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HUMAN GAIT ANALYSIS AND WALKING PATTERN GENERATOR 

 

ABSTRACT 

 

     Nowadays, human gait analysis is one of the popular topics and there are many 

currently available studies. One of the most popular subjects is lower limb prostheses 

and orthosis in lower extremity which help patients with problems to achieve normal 

life. Our study has focused on a new method for prediction of gait angles and 

detection of gait patterns performed in the lower extremity using neural networks 

with inputs from ground reaction forces and joint angles. In this study, different types 

of gait patterns including ascending and descending stair have been used and 

evaluated. 

  

     In this thesis, artificial neural networks were used for prediction of gait angles and 

gait patterns. To predict gait angles and detection of gait patterns artificial neural 

networks were trained with data sets obtained from joint angles or both joint angles 

and ground reaction forces. For both cases various type and size of  artificial neural 

networks were trained to provide performance comparison. To provide a useful 

comparison the results were given in tables. 

 

     The performed analyzes has shown that the applied methods have provide 

acceptable results. Finally these results suggest that neural networks could be applied 

successfully in prediction of gait angles and the detection of gait patterns. 

 

Keywords: Gait analysis, artificial neural networks, gait patterns 
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İNSAN YÜRÜYÜŞ ANALİZİ VE YÜRÜME PATERN ÜRETİMİ 

 

ÖZ 

 

     Günümüzde, insan yürüyüş analizi popüler konulardan biridir ve bu konuda çok 

sayıda mevcut çalışma bulunmaktadır. En popüler çalışma konularından biri de, alt 

ekstremite bölgesinde sorunu olan hastaların normal bir hayat geçirmesine yardım 

eden alt ekstremite protezleri ve ortezleridir. Bizim çalışmamız eklem açıları ve yer 

tepki kuvvetleri girişleriyle yapay sinir ağlarını kullanarak alt ekstremite bölgesinde 

gerçekleşen yürüme şekillerinin ve yürüme açılarının tahmini için yeni bir yöntem 

üzerine odaklanmaktadır. Bu çalışmada; merdiven inme ve çıkma gibi farklı türde 

yürüme şekilleride kullanılmaktadır ve değerlendirilmektedir. 

 

     Bu tezde, yürüme şekillerinin ve yürüme açılarının tahmininde yapay sinir ağları 

kullanıldı. Yürüme açılarının tahmini ve yürüme şekillerinin tespiti için oluşturulan 

yapay sinir ağları; eklem açıları ya da hem eklem açıları hem de yer tepki 

kuvvetlerinden elde edilen veri setleri ile eğitildi. Çeşitli tür ve büyüklükte yapay 

sinir ağları performans karşılaştırmalarını sağlamak için eğitildi. Kullanışlı bir 

karşılaştırma sağlamak için sonuçlar tablolar halinde verildi. 

 

     Yapılan analizler, tahmin için uygulanan yöntemlerin kabul edilebilir sonuçlar 

sağladığını gösterir. Bu sonuçlarda son olarak, yapay sinir ağlarının yürüme 

şekillerinin tespiti ve yürüme açılarının tahmini için başarıyla uygulanabileceğini öne 

sürer. 

 

Anahtar Sözcükler: Yürüme analizi, yapay sinir ağları, yürüme şekilleri 
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CHAPTER ONE  

INTRODUCTION 

 

1.1 Introduction 

  

     Gait analysis is a type of study which examine walking motion depending on 

mathematical analyses. This analysis contains measurement, description and 

assessment of quantities that characterize human motion. To determination of gait 

cycles, calculation of walking speed and detection of gait disturbances can be a few 

examples obtained on gait analysis. Gait analysis is applied for interdisciplinary 

studies (Toygar, et al., 2012; Capi, Nasu, Barolli, & Mitobe, 2002; Betker, Maharjan, 

Yaduvanshi, Szturm, & Moussavi, 2008).  

 

     Gait analysis studies can be used for health diagnostics and rehabilitation exercise 

(Baker, 2006; Kwon & Gross, 2005; Wahab & Bakar, 2011). For instance; detection 

of gait disturbances and observation of healing period for patients can be observed. 

But, gait analysis systems are very expensive and need to have well environmental 

conditions in laboratory.  

 

     Nowadays, wearable sensors are more popular for gait analysis depending on 

cheaper and portability (Sant’Anna, Wickström, Eklund, & Tranberg, 2012; 

Bamberg, Benbasat, Scarborough, Krebs, & Paradiso, 2008; Pulliam, Lambrecht, & 

Kirsch, 2011; Whittle, 2007; Tao, Liu, Zheng, & Feng, 2012). Wearable sensors 

mean that they can be mounted on various parts of human’s body like joints and sole. 

These sensors may be accelerometers, encoders, goniometers, gyroscopes, EMG, 

force sensors. The movement signals can be recorded by these sensors and they can 

be used to perform the gait analysis. For example; angle of joints (knee, hip and 

ankle), electrical signals of muscles, velocity of walking, and ground reaction forces 

along walking can be calculated easily.  

 

     In the literature, there are numerous studies depending on gait analysis (Pawin, 

Khaorapapong, & Chawalit, 2011; Kutilek & Farkasova, 2011; Pinitlertsakun & 



2 

Charoensuk, 2012; Kong & Tomizuka, 2008; Barton & Lee, 1995; Wang & 

Buchanan, 2002; Pappas, Popovic, Keller, Dietz, & Morari, 2001). These are 

determination of gait cycles and phases, detection of gait abnormalities, classification 

of gait patterns, kinetic and kinematic analysis along the walking, and prediction of 

joint angles in particular. In the thesis, studies are applied for detection of gait 

patterns and prediction of joint angles by using neural networks.  

 

1.2 Thesis Outline 

 

     Chapter 1 presents an introduction to the project. 

 

     Chapter 2 presents general knowledge on gait analysis, including gait parameters, 

gait cycle and phases. It also introduces popular sensors used for data gathering.  

 

     Chapter 3 gives some theoretical information about basics of artificial neural 

networks and explains artificial neural network architectures and algorithms like 

multilayer perceptron, radial basis function and recurrent neural network.  

 

     In Chapter 4, design of data acquisition system used to collect gait data is 

described. Hardware, software and sensors used in data acquisition system gives 

information.    

 

     In Chapter 5, gait patterns and obtained data by using data acquisition system are 

introduced. Comparisons are given about performances of studies realized with 

artificial neural networks. Moreover, neural networks are used to recognize patterns 

of human movement. 

 

     In Chapter 6, conclusion and future works are presented. 
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CHAPTER TWO  

GAIT ANALYSIS 

 

2.1 Introduction 

 

     Human gait analysis is the systematic study of human walking that has been 

developed from early illustrative studies to modern studies involving mathematical 

analysis and modelling. It has become a significant part of human motion analysis. 

This type of analysis involves measurement, description, and assessment of 

quantities that characterize human walking. For instance, through gait analysis, the 

gait phase can be identified, the kinematic and kinetic parameters of human gait 

events can be determined, and musculoskeletal functions can be quantitatively 

evaluated. Gait analysis has been applied in numerous areas like biomechanical, 

psychological, and security disciplines (Tao, Zheng, Liu, & Feng, 2012).  

 

     Gait analysis studies can be used for sports, rehabilitation, and health diagnostics. 

But, gait analysis facilities are limited. For example; to recognize the faults in player 

performances, to monitor patient’s healing period and to distinguish between healthy 

people and patients with medial knee osteoarthritis based on accelerometers was 

investigated. Existing many gait analysis systems are expensive and need good 

environment conditions such as laboratory. Nowadays, wearable sensors are very 

popular to have gait analysis (Gabel, Gilad-Bachrach, Renshaw, & Schuster, 2012). 

 

     In gait analysis, sensors are attached to various parts of the human’s body like 

foot, knee, ankle and hip. These sensors, which may be accelerometers, gyro sensors, 

force sensors, encoders, goniometers, and so on, can measure various characteristics 

of the human gait. The movement signal recorded by these sensors can be used to 

perform the gait analysis. 
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2.2 Gait Parameters 

 

     The general gait parameters are stride length, cadence and speed. These 

parameters can give about information on gait characteristics of a subject. These 

values can change according to subject’s age and sex.  

      

 

Figure 2.1 Stride length and step length (Teixido, Palleja, Tresanchez, Nogues, & Palacin, 2011) 

 

     Stride length shown in figure 2.1 is measured with distance between same two 

contacts of the same foot. If speed and gait cycle time can be known, stride length 

can be calculated with equation 2.1 (Whittle, 2007). 

      Stride length m  = Speed m/s  × Cycle time s   (2.1) 

One stride length have two step lengths.  

      

     Cadence is the number of steps per minute. It can be measured with aid of a 

stopwatch and by counting the number of steps realized during a known period of 

time as seen in equation 2.2 (Whittle, 2007).  

    Cadence steps/min  = Counted Steps × 60/Time s   (2.2) 

The number ‘60’ in the formula shows 60 seconds in a minute. 

      

     Speed is measured from the time taken to walk a known distance and by watching 

carefully the number of steps taken in that time can be counted. The formula is given 

in equation 2.3 (Whittle, 2007). 
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      Speed m/s  = Dista ce m /n Time s   (2.3) 

     Although every person has self-selected walking speed, the actual speed is 

continuously adjusted according to the conditions. Speed can be slowed or increased 

to avoid accidents with vehicles, and is consciously varied according to different 

situations (Kirtley, 2006). 

      

     Stride length, cadence and speed are also called the temporal-spatial parameters of 

gait, and they creates the basis of any gait assessment (Kirtley, 2006). 

 

2.3 Gait Cycle 

 

     Gait cycle consist of from one foot touch the ground to the time the same part of  

same foot touch ground again. Gait cycle can be divided into phases. Each gait cycle 

have main sub-phases. These are stance phase and the swing phase. Stance and swing 

phases compose approximately 62% and 38% of the gait cycle in a normal gait 

pattern. The stance phase is the portion of the gait cycle when the foot is in contact 

with the ground. It is initiated by heel strike and ends with toe off of the same foot. 

Swing phase is the portion of the gait cycle when the foot is in air. It is initiated with 

toe off and ends with heel strike. Stance and swing periods can further be divided 

into subgroups (Perry, 1992). 

 

2.3.1 Gait Phases 

 

     Different terminologies are used to describe phases of gait cycle.  These are 

traditional terminology and Rancho Los Amigos (RLA) system (Dreeben-Irimia, 

2011; Lippert, 2011). The traditional terminology developed for gait rehabilitation 

mounted after World War II to improve lower extremity prosthetics. It describes gait 

in terms of heel strike, foot flat, midstance, heel off, toe off, acceleration, midswing 

and deceleration. The Rancho Los Amigos (RLA) terminology became more and 

more popular in the late 1980’s and early 1990’s and is currently used as standard 

among clinicians. It describes gait more in terms of processes or segments of time, 

such as initial contact, loading response, midstance, terminal stance, pre-swing, 
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initial swing, midswing and terminal swing. It is more general and better enclose the 

common features of normal and pathological gait. 

 

     2.3.1.1 Rancho Los Amigos Terminology 

 

     This terminology consist of eight phases (Cuccurullo, 2010; Lippert, 2011; 

Dreeben-Irimia, 2011). These are initial contact, loading response, midstance, 

terminal stance, preswing, initial swing, midswing and terminal swing. Terminology 

is shown in the Figure 2.2. 

 

Figure 2.2 Gait cycle and phases (Whittle, 2007) 

 

     Initial Contact is only an instantaneous point in time and occurs the instant the 

foot of the leading lower limb touches the ground. It represents the beginning of the 

stance phase.  

 

     Loading Response begins with initial contact and continues until the other foot is 

lifted for swing. During loading response, the foot comes in full contact with the 

floor, and body weight is fully transferred onto the stance limb. Its interval is 

between 0-10% of gait cycle. 
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     Midstance begins when the contralateral foot leaves the ground and continues as 

the body weight travels along the length of the foot until it is aligned over the 

forefoot. The initial peak of the force graph shows the period of mid-stance. Its 

interval is between 10-30% of gait cycle.  

 

     Terminal stance begins with heel rise and ends when the contralateral foot 

contacts the ground. During this phase, body weight moves ahead of the forefoot.  Its 

interval is between 30-50% of gait cycle. 

 

     Preswing begins when the contralateral foot contacts the ground and ends with 

ipsilateral toe off and body weight is transferred onto the contralateral limb. Its 

interval is between 50-62% of gait cycle. 

 

     Initial Swing is the first third of the swing phase. It begins the moment the foot 

leaves the ground and continues until maximum knee flexion occurs. Its interval is 

between 62-75% of gait cycle. 

 

     Midswing is the middle third of the swing phase. It begins when the swinging foot 

is opposite the stance foot and ends when the swinging limb is forward. Its interval is 

between 75-85% of gait cycle.  

 

     Terminal Swing is final phase of gait cycle. It begins with vertical tibia and ends 

when the foot strikes the floor. Its interval is between 85-100% of gait cycle.  

 

 

2.4 Sensors for Gait Analysis 

 

     Different sensors are used on various parts of the human’s body like foot, knee, 

ankle and hip for gait analysis. Sensors like accelerometers, gyro sensors, force 

sensors, encoders, and goniometers in particular, are very popular various  
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characteristics of the human gait in nowadays. The movement signal recorded by 

these sensors can be used to perform the gait analysis. 

     Force Sensor can be embedded to have ground reaction forces particular area in 

the foot along walking. Many different types of force sensor have been used 

practically, containing resistive and capacitative strain gauges, conductive rubber, 

piezoelectric materials and a photoelastic optical system (Whittle, 2007). 

 

     Goniometer is connected to the lower extremity for making measurements of the 

angle of a joint, including hip, knee and wrist. The output of goniometer is usually 

plotted as joint angle against time. At the same time, if measurements have been 

made from two joints like hip and knee, the data can be plotted as an angle-angle 

diagram, also known as a ‘cyclogram’. This format shows that the interaction 

between the two joints and makes it possible to recognize patterns (Djuric-Jovicic, 

Jovicic, & Popovic, 2011). 

 

     Accelerometer is a type of inertial sensor that can measure acceleration along its 

sensitive axis. By attaching these accelerometers to the feet or legs, the 

acceleration/velocity of the feet or legs in the gait can be determined to perform the 

gait analysis. Three common types of accelerometers are available, namely, 

piezoelectric, piezoresistive, and capacitive accelerometers. Piezoresistive and 

capacitive accelerometers can provide dual acceleration components and have higher 

stability (Tao, Zheng, Liu, & Feng, 2012). 

 

     Gyroscope can be used to measure the orientation of the body segments in space 

and to measure angular velocity and acceleration. Angular velocity and angle of feet 

or legs during the gait can identify the rearrangement of the various gait phases by 

attaching a gyroscope to human feet or legs. It is always combined with an 

accelerometer to build a perfect initial sensing system (Tao, Zheng, Liu, & Feng, 

2012; Whittle, 2007). 
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     Electromyography is used to measure the electrical activity of the muscles in the 

lower extremity along walking. The three methods of recording the EMG are by way 

of surface, fine wire and needle electrodes. Generally, surface electrodes are used 

when general information on muscle activity is required. Wire electrodes must be 

inserted into muscle using a needle to have specific information on a muscle. 

Accordingly, EMG sensors can be used to realize the assessment of muscle activity 

in human gait and play an important role in evaluating the walking performance of 

individuals with problems in their lower extremities (Tao, Zheng, Liu, & Feng, 

2012). 

 

2.5 Gait Analysis Methods 

 

     Kinematic analysis is the measurement of movement, which is the geometric 

description of motion, in terms of displacements, velocities and accelerations. 

Kinematic systems are used to record the position and orientation of the body 

segments for gait analysis, the angles of the joints and the corresponding linear and 

angular velocities and accelerations. Based on these gait data, a kinematic analysis 

can be performed to recognize the gait phases, as well as obtain the general gait 

parameters and movement information on the body segments (Tao, Zheng, Liu, & 

Feng, 2012).  

 

     Kinetic analysis is used to calculate the net forces and moment make effort on the 

body due to the combination of the ground reaction force, inertia, and muscle 

contraction. Kinetic analysis requires the collection of kinematic information and 

ground reaction forces at the same time. Ground reaction forces are collected from 

people walk on force plates placed into the floor. The calculation of forces and 

moments produce at each joint is based on inverse dynamic method (Vaughan, 

Davis, & O’Connor, 1999). 

 

     Electromyography is used to determine electrical activation of muscles and to 

calculate the relative magnitude of muscle contraction. EMG data can be collected 

with electrodes, including surface, needed, or intramuscular wire electrodes. The 
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EMG signal is amplified and transmitted via cable or wireless to a computer where it 

is synchronized with kinematic and kinetic data. It also allows the inference about 

motion abnormalities (Whittle, 2007). 
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CHAPTER THREE  

ARTIFICIAL NEURAL NETWORKS 

 

     Artificial neural network is mathematical model of central nervous system. Many 

disciplines use it to solve different problems like pattern recognition, prediction, 

optimization and control.  

 

3.1 The Biological Model  

      

     The human brain consists of more than billions of neural cells that process 

information. Each cell works like a simple processor. Brain’s ability is provided with 

communication between cells and their parallel processing.  

 

 

Figure 3.1 Structure of a neural cell in the human brain (Fröclich, 1996) 

 

     As shown in the Figure 3.1, a neuron consists of a nucleus, dendrites and an axon. 

Information between neurons is transferred with electrical stimulations together on 

dendrites. Incoming information that arrive the neuron's dendrites is summed up and 

then delivered along the neuron's axon. The information is passed to other neurons 

when the stimulation has exceeded specific threshold. In this case, the neuron is 

activated. If the incoming stimulation is too low that is it hasn’t got enough threshold 

value, the information won’t be transported. In this case, the neuron is told to be 

inhibited. The connection structure between the neurons changes dynamically. It is 

accepted that the learning ability of the human brain is based on this structure 

(Fröclich, 1996). 

http://www.nnwj.de/dendrite-term.html
http://www.nnwj.de/axon-term.html
http://www.nnwj.de/threshold-term.html
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3.2 Basic Elements of Artificial Neuron Model 

 

     An artificial neuron is a mathematical function conceived as a simple model of a 

real neuron. The early model of an artificial neuron is introduced by Warren 

McCulloch and Walter Pitts in 1943. This is also simplified model of a real neuron 

(Rojas, 1996). The neuron consist of three basic components, including weight 

factors, thresholds, and activation function as shown in figure 3.2.   

 

 

Figure 3.2 Basic elements of neuron model (Touzed, n.d.) 

 

     In figure 3.2, let’s consider input vector as
1 2 3 N

A=[A ,A ,A ,...,A ] . Each input is 

multiplied by the related weight of the neuron connection ( T
I=A *W ). 

1 2 3 N
W=[W ,W ,W ,...,W ]  are weight values normalized in the range of either (0,1) or (-

1,1).  

 

     The threshold allows to shift the activation function to the left or right, which may 

be critical for successful learning. The threshold in artificial neuron is usually 

represented byθ . It can be negative or positive. If it is positive, it is referred as bias. 

If threshold input is ‘1’ and its weight W0 =θ are assumed, formula will be given in 

equation 3.1. 

Ty=f(A W+θ)   (3.1) 
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     Activation functions perform a mathematical operation on the signal output for 

better solution. They have different types. The most popular of them are sigmoid, 

tangent hyperbolic and linear functions.  

 

3.3 Learning Rules in Neural Networks 

 

     There are three types of neural network learning rules (Hagan, Demuth, & Beale, 

1996; Haykin, 2005). Unsupervised and supervised learning rules are particularly 

used to train the network. 

 

     In unsupervised learning rule given in figure 3.3, training set consist of only input 

training data. There are no target outputs available. The network learns to adapt 

based on the experiences collected through the previous training patterns.  

 

 

Figure 3.3 Unsupervised learning rule block diagram (Chakraborty, 2007) 

 

     In supervised learning rule shown in figure 3.4, training set consist of both input 

and output training patterns. Targets are known and given in input to the model 

during the learning process. The learning rule is then used to adjust the weights and 

biases of the network in order to move the network outputs closer to the targets. 
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Figure 3.4 Supervised learning rule block diagram (Chakraborty, 2007) 

 

3.4 Types of Activation Functions 

 

     ANN transfer functions are used to simulate reaction of system using input and 

out parameters. A variety of transfer function have been included in literature 

(Hagan, Demuth, & Beale, 1996; Dorofki, Elshafie, Jaafar, Karim, & Mastura, 

2012).  

 

     These can be linear or nonlinear functions. Transfer functions provides simulation 

that visualizes the input-output behavior of an artificial neuron depending on the 

specific combination of linear and nonlinear transfer functions three of these 

functions are the most commonly used. These are linear, log-sigmoid and hyperbolic 

tangent sigmoid transfer functions. 

 

3.4.1 Log-Sigmoid Activation Function 

 

     Input values changes between -∞ and +∞, however, the output values are in the 

range of 0 and 1. The mathematical formula for this function is shown in equation 

3.2 (Hagan, Demuth, & Beale, 1996). 

-n

1
a=

1+e
  (3.2) 
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      The log-sigmoid transfer function given in figure 3.5 is a nonlinear function and 

it is used in multilayer networks that are used for training of the backpropagation 

algorithm in particular since this transfer function is differentiable. 

 

Figure 3.5 Input – output curve for log-sigmoid activation function (Dorofki, et al., 2012) 

 

3.4.2 Hyperbolic Tangent Sigmoid Activation Function 

 

     This transfer function is similar to the sigmoid transfer function. Difference from 

sigmoid transfer function is that hyperbolic tangent sigmoid function has a range 

from -1 to 1. Since it has large range, the hyperbolic activation function is commonly 

used instead of sigmoid transfer function. The input and output curve of the 

hyperbolic tangent function can be seen in Figure 3.6. 

 

Figure 3.6 Input – output curve for hyperbolic tangent activation function (Dorofki, et al., 2012) 

 

     The mathematical formula for the hyperbolic tangent activation function is shown 

in equation 3.3 (Hagan, Demuth, & Beale, 1996).  

n -n

n -n

e -e
a=

e +e
  (3.3) 
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3.4.3 Linear Activation Function 

 

     The output is equal to its input at linear transfer function. The mathematical 

formula for linear transfer function is shown in equation 3.4 (Hagan, Demuth, & 

Beale, 1996). 

       a=n   (3.4) 

     The input and output curve of the hyperbolic tangent function can be seen in 

figure 3.7. 

 

Figure 3.7 Input – output curve for linear activation function (Dorofki, et al., 2012) 

 

3.5 Network Architectures 

 

     Commonly one neuron, even with many inputs, may not be sufficient. Sometimes, 

we need more neurons operate in parallel. These neuron community is called as a 

layer. According to number of layer and working type of neurons, network 

architectures are created. These are single layer feedforward, multilayer feedforward 

and recurrent networks (Hagan, Demuth, & Beale, 1996; Haykin, 2005). 

 

3.5.1 Multilayer Feedforward Network 

 

     This kind of feedforward network has one or more hidden layers in addition to 

input and output layers. The computational units of the hidden layer are known as 

hidden neurons. Block diagram is shown in figure 3.8. 
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     Multilayer networks has more advantages than single layer networks. For 

instance, two layer networks can be trained with both a sigmoid in first layer and a 

linear function in second layer for better results. 

 

Figure 3.8 Structure of multilayer feedforward network (Chakraborty, 2007) 

 

     One of the most important problems is which one can predict the optimal number 

of neurons in a hidden layer. There is no clear definition for this. But, most practical 

neural networks have two or three layers. Four or more layers are used seldom 

(Galushkin, 2007). 

 

     3.5.1.1 Backpropagation Algorithm 

    

     Backpropagation networks are probably the most popular algorithm applied on 

neural networks. It is a form of supervised learning for multilayer networks. It has an 

input layer, hidden layers and output layer. 

 

     During the training of the network, inputs and targets are presented. The input 

causes output responses in each layer and an output consist at the output layer. At the 

output layer, the difference between the actual output and target provides an error. 

This error depends on the values of the weights of the neurons in each layer. This 
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error is minimized, and during this process new values for the weights are obtained. 

The speed and accuracy of the learning process are provided with learning rate. 

 

     At the beginning of backpropagation network training, we have to get input and 

target values, learning rate coefficient, criterion that terminates the algorithm, 

methodology for updating weights, nonlinear or linear function and initial values for 

weight and bias. Nonlinear function can be sigmoid or tangent function. Initial values 

should choose small random values. There are different train algorithms for 

backpropagation network. The most popular are gradient descent momentum 

algorithm and Levenberg-Marquardt (Hagan, Demuth, & Beale, 1996). 

 

3.5.2 Radial Basis Function Neural Network 

 

     Radial basis networks may require more neurons than feedforward back 

propagation networks (Haykin, 2005). They can work best when many training 

vectors are available. A common learning algorithm for RBF is based on first 

choosing randomly some data points as radial basis function centers.  

 

     RBF network consists of two layers, including a hidden radial basis layer and an 

output linear layer of neurons. Different types of RBF network could be used, but the 

most common is Gauss Function. Network architecture is shown in figure 3.9. 

     A RBF network can be regarded as a special two layer network which is linear in 

the parameters by fixing all RBF centers and nonlinearities in the hidden layer. Thus, 

hidden layer performs a fixed nonlinear transformation with no adjustable parameters 

and it maps the input space onto a new space. The output layer then implements a 

linear combiner on this new space, and only adjustable parameters are weights of this 

linear combiner. Because of strong connection between RBF and neural networks, it 

is reasonable to believe that an RBF network can offer approximation capabilities 

similar to those of the two layer neural network, provided that the hidden layer of the 

RBF network is fixed appropriately (Haykin, 2005).  
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Figure 3.9 Structure of radial basis function neural network (Chakraborty, 2007) 

 

     Performance of RBF network depends on the chosen centers. In practice, the 

centers can be chosen to be a subset of the data. Center or radius are also called as 

“spread”. With larger spread, neurons at a distance from a point have a greater 

influence. With small spread, they are very selective. 

 

3.5.3 Recurrent Networks 

 

     Recurrent networks differ from feed-forward architecture since it has at least one 

feedback loop (Mandic & Chambers, 2001). Neurons can make feedback themselves 

or other neurons. Block diagram of recurrent network is shown in figure 3.10. 

     Recurrent networks are more powerful than feedforward networks since it can 

exhibit temporal behavior.  
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Figure 3.10 Structure of recurrent neural network 

    

     3.5.3.1 Elman Recurrent Algorithm 

     

     The Elman network is a type of recurrent network. This type of network has input 

layer, hidden layer, context layer and output layer. The inputs and output values 

consist of outside environment and these values don’t change. Output layer is a linear 

unit. Hidden layers can be linear or nonlinear transfer functions. Context layer is a 

memory to hold previous events of the hidden layers. It is also a function that is used 

as time delay. Recurrent connections that is between hidden layer and context layer 

are fixed. In literature, it is sometimes called as partially recurrent network because 

of fixity. Elman network architecture is given in figure 3.10 (Pham, & Liu, 1996). 

 

     All connections between neurons are indicated with a weight like multilayer 

feedforward neural network architecture. Firstly, weight values are selected as small 

values and are optimized during training. The weights between the hidden layers and 

context layer are set to one and are fixed. The values of the context neurons are 

transferred precisely. Initial output weights of the context neurons are equal to half 

the output range of the other neurons in the network. The Elman network can be 

trained with gradient descent backpropagation or Levenberg-Marquardt algorithm. 

The backpropagation algorithm causes some problems for some applications. 

Because, the algorithm doesn’t provide to find the global minimum of the error 

function. Cause of this is that gradient descent training algorithm may have troubles 

to find local minima (Haykin, 2005).           
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CHAPTER FOUR  

SYSTEM DESIGN 

 

4.1 Data Acquisition System 

 

     The data acquisition system used to collect data is a wearable system consisting of 

five parts, including sensors, microcontroller, bluetooth module, battery and personal 

computer (PC). The sensors and bluetooth module make communication with 

microcontroller on digital and analog interfaces. The microcontroller transfers the 

obtained data to PC via bluetooth module. A block diagram of the system is shown in 

figure 4.1. 

 

Figure 4.1 System block diagram 

 

4.1.1 Microcontroller 

 

     MBED NXP LPC1768 microcontroller board has been chosen as platform due to 

some of its useful features for study. One of the most important features is to 

consume ultra-low power. This microcontroller is very suitable for mobile 

measurement due to its size, computation ability and speed applications. On chip 

analog digital converter has 8 channel and 12-bit resolution with internal precision 
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reference. The microcontroller can sample at up to 200 KHz samples/sec. This is a 

sufficiently high sampling rate that the device can be used to measure even more 

strenuous activities, such as walking. Another advantage is that board has flash 

memory, which can support up to 512Kbyte.With this function it was possible to 

create a data logger and record data during short time intervals such as one minute. 

The board has some other desirable features such as a free programming 

environment. It can be also programmed via USB OTG connector. It has two 

regulators that gives 3.3V and 5V (NXP, 2009). MBED LPC 1768 board is shown in 

figure 4.2. 

 

 

Figure 4.2 NXP LPC1768 microcontroller board 

 

     The features of the LPC1768 board are shown in Table 4.1 (NXP, 2009) 

 

4.1.2 Sensors 

 

     4.1.2.1 Force Sensor 

 

     Six force sensors (three for each foot) has been placed into the sole of shoes. In 

Rana’s research, foot pressure distribution is examined to find ideal position of force 

sensors (Rana, 2009). Healthy people were used to determine sensor zones under 

foot and eight zones were identified for his aim. Force sensors are to be placed as 

illustrated in figure 4.3. 
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Table 4.1 Specifications of NXP LPC1768 microcontroller  

 

LPC1768 

Arm Cortex M3 Core  100 MHz operation 

 Memory protection unit 

 Four power mode: sleep, deep 

sleep, power down, and deep 

power down 

Memories  512 KB of flash memory 

 64 KB of SRAM 

Serial Peripherals  10/100 Ethernet MAC 

 USB 2.0 full-speed device/Host/ 

OTG controller with on-chip PHY 

 Four UARTs with fractional baud 

rate generation 

 Two CAN 2.0B controllers 

 Three SSP/SPI controllers 

 Three I2C-bus interfaces with one 

supporting Fast Mode Plus (1-

Mbit/s data rates) 

 I2S interface for digital audio 

Analog Peripherals  12 bit ADC with 8 channels 

 10 bit DAC 

Other Peripherals  Ultra low power (< 1µA) RTC 

 Four 32-bit general purpose timers 
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Figure 4.3 Places of force sensitive resistor sensors on sole 

 

     Various factors were considered for sensor selection. Firstly, the sensors must be 

very thin to provide walking comfort. Secondly, good linearity and repeatability are 

desired in order to obtain accurate data. Moreover, there are also some additional 

parameters, including maximum load, response time, etc. that must be acquired in the 

gait analysis. 

 

     There are many systems that can be used for experiment. But, in this study, we 

developed our own system to measure ground reaction forces because of limited 

budget. Force Sensing Resistors (FSRs) were chosen due to advantages. Figure 4.4 

shows the FSR sensor and its sensing area.   

     

 

Figure 4.4 Force sensitive resistor sensor (Sparkfun, n.d.) 

        

     The specifications of the sensor is given in table 4.2 (Interlink Electronics, 2010) 
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Table 4.2 Specifications of force sensitive resistor sensor  

Properties of FSR 

Thickness 0,45 mm 

Length 88 mm 

Width 43,69 mm 

Sensing Area 38,1x38,1 mm 

Standard Force Range 100 g – 10 kg 

Hysteresis ±10% 

Repeatability ±2% 

Resolution Continuous 

 

     FSR sensors are a polymer thick film device which exhibits a decrease in 

resistance with an increase in the force applied to the active surface. The force versus 

resistance characteristic shown in Figure 4.5 provides an overview of FSR typical 

response behavior. Break force or, turn on threshold resistance is greater than 100kΩ. 

The area where the force is being applied, such as the center of a large FSR device, 

will give it a lower resistance (Interlink Electronics,2010). 

 

Figure 4.5 Resistance vs. force range of FSR (Interlink Electronics, 2010) 

 

     4.1.2.2 Magnetic Rotary Encoder 

 

     Encoders are attached to obtain joint angles. For this purpose, Dokuz Eylul 

University Mechanical Engineer Department designed a mechanic system that can be 



26 

mounted on lower extremity. Sensors shown in figure 4.6 attached to knee, hip and 

ankle joint areas of mechanical design. 

 

Figure 4.6 Magnetic rotary encoder (OPKON Electronics, n.d.) 

 

     The specifications of magnetic rotary encoder is shown in table 4.3 (OPKON 

Electronics, n.d.). 

 

Table 4.3 Specifications of magnetic rotary encoder  

Specifications of Encoder 

Resolution 10 bit 

Output Signal TTL 

Supply Voltage 5V (DC) 

Maximum cycle 1000 rpm 

Range Up to around 10m 

Range of Working Temperature -20 … +80 0C 

Case Diameter 50mm 

Rod Diameter 8mm 

 

4.1.3 Bluetooth 

 

     Bluetooth is used to make wireless communication with computer. Bluetooth 

module shown in figure 4.7 gives the flexibility to send the obtained information to 

PC during the walking.  This certainly gives advantage for ascending and descending 

stairs. 



27 

 

Figure 4.7 Bluetooth module (Gökçegöz, 2013) 

 

     The reason to choose this module is the small size, cost and communication 

range. The specifications of the bluetooth module are given in table 4.4 (Core 

Electronics, n.d.). 

 

Table 4.4 Specifications of bluetooth module  

 

Specifications of Bluetooth Module 

Interface UART 

Bit Rate Up to 3Mbps 

Voltage 3.3 to 5V 

Current 40 mA max 

Range Up to around 10m 

Memory External 8Mbit Flash 

Baud rate Up to 921600Kbps 

Dimensions 40x18.5mm 

 

4.2 Hardware Implementation 

 

     A more detailed overview of the structure of the data acquisition system is shown 

in figure 4.8. As can be seen from diagram, system have sensors, bluetooth module, 

power battery and microcontroller. 
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Figure 4.8 Overall system design with the selected microcontroller board 

 

     According to block diagram, schematic circuit is given in figure 4.9. 

 

 

Figure 4.9 Schematic circuit of data acquisition system 

       

     Printed circuit board (PCB) design of the complete system is given in figure 4.10. 
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Figure 4.10 Printed circuit board design of data acquisition system 

 

     The sensors, bluetooth, and microcontroller board compose the wearable portion 

of the gait analysis device. This wearable system will be worn by the amputation 

patients or healthy people on their lower leg limb.  

 

4.3 Software Implementation 

 

4.3.1 PC Application 

 

     The PC application is used to read data from the data acquisition via the serial 

interface and to display the data. MATLAB has been selected as the programming 

language due to its portability and large number of libraries. MATLAB provides rich 

resources for data processing. Additionally, it has great flexibility, as the program 

can be embedded into or merged with other program easily like Excel. It is straight 

forward to turn the application into an internet service. For future project, a system 

can be developed to an online monitoring. A block diagram of the developed PC 

application is shown in Figure 4.11. 
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Figure 4.11 PC application diagram 

 

     The serial library is used to establish data communication between the data 

acquisition system and PC. The program starts a serial port listener thread to receive 

data from the acquisition module via the bluetooth module that appears as serial port 

on the PC. The received raw data are compressed into data frames. The serial listener 

thread decompresses these frames and decodes the data into ADC results of force 

sensors and digital data of magnetic rotary encoders. The program also checks the 

received frame and if there are errors, the error frames will not be used. Now a time 

series of data samples are generated based on angle and force values. These time 

series are displayed as the analog waveforms in the graph for force and angle values. 

 

4.3.2 Microcontroller Application 

 

     The microcontroller is used to communicate with sensors and send the data to 

personal computer via bluetooth module. Mbed library can be used for easy 

implementation. Implementation was made with C/C++ programming language with 

aid of this library.  

 

     Force sensors make communication on analog digital converter units with 

LPC1768’s internal analog to digital converter, which use with 12-bit resolution. The 

resolution can be computed as follows:  

 max max
Resolution = V /4096 where V is 3.3V   (4.1) 
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     According to incoming ADC values, voltage is calculated. 

 

  maxVoltage = V /4096 *ADC value   (4.2) 

 

     The voltage results can be maximum 3.3V. The voltage values are normalized 

into range of 0 to 1 with software for every sensor. Touching the ground strongly 

gives ‘1’ and ‘0’ gives for foot is not touching. 

 

     Magnetic rotary encoders have communication is called as ‘Serial Synchronize 

Interface’. It gives digital values as 10 bits. Output diagram is shown in figure 4.12. 

 

     While to make implementation, the following rules are used (OPKON 

Electronics, n.d.). 

 

1. If CSn changes to logic low, Data Out (DO) will change from high 

impedance to logic high and the read-out will be initiated. 

2. After a minimum time tCLKFE, data is latched into the output shift register with 

the first falling edge of CLK. 

3. The serial word contains 16 bits, the first 10 bits are the angular information 

D[9:0], the subsequent 6 bits contain system information, about the validity 

of data such as OCF, COF, LIN, Parity and Magnetic Field status 

(increase/decrease). 

4. A subsequent measurement is initiated by a “high” pulse at CSn with a 

minimum duration of tCSn. 
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Figure 4.12 Communication protocol of encoder (OPKON Electronics, n.d.) 

 

     Finally, the obtained values from sensors to the personal computer were 

transferred via bluetooth device. Bluetooth makes the communication with UART 

pins on LPC1768 microcontroller. Computer and bluetooth is paired with a 

programme that is called as ‘Bluesoleil’ and data sets are transferred to MATLAB 

programme.  
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CHAPTER FIVE  

SIMULATION RESULTS 

 

5.1 Introduction 

 

     In this thesis, data sets were collected for gait pattern types with data acquisition 

system described in chapter four. Each data set consist of either three angles (knee, 

hip and ankle) or ground reaction forces (toe, middle and heel). These gait patterns 

contain different forms of walking including ascending and descending stairs. 

Obtained data sets were trained with neural networks for predicting future states of 

joint angles and detection of gait pattern types. 

 

     Data sets were taken from a student in Dokuz Eylul University. He has physical 

specifications with 70 kg weight, 180 cm length and the age of 25 years old. 

Simulations were realized by using MATLAB program and neural network toolbox.  

 

5.2 Data Normalization 

 

     One of the most common tools used in neural networks is to take advantage of 

data normalization. A designer wants to have same range of values for inputs and 

outputs in order to minimize bias within neural network. Data normalization can 

speed up the training time by starting the process in same scale. There are various 

normalization techniques. In this thesis, min-max normalization, which is range of -1 

to 1, was used. It performs linear transformation on the data. The min-max 

normalization formula is given in equation 5.1. 

 
X  - min

' i valueX =(max  - min ).[ ] + mintarget target targeti max  - min
value value

  (5.1) 

where '

iX  is new value for variable X, 
i

X  is current value for variable X, 
min

X  is 

minimum value in data set and 
max

X is maximum value in data set. Min-max 

normalization preserves the relationships between the original data values (Priddy, & 

Keller, 2005).  
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5.3 Gait Patterns  

 

     The obtained data sets were initially divided into gait cycles by means of Rancho 

Los Amigos Terminology and ground reaction forces. Then, these data sets were 

normalized with min-max normalization technique.  

 

     In this section, three figures will be given;  

i. Gait pattern types 

ii. The signals which are taken from encoders for left and right leg 

iii. The signals which are taken from force sensors into sole of shoes 

 

     Gait patterns were obtained from six walking types and named from walking 

pattern 1 to walking pattern 6. Every walking pattern consist of consecutive three 

different images.  

 

     Angle and ground reaction force data sets obtained from walking pattern types are 

shown in figure 5.2, 5.3, 5.4, 5.5, 5.7, 5.8, 5.9, 5.10, 5.12, 5.13, 5.15, 5.16, 5.18, 

5.19, 5.21 and 5.22. In these figures, three different cycles are given in one cycle. 

Gait cycles obtained from walking pattern types aren’t periodic and therefore, it can 

be seen from above given figures that there are small differences. 

 

5.3.1 Walking Pattern 1 

 

     For this walking type, two different recording were realized. One with stride 

length of 80 cm and step length 40 cm and the other with stride length 40 cm and 

step length 20 cm. Figure 5.1 shows the walking pattern 1 with stride length of 80 cm 

and step length of 40 cm along the walking path. In this figure, 139±20 samples from 

each sensor were taken for a single gait cycle. 
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Figure 5.1 Walking pattern 1 with stride length of 80 cm and step length of 40 cm, and three 

consecutive images from (a) to (c)    

     Angle values of left and right leg joints for stride length of 80 cm and step length 

of 40 cm are in the range of 00 and 3600. The values are normalized to from -1 to 1. 

The normalized values are directly used in MATLAB neural network toolbox. After 

neural network processing, these normalized values are transformed back to 

corresponding angle values. In figure 5.2, three joints angle data values consisting of 

different three gait cycles are shown.  

 

Figure 5.2 Joint angles obtained from walking pattern 1 with stride length of 80 cm and step length of 

40 cm (a) Left Leg (b) Right Leg (Continue) 
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Figure 5.2 Joint angles obtained from walking pattern 1 with stride length of 80 cm and step length of 

40 cm (a) Left Leg (b) Right Leg 

 

     Ground reaction force values of left and right legs for stride length of 80 cm and 

step length of 40 cm are in the range of 0 and 4096. The values are normalized from -

1 to 1. In figure 5.3, ground reaction force data values consisting of different three 

gait cycles are given.      

 

Figure 5.3 Ground reaction forces obtained from walking pattern 1 with stride length of 80 cm and 

step length of 40 cm (a) Right Leg (b) Left Leg 
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     Angle values of left and right leg joints for stride length of 40 cm and step length 

of 20 cm are in the range of 00 and 3600. The values are normalized to from -1 to 1. 

In figure 5.4, three joints angle data values consisting of different three gait cycles 

are given.      

 

Figure 5.4 Joint angles obtained from walking pattern 1 with stride length of 40 cm and step length of 

20 cm (a) Left Leg (b) Right Leg 

     Ground reaction force values of left and right legs for stride length of 40 cm and 

step length of 20 cm are in the range of 0 and 4096. The values are normalized from -

1 to 1. In figure 5.5, ground reaction force data values consisting of different three 

gait cycles are shown.             
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Figure 5.5 Ground reaction forces obtained from walking pattern 1 with stride length of 40 cm and 

step length of 20 cm (a) Right Leg (b) Left Leg 

 

5.3.2 Walking Pattern 2 

      

     For this walking type, two different recording were realized. One with stride 

length of 80 cm and step length 40 cm and the other with stride length 40 cm and 

step length 20 cm. In figure 5.6, walking pattern 2 with one leg moves and then the 

other leg comes next to the first and then the same states. In this figure, 154±15 

samples from each sensor were taken for single gait cycle.  
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Figure 5.6 Walking pattern 2 with stride length of 80 cm and step length of 40 cm, and three 

consecutive images from (a) to (c) 

     Angle values of left and right leg for stride length of 80 cm and step length of 40 

cm are in the range of 00 and 3600. The values are normalized to from -1 to 1. In 

figure 5.7, three joints angle data values consisting of different three gait cycles 

belong to walking pattern 2 with 80 cm stride length are given.         

 

 

Figure 5.7 Joint angles obtained from walking pattern 2 with stride length of 80 cm and step length of 

40 cm (a) Left Leg (b) Right Leg  
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     Ground reaction force values of left and right legs for stride length of 80 cm and 

step length of 40 cm are in the range of 0 and 4096. The values are normalized from -

1 to 1. In figure 5.8, ground reaction force data values consisting of different three 

gait cycles belong to walking pattern 2 with 80 cm stride length are shown.   

    

 

Figure 5.8 Ground reaction forces obtained from walking pattern 2 with stride length of 80 cm and 

step length of 40 cm (a) Right Leg (b) Left Leg 

     Angle values of left and right leg joints for stride length of 40 cm and step length 

of 20 cm are in the range of 00 and 3600. The values are normalized to from -1 to 1. 

In figure 5.9, three joints angle data values consisting of different three gait cycles 

belong to walking pattern 2 with 40 cm stride length are given. 
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Figure 5.9 Joint angles obtained from walking pattern 2 with stride length of 40 cm and step length of 

20 cm (a) Left Leg (b) Right Leg 

     Ground reaction force values of left and right legs for stride length of 80 cm and 

step length of 40 cm are in the range of 0 and 4096. The values are normalized from -

1 to 1. In figure 5.10, ground reaction force data values consisting of different three 

gait cycles belong to walking pattern 2 with 40 cm stride length are shown. 

 

Figure 5.10 Ground reaction forces obtained from walking pattern 2 with stride length of 40 cm and 

step length of 20 cm (a) Right Leg (b) Left Leg  (Continue) 
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Figure 5.10 Ground reaction forces obtained from walking pattern 2 with stride length of 40 cm and 

step length of 20 cm (a) Right Leg (b) Left Leg  

  

5.3.3 Walking Pattern 3 

 

    This walking pattern describes ascending the stairs. First, one leg moves and 

placed on the next stair, and then the other leg moves and placed onto the stair which 

is one level above other leg. This is one gait cycle and the others follow this cycle. In 

figure 5.11, 209±15 samples from each sensor were taken for a single gait cycle.      

 

Figure 5.11 Walking pattern 3 and three consecutive images from (a) to (c) 

     Angle values of left and right leg joints are in the range of 00 and 3600. The values 

are normalized to from -1 to 1. In figure 5.12, three joints angle data values 

consisting of different three gait cycles belong to walking pattern 3 are given.  
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Figure 5.12 Joint angles obtained from walking pattern 3 (a) Left Leg (b) Right Leg 

 

     Ground reaction force values of left and right legs are in the range of 0 and 4096. 

The values are normalized from -1 to 1. In figure 5.13, ground reaction force data 

values consisting of different three gait cycles belong to walking pattern 3 are shown. 

. 
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Figure 5.13 Ground reaction forces obtained from walking pattern 3 (a) Right Leg (b) Left Leg 

 

5.3.4 Walking Pattern 4 

 

     This walking pattern describes ascending the stairs. First, one leg moves and 

placed on the next stair, and then the other leg moves and placed onto the stair which 

is at the same level with the other leg. This is one gait cycle and the others follow 

this cycle. In figure 5.14, 191±20 samples from each sensor were taken for a single 

gait cycle. 

 



45 

 

Figure 5.14 Walking pattern 4 and three consecutive images from (a) to (c) 

 

     Angle values of left and right leg joints are in the range of 00 and 3600. The values 

are normalized to from -1 to 1. In figure 5.15, three joints angle data values 

consisting of different three gait cycles belong to walking pattern 4 are given. 

 

Figure 5.15 Joint angles obtained from walking pattern 4 (a) Left Leg (b) Right Leg 

     Ground reaction force values of left and right legs are in the range of 0 and 4096. 

The values are normalized from -1 to 1. In figure 5.16, ground reaction force data 

values consisting of different three gait cycles belong to walking pattern 4 are given. 
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Figure 5.16 Ground reaction forces obtained from walking pattern 4 (a) Right Leg (b) Left Leg 

 

5.3.5 Walking Pattern 5 

 

     This walking pattern belongs descending the stairs. First, one leg moves and 

placed on the next stair, and then the other leg moves and placed onto the stair which 

is at the same level with the other leg. This is one gait cycle and the others follow 

this cycle. In figure 5.14, 195±10 samples from each sensor were taken for a single 

gait cycle. 
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Figure 5.17 Walking pattern 5 and three consecutive images from (a) to (c) 

 

     Angle values of left and right leg joints are in the range of 00 and 3600. The values 

are normalized to from -1 to 1. In figure 5.18, three joints angle data values 

consisting of different three gait cycles belong to walking pattern 5 are given. 

 

Figure 5.18 Joint angles obtained from walking pattern 5 (a) Left Leg (b) Right Leg 
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     Ground reaction force values of left and right legs are in the range of 0 and 4096. 

The values are normalized from -1 to 1. In figure 5.19, ground reaction force data 

values consisting of different three gait cycles belong to walking pattern 5 are given. 

 

Figure 5.19 Ground reaction forces obtained from walking pattern 5 (a) Right Leg (b) Left Leg 

 

5.3.6 Walking Pattern 6 

 

     This walking pattern belongs descending the stairs. First, one leg moves and 

placed on the next stair, and then the other leg moves and placed onto the stair which 

is one level below other leg. This is one gait cycle and the others follow this cycle. In 

figure 5.20, 223±15 samples from each sensor were taken for a single gait cycle. 
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Figure 5.20 Walking pattern 6 and three consecutive images from (a) to (c) 

 

     Angle values of left and right leg joints are in the range of 00 and 3600. The values 

are normalized to from -1 to 1. In figure 5.21, three joints angle data values 

consisting of two gait cycles are given. 

 

Figure 5.21 Joint angles obtained from walking pattern 6 (a) Left Leg (b) Right Leg 
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     Ground reaction force values of left and right legs are in the range of 0 and 4096. 

The values are normalized from -1 to 1. In figure 5.22, ground reaction force data 

values consisting of two gait cycles are given. 

 

Figure 5.22 Ground reaction forces obtained from walking pattern 6 (a) Right Leg (b) Left Leg 

 

5.4 Neural Network Applications 

 

5.4.1 Prediction of Joint Angles 

 

     Different techniques were applied to predict future states of joint angles with 

neural networks. Firstly, gradient descent with momentum and Levenberg-Marquardt 

algorithms in MLP NN were used to train the neural network. Joint angles of right 

and left leg were taken as input and target respectively. Training and test of neural 

network were realized with single gait cycles. In table 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 
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and 5.8, performance analyses were given for gait pattern types. Mean square error 

(MSE) and absolute percentage error parameters were used to compare 

performances. 

 

     MSE is computed with formula in equation 5.2 (Wackerly, & Scheaffer, 2008). 

 
n

2

i=1

1
MSE= (Target-Output)

n
   (5.2) 

      

     Mean absolute percentage error is calculated with formula in equation 5.3 

(Yamin, & Shahidehpour, 2010). 

 
Approximate Value - Exact Value| | 100%

Percentage Error = x
|Exact Value| n

  (5.3) 

where n is number of data.   

 

Table 5.1 Performance comparisons of LM and GDM backpropagation algorithms for walking pattern 

1 with stride length of 80 cm and step length of 40 cm 

 Training Data Test Data 

 MSE Error Rate MSE Error Rate 

LM 0.0367 0.0221% 114.91 2.31% 

GDM 0.3572 0.1399% 62.7285 1.69% 

 

Table 5.2 Performance comparisons of LM and GDM backpropagation algorithms for walking pattern 

1 with stride length of 40 cm and step length of 20 cm 

 Training Data Test Data 

 MSE Error Rate MSE Error Rate 

LM 0.0114 0.0084% 98.5887 1.86% 

GDM 1.2764 0.2649% 46.6118 1.18% 

 

Table 5.3 Performance comparisons of LM and GDM backpropagation algorithms for walking pattern 

2 with stride length of 80 cm and step length of 40 cm 

 Training Data Test Data 

 MSE Error Rate MSE Error Rate 

LM 0.0782 0.0326% 52.9061 1.62% 

GDM 0.3911 0.1501% 39.7325 1.14% 
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Table 5.4 Performance comparisons of LM and GDM backpropagation algorithms for walking pattern 

2 with stride length of 40 cm and step length of 20 cm 

 Training Data Test Data 

 MSE Error Rate MSE Error Rate 

LM 0.0719 0.035% 30.56 1.30% 

GDM 0.2753 0.127% 23.433 1.14% 

 

Table 5.5 Performance comparisons of LM and GDM backpropagation algorithms for walking pattern 

3 

 Training Data Test Data 

 MSE Error Rate MSE Error Rate 

LM 0.0144 0.02% 95.63 2.12% 

GDM 1.5215 0.29% 18.90 0.99% 

 

Table 5.6 Performance comparisons of LM and GDM backpropagation algorithms for walking pattern 

4 

 Training Data Test Data 

 MSE Error Rate MSE Error Rate 

LM 0.1698 0.04% 30.17 1.28% 

GDM 0.5548 0.16% 14.56 0.78% 

 

Table 5.7 Performance comparisons of LM and GDM backpropagation algorithms for walking pattern 

5 

 Training Data Test Data 

 MSE Error Rate MSE Error Rate 

LM 0.1625 0.05% 387.31 4.58% 

GDM 2.7549 0.37% 393.02 4.41% 

 

Table 5.8 Performance comparisons of LM and GDM backpropagation algorithms for walking pattern 

6 

 Training Data Test Data 

 MSE Error Rate MSE Error Rate 

LM 0.1751 0.06% 559.3 5.49% 

GDM 2.7275 0.37% 426.3 4.4% 

 

     The results have shown that Levenberg-Marquardt algorithm is more successful 

than gradient descent with momentum algorithm to train the neural network. Despite 

getting better results for training, it has worse results when given test data. It can be 

told that best training performance isn’t be able to give better response.   

 

     Secondly, ground reaction force values obtained from sensors placed into soles of 

right leg added to joint angles to generate wider input data set. Gradient descent with 

momentum algorithm in MLP NN was used to train neural networks because it has 
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given better results for test data sets in previous study. In table 5.9, 5.10, 5.11, 5.12, 

5.13, 5.14, 5.15 and 5.16, performance analyses depending on input data set are 

given for all of the gait pattern types. 

 

Table 5.9 Performance comparisons of neural networks depending on input data set for walking 

pattern 1 with stride length of 80 cm and step length of 40 cm 

 Training Data Test Data 

Input Data Set MSE Error Rate MSE Error Rate 

Angle 0.3572 0.1399% 62.7285 1.69% 

Angle-Force 1.1844 0.24% 29.80 0.98% 

 

Table 5.10 Performance comparisons of neural networks depending on input data set for walking 

pattern 1 with stride length of 40 cm and step length of 20 cm 

 Training Data Test Data 

Input Data Set MSE Error Rate MSE Error Rate 

Angle 1.2764 0.2649% 46.6118 1.18% 

Angle-Force 0.6634 0.18% 58.27 1.36% 

 

Table 5.11 Performance comparisons of neural networks depending on input data set for walking 

pattern 2 with stride length of 80 cm and step length of 40 cm 

 Training Data Test Data 

Input Data Set MSE Error Rate MSE Error Rate 

Angle 0.3911 0.1501% 39.7325 1.14% 

Angle-Force 0.2604 0.11% 23.17 0.87% 

 

Table 5.12 Performance comparisons of neural networks depending on input data set for walking 

pattern 2 with stride length of 40 cm and step length of 20 cm 

 Training Data Test Data 

Input Data Set MSE Error Rate MSE Error Rate 

Angle 0.2753 0.127% 23.433 1.14% 

Angle-Force 0.2715 0.11% 18.86 0.93% 

 

Table 5.13 Performance comparisons of neural networks depending on input data set for walking 

pattern 3 

 Training Data Test Data 

Input Data Set MSE Error Rate MSE Error Rate 

Angle 1.5215 0.29% 18.90 0.99% 

Angle-Force 1.7487 0.28% 16.55 0.97% 

 

Table 5.14 Performance comparisons of neural networks depending on input data set for walking 

pattern 4 

 Training Data Test Data 

Input Data Set MSE Error Rate MSE Error Rate 

Angle 0.5548 0.16% 14.56 0.78% 

Angle-Force 0.5309 0.15% 10.5 0.76% 
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Table 5.15 Performance comparisons of neural networks depending on input data set for walking 

pattern 5 

 Training Data Test Data 

Input Data Set MSE Error Rate MSE Error Rate 

Angle 2.7549 0.37% 393.02 4.41% 

Angle-Force 1.4294 0.29% 236.81 3.21% 

 

Table 5.16 Performance comparisons of neural networks depending on input data set for walking 

pattern 6 

 Training Data Test Data 

Input Data Set MSE Error Rate MSE Error Rate 

Angle 2.7275 0.37% 426.3 4.4% 

Angle-Force 2.62 0.38% 272.97 3.22% 

      

     Obtained results have shown that ground reaction forces improve both training and 

test performance of neural network. 

     Thirdly, MLP NN, RBF NN and RNN were applied to training neural networks. 

Joint angles and ground reaction forces of right leg were taken as input data set 

because wider training input data set provided better results as shown in previous 

study. Joint angles of left leg were taken as target. Performance comparisons of 

neural networks were given in table 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23 and 5.24.  

 

Table 5.17 Performance comparisons of multilayer perceptrons, radial basis function and Elman 

recurrent neural networks for walking pattern 1 with stride length of 80 cm and step length of 40 cm 

 Training Data Test Data 

ANN Model MSE Error Rate MSE Error Rate 

MLP NN 1.1844 0.24% 29.80 0.98% 

RBF NN 0.0658 0.06% 28.52 0.95% 

Elman RNN 0.5698 0.16% 15.10 0.96% 

 

Table 5.18 Performance comparisons of multilayer perceptrons, radial basis function and Elman 

recurrent neural networks for walking pattern 1 with stride length of 40 cm and step length of 20 cm 

 Training Data Test Data 

ANN Model MSE Error Rate MSE Error Rate 

MLP NN 0.6634 0.18% 58.27 1.36% 

RBF NN 0.0993 0.07% 91.76 1.76% 

Elman RNN 0.3342 0.13% 42.27 1.28% 
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Table 5.19 Performance comparisons of multilayer perceptrons, radial basis function and Elman 

recurrent neural networks for walking pattern 2 with stride length of 40 cm and step length of 20 cm 

 Training Data Test Data 

ANN Model MSE Error Rate MSE Error Rate 

MLP NN 0.2715 0.11% 18.86 0.93% 

RBF NN 0.0377 0.04% 13.005 0.79% 

Elman RNN 0.2140 0.21% 33.24 1.17% 

 

Table 5.20 Performance comparisons of multilayer perceptrons, radial basis function and Elman 

recurrent neural networks for walking pattern 2 with stride length of 80 cm and step length of 40 cm 

 Training Data Test Data 

ANN Model MSE Error Rate MSE Error Rate 

MLP NN 0.2604 0.11% 23.17 0.87% 

RBF NN 0.0902 0.06% 404.61 3.91% 

Elman RNN 0.1258 0.08% 11.50 0.78% 

 

Table 5.21 Performance comparisons of multilayer perceptrons, radial basis function and Elman 

recurrent neural networks for walking pattern 3 

 Training Data Test Data 

ANN Model MSE Error Rate MSE Error Rate 

MLP NN 1.7487 0.28% 16.55 0.97% 

RBF NN 0.0828 0.07% 41.48 1.44% 

Elman RNN 3.008 0.38% 30.26 1.29% 

 

Table 5.22 Performance comparisons of multilayer perceptrons, radial basis function and Elman 

recurrent neural networks for walking pattern 4 

 Training Data Test Data 

ANN Model MSE Error Rate MSE Error Rate 

MLP NN 0.5309 0.15% 10.5 0.76% 

RBF NN 0.0911 0.06% 10.26 0.73% 

Elman RNN 0.2091 0.09% 31.05 1.31% 

 

Table 5.23 Performance comparisons of multilayer perceptrons, radial basis function and Elman 

recurrent neural networks for walking pattern 5 

 Training Data Test Data 

ANN Model MSE Error Rate MSE Error Rate 

MLP NN 1.4294 0.29% 236.81 3.21% 

RBF NN 0.3816 0.14% 311.92 4.48% 

Elman RNN 1.2954 0.26% 273.39 3.17% 

 

Table 5.24 Performance comparisons of multilayer perceptrons, radial basis function and Elman 

recurrent neural networks for walking pattern 6 with stride length of 40 cm and step length of 20 cm 

 Training Data Test Data 

ANN Model MSE Error Rate MSE Error Rate 

MLP NN 2.62 0.38% 272.97 3.22% 

RBF NN 1.09 0.22% 216.2 3.63% 

Elman RNN 1.52 0.28% 197.6 3% 
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     It can be seen that RBF NN gives worse performance than MLP NN and RNN 

when given test data although it has the best training performance for each gait 

pattern type. It can be said again that the best training performance doesn’t always 

give better result as shown in previous study. 

      

     Fourthly, instead of single gait cycle, two and three gait cycle data sets were used 

to train neural networks. Joint angles and ground reaction forces of right leg were 

taken as input data set. Joint angles of left leg were taken as target. Recurrent neural 

network were chosen for training. Neural network were tested with single gait cycle 

data sets. In table 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31 and 5.32, performance 

comparisons are given depending on number of gait cycle for gait pattern types.  

 

Table 5.25 Performance comparisons of neural networks depend on number of gait cycles used in 

training for walking pattern 1 with stride length of 80 cm and step length of 40 cm 

 Training Data Test Data 

No of Cycles Error Rate Error Rate 

1 0.16% 0.96% 

2 0.25% 0.77% 

3 0.48% 0.76% 

 

Table 5.26 Performance comparisons of neural networks depend on number of gait cycles used in 

training for walking pattern 1 with stride length of 40 cm and step length of 20 cm 

 Training Data Test Data 

No of Cycles Error Rate Error Rate 

1 0.13% 1.28% 

2 0.25% 0.84% 

3 0.42% 0.73% 

 

Table 5.27 Performance comparisons of neural networks depend on number of gait cycles used in 

training for walking pattern 2 with stride length of 80 cm and step length of 40 cm 

 Training Data Test Data 

No of Cycles Error Rate Error Rate 

1 0.21% 1.17% 

2 0.31% 0.92% 

3 0.24% 0.88% 
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 Table 5.28 Performance comparisons of neural networks depend on number of gait cycles used in 

training for walking pattern 2 with stride length of 40 cm and step length of 20 cm 

 Training Data Test Data 

No of Cycles Error Rate Error Rate 

1 0.08% 0.78% 

2 0.11% 0.66% 

3 0.15% 0.57% 

 

Table 5.29 Performance comparisons of neural networks depend on number of gait cycles used in 

training for walking pattern 3 

 Training Data Test Data 

No of Cycles Error Rate Error Rate 

1 0.38% 1.29% 

2 0.22% 0.6% 

3 0.29% 0.58% 

 

Table 5.30 Performance comparisons of neural networks depend on number of gait cycles used in 

training for walking pattern 4 

 Training Data Test Data 

No of Cycles Error Rate Error Rate 

1 0.09% 1.31% 

2 0.14% 0.69% 

3 0.18% 0.68% 

      

Table 5.31 Performance comparisons of neural networks depend on number of gait cycles used in 

training for walking pattern 5 

 Training Data Test Data 

No of Cycles Error Rate Error Rate 

1 0.26% 3.17% 

2 0.46% 3.13% 

3 0.57% 3.04% 

 

Table 5.32 Performance comparisons of neural networks depend on number of gait cycles used in 

training for walking pattern 6 

 Training Data Test Data 

No of Cycles Error Rate Error Rate 

1 0.28% 3.0% 

2 0.82% 2.89% 

3 1.1% 2.41% 

 

     It has shown that performances of neural networks were increased proportionally 

depending on number of gait cycles. 

 

 



58 

5.4.2 Detection of Gait Pattern Types 

 

     In this study, learning vector quantization (LVQ) neural networks were applied to 

detect gait pattern types; walking type 1 with stride length of 40 cm and step length 

of 20 cm, walking pattern type 2 with stride length of 40 cm and step length of 20 

cm, walking pattern 4 in figure 5.14 and walking pattern 5 in figure 5.17. Joint angles 

and ground reaction forces were normalized between -1 and 1. These normalized 

values were used in MATLAB neural network toolbox.   

 

     Firstly, 100 joint angle data sets obtained from right and left leg were used to 

teach gait pattern types to neural networks. Neural networks were trained with 40, 50 

and 60 neurons. In table 5.33, training performances are given depending on the 

number of neuron in the hidden layer. Mean square error (MSE) and error rate 

parameters were used to compare network performances. 

 

Table 5.33 Training performance comparisons depending on the number of neuron in the hidden layer 

and angle input data set 

Number of Neuron MSE Error Rate 

40 0.257 51.49% 

50 0.260 52% 

60 0.264 51.79% 

 

     100 joint angle data sets were used to test the neural network. In table 5.34, 

performance analyses of neural networks were given depending on the number of 

neurons. 

Table 5.34 Success rate of LVQ NN for test data sets consist from joint angles 

Number of Neuron Success Rate 

40 50.31% 

50 50.39% 

60 50.58% 

 

     The results have shown that neural networks could detect only two types of the 

gait patterns with joint angles with angle data sets. The number of neurons less than 
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40, the neural network had 25% success rate and it has reached to saturation 

performance level after 60 neurons. 

 

     Secondly, 100 ground reaction force data set obtained from sensors into sole of 

right leg added to angle values to train the neural networks with wider training data 

set. Neural networks were trained with different number of neuron; 10, 20, 30, 40. In 

table 5.35, performances of neural networks were given depending on number of 

neuron for training process. 

 

Table 5.35 Training performance comparisons depending on the number of neurons in the hidden 

layer and combination of input data sets  

Number of Neuron MSE Error Rate 

10 0.105 21.03% 

20 0.114 23.79% 

30 0.101 20.2% 

40 0.103 20.5% 

 

     100 test data sets were used to test neural networks. In table 5.36, performance 

analyses were given depending on number of neuron.  

 

 Table 5.36 Success rate of LVQ NN for test data sets consist from combination of input data sets 

Number of Neuron Success Rate 

10 75.57% 

20 73.2% 

30 75.2% 

40 75.57% 

      

     Results has shown that neural networks could detect the gait patterns more 

successfully with wider training data set, which consist of joint angles and ground 

reaction forces. Neural network performance have reached to saturation level with 30 

neurons and its success rate obtained approximately 75%. 

 

     In addition to LVQ NN, MLP NN was also used to detect these four types of gait 

patterns. Input data sets were taken as joint angles and ground reaction forces of right 
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leg and corresponding four outputs were taken as 1, 2, 3 and 4. Neural network was 

trained for different hidden layer neuron numbers. The neural network with 10 

neurons in the hidden layer had better performance than others. The network 

produces outputs in the range of 0-1.5, 1.51-2.5, 2.51-3.5 and 3.51-4.5 for the test 

patterns 1, 2, 4, and 5, respectively. In table 5.37, performance analysis of the neural 

network is shown. 

 

Table 5.37 Success rate of MLP NN for detection of four types of gait patterns 

Walking Pattern 1 Walking Pattern 2 Walking Pattern 4 Walking 5 

75.1% 88.7% 84.23% 79.51% 

 

     Results have shown that MLP NN could detect the four types of gait patterns 

more successfully than LVQ. It gives 81.885% average success rate. 

 

     LVQ and MLP NN were used to detect for two types of gait patterns, walking 

pattern 1 with stride length of 80 cm and step length of 40 cm and walking pattern 4. 

Ground reaction forces and joint angles of right leg were chosen as input data values. 

Targets were taken as 1 and 2 for walking pattern 4 and walking pattern 1, 

respectively. The neural networks were trained with these data sets. The network 

gives output values in the range of 0.4 to 1.5 for test pattern 4 and 1.5 to 2.0 for test 

pattern 1. Therefore, a threshold value for MLP NN was taken as 1.5. In addition to 

MLP NN, LVQ algorithm determines the threshold value automatically. In table 5.38 

and 5.39, performance analysis of neural networks are shown. 

 

Table 5.38 Success rate of MLP NN for detection of two types of gait patterns  

Walking Pattern 1 Walking Pattern 4 

100% 99.26% 

   

Table 5.39 Success rate of LVQ NN for detection of two types of gait patterns 

Walking Pattern 1 Walking Pattern 4 

100% 86.84% 
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CHAPTER SIX  

CONCLUSIONS AND FUTURE WORK 

 

     In this thesis, artificial neural networks were used to predict gait angles and gait 

patterns. To predict gait angles and gait pattern types artificial neural networks were 

trained with data sets obtained from joint angles or both joint angles and ground 

reaction forces. For both cases various type and size of  artificial neural networks 

were trained to provide performance comparison. 

 

     The collected data has shown that knee, hip and ankle angles have different values 

for each gait pattern type. The collected data had some minor errors because of 

possible inaccurate placement of sensors and mechanical design structure. These 

errors have been neglected throughout the study. However, because of nature of the 

generalization of ANN, these errors have been eliminated. The data were taken from 

a subject with a weight of 70 kilograms and 25 years old.  

      

     Different trials were applied to predict the future states of three joints angles. 

Firstly, gradient descent with momentum (GDM) and Levenberg-Marquardt (LM) 

algorithms for MLP NN were used to train neural networks. For this only angle 

values were chosen as input data set. Training and test data sets were taken for one 

gait cycle. The results have shown that Levenberg-Marquardt training algorithm is 

more successful than gradient descent with momentum training algorithm. Despite 

getting better results for training process, gradient descent with momentum algorithm 

has provided better response for the test data. It can be said that better training 

doesn’t always mean better decision system. 

 

     Secondly, ground reaction forces obtained from sensors placed into shoe sole 

were added to angle values to generate wider training data set. GDM algorithm was 

used to train the system since it has previously given better response. Obtained 

results have shown that ground reaction forces improve the performance for both 

training and test processes. 
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     Thirdly, neural networks consist of MLP NN, RBF NN and RNN, were applied to 

compare which one has the best performance. Training set which include joint angles 

and ground reaction forces was chosen because of getting better performance. The 

best training performance have been taken with RBF NN for every gait pattern. 

However, RBF NN has given the worst performance than others for the given a test 

data. It can be said again that the best training performance doesn’t mean the best 

network. 

 

     Finally, training data sets with two and three gait cycles instead of only one gait 

cycle were used to train the neural network. Training performance was slightly 

deteriorated depending on the number of gait cycles. The more gait cycles is used the 

worst performance is obtained. Because of dissimilarities between the gait cycles, it 

becomes difficult to provide less training error. However, because of generalization, 

the performance of neural network for test data sets increased proportionally. 

      

     In this study, neural networks were also used to detect gait pattern types including 

ascend and descend the stair. Firstly, Training and test processes were realized with 

different input data sets and different number of neurons in the hidden layer for four 

types of gait patterns. The test results have shown that neural networks with input 

data consist of joint angles and ground reaction forces had better performance and 

required less number of neurons in the hidden layer. In comparison to 50% success 

rate of the LVQ NN with only angle inputs, LVQ NN with angle and ground reaction 

force input provided approximately 75% success rate.  In addition to LVQ NN, MLP 

NN gives 81.885% average success rate. Then, the neural networks were trained for 

detection of two types of walking patterns. The results has shown that the LVQ 

neural network had 93.42% average success rate and MLP NN had 99.63% average 

success rate depending on test data sets.  

 

     Consequently as a future work, this project can be expanded by adding various 

portable sensors; accelerometers, gyro sensors and EMG sensors. Moreover, gait 

patterns covering running, sit down and up on a chair can be analyzed with neural 

networks. Performances of different artificial intelligent systems like fuzzy systems 
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and genetic algorithms can also be examined.  Furthermore, studies can be increased 

on detection of abnormal gait patterns and determination of gait phases.  
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