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FALL DETECTION AND ACTIVITY RECOGNITION 

 

ABSTRACT 

 

     Recently the problems connected with the ageing population all over the world 

have become more and more severe. Many projects have been developed to enable 

people to live longer in home environment, thus keeping their independence together 

with reducing the expenses of the public health care. Falls are dangerous for the aged 

population as they can adversely affect health; it can result in critical injuries like hip 

fractures. Immobilization caused by injury or unconsciousness means that the victim 

cannot summon help themselves. The most common falls occur when the person is 

alone and unable to get up, resulting in long lies which are associated with 

institutionalisation and high morbidity-mortality rate. The feeling of fall increases the 

anxiety and the depression in the elderly. Hence, an automatic fall detection system 

is an important setting. Though various pilot applications and commercial fall 

detection systems exist, the real-life validation of these systems is scant.  

 

     Our study has focused on developing new method for detection of fall to be 

adapted for real-life applications among older people. Fall detection system has the 

capability of automatically discriminating between a fall-event and an activities daily 

living (ADL). In this study, a wearable monitoring device, based on tri-axial 

accelerometer and gyroscope, is placed at the centre of the chest to collect real-time 

fall data. Also, it consists of Bluetooth module that links wirelessly with a laptop and 

GPS (Global Positioning System) module to inform medical attention using location 

information of the victim. The proposed algorithm, coupled with accelerometers and 

gyroscopes, reduces both false positives and false negatives, while improving fall 

detection accuracy. The proposed solution features low computational cost and real-

time response. 

 

Keywords: Acceleration, gyroscope, fall detection, angular velocity  
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DÜŞME TESPİTİ VE AKTİVİTELERİN BELİRLENMESİ 

 

ÖZ 

 

     Son yıllarda yaĢlı insanlarla ilgili problemler giderek daha da önem 

kazanmaktadır. Bu insanların ev ortamında yalnız rahatça yaĢayabilmeleri, bağımsız 

hareket edebilmeleri ve sağlık masraflarını düĢürmeleri amacıyla birçok proje 

geliĢtirilmiĢtir. Bu problemlerin baĢında düĢme olayları gelmektedir ve bu düĢme 

durumu kalça kemiği kırılması gibi insan sağlığını ölümcül derecede etkileyecek 

sonuçlar doğurmaktadır. DüĢme sonucu meydana gelen sakatlanma veya bilinç 

kaybından dolayı insan hareket edebilme kabiliyetini kaybeder ve yardım 

çağıramayacak duruma gelebilir. Bu insanların düĢmeye bağlı olarak uzun süre yerde 

hareketsiz kalması sakatlanma ve ölüm oranlarını ciddi Ģekilde artırmaktadır. Bu 

düĢme olayları ayrıca yaĢlı insanlarda korku, endiĢe ve depresyon gibi psikolojik 

etkiler yaratmaktadır. Bu düĢüncelerden yola çıkarak gerçek zamanlı otomatik düĢme 

tespiti yapan cihazlar çok önemli hale gelmektedir. Bu cihazlarla ilgili ticari hale 

gelmiĢ veya deneme aĢamasında olan çalıĢmalar olmasına rağmen halen daha 

günümüzde yaygın olarak kullanılmamaktadır.      

 

     Bizim çalıĢmamız düĢme tespiti konusunda yeni bir metot ve güçlü bir düĢme 

algoritmasına sahip düĢme tespiti cihazı geliĢtirmeye odaklanmıĢtır. DüĢme tespiti 

cihazımız günlük aktivitelerimizle (yürüme, koĢma, oturma vb) düĢme olayını ayırt 

edebilme kabiliyetine sahiptir. Bu cihaz insan vücudunda göğüs boĢluğuna 

yerleĢtirilebilir Ģekilde tasarlanmıĢ olup, gerçek zamanlı düĢme verilerini almak için 

ivme ve jiroskop algılayıcıları kullanmaktadır. Ayrıca bu verileri bilgisayar ortamına 

aktarmak için Bluetooth cihazı kullanılmıĢtır. Buna ek olarak düĢen kiĢiye tıbbi 

yardım götürebilmek için konum bilgileri GPS cihazı kullanılarak alınmaktadır. 

Bizim algoritmamız ivme ve jiroskop verilerini birlikte kullanarak düĢme tespitini 

daha doğru ve kesin bir Ģekilde gerçekleĢtirmeyi amaçlamaktadır. Ayrıca bu sistem 

gerçek zamanlı olup, düĢük hesaplama yüküne sahiptir.              

 

Anahtar kelimeler: Ġvme, jiroskop, düĢme tespiti, açısal hız 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

  

     The proportion of older population aged over 65 years is growing rapidly in most 

countries. In 2035 one third of the Europeans will be over 65 years old (Ambient 

Assisted Living Joint Programme, 2008; Communication from the Commission to 

the European Parliament 2010; COOP- 005935-HEBE, 2006). People over age 65 in 

the United States are expected to hit 70 million by 2030. Statistics show that about 

one third of home-dwelling older people fall each year (Tinetti, et al., 1988). Falls 

are the leading cause of deaths by injury for the older population. People who have 

fall injuries suffer moderate to severe injuries, such as, lacerations, soft tissue 

injuries, hip fractures, or head traumas. These injuries can make it difficult for those 

to get around, live independently, and can increase their risk of an early death. 

Besides physical injuries, falls may have other negative outcomes through resulting 

in or increasing fear of falling that affects the quality of life among older people. 

Also, these outcomes force older people to live bedridden together with threatening 

their independent life and restricting their mobility and social activities (Suzuki, et 

al., 2002; Yardley & Smith 2002). 

 

     Older people are afraid of remain lying and being unable to get up after falling 

(Melander-Wikman, et al., 2007), and in reality, around half of fallers were not able 

to get up by themselves or summon help after the fall (Bueno-Cavanillas, et al., 

2000). On average, fallers lie helplessly for more than 10 minutes after a fall, and in 

3% of non-injurious fall cases the faller had been waiting for more than one hour 

before getting help (Tinetti, et al., 1993). Lying in long period can increase duration 

and cost of hospitalisation, institutionalisation and high morbidity-mortality rate 

(Gurley, et al., 1996; Tinetti, et al., 1993). 

 

     Many fall detection systems have been developed to support independence and 

safety of older people (Brownsell & Hawley, 2004; Melander-Wikman, et al., 2007). 
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To prevent long lies commercially available personal emergency response systems 

(PERS) provide applications to call for help. However, in the case of an emergency, 

the person may be unable or unwilling to activate the PERS alarm. According to 

some reports, around 80% of older people wearing PERS and being unable to get up 

after a fall did not use their alarm system to call for help (Fleming, et al., 2008a; 

Heinbüchner, et al., 2010). In such cases an automatic fall detector could detect a fall 

and call for help automatically. Hence, a highly accurate fall detection system is an 

important setting. 

 

     Some commercially available automatic fall detection systems exist, typically 

applying accelerometer based detection methods and attachment sites at the waist or 

wrist as summarized by Noury, et al., (2008). However, most fall detection 

applications in the literature are prototypes or applications for research purposes 

(Bourke, et al., 2007a; Diaz, et al., 2004; Karantonis, et al., 2006; Lindemann, et al., 

2005; Mathie, et al., 2004a; Yoshida, et al., 2005). They are usually designed and 

tested with data collected from intentional falls and activities of daily living from 

young test persons in a laboratory environment.   

 

     Body movements of elderly people may differ from younger people usually. They 

typically have less control over the speed of their body movements due to reduced 

muscle strength with old age. Their movements produce higher peak accelerations 

when performing certain ADL (Activities Daily Living). This situation leads to 

increased false positives. If ADL-based measurements can be performed using 

elderly subjects, robustness of the test methodology would increase. As a result, 

though good fall detection sensitivity and specificity in laboratory settings has been 

reported, acceptability and usability of these systems in real life is still scant or 

missing because of their size and uncomfortable to wear. Other restrictive case for 

fall detection systems is that self-initiated intentional falls differ from sudden 

unexpected falls. So far, only few reports exist on data from real-life falls. Thus, real-

life data on falls among elderly subjects is important for studying fall mechanism 

even though it is difficult to ask them.  
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1.2 Outline of Thesis 

 

     Chapter 1 presents an introduction to the project.  

 

     Chapter 2 is interested in materials and its features of the proposed wearable fall 

detection monitoring system. It also explains obviously how to configure these 

devices. 

 

     Chapter 3 gives information about hardware and software implementation of the 

proposed wearable fall detection monitoring system. In hardware implementation 

section, OrCAD schematic and layout procedures of the system are given shortly. In 

software implementation section, mbed Compiler, I²C serial communication protocol 

and asynchronous serial communication protocol (UART) are explained step by step. 

These serial communication protocols are used to transfer data between 

microcontroller unit and other devices such as accelerometer, gyroscope, GPS 

module and Bluetooth. 

 

     In chapter 4, fall detection algorithm parameters are illustrated step by step. These 

are threshold based analysis for acceleration magnitude and angular velocity, vertical 

velocity estimate analysis and body posture analysis. Also, four phases of fall event 

are described in detail. In addition, the proposed fall detection algorithm of wearable 

fall detection monitoring system is explained step by step.  

 

     In chapter 5, gained data of fall detection parameters from test results are given 

and these data give information about sensitivity, specificity and accuracy of the 

proposed wearable fall detection monitoring system. Also, test results are evaluated 

to approach the best fall detection.  

 

     In Chapter 6, conclusion and future works are presented. 
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CHAPTER TWO 

MATERIALS AND ITS FEATURES 

 

2.1 Accelerometer 

2.1.1 General Description 

 

     In this study, ADXL345 3-axis accelerometer has been chosen because of features 

such as measurement range (±2-g, ±4-g, ±8-g, or ±16-g), high resolution (13-bit), 

fixed 3.9-mg/LSB sensitivity, ultralow power (25 μA to 130 μA), small size (3-mm × 

5-mm × 1-mm, 14-lead, plastic package), standard I
2
C and SPI serial digital 

interfacing, 32-level FIFO storage, user convenient and flexible solutions. A variety 

of built-in features, including motion-status detection and flexible interrupts, greatly 

simplify implementation of the algorithm for fall detection. This combination of 

features makes the ADXL345 an ideal accelerometer for fall-detector applications. 

Figure 2.1 shows the system block diagram and pin definitions of the ADXL345. 

 

 

Figure 2.1 ADXL345 system block diagram and pin designations (Jia, 2009) 
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2.1.2 Communication Interface 

 

     ADXL345 communication is done via either I
2
C or SPI (3- or 4-wire mode). In 

this study, I
2
C is enabled. Figure 2.2 shows the recommended electrical connection 

for I
2
C mode. The 7-bit I

2
C address for the device is 0x53, followed by the R/W bit. 

The user can select an alternate I
2
C address by connecting the SDO/ALT ADDRESS 

pin to the VDD I/O pin. The 7-bit I
2
C address for that configuration is 0x1D, 

followed by the R/W bit. It supports standard (100 kHz) and fast (400 kHz) data 

transfer modes if the bus parameters given in and are met. Single- or multiple-byte 

reads/writes are supported. There are no internal pull-up or pull-down resistors for 

any unused pins; therefore, there is no known state or default state for the CS or ALT 

ADDRESS pin if left floating or unconnected. It is required that the CS pin be 

connected to VDD I/O and that the ALT ADDRESS pin be connected to either VDD 

I/O or GND when using I
2
C. 

 

     Sometimes it is important to confirm the validity of a communication sequence 

before going to the next design stage. This can be done by reading the DEVID 

register (Address 0x00). It is a read only register that contains 0xE5. If the data read 

from DEVID is not 0xE5, it is the indication that either the physical connection or 

command sequence is incorrect. 

 

Figure 2.2 Recommended connections for I
2
C mode (Tusuzki, n.d.) 
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2.1.3 Reading Output Data 

 

     The DATA_READY interrupt signal indicates that 3-axis of acceleration data is 

updated in the data registers. It is latched high when new data is ready. Data is read 

from the DATAX0, DATAX1, DATAY0, DATAY1, DATAZ0, and DATAZ1 

registers. To ensure data coherency, multi byte reads have been performed to retrieve 

data from the ADXL345.  

 

     The data format of the ADXL345 is 16 bits. Once acceleration data is acquired 

from data registers, the user must reconstruct the data. DATAX0 is the low byte 

register for x-axis acceleration and DATAX1 is the high byte register. In this study, 

13-bit resolution has been configured using DATA_FORMAT register. In 13-bit 

mode, the upper 4 bits are sign bits shown in Figure 2.3. DATA_FORMAT register 

can also be used for setting other data formats. The ADXL345 uses twos 

complement data format. When in 13-bit mode, 1 LSB represents about 3.9 mg. 

 

 

Figure 2.3 Data construction (Tusuzki, n.d.) 

 

2.1.4 Initialization 

 

     Figure 2.4 shows the initialization sequence. A value of 0x0B in the 

DATA_FORMAT register sets the device to full resolution (13 bits), ±16-g 

measurement range and right justified mode. The reason for the selection of ±16-g is 

the fact that amplitude of acceleration sometimes reaches around 10g during a fall. A 

value of 0x0D in the BW_RATE register selects the device bandwidth and output 

data rate. An output data rate should be selected that is appropriate for the 

communication protocol and frequency selected. In this study, I
2
C communication 

protocol has been selected with fast (400 kHz) data transfer mode. Due to 
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communication speed limitations the maximum output data rate when using 400 kHz 

I
2
C is 800 Hz. The 800 Hz output data rate can be used only for communication 

speeds greater than or equal to 400 kHz so 800 Hz output data rate has been chosen. 

A setting of 0 in the measure bit of POWER_CTL register places the device into 

standby mode and a setting of 1 (0x08) places the device into measurement mode. 

 

     In a no-turn or single-point calibration scheme, the device has been oriented such 

that z-axis is in the 1 g field of gravity and the other axes, typically the x- and y-axis, 

are in a 0 g field. The output acceleration values have been measured by taking the 

average of a series of samples. The number of samples has been configured to 128. 

These values have been stored as calibration values which X0g, Y0g, and Z+1g for the 

0g measurements on the x- and y-axis and the 1g measurement on the z-axis, 

respectively. Actual acceleration values are obtained by subtracting those values 

from the measurement values of the accelerometer. In this study, offset registers 

which can automatically compensate the output, have not been used.  

Figure 2.4 Initialization sequence 
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2.2 Gyroscope 

2.2.1 General Description 

 

     In this study, ITG-3200 3-axis gyroscope has been chosen because of features 

such as measurement range (±2000°/sec), high resolution (16-bit), 14.375 LSBs per 

°/sec sensitivity, low operating current consumption (6.5mA), small size (4-mm × 4-

mm × 0.9-mm, 24-pin, QFN package), fast mode I
2
C (400kHz) digital interfacing, 

digitally programmable low pass filter, user convenient and flexible solutions. The 

ITG-3200 consists of three independent vibratory MEMS gyroscopes, which detect 

rotational rate about the X (roll), Y (pitch) and Z (yaw) axes. This combination of 

features makes the ITG-3200 an ideal gyroscope for fall-detector applications. Figure 

2.5 shows the system block diagram and pin definitions of the ITG-3200. 

 

 

 

Figure 2.5 ITG-3200 system block diagram and pin designations (InvenSense Inc., 2010) 
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2.2.2 Communication Interface 

 

     The ITG-3200 communicates to a system processor using the I
2
C serial interface, 

and the device always acts as a slave when communicating to the system processor. 

The logic level for communications to the master is set by the voltage on the 

VLOGIC pin. SDA and SCL lines typically need pull-up resistors to VDD. The 

maximum bus speed is 400 kHz.  

 

     The slave address of the ITG-3200 devices is b110100X which is 7 bits long. The 

LSB bit of the 7 bit address is determined by the logic level on pin 9 (AD0). This 

allows two ITG-3200 devices to be connected to the same I
2
C bus. When used in this 

configuration, the address of the one of the devices should be b1101000 (0x68) when 

pin 9 is logic low and the address of the other should be b1101001 (0x69) when pin 9 

is logic high. The I
2
C address is stored in register 0 (WHO_AM_I register). 

 

2.2.3 Reading Output Data 

 

     The sensor data registers contain the latest gyro data. They are read-only registers, 

and are accessed via the serial interface. Data is read from GYRO_XOUT_H, 

GYRO_XOUT_L, GYRO_YOUT_H, GYRO_YOUT_L, GYRO_ZOUT_H and 

GYRO_ZOUT_L registers. GYRO_XOUT_L is the low byte register for x-axis gyro 

data and GYRO_XOUT_H is the high byte register. The RAW_DATA_RDY 

interrupt signal may be used to determine when new data is ready. To ensure data 

coherency, multi byte reads have been performed to retrieve data from the ITG-3200. 

Data format of the ITG-3200 is 16 bits and it uses twos complement data format. 

 

2.2.4 Initialization 

 

     Figure 2.6 shows the initialization sequence. A value of 0x18 in the DLPF_FS 

register sets the device to full scale range (±2000°/sec) and digital low pass filter 

configuration. It also determines the internal sample rate used by the device. The 

reason for the selection of ±2000°/sec is the fact that amplitude of angular velocity 
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sometimes reaches around ±500-600°/sec during a fall. A setting of 0 in the 

DLPF_CFG bits of DLPF_FS register sets the device to low pass filter bandwidth 

(256Hz) and internal sample rate (8kHz). SMPLRT_DIV register determines the 

sample rate of the ITG-3200 gyros. A value of 0x09 in the SMPLRT_DIV register 

sets sample rate divider to 9. The sample rate is given by the following formula:  

 

F sample = F internal / (divider+1), where F internal is 8 kHz                                           (2.1) 

F sample = 8 kHz / (9 + 1) = 800Hz, or 1.25ms per sample                                       (2.2) 

     The output gyro values have been measured by taking the average of a series of 

samples for device calibration. The number of samples has been configured to 128. 

These values have been stored as calibration values. Actual gyro values are obtained 

by subtracting those values from the measurement values of the gyroscope. 

 

 

Figure 2.6 Initialization sequence 
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2.3 Bluetooth 

2.3.1 General Description 

 

     In this study, JY-MCU Bluetooth wireless serial port module shown in Figure 2.7 

has been chosen for wireless communication because many modern portable devices 

(laptop computers, mobile phones, GPS, etc.) are easily compatible with Bluetooth 

technology. This module allows our target device to both send and receive the TTL 

data via Bluetooth technology without connecting a serial cable to our computer. It's 

easy to use and completely encapsulated. It also supports RXD/TXD serial 

communication from 9600 to 115200 bps (bits per second, baud rate). Its size is 

small (4.4 cm x 1.6 cm x 0.7 cm) and its range is around 10 meters (~33 ft). It is 

compatible with 3.6-6V power and its current consumption is 40mA max.  

 

Figure 2.7 JY-MCU Bluetooth module (Gökçegöz, 2013) 

 

2.3.2 Configuration 

 

     This section describes how to configure some parameters of JY-MCU Bluetooth 

module such as name and baud rate. The module comes with a default baud rate of 

9600, 8 data bits, 1 stop bit & no parity. In order to reconfigure the Bluetooth module 

TTL serial port and a terminal program such as Putty. In this study, basic 5V 

Sparkfun FTDI breakout board has been used as a USB to serial port converter to 

configure the module. Bluetooth module has been connected to FTDI board as in the 

Figure 2.8. After opening terminal program Putty, the module has been connected 

with default setting 9600 baud rate, 8 data bits, 1 stop bit & no parity. 

 

http://www.dealextreme.com/p/jy-mcu-arduino-bluetooth-wireless-serial-port-module-104299?item=8
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Figure 2.8 Module configuration connections 

 

     The module is configurable through AT commands shown in Table 2.1 such as 

AT+VERSION, AT+BAUDx. Firstly, you should type AT in Putty and if the 

response is OK means that everything is correct. The module has been set with the 

command AT+BAUD8 and it has been configured to work on a serial speed of 

115200 baud rate.   

Table 2.1 AT commands 

Command Description Options Response 

AT+VERSION 
Returns the 

software version 

of the module 

 OKJY-MCUV1.5 

AT+BAUDx 

Sets the baud rate 

of the module. 

The command 

AT+BAUD8 sets 

the baud rate to 

115200 

1>>1200 

2>>2400 

3>>4800 

4>>9600(Default) 

5>>19200 

6>>38400 

7>>57600 

8>>115200 

OK115200 

AT+NAMEOpenPilot Sets the name of 

the module 

Any name can be 

specified up to 20 

characters 

OKsetname 

AT+PINxxxx 
Sets the pairing 

password of the 

device 

Any 4 digit 

number can be 

used, the default 

pin code is 1234 

OKsetPIN 

AT+PN Sets the parity of 

the module 

AT+PN>>No 

parity check 
OK None 
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2.4 Global Positioning System (GPS)  

2.4.1 General Description 

 

     In this study, GPS receiver engine board EM-406A shown in Figure 2.9 has been 

chosen to determine latitude and longitude information of faller. The module makes 

it possible to detect the geographical coordinates of the faller and the place where the 

faller is (street, etc.). Only disadvantage of GPS chip is to provide localization 

outside the home. It also supports RX/TX serial communication with 4800 bps (bits 

per second, baud rate). Its dimension is 30 mm x 30 mm x 10.5 mm and its accuracy 

of position is around 10 meters. It is compatible with 4.5-6.5V power and its current 

consumption is 44mA max. 

 

 

Figure 2.9 EM-406A GPS receiver engine board (GlobalSat Technology Corporation, n.d.) 

 

2.4.2 Features 

 

     This section describes features of EM-406A GPS receiver engine board in detail. 

 SiRF Star III high performance GPS Chipset 

 Very high sensitivity (Tracking Sensitivity: -159dBm) 

 Extremely fast TTFF (Time To First Fix) at low signal level 

 Support NMEA 0183 data protocol 

 Built-in SuperCap to reserve system data for rapid satellite acquisition 

 Built-in patch antenna 
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 LED indicator for GPS fix or not fix 

LED OFF: Receiver switch off 

LED ON: No fixed, Signal searching 

LED Flashing: Position Fixed 

 WAAS ENGOS is supported. 

 

2.5 Vodafone Vodem K3770  

2.5.1 General Description 

 

     The Vodafone K3770 vodem shown in Figure 2.10 allows you to connect your 

mbed microcontroller to the internet from any location in the world. In this study, it 

is used to send SMS for informing victim‟s family. When elderly people perform fall 

event maybe it is emergency situation, K3770 vodem makes it possible to inform 

victim‟s family immediately by sending SMS.     

 

 

Figure 2.10 Vodafone vodem K3770 (Vodafone, n.d.) 
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2.6 Microcontroller Unit 

2.6.1 General Description 

 

     In this study, mbed NXP LPC1768 prototyping board shown in Figure 2.11 has 

been chosen because of available features such as works with the groundbreaking 

mbed tool suite, easy to explore designs quickly so you can be adventurous, more 

inventive, and more productive. The mbed NXP LPC1768 prototyping board allows 

you to create designs without having to work with low-level microcontroller details, 

so you can develop your designs faster than ever.  Also, designers compose and 

compile embedded software using a browser-based IDE, then download it quickly 

and easily, using a simple drag-and-drop function, to the board‟s NXP Cortex-M3 

microcontroller LPC1768. 

 

Figure 2.11 mbed NXP LPC1768 prototyping board (NXP, 2009) 

 

2.6.2 Features & Benefits 

     2.6.2.1 Features 

 

 Convenient form-factor: 40-pin DIP, 0.1-inch pitch 

 Drag-and-drop programming, with the board represented as a USB drive 
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 Best-in-class Cortex-M3 hardware 

 100 MHz ARM with 64 KB of SRAM, 512 KB of Flash 

 Ethernet, USB OTG 

 SPI, I2C, UART, CAN 

 GPIO, PWM, ADC, DAC 

 Easy-to-use online tools 

 Web-based C/C++ programming environment 

 Uses the ARM RealView compile engine 

 API-driven development using libraries with intuitive interfaces 

 Comprehensive help and online community 

 

     2.6.2.2 Benefits 

 

 Get started right away, with nothing to install 

 Get working fast, using high-level APIs 

 Explore, test, and demonstrate ideas more effectively 

 Write clean, compact code that‟s easy to modify 

 Log in from anywhere, on Windows, Mac or Linux 

 

2.6.3 LPC1768 Microcontrollers 

 

     The NXP microcontroller family LPC1768 is a series of cost-effective, low-power 

Cortex-M3 devices that operate at up to 100MHz. They feature best-in-class 

peripheral support, including Ethernet, USB 2.0 host/OTG/device, and CAN 2.0B. 

There are 512 KB of Flash memory and 64 KB of SRAM. Features of NXP 

LPC1768 microcontroller are given in Table 2.2.  
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Table 2.2 Features of NXP LPC1768 microcontroller 

LPC1768 

Arm Cortex M3 Core  100 MHz operation 

 Memory protection unit 

 Four power mode: sleep, deep 

sleep, power down, and deep 

power down 

Memories  512 KB of flash memory 

 64 KB of SRAM 

Serial Peripherals  10/100 Ethernet MAC 

 USB 2.0 full-speed device/Host 

/OTG controller with on-chip PHY 

 Four UARTs with fractional baud 

rate generation 

 Two CAN 2.0B controllers 

 Three SSP/SPI controllers 

 Three I2C-bus interfaces with one 

supporting Fast Mode Plus  

(1-Mbit/s data rates) 

 I2S interface for digital audio 

Analog Peripherals  12 bit ADC with 8 channels 

 10 bit DAC 

Other Peripherals  Ultra low power (< 1µA) RTC 

 Four 32-bit general purpose timers 

Package  100-pin LQFP (14 x 14 x 1.4mm) 
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2.7 Peripherals 

2.7.1 Buzzer 

 

     CEM-1203(42) magnetic buzzer shown in Figure 2.12 has been used to send out 

alarm sound to the faller. When the fall detection algorithm decides that a fall event 

occurs, microcontroller unit (MCU) will activate the buzzer. Also, the buzzer makes 

it possible to cancel the false alarm by providing auditory feedback to the blind 

person when a fall doesn‟t occur. In other words, if users of the developed wearable 

fall detection monitoring system hear false alarm, they can deactivate the system by 

pressing a button in order not to alert emergency service call.  

 

Figure 2.12 CEM-1203(42) magnetic buzzer (CUI Inc, 2006) 

 

     The buzzer‟s rated voltage is 3.5V and its frequency is 2048Hz. To trigger buzzer, 

pulse width modulation (PWM) technique shown in Figure 2.13 is used. Pulse width 

modulation (PWM) is a simple method of using a rectangular digital waveform to 

control an analog variable. The PwmOut interface on the mbed NXP LPC1768 

microcontroller is used to control the frequency and mark-space ratio of a digital 

pulse train. The magnetic buzzer is connected to one of the PWM outputs on the 

microcontroller and its duty cycle is set to %50 and frequency to 2048Hz. The duty 

cycle formula is given in Equation 2.3. 

 
Duty cycle = 100% * (pulse on time) / (pulse period)            (2.3) 

 

Figure 2.13 Pulse width modulation (PWM) technique (Toulson, & Wilmshurst, 2012) 
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2.7.2 Button 

 

     Two push buttons shown in Figure 2.14 have been used to control the proposed 

wearable fall detection monitoring system. One of them is used to activate local file 

system which accesses the local mbed microcontroller USB disk drive. The push 

button is connected by connecting ground to interrupt input pin (p8 in our code) and 

has an internal pull up resistor. When interrupt input pin changes by pressing button, 

software of monitoring system starts to record our accelerometer and gyro data on 

the local file system. In other words, it makes it possible to record accelerometer and 

gyro output data to the flash specific part that is connected to the interface chip. Also, 

this button can be used to deactivate system when false alarm occurs. Other push 

button on the mbed NXP LPC1768 prototyping board is used to reset all system. 

 

Figure 2.14 Push button 

 

2.7.3 Led 

 

    Four leds on the mbed NXP LPC1768 prototyping board can be used to indicate 

that a fall event occurs or not. Microcontroller unit (MCU) may trigger to turn on 

leds by providing visual feedback to the faller who may be deaf person. Deaf person 

cannot be able to hear alarm sound of buzzer. This design gives deaf person a chance 

to deactivate system by pressing button when false alarm occurs. 
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2.7.4 Battery 

 

     Two lithium polymer 3.7V shown in Figure 2.15, 1500mAh batteries connected 

series (7.4V) have been used to power the proposed wearable fall detection 

monitoring system. The battery has been chosen because of features such as its 

voltage is compatible with mbed NXP LPC1768 prototyping board (4.5-9V input 

voltage), long battery life, rechargeable and economic. 

 

Figure 2.15 Li-Po battery 

 

2.7.5 Housing 

 

     To perform actual fall detection algorithm testing and data collection, robust 

housing solution has been chosen. To house our devices such as accelerometer, 

gyroscope, microcontroller unit and remaining all peripherals, plastic box with a 

rectangular shape has been used. All peripherals of wearable fall detection 

monitoring system have been mounted on printed circuit board (PCB). The PCB is 

attached to the plastic box shown in Figure 2.16 with screw. 

 

Figure 2.16 Housing 
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CHAPTER THREE 

SYSTEM DESIGN 

 

3.1 Hardware Implementation 

 

     The wearable fall detection monitoring system consists of seven parts, including 

accelerometer, gyroscope, Bluetooth, GPS module, Vodafone vodem, 

microcontroller unit and buzzer & led & battery & button. A block diagram of the 

system is shown in Figure 3.1. 

 

 

Figure 3.1 Block diagram of the system  

 

3.1.1 OrCAD 

     3.1.1.1 Schematic 

 

     OrCAD is a suitable of tools from Cadence for the design and layout of printed 

circuit boards (PCBs). In this study, version 9.2 of the OrCAD has been used for 

designing an entire circuit board from start to finish. OrCAD consists of two tools. 

OrCAD Capture is used for design entry in schematic form. Capture is used to draw 

the schematic diagram of wearable fall detection monitoring system. OrCAD Layout 

is a tool for designing the physical layout of components and circuits on a PCB.   
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Layout is used for the actual layout design of the PCB. To draw schematic diagram 

of wearable fall detection monitoring system, following steps must be performed: 

 Starting a New Schematic Project 

 Creating a Schematic Parts Library 

 Creating Schematic Symbols 

 Schematic Entry 

 Setting up the Environment 

 Placing Parts & Making Connections 

 

     3.1.1.2 Steps to Export Design to Layout 

 

     After completing schematic diagram of the system, several steps must be 

performed to export the design to Layout: 

 Annotation 

 Intersheet References  

 Creating Footprint Libraries: Footprints are a representation of the physical 

area that a part occupies on a PCB. A footprint is a set of copper pads that 

corresponds directly to the component leads. This step is one of the most 

crucial steps to the design of the PCB. Any mix-up in a footprint will ruin 

entire design. Therefore extra-special care must be taken when matching a 

footprint to the corresponding component. Library of footprints are created to 

begin working in layout to proceed with the design.  
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Figure 3.2 Library manager for example footprint  

 

     As with the schematic symbols, be very careful to check that these footprints for 

correctness before using them. OrCAD has many existing footprints that you can use 

in your own design shown in Figure 3.2. In this study, footprints have been created 

for parts that don‟t already have one. Most datasheets for parts contain the 

mechanical information necessary to make a correct footprint. 

 Assigning Footprints to Parts 

 Creating the Netlist: To export the design to Layout, you must first create a 

netlist. A netlist is a file that has all the parts, footprints and nets for the 

design in a format that can be read by the layout program. 

 

     3.1.1.3 Layout 

 

     After exporting the design to Layout, importing the design in Layout is needed. 

To route Layout of wearable fall detection monitoring system, following steps must 

be performed: 

 Creating a New Board 

 Getting Around & Placing Parts 

 Routing Power, Ground and Copper Pours 
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 Routing Other Nets 

 Checking For Errors 

 Cleaning Up & The Design 

 Documenting the Design: Good documentation of your design will help both 

in manufacturing and debug. 

 Creating Gerber Files: After finishing the design and everything is ready to 

send off the Gerber Files for fabrication. 

 Viewing the Gerber Files: Before submitting the Gerber files for fabrication, 

it is best to look at them in a Gerber viewer. OrCAD has a built in Gerber 

viewer and editor called GerbTool. GerbTool is used to catch mistakes there 

that you don‟t see in Layout.  

 

     PCB of the design consists of 2 layers. The top and bottom layers are used for 

routing nets between parts shown in Figure 3.3 and Figure 3.4 and placement of parts 

shown in Figure 3.5. To send off the design for fabrication, Gerber files of following 

layers are needed: 

 TOP: Layer 1 – Top Routing 

 BOT: Layer 2 – Bottom Routing 

 SMT: Top Layer Solder mask 

 SMB: Bottom Layer Solder mask 

 SST: Top Layer Silk Screen 

 DRD: Drill 

 FAB: Fabrication Drawing 
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Figure 3.3 Top layer routing of the PCB  

 

 

 

 

 

Figure 3.4 Bottom layer routing of the PCB  
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Figure 3.5 Placement of parts on the PCB  

 

3.2 Software Implementation 

 

     In this study, mbed Compiler has been used to design software of wearable fall 

detection monitoring system. The mbed Compiler allows you write programs in C++ 

and then compile and download them to run on the mbed NXP LPC1768 

microcontroller. All programs in this study have been written in C++ language. 

There‟s no need to run an install or setup program, since the compiler runs online. 

The mbed Compiler is shown in Figure 3.6. 

 

     In this section, description of serial communication protocols (I
2
C, UART) which 

are used to communicate between MCU (Microcontroller Unit) and other devices 

(GPS module, Accelerometer, Gyroscope, Bluetooth) is given briefly. I
2
C 

communication protocol has been used to transfer data between MCU and other 

devices such as accelerometer, gyroscope. RX/TX asynchronous serial 

communication protocol (UART) has been used to transfer data between MCU and 

other devices such as Bluetooth, GPS module. Software design of fall detection 

algorithm will be given detailed in next chapter.   
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Figure 3.6 mbed compiler  

 

     Serial interfaces stream their data, one single bit at a time. These interfaces can 

operate on as little as one wire, usually never more than four. Each of these serial 

interfaces can be sorted into one of two groups: synchronous or asynchronous.  

 

      A synchronous serial interface always pairs its data line(s) with a clock signal, so 

all devices on a synchronous serial bus share a common clock. This makes for a 

more straightforward, often faster serial transfer, but it also requires at least one extra 

wire between communicating devices. Examples of synchronous interfaces include 

SPI, and I
2
C.  

 

     Asynchronous means that data is transferred without support from an external 

clock signal. This transmission method is perfect for minimizing the required wires 

and I/O pins, but it does mean we need to put some extra effort into reliably 

transferring and receiving data. Examples of asynchronous interfaces include UART.  

 

3.2.1 I
2
C Interface 

 

     I
2
C is a two wire interface comprised of the signals serial data (SDA) and serial 

clock (SCL). In general, the lines are open-drain and bi-directional. In a generalized 
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I
2
C interface implementation, attached devices can be a master or a slave. The master 

device puts the slave address on the bus, and the slave device with the matching 

address acknowledges the master. 

 

     3.2.1.1 Start (S) and STOP (P) Conditions 

 

     Communication on the I
2
C bus starts when the master puts the START condition 

(S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while 

SCL line is HIGH (see Figure 3.7). The bus is considered to be busy until the master 

puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition 

on the SDA line while SCL is HIGH (see Figure 3.7). Additionally, the bus remains 

busy if a repeated START (Sr) is generated instead of a STOP condition. 

 

 

Figure 3.7 START and STOP conditions (InvenSense Inc., 2010) 

 

     3.2.1.2 Data Format / Acknowledge 

 

     I
2
C data bytes are defined to be 8 bits long. There is no restriction to the number 

of bytes transmitted per data transfer. Each byte transferred must be followed by 

acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the 

master, while the receiver generates the actual acknowledge signal by pulling down 

SDA and holding it low during the HIGH portion of the acknowledge clock pulse. 

 

     If a slave is busy and cannot transmit or receive another byte of data until some 

other task has been performed, it can hold SCL LOW, thus forcing the master into a 

wait state. Normal data transfer resumes when the slave is ready, and releases the 

clock line (see Figure 3.8). 
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Figure 3.8 Acknowledge on the I
2
C bus (InvenSense Inc., 2010) 

 

     3.2.1.3 Communications 

 

     After starting communications with the START condition (S), the master sends a 

7-bit slave address followed by an 8th bit, the read/write bit. The read/write bit 

indicates whether the master is receiving data from or is writing to the slave device. 

Then, the master releases the SDA line and waits for the acknowledge signal (ACK) 

from the slave device. Each byte transferred must be followed by an acknowledge 

bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for 

the high period of the SCL line. Data transmission is always terminated by the master 

with a STOP condition (P), thus freeing the communications line. However, the 

master can generate a repeated START condition (Sr), and address another slave 

without first generating a STOP condition (P). A LOW to HIGH transition on the 

SDA line while SCL is HIGH defines the stop condition. All SDA changes should 

take place when SCL is low, with the exception of start and stop conditions (see 

Figure 3.9). 
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Figure 3.9 Complete I
2
C data transfer (InvenSense Inc., 2010) 

 

     To write our sensor (accelerometer and gyroscope) registers, the master (MCU) 

transmits the start condition (S), followed by the I
2
C address and the write bit (0). At 

the 9th clock cycle (when the clock is high), our sensors acknowledge the transfer. 

Then the master puts the register address (RA) on the bus. After the sensors 

acknowledge the reception of the register address, the master puts the register data 

onto the bus. This is followed by the ACK signal, and data transfer may be 

concluded by the stop condition (P). To write multiple bytes after the last ACK 

signal, the master can continue outputting data rather than transmitting a stop signal. 

In this case, our sensors automatically increment the register address and load the 

data to the appropriate register. The following Figure 3.10 shows single and two-byte 

write sequences. 

 

 

Figure 3.10 Single-byte and multiple-byte write sequence (InvenSense Inc., 2010)   

 

     To read the sensor (accelerometer and gyroscope) registers, the master (MCU) 

first transmits the start condition (S), followed by the I
2
C address and the write bit               
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(0). At the 9th clock cycle (when clock is high), our sensors acknowledge the     

transfer. The master then writes the register address that is going to be read. Upon 

receiving the ACK signal from the sensors, the master transmits a start signal 

followed by the slave address and read bit. As a result, the sensors send an ACK 

signal and the data. The communication ends with a not acknowledge (NACK) signal 

and a stop bit from master. The NACK condition is defined such that the SDA line 

remains high at the 9th clock cycle. To read multiple bytes of data, the master can 

output an acknowledge signal (ACK) instead of a not acknowledge (NACK) signal. 

In this case, our sensors automatically increment the register address and output data 

from the appropriate register. The following Figure 3.11 shows single and two-byte 

read sequences. 

 

 

Figure 3.11 Single-byte and multiple-byte read sequence (InvenSense Inc., 2010)  

 

3.2.2 Asynchronous Serial Communication Interface 

 

     The asynchronous serial protocol has a number of built-in rules - mechanisms that 

help ensure robust and error-free data transfers. These mechanisms are: 

 Data bits, 

 Synchronization bits, 

 Parity bits, 

 Baud rate. 

     Through the variety of these signaling mechanisms, you‟ll find that there‟s no one 

way to send data serially. The protocol is highly configurable. The critical part is 

making sure that both devices on a serial bus are configured to use the exact same                                   
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protocols. Each block (usually a byte) of data transmitted is actually sent in 

a packet or frame of bits. Frames are created by appending synchronization and 

parity bits to our data. 

 

Figure 3.12 Serial frame, some symbols in the frame have configurable bit sizes (Sparkfun, n.d.) 

 

     The baud rate specifies how fast data is sent over a serial line. It‟s usually    

expressed in units of bits-per-second (bps). If you invert the baud rate, you can find 

out just how long it takes to transmit a single bit. This value determines how long the 

transmitter holds a serial line high/low or at what period the receiving device samples 

its line.  

 

     The real meat of every serial packet is the data it carries. The amount of data in 

each packet can be set to anything from 5 to 9 bits. Certainly, the standard data size 

is your basic 8-bit byte, but other sizes have their uses (see Figure 3.12).  

 

     The synchronization bits are two or three special bits transferred with each chunk 

of data. They are the start bit and the stop bit(s). True to their name, these bits mark 

the beginning and end of a packet. There‟s always only one start bit, but the number 

of stop bits is configurable to either one or two (though it‟s commonly left at one). 

The start bit is always indicated by an idle data line going from 1 to 0, while the stop 

bit(s) will transition back to the idle state by holding the line at 1.  

 

     Parity is a form of very simple, low-level error checking. It comes in two flavors: 

odd or even. To produce the parity bit, all 5-9 bits of the data byte are added up, and 

the evenness of the sum decides whether the bit is set or not.  

 

     A serial bus consists of just two wires-one for sending data and another for 

receiving. As such, serial devices should have two serial pins: the receiver, RX, and 
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the transmitter, TX. A serial interface where both devices may send and receive data 

is either full-duplex or half-duplex. Full-duplex means both devices can send and 

receive simultaneously. Half-duplex communication means serial devices must take 

turns sending and receiving. 
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CHAPTER FOUR 

FALL DETECTION ALGORITHM 

 

4.1 Fall Detection Algorithm Parameters 

 

     A fall, including impact, has been defined to have four distinct phases (Noury, et 

al., 2008b): (1) the pre-fall phase, (2) critical phase or pre-impact phase, (3) post-fall 

phase and (4) recovery phase. 

 

     During the “pre-fall” phase the person performs usual activities of daily living 

(ADL), with occasional sudden movements, like sitting or lying down rapidly, which 

must be distinguished from a fall. So, “pre-fall” phase may include some instability 

because of performing ADL such as walking, running and sitting down.  

 

     The “critical phase or pre-impact phase” consists of the sudden free fall-like 

movement of the body toward the ground, ending with a vertical shock on the 

ground. The duration of this phase is extremely short (T1 −T0 = 300–500 ms). During 

the critical phase of a fall, there is a temporary period of “free fall”. During this 

period, the vertical speed also increases linearly with time because of gravitational 

acceleration.  

 

     During the “post-fall” phase, the person remains inactive, frequently lying on the 

ground. The “post-fall” phase shouldn‟t last too long (T2 −T1 < 1 h) to reduce the 

consequences of the fall such as high morbidity-mortality rate. 

 

     The “recovery” phase is either intentional – the person is able get up and move on 

his own – or with help from another person. 

 

     The fall event is a cascade of phases. Some characteristics of interrupted 

movement can indicate the incoming fall already some seconds before the actual fall 

event. The four phases of a fall event is shown in Figure 4.1. 
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Figure 4.1 The four phases of a fall event (Kangas, 2011) 

 

     The proposed fall detection solution can be divided into four steps: threshold-

based analysis for acceleration magnitude, vertical velocity estimate analysis, body 

posture analysis, and threshold based-analysis for angular velocity. The proposed 

wearable fall detection monitoring system is placed at chest of a person because this 

is the optimum location to attach sensors for fall detecting as mentioned in previous 

studies. Threshold-based analysis for acceleration magnitude, vertical velocity 

estimate analysis and body posture analysis are performed with data from tri-axial 

accelerometer reading. Threshold based-analysis for angular velocity is performed 

with data from tri-axial gyroscope reading. 

 

4.1.1 Threshold-Based Analysis for Acceleration Magnitude 

 

     Threshold-based analysis for acceleration magnitude (including impact) has been 

chosen as first step to detect fall event in the proposed fall detection algorithm. The 

threshold-based method is very useful for indication of a fall (Bourke, et al., 2007a). 

For reliable operation of the fall detection system, firstly the resultant signal from the 

tri-axial accelerometer sensor at the chest was derived by taking the root-sum-of-

squares of the three signals from tri-axial accelerometer recording. Setting thresholds 

for each of the three axes of measurement does not work well, because it does not 

cover all the possible directions of impact in a uniform way. The threshold for RSS 

(Root-Sum-of-Squares) of tri-axial accelerometer signal has been suggested to be 

more accurate in fall detection than single axis thresholds (Bourke, et al., 2005).  
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     When stationary, the root-sum-of squares signal from the tri-axial accelerometer 

is a constant +1g. As expected, the RSS signal (magnitudes of acceleration) in falling 

are generally greater than in normal activity such as walking, running and sitting. 

The root-sum-of squares signal (RSS signal) contains both dynamic and static 

acceleration components, is calculated from sampled data as indicated in Equation 

(4.1). 

RSS  √ax2 + ay
2+ az

2     (4.1) 

Where ax,  ay,  az is the acceleration (g) in the x, y and z axes, respectively.  

 

     Lower Fall Threshold (LFT) and Upper Fall Threshold (UFT) of acceleration 

have been used to detect the fall by examining recorded values of RSS signal. The 

lower and upper thresholds for the acceleration used to identify the fall are derived as 

follows: 

 Lower fall threshold (LFT): means that the negative peaks for the resultant of 

each recorded activity are referred to as the signal lower peak values (LPVs). 

The LFT for the acceleration signals is set at the level of the smallest  

magnitude lower fall peak (LFP) recorded. The LFT is related to the 

acceleration of the chest at or before the initial contact of the body segment 

with the ground. 

 

 Upper fall threshold (UFT): means that the positive peaks for the recorded 

signals for each recorded activity are referred to as the signal upper peak   

values (UPVs). The UFT for each of the acceleration signals is set at the level 

of the smallest magnitude UPV recorded. The UFT is related to the peak  

impact force experienced by the body segment during the impact phase of the 

fall. 
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Figure 4.2 Anatomy of a fall 

 

     Figure 4.2 shows that an example of the general contour of the Root-Sum-of-

Squares (RSS) signal recorded from the tri-axial accelerometer signals, during a fall 

from standing height. When stationary the RSS signal measures +1g, point(A), as the 

person falls entering the „„critical phase or pre-impact phase‟‟, (B) and (C), the RSS 

signal produces a lower peak as the body is in a temporary period of „„flight‟‟ during 

which the downward vertical velocity increases. When the body initially contacts the 

ground the dynamic acceleration will be zero as the body is no longer accelerating 

and has reached maximum negative vertical velocity, the RSS signal returns to +1g 

(D). The person now sinks into the mat and experiences a deceleration, maximum 

deceleration occurs at (E) as the body sinks further into the mat and maximum 

deformation of the body and mats occurs. After this the body now enters the „„post-

fall‟‟ phase, where the body eventually settles to rest (F). The falling-edge time, tFE, 

is from the RSS signal last going below the lower fall threshold (LFT) until it 

exceeds the UFT. 
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     Fall-associated impacts have been detected with the threshold-based method for 

high acceleration (Karantonis, et al., 2006; Bourke, et al., 2010b) or a rapid change in 

acceleration (Yoshida, et al., 2005). The threshold is set based on empirical data. The 

smallest acceleration measured from a fall was about 3g, but usually ranged up to 7-

10g‟s and higher. Normal activity usually does not exceed 3g, but occasionally may 

during some rigorous movements, for example in jumping, running or sitting down 

suddenly. Since there is some overlap in the ranges of the acceleration magnitude 

between activities daily living and falling. Although past research has achieved some 

significant results, the accuracy is still below desired levels. So, addition approaches 

are needed to distinguish falling from normal activity for a more robust algorithm. 

From this point of view, vertical velocity estimate, body posture and threshold based-

analysis for angular velocity have also been used to detect fall event more correctly 

and to increase accuracy of the proposed fall detection algorithm. Vertical velocity 

estimate, body posture and threshold based-analysis for angular velocity are given 

detailed for detecting fall in this chapter. 

 

4.1.2 Vertical Velocity Estimate Analysis 

 

     Vertical velocity (pre-impact velocity) before the impact has been used to 

distinguish falls from ADL. Monitoring the vertical velocity instead of acceleration 

is used to determine activities where high acceleration values but low velocities are 

generated, for example, when lying down, sitting down, or walking the stairs. 

Threshold of vertical velocity is also a positive indication of a fall event.  

 

     (Wu, et al., 2000) showed, with a video analysis of markers placed on the subject, 

that vertical and horizontal speeds are three times higher during a fall than for any 

other controlled movement. She also showed that both speeds will increase near 

simultaneously during a fall whereas they are strongly dissimilar during “controlled” 

movements. However it has been argued by (Degen, et al., 2003) and proven by 

(Bourke, et al., 2008) that threshold of the vertical velocity of the trunk alone is 

sufficient for fall detection.  
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Figure 4.3 Integration areas to calculate vertical velocity 

 

     The proposed wearable fall detection monitoring system uses a tri-axial 

accelerometer to provide vertical velocity measurements. By integrating the area in 

dark shown in Figure 4.3 the pre-impact velocity from the free fall can be measured. 

The fall-associated impact is detected as a high peak in signal. It has previously been 

suggested by (Degen, et al., 2003) that vertical velocity can be approximated from a 

tri-axial accelerometer by numerical integration of the RSS (Root-Sum-of-Squares) 

of the tri-axial accelerometer signals after the magnitude of static acceleration 

(gravity: 9.81m/s
2
) is subtracted, Equation 4.2. In this study, Degen‟s algorithm has 

been used to determine vertical velocity. 

Vve ∫ ( √ax2 + ay
2+ az

2 – 9.81 ) dt       (4.2) 

 

Where ax,  ay,  az is the acceleration (g) in the x, y and z axes, respectively and Vve is 

vertical velocity estimate.  

 

     This approximation is only correct for vertical movements and worst for nearly 

horizontal movements. This approximation can be more problematic when fast 

accelerated movements towards the ground (acceleration ≥ 9.81m/sec
2
) result in an 
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incorrectly estimated velocity. However, this approximation has some beneficial 

properties. It is independent of the orientation and even rotation of wearable fall 

detection monitoring system.  

 

     RSS signal can only be smaller than 9.81m/sec
2 

during a fall due to the static 

acceleration. Only negative values are integrated during fall. Other movements are 

not important except vertical movements. The implemented algorithm integrates 

negative values and damps the integral during positive values by using following 

Equation (4.3):  

Vve ∫ ( √ax2 + ay
2+ az

2 – 9.81 ) dt    if    √ax2 + ay
2+ az

2<9.0 

Vve Vve*0.95                                        else                                     (4.3) 

 

     A value of 9.0 is subtracted instead of the full value of 9.81msec
−2 

to prohibit the 

integration of possible offsets and the noise of the tri-axial accelerometer. The value 

of 0.95 is the damping factor which removes integration drift and slowly resets the 

integral during rest and positive accelerations. 

 

     4.1.2.1 Numerical Integration 

 

     There are a number of discrete integration algorithms available to perform 

integration numerically.  The acceleration signal is sampled, making it a discrete 

function of time having a sampling frequency, fs, associated with it.  The simplest 

way to perform numerical integration is to use the rectangular integration method.  

This method uses an accumulator to sum all past sampled inputs and the current 

input sample and divide by the sampling rate.  Rectangular integration is represented 

by following difference Equation 4.4. 

 

y(n)  
1

fs
∑ x(n-k)

n

k 0

 y(n-1)+ 
1

fs
 x(n)       (4.4) 
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Where x is the integrand, y is the output of the integrator, and fs is the sampling 

frequency.  

 

     Another numerical integration method uses the trapezoidal rule.  The results are 

more accurate with this method than with the rectangular method. The difference 

equation for trapezoidal integration is: 

y(n) y(n-1)+ 
1

2fs
[x(n-1)+ x(n)],  n 0   (4.5) 

 

     In Figure 4.4 below, a 1Hz sine wave is integrated using both methods, and 

clearly the trapezoidal method is more accurate in approximating the area under the 

curve. 

     

Figure 4.4 Integration using rectangular and trapezoidal methods 

 

     Trapezoidal method has been chosen for numerical integration to find vertical 

velocity from RSS (Root-Sum-of-Squares) of the tri-axial accelerometer signals. 

 

Figure 4.5 Discrete acceleration values 

a(t) 
ai 

ai+1 

t1 

t2 

Δt 

t 
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     A simple way to approximate the area under the curve between any two points is 

as a trapezoid, with area (1/2)(ai + ai+1)Δt shown in Figure 4.5. Adding these areas 

from some time t1 to another time t2 gives 

v(t2) - v(t1) ∫ a(t)dt 
t2

t1
  ∑

1

2
(ai+ ai+1)Δt

t2
t1

                      (4.6)                  

This numerical integration technique is called the Trapezoidal Rule. 

 

     4.1.2.2 Integration Drift 

 

     It is a well-known fact that the use of numerical integration of 

acceleration/angular rate information from inertial sensors  

(accelerometers/gyroscopes) to obtain velocity/position/orientation information 

inherently causes velocity/position/orientation errors to grow with time, which is 

commonly known as “integration drift”. 

 

     Unfortunately, accelerometers have an unwanted phenomenon called drift 

associated with them caused by a small DC bias in the acceleration signal.  Ideally, 

there should be no DC bias from the accelerometer for the measurement of a 

vibration.  A vibration occurs around a fixed point and has a zero mean over time.  

The presence of drift can lead to large integration errors.  If the acceleration signal 

from a real accelerometer was integrated without any filtering performed, the output 

could become unbounded over time.   

 

     To solve the problem of drift, a high-pass filter may be used to remove the DC 

component of the acceleration signal.  The frequency response of the filter must have 

a very low cutoff frequency compared to the bandwidth of the signal.  By filtering 

before integrating, drift errors are eliminated. In this study, averaging filter has been 

performed for both tri-axial accelerometer and gyroscope values to eliminate the 

integration drift. 
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4.1.3 Body Posture Analysis 

 

     Body posture can be determined as an angle between the acceleration axis and 

gravity, by extracting the static gravitational component from the acceleration 

(Karantonis, et al., 2006) or by taking the dot product of the reference gravity vector 

and the current gravity vector (Bourke, et al., 2010b). Fall-associated posture is 

determined as a change in the posture before and after the impact (Boissy, et al., 

2007; Yoshida, et al., 2005) or as the end posture a few seconds after the fall 

associated impact (Karantonis, et al., 2006; Tamura, 2005; Yoshida, et al., 2005). 

The recovery from a fall is recognized as an upright posture or as a certain amount of 

activity after a possible fall event (Karantonis, et al., 2006). The durations of posture 

changes from sitting to standing or from lying to standing were 3.5 and 6.0s in a 

group of healthy 80- to 86-year-old people (Yoshida, et al., 2005). The recovery after 

a fall probably takes even a lot longer than indicated above. 

 

     Postural orientation refers to the relative tilt of the body in space. In his 

application has aimed to provide a distinction between the upright postures of sitting 

and standing, as well as the various sub postures associated with lying (Karantonis, et 

al., 2006). When determining postural orientation, only the gravitational component 

of the tri-axial accelerometer signal is used because they are dealing with static 

accelerations where tilt is measured. 

 

Figure 4.6 Method for determining the body posture of the faller (Karantonis, et al., 2006) 
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     An overview of how the tilt angle relates to the various postural orientations is 

illustrated in Figure 4.6. If the faller‟s tilt angle is 0º to 60º, it is classified as upright, 

whereas values of 60º to 120º indicate a lying posture; any greater a tilt angle and the 

user is classified as inverted. If the tilt angle between 20º and 60º may be sitting and 

angles of 0º to 20º may be either sitting or standing, depending on various other 

parameters. 

 

     The technique is simple and feasible to distinguish sitting, standing and lying 

compared with other studies that have used neural networks, rule-based classifiers, 

and/or knowledge of future events. Only disadvantage of this technique is system 

constraints for the tri-axial accelerometer unit.  

 

     In this study, body posture (post-fall posture) has been performed by taking the 

dot product of the reference gravity vector, g⃗ 
REF

, and the current gravity vector 

estimate relative to the body segment, g⃗ 
SEG

(t) as shown in Equation 4.7 and Figure 

4.7.  

 (t)   cos-1 (
g⃗ SEG(t).g⃗ REF

|g⃗ SEG(t)| .|g⃗ REF|
)  

180

 
    (degrees)         (4.7) 

 

g⃗ 
REF

 is the reference gravity vector (g⃗ 
X
,  g⃗ 

Y
,  g⃗ 

Z
). 

 

     If the dot product angle,   (t), between 20º and 60º may be sitting and angles of 0º 

to 20º may be either sitting or standing. If the inclination angle is 60º to 120º, it 

indicates a lying posture. 
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                     (a)                                       (b)                                        (c) 

     

Figure 4.7 Graphical operation of the method for determining chest posture angle (a) Standing (b) 

Sitting and (c) Kneeling 

 

4.1.4 Threshold-Based Analysis for Angular Velocity 

 

     Angular velocity is determined using tri-axial gyroscope sensor mounted on the 

chest of faller. The tri-axial gyroscope measures angular velocities x (roll), y (pitch), 

and z (yaw) axes. 
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     This section describes the development of a threshold based analysis for angular 

velocity, capable of automatically discriminating between falls and ADL, using a tri-

axial gyroscope sensor. When a person falls and hits the ground it is expected that 

the changes in angular velocity would be different from those experienced during 

normal daily activities. 

 

     The resultant vector for the angular velocity signal (ωres) is derived by taking the 

root-sum-of-squares of angular velocities x (roll), y (pitch), and z (yaw) axes. 

 

 res  √ x
2+  y

2+  z
2    (4.8) 

Where  x,   y,   z is the angular velocity (degree/second) in the x, y and z axes, 

respectively.  

 

     When stationary, the root-sum-of squares signal from the tri-axial gyroscope 

which angular velocity is 0º/s. When the subject falls, the angular velocity produces a 

variety of signals along fall direction. 

 

4.2 Fall Detection Algorithm 

 

     The proposed fall detection algorithm that has been developed conceptually had 

to be converted from a linear flowchart design to mbed programming, which runs in 

a while looping architecture. Because of the limited memory (64 KB SRAM) of the 

NXP Cortex-M3 microcontroller LPC1768, software of wearable fall detection 

monitoring system can record accelerometer and gyro data on the local file system. 

In other words, it makes it possible to record accelerometer and gyro output data to 

the flash specific part that is connected to the interface chip.  

 

     To ensure the program knows the „previous state‟ of the algorithm or if one of the 

thresholds has been broken in a previous loop execution, a „trigger‟ system has been 

used. In other words, when some thresholds have been broken a Boolean „trigger‟ 

variable would be set true; in the next loop execution this would lead to additional 
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decision statements and possible trigger activation/deactivation until all triggers are 

set true and a fall is detected or all triggers are turned off. 

 

4.2.1 The Proposed Fall Detection Algorithm  

 

     The proposed fall detection algorithm shown in Figure 4.8 is based on four steps: 

threshold-based analysis for acceleration magnitude, vertical velocity estimate 

analysis, body posture analysis, and threshold based-analysis for angular velocity.  

 

     When stationary the RSS signal measures +1g. When a person falls entering the 

„„critical phase or pre-impact phase‟‟, the person experiences a momentary free fall 

and reduction in acceleration magnitude. As a result, RSS signal produces a lower  

peak value. Firstly, the algorithm checks whether the lower peak value of RSS signal 

breaks LFT (Lower Fall Threshold) value or not. If this LFT is broken, first trigger 

will be set to true. Also, downward vertical velocity increases continuously during 

freefall period. Secondly, the algorithm checks whether this vertical velocity breaks 

vertical velocity estimate threshold (Vve) within falling-edge time (tFE) or not.   

Falling-edge time (tFE) and vertical velocity estimate (Vve) threshold values are 

determined from recorded datasets performing scripted fall and unscripted normal 

ADL. If this vertical velocity estimate (Vve) threshold is broken within falling-edge 

time (tFE), second trigger will be set to true. When person contacts the ground at the 

end of the freefall period, large spike in acceleration magnitude occurs. To detect the 

spike in acceleration, thirdly the algorithm checks whether the upper peak value of 

RSS signal breaks UFT (Upper Fall Threshold) value within falling-edge time (tFE)    

or not. If this UFT of acceleration is broken, third trigger will be set to true. In this 

study, LFT and UFT of the acceleration have been used in the combination with the 

UFT of the angular velocity to perform the fall detection. To detect change of      

angular velocity, fourthly the algorithm checks whether the upper peak value of       

signal breaks UFT value within falling-edge time (tFE) or not. If this UFT of angular 

velocity is broken, fourth trigger will be set to true. The time t=0 ms (t0) refers to the 

exact time when LFT is broken by the RSS signal. Lying is detected if the body   

posture  ( ) exceeds 60º from t0+1s to t0+3s. So, if the value of  ( ) is in between  
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60º and 120º within t0+1s to t0+3s, the algorithm decides that this indicates lying 

posture. Thus, fifth trigger will be set to true.  The algorithm then examines to see if 

that body posture remains after 10s, which would indicate the person is lying in their 

fallen position on the ground. If this holds true, the algorithm recognizes this as a 

fall. A failure of any of the intermediate decision conditions would reset the triggers 

and send the algorithm back to the start.  
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Figure 4.8 The proposed fall detection algorithm 
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CHAPTER FIVE 

SIMULATION RESULTS 

 

5.1 Recording and Experimental Set-up 

 

     The proposed wearable fall detection monitoring system is held in place using a 

standard elastic belt and commercial plastic case. The system includes a tri-axial 

accelerometer, tri-axial gyroscope, Bluetooth, GPS module, Vodafone vodem, 

microcontroller unit and buzzer & led & battery & button. 

 

 

Figure 5.1 Recording and experimental set-up 

 

     Sensors readings have been recorded during intentional falls by young volunteers 

and ADL performed by young volunteers, middle-aged volunteers and elderly 

volunteer shown in Figure 5.1. The sensors readings have been recorded to flash 

specific part that is connected to the interface chip. The sensor signals have been 

sampled at 125 Hz; each signal has been averaging filtered with a length of 4 

samples to avoid noise and very fast acceleration peaks, such as knock, before any               
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further analyses. The sampling frequency of 125 Hz has been chosen because it has 

been shown to be high enough for sensor data analysis in fall-related motions 

(Karantonis, et al., 2006; Mathie, et al., 2004a). 

 

     In addition, the system uses Bluetooth module to send the real-time data to a 

computer. Sensors data collected during tests have been processed in a virtual 

environment in a computer using Matlab. The collection data program was written in 

Matlab. The program receives and displays real-time data from the wearable fall 

detection monitoring system. Also, the program continuously plots the fall detection 

algorithm parameters such as magnitude of acceleration, vertical velocity, angular 

velocity and dot-product angle for body posture from saved data in flash memory.  

 

5.2 Intentional Falls and Sequential ADL in a Laboratory Environment 

 

     This study has determined fall detection algorithm for detection of fall phases in 

order to discriminate between falls and ADL. The sensitivity, specificity and    

accuracy of the fall detection algorithm using intentional falls and ADL in a   

laboratory environment were evaluated. This study has evaluated the fall detection 

algorithm for a chest-mounted accelerometer-gyroscope based system. The fall 

detection algorithm has been tested against a comprehensive data-set recorded from 5 

young healthy volunteers performing 120 intentional falls and 120 scripted activities 

of daily living (ADL), 2 middle-aged healthy volunteers performing 48 scripted 

activities of daily living (ADL) and 1 elderly healthy volunteer performing 24    

scripted ADL and 2.0 waking hours of continuous unscripted normal ADL. The 

proposed wearable fall detection monitoring system is located to the volunteer‟s     

chest area to perform all tests.  

 

     8 intentional falls and 8 ADL have been performed for 5 healthy male volunteers, 

each repeated 3 times (120 falls and 120 ADL). Volunteers ranged from 25 to 28   

years, body mass 66 to 85kg and height from 1.74 to 1.94m. Intentional falls in all 

directions (forward, backward, right-side and left side) with both legs straight and   

with knee flexion have been performed in a laboratory environment. The ADL have 
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been performed walking (10m), running (50m), lying down and standing up from a 

bed, sitting down and standing up from a toilet seat, sitting down and standing up    

from an armchair, getting in and out of a car seat, bending to pick up an object from 

ground, climb up stairs and go down the stairs. 

 

     2 middle-aged healthy volunteers, 1 woman and 1 man, were recruited for the 

study, the volunteers ranged in age from 54 to 57 years, body mass from 75kg to 

82kg and height from 1.68m to 1.74m. Tests on middle-aged healthy volunteers 

using scripted activities have been performed at the volunteers‟ own homes. 

 

     An elderly (>65 years) healthy volunteer, 1 woman, was recruited for the  study, 

the volunteer‟s age is 76 years, body mass is 65kg and height is 1.60m. Tests on  

elderly healthy volunteer using continuous scripted and unscripted activities have  

been performed at the volunteer‟s own homes. 

 

     The eight scripted ADL recorded for middle-aged and elderly healthy volunteers 

are the same as for young healthy volunteers except running (50m): walking (10m), 

sitting down and standing up from an kitchen chair, lying down and standing up from 

a bed, sitting down and standing up from a toilet seat, sitting down and standing up 

from an armchair, getting in and out of a car seat, bending to pick up an object from 

ground, climb up stairs and go down the stairs. Each activity is performed three times 

(72 ADL in total). 

 

     The elderly healthy volunteer performed continuous unscripted normal ADL in 

own daily life. The volunteer carried out their normal activities, including sitting, 

climbing stairs, lying, walking and dining during recording data. A total of 2.0 hours 

of activity were recorded. 

 

     Fall detection studies were mainly applied for younger volunteers performing all 

intentional falls designed to mimic typical fall scenarios among the elderly.     

However, this can cause that recorded data-set is different from general unintentional 

falls. Because, younger people might use preventative strategies to compensate high 
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fall associated impacts, older people typically have less control over the speed of     

their body movements and longer reaction time due to reduced muscle strength with 

old age. Preventative strategies consist of the use of arms or knees to brake the body 

during fall, bending the knees, ankles and hip to decrease vertical velocity and      

impact force. As supported by Robinovitch, et al., (2004), self-initiated (intentional) 

falls result in lower vertical velocities and differences in impact sites when compared 

to unintentional falls. Unintentional falls produce higher velocity and peak 

accelerations than intentional falls. This situation is advantage to discriminate 

unintentional falls and ADL easily for the proposed fall detection algorithm. Also, it 

leads to increased true positives. 

 

     For this study, sensor data from body movements have been collected in a 

laboratory environment and in real life. The test protocol for intentional falls has 

been chosen to include typical fall type categories of older people (DeGoede, et al.,         

2003; Lehtola, et al., 2006; Luukinen, et al., 1994). Young healthy volunteers 

performed forward fall, backward fall, right sideway fall and left sideway fall. All 

intentional falls have been performed with both legs straight and with knee flexion. 

Volunteers received short instructions for performing the test falls. In this study,  

before performing intentional falls volunteers are instructed not to try using their  

hands or knees to reduce the major impact at the chest and not to take recovery steps 

to prevent the fall. The intentional falls have been documented using a digital video 

camera.  

 

5.3 Test Results 

 

     This study has determined an accelerometer-gyroscope based method for    

detection of fall phases in order to discriminate between falls and ADL. In general, 

past research has achieved some significant results using only acceleration    

thresholds, but disadvantage of the idea is that there is overlapping between falls and 

ADL. So, accuracy is still below desired levels.  
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     Our test results showed that even if the different parameters measured from the 

chest, the measuring system gives typical characteristics for intentional falls and    

ADL thus the value ranges had some overlapping. This indicates that using a simple 

acceleration threshold for impact alone is not optimal solution for practical fall 

detection. This is contrary to the report of (Bourke, et al., 2007a) where they were   

able to determine a simple acceleration threshold value for impacts capable of 

discriminating between intentional falls and ADL with 100% sensitivity and 

specificity. By taking into consideration, the proposed wearable fall detection 

monitoring system employs vertical velocity estimate analysis and body posture 

analysis using accelerometer together with threshold based analysis for acceleration 

magnitude. Also, threshold based analysis for angular velocity has been performed 

using gyroscope for discriminating falls from high density ADL (running, sitting 

quickly, bending).    

 

     The value ranges of dot product angle (Θ(t)), vertical velocity estimate (Vve) 

measured from the chest had specific value ranges for falls and ADL with no 

overlapping. Thus, these analyses were able to discriminate between falls and ADL 

with specificity of 100%. However, body posture analysis is included in fall 

detection algorithms for the chest-worn application in order to certify high sensitivity 

and specificity of fall detection. Based on the data-set recorded from volunteers, 

thresholds of UFT and LFT of acceleration magnitude, vertical velocity estimate, 

UFT of angular velocity, dot product angle and falling edge time for chest-worn 

application have been chosen empirically for effective fall detection sensitivity and 

specificity. On average, the main fall associated impact was detected 0.5s after the 

beginning of the fall, but the time range was up to 0.8s. Thus; by observing vertical 

velocity estimate, the pre-impact detection of falls has been determined with an 

average lead time 300ms before the chest impact. This average lead time leads to 

launch the inflation of a wearable airbag to protect the hip and head from high fall-

associated impacts (Tamura, et al., 2009). 

 

     However, our test results showed that using only UFT and LFT of acceleration 

magnitude might misidentify the act of some ADL as fall. These are such as high 
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density ADL (running, sitting quickly, bending). Similarly, they showed that using 

only UFT of the angular velocity might misidentify the act of lying back as fall. To 

eliminate the possibility of misidentify high density ADL, this study combine the 

accelerometer with the gyroscope to improve the accuracy of the system.        

 

     Also, the maximum and minimum downward vertical velocity, Vve,max and Vve,min 

were recorded for each fall and ADL. The maximum downward vertical velocity 

recorded from all the ADL can be chosen as the threshold when discriminating falls 

from normal ADL. The largest Vve,max recorded from all the ADL performed is -0.98 

m/s. A threshold of -1.0m/s has been chosen ensuring the acts of some ADL were not 

misidentified as fall. Also, this leads to decreased false positives and increased 

specificity. This threshold is compared to the smallest recorded from all the falls 

performed is -1.02m/s. There is a gap of 0.04m/s between largest Vve for an ADL and 

smallest Vve for a fall. Thus, this show that 100% specificity has been achieved using 

only vertical velocity estimate analysis when performing a total of 120 falls.  

 

     Based on our studies, the proposed fall detection algorithm detects 116 times 

intentional falls correctly in a total of 120 falls and failed 4 times. When failed 

samples were examined, changing some thresholds of analyses makes it possible to 

detect other 4 falls correctly. Fall detection at the chest would be reliable with the 

algorithm detecting UFT and LFT of acceleration magnitude, vertical velocity, UFT 

of angular velocity and end posture with dot product angle analysis (body posture 

analysis) resulting in fall detection sensitivity of 96.67% and specificity of 100% in a 

laboratory environment with intentional falls. The results have been supported by 

(Bourke, et al., 2010b), who tested sensitivity and specificity of various fall detection 

algorithms with intentional falls from young volunteers and samples from scripted 

and real life ADL among elderly volunteers.  

 

     Acceptability and usability of automatic fall detection systems in real life is still 

inconvenient because of their relatively big size and uncomfortable to wear. In 

addition, another reason of this situation is that specificity of system and false alarm 

rate affect the usability and acceptability of the systems among the end users. Results 



56 
 

of Bourke et al., (2010b) show that the false alarm rate in real life is 1.37 alarms per 

hour with data collected during 52 usage hours by older people. Recently Bianchi, et 

al., (2010) tested fall detection algorithms and reported that combining the detection 

of pressure change with acceleration impact and posture change detection decreased 

the false alarm rate from 11 alarms to zero in a real-life 125-minute ADL test.  

 

     Our test results show that no false fall alarms during 2 hours of monitored 

continuous unscripted real-life ADL for elderly volunteer. To decrease false alarm 

rate, end posture with dot product angle analysis has been added to the proposed fall 

detection algorithm. Also, when combining vertical velocity estimate analysis and 

end posture with dot product angle analysis the false alarm rate decreased to zero. 

This would result in a false alarm rate of zero alarm per hour. Our results with real-

life data from 2 hours showed an average false alarm rate of zero, which is in good 

advancement with the previous pilot studies. 

 

     Results show that using an algorithm that employs thresholds in acceleration 

magnitude, vertical velocity, body posture and angular velocity achieves 100% 

specificity, %96.67 sensitivity and %97.1 accuracy with a false-positive rate of zero 

during 2 hours. When performed tests on elderly healthy volunteer using continuous 

unscripted activities, results show that the algorithm is the most suitable method for 

fall detection. 

 

     Sample signals of walking, sit-stand, lie-stand and backward fall for young 

volunteer-1 (Alican) are displayed in Figure 5.2 The signals displayed are the Root-

Sum-of Squares (RSS) of Acceleration Magnitude, vertical velocity estimate, dot-

product angle and angular velocity. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.2 Sample signals of walking, sit-stand, lie-stand and backward fall for young volunteer-1 

(Alican). The signals displayed are (a) the Root-Sum-of Squares (RSS) of acceleration magnitude, (b) 

vertical velocity estimate, (c) dot-product angle and (d) angular velocity.  
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     Parameters and thresholds capable of discriminating falls and ADL have been 

chosen from data-set recorded from all tests. Parameters and threshold values are 

summarized in Table 5.1. The threshold values are adjusted to optimal detection of 

falls with minimized false alarms from ADL samples, i.e., maximal sensitivity with 

100% specificity when possible. The thresholds are used in the proposed fall 

detection algorithm composed of detection of different fall phases and in evaluation 

of unintentional falls. 

 
Table 5.1 Threshold values and units of the different parameters for the proposed fall detection 

algorithm 

Threshold Value Unit 

LFT for Acceleration Magnitude 0.6 g (9.81m/s
2
) 

UFT for Acceleration Magnitude 3.0 g (9.81m/s
2
) 

Vertical velocity estimate (Vve) -1.0 meter/second (m/s) 

 Dot product angle (Θ(t)) 60 degree (º) 

 Falling-edge time (tFE) 800 millisecond (ms) 

UFT for Angular Velocity 200 degree/second (º/s) 

 

     Evaluation of fall detection system is based on determining the number of falls 

detected (true positives TP) or not detected (false negatives FN) by the system, and 

the number of activity of daily living (ADL) detected (false positive FP) or not 

detected (true negative TN) as fall events. Based on those values sensitivity, 

specificity and accuracy of fall detection can be calculated as shown below. 

Sensitivity (Equation 5.1) represents the percentage of true falls that were correctly 

detected, 100% indicating that all falls were detected. 

 

SENSITIVITY 
TP

TP+FN
 x 100    (5.1) 

 

     Specificity (Equation 5.2) is related to the percentage of false fall alarms among 

ADL samples, 100% indicating that no false alarms were detected. Specificity is 

tested with ADL, mostly collected from instructed tasks, like walking, sitting down 

on a chair and standing up, and lying down on the bed and getting up. 
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SPECIFICITY 
TN

TN+FP
 x 100    (5.2) 

     Accuracy (Equation 5.3) represents the percentage of true discrimination between 

falls and ADL, 100% indicating 100% sensitivity and specificity. 

 

ACCURACY 
TP+ TN

TP + TN + FN + FP
 x 100    (5.3) 

Where: 

 Number of True positive (No. TP): a fall occurs, the device detects it. 

 Number of False positive (No. FP): the device announces a fall, but it did not 

occur. 

 Number of True negative (No. TN): a normal (no fall) movement is 

performed, the device does not declare a fall. 

 Number of False negative (No. FN): a fall occurs but the device does not 

detect it. 

 

     Results of sensitivity and specificity values of the proposed fall detection 

algorithm are shown in Table 5.2. Also, false positive (FP) quantities and false 

positive rate (FP/hour) and false positives per day (FP/day) for the proposed fall 

detection algorithm tested against the recorded continuous unscripted ADL for 

elderly volunteer are shown in Table 5.3. 
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  Table 5.2 Sensitivity (%) and specificity (%) values of the proposed fall detection algorithm 

The Proposed Fall Detection Algorithm 

Sensitivity (%) 96.67 

Specificity (%)  

Young walking 10m 100 

Young running 50m 100 

Young lying down and standing up from a bed 100 

Young sitting down and standing up from a toilet seat 100 

Young sitting down and standing up from an armchair 100 

Young getting in and out of a car seat 100 

Young bending to pick up an object from ground 100 

Young climb up stairs and go down a stairs 100 

Elderly and Middle-aged walking 10m 100 

Elderly and Middle-aged sitting down and standing up from an kitchen 

chair 

100 

Elderly and Middle-aged lying down and standing up from a bed 100 

Elderly and Middle-aged sitting down and standing up from a toilet seat 100 

Elderly and Middle-aged sitting down and standing up from an armchair 100 

Elderly and Middle-aged getting in and out of a car seat 100 

Elderly and Middle-aged bending to pick up an object from ground 100 

Elderly and Middle-aged climb up stairs and go down a stairs 100 

Total specificity (%) 100 

 

Table 5.3 False positive (FP) quantities and false positive rate (FP/hour) and false positives per day 

(FP/day) for the proposed fall detection algorithm tested against the recorded continuous unscripted 

ADL. 

Subjects Time (h) 
The Proposed Fall 

Detection Algorithm 

1 2.0 0 

False-positive rate (FPs/hour) 0 0 

False-positive rate (FPs/day) 0 0 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORK 

 

     The present study has confirmed that the proposed chest-worn accelerometer-

gyroscope fall detection monitoring system with the proposed fall detection    

algorithm can be used for fall detection. The study suggests that the use of a chest-

worn fall detector with the proposed fall detection algorithm provides a reliable  

system for discriminating falls from ADL. There are many past researches for fall 

detection systems, but some of them use only acceleration threshold. So, accuracy is 

still below desired levels. However, to increase the accuracy, the proposed fall 

detection solution performs different analyses related to the fall event    

simultaneously. The proposed wearable fall detection monitoring system is 

implemented to perform threshold based analysis for acceleration magnitude and 

angular velocity, vertical velocity estimate analysis and body posture analysis at  

center chest on the body for eight different types of fall. The recorded sensor data is 

used to evaluate the performance of the proposed fall detection algorithm. The 

proposed fall detection algorithm does not need complex computation, so the  

detection process has been implemented on microcontroller. Moreover, the proposed 

wearable fall detection monitoring system is automatic and real time fall detector.    

The algorithm makes it possible to respond quickly.      

 

     The present study evaluates intentional falls performed by young volunteers onto 

crash-mats, as opposed to real life hard surfaces. Recorded impact values of real life 

falls are higher than intentional conditions. This situation is advantage for us because 

it provides a greater margin for successful detection of falls in real life. Thus, the use 

of lowest threshold values recorded onto crash-mats will be sufficient as detection 

strategy. Performing falls onto hard surfaces would increase specificity by reducing 

the amount of false positive like misdetection of ADL as falls.       

 

     In this study, intentional falls performed from young volunteers have been used to 

assess the sensitivity, specificity and accuracy of the proposed fall detection 

algorithm. But, to gain more significant sensitivity, specificity and accuracy, further 



63 
 

research is required to assess the performance of the proposed fall detection     

algorithm by performing long-term monitoring. In addition, recorded data from real 

life falls among elderly volunteers is required to provide advancement in this area. 

This is very dangerous situation for elderly volunteers so elderly healthy volunteers 

performed scripted and continuous unscripted normal ADL in this study. To provide 

advancement in this area, elderly volunteers can be monitored long-term to perform 

inadvertently fall in a supervised and controlled environment. In addition, increasing 

number of tests on intentional falls and ADL is helpful to provide more accurate 

results.  

 

     For future developments, all electronic components of the proposed wearable fall 

detection monitoring system can be mounted onto a flexible PCB and custom     

housing of the system can be made from soft and elastic material to minimize injury 

to the user should fall on it. Material of custom housing should be robust enough to 

absorb impact and endure the user‟s weight when user falls on it. Also, flexible PCB 

has all electronic components together with custom housing can be woven into a 

tightly fitting garment on any part of body such as thigh, shoulder and head. By this 

way, all system should be small enough and light enough to wear comfortably and    

not inhibit normal daily activities. Also, this system may be waterproof in case of 

elderly people are in bathroom because bathroom is very dangerous place has    

slippery ground. It is convenient place to occur fall event for elderly people.   

 

     Moreover, the proposed fall detection algorithm has difficulties in discriminating 

jumping into bed and fall. Optimist approach for us is that this activity is unexpected 

activity to perform by elderly people. Another difficult activity is falling against wall 

with a seated posture to detect as fall. To detect this activity as fall, other techniques 

may be used such as attaching sensor modules more than one place on the body.              
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