamatergic synapse 2.11E-08 4.87E-06 

hsa04080:Neuroactive ligand-receptor 

interaction 3.42E-06 0.0008 

hsa04721:Synaptic vesicle cycle 6.58E-06 0.0015 

hsa04727:GABAergic synapse 0.0001 0.0294 

hsa04723:Retrograde endocannabinoid 

signaling 0.0004 0.0825 

hsa04725:Cholinergic synapse 0.0032 0.5218 

Positive 

Green 

hsa00100:Steroid biosynthesis 0.0031 0.6146 

hsa01100:Metabolic pathways 0.0220 0.9990 

hsa00280:Valine, leucine and isoleucine 

degradation 0.0374 0.9999 

hsa00250:Alanine, aspartate and glutamate 

metabolism 0.0416 0.9999 

hsa05231:Choline metabolism in cancer 0.0692 0.9999 

Salmon hsa04146:Peroxisome 0.0001 0.0312 



hsa05022:Pathways of neurodegeneration - 

multiple diseases 0.0569 0.9999 

hsa04330:Notch signaling pathway 0.0954 1 

hsa04392:Hippo signaling pathway - 

multiple species 0.0998 1 

Blue 

hsa04060:Cytokine-cytokine receptor 

interaction 1.81E-09 5.83E-07 

hsa04064:NF-kappa B signaling pathway 6.13E-09 1.98E-06 

hsa04662:B cell receptor signaling pathway 6.13E-08 1.97E-05 

hsa04621:NOD-like receptor signaling 

pathway 3.70E-07 0.0001 

hsa04620:Toll-like receptor signaling 

pathway 4.39E-07 0.0001 

Darkgreen hsa03010:Ribosome 5.58E-11 3.23E-09 

Lightgreen 

hsa04015:Rap1 signaling pathway 0.0075 0.7415 

hsa01100:Metabolic pathways 0.0270 0.9927 

hsa04921:Oxytocin signaling pathway 0.0615 0.9999 

hsa04218:Cellular senescence 0.0634 0.9999 

hsa04390:Hippo signaling pathway 0.0644 0.9999 

 

 

To better understand resemblances and dissimilarities, we further looked into 

common KEGG pathways. In terms of synaptic pathways, we found 13 connections 

between the IDH mut green-yellow module and the IDH wt blue module (Table 4.2). 

Glutamate ionotropic receptor NMDA type subunits were marked in both modules in 

the "Glutamatergic Synapse'' pathway, however glutamate ionotropic receptor AMPA 

type subunit 1 (GRIA1) was only annotated in the IDH wt blue module. While GRM2 

was annotated only in the IDH wt blue module, glutamate metabotropic receptors were 

annotated in both the blue and greenyellow modules. In addition to GRM2, the IDH 

wt blue module was enriched for G protein alpha subunits (i1, i3, and o1) and adenylate 

cyclases (ADCY1, ADCY5). The Greenyellow and Blue modules come from different 

subtypes (IDH mut and IDH wt respectively) and they are oppositely correlated with 

pTERT status. The following table 4.2 shows the details of shared pathways between 

these two modules. 

 

Table 4.2. Common pathways between the IDH mutant (IDH mut) greenyellow 

module and IDH wild-type (IDH wt) blue module. 

 

IDH mut_greenyellow_pTERT- IDH wt_blue_pTERT+ 

Term Count % p-value Term Count % p-value 



hsa04724:Glutam

atergic synapse 16 3.0246 0.0000 

hsa04721:Syna

ptic vesicle 

cycle 36 2.2402 0 

hsa04080:Neuroac

tive ligand-

receptor 

interaction 24 4.5369 0.0000 
hsa04727:GAB

Aergic synapse 32 1.9913 0 

hsa04721:Synapti

c vesicle cycle 11 2.0794 0.0000 

hsa04724:Gluta

matergic 

synapse 34 2.1157 0 

hsa04727:GABAe

rgic synapse 10 1.8904 0.0001 

hsa04723:Retro

grade 

endocannabinoi

d signaling 39 2.4269 0 

hsa04723:Retrogr

ade 

endocannabinoid 

signaling 12 2.2684 0.0004 

hsa04728:Dopa

minergic 

synapse 35 2.1780 0.0000 

hsa04725:Choline

rgic synapse 9 1.7013 0.0032 

hsa04080:Neur

oactive ligand-

receptor 

interaction 65 4.0448 0.0000 

hsa04726:Seroton

ergic synapse 9 1.7013 0.0036 

hsa04713:Circa

dian 

entrainment 29 1.8046 0.0000 

hsa04360:Axon 

guidance 11 2.0793 0.0064 

hsa04024:cAM

P signaling 

pathway 43 2.6757 0.0000 

hsa04024:cAMP 

signaling pathway 12 2.2684 0.0089 

hsa04725:Choli

nergic synapse 27 1.6801 0.0000 

hsa04070:Phospha

tidylinositol 

signaling system 6 1.1342 0.0606 

hsa04070:Phos

phatidylinositol 

signaling 

system 22 1.3690 0.0000 

hsa04713:Circadia

n entrainment 6 1.1342 0.0606 

hsa04726:Serot

onergic synapse 24 1.4935 0.0000 

hsa04728:Dopami

nergic synapse 7 1.3233 0.0686 
hsa04360:Axon 

guidance 30 1.8668 0.0002 

hsa00330:Arginin

e and proline 

metabolism 4 0.7561 0.0952 

hsa00330:Argin

ine and proline 

metabolism 9 0.5600 0.0441 

 

 The KEGG pathways were further investigated and downloaded from the 

database as shown in the Figures 4.4a-c. The individual pathways are highlighted in 

this study for the relevant modules. The different and same components of the pathway 

with common genes from IDH mut Greenyellow and IDH wt blue modules are shown 

in the figures. One component of the pathway includes more than one gene. G-protein-

coupled receptors activate adenylate cyclase (AC), which in turn activates Protein 

Kinase PKA. The "Retrograde endocannabinoid signaling" route, where this 

interaction also takes place, is found in the mitochondria (Figure 4.4c). When 

adenylate cyclase is activated by G-protein coupled receptors, it turns on PKA. This 



interaction also happens within the mitochondria in the “Retrograde endocannabinoid 

signaling” pathway (Figure 4.4c).  

 

 

Figure 4.4a. Selected common KEGG pathway schemes of the IDH wt pTERT- blue 

module and IDH mut pTERT+ greenyellow module ~ Glutamatergic synapse 

 

In figures 4.4a-c the pathways Glutamatergic synapse, GABAergic synapse 

and retrograde endocannabinoid signalling were selected. The components which were 

painted red were enriched in both greenyellow and blue module; blue components 

were only enriched in blue module and darkgreen components were only enriched in 

greenyellowmodule, while others were left in their default color.  

 



 

Figure 4.4b. Selected common KEGG pathway schemes of the IDH wt pTERT- blue 

module and IDH mut pTERT+ greenyellow module ~ GABAergic synapse 

 

 

Figure 4.4c. Selected common KEGG pathway schemes of the IDH wt pTERT- blue 

module and IDH mut pTERT+ greenyellow module ~ Retrograde endocannabinoid 

signaling 



 

4.4. Differentially Expressed Genes (DEGs) 

 

We identified 3025 DEGs in LGG IDH mut group compared to normal samples 

and 2804 DEGs in LGG IDH wt group compared to normal samples. Additionally we 

have identified 1958 genes in LGG IDH wt group compared to LGG IDH mut group. 

As a result of screening DEGs in the modules of interests, we further identified 206 of 

co-expressed genes were also differentially expressed in the IDH mut pTERT- 

greenyellow module (module size 538), and 986 of co-expressed genes were also 

differentially expressed in the IDH wt pTERT+ blue module, (module size 1622). 

Moreover, we identified 146 common genes differentially expressed between normal 

vs. IDH wt and IDH mut vs IDH wt DEGs (upregulated: 53, downregulated: 93). 

Among DEGs we focused on genes that showed the highest change in expression in 

IDHwt tumors, while also being altered in IDH mut tumors albeit to a lesser extent in 

the same direction. 

The GRIN3A gene had the lowest logFC value (IDH mut vs IDH wt -1.96; 

normal vs IDH wt -2.95) while the HPD gene had the highest logFC value (IDH mut 

vs IDH wt 2.01; normal vs IDH wt 6.53). Intriguingly, the logFC values for the IDH 

mut vs IDH wt and normal vs IDH wt groups did not differ significantly for genes that 

were downregulated, but they did differ significantly for genes that were upregulated. 

In the IDH wt blue module, we listed 182 genes, and in the IDH mut greenyellow 

module, 54 genes which were enriched in common pathways. 143 and 27 of them, 

respectively, were differentially expressed. 22 out of 182 blue module genes were also 

DEGs in both IDH mut and IDH wt. Additionally, 15 of these 22 genes showed 

differential expression between normal vs IDH wt samples (Table 4.3). These genes 

were enriched in the aforementioned pathways and are both differentially expressed 

between normal vs IDH wt and IDH mut and IDH wt. The genes highlighted (bold) 

were only enriched in blue module but  not in greenyellow module. 

 

Table 4.3. IDH wild-type blue module pathway-enriched DEGs. 

 

*Normal vs 

IDH wt 

Normal 

(RPKM) 

IDH wt 

(RPKM) 

*IDH mut vs 

IDH wt  

IDH mut 

(RPKM) 

IDH wt 

(RPKM) 

SLC1A6 -2.2365 989.8 234.4494 -1.1974 514.5239 234.4494 

GRIA2 -1.4941 15266 5926.5056 -1.0580 11873.9067 5926.5056 



PLCB1 -1.4048 5828.6 2446.4719 -1.0379 4828.8660 2446.4719 

GNG12 2.2310 1181.8 6309.8539 1.5414 2087.4952 6309.8539 

GRIN3A -2.9484 1916.6 272.1124 -1.9578 1032.8684 272.1124 

SSTR1 -2.4319 2161.4 449.9550 -1.2700 1018.7297 449.9551 

SSTR2 -2.5210 2055 399.4607 -1.7434 1284.4665 399.4607 

CHRNA4 -1.6524 2051.6 749.1685 -1.0276 1409.4377 749.1685 

GABRB3 -2.2102 9864.4 2436.4719 -1.0300 4725.7607 2436.4719 

GABRA3 -2.1735 1813.8 444.5843 -1.5058 1251.0909 444.5843 

PDYN -2.1334 5622.8 1506.6517 1.1126 645.9139 1506.6517 

VIPR2 2.3059 329.6 1830.6180 -1.5287 4821.8445 1830.6180 

CHRM4 -2.3974 334.2 70.5056 -1.022 136.3301 70.5056 

ATP6V1G2 -2.0278 13698.6 3727.4045 -1.0769 7554.8421 3727.4045 

GNAL -2.2018 2163.6 530.2809 -1.0779 1077.7105 530.2809 

 

4.5. Drug-Gene Interactions 

 

GRIA2, PLCB1, GNG12, GABRA3, PDYN, and GNAL [6 of the 15 genes at the 

intersection of both DEGs lists (normal vs. IDH mut, IDH mut vs. IDH wt)] were 

solely enriched in the blue module. PDYN was not included since its expression pattern 

was not complying with our hypothesis of a gradual change of expression from normal 

to IDH mut to IDH wt. Only GNG12 was upregulated among the genes above, others 

were downregulated (Table 4.4). Therefore, we have focused on inhibitory drugs / 

small molecules for GNG12 and activatory drugs / small molecules for GRIA2, 

PLCB1, GNG12, GABRA3, and GNAL. Since GNG12 was the most interesting 

candidate target, we have compared listed drugs for GNG12 with drugs targeting other 

candidates (Table 4.4). As cisplatin, imatinib, vanadium pentoxide, and vemurafenib 

affect the expression of four out of five listed genes (including GNG12), these 

compounds were identified as potential therapeutics candidates.  Table 4.4 shows the 

drugs that inactivate GNG12 and activate the other four genes (GRIA2, PLCB1, 

GABRA3, GNAL) that are downregulated in our analyses. 

 

Table 4.4. Drug-Gene interaction table for IDH wild-type blue module pathway-

enriched DEGs. 

Drug Name GNG12 GRIA2 PLCB1 GABRA3 GNAL 



1,25 dihydroxyvitamin d x     

4-hydroxynonenal x  x  x 

Adenosine triphosphate x x  x  

Alfacalcidol x     

Aminolevulinic acid x    x 

Androstanolone x     

Aplidin x    x 

Apratoxin a x     

Bexarotene x x    

Bisphenol a x  x x  

Cediranib x   x  

Cetuximab x     

Chlorpyrifos x  x   

Cisplatin x  x x x 

Clinafloxacin x     

Cytarabine x     

Diclofenac x x   x 

Doxorubicin x x   x 

Doxycycline x     

Estradiol x  x   

Harman x     

Imatinib x  x x x 

Interferon beta-1a x     

Interferon gamma-1b x    x 

Mesalazine x  x   

Metformin x    x 

Nickel x     

Plx4032 x  x x  

Puromycin, ec50, 1 d x   x  

Puromycin, ec50, 5 d x     

Resveratrol x     

Sapphyrin pci-2050 x     

Tibolone x     

Triiodothyronine-[13c6] 

hydrochloride (t3 thyronine) x x    

Trovafloxacin x     

Vanadium pentoxide x x  x x 

Vemurafenib x x x x  

Vx x     

Y15 x     

 

4.6. Data Collection and Preprocessing for DEG analysis and DNA methylation 

Data 

 

The TCGA LGG and GBM DNA methylation data were carrying 485577 

probes at the beginning. We extracted only Solid Tissue Normal samples from the 

GBM cohort. The LGG cohort is divided into subgroups by IDH mutation status and 

then each group is divided into further subgroups according to their pTERT mutation 



status. Out of 419 LGG IDH mut samples, 93 of them were pTERTmt and 143 of them 

were pTERTwt. There was no pTERT status information for 183 samples. Out of 94 

LGG IDH wt samples, 37 of them were pTERTmt and 19 of them were pTERTwt. 

There was no pTERT status information for 38 samples. After creating the subgroups 

according to their IDH and pTERT mutation status we further checked their 1p 19q 

codeletion status. For the IDH mut pTERTmt subgroup there were 86 1p19q-codeleted 

and 7 1p19q-intact samples. For the IDH mut pTERTwt subgroup there were 2 1p19q-

codeleted and 141 1p19q-intact samples. All of the IDH wt samples were 1p19q-intact 

samples. We excluded 1p19q-intact samples from the IDH mut and pTERT mutant 

group and 1p19q-codeleted samples from the IDH mut and pTERTwt group for 

homogeneity.  

 

The probes that displayed NA values for all the samples were filtered from 

each subgroup separately. After filtering, 396059 probes were left for solid tissue 

normal and 396065 probes left for the LGG subgroups. There were 428799 probes for 

6 brain hemispheric cortex (CONTR_HEMI) samples extracted from the paper. There 

were 356774 probes which are the same with solid tissue normal samples. The solid 

tissue normal samples (TCGA-GBM) and the hemispheric cortex samples (CONTR, 

HEMI) (Capper et al., 2018) were merged to form a normal brain tissue beta matrix 

consisting of 8 samples and 356774 probes. The sample tree plot showed that although 

these normal samples  originated from different studies,  they were not very different 

from each other, and therefore, it was concluded that this beta matrix can be used as a 

normal brain beta matrix (Figure 4.5). The figure highlights the compatibility of 

normal samples coming from TCGA and the study mentioned above. 

 

 



Figure 4.5. Sample clustering of normal samples from paper and TCGA-GBM (Solid 

Tissue Normal samples only). The branches are samples and the y-axis shows the 

branch height. 

 

4.7. Differential Gene Expression Analysis with GTex Data to be Integrated with 

DNA Methylation Data 

 

The probes of four different subgroups of LGG were filtered to be compatible 

with 356774 probes defined above. GTex expression data for brain tissue was carrying 

707 samples, both TCGA and GTex expression data for brain tissue were carrying 

58037 genes at the SE objects created at the beginning of differential expression 

analysis. Out of 707 samples in GTex brain expression data, 132 were expression data 

from brain cortex. We filtered LGG STAR - Counts data compatible with the 

subgroups defined above. After normalization and filtering the gene counts at the 

merged matrices, we ended up with 34003 genes and 218 samples for the IDH mut 

pTERTmt subgroup, 34148 genes and 271 samples for the IDH mut pTERTwt 

subgroup, 34188 genes and 169 samples for the IDH wt pTERTmt subgroup and 

34390 genes and 151 samples for the IDH wt pTERTmt subgroup (132 samples of 

these samples are GTex brain cortex data). 

Differential gene expression analysis results are shown in Table 4.5. In the IDH 

mt pTERTmt (1p-19q codeleted) subtype, 54.8% of DEGs were upregulated and 

45.2% of DEGs were downregulated. In the IDH mut pTERTwt (1p-19q-intact) 

subtype, 52.6% of DEGs were upregulated and 47.4% of DEGs were downregulated. 

In the IDH wt pTERTmt subtype, 60.2% of DEGs were upregulated and 39.8% of 

DEGs were downregulated. In the IDH wt pTERTwt subtype, 58.1% of DEGs were 

upregulated and 41.9% of DEGs were downregulated. Interestingly, the IDH wt 

pTERTmt subtype shows higher upregulation patterns compared to other subtypes. 

The parameters used for DEG analysis included TCGAanalyze_DEA, fdr.cut = 0.01, 

logFC.cut = 2, and method = "glmLRT". 

 

Table 4.5. The number of differentially expressed genes in different LGG subtypes. 

 Total DEGs Upregulated Downregulated 

IDH mut pTERTmt codel 4086 2240 1846 



IDH mut pTERTwt 

noncodel 3873 2039 1834 

IDH wt pTERTmt 5342 3216 2126 

IDH wt pTERTwt 2937 1706 1231 

 

4.8. Differentially Methylated Regions Analysis (CpG sites) 

 

After imputing the missing values and normalizing the methylation data we 

observed the samples with QC.GUI function. Although the normal samples from the 

TCGA GBM and the aforementioned study (Capper et al in 2018) were separated at 

the dendrograms for all probes, the heatmap and Multidimensional scaling (MDS) 

plots for the most variable CpGs showed separation of tumor and normal samples for 

the most variable 1000 CpGs. Three tumor samples from the LGG IDH wt pTERTwt 

subgroup were clustered with normal samples at the MDS 1000 most variable 

positions plot. We have observed the adjusted p-values in this subgroup were relatively 

higher compared to other subgroups. Thus, we excluded three samples and 

reperformed the analysis. 

 

4.9. IDH mut pTERTmt - Quality Control Plots 

  

The dendrogram comparing the  normal samples with tumor samples for 

quality control is shown in Figure 4.6a. A multidimensional scaling plot highlighting 

the red dots as normal samples and green dots as tumor samples for 1000 most variable 

positions is shown in Figure 4.6b. A heatmap constructed for 1000 most variable CpGs 

with rows indicating CpGs and columns displaying the samples, is depicted in Figure 

4.6c. These plots summarize the background quality control checks conducted on the 

samples for DNA methylation data collection and preprocessing. 

 



 
Figure 4.6a. Sample dendrogram for 356743 probes in IDH mut pTERTmt group. 

 

Figure 4.6b. Multidimensional Scaling (MDS) plot for 1000 most variable positions 

for IDH mut pTERTmt group. 

 

 

Figure 4.6c. Heatmap for Top 1000 variable CpGs for IDH mut pTERTmt group. 



 

4.10. IDH mut pTERT wt - Quality Control Plots 

  

The dendrogram comparing the normal samples with tumor samples for quality 

control of IDH mut pTERTwt genetic subtype is indicated in Figure 4.7a. This data 

contains 356730 probes in total with branch height displayed in y-axis. Another MDS 

plot for top 1000 variable CpGs for IDH mut pTERTwt is shown in Figure 4.7b, where 

the red dots show normal samples and green dots indicate the tumor samples. The heat 

map is also drawn for top 1000 variable CpGs from these samples, where the rows 

display the CpGs and columns depict the samples (Figure 4.7c).   

 

 

Figure 4.7a. Sample dendrogram for 356730 probes in IDH mut pTERTwt group. 

 

Figure 4.7b. Multidimensional Scaling (MDS) plot for 1000 most variable positions 

for IDH mut pTERTwt group.. 



 

Figure 4.7c. Heatmap for Top 1000 variable CpGs for IDH mut pTERTwt group. 

 

4.11. IDH wt pTERTmt - Quality Control Plots 

 

The dendrogram comparing the normal samples and tumor samples for the 

genetic subtype of IDH wt pTERTmt- is shown in Figure 4.8a for highlighting the 

quality control of the samples. Similarly, the MDS plot displaying the normal samples 

in red and tumor samples in green for the top 1000 variable positions is shown in 

Figure 4.8b. The heat map for the variable regions is shown in Figure 4.8c. 

 

 

 



Figure 4.8a. Sample dendrogram for 356709 probes in IDH wt pTERTmt group. 

 

Figure 4.8b. Multidimensional Scaling (MDS) plot for 1000 most variable positions 

for IDH wt pTERTmt. 

 

Figure 4.8c. Heatmap for Top 1000 variable CpGs for IDH wt pTERTmt. 



4.12. IDH wt pTERTwt - Quality Control Plots 

  

The MDS for 1000 most variable positions in IDH wt pTERTwt is shown in 

Figure 4.9a, where the red dots display the normal samples and green dots show the 

tumor samples. Moreover, the dendrogram is shown in Figure 4.9b to show the quality 

control check and processing of the samples and MDS plot is shown in Figure 4.9c 

and heat map in Figure 4.9d.  

 

Figure 4.9a. MDS plot of IDH wt pTERTwt samples for IDH wt pTERTwt subtype. 

 

 

Figure 4.9b. Sample dendrogram for 356743 probes in IDH wt pTERTwt group. 



 

Figure 4.9c. Multidimensional Scaling (MDS) plot for 1000 most variable positions 

for IDH wt pTERTwt group. 

 

Figure 4.9d. Heatmap for Top 1000 variable CpGs for IDH wt pTERTwt group. 

 

The summary of Differentially Methylated CpGs (DMC) analysis results are 

shown in Table 4.6. The differentially methylated genes (DMGs) were calculated with 

median of the probes annotated to the particular gene. These differentially methylated 

probes and genes were identified in 4 different LGG subtypes. We identified 7802 

DMGs in the IDH mut pTERTmt (1p-19q codeleted) subtype; 97.1% of these DMGs 

were hypermethylated and 2.9% were hypomethylated. In the IDH mut pTERTwt (1p-

19q intact) subtype we identified 7137 DMGs; 96% of them were hypermethylated 

and  4% were hypomethylated.  

In the IDH wt pTERTmt subtype we identified 3459 DMGs; 49.2% of them 

were hypermethylated and  50.8% were hypomethylated. In the IDH wt pTERTwt 

subtype we identified 626 DMGs; 63.6% of them were hypermethylated and  36.4% 

were hypomethylated. IDH wt samples showed an increased hypomethylation pattern 



compared to IDH mut samples. Interestingly, in the IDH wt pTERTmt subtype higher 

percentage of genes were hypomethylated than hypermethylated, which is just the 

opposite of other samples showing higher percentage of hypermethylated genes. The 

parameters used to arrive at the number of DMCs include TCGAanalyze_DMC, adj.p 

value < 0.01, and diffmean.cut = 0.3.  

 

Table 4.6. Summary of Differentially Methylated CpG sites (DMC). 

 hyper probs hypo probs hyper genes hypo genes 

IDH mut pTERTmt 22162 495 7573 229 

IDH mut pTERTwt 18129 601 6852 285 

IDH wt pTERTmt 3721 2570 1703 1756 

IDH wt pTERTwt 508 273 398 228 

 

4.13. Integration of Methylation and Expression Data 

 

The venn diagram was constructed which shows the 

hypermethylated+downregulated; hypomethylated+upregulated genes’ distribution in 

4 different subtypes (based on IDH and TERT promoter mutation status) of low grade 

gliomas. The Figure 4.10 shows that there were 422 genes which were common MDGs 

between IDH mut pTERTmt and IDH wt pTERTwt subtypes (more than 65% of the 

MDGs in each group), 337 of them were common only between them (more than 65% 

of the MDGs in each group). This result was expected as IDH mutations are mainly 

responsible for epigenetic changes in gliomas and these two subtypes are composed of 

IDH mutant samples. Meanwhile, only 150 MDGs were common among other groups, 

out of 422 MDGs (35.5%) compared to 272 out of 422 MDGs from this group. 72 of 

them were hypermethylated and downregulated while 200 of these were 

hypomethylated and upregulated. 

The summary of integration of differential expression and differential 

methylation data (hyper methylated and downregulated; hypomethylated and 

upregulated) in 4 different LGG subtypes is shown in Table 4.7. 

 

 

 



Table 4.7. The summary of Methylation Driven Genes (MDGs) in different genetic 

subtypes of LGG. 

MDGs Summary table   

 hyper.down hypo.up 

IDH mut pTERTmt 617 31 

IDH mut pTERTwt 585 26 

IDH wt pTERTmt 200 222 

IDH wt pTERTwt 7 7 

 

 

Figure 4.10. Venn diagram of methylation driven genes (G1: IDH mut pTERTmt, G2: 

IDH mut pTERTwt, G3: IDH wt pTERTmt, G4: IDH wt pTERTwt). 

 

Table 4.8 details the enrichment analysis of the genes in different sections of 

the venn diagram. Hypermethylated and downregulated genes were enriched in 

Neuroactive ligand receptors while hypomethylated and upregulated genes were 

enriched in immune related pathways (Table 4.8). 

77 genes at the intersection of G1&G2&G3-only were enriched in ion channel 

activities, transport activities (GO Molecular Ontology) and in nervous systems 

(GABAergic synapse, Retrograde endocannabinoid signaling) and environmental 

information processing (Neuroactive ligand-receptor interaction). 337 genes at the 

G1&G2-only intersection were enriched with Calmodulin binding and Voltage-gated 

channel activities (GO Molecular Ontology). 48 genes at the G2&G3-only intersection 



were enriched with ion channel activities and transport activities (GO Molecular 

Ontology). 140 genes at the G2-only area were enriched with Nervous System 

Pathways (GABAergic synapse, Glutamatergic synapse, Long-term potentiation, 

Cholinergic synapse, Synaptic vesicle cycle, Dopaminergic synapse, Serotonergic 

synapse), Signal Transduction (Phosphatidylinositol signaling system, Calcium 

signaling pathway, cAMP signaling pathway, Rap1 signaling pathway, MAPK 

signaling pathway) and Environmental Information Processing (Neuroactive ligand-

receptor interaction) (Table 4.8). 

 

272 genes at the G3-only area were enriched with Signaling molecules and 

interaction (Cytokine-cytokine receptor interaction, Neuroactive ligand-receptor 

interaction) Molecular Ontology enrichment for this subtype was receptor activities 

(immune receptor activity, signaling receptor activity) and binding (tumor necrosis 

factor binding, extracellular matrix binding,  cytokine binding). Interestingly, we have 

detected immune system activities for the G3 only area and we further investigated 

these genes. 72 out of 272 genes were hyper methylated and downregulated, and they 

were related to the neuroactive ligand-receptor interaction pathway. 200 out of 272 

genes were hypomethylated and upregulated, and they were enriched with immune 

system related pathways. We have further identified 56 of these genes in the immune 

system at the Reactome pathway [HSA-168256, Immune System (56/1956)] (Table 

4.8).  

 

Table 4.8. Enrichment analysis of Venn Diagram genes (p-value < 0.05).  

Group Term Count % p-Value Fold Enrichment Bonferroni Benjamini FDR 

G1G2G3  

(77 genes) 

hsa04727:GABAergic synapse 6 7.79 1.82E-05 17.29 0.0016 0.0008 0.0008 

hsa04080:Neuroactive ligand-receptor 

interaction 8 10.38 0.0004 5.59 0.0300 0.0077 0.0076 

hsa04723:Retrograde endocannabinoid 

signaling 5 6.49 0.0022 8.66 0.1736 0.0381 0.0377 

hsa04024:cAMP signaling pathway 4 5.19 0.0498 4.64 0.9883 0.6193 0.6121 

G1G2-only  

(337 genes) 

hsa04080:Neuroactive ligand-receptor 

interaction 16 4.74 6.77E-05 3.34 0.0147 0.0148 0.0147 

hsa04020:Calcium signaling pathway 11 3.26 0.0010 3.51 0.2017 0.1126 0.1120 

hsa04014:Ras signaling pathway 10 2.96 0.0034 3.25 0.5204 0.2445 0.2434 

hsa04723:Retrograde endocannabinoid 

signaling 7 2.07 0.0121 3.63 0.9300 0.5286 0.5262 



hsa04724:Glutamatergic synapse 6 1.78 0.0158 4.04 0.9691 0.5749 0.5723 

hsa04727:GABAergic synapse 5 1.48 0.0278 4.31 0.9979 0.7585 0.7550 

hsa04728:Dopaminergic synapse 6 1.78 0.0278 3.49 0.9979 0.7585 0.7550 

hsa04713:Circadian entrainment 5 1.48 0.0365 3.95 0.9997 0.7965 0.7929 

hsa04721:Synaptic vesicle cycle 3 6.25 0.0198 13.15 0.7281 0.5734 0.5734 

G2-only  

(48 genes) 

hsa04020:Calcium signaling pathway 12 8.57 7.21E-07 6.95 0.0001 0.0001 0.0001 

hsa04724:Glutamatergic synapse 7 5 0.0001 8.54 0.0226 0.0059 0.0052 

hsa04024:cAMP signaling pathway 9 6.42 0.0001 5.66 0.0233 0.0059 0.0052 

hsa04727:GABAergic synapse 6 4.28 0.0004 9.38 0.0610 0.0126 0.0111 

hsa04080:Neuroactive ligand-receptor 

interaction 10 7.14 0.0010 3.79 0.1473 0.0234 0.0206 

hsa04929:GnRH secretion 5 3.57 0.0010 10.86 0.1545 0.0234 0.0206 

hsa04725:Cholinergic synapse 6 4.28 0.0012 7.38 0.1707 0.0234 0.0206 

hsa04721:Synaptic vesicle cycle 5 3.57 0.0022 8.91 0.2955 0.0338 0.0298 

hsa04728:Dopaminergic synapse 6 4.28 0.0023 6.32 0.3111 0.0338 0.0298 

hsa04015:Rap1 signaling pathway 7 5 0.0035 4.64 0.4309 0.0433 0.0382 

hsa04010:MAPK signaling pathway 8 5.71 0.0044 3.78 0.5108 0.0452 0.0399 

hsa04070:Phosphatidylinositol 

signaling system 5 3.57 0.0048 7.17 0.5377 0.0453 0.0399 

hsa04726:Serotonergic synapse 5 3.57 0.0087 6.05 0.7545 0.0777 0.0685 

hsa04720:Long-term potentiation 4 2.85 0.0117 8.30 0.8487 0.0988 0.0872 

hsa04270:Vascular smooth muscle 

contraction 5 3.57 0.0146 5.19 0.9066 0.1177 0.1038 

hsa05214:Glioma 4 2.85 0.0158 7.42 0.9230 0.1211 0.1068 

hsa05207:Chemical carcinogenesis - 

receptor activation 6 4.28 0.0166 3.94 0.9325 0.1215 0.1071 

hsa04723:Retrograde endocannabinoid 

signaling 5 3.57 0.0203 4.70 0.9633 0.1422 0.1254 

hsa04014:Ras signaling pathway 6 4.28 0.0251 3.54 0.9833 0.1684 0.1485 

hsa04022:cGMP-PKG signaling 

pathway 5 3.57 0.0300 4.16 0.9926 0.1846 0.1628 

hsa04713:Circadian entrainment 4 2.85 0.0309 5.73 0.9937 0.1846 0.1628 

G3-Only  

(272 genes) 

hsa04060:Cytokine-cytokine receptor 

interaction 16 5.88 4.68E-05 3.48 0.0102 0.0102 0.0100 

hsa04080:Neuroactive ligand-receptor 

interaction 17 6.25 0.0002 2.97 0.0345 0.0176 0.0172 

hsa04610:Complement and coagulation 

cascades 8 2.941 0.0004 5.96 0.0741 0.0257 0.0251 

hsa04640:Hematopoietic cell lineage 8 2.94 0.0008 5.18 0.1654 0.0452 0.0442 



hsa04350:TGF-beta signaling pathway 7 2.57 0.0035 4.72 0.5311 0.1138 0.1112 

hsa05150:Staphylococcus aureus 

infection 7 2.57 0.0036 4.67 0.5497 0.1138 0.1112 

hsa04061:Viral protein interaction with 

cytokine and cytokine receptor 7 2.57 0.0044 4.49 0.6233 0.1218 0.1190 

hsa05145:Toxoplasmosis 7 2.57 0.0077 4.01 0.8155 0.1683 0.1645 

hsa04621:NOD-like receptor signaling 

pathway 8 2.94 0.0239 2.79 0.9950 0.4024 0.3932 

hsa04072:Phospholipase D signaling 

pathway 7 2.57 0.0271 3.03 0.9976 0.4238 0.4141 

hsa05200:Pathways in cancer 15 5.51 0.0347 1.81 0.9996 0.5063 0.4947 

 

4.14. Network Analysis and EpiFactors  

 

The methylation driven genes alone are not informative enough on a biological 

level as these are individual genes. We further included the first neighbors of MDGs 

and constructed a more biologically interpretable network. The MDGs + first neighbor 

were still very crowded.  Therefore, we focused on Epigenetic factor protein 

complexes and attempted to understand which epigenetic protein complexes might be 

playing a role in methylation differences. 

 

Table 4.9. Network statistics on epigenetic data with MDG nodes, edges, neighbors 

and protein complexes.  

 

MDGs 

nodes 

MDGs 

edges 

MDGs + first 

neighbors 

nodes 

MDGs + first 

neighbors 

edges 

Protein 

complex 

focused nodes 

Protein 

complex 

focused 

edges 

IDH mut 

pTERTmt 427 390 3907 93668 435 415 

IDH mut 

pTERTwt 411 477 3620 88792 419 505 

IDH wt pTERTmt 309 313 4131 155613 326 363 

IDH wt pTERTwt 9 1 125 596 11 5 

 

Table 4.9 summarizes the statistics from different networks constructed. 

Epigenetic factor protein complex focused subnetworks show a clear difference 

between IDH mut pTERTwt (G3) group and IDHmut groups (G1, G2). For simplicity 

smaller networks and single nodes were excluded during visualization. Interestingly 

GABA complexes created a separate network in G1, G2 and G3. Potassium voltage-



gated channel subfamily members were separate in G1 but they were wired to the large 

network in G2 and G3. As shown in Table 4.9, G2 large network structures have higher 

numbers of calcium signaling pathways (Figure 12a-d). 

The G1 protein complex focused subnetwork was highlighted in Figure 4.12a 

for IDH mut pTERTmt subtype, where red genes were hypermethylated and 

downregulated, green genes were hypomethylated and upregulated, and blue genes 

showed protein complex genes. Furthermore, G2 protein complex focused subnetwork 

for IDH mut pTERTwt data contained red genes, which are hypermethylated and 

downregulated, green genes are hypomethylated and upregulated, whereas blue genes 

are protein complex genes (Figure 4.12b). The G3 protein complex focused 

subnetwork for IDH wt pTERTmt subtype is highlighted in Figure 4.12c, where red 

genes are hypermethylated and downregulated, green genes are hypomethylated and 

upregulated, and blue genes protein complex genes. Subsequently, the G4 protein 

complex focused subnetwork for IDH wt pTERTwt subtype is displayed in Figure 

4.12d, where red genes are hypermethylated and downregulated, green genes are 

hypomethylated and upregulated, and blue genes showcase the protein complex genes. 

 

 



Figure 4.11a. IDH mut pTERTmt  - Protein complex focused subnetwork 

 

Figure 4.11b. IDH mut pTERTwt  - Protein complex focused subnetwork  

 

Figure 4.11c. IDH wt pTERTmt  - Protein complex focused subnetwork  



 

Figure 4.11d. IDH wt pTERTwt  - Protein complex focused subnetwork 

 

4.15. Perturbation Profiling 

 

DepMap screening of the protein complex focused subnetwork genes returned 

perturbation effect of 6 genes (ACTB, BRCA1, HCFC1, MET, PPP4C, PRMT5) from 

IDH mut pTERTmt subtype, 4 genes (ACTB, BRCA1, PPP4C, PRMT5) from IDH mut 

pTERTwt subtype, 11 genes (ACTB, ACTL6A, BRCA1, CDK6, HCFC1, MIS18A, 

PRMT5, RUVBL1, SOX2, WEE1, ZNF217) from IDH wt pTERTmt subtype and 2 

genes (PRMT5, WEE1) from IDH wt pTERTwt subtype at least in one diffuse glioma 

model analyzed by the DepMap (Table 4.10). The Chronos dependency score is 

derived from a cell depletion assay, where a lower score suggests a greater likelihood 

of the gene being essential in a specific cell. A score of 0 implies non-essentiality, 

while -1 is akin to the median among all pan-essential genes. The Chronos dependency 

scores were available for 66 diffuse glioma models which included 2 for Anaplastic 

Astrocytoma (AASTR), 13 for Astrocytoma (ASTR), 49 for Glioblastoma (GB), and 

2 for Oligodendroglioma (ODG). The data is compiled to show the genes which were 

selected from network modules processed in our study for various subtypes and they 

display the perturbation effect on different aforementioned models. 

 

 

Table 4.10. CHRONOS dependency scores of 66 diffuse glioma models  



Models ACTB ACTL6A BRCA1 CDK6 HCFC1 MET MIS18A PPP4C PRMT5 RUVBL1 SOX2 WEE1 ZNF217 

AASTR_ACH-001126 NA -1.75 NA -1.17 -2.04 NA -1.10 -1.67 -1.05 -2.40 NA -2.60 NA 

AASTR_ACH-002257 -1.05 -1.99 NA -1.08 -1.96 -1.28 -1.03 NA -1.48 -2.50 NA -1.94 NA 

ASTR_ACH-000040 NA -1.69 NA NA -1.80 NA NA NA -1.05 -2.27 NA -2.53 NA 

ASTR_ACH-000128 NA -2.29 NA NA -2.14 NA -1.29 -1.50 -1.06 -1.82 -1.50 -1.35 -1.33 

ASTR_ACH-000232 NA -1.74 NA NA -1.65 NA -1.18 NA NA -2.08 -1.06 -1.96 NA 

ASTR_ACH-000329 -1.00 -1.84 NA NA -2.29 NA NA NA NA -2.45 NA -3.03 NA 

ASTR_ACH-000389 NA -1.46 NA NA -1.93 NA NA -1.13 NA -2.43 NA -2.79 NA 

ASTR_ACH-000437 NA -1.46 NA NA -1.75 NA -1.36 NA -1.99 -2.34 NA -2.31 NA 

ASTR_ACH-000591 NA -1.29 NA NA -1.59 NA -1.53 NA -1.10 -2.30 NA -2.50 NA 

ASTR_ACH-000592 NA -1.91 NA NA -2.18 NA -1.34 NA -1.74 -2.10 NA -2.89 NA 

ASTR_ACH-000655 NA -1.85 NA NA -2.07 NA NA NA -1.58 -2.40 NA -2.87 NA 

ASTR_ACH-001016 -1.30 -1.78 NA NA -2.14 NA -1.21 -1.08 -1.64 -1.98 NA -2.15 NA 

ASTR_ACH-001172 NA -1.31 NA NA -1.71 NA -1.62 -1.18 -1.29 -2.38 NA -3.00 NA 

ASTR_ACH-002269 NA -1.45 NA NA -1.91 NA -1.57 -1.53 -1.47 -2.04 NA -2.42 NA 

ASTR_ACH-002304 -1.30 -1.57 NA NA -1.35 NA -1.27 -1.31 -1.12 -2.21 NA -2.83 NA 

ODG_ACH-000067 NA -1.59 NA NA -1.81 NA NA NA -1.35 -1.92 NA -2.41 NA 

ODG_ACH-000807 -1.30 -1.73 NA NA -1.56 NA -1.65 -1.19 -1.72 -2.14 NA -1.99 NA 

GB_ACH-000036 NA -1.86 NA -1.11 -1.68 NA -1.23 NA -1.53 -1.35 NA -2.78 NA 

GB_ACH-000075 NA -1.74 NA NA -2.05 NA NA -1.03 -1.46 -2.11 NA -2.48 NA 

GB_ACH-000098 NA -1.52 NA NA -1.97 NA -1.14 NA -1.26 -2.00 NA -2.55 NA 

GB_ACH-000137 NA -1.83 NA NA -2.04 NA -1.33 -1.05 -1.35 -1.96 NA -2.57 NA 

GB_ACH-000152 NA -1.65 -1.11 NA -2.18 NA NA -1.07 -1.08 -2.32 NA -2.41 NA 

GB_ACH-000200 NA -1.69 NA NA -2.23 NA -1.24 -1.14 -1.17 -1.87 NA -2.59 NA 

GB_ACH-000215 NA -2.29 NA NA -2.16 NA -1.49 -1.60 -1.38 -2.25 NA -2.79 NA 

GB_ACH-000231 NA -2.11 NA NA -1.61 NA -1.61 -1.37 -1.70 -1.92 NA -2.91 NA 

GB_ACH-000244 NA -1.77 NA NA -2.03 NA -1.01 -1.52 -1.28 -2.02 NA -1.76 NA 

GB_ACH-000269 NA -1.79 NA -1.15 -1.92 NA NA NA -1.90 -1.79 NA -2.17 NA 

GB_ACH-000323 NA -1.54 NA NA -2.02 NA NA NA -1.58 -2.19 NA -2.45 NA 

GB_ACH-000368 NA -1.58 NA -1.38 -1.97 NA -1.04 -1.04 -1.23 -2.28 NA -2.33 NA 

GB_ACH-000370 NA -1.52 NA NA -1.86 NA NA -1.07 NA -2.01 NA -2.58 NA 

GB_ACH-000376 NA -1.55 NA NA -1.74 NA -1.27 -1.32 -1.75 -2.55 NA -2.22 NA 

GB_ACH-000445 NA -1.45 NA NA -1.17 NA -1.18 NA -1.54 -2.27 NA -2.84 NA 

GB_ACH-000455 NA -2.07 NA NA -1.71 NA -1.00 -1.51 -1.84 -1.70 NA -2.93 NA 



GB_ACH-000464 -1.09 -2.13 NA NA -2.28 NA -1.17 NA -1.71 -2.33 NA -2.72 NA 

GB_ACH-000469 NA -1.82 NA NA -1.63 NA -1.31 NA -1.54 -2.15 NA -2.55 NA 

GB_ACH-000479 NA -1.61 NA -1.01 -1.69 NA -1.25 -1.53 -1.34 -2.03 -1.24 -2.36 NA 

GB_ACH-000504 -1.13 -1.42 NA NA -1.73 NA NA NA NA -2.16 NA -2.65 NA 

GB_ACH-000558 NA -1.67 NA NA -2.07 NA NA -1.27 -2.25 -2.06 NA -2.61 NA 

GB_ACH-000570 NA -1.55 NA NA -1.97 NA -1.50 -1.14 -1.60 -2.47 NA -2.65 NA 

GB_ACH-000571 NA -1.84 NA NA -2.03 NA NA NA -1.30 -2.18 NA -2.82 NA 

GB_ACH-000595 NA -2.20 NA NA -1.78 NA -1.41 -1.35 -1.67 -2.31 NA -2.62 NA 

GB_ACH-000609 NA -1.54 NA NA -1.64 NA -1.11 -1.15 NA -1.94 NA -2.65 NA 

GB_ACH-000622 NA -1.27 NA -1.19 -2.00 NA NA NA NA -1.92 -1.76 -2.74 NA 

GB_ACH-000623 -1.04 -1.10 NA NA -1.68 NA NA -1.08 -1.84 -2.13 NA -2.60 NA 

GB_ACH-000634 -1.16 -1.58 NA NA -1.88 NA -1.42 -1.59 -1.55 -2.12 NA -2.80 NA 

GB_ACH-000673 NA -2.24 NA NA -2.07 NA -1.39 -1.10 -1.84 -2.19 NA -2.54 NA 

GB_ACH-000676 NA -1.59 NA NA -1.76 NA -1.30 -1.39 -1.55 -2.38 NA -2.93 NA 

GB_ACH-000738 NA -1.73 NA NA -2.06 NA -1.32 -1.17 -1.54 -2.27 NA -1.64 NA 

GB_ACH-000760 NA -1.56 NA NA -1.87 NA NA -1.45 -1.69 -1.94 NA -2.96 NA 

GB_ACH-000819 NA -1.64 NA NA -1.79 NA -1.02 NA NA -1.56 NA -2.21 NA 

GB_ACH-000863 -1.16 -1.17 NA NA -1.59 NA -1.45 -1.20 -1.23 -1.77 NA -2.80 NA 

GB_ACH-000887 NA -1.54 NA NA -2.20 NA -1.65 -1.62 -1.52 -1.64 NA -2.93 NA 

GB_ACH-001329 NA -2.16 NA NA -2.49 NA NA NA NA -2.19 NA -2.49 NA 

GB_ACH-001605 NA -1.31 NA NA -2.08 NA NA NA NA -2.19 NA -1.11 NA 

GB_ACH-001606 NA -1.74 NA NA -1.46 NA NA NA NA -1.91 NA -2.49 NA 

GB_ACH-001608 -1.23 -1.54 NA NA -2.25 NA -1.77 -1.56 -1.83 -2.36 NA -1.97 NA 

GB_ACH-001609 NA -2.15 NA NA -2.09 NA -1.22 -1.20 -1.76 -2.24 NA -2.95 NA 

GB_ACH-001610 NA -1.72 NA NA -2.00 NA -1.69 -1.23 -1.86 -1.91 NA -1.49 NA 

GB_ACH-001611 NA -1.52 NA NA -1.56 NA -1.17 -1.19 -1.53 -2.25 NA -2.19 NA 

GB_ACH-001622 NA -1.91 NA NA -2.06 NA -1.07 -1.14 -1.04 -2.34 NA -3.00 NA 

GB_ACH-001623 NA -1.91 -1.30 NA -2.02 NA -1.36 -1.14 -1.18 -2.21 NA -2.96 NA 

GB_ACH-001624 NA -2.07 NA -1.01 -1.59 NA -1.39 NA NA -1.40 NA -2.67 NA 

GB_ACH-002228 NA -1.40 NA NA -1.57 NA -1.47 -1.72 -1.35 -2.41 NA -2.44 NA 

GB_ACH-002229 NA -1.75 NA NA -1.81 NA -1.17 -1.26 -1.45 -1.80 NA -2.60 NA 

GB_ACH-002230 -1.08 -2.28 NA NA -2.08 NA NA NA NA -1.93 NA -2.60 NA 

GB_ACH-002680 NA -1.98 NA -1.40 -2.37 NA -1.38 -1.13 -1.41 -2.43 NA -2.74 NA 

 



 

 

  



5. DISCUSSION 

 

The gliomas present massive challenges in terms of innovating new treatment 

strategies despite the efforts put forth by researchers in recent years (Sanders & 

Debinski, 2020). The co-expression patterns of genes in cancers have become a new 

trend in identifying the targetable entities (Yi et al, 2020). Therefore, initially we 

investigated the co-expression profiles and their differences between different 

subtypes of LGG based on IDH mutation status and to explore the common pathways 

between these subtypes.  

Even though these subtypes belong to LGG, the survival rate and the 

progression of the disease are significantly dissimilar for LGG with IDH mutation 

status (Sharma & Graber, 2020). The LGG with IDH1 mut, pTERT wt and 1p19q-co-

deleted genotype has the best chance of survival (Aoki et al, 2018). The overall 

survival shortenst with only incorporation of pTERT mutations on the aforementioned 

genotype (Eckel-Passow et al, 2015). Therefore, these genotypic traits are important 

to consider while exploring either genotypic or transcriptomic profiles of gliomas.  

In this study, we explored the discrepancies between transcriptomic profiles of 

LGG subtypes and incorporated the perspective of co-expression data to identify the 

shared biological pathways that significantly differ between the normal samples and 

LGG subtypes, and further looking at the differentiating features from one subtype to 

another (clinical parameters). Furthermore, the tumors belonging to CNS were 

previously characterized on the basis of histological parameters; however, with the 

advances and popularization of NGS and high throughput methodologies, the 

molecular profiling or characterization of complex disorders has become possible 

(Varghese et al, 2017). 

The genetic subtypes especially in the cases of gliomas such as IDH mutation 

parameter being a biomarker of the disease, can further assist in understanding the 

molecular heterogeneity of the cancers by utilizing sequencing data (Carter et al, 

2017). It can further be utilized in understanding the oncogenic drivers which can be 

targeted at the earliest stages to combat the worse prognosis associated with eventual 

progression to GBM (Lim-Fat et al, 2022). Therefore, we utilized datasets detailing 

the transcriptomics and DNA methylation events at genomic scale to arrive at specific 

conclusions in our study regarding the biological pathways, targetable genes with 



specific drugs, and how the integration of transcriptomics and DNA methylation can 

guide in understanding the diverse profiles of LGG subtypes. 

 

5.1. Subtype Specific Co-expression Modules and Their Enrichment Analysis 

 

 The clinical features of interest were correlated with different modules from 

the weighted gene co-expression analysis performed. Our analysis showed that Chr7 

gain, which is associated with EGFR amplification and Chr10 loss, which is linked 

with PTEN deletion (Stichel et al, 2018), are not associated with either IDH wt or IDH 

mut subtypes of LGG. Although these clinical features have been extensively studied 

and may be clinically relevant, Sienkiewicz et al. found that these features are not 

enough to be used in diagnosis as well (Sienkiewicz et al, 2022).  

The module-trait relationship plots are shown in Figures 4.3a-b. Moreover, for 

IDH mut subtype, pTERT mutation status as a clinical feature was positively 

correlated with five co-expression modules in our study and negatively correlated with 

only two modules (white and GreenYellow module). This feature has been linked with 

the prognosis of LGG for IDH wt subtype as well (Aoki et al, 2018); therefore, the co-

expression modules negatively correlating with IDH mut indicates that this set of 

genes are inactive in IDH mut, which is less aggressive form of LGG.  IDH wt subtype 

had four negatively correlated and two positively correlated co-expression modules 

for pTERT mutation status. Here, the modules of interest are positively correlated ones 

(blue, green). In IDH mut samples, TERTexp.status feature was positively correlated 

with three modules (Blue, Green and Salmon) and negatively correlated with two 

modules (White and GreenYellow). Moreover, in IDH wt samples, TERTexp.status 

was not positively correlated with any module based on our threshold values, but found 

as negatively correlated with only one module (Turquoise).  

 Dono et al. identified patients of gliomas with IDH wt subtype and BRAF 

V600E mutation have the potential to be given BRAF-targeted therapies (Dono et al, 

2020). Therefore, BRAF V600E mutation status was explored in IDH wt subtype for 

co-expression based analysis and according to our correlation criteria (less than -0.5 

or more than 0.5); the co-expression modules were not correlated with IDH wt LGG 

samples. Braf protein functions in cellular growth and V600E mutation in BRAF gene 

is associated with tumor metastasis for different brain tumors including GBM, 

ganglioma, and astrocytomas (Sithanandam et al, 1990; Davies et al, 2002; Kaley et 



al, 2018). Based on our analysis of BRAF mutation status, there are no or few co-

expressed targets that can be identified and targeted together if BRAF inhibitors are 

utilized as intervention therapy for IDH wt LGG patient. 

The GBM and oligodendrogliomas represent opposite prognosis, but both 

types possess pTERT mutations (Aoki et al, 2018); therefore, IDH wt and IDH mut 

LGGs were explored in our study further with regard to pTERT mutation status for 

selecting modules of interest (based on cut-off of correlation values). Subsequently, 

enrichment analysis was performed on such modules for identifying the enriched 

pathways associated with individual modules based on weighted co-expression, which 

are shown in Table 4.1. 

Immune-related pathways were enriched in IDH wt Salmon and Yellow 

modules having negative correlation with pTERT status, meanwhile IDH mut Blue 

module showing positive correlation with pTERT was enriched for immune system 

related pathways. The tumor associated responses from the immune system for 

differing oncogenic profiles (Berghoff et al, 2017) along with the heterogeneous tumor 

microenvironment (Anderson et al, 2021) explains the correlation variance for immune 

related pathways being regulated differently, which could possibly explain our 

findings  regarding the pTERT mutation statuss. 

The synaptic pathways were shared among Green and Blue modules which are 

positively correlated with pTERT mutation status in IDH wt subtype. Moreover, the 

GreenYellow module in IDH mut subtype was also enriched for synaptic pathways 

but was negatively correlated with the status of pTERT mutation. A study exploring 

DNA methylation status and molecular profiling discovered that IDH wt LGG exhibit 

the activation of synaptic pathway (Ceccarelli et al, 2016), however, our analysis is 

the first of its kind which investigated co-expression modules to identify that synaptic 

pathways are linked with pTERT mutation status in IDH wt LGG.  

The IDH wt Blue pTERT positively correlated and IDH mut GreenYellow 

pTERT negatively correlated modules contained 13 shared pathways as shown in the 

Table 4.2. The Glutamatergic synapse pathway of both modules contained Glutamate 

ionotropic receptor NMDA type subunits. NMDA receptor mediated signaling has 

been associated with invasive nature and proliferation of glioma and glioblastoma cells 

(Ramaswamy et al, 2014; Müller-Längle et al, 2019). However, Glutamate ionotropic 

receptor AMPA type 1 (GRA1) was a component of IDH wt blue models and was 

absent in GreenYellow module, which is known to facilitate the growth and 



cytoskeletal regulation in glioma cells (Wirsching & Weller et al, 2020). This data 

indicates that in IDH wt pTERT mutant-correlated LGG, the activity of NMDA type 

receptors play a role in oncogenic transformation. However, in IDH mut pTERT 

mutant negatively correlated LGG, GRA1 mediated signaling is activated. This data 

can assist in differentiating the molecular subtypes of LGG further at the 

transcriptomics level. 

 

5.2.  DEGS from Module of Interest 

 

 After exploring the clinically relevant modules and their pathways along with 

the parameters of IDH mutation and pTERT mutation, we further investigated the 

differentially expressed genes (DEGs) between normal samples and LGG IDH wt or 

between normal and IDH mut samples; then mapped these genes on the relevant final 

module of interest (IDH wt Blue). Since the IDH wt Blue module was correlated with 

pTERT mut status in both IDH wt and IDH mut samples, this type of analysis assists 

in understanding the transcriptionally active or inactive genes correlating with the 

clinical features.  

After mapping the DEGs, we observed that GNG12 was upregulated and 

PLCB1, GRIA2, GABRA3, and GNAL were downregulated in the IDH wt Blue module, 

furthermore these were absent in the IDH mut GreenYellow module. Interestingly, the 

downregulated genes were also downregulated in our Normal vs IDH wt and Normal 

vs IDH mut LGG analyses. Therefore, we postulate that these are the hub genes based 

on co-expression analysis and relevant with IDH and pTERT mutation status in LGG 

samples. 

 GNG12 has been associated with metastases, differentiation and cell division 

along with other tumor promoting pathways and belongs to the G-family of proteins 

(Morishita et al, 1995; Luo et al, 2018). Liu et al. has recently identified GNG12 as 

not only a novel biomarker for glioma but GNG12 can also be utilized in targeted 

therapy as well (Liu et al, 2022). Our analysis also revealed that GNG12 expression 

was correlated with severity of LGG indicated with lowest expression in normal 

samples and highest in IDH wt LGG. This finding is significant from the perspective 

of this independent study as our data can be utilized for clinical relevancy as it is 

validated from other investigations. 



 A G-protein alpha subunit stimulatory protein GNAL was found downregulated 

among our DEGs, which has already been identified as one of the 24 genes linked with 

prognosis of glioma with an inverse correlation of its expression with glioma grades 

(Zhang et al, 2020). In our analysis, GNAL expression was highest in normal samples 

and downregulated in IDH mut with lowest expression in LGG IDH wt samples. This 

data further validates our findings. Another downregulated gene GABRA3 (Gamma-

amino butyric acid receptor alpha subunit 3) has also been identified in an independent 

study as downregulated in glioma, where its loss has been associated with invasion 

and metastasis of glioma (Patil et al, 2020). Patil et al utilized the Cancer Cell Line 

Encyclopedia glioma data and TCGA data in their analyses, further implying that our 

study produced validated results. 

 Glutamate ionotropic receptor AMPA type subunit 2 (GRIA2) has been studied 

extensively in glioma and glioblastoma cells with invasive behavior of cells linked 

with higher expression levels of GRIA2 (Oakes et al, 2017; Zhang et al, 2018; Hu et 

al, 2020). However, AMPA receptor expression (GRIA1-4) was negatively correlated 

with glioma grade in one study, with RNA editing of GRIA2 depending on the 

glutamate environment of the cells (van Vuurden et al, 2009). In our study, we found 

GRIA2 to be among the downregulated cohort of genes, which is interesting. 

Moreover, GRIA2 being enriched in Blue module only and not in GreenYellow, 

indicates that there is a difference in how GRIA2 is regulated among different subtypes 

of LGG. AMPA receptors are involved in regulation of calcium homeostasis via 

activation of the Akt pathway (Ishiuchi et al, 2007).  

The inhibition of the Akt pathway in combination with ERK has been 

identified as a synergistic and potent inhibitor of glioma (Wu et al, 2017). The 

glutamatergic synapse pathways are involved in ERK regulation via PKC and 

Phospholipase C beta 1 (PLCB1). We identified PLCB1 as downregulated in IDH wt 

LGG as compared to IDH mut LGG and normal samples. Moreover, PLCB1 was also 

discovered as downregulated in glioblastoma as compared to normal samples recently 

(Marvi et al, 2022). The low expression of PLCB1 has been significantly associated 

with poor survival of GBM (Cai et al, 2022). Therefore, the gene signature of 

downregulated GNAL, GABRA3, GRIA2, PLCB1 and upregulated GNG12 presents a 

unique opportunity as a result of this study for researchers to explore in the biomarker, 

diagnosis, prognosis, and therapeutic intervention of LGG based on its molecular 

subtypes. 



  

5.3. Interaction of Identified Gene Signature with Known Drugs 

 

 After identifying the gene signature associated with the progression of LGG, 

we investigated the drugs that can be used to target this signature for best utilization 

with the aim of inactivating the upregulated GNG12 and activating the downregulated 

PLCB1, GRIA1, GABRA3, and GNAL. The comprehensive analysis is shown in Table 

4.4. We identified four drugs namely Vemurafenib, Vanadium Pentoxide, Imatinib, 

and Cisplatin, which targeted four out of five genes in our gene signature. 

 Temozolomide and Cisplatin have been investigated for combined treatment 

against recurrent GBM with acceptable toxicity and active performance (Wang et al, 

2017). Temozolomide is used against glioma, however the treatment leads to 

resistance and eventual recurrence (Daniel et al, 2019). Cisplatin has been used with 

other drugs for incurring synergistic effects (Macieja et al, 2019; Zhai et al, 2021) but 

not with other drugs targeting our gene signature such as Imatinib and Vanadium 

Pentoxide. Moreover, Imatinib is known to elicit autophagy and subsequent 

cytotoxicity in glioma cells (Shingu et al, 2009) and has been used for investigating its 

synergistic potential with other drugs (Lu et al, 2020) and also against GBM (Rashidi 

et al, 2020). However, the combination of Imatinib with other drugs targeting our gene 

signature has not been investigated and provides an opportunity to researchers to 

explore this new targeted approach. 

 Vanadium Pentoxide has not been investigated to date directly in treating 

glioma, but its effect on cancer cell lines and animal models has been studied (García-

Rodríguez et al, 2016; Zwolak, 2014). Furthermore, Vanadium-based nanoparticles 

have been explored in cytotoxicity and drug encapsulation studies with modest results 

(Guo et al, 2020), however, the direct use of Vanadium Penoxide is yet to be 

investigated. Vemurafenib is known to target the BRAFV600E in pediatric glioma 

(Bautista et al, 2014) and LGG (Del Bufalo et al, 2018) in a Phase I clinical study 

(Nicolaides et al, 2020) with high grade glioma leading to resistance (Lehmann et al, 

2022). Vemurafenib was combined with Cobimetinib in a study against GBM with 

positive outcome in a recent study (Rajan et al, 2023). It was also combined with 

Cobimetinib, and Dabrafenib and Trametinib in patient derived pediatric LGG cells 

(Usta et al, 2020). However, the combination of Vemurafernib in similar models or 



patients with aforementioned identified drugs targeting our gene signature is yet to be 

performed.  

 Although imatinib shows poor penetration through the blood brain barrier 

(BBB) (Takayama et. al., 2002), Bihorel et al. (2007) demonstrated that combining 

imatinib with P-gp (and Bcrp1) transporter inhibitors like elacridar may increase 

imatinib's brain delivery and increase its ability to treat malignant gliomas. In addition, 

Durmus et al. (2012) showed that brain penetration of Vemurafenib can be enhanced 

with elacridar coadministration. Vanadium (V) crosses the BBB (Avila-Costa et al. 

2015). Dorado-Martínez et al. showed that Vanadium Pentoxide (V2O5) induced death 

in Alzheimer-like cells in rats through cytoskeletal and synaptic alterations. According 

to pharmacokinetic analyses in nonhuman primates, cisplatin and carboplatin only 

partially penetrate the CNS (3.7% and 2.6%, respectively) (Jacobs et. al. 2005). Zhang 

et. al. (2017) has shown that cisplatin-loaded nanoparticles (70 nm in diameter) 

penetrate deeper into the brain with local administration by either manual injection or 

convection-enhanced delivery (CED). The drugs prioritized in this study might have 

poor or limited BBB penetration, which is one of the grand challenges in glioma 

treatment, but drug delivery systems such as nanoparticles, convection-enhanced 

delivery, focused ultrasound, and disruption of the BBB using microbubbles might be 

helpful to combat this issue in the future applications (Arvanitis et. al. 2020, Wen et. 

al., 2020, Drappatz et. al., 2013, Idbaih et. al., 2019). 

 

5.4. Methylation Data Integration with Transcriptomics Data 

 

 After identifying the gene signature based on co-expression analysis and 

exploring DEGs among different subtypes of LGG and drugs that can target the gene 

signature comprehensively, we aimed to investigate the alterations occurring at DNA 

methylation levels among different subtypes of LGG. Since DNA methylation is 

directly involved in regulating the gene expression and co-expressed genes can be co-

regulated with common epigenetic factors functioning in DNA methylation profiles 

(Yang et al, 2017), this analysis can be integrated into our processed transcriptomics 

data as well.  

Before processing the DNA methylation data, we explored more normal 

samples to get enriched data to be compared with cancer samples in our study. In the 

previous analysis exploring the co-expression data, we had 5 samples belonging to the 



normal group for analyzing the differentially expressed genes and then mapped them 

onto the genes contained in specific modules. Therefore, we repeated the DEGs with 

normalized samples from the GTEx database and included them in our analysis 

compared with TCGA LGG samples (Table 4.5). In short, we analyzed the 4 subtypes 

1) IDH mut pTERTmt Chr1p19q codel 2) IDH mut pTERTwt Chr1p19q noncodel, 3)  

IDH wt pTERTmt Chr1p19q noncodel, 4) IDH wt pTERTwt Chr1p19q noncodel. 

After conducting the DEG analysis, we explored the differentially methylated regions, 

which were later explored to arrive at the hypo- or hyper-methylated genes.  

Each subtype explored in our study showed a subset of DEGs, but the most 

aggressive subtype of LGG with IDH wt pTERT mut showed the most downregulated 

genes. This data is consistent with our previous DEG analysis performed with normal 

samples from TCGA GBM data. In our differentially methylated genes analysis, we 

observed that IDH mut subtypes showed a significantly higher proportion of 

hypermethylated genes, which has been studied in literature as well (Unruh et al, 2019; 

Braun et al, 2021). The CpG island hypermethylation is associated with epigenetic 

alterations occurring at genomic level due to IDH mutation has already been reported 

(Noushmehr et al, 2010).  

The number of hypomethylated genes observed in IDH wt pTERT mut subtype 

as compared to normal samples was significantly higher as compared to other subtypes 

when compared with normal samples (Table 4.6). Genome instability has been linked 

with DNA hypomethylation (Ehrlich & Lacey, 2012), which can result in more 

aggressive phenotype in cancer cells (Yao & Dai, 2014). The role of DNA 

hypomethylation has been reviewed recently in the context of glioma where the 

emphasis on chromatin regulation was made, in order to identify the heterogeneity 

associated with different subtypes of gliomas (Dabrowski & Wojtas, 2019). 

Furthermore, the Akt signaling pathway has also been associated with DNA 

hypomethylation in glioma (Briand et al, 2019), which we discussed in our analysis of 

gene signature being involved in the intersection with Akt signaling. The detailed 

analysis of differentially methylated genes are shown in Figure 4.10 showcasing the 

subtype specific genes driven through differential methylation status.  

These subtype specific MDGs were enriched for biological pathways (Table 

4.8). The subtype specific or shared MDGs for the explored subtypes showed 

enrichment for CNS specific pathways or major signaling pathways we identified in 

our previous analysis for co-expression modules. However, interestingly, the 



hypomethylated and overexpressed genes for IDH wt pTERT mut subtype which is 

the most aggressive subtype, were enriched for immune-related pathways. The pTERT 

alteration and its associated effects has been associated with the tumor 

microenvironment and changed signaling referring to immune evasion for gliomas and 

GBM (Olympios et al, 2021).  

Moreover, the hypermethylated and downregulated genes for IDH wt pTERT 

mut were enriched for neuroactive ligand-receptor interaction pathways, implying that 

the aggressive oncogenic transformation in glioma is associated with over activation 

of ligand-receptor mediated signaling. Recently, MD2 was observed as a biomarker 

for immune infiltration for gliomas, with MD2 mediated neuroactive ligand-receptor 

interactions for T cell co-stimulation as a differentiating factor (Zhao et al, 2022). 

Therefore, our analyses revealed that the most aggressive subtype of LGG based on 

IDH and pTERT mutation status (IDH wt pTERT mut) has differential response to 

immune related pathway and neuroactive ligand receptor interaction based pathways, 

as an underlying feature at both transcriptome and DNA methylation level, leading to 

tumor heterogeneity and consequent aggressiveness and worse prognosis. 

 

5.5. Network Construction based on MDGs + Modules of Interest and Essential 

Epifactor Analysis 

 

We further explored our WGCNA-based co-expression analysis in the context 

of DMGs to investigate the co-expressed and co-methylated cohorts.The MDGs were 

mapped onto the co-expressed cohorts (modules) as shown in Figure 4.10a-b. The 

mapped IDH wt pTERT+ Blue module genes were mostly co-hypomethylated and 

IDH mut pTERT- GreenYellow module genes were co-hypomethylated. This data 

supports the hypothesis that the DNA methylation profiles can serve as a 

differentiating factor for further characterizing the LGG subtypes that are already 

based on genetic alterations. The subnetworks obtained as a result of our analyses 

inform us that the DNA methylation has a role in regulation of the genes that are co-

expressed and can be targeted for specific subtypes. 

Since, the aforementioned subnetworks associated with modules of interest are 

specific with MDGs incorporated onto co-expressed genes, we further explored their 

neighbors to construct a more biologically interpretable network containing nodes that 

can be targeted. Therefore, we included epigenetic factor protein complexes (also 



known as epifactors) in our analysis to illustrate the comprehensible subtype module 

or subtype specific network. The number of complexes with nodes and edges for 

subtype specific networks and their statistics are displayed in Table 4.9. This analysis 

resulted in targetable entities which are involved in regulation of both DNA 

methylation and also the co-expressed genes extracted from transcriptomics data 

which are associated with specific subtypes of LGG based on IDH mutation status and 

its correlation with pTERT mutation status. 

The IDH mut pTERT- subtype (least aggressive subtype among the ones 

investigated) co-expression module of interest with incorporated MDGs showed 

targetable Epifactors such as HDAC1, BRCA1, CTBP1, PRMT5, PPP4C, and 

CSNK2A1 (Figure 4.12b). Furthermore, the IDH wt pTERT+ subtype (most aggressive 

subtype among the ones investigated) co-expression module of interest with 

incorporated MDGs showed more targetable Epifactors such as CBX3, PRMT5, 

KDM1A, HDAC1, CTBP1, CSNK2A1, ACTL60, EPC1, BRCA1, ACTB, HCFC1, 

ACTL6A, and MIS18A among others. Recently, in high grade gliomas, the Epifactors 

were screened and identified using CRISPR screening method, and targeted to 

illustrate the importance of these factors in targeting the brain tumors (Wenger et al, 

2023), however, for LGG and adult GBM, such an approach has not been utilized. As 

a consequence of our study, we propose that the Epifactors can be identified as 

potential targets for LGG as these factors regulate the genes expressed together in a 

subtype specific manner. 

Lastly, we performed perturbation analysis on the Epifactors that are common 

for all the subtypes we explored in our analysis for LGG. Thirteen Epifactors were 

screened for perturbation effects in 66 models of diffuse glioma. We identified a 5-

Epifactor signature (ACTL6A, HCFC1, RUVBL1, PRMT5, and  WEE1), which can be 

considered essential for cell survival (Table 4.10). Interestingly, PRMT5 was shared 

across all subtypes of LGG used in all analyses across our study with WEE1 common 

for only IDH wt subtypes regardless of pTERT mutation status. PRMT5 is a protein 

arginine methyltransferase which acts in the methylation of both histones and non-

histone proteins for regulating the gene expression (Pollack et al, 2009; Branscombe 

et al, 2001). It also affects the stability, recruitment, and activity of different 

transcription factors (Koh et al, 2015). PRMT5 inhibition has been investigated as a 

potential therapeutic intervention in glioblastoma with positive outcomes in targeting 

cancer stemness (Yan et al, 2014; Banasavadi-Siddegowda et al, 2018; Sachamitr et 



al, 2021). In glioma, the expression of PRMT5 has been associated with malignancy 

of the tumor (Han et al, 2014) and its interaction with HOXC10 leading to upregulation 

of VEGFA as a mechanism of inducing malignant behavior (Tan et al, 2018). 

Moreover, in glioblastoma, the inhibition of PRMT5 can lead to increased sensitivity 

to mTOR inhibition for targeting cancer cells (Holmes et al, 2019). However, there is 

a dearth of literature concerning the mode of action of PRMT5 in gliomas, therefore 

our study revealing PRMT5 as a common essential Epifactor observed in all clinically 

relevant co-expression modules of LGG subtypes observed, makes it a prime target 

that can be utilized in therapeutic strategies.  

Wee1 protein, encoded by the WEE1 gene, functions in the regulation of G2/M 

checkpoint of the cell cycle, and is overexpressed in many cancers and considered a 

potential target for therapy with many clinical trials underway (Vakili-Samiani et al, 

2022). In glioblastoma, both genetic and pharmacological inhibition of WEE1 has been 

associated with sensitivity of cancer cells to ionizing radiation leading to mitotic 

catastrophe, further implying that WEE1 is a potent target for brain tumors (Mir et al, 

2010). WEE1 is overexpressed in many cancers including glioblastoma (De Witt 

Hamer et al, 2011). Caretti et al in 2013 showed that WEE1 inhibition using MK-1775 

leads to enhanced response to radiation in the xenograft model of diffuse intrinsic 

pontine glioma (Caretti et al, 2013). In high Grade gliomas, a specific inhibitor of 

WEE1 MK-1775 in combination with radiation treatment was proposed as a targeted 

therapy option with promising results (Mueller et al, 2014). MK-1775 has been used 

in combination with Temozolomide to study the heterogeneous distribution across the 

blood brain barrier, which indicated the limited distribution to brain tumors (Pokorny 

et al, 2015; Lescarbeau et al, 2016). Therefore, other ways of delivery may be explored 

to utilize this compound in clinical settings against glioblastoma. In glioblastoma, 

WEE1 is considered a prognostic marker and in glioma, its expression was correlated 

with MGMT status (Music et al, 2016). Adavosertib, a WEE1 inhibitor in synergy with 

cranial radiation therapy (CRT)  has been utilized in a Phase I consortium study against 

diffuse intrinsic pontine glioma (Mueller et al, 2022). An integrated analysis using 

only DNA Damage and Repair (DDR) related genes in DEG analysis for LGG showed 

that WEE1 is associated with IDH mutation status (Pang et al, 2020). Our independent 

study initiating from clinically relevant co-expression modules based on IDH and 

pTERT mutation status and integration with DNA methylation profiles with 



subsequent Epifactor analysis resulted in identifying WEE1 as a IDH wt specific 

Epifactor complex, which can be targeted for LGG therapy.  

 

 

 

 

 

  



6. CONCLUSION 

 

Gliomas present challenges as they subsequently progress from lower grade to 

higher grade forms of the disease with worse prognosis for patients. With high-

throughput data and analysis techniques available to researchers, the molecular 

signatures of the disease can be deciphered with the goal of finding pathways or targets 

that can be readily targeted for incorporation in treatment strategies. Therefore, we 

designed a bioinformatics pipeline to investigate the clinical data available from the 

relevant databases in order to explore the common pathways shared between different 

molecular subtypes of LGG. We further identified the enriched pathways associated 

with the co-expression modules and identified the drugs that can target a cohort of 

targets based on our investigation. We further implemented DNA methylation analysis 

to discover the altered methylation profiles associated with different subtypes of LGG 

and integrated our analysis with transcriptomics data. This deep analysis exercise was 

further enhanced by incorporating the epigenetics-based interactome analysis to fınd 

the potential Epifactors enriched in a subtype specific manner and can be used as direct 

targets in intervention strategies. Our initial findings based on co-expression modules 

of LGG subtypes were already established in the relevant literature and suggested that 

co-expression based modules associated with clinical subtypes of IDH mutation status 

and pTERT mutation status can differentiate the subtypes based on co-expressed 

genes, which are enriched in synapse-related or immune-related pathways. We further 

arrived at a gene signature of upregulated GNG12 and downregulated PLCB1, GRIA2, 

GABRA3, and GNAL after mapping DEGs on our co-expression modules constructed 

using WGCNA. Based on our analysis, we identified four drugs Vemurafenib, 

Vanadium Pentoxide, Imatinib, and Cisplatin, that can target four out of five genes in 

our gene signature simultaneously. These findings have direct implications in 

developing clinical and pre-clinical intervention strategies for aggressive LGG IDH 

wt pTERT mut patients having the worse prognosis. 

We further explored the LGG samples and compared the DNA methylation 

profiles of normal samples incorporated from different datasets with appropriate 

normalization techniques. We integrated the hyper and hypo-methylated genes with 

differentially expressed genes from different subtypes of LGG and observed a higher 

number of hypomethylated genes in IDH wt pTERT mut subtype as compared to 

normal samples. To arrive at biologically interpretable insights from DNA methylation 



integration with co-expression modules, we found the co-expressed and co-methylated 

cohorts and explored their neighbors to construct the networks associated with 

different genetic subtypes of LGG. The epigenetic factors of the individual networks 

were then investigated to find the targetable entities for each subtype. This deep 

analysis converged on two targets which can be utilized in further studies in 

combination with aforementioned drugs to aggressively treat the LGG tumors. PRMT5 

was found to be enriched in all subtypes as a methylator factor, and therefore can lead 

to a broad target for brain tumors and has already been explored in clinical studies. 

Interestingly, WEE1 was discovered as a LGG IDH wt specific target in our analysis, 

and its inhibitors has been explored against high grade gliomas, but LGGs with IDH 

wt having worse prognosis can be targeted using WEE1 inhibitors as well. Therefore, 

this multi-omics approach of integrating transcriptomics and DNA methylation high 

throughput data provided us with a narrow gene signature that can be targeted with 

already established drugs and also unique targets which can be targeted in combination 

with established drugs against different types of LGG or GBM.  

 

 

 

 

 

 

 

 

 

 

 


