1578y

ES EVRIMSEL TASARLAMA

Bora I. Kumova

7.C. YOKSEKOCRETIM KURULD &
YON

Haziran, 2002
IZMIiR

CO-EVOLUTIONARY PLANNING

A Thesis Submitted to the Graduate School of Natural and Applied

Sciences of

Dokuz Eyliil University

In Partial Fulfilment of the Requirements for the Degree of Doctor
of Philosophy in Computer Engineering, Computer Engineering

Programme

By

Bora I. Kumova

June, 2002
IZMIR

L]

ES EVRIMSEL TASARLAMA

Dokuz Eyliil Universitesi
Fen Bilimleri Enstitiisii

Doktora Tezi

Bilgisayar Miihendisligi Béliimii, Bilgisayar Miihendisligi Anabilim
Dalx

Bora I. Kumova

Haziran, 2002

izmir

Ph.D. THESIS EXAMINATION RESULT FORM

We certify that we have read the thesis, entitled
“CO-EVOLUTIONARY PLANNING” completed by BORA i. KUMOVA under
supervision of PROF.DR. ALP KUT and that in our opinion it is fully adequate, in
scope and in quality, as a thesis for the degree of Doctor of Philosophy.

L

Prof Dr.Alp KUT
Dokuz Eylil University
Department of Computer Eng.
Supervisor
. <.
£\ «qu
yﬁ/{zﬂw | 7 1’13
Prof Dr.Tatyana YAKHNO Assist.Prof Dr. Ender BULGUN
Dokuz Eyliil University Dokuz Eyliil University
Department of Computer Eng. Department of Textile Eng.
Thesis Committee Member Jury Member
/) ﬂa 12—
/ / —~ v N
Assoc.Prof.Dr.Yal¢in CEBI Prof Dr.Erden BASAR
Dokuz Eylil University Eastern Mediterranean University
Department of Computer Eng. Departmernt of Computer Eng.
Thesis Committee Member Jury Member
Approved by the
Graduate School of Nat Applied Sciences

Prof.Dr.Cahi\! Hélvaci

Director

-r.c.wzm mﬁﬁmww

ACKNOWLEDGEMENTS

To Leyal ...

I am grateful to my advisors for supporting my ideas, especially to my co-
advisor Akira Imada for sharing with me his ideas and his profound expertise in
evolutionary computation; without his help I could not have designed the

various issues of the algorithm that efficient.

Bora i. Kumova

ABSTRACT

Planning is known to be NP-complete. Nevertheless, practical solutions can be
found, if the application domain is restricted to a specific area. Therefore, planning
components of multi-agent systems are designed usually for a specific domain.
However, these solutions are relative domain-dependent, in the sense that besides the
heuristics even the planning algorithms are domain-oriented. To address this
problem, a domain-independent algorithmic methodology is proposed, in which the
multi-agent concepts interaction, variety, scalability, focus, and diversity are mapped
onto related constructs of a co-evolutionary algorithm. The algorithm solves the
planning problem by seeking for global alternative plans in the search space that is
opened by all possible combinations of the plan steps of the involved agents.
Thereafter, the agents negotiate on the alternative plans or restart the co-evolutionary

algorithm,

OZET

Tasarlama NP-bi:ir (¢oziimii kesin olmayan) bir olgudur. Bununla birlikte, belli
uygulama anlanlan icin kisith ¢Ozimler onerilebili. Bu nedenden, ¢ok aract
dizgelerin tasarlama birimleri genelde belli bir uygulama alanina yonelik
diizenlenirler. Ancak. alan bilgisinden de &te, kullanilan tasarlama algoritmalant dahi
alana yonelik oldugundan bu ¢éziimler oldukga o alana bagh olurlar. Bu ¢alismada,
boyle belli bir alana yonelik bir ¢oziim yerine, alandan bagimsiz bir genel yaklasim
anlatiliyor. Bu yaklasim, etkilesim, gesitlik, ¢ogaltma, odaklama, ve tirliilik gibi ¢ok
araci dizge kavramlarii es evrimsel bir algoritmanm ilgili yapilarina aktaran ve
uygulama alanlarindan bagimsiz olan algoritmik bir yontem Onerilmektedir.
Algoritma bu sorunu, katilan aracilarin tasarn adimlarimn tiim olasi birlesimlerinden
agilan arama uzayinda se¢imli genel tasarilan arayarak ¢6zim bulur. Bundan sonra,
aracilar segimli tasanlar tizerinde ya pazarlik yaparlar ya da e§ evrimsel algoritmay

yeniden baslatirlar.

ix

CONTENTS

Acknowledgements. vi
Abstract vii
Ozet viii
Contents .
Figures xii
Tables xiv

Chapter One

INTRODUCTION
Chapter Two
PLANNING STRATEGIES

2.1 A Definition For Plan g

2.2 Definitions For Planning

2.3 Planning As A Learning Process

2.4 Relationships Between Plans Of Different Knowledge Bases.......c.c.. cesssnnee 10
2.5 Planning In Multi—agent Systems 11
Chapter Three

CO-EVOLUTIONARY COMPUTATION

2.1 Evolutionary Computation 17
2.2 Evolutionary Algorithms . 21
2.3 The Co—evolutionary Approach 26

q. RETLV A UKUG
- C. YOIKSKROGRET LM nUKUL
vif@@w:mmmmw

24

4.1
4.2
4.3
4.4
4.5
54.6

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

Co—evolutionary Algorithms In Multi-agent Systems 29
Chapter Four
THE CEVOP METHODOLOGY
Major Concepts 32
Mapping Between The Problem Domains 36
The Generic Co—evolutionary Algorithm........... 38
Interpretation Of The Generated Plans 42
The Generic CEVOP Methodology 43
Recapitulating The CEVOP Methodology 44
Chapter Five
THE AGENTTEAM FRAMEWORK
Major Concepts 45
The Architectural Model 48
The Knowledge Base Model 53
The Behavioural Model 54
The Communication Model 56
The Co—operation Model 65
The Collaboration Model 66
The Competition Model .67
The Co—ordination Model .68
Chapter Six
THE SOCCERTEAM PROTOTYPE
Existing RoboCup Client Simulations 69
Major Concepts 73
The Architectural Model 77
The Knowledge Base Model 78
The Behavioural Model 78

xi

4.6 The Communication Model .82

4.7 The Co-operation Model 83
4.8 The Competition Model 83
4.9 The Co—ordination Model 84
4.10Planning With CEVOP In SoccerTeam 84
Conclusions 93
Acronyms 95
References 97
APPENDIX
A. System Representation Forms 114
B. BNF Of AgentCom 116
C. Soccer Game Regulations 118
D. Abstraction Levels Of The Soccer Objects 120
E. Soccerteam Game Strategies: Static 122
F. Soccerteam Game Strategies: Individual 124
G. Soccerteam Game Strategies: Co—operative 128
H. Algorithmic Complexity Of CEVOP 131
I. Convergence Behaviour Of A Cevop Run 133
J. Class Diagram Of The CEVOP Simulator 136
K. Software Design Of The SoccerTeam Prototype 140
L. Sample Output Of A Cevop Run 142

Figure 1.1:

Figure 2.1:
Figure 2.2:
Figure 2.3:

Figure 2.4:

Figure 2.5:
Figure 3.1:

Figure 3.2:
Figure 4.1:
Figure 4.2:

Figure 4.3:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:

Figure 5.8:

xii

Figures

The Idea Of Planning Heterogeneous Co—operation And

Competition Structures

Relationship Between Plans And Rules Of A Knowledge Base 6
Hierarchical Plan Execution
Relationship Between The Cognitive Processes Learning And
Planning 10
Relationships Between The Plans Of Three Heterogeneous Agents
11
Multi—-agent Planning By Seeking For Common Goals 13
Random Exploration Of The Two—dimensional Search Space Of A
Single Attribute Within A System Of Multiple Attributes 17
Sources For Evolutionary Computation 21
Mapping Plan Primitives Onto Chromosomes 37
Sample Interaction Types For Three Homogeneous/ Heterogeneous
Plan Populations 40
Interpretation Of Generated Plans For Two Agents 43
Concepts Of The AgentTeam Framework 48
Possible Configurations For Intelligent Components 50
Generic Architecture And Environment Of An Intelligent Agent 51
Life—cycle Model Of An AgentTeam Agent 52
Knowledge Base Concepts Of An Intelligent Component 54
Factors That Influence Agent Communication 57
Communication Relationships Of A Client—broker—server—based

MAS 58
Communication Relationships Between Agent Types In Information

Systems 59

Figure 5.9: Concept Classes And Their Communication

Figure 5.10: The Bilingual Communication Concept

Figure 5.11: Hierarchical Communication Semantics Of AgentCom Agents

Figure 5.12: Relationships Between Co—operation, Collaboration, And
Competition

Figure 6.1: AgentTeam Concepts Adopted By SoccerTeam

Figure 6.2: Co—operative/Competitive Evolution Of The Four
Homogeneous/Heterogeneous Plan Populations

Figure 6.3: Relationships Between The Chromosome Evaluation Criteria

Figure A.1: Relationship Between System Representation Forms

Figure C.1: Official Soccer Field Definition

Figure D.1: Object Movements Performed At Different Abstraction Levels

Figure E.1: Strategic Field Lines And Areas

Figure 1.1: Fitness Versus Generation Of Each Population

Figure L.2: Average Fitness Versus Generation Over All Populations

xiii

61
62
63

65
74

86

|
115
119
121
123
134
135

Figure J.1: Class Diagram And Object Cardinality Of The CEVOP Simulator

Figure K.1: Class Diagram Of The SoccerTeam Software

Figure L.1: Snapshot Of The Initially Random Field Constellation
Figure L.2: Snapshot After The First Team Strategy

Figure L.3: Snapshot After The Second Team Strategy

Figure L.4: Snapshot After The Third Team Strategy

137
141
143
144
145
146

Table 4.1:
Table 4.2:
Table 4.3:
Table 6.1:
Table 6.2:
Table 6.3:

Tables

Concepts For Co—evolving Plans Of Multiple Agents
Homogeneous Plans Within A Chromosome
Mapping Planning Concepts Onto Populations
Soccer Game Abstraction Levels

Structure Of A Primitive Game Strategy

Phenotype Structure Of A Combined Game Strategy

35
37
38
76
80
86

CHAPTER ONE
INTRODUCTION

First, we describe the emergence of the thesis topic, give a motivation for the
reader, discuss the general objectives of related research areas, and sketch the

structure of the thesis.

Emergence Of The Thesis Topic

Before we start to describe the work, it is worthwhile to give some background
information to the progress of the dissertation, since the topic emerged over time.
Initially, the thesis was entitled "Multi—agent—based Distributed Database
Management", with the objective to explore the problems concerned with distributed
database management of heterogeneous data and to find a multi—agent—based
solution approach. After a while, it became clear that the goal and the related
research areas were too broad for this project. Therefore, we focused on one of the
crucial points of distributed database management, the design of a communication
protocol that can satisfy the desired requirements [Kumova; 2000a], [Kumova;
2001a]. On the other hand, we had to combine the data—oriented communication for
distributed database management with intelligent communication for multi—agents,
which turned our focus to agent communication languages [Kumova; 2000d],
[Kumova; 2001b]. Since communication and behaviour mutually influence each
other, finally our research concentrated on communication, co—operation,
competition, and co—ordination structures for multi—agent systems, which can be
considered as the external tools of an individual to express intelligent behaviour.
However, it is known that intelligence is actually due to some cognitive processes,
such as planning, learning, adaptation, and decision making within these processes.

Therefore, as a combined solution approach for co—operation, competition, and co—

ordination of multi—agent systems, finally co—evolutionary planning emerged as the

thesis topic.

Besides that, we improved the AgentTeam framework, which was designed and
partially prototype implemented in a MSc thesis [Kumova; 1998c], from the
software engineering perspective [Kumova; 1999¢], [Kumova; 2000b], [Kumova;
2000e], [Kumova; 2000f], [Kumova; 2000h], [Kumova; 2000i]. Since our long—term
goal is to improve AgentTeam, co—evolutionary planning is another contribution to

the framework.

Motivation

Distributed problem solving in multi—agent systems is still a challenging task. It is
itself a multi—dimensional problem involving various research disciplines. Even the
restriction to planning is still NP—complete. Therefore, planning is usually further
restricted to relative constraint domains, such games. Since, a game is usually
complete with respect to its rules, planning can successfully be applied. Complex
planing components were design for relative complex games, such as chess, which
can beat human experts. However, those solutions are inherently domain—dependent
and can hardly be adopted for planning in other problem domains. This is even worst
in case of multi—agent systems for information processing systems, where various
heuristics must be included in order to get some reasonable results. Because of
inherent utilisation of domain—dependent concepts, analytical approaches are hardly

comparable.

Other approaches are based on natural adaptation processes and can be grouped
under the umbrella evolutionary computation. The idea is, given an environment, an
initial state, a goal state, and some evaluate criteria that guide sample solutions
towards the goal state, the algorithm is capable to explore the whole search space for
optimal solutions. The advantage is that the evaluation criteria can include relative
abstract domain information. Therefore, these approaches are sometimes called soft
computing. Co—evolution is a variation of evolutionary computation that simulates

mutual evolution of species of the same environment.

£.C. YUKSEKOGRETIM KURULL
BOKOMANTASYON

Multi—agent Systems: Problem - Co—evolutionary Algorithms;
Mapping
Homogeneous/Heterogeneous
- Solution Co—evolving Populations
Co—operation/Competition Mapping

Figure 1.1: The Idea Of Planning Heterogeneous Co—operation And
Competition Structures

We propose a co—evolutionary algorithm to solve planning problems of multi—
agent systems. For this purpose required co—operation and competition relationships
need to be mapped onto the co—evolutionary algorithm (Figure 1.1). The planning
problem is solved with the co—evolutionary algorithm by exploring the huge search
space opened by all possible plan steps of all agents. The resulting plans are return to
the agents for approval.

As benchmark we have chosen Soccer, to have a relative complex domain. For
instance, according a naiv comparison of the planning complexity for chess and
Soccer, plan generation for Soccer is more complex, since all eleven agents can
move simultaneously and with continues variable distances, if the moves of all
eleven players are planed centralised by one player. Whereas, in chess, only one

figure can move at a time.

Related Research Areas

Just to summarise the related research ares:

+ Algorithmic complexity

» Game theory

« Artificial intelligence

» Co—evolutionary computation
- Planning

« Communication, co—operation, competition, control

- Homogeneous and heterogeneous structures
« Multi—agent systems

« Software engineering

Structure Of The Dissertation

The second chapter gives a general introduction to the planning problem and

conventional planning approaches.

In the third chapter, we guide the reader through the history of evolutionary
computation and the common techniques, with an emphasis on co—evolutionary

approaches.

In the fourth chapter, the Co—evolutionary Planning (CEVOP) approach is introdu

ced as a generic component of the AgentTeam framework.

In the fifth chapter, the revised version of the AgentTeam framework is

presented.

In the sixth chapter, the SoccerTeam prototype implementation is discussed,

which was implemented as a benchmark for the CEVOP methodology.

The major contribution of this dissertation is the CEVOP methodology. Readers
interested only in the CEVOP methodology are referred to chapter four, the CEVOP
part of chapter six, and the related appendices.

CHAPTER TWO
PLANNING STRATEGIES

This chapter provides a discussion on the cognitive process planning and on some
related concepts that are relevant to this work, such as learning, planning, rule base,
rule, plan step, plan, and goal. Further, the basics of analytical planning approaches
are summarised, in order to give an introduction to the conventional planning

techniques.

2.1 A Definition For Plan

For simplicity, we restrict our study to agents whose knowledge base (KB) consist
of rules and where each rule may constitute a primitive plan step. Principally, all
rules available for an agent R can be involved in some plans. Thus, the set of all
available rules is the super—set of all possible plans PP. However, an agent may not
be aware of some possible plans, since an exhaustive search to discover all possible
plans mostly cannot be performed. Therefore, the set of all possible plans PP is

usually a super—set of all already known plans P. This relationship is expressed in
the equation: R D PP D P (Figure 2.1). The relationship PP 2 P is discussed below

in the context of the frame problem of artificial intelligence.

Facts

Figure 2.1: Relationship Between Plans And Rules Of A Knowledge Base

2.2 Definitions For Planning

Planning is a cognitive process that can be simulated in general as a scarch
process. From the perspective of engineering we will emphasise here the rule—based

approach for planning.
Planning As A Search Process

Planning is the process of exploring the search space opened by all possible plan
steps and building alternative implementation sequences for later application. The
reason why planning is usually set equal with searching in the literature is that in a
simulation environment the exploration of a specific plan step is set equal to its
application [Rich et al.; 1991]. However, in the implementation of a plan, a plan step
cannof always be undone or can cause serious difficulties, such as unrecoverable
damage or additional cost for the recovery of damage. This effect can happen in
virtual environments, such as in software agents, and more costly in real-world
environments, such as in robotics. Examples are deleting unrecoverable data by a
software agent or breaking a tool by a robot. In a simulation environment however,

undesired steps can be undone.

Engineering—oriented Definitions For Planning

Plainning is a problem—solving technique that involves determining a course (or
sequence) of actions that take a system from an initial state to a desired or goal state
[Schalkoff; 1990]. In each sequence one or more rules are applied on the facts of the
knowledge base. Any modification of a fact changes its state, thus the state of the
knowledge base changes, hence the state of the agent will change. Therefore, even

while planning an agent may change its behavioural state.

Since planning can be represented with searching, it inherits all the properties of
searching. For instance, problem decomposition applies to planning as it does to
searching. Hence, a plan may be sub—divided into several sub—plans (Figure 2.2).
However, generating sub—plans can become problematic, when the goals of the sub—

plans are conflicting, for instance in case of interactions between the sub—plans.

It is important to note that the number of ordering of n rules is n!, and therefore
the potential computational complexity in plan generation is nontrivial [Schalkoff;
1990].

Another difficulty may occur in the development of a plan implied by the fact that
planning involves a series of local actions with the objective of achieving some
global goal [Schalkoff; 1990], which is implied by the local and global frame of the

problem.

Cycles in a plan are a further difficulty for the planning component to detect and
escape or to avoid within the planning process. Where, the planer may copy the
related solution techniques into the plan as well, in order to resolve a cycle during

the plan implementation.

A further definition of the planning process is state—oriented. Planning is
formulated as a logical inference problem, using situation calculus. A planning
problem is represented in situation calculus by logical sentences that describe the

main parts of a problem: [Russell et al.; 1995]

Final Goal
(Level 1)

Sub-—goals
(Level 2)

Sub—goals
(Level 3)

Sub—goals O . ' O

(Level K)
Figure 2.2: Hierarchical Plan Execution

- Initial state: An arbitrary logical sentence about a situation.
+ Goal state: A logical query asking for suitable situations.

« Operators: A set of descriptions of actions.
Abstract Components Of A Planning System

Common to all planning systems are some components, which are described
below briefly: [Rich et al.; 1991]

- Selection of applicable rules: One approach is, first to calculate the difference
between the current state and the target state, thereafter to identify those rules
that are relevant for the reduction of the difference.

« Application of a rule: By maintaining lists for the applicability of rules.

+ Determining a solution: By comparing the current state with the target state.

+ Detection of dead—ends: Cycles or irrelevant paths can be detected by
examining the behaviour of the difference between the current state and the
target state.

+ Restoration of a plan: If the decomposed sub—plans do only approximate the
solution, then the sub—plans are modified accordingly.

+ Improvement of the application of a plan by sub—dividing the goal into

succeeding sub—goals and/or alternative plans.

From this specification one can conclude that the plan generation does not always
result with a successful plan. In general this is due to the NP—complete [Baral et al.;
1999] nature of planning. Various plan generation algorithms and planing strategies,
which use besides the above basic components further planning techniques, are
discussed in the literature, such as state propagation, the triangle table, hierarchical
planning, parallel planning [Schalkoff; 1990], partial-order planning, hierarchical
decomposition, sharing, and approximation, planning and execution monitoring,

conditional planning and re—planning [Russell et al.; 1995].

It should be pointed out that we are not interested in the details of those analytical
approaches for planning. In the next chapter we will see that they find in the average

only sub—optimal solutions.

The Frame Problem Of Artificial Intelligence Affects Planning

The basis of the frame problem of artificial intelligence is that it is unreasonable
to enumerate how a set of facts changes as actions or events occur [McCarth et al.;
1969], [Schalkoff; 1990]. In real implementations the difference implied by the

relationship PP o P can be large and even increase with any further reasoning over
the knowledge base. This effect is due to the frame problem. Since it is unreasonable
for the agent to make an exhaustive search in each planning process, the actual set of

plans P will mostly be smaller than all possible plans PP of the agent.

2.3 Planning As A Learning Process

All cognitive processes are usually interrelated with each other. For instance,
believe—desire—intention relationships or learning—planning relationships. In general,
planning always results in learning, since the result of a planning process, namely the
plan, is a new concept and is available for further cognitive processes, it can be
considered as learning. However, the reverse relationship is not true. For instance,
discovering unknown properties of an object in the environment is learning that does

not necessarily requires a planning process (Figure 2.3).

10

Cognitive Processes

Figure 2.3: Relationship Between The Cognitive Processes Learning And
Planning

The difference becomes apparent, when we compare offline with online planning.
In case of offline planing, the planning process may be set equal with searching, only
if after backtracking from undesired paths the previous state can fully be recovered.
In case of online planning on the other hand, the search may continue with the
immediate implementation of each plan step, until a not recoverable plan step is
reached. This will cause the search to enter first a simulation environment, continue
the search there with simulated implementation of each plan step, until a decision on
this part of the plan can be made that it may be implemented without causing

damage.

2.4 Relationships Between Plans Of Different Knowledge Bases

If the knowledge bases of the agents of a multi—agent system are identical (KB; =
.. = KBy), then we will refer to this with knowledge base homogeneity, otherwise
knowledge base heterogeneity (KB; # ... # KBy), or in short homogeneous and
heterogeneous agents, respectively. In both cases each agent may plan independently

from the others or co—operatively with the others.

Homogeneous agents can co—operate in any plan, since their knowledge bases are
equal. Heterogeneous agents may co—operate, if their plans are at least partially
equal (XP; N XP; #), which guarantees that at least a plan step, that is identical for

both, can be found and be declared as a mutual goal.

11

MAS

A
'8
Y

Figure 2.4: Relationships Between The Plans Of Three Heterogeneous
Agents

Facts

The number of equal rules decreases dramatically with increasing number of
heterogeneous agents with increased knowledge bases differences (Figure 2.4). This
kind of analysis of the knowledge base may appear too abstract for analytical
planning approaches. But in the following chapters we will show that exactly this
abstraction level will be the operational level for our co—evolutionary planning

approach.

2.5 Planning In Multi—agent Systems

The above basics for planning systems imply centralised planning. Extensions to
distributed and/or parallel panning were the first approaches towards planning
components for autonomous systems. Which are however the functional aspects of a
system. From data—oriented point of view, important extensions for planning

systems were introduced with the blackboard approach.
Blackboard Models
A blackboard is a data structure for storing and sharing inherently heterogeneous

data. It serves the system as a co—ordination mechanism. Systems that utilise a

blackboard consist usually of loosely coupled, independent and distributed

12

components. Where, the blackboard is used by the components to put some data on
the board for solving a problem of the whole system. This idea for co—operative
planning or problem solving was a predecessor for multi—agent systems. With the
significant difference that the problem is solved centralised on a board usually
without negotiation between the components. In a naive way, it can be interpreted as
putting each component’s desired goal state on the board and solve the problem there
by finding a solution for all goals (Figure 2.5).

Various systems had adopted this approach, especially to solve problems on
hierarchical heterogeneous data structures, such as simulation of a distributed
knowledge—based problem solving system operating on an abstract version of a
vehicle monitoring system [Luke; 1998]; military mission planning [Pearson; 1985];
errand—planning on the blackboard with general features of plan behaviour, details
of plan behaviour, levels of abstraction, multi-directional processing, alternative

executive decisions [Hayes—Roth et al.; 1988].

For domains where the integration of inherently heterogeneous data structures
appear too complicated and/or known communication facilities are insufficient,
agents may put their data structures on a blackboard and solve the problem there. For
example, co—ordinating multiple agents on a blackboard in a real-time strategy
game [Cavazza et al.; 2001]; a blackboard architecture for building a hybrid case
based reasoning system for fire field modelling, for the integration of qualitative

spatial reasoning knowledge from domain experts [Petridis et al.; 2001].

u-_mmﬂllwww

13

Common
oals 1 Goals Goals
1 KB N

EVER

Rules 1 Rules N

Figure 2.5: Multi—-agent Planning By Seeking For Common Goals

Planning Concepts Of Intelligent Agent

The initial interpretation to solve common goals centralised on a blackboard
(Figure 2.5), was re—interpreted and adopted for multi—agent systems, in analogy to
the human model, as a distributed problem solving approach. The planning
components of multi-agent systems employ usually more sophisticated planning
techniques than the initial knowledge—based systems or expert systems. Further, a
planning component, as a specific problem solving task, is more integrated with the
other components for cognitive processes of intelligent agents. This is one reason
why discussions on planning in agent systems can no more be separated from the
other components. Another reason is, since most implementations of intelligent
agents run their cognitive processes in interpreter mode, this capability provides a
simulation environment where plan steps can be undone. Hence, planning can be set

in most cases equal to searching in the plan space.

Planning in multi-agent systems requires communication, co—operation, and
control structures to be considered in the planning process as well as within the plan
for its later implementation. Planning alternatives, with respect to the grade of

distribution, can be summarised as follows: [Ferber; 1999]

« Centralised planning

- Distributed planning with centralised co—ordination

14

« Distributed planning

An carly example for distributed planning with centralised co—ordination is the
global partial planning proposal [Durfee et al.; 1991], where the individual partial

plans of the agents must be merged to construct a global one for all.

A general approach for distributed planning is for instance, the co—operative
problem solving approach, expressed as a theory in a quantified multi—-modal logic,
consists of the four stages: [Wooldridge et al.; 1999]

« Recognition, in which an agents identifies the potential for co—operation.

« Team formation, in which the agent solicits assistance.

« Plan formation, in which the newly formed collective attempts to construct an
agreed joint plan.

. Execution, in which the members of the collective play out the roles they have

negotiated.

Other multi-agent planning approaches are automated planning for open
architectures [Reiher et al.; 2000], where the adaptation service for end—to—end
network connections is based on an automated planning approach; an integrated
planning and scheduling approach combining sub—tasking and virtual clustering of
agents with a modified Contract Net protocol [Maturana et al.; 1996]; the planning
component of the RETSINA information gathering framework interleaves planning
and execution actions to solve the problem of partial domain knowledge for the
purpose of information fusion [Paolucci et al. 2000]; the proposal of the multi—agent
planning system IMPECTing SHOP (Simple Hierarchical Ordered Planner) that

interacts with external information sources [Dix et al.; 2000].

The following are the major advantages of planning components of multi—agent

systems:

« Distributed planning: Enables joint planning of autonomous agents, utilisation

of synergy effects, and parallel computation.

« Negotiation: Enables adaptation and learning.

15

In the next chapters we will see how evolutionary computation may improve the

efficiency and success of a planning process further.

16

CHAPTER THREE
CO-EVOLUTIONARY COMPUTATION

Any cognitive process can be reduced to a search process that seeks for a solution
to a given problem. Therefore, simulations of cognitive processes are usually
implemented by search procedures, which traverse the search space that is opened by
all possible mental states of the individual. Searching, even in a small rule-base can
lead to an extremely large search space, which results from combinatorial explosion.
In order to improve the computational efficiency, various types of constraints are
introduced. For instance, restriction to a specific domain or application of heuristics.
Heuristics have the capability to recognise uninteresting search paths before they
have been explored entirely and to redirect the search to more promising paths.
However, they are difficult to apply, since the designer must decide where and when
to apply domain—dependent and domain—independent heuristics. Even the same
heuristic may need to be applied in different terms, depending on the current context,

meaning different sub—spaces of the search space.

In these terms, the most generic heuristic is to explore a search space,
independently from any further heuristic at random positions towards the optimum
value. The search space of a sigle attribute can be represented by a function in two
dimensions. Optimum values in two dimensions can be found by successively
examining all values of the function. Accordingly, the search space of a system of
multiple attributes can be represented by a multi—-dimensional search space. While
searching for optimum values in a multi~dimensional search space, each attribute’s
value will probably be examined multiple times, until its optimum contribution to all

attribute combinations can be found (Figure 3.1).

17

Atribute k

Value

PR -SR-S S Y

v
S U T T S I

a B«

Time

Figure 3.1: Random Exploration Of The Two—dimensional Search Space Of
A Single Attribute Within A System Of Multiple Attributes

Seeking for optimum values by successively examining all values of all attributes
however is too exhaustive. For this purpose, evolutionary computation has proven to
be a relative stable approach that always can converge to one optimum solution,
since it explores the search space at random values and redirects the search towards

the most promising values. even if it is not guaranteed to be the optimum solution.

Evolutionary computation is utilised in machine learning as a generic technique to
seek for desired solutions in the search space of a problem and thereby learn the
solution as well as its path. The co—evolutionary approach is an improvement of the
algorithms that has its origin again in nature. Where different populations naturally

evolve by co—operating and/or competing with each other in the same environment.

2.1 Evolutionary Computation

Randomness is almost always the underlying mathematics of the balances of our
nature. Each sub—system of the "super—system", nature, can work harmonically with
the others, due to its adaptation mechanisms. If a system has no information about
how to adapt to the changing environment, then the most successful approach is
randomly to modify its properties and iteratively to evaluate feedback, until it adapts.
Therefore, randomness, was discovered early in the history of computation as a

powerful mathematics for the simulation of adaptation.

18

History Of Evolutionary Computation

Already in the early years of artificial intelligence, when researchers were
establishing this field by introducing various techniques to support machine
intelligence, one of them was the evolutionary approach [Box; 19571, [Fraser; 1957],
[Friedman; 1959]. The idea was, within the concept of machine learning, to improve
the search in large problem spaces by randomly exploring it with evolutionary
approaches, where Breadth First Search, Depth First Search, and their extensions
were too exhaustive. However, no successful implementations of evolutionary
algorithms are known from those years. Instead, methods based on simplified
random search, such as Monte Carlo, Hill Climbing, and Simulated Annealing, were

more popular.

Nevertheless, a few pioneers started to reported progress in evolutionary
computation in some domains. Such as function optimisation with evolution
strategies [Rechenberg; 1973], evolution of finite state machines through
evolutionary programming [Fogel et al.; 1966], a class of adaptive systems we now
call Genetic Algorithms [Holland; 1975], [De Jong; 1975] and evolving programmes
with Genetic Programming [Koza; 1989].

The fundamental principles on which all of the computational models of
evolution are based can best be summarized by nineteenth century naturalist Charles
Darwin, who was fascinated by the origin of the complex forms of life existing in
nature. In his introduction to “The Origin of Species”, [Darwin; 1859] makes the

following observation:

As many more individuals of each species are born than can possibly survive; and
as, consequently, there is a frequently recurring struggle for existence, it follows that
any being, if it vary however slightly in any manner profitable to itself, under the
complex and sometimes varying conditions of life, will have a better chance of
surviving, and thus be naturally selected. From the strong principle of inheritance,

any selected variety will tend to propagate its new and modified form.

19

To adapt these principles to the solution of a target problem of interest, we
construct an evolutionary simulation in which the individuals are alternative
solutions to the target problem. The frequently recurring struggle for existence that
we see in nature is inherent in our model due to the limited computer resources we
can devote to our simulation. This is expressed both in restrictions on the number of
alternative problem solutions we store in computer memory, and the computational
resources available for processing these solutions. Variation between individuals is a
result of making random changes to the population of evolving solutions, and from
recombining pieces of old solutions to produce new solutions. Darwin’s process of
natural selection can be modeled by imposing a selection distribution on the
population of solutions such that the better ones have a higher probability of being
recombined into new solutions and thereby preserving the attributes that made them
viable. Alternatively, we can ensure that the poorer solutions have a higher
probability of being eliminated from the population. To determine how good or bad
a particular solution is, the evolutionary algorithm applies the solution to the target
problem within the context of a domain model, and evaluates its fitness through the

use of appropriate metrics.

Basic Concepts Of Evolutionary Computation

In summary, the functional principles of Darwinian evolution are

« Organisms have a finite lifetime. Therefore, propagation is necessary for the
continuation of the species

» Offspring vary to some degree from their parents

« The organisms exist in an environment in which survival is a struggle with
difficulties, where the variations among them will enable some better to adopt
to these difficulties

- Through natural selection, the better—adopted organisms will tend to live
longer and produce more offspring

» Offspring are likely to inherit beneficial characteristics from their parents,
enabling some of the species to become increasingly well adapted to their

environment over time.

20

The basic concepts of evolutionary algorithms mimic the above principals of
adaptive processes observed in our nature. These concepts are summarised here with

examples from the application area planning,

+ Gene: The smallest information unit in evolutionary computation. One gene
represents one property. For instance, a specific type of plan step.

« Species: An individual or chromosome with a sequence of genes. Where, each
gene represents one property. A solution of the problem space is represented
first in a phenotype, then mapped into a genotype. For instance, a specific plan
consisting of several plan steps can be represented by a phenotype.

+ Population: A number of individuals with similar properties. For instance,
alternative plans.

+ Cross—over: A major variation of a species by exchanging some of its genes
with those of another randomly selected species. Tying out an alternative plan
by exchanging major plan steps of two randomly selected plans.

+ Mutation: A slightly variation of a species by randomly modifying a few of its
genes. Tying out an alternative plan by slightly modifying a few of its plan
steps.

* Reproduction: Forming the next generation of a population of parent species
by selecting those species as offspring, which fit the best to the desired target.
Forming a new set of plans by selecting those plans which are the closest to the

desired goal.

In dead, the clearer these computational concepts became, and the more efficient
hardware was available, the more successful evolutionary algorithms could be
implemented over time. Finally, with this success, and the algorithms known as
robust and powerful adaptive search mechanisms, evolutionary computation has
established itself as an own research discipline and became more popular in the
1980s.

The “"evolution" of evolutionary algorithms was driven on one hand by the
fascination of the adaptation capability of species inside the nature, and on the other

hand by their successful applications in various computational domains.

21

Evolutionary
Computation

Theories on
Evolution

Natural
Evolution

Figure 3.2: Sources For Evolutionary Computation

Accordingly, one could sketch this "evolution” by depicting the information flow
between the problem domains natural evolution, evolutionary algorithms, and
applications of evolutionary algorithms, as interrelationships among them (Figure
3.2).

The principle focus of this research is on the latter: the application of evolutionary
algorithms in the problem domain of multi—agent planning. For this purpose, first
the properties of evolutionary algorithms are examined, in order to apply them as

efficient search mechanisms for multi—agent planning.

2.2 Evolutionary Algorithms

Evolutionary algorithms is a umbrella term, used to describe computer—based
problem solving systems which use the above basic concepts as key elements in their
design and implementation. Some of these concepts are emphasised in one
evolutionary algorithm more and less in another, depending on the algorithm’s
specific paradigmas, such as the simulation of evolution of an object or the genetic
recombination of information. Usually, they are classified with the following terms
Evolutionary Programming, Evolution Strategies, Genetic Algorithms, and Genetic
Programming. The following are short specifications of the different classes: [Bick
et al.; 1992], [Heitkdtter et al.; 2001], [Mitchell; 1997]

Evolution Strategy

Evolution Strategies imitate the effects of genetic procedures on the phenotype.
The presumption for coding the variables in the Evolution Strategy is the realisation

of a sufficient strong causality, meaning small changes of the cause must create

22

small changes of the effect. The underlying theory is the evolution window, which
states that evolutionary progress takes place only within a very narrow band of the
mutation step size. This fact leads to the necessity for a rule of self—adaptation of the
mutation step size. Early work in this area is due to [Rechenberg; 19641, [Schwefel;

1977].

Below algorithm sketches the generic form of evolution strategy; where, W is the

number of parents and A the number of offspring:

(define (evolution-strategy population)
(if (terminate? population)
population
(evolution-strategy
(select
(cond (plus-strategy? // W of (u+A)
survive
(union (mutate
(recombine population))
population))

(comma-strategy? // A offspring

survive
(mutate
(recombine
population))))))))

Evolutionary Programming

Evolutionary programming is a stochastic optimisation strategy with emphasis on
the behavioral linkage between parents and their offspring, rather than seeking to
emulate specific genetic operators as observed in nature. Evolutionary programming
is a useful method of optimisation when other techniques such as gradient descent or
direct, analytical discovery are not possible. Combinatorial and real—valued function
optimisation in which the optimisation surface or fitness landscape possesses many
locally optimal solutions, are suitable for evolutionary programming. However,
Evolutionary Programming typically does not use any crossover as a genetic

operator. An early early contribution to this area is [Fogel; 1966].

OGRETIM KURU L.
T-C'W!mﬂ,n.sy MERKED,

23

Below is a sample algorithm for evolutionary programming;:

BEGIN EP

g :=0 // initial generation

Initialize population P (g) // start with random species

Evaluate population P (g) // i.e. compute fitness
values

WHILE NOT done DO // while solution not found
Mutate P (g) // perturb genetic
information
Evaluate P(g) // i.e. compute fitness
values
g :=g + 1 // count generations
Select P(g) from P(g - 1)// stochastically select
survivors

END WHILE // ... time, fitness, etc.

END EP

Genetic Algorithm

A genetic algorithm is an iterative procedure that consists of a constant—size
population of individuals, each one represented by a finite string of symbols, known
as the genome, encoding a possible solution in a given problem space. Genetic
algorithms are applied to spaces which are too large to be exhaustively searched. The
symbol alphabet used is often binary due to certain computational advantages, such
as shifting, flipping, storage, time etc. However, this has been extended in recent
years to include character—based encoding, real-valued encoding, variable—length
encoding, and tree representations [Michalewicz; 1996], which distinguish genetic

programming.

Genetic algorithms are used for a number of different application areas. An
example of this are multidimensional optimisation problems in which the character
string of the chromosome can be used to encode the values for the different
parameters being optimized. The chromosomes are manipulated by crossover and
mutation operations. As earliest references to this area one can find [Holland; 1975]
and [Goldberg; 1989] in the literature.

24

A sample genetic algorithm is the following:

BEGIN GA

g :=0 // initial generation

Initialize population P (g) // start with random species

Evaluate population P (qg) // i.e. compute fitness
values

WHILE NOT done DO // while solution not found
g :=g + 1 // count generations

Select P(g) from P(g ~ 1)// stochastically select
survivors
Crossover P (q) // recombine genetic
information
Mutate P (g) // perturb genetic
information
Evaluate P(qg) // i.e. compute fitness
values
END WHILE // ... time, fitness, etc.
END GA

Genetic Programming

Genetic programming is the extension of the genetic model of learning into the
space of programs. That is, the objects that constitute the population are not fixed—
length character strings that encode possible solutions to the problem at hand, they
are programmes that, when executed, are the candidate solutions to the problem.
These programmes are expressed in genetic programming as parse trecs, rather than
as lines of code. Thus, for example, the simple program (a + b * ¢) would be
represented as a tree. In pre—fix notation it looks like this: (+ a (* b ¢)). To be
precise, suitable data structures are linked together to achieve this effect. The
programmes in the population are composed of elements from the function set and
the terminal set, which are typically fixed sets of symbols selected to be appropriate
to the solution of problems in the domain of interest. The crossover operation is
implemented by taking randomly selected sub—trees as individuals and exchanging
them. Genetic programming usually does not use any mutation as a genetic operator.
First publications on this area are [Cramer; 1985], [Koza 1989].

25

Differences Between The Algorithms

Though, no one could draw strict boundaries between the algorithms implemented

in praxis, the four classes have some obvious differences:

« Genetic algorithms usually simulate evolution at the level of the genome, while
the others directly evolve phenotypes.

« Genetic algorithms and programming usually uses both crossover and
mutation, whereas evolution strategies and evolutionary programming usually
do not use crossover at all.

+ Genetic algorithms usually represent individuals with binary strings, evolution
strategies real-valued vectors, genetic programming trees, and evolutionary
programming graphs or any other form.

+ Genetic algorithms and programming usually emphasise crossover, whereas

evolution strategies and evolutionary programming emphasise mutation.

« Genetic algorithms usually implement the mutate operator though bit flipping,
evolution strategies though adding Gaussian noise, genetic programming by
exchanging sub—trees, and evolutionary programming by adding, deleting, or
changing states to finite state machines.

Single Population Applications

The application area of evolutionary algorithms encompasses all problem classes
in which exhaustive search cannot be avoided with other techniques. Since the
resulting application area is relative broad, we restrict ourselves to applications in the
agent domain. Furthermore, from our perspective of multi-agent planning, we
separate this area into single and multiple population applications. Some application

areas for the former are mentioned in the following.

Hybrid systems combine evolutionary algorithms with more conventional
“lifetime learning” techniques [Paredis; 1995], [Paredis; 1996]. Here, populations of
agents evolve, while each agent possesses behavioral plasticity. For example,
evolution may operate on a population of artificial neural network topologies, while

back—propagation or the Hebbian rule facilitates lifetime improvements of each

26

network via weight updates. In general in machine learning, to speed up the search
process and to find alternative solutions. For instance, evolutionary adaptation of
neural robot sensors [Balakrishnan; 1998]; learning rules [Juillé et al.; 1998];
improving learning by evaluating the whole population instead of only the
representative for rule-based systems and artificial neural networks [Yao et al.;
1996]; evolutionary learning to discover complex emergent properties in complex
domains [Funes; 2001]; evolution of co—ordination strategies represented by
schedules for homogeneous agents [Baray; 1999]; simulation of adaptation with
respect to resource exchange [Dominiak; 2001]; resolving social dilemma in multi—

agent systems [Arora et al.; 1996]; etc.

2.3 The Co-evolutionary Approach

In this section, we will discuss an important aspect of evolutionary computation
that is again borrowed from nature and that is utilised for improving the artificial
adaptation capabilities in evolutionary computation by evaluating emergent inter—

relationships.

History Of Co—evolutionary Computation

We have introduced evolutionary algorithms as a modelling approach for the
adaptation capability of processes found in nature. Various such adaptation processes
more or less interact with each other, which depends on diverse natural influences.
As result, the adaptation processes keep the nature in a harmonic balance. Hence, the
actual reason for evolution are the interactions that are necessary for adaptation to
the environment. This observation inspired researchers on evolutionary computation

to model these interactions, too, in order to improve the adaptation capabilities.

The algorithms are based on a biological concept, according which competing
populations may reciprocally drive one another to increasing levels of performance
and complexity by producing an evolutionary "arms race” [Dawkinset al.; 1979].

Competing species are engaged in a feedback loop, in which an adaptive change by

27

one creates a new challenge for the other, leading to an adaptive change on its part
and so on. For instance, the co—evolution of parasites and hosts [Hillis 1991],
[Kniskern et al.; 2001]. Some further definitions for co—evolution are:

« Co—evolution is evolution that involves successive adaptive changes in two or
more independent species.

« In co—evolution individuals evolve with respect to other individuals, whereas
in evolution individuals evolve with respect to a fixed environment [Potter;
1997].

« According to the NKC model [Kauffman; 1993], in an evolving organism of N
genes, co—evolution is the contribution of a gene to the fitness of the individual
depends on K other neighbour genes on the same chromosome and C other

genes from each of the S; species. The fitness of the whole system is optimised

when K =~ C x §;. When the fitness of each individual is roughly equally
affected both by its own fitness landscape and by the complex couplings to
other individuals [Bak et al.; 1992].

An early work is the so called classifier system, which extended the basic
evolutionary model to allow co—adapted sub—components to emerge inside a single
population [Holland et al.; 1978]. The application domain was rule—based systems,
in which rules evolved using a genetic algorithm. Most of the publications on co—
evolution are based on this idea of representing different species of an environment
in form of interacting sub—population. Whereby, different variations are discussed in
the literature, such as crowding [De Jong; 1975], island model [Grosso; 1985],
fitness sharing [Goldberg et al.; 1987], competitive fitness sharing [Goldberg et al.;
1987], emergent fitness sharing [Smith et al.; 1993], niching [Goldberg et al.; 1987],
[Mahfoud; 1995], [Darwen et al.; 1996], [Rosin; 1997], [Rosin et al.; 1997], [Horn;
1997].

All approaches have the sub—population as common concept, which represents a
sub—optimal solution that sometimes can have useful additional properties for the
final solution or that can represent alternative solutions to be preserved until the end

of the learn process. The major concern of related research is how to discover sub—

28

populations and its significant properties, and how to preserve them until the end of

a solution,

Improving Evolutionary Computation With Co—evolution

Experimental studies show that the co—evolutionary model is significantly more
efficient than the evolutionary model [Paredis; 1995], [Paredis; 1998]. The following
is a summary of the advantages of the co—evolutionary approach over evolutionary

once:

- Competitive environments evolve better solutions for complex tasks [Angeline
et al.; 1994].

« Co—evolutionary approach to learning sequential decision rules [Potter et al.;
1995].

+ The co—evolution method solves a larger class of optimization problems [Tahk
et al.; 1999].

+ Co—evolution can be used in both learning and optimisation [Nolfi et al.;
1999].

+ Co—evolution can enhance the adaptive power of artificial evolution [Nolfi et
al.; 1998].

* The co—evolutionary approach improves the search by utilising techniques,
such as niches [Rosin; 1997]. Further, it enables the representation of the
evolution of inter-related populations.

+ For a given task, the co—evolutionary model finds 82% of high quality
strategies, whereas the evolutionary model finds only 2% of those strategies
[Pagie et al.; 2000]. The large difference in search efficiency of the processes

is analysed by comparing the evolutionary dynamics of the two models.

For our purposes we conclude: A co—evolution model may be interpreted as co—
operative or competitive adaptation inside the domain of a specific concept. Further,
fitness sharing can be utilised to strengthen/weaken co—operation/competition

between the populations.

29

However, the generalisation capability of co—evolutionary algorithms seams to
have a handicap in specific behavioural situations of the search space, wich are
called in the literature the Red Queen Dynamics/Effect [Ridley; 1993], [Pagie et al.;
2000]. In simulations of co—evolutionary armes race, interacting populations alter
each other’s fitness landscapes, which is caused by dynamics of this landscape [Cliff
et al.; 1995]. Solution approaches try to detect and escape from such situations,

rather than preventing them.

Planning With Co—evolutionary Algorithms

We have already shown that the co—evolutionary model is an improvement of the
evolutionary model. Hence, the search efficiency of any evolutionary algorithm for
planning could be improved by a co-evolutionary one. Therefore, we do not
differentiate in the following sample references for planning between evolutionary
and co—evolutionary approaches. For instance, co—evolutionary computation for path
planning [Paredis; 1997]; the automatic programming of agents that learn mental
models and create simple plans of action [Andre; 1995]; global planning from local
eyeshot, which is a implementation of observation—base plan coordination in
CoboCup simulation games [Yunpeng et al.; 2001]; planning schedules for parallel
genetic algorithms of which each one solves a sub—problem [Husbands et al.; 1991].

2.4 Co—evolutionary Algorithms In Multi—-agent Systems

The agent concept emerged at the end of the 1980s as a synthesis of various
artificial intelligence concepts and ideas, some of which are distributed knowledge
bases, distributed expert systems, blackboard systems, intelligent user interfaces,
combination of different techniques, such as evolutionary computation, neural
networks, fuzzy logic, etc. On the other hand, related technological progress enabled
its realisation, such as hardware improvements and Internet. The intention was, and
still is, to project these techniques on the product agent, in order to have a concrete
experimental target that can be equipped with any further technology that promises

an improvement for the intelligent behaviour.

30

Initial Work On Rule—based Systems

The utilisation of evolutionary computation for automated learning of meta rules
through generalisation of primitive rules of a domain was a promising approach for
doman—independent systems. For historical reasons, rule—based system are
sometimes called classifier systems. The following is a brief discussion of initial
work that combined rule-based systems with evolutionary/co—evolutionary

computation.

According the encoding of rules in chromosomes, two strategies were common.
In the Pitt Approach, an entire rule set is represented with a chromosome, whereas,
in the Michigan Approach, a single rule is represented with a chromosome [De J ong;
1990]. An improvement of the learn efficiency of SAMUEL [Grefenstette: 1989],
[Grefenstette; 1991] was achieved with genetic algorithms. A system that can learn
and adapt reactive decision rules from simulations of multi—agent environments by
using genetic algorithms [Grefenstette; 1992]. GABIL continuously learns and
refines concept classification rules by using a genetic algorithm [De Jong et al.;
1991]. Lamarckian learning in the multi-agent environment of SAMUEL
[Grefenstette; 1991]. Evolving reactive agents for the central food foraging problem
by using genetic programming [Koza; 1992].

A typical classifier system is one which simulates a game. Since the domain of a
game is, with respect to its rules, complete, it provides an ideal environment for
searching for related game strategies and allows relative easy justification of the
results. Furthermore, it can be used as a benchmark. For instance, co—evolution of
agents that simulate the game of Tag [Reynolds; 1994], Tic Tac Toe [Rosin et al.
1997], Backgammon [Pollack et al; 1998], Poker [Barone et al.; 1998].

Multi-agent—oriented Requirements For Co—evolutionary Algorithms

Most of the here analysed work is based on the assumption that species co—evolve
in the same environment and therefore each species can be represented with one
sub—population. Most of the work on evolution in multi—agent systems makes this
assumption, such as scheduling homogeneous sub—problems [Husbands et al.; 1991];

evolutionary computing in co—operative multi-agent environments [Bull et al.;

31

1996]; evolution of communicating agents with genetic programming [Iba; 1998];
the co—ordination model proposed in [Baray; 1999] pre—assumes homogeneous
agents and therefore uses a single population for representing homogeneous
strategies; automatic acquisition of strategies by co—evolutionary learning for the N—
iterated Prisinor’s Dilemma game [Yao; 1997]; evolutionary adaptation of the
autonomy in multi-agent systems [Gerber; 1999]; even in distribution and
parallelisation of an evolutionary algorithm [Nangsue; 1998] homogeneous
populations are assumed. In most games the rules apply equally to all species,

whether they co—operate of compete.

In multi—agent systems such homogeneous structures usually do not exist. The
knowledge bases of the agents are mostly heterogeneous, with respect to the stored
rules. Besides the heterogeneity aspect, we have identified the following properties
of multi~agent systems as properties to be simulated by co—evolutionary

computation:

. Interaction: Co—operation and competition structures of agents and plans
« Variety: Homogeneous and heterogeneous structures of agents and plans
+ Scaleability: Multiple agents and plans

- Focus: Priorities between agents and plans

- Diversity: Alternative plans for the agents

Our goal is to find modelling capabilities within co—evolutionary computation

that can represent all the desired structures of multi—agent systems.

32

- CHAPTER FOUR
THE CEVOP METHODOLOGY

The most prominent characteristic of co—evolution is that the fitness of an
individual depends on fitness of other individuals, which can be from the same
population or a different population. Here we use co—evolution to generate plans for
multi—agent systems with heterogeneous rule bases, which are represented with
different co—evolving populations. Whereby, the co—operation/competition
structures among the agents are represented by further fitness functions. In this
chapter, a detailed specification of the methodology and its concepts are introduced

and compared with other approaches.

4.1 Major Concepts

Based on the ideas and the major claims of the thesis, the required concepts are
formulated and combined in this methodology. The required concepts are the data
structures goal and plan, and the functionality to co—evolve several individual plans
to alternative global plans, to adjust the suggested plans with the initial plan, and to

negotiate agreement on one of the suggested plans.

To summarise the idea of the Co—evolutionary Planning (CEVOP) methodology,
several agents join a planning process, whereby each agent publishes its goals and a
set of all its possible plan steps. This information is processed in the planning
process in order to find common goals that could enable co—operation and on the
other hand to find goals that are contradicting and therefore represent competing

goals.

33

Representation Of Rules/Goals/Plans

The knowledge base of an agent usually consists of a set of rules R, which are
used for various purposes. Some of the rule are used to construct plans P or to be

part of a specific plan P.. Thus, each plan step p: of a plan P, is a rule of the
knowledge base. The set of all possible plans PP, with P — PP c R, provides a basis
for searching for plans P,, which are similar to P, = P, If this approach is applied to

all agents in an adaptive environment, then we may find some plans, which are
similar to all agents. Thus, these agents may co—operate with each other, since their
goals will be at least partially compatible. Otherwise, for some or all plans we may
not find compatibility. In that case those plans will be considered as incompatible,

which we interprete as potential for competition.

In general, a plan is the result of a planning process. Constructing a plan in the
planning process is driven by the goals that were set before the planning process.
Principally, each rule of the knowledge base represents a goal. Hence, each step of a
plan is a sub—goal that needs to be reached by applying the plan step. Because of this
interchangeability of rule, goal, and plan step, we will use these terms in this work to

refer to the same matter.

Co—evolving Several Plans To Global Plans

The planning process of the CEVOP methodology has two aspects: First, the
adaptation process within the co—evolutionary algorithm. Second, the adaptation
process among the agents, in order to negotiate a final agreement on the generated

plans. A specific CEVOP solution may implement the aspects in the following ways:

« Alternative plans are generated already with the co—evolutionary algorithm,
Thereafter, the agents may agree on specific plans or cancel the planning

process.

34

» The co—evolutionary algorithm generates only one plan in one run. Thereafter,
if the agents cannot agree on specific plans, then the co—evolutionary
algorithm 1is called again with slightly modified possible plan sets PP. This
process is iterated, until an agreement on specific plans becomes possible or

this planning process is canceled.

« The third approach may combine these two in one solution.

The adaptation process of a plan from P, to P, within the co—evolutionary
algorithm is oriented on the possible combinations of all plan steps pi. The semantics
of a plan step or of a sequence of plan steps is ignored. Thus not all generated plans
may comply with the plan execution semantics of the agents and need to be
confirmed by the agents before the plan implementation. Hence, the final agreement

on specific plans is necessary in all solution cases.

Design Issues

From previous discussions we conclude some major requirements for our co—
evolutionary planning approach. The requirements are summarised in form of design
issues for the CEVOP methodology as follows: (Table 4.1)

- Agent interaction: Co-operation/competition interrelationships of agents
should be modelled.

- Plan variety: For agents with homogeneity/heterogeneity knowledge bases the
algorithm should find compatible/contradicting plans.

+ Scaleability: All interactions of a multi—agent system should be modelled.

« Focus: Intensity of a specific interaction should be represented in the final
plan.

« Plan diversity: The algorithm should be able to generate several alternative

plans.

35

Table 4.1: Concepts For Co—evolving Plans Of Multiple Agents

Concept Range Purpose
Co-operation | Evolved Plan Sets Should Allow For Resource Sharing
Interaction
Competition | Evolved Plan Sets Should Disallow Resource Sharing
Homogeneous Plan Sets Evolve According Similar Rules
Variety Heterogeneou
cle osge ©o Plan Sets Evolve According Different Rules
Scale— 2 Two Plan Sets Co—evolve At The Same Time
ability N Multiple Plan Sets Co—evolve At The Same Time
Great Superiority Of A Specific Interaction Is Evolved
Focus Emphasized
Small Inferiority Of A Specific Interaction Is Evolved
Emphasized
1
. Single Final Plan Generated
Diversity
N Alternative Final Plans Generated

Some co—evolution—related requirements are further needed to improve the search

process:

« Problem decomposition: The planning problem is decomposed into plan steps

and solved step—wise, which is represented by the increased fitness within the
algorithm,
« Parallelism: The algorithm can simultaneous evaluate plans within distinct

populations.

« Credit assignment: In general, by evaluating each rule’s contribution to a

success of the whole plan, an optimal plan can be generated. This issue should

be considered in the design of the chromosome evaluation criteria.

36

One may consider these issues also in a specific CEVOP implementation for both
above discussed aspects of the planning process, which were the adaptation process

within the co—evolutionary algorithm and among the agents.

4.2 Mapping Between The Problem Domains

In order to solve the planning process of a multi—agent system within the co—
evolutionary algorithm domain, we need to define a mapping of the necessary
elements of the planning process. At a lower level of abstraction the plan primitives

are mapped and at a higher level the planning concepts.

Mapping Plan Primitives

We need to map at least the primitives plan and plan step. From the set of all
possible plan steps PP, each plan step p: is mapped to a gene value. The validity
range of p; is mapped to gene value ranges, in which mutation is allowed. A plan,
consisting of a sequence of several plan steps, is represented in form of a

chromosome (Figure 4.1).

Possible variations of different p; sequences in form of alternative plans are
explored by crossing over the genes of two chromosomes. Mapping the primitives
into the helper domain we call encoding, and the backward transformation we call

decoding.

37

Encoding

Plans P, &
All Possible Plan Steps
p;

Evalﬁation Criteria &
Gene Values

Evolved Plans Decoding

Figure 4.1: Mapping Plan Primitives Onto Chromosomes

Mapping Planning Concepts

At the conceptual level of the planning process, particularly the interaction types
co—operation and competition, and the plan variety properties homogeneity and
heterogeneity are mapped onto related structures of the co—evolutionary algorithm.
Since the gene value ranges are fixed for a chromosome, all chromosomes of a
population represent only those alternative plans, which are based on the related plan
steps (Table 4.2). Hence, these populations can represent only homogeneous plans.
In other words, plan steps that are not found in the knowledge base of an agent are
not put into the set of all possible plan steps PP. On the other hand, this is the reason

why we represent heterogeneous plans with different populations.

Table 4.2: Homogeneous Plans Within A Chromosome
P1 Pz e Pn

Finding a solution for a chromosome is the result of exploring the search space
opened by all possible plan steps PP. Since the search is guided by chromosome

evaluation criteria, actually their design determines the required co—

38

operation/competition structures. Furthermore, it is simpler to design a criterion that
evaluates all genes or a group of genes of a chromosome with equal criterion. This is
the reason why we represent co—operation with the evolution of a chromosome and
competition with co—evolution of chromosomes that belong to different populations
(Table 4.3).

Table 4.3: Mapping Planning Concepts Onto Populations

Interaction Type

Multi—agent Planning Domain

Co—operation Competition

Homogeneous Same Population | Different Populations

Plan Variety
Heterogeneous | Different Populations | Different Populations

Co—evolutionary Algorithm Domain

In the special case that all agents are homogeneous and only co—operation
structures are sought, we can get the cheapest CEVOP implementation, in terms of

storage and processing time.

4.3 The Generic Co—evolutionary Algorithm

In this section we will be discussing the inner loop of the CEVOP algorithm,
which is the co—evolutionary part.

The Algorithm For N Populations

The algorithm is introduced for n populations and m; interactions for each

population A;.

39

1) For all n populations

1.1) Randomly pickup plan steps from P: for population A

2) For all n populations

2.1) Cross-over inside A;

3) For all n populations

3.1) Mutate distance values inside A:

4) For all n populations

4.1) Calculate Fitness F; of Population A;

4.2) For all my interaction relationships of population
A;

4.2.1) Calculate fitness Fi; for interaction of A; with
Ay (1 # 3)

4.2.2) Fe = Fc + Fij

4.3) Fi' = (Fs + Fc / my) / 2 and F. = 0

5) IF fitness Fi1 AND ... AND F, satisfied OR other
termination THEN GO TO 7

6) For all n populations
6.1) Fitness selection on A;
6.2) GO TO 2

7) For all n populations

8) PRINT A:

A; is the plan population to be optimised. P; is the set of all possible individual
plan steps of agent i. Fitness F/' of population A; is determined by accumulating its
own fitness F; and all m fitness values for interrelationships Fy. F. represents the co—

operation and/or competition strengths of agent i with the others.

Interpretation Of The Algorithm For The Case Of Homogeneous Co—

operation

In case of k co—operating homogeneous agents, the set of all possible plans P; is
identical for all agents A;j, ..., Ax. Thus, the plans can co—operatively evolve inside a

single population.

Homogeneous
Competition

Homogeneous
Cofoperation

Homogeneous
Co-operation

Homogeneous
Co-operation .

Figure 4.2: Sample Interaction Types For Three Homogeneous/
Heterogeneous Plan Populations

For this purpose the plans of all these players are represented inside a single
chromosome. Another representation and sample mapping of these structures is

depicted in (Figure 4.2).

Theoretically, it is possible to refine the interrelationships in (Figure 4.2) by
directed ones. However, only one reasonable configuration arises in this case, which
is co—operation in one direction and competition in the other direction between two

populations. Even this case may not be reasonable for some domains.
Fitness Evaluation

According the algorithm, the fitness evaluation is a two—stage process, which we
call local and global fitness evaluation:

« Local: First, the fitness F; for each population is calculated and accumulated
independently from the others.

+ Global: Second, by adjusting each local fitness F, by its co-
operation/competition strengths with the other populations through F; = (F; +
F./ m;)/ 2, the global fitness for each population is determined.

41

In the calculation of F; and Fi we have weighted all co—operation and/or
competition strengths equal. In a specific domain, the relationships between the
chromosome evaluation criteria may not be linear. In that case the accumulation

function may be nonlinear.

Properties Of The Algorithm

The following summarises some important features of the algorithm:

« Plans with variable number of plan steps can be represented by variable
chromosome lengths within a population. This property can make the
algorithm more dynamic against related requirements of a specific domain.

« For the co—evolutionary algorithm we have provided the cross—over and
mutation operations. However, to adapt the algorithm to a specific problem
domain, one may emphasise these operations over their reproduction rates.

 The fitness and selection operations can be adopted to a specific domains, too.
A general interpretation of the fitness function is: It evaluates the contribution

of each plan step to a success of the whole plan.
« The computational effort of the co—evolutionary algorithm is O(n®) in the

worst case and O(n*) for the case that multiple plan solutions are sought
(Appendix H).

« Since each criterion evaluates a chromosome and seeking for an optimum
value for all criteria requires an equilibrium, the algorithm solves an

optimisation problem.

Convergence Behaviour

The generalisation capability of the algorithm depends on the design of the
chromosome evaluation criteria, since they drive the chromosomes towards the
desired fitness. Therefore, appropriate design of the criteria will enable the algorithm
to converge for most cases. However, an inappropriately designed criterion may
disable the algorithm to converge, such as contradicting multi—objective criteria. In

general, if the criteria over—constraint the problem.

42

4.4 Interpretation Of The Generated Plans

Above we have defined that the source data for the co—evolutionary algorithm
was the ste of all possible plans PP of an agent. Our justification for the claim that
the methodology provides for learning while planning was based on the assumption
that the set of known plans P is a subset of all possible plans PP: P c PP. Hence,

principally any plan that was not in the set of known plans P; is a new learned one.
For the case of two agents, the intersections of both sets of possible plans PP; N PP,,
excluding both sets of plans P, U P, is the set of new learned plans for both agents
(PP, N PP;y) \ (P, U Py). Each of the other two symmetric intersecting sets of plans

((PP. n Py) U (PP, N PY)) \ (PP, N PPy) \ (P, U P) are new only for one of the
agents (Figure 4.3).

Another interpretation of generated plans is related to the capability of the co—
evolutionary algorithm to model co—operation/competition appropriately. Co-
operative/competitive co—evolution evaluates candidate plans and and their
variations against one another while searching for both, so that each drives the
improvement of the other. Since this process is driven by the chromosome evaluation
criteria, the appropriateness of the modelled co—operation/competition actually
depends on the appropriateness of the criteria. Furthermore, a desired grade for co—
operation/competition of plans may also be controlled by designing the criteria

appropriately.

43

@

B New Learned Plans For Both Agents

Figure 4.3: Interpretation Of Generated Plans For Two Agents

4.5 The Generic CEVOP Methodology

Above, we have discussed various properties of the CEVOP methodology. Now,
we summarise the algorithmic steps, which are basically the co—evolutionary
algorithm for plan generation and adaptation, and the negotiation schema for plan

agreement.

1) Apply the co-evolutionary algorithm for all
random/desired plans A; of agent i

2) IF all agents agree on the generated plans A;’ THEN
GO TO 4

3) Allow each agent to modify A:; such that A; = A;”" GO
TO 1

4) Each agent i applies the generated plan A;

A multi—agent system may utilise the co—evolutionary planning process in
iterative calles of its planning process. After each such call the agents will need to
enter a negotiation and adaptation process, in order to find a final agreement. First,
the agents negotiate on the generated plans. If they cannot find an agreement, then
each agent enters its own and independent adaptation process. In the adaptation, each
agent has the decision alternatives to adapt either its initial plan A; to the generated
plan A;, or to adapt A; to A;, or to adapt both. The adapted plans are all collected
and passed to a new call of the co—evolutionary algorithm.

The negotiation, adaptation, and agreement schema for the agents is a suggested
scenario for embedding the co—evolutionary algorithm as a planning approach into a

multi—agent systems.

4.6 Recapitulating The CEVOP Methodology

In the following the basic properties of the methodology are summarised:

« CEVOP addresses the problem of homogeneous and/or heterogencous co-—
operative and/or competitive planning of multiple agents by mapping the
structures onto a single co—evolutionary algorithm.

- The planning methodology is inherently domain—independent, since no
assumptions on any specific domain have been made.

« The main advantage is that the multi—agent system can find a global plan in a
more democratic way, since each agent’s initial plan influences the co—
evolution process, and the global plans are negotiated.

- The multi-population approach does not have a greater computational
complexity, since it can be accumulated in a single population, resulting in the
same complexity.

« Alternative plans could be produced by introducing the algorithm co—evolution
within each population. Where, desired properties of sub—optimal solutions can
be preserved until the end of the search by using the techniques discussed in

the chapter on co—evolutionary computation.

-y 'Mgm Kukuid)

45

- CHAPTER FIVE
THE AGENTTEAM FRAMEWORK

AgentTeam is a generic framework for multi—agent systems (MAS). The idea is
to collect and combine necessary generic concepts, which are sufficiently abstract to
provide a domain—independent framework for MASs. Another intention is to initiate
discussions on intelligent agent —oriented concepts. Thus, AgentTeam serves as a
basic model for the design of specific MASs. Whereby, further domain—dependent
concepts may be introduced in the design of a specific MAS, if needed. The
concepts, initially defined earlier and prototype implemented in the distributed
database management system domain [Kumova; 1998c], [Kumova; 2000a],
[Kumova; 2001a], have been now generalised and abstracted further in this version.
Especially, stronger concepts for co—operation and competition were introduced
though the CEVOP methodology, whic was introduced in the previous chapter. A
restricted prototype version of CEVOP for the Soccer domain is introduced in the
next chapter. In this chapter, the co—operation, competition, and co—ordination

models are emphasized as they are affected by the CEVOP approach.

5.1 Major Concepts

The AgentTeam combines various concepts of other existing multi—agent systems

(MAS) in a framework The framework is discussed here by emphasizing two issues:

« The architectural model.

« The object—oriented design of the architectural model.

Before we start to discuss the concepts, we give a summarised brief overview of

related work, since most of our concepts were influenced by those earlier solutions.

Definition Of An Intelligent Agent

The difficulty for finding a definition for the agent concept, on which the

community could widely agree, is as difficult as finding a definition for intelligence.

Nevertheless, many attempts are undertaken in the literature to describe an agent

with few words.

A programme with some architectural and behavioural properties that may
appear a human as a smart application.

A rule-based application with an inference mechanism that evaluates the rules.
Where the rules are in first order predicate logic.

Given its goals, limited resources, and dynamic real-time environment, an
intelligent agent must decide which of many possible actions to execute at each
point in time [Hayes—Roth; 1992].

An agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through effectors. A human agent
has eyes, ears, and other organs for sensors, and hands, legs, mouth, and other
body parts for effectors. A robot agent substitutes cameras and infrared range
fingers for the sensors and various motors for the effectors. A software agent

has encoded bit strings as its percepts and actions [Russell; 1995].

According a weak notion for agency, an agent enjoys the properties autonomy,
social ability, reactivity, pro—activeness [Wooldridge et al.; 1995].

Various other definitions for agents are collected and classified according
different aspects in [Franklin et al.; 1996], [Knapik et al.; 1998], [Callayan et al.;
1997].

Other Models For Multi—agent Systems

A standardisation efforts for MASs does not exist. But various MASs

development environments and tools are available that propose standardisation of

47

different aspects of MASs. We summarise here only a view popular MASs by
mentioning only their most outstanding features briefly.

Microsoft Word’s letter wizard and help assistants have rule—based knowledge of
a restricted domain. They can be classified as intelligent modules, since they can

exist only inside the environment of this application.

RETSINA [Sycara et al.; 1997] is a MAS framework for information retrieval. A

hierarchical communication structure is proposed that involves several agent types.

InfoSleuth [Nodine et al.; 1998] is more a software—enginecring tool for
developing intelligent agents. Developed agents can be deployed into a system
environment with uniform communication capabilities, i.e. layered communication
semantics are defined for InfoSleuth agents, in order to facilitate communication
standards. It is, like RETSINA, a framework for information retrieval.

Infomaster [Duschka et al.; 1997], [Genesereth et al.; 1997] is an information
integration tool for information retrieval purposes. Its rule-based schema integration
facilitator is an approach to homogenise heterogeneous data sources as well as
structured and unstructured data.

ZEUS is a graphical development tool-kit for building distributed multi—agent
systems [Nwana et al.; 1999] that provides both a FIPA [FIPA; 1997] or KQML
[Wooldridge; 1998] based communications infrastructure and a planning engine for

handling rule based conversations by means of automata models.

An evaluation and comparison of the most cited MASs can be found in [Eiter et
al.; 2001]. It is also expected that these efforts will converge over time [Iglesias et
al.; 1998] first to standards on particular concepts, such as the ACL, thereafter to
behavioural and architectural standards.

48

AgentTeam Framework

Architectural Model:
Knowledge Base Model
Behavioural Model
... Communication Model £ .
Co-operation Model
Collaboration Model
Competition Model Multi—agent Model
Co-ordination Model

CEVOP Methodology

Figure 5.1: Concepts Of The AgentTeam Framework

Architectural Model Of The Framework

The architectural model of AgentTeam includes the elementary modals depicted
in (Figure 5.1). Each model defines related concepts that are thought to be domain—
independent, which will be shown in the discussions below. Although, the CEVOP
methodology is integral part of the framework, we will not repeat it here, since it
was extensively discussed in the previous chapter. Instead, the co—operation,
competition, and co—ordination models are introduced in terms of the CEVOP
methodology. In all models n—to—m relationships were assumed for the cardinality
between the mentioned objects. The models are further grouped by the single—agent
model and MAS model.

5.2 The Architectural Model

Before we proceed the major models of the architecture, some further generic

properties are defined that are common to most agents.

49

Intelligent Components

Modern systems usually consist of several interacting software components, such
as sources, resources, modules, and applications. On the other hand, from the point
of view of the environment, all of them are again components. Even the environment
itself may be a system made up of components, such as operating system, hardware,
and so forth, until the lowest system level, consisting of drivers and devices.
Therefore, a component can principally be software, hardware, or a system
combining both of them. Compared with non—intelligent components, an intelligent
one possesses some further architectural and behavioural features, which are

described below.

According their environment, intelligent components can be grouped in three

classes (Figure 5.2):

- Intelligent module: Is an intelligent component of an intelligent or non—
intelligent application. It is imbedded in the application, where it exists within
a restricted activity area. Since, its knowledge base structures are relative
primitive, its reasoning capabilities are restricted. For instance, the smart help—
modules of an application that assist the user in interactive dialogs.

« Intelligent Agent: Is an intelligent application. Is autonomous, since it can act
independently from other applications. Its knowledge base contains advanced
structures and it can reason in the context of global consistency concepts. For
instance an intelligent broker agent that maintains keyword—service—server

relationships to support related information queries.

« Intelligent MASs: Is a distributed system consisting of multiple co—operative
intelligent agents acting successfully within a specific domain. The agents are
only partially autonomous, since they act towards a common global goal.
However, a MAS as a hole is autonomous, like a single intelligent agent. For
instance, agents representing consumers and producers in an e-market place,

and those agents, which broker between them.

50

Environment Environment Environment Environment
1 1 1
p p p p
Application
m Application Application Application
Module
Module Single Agent MAS MAS
......... n n n nq
Environment
Intelligent Module Intelligent Agent MAS Communicative MAS
(@) (b) © @
[INon-intelligent Component :....... Intelligent Component ,m ,n,0,p,q €N

Figure 5.2: Possible Configurations For Intelligent Components

« Communicative MASs: Are domain—independent MAS that can act
autonomously in any application domain and communicate among each other
successfully. For instance, e-market places with interrelationships among each

other and direct connections to related production systems.

World Model

By our definition, an intelligent agent is more advanced than an intelligent
module, since it can have more capabilities enabled by its higher degree of
autonomy. The agent possesses a generic architecture that is valid for all types of
intelligent components. It interacts with users, resources, and sources of the
environment (Figure 5.3). A resource is a data access interface that acts as a service
provider for a data storage. Where, a resource may be again intelligent component. A
source is pure data without any functionality. Usually, different languages are used
to communicate with each object of the environment. For instance, user interfaces,
agent communication languages, various communication protocols for resources and
sources. Advanced internal structures of an agent are goals, control mechanisms for
learning concepts, planning optimal solution strategies, and co—operation and co—

ordination structures for the execution of tasks.

51

Bnvirommeny e
Agent
: User : Reasoning
"asessurasamasceses cees E Planning; Leaming
e e, Communication : Cojordination; Co-operation
Agent :
. o f User —Agent Knowledge Base
Agent—Agent
Resource Resource —Agent Meta Knowledge
Source —Agent | Domain Knowledge
: Goals; Facts
Source
[Non-intelligent Component i.......} Intelligent Component

Figure 5.3: Generic Architectur;: And Environment Of An Intelligent Agent

Reasoning is a higher—level control mechanism, which is used to evaluate all the
other concepts. Since it is usually based on formal logic, it enables the component to
behave intelligent. The knowledge base contains all these concepts in form of
domain—independent functionality that represents meta—knowledge, and domain—

dependent functionality that represents domain knowledge.
Object Orientation

We propose object—oriented designe patterns for agents and MASs. This approach
has influenced, besides the software engineering aspects of the models, also partially
the other concepts, for example the AgentCom language. Since software engineering
concepts are usually secondary in the discussion of artificial intelligence concepts,
we refer here to the related publications [Kumova, 2000b], [Kumova; 2000f],
[Kumova; 2000h].

Life—cycle Model

Distinguishing different states of an agent can facilitate its design, provided that it
is used as a standard design concept.

“EC mﬁksmf}cr(z FLv WO RU L
ON MERKEX]

51

I
Agent
: User : Reasoning
ireresersremseanuun L oa E Planning; Leaming
T T RPPRIY . Communication : Co-ordination; Co-operation
Agent :
A aal User —~Agent Knowledge Base
Agent—-Agent
Resource Resource —Agent Meta Knowledge
Source ~Agent Domain Knowledge
: Goals; Facts
Source
[Non-intelligent Component PRI ! Intelligent Component

Figure 5.3: Generic Architecture And Environment Of An Intelligent Agent

Reasoning is a higher—level control mechanism, which is used to evaluate all the
other concepts. Since it is usually based on formal logic, it enables the component to
behave intelligent. The knowledge base contains all these concepts in form of
domain—independent functionality that represents meta—knowledge, and domain—

dependent functionality that represents domain knowledge.

Object Orientation

We propose object—oriented designe patterns for agents and MASs. This approach
has influenced, besides the software engineering aspects of the models, also partially
the other concepts, for example the AgentCom language. Since software engineering
concepts are usually secondary in the discussion of artificial intelligence concepts,
we refer here to the related publications [Kumova; 2000b], [Kumova; 2000f],
[Kumova; 2000h].

Life—cycle Model

Distinguishing different states of an agent can facilitate its design, provided that it

is used as a standard design concept.

52

Figure 5.4: Life-cycle Model Of An AgentTeam Agent

An agent may enter one of the four generic states sleep, wait, communicate, or
evaluate (Figure 5.4). The states and the possible state transitions are explained

briefly below.

Sleeping: An agent is sleeping, when it is currently persistent or is moving. For
example when it is currently inactive, because its state and data is stored in a
database or is moving from one machine to another machine. An agent may transit

from sleeping only to the waiting state, for example caused by a data request.

Waiting: An agent is waiting, if currently no event has activated any of its
functionality. From waiting it may transit to sleeping, if no events have occurred for
a while. It may transit to communicating, if a communication event is received, such

as a message from another agent or an interaction from a user.

Communicaring: An agent is communicating in all types of interaction with other
agents, which can be co—operate, collaborate, or compete. It may change to waiting,
when for example network congestion occurs. It may change to evaluating, when

information was received that needs to be evaluated.

Evaluaring: An agent is evaluating, when calculating, transforming a protocol,

learning, reasoning, filtering, or retrieving data. It may transit to waiting, when it is

53

awaiting further information from other agents, in order to complete its tasks, or if

all tasks have been completed.

5.3 The Knowledge Base Model

Usually, knowledge interchange format (KIF) is used as common data structure
for representing logical knowledge inside ontologies. Since, knowledge in KIF is in
first order predicate logic it is used by the inference mechanism, without further
transformations. This knowledge is the bases for logical behaviour and enables the
agent to communicate logically with users and other agents. On the other hand,
communication with non—logical resources and sources is usually non—logical and
therefore requires other knowledge base structures than those for logical knowledge
[Kumova; 2000d].

Semantic net is an alternative representation form for knowledge. Since, there are
no restrictions on the data structures to be stored in semantic nets, the knowledge
does not necessarily need to be available in first order predicate logic. A semantic
net is a suitable structure for storing heterogeneous data. It is a connected, directed,
and labelled graph, where a node represents an object or an attribute value and an arc
between two nodes represents a relation, a property, or an operation. A semantic net

can always be drawn as a connected graph.

Independent from an application domain, the knowledge base of an agent should

contain several generic concepts (Figure 5.5):

« Domain Knowledge: Is the knowledge of a specific application domain. For
instance, Soccer rules.

« Meta Knowledge: Is domain—independent knowledge for controlling the
evaluation of domain—dependent knowledge. For instance, the CEVOP
methodology contains domain—independent planning knowledge.

« Goals: Are desired solution alternatives without solution ways, i.e. without

plans.

Knowledge Base
Co-ordination Skills

Meta Knowledge Co-operation Skills Planning Skills

w
|| |= A~

Domain Knowledge Communication Skills

Facs

n
Figure 5.5: Knowledge Base Concepts Of An Intelligent Component

« Plans: Are solution ways for a given goals and/or several sub—goals.

The communication, co—operation, and co—ordination skills are discussed in the

sections below.

Syntax and semantic of knowledge base structures need to be shared, too, in order
to enable a successful communication. Syntactical structures are necessary to
exchange knowledge. Whereas, scmantical structures enable the meaningful

evaluation of the exchanged syntactical structures.

Further, we propose in our framework to design a knowledge base in an object—
oriented fashion. A knowledge base consisting of a semantic net, where the nodes

are objects, can be a very flexible structure [Kumova; 2000a], [Kumova; 2001a].

5.4 The Behavioural Model

Our contribution to the behavioural model focuses on the planning capability of
an agent. All other behavioural properties of an intelligent agent are summarised

briefly.

2

e

55

Behavioural Properties

The discussion on the behaviour of agents in terms of human intellectual
properties enables to compare the intellectual capabilities of the agents among each
other and with those of human. Various such properties and aspects are discussed in
the literature, such as capable, perceptive, successful, reactive, reflexive, predictive,
imperative, rational, adaptive [Maes; 1995], delegation, autonomy, communication,
perception, actuation, or intelligence as a whole. For formal definitions and informal
descriptions of these properties we refer to the related publications and will not
discuss them further [Goodwin; 1994], [Cadlayan et al.; 1997].

The Planning Behaviour

Our basic planning approach is the Co—evolutionary Planning (CEVOP)
methodology. According to our previous discussion we assume that theoretically all

rules of a knowledge base R are a super—set of all possible plans PP and that all
possible plans are a super—set of all known plans P: R © PP o P. For real
implementations we assume that agents will converge over time to PP © P, due to
the frame problem, and the difference is the potential area for alternative plans. If
YPP; N XPP; # J, then the CEVOP algorithm is able to find compatible plans or

compatible partial plans that satisfy common goals or sub—goals of the agents,
respectively. Where PP; and PP; are all possible plans of agents i and j.

On the other hand, If XPP; N ZPP; = &, then the CEVOP algorithm will find that

the plans are incompatible or contradicting, which is a potential for competition

between the related agents.

Since the search space is first explored with the co—evolutionary algorithm,
thereafter the plans negotiated between the agents, compatible and/or contradicting

plans are sought in a co—evolutionary planning process.

56

5.5 The Communication Model

Communication skills are communication inter—dependencies between users,
agents, resources, and sources. For example, the communication structures inside a
MAS or between MASs. They represent all possible passing of inter—agent messages
of a MAS. Usually, ACLs are used as communication protocol, Such as Knowledge
Query and Manipulation Language (KQML) [Finin et al.; 1993], [Finin et al.; 1994],
[Mayfield et al.; 1995], ARtimis COmmunication Language (ARCOL) [Sadek et al.;
1997], AgentCom [Kumova; 2000d]. These languages are modeled in analogy to
speech acts found in natural languages [Smith et al.; 1996]. Speech acts have been
identified as basic logical concepts in natural language communication for requesting

and asserting intentions.

Design Factors

An important complexity that influences the design of intelligent behaviour
emerges from synergy effects in the design among the planned behaviour,
application environment, agent communication language (ACL), and the knowledge
base (KB). For instance, the design of the knowledge base structures is partially
determined by the chosen ACL, partially by the planned behaviour of the
component, and partially by the knowledge structures of the environment to be
communicated over the ACL (Figure 5.6).

From the point of view of software engineering, to improve the accuracy and
maintenance of these concepts also formalisms are used. For instance, for the
specification, description, and implementation of behaviour different languages are

proposed [d’Inverno et al.; 1997].

57

Environment

Knowledge
Base

Figure 5.6: Factors That Influence Agent Communication

Client—broker—server Model

From the perspective of the communication structures, the generic architecture of
a MAS consists of multiple clients and multiple servers, and multiple brokers
between the clients and servers. A client can reach a potential server that could give
the desired information in two steps (Figure 5.7):

1 A client passes the desired information to known

brokers and gets the addresses of some potential
servers.

2 The client contacts the related servers directly.

Related to the client—server model are some practical network—oriented
implementation alternatives, such as synchronous versus asynchronous and stateless

versus state—full communication. Usually, these techniques enable parallel
processing at server as well as at client side.

58

m p s
Client Server Server
......... 0 e, RSN S
Client Agent Broker Agent : Source Agent:
A 7'y 4 A
Network
<+—» Request Source Agent <= Request Source m,n,p,q,.s,t €N

Figure 5.7: Communication Relationships Of A Client—broker—server—based

MAS

Agent Types

We propose four agent types with a pre—defined communication structure as
follows (Figure 5.8):

User Agent. A user agent is mainly responsible for managing user transactions,
which may be given interactive on a user interface or stored as time—
conditional events. For each transaction one task agent will be invoked.
Usually, one transaction may cause several tasks.

Task Agent: A task agent performs a given task on its own behalf
autonomously, but may need to co-operate dependent tasks with other task
agents. Where, the user agent may take over a co—ordinator role, if necessary
for a specific transaction.

Resource Agent: A resource agent is mainly responsible for brokering
messages between task agents and source agents. Only one should exists on a
server, where it provides the server site connectivity. Resource agents should
be able to co—operate with each other, in order to provide the task agents a
unified service. Several source agent may be necessary on one site, depending
on, for example, the diversity of the sources.

Source Agent: A source agent knows how to access the local data sources,
which can be heterogeneous. It knows various transformation alternative, in

order to return the data in the required form to the task agents.

59

Client -m n Server
T o .
: User Agent : Source Agent§
Task Agent k.m0 peN chsource Agent;
......... I j

Network

Figure 5.8: Communication Relationships Between Agent Types In
Information Systems

However, in a specific domain not all agent types may be necessary.

Language Semantics

Intelligent behaviour can be simulated in many ways. One effective technique is,
deciding non—deterministic functionality by using heuristics and employing
mathematical logic for reasoning and explaining decisions. In order to communicate
such logical concepts, a language should provide suitable syntax and semantics. For
this purpose agent communication languages were developed. However, the
difficulty to define domain—independent language semantics still persists [Sing et al.;
1998], [Hobbes; 1999]. One crucial handicap is the lack of concepts for abstracting
from heterogeneous semantics of different domains. Though, some effort was made
in the past to define language semantics for KQML, in form of conversation rules
that pre—define performative sequences, [Smith et al.; 1996], [Labrou et al.; 1997],
[Chaib—draa et al.; 1998], [Wooldridge; 1998] and the modal logic—based semantics
with the Foundation for Intelligent Physical Agents (FIPA) standardisation effort
[FIPA; 1997], no successful standards exist, yet [Sandholm; 1999].

60

Other approaches define language semantics over social agency [Sing et al.;
1998], [Ossowski; 1999]. Social agency is a suitable combination of differently
emphasised agent properties, intended to achieve more communicative, more co—

operative, and easier co—ordinated agents.

The Concept Of A Bilingual Agent

Behaviour is an abstract concept consisting of a combination of the above
mentioned behavioural properties. It is the result of mutual influences of cognitive
processes, such as planning and learning. Intelligent agents can influence each
other’s behaviour by communicating, co—operating, collaborating, and competing. In
order to understand the concepts of another agent, standard semantics are necessary.
Some common generic standards are first order predicate logic, modal logic, and
object—orientation. The more a concept is domain—specific, the less it is generic with
respect to other domains and the less it may comply with logical concept. On the
other hand, higher abstractions can be found with logical concepts than with non—
logical concepts. Furthermore, it is possible to reason over logical concepts, whereas
reasoning over non-logical concepts is difficult and can result in logical
inconsistencies. Finally, in real implementations knowledge at various abstraction
levels is necessary for successful agents. It is obvious that the communication of a
concept at different abstraction levels may have different semantics, due to different
interpretations. Multi—agent systems that implement the above discussed ACLs
approach this problem by hiding heterogeneous data or introducing domain—specific
language semantics for their interpretation [Sycara et al.; 1997], [Nodine et al.;
1998], [Genesereth et al.; 1997], [Martin et al.; 1999]. This approach results in
various domain—specific language dialects [Chaib—draa et al.; 1998], [Dam; 1997],

which is a handicap for intra-MASs communication.

We address the semantics problem of an ACL, with respect to heterogeneous data
exchange, with the bilingual agent concept [Kumova; 2001b]. Where, logical
concepts are communicated though a logical language, such as the above discusses
once, and non-logical domain—dependent concepts trough a non-logical language
(Figure 5.9).

61

Domain—
independent

Logical mcil:gépzl Communication Of
Concepts Logical Concepts
................................ Domain—- 1,

dependent
Non-logical Corficepts Communication Of
Concepts L Non-logical Concepts

Figure 5.9: Concept Classes And Their Communication

With logical we mean predicate logic or its extensions, such as modal logic,
deontic logic, temporal logic, or more—valid logic. Accordingly, with non-logical
we mean data—oriented, functional, or object—oriented, but not logical (Appendix A).

This model clearly distinguishes between indirect access to the communication
partner’s knowledge base over logical ACLs and direct access over non—logical
ACLs. Furthermore, it can help to avoid the parallel use of multiple direct access
languages if it is standardised, such as XML SOAP [SOAP; 1999].

Thus, a bilingual agent can communicate with other agents in three modes:
(Figure 5.10)

« Only in a logical language with another intelligent agent, to exchange only
logical concepts.
« Only in a non—-logical agent, to exchange only heterogeneous objects.

« In both languages in parallel, to exchange both types of information
simultaneously.

Logical
Behaviour

Non-logical
Behaviour

Bilingual Agent

Logical
Evaluation

Communication Of
Logical Concepts

62

Logical Agent

N

Logical
Knowledge

Non-logical
Knowledge

(Knowledge Exchange)

(Object Exchange)

Communication Of

Non-logical Concepts

Non-ogical
Knowledge

Nondogical Agent

Figure 5.10: The Bilingual Communication Concept

We propose further that objects should be exchanged in a non-logical

communication, since object—orientation can be used to hide the heterogeneity of the

carried object. Most agents already implement various protocols to access different

resources and sources. Exchanging them among the agents over a standardised non—

logical ACL can simplify the communication structures. Another advantage is that

domain—independent logical concepts can now be freed from domain—dependent

non—logical concepts.

For this purpose we had designed AgentCom, as no comparable language existed

at that time, which satisfied our requirements [Kumova; 1998c]. Its capability to

carry objects is meanwhile realised, for instance with XML SOAP. However, its

list—oriented syntax is still more advantages for agents that use list structures to store
knowledge than the tag syntax of XML.

Communication

Language
Semantics

Data
Semantics

63

Seision
Message

Keywords

Attribute—value
Pairs

Figure 5.11: Hierarchical Communication Semantics Of AgentCom Agents

The Agent Communication Language AgentCom

AgentCom was designed to transfer knowledge in form of objects between the

knowledge bases of agents and to initiate their evaluation [Kumova; 2000d]. The
language consists of the message types SESSION_BEGIN, GIVE, TAKE,
CREATE, DELETE, RESPOND, SESSION_END, and nine keywords for

specifying various parameters of an object. Since, an object is represented in the

language in form of text, any programming language that supports string

manipulation can implement AgentCom. According the hierarchical syntax structure

of the language, the semantics are embedded into communication levels (Figure

5.11).

The sample code below requests the receiver DBAgent! to return the specified
attribute values of the instance enrol of the class Table to the sender.

(GIVE (ADDRESS 193.140.x.x 193.140.x.y)

(SESSION_ID 13)
DBAgentl)

(OBJECT Table enrol (HAS

(MESSAGE_ID 65) (NAME TaskAgentl

(OBJECT == courseld CSE509)

(OBJECT > studId 99001)

(OBJECT Attribute assignments NIL)
(OBJECT Attribute midterms NIL)

(OBJECT Attribute final NIL))))

This example illustrates the direct access of the sender to the recciver’s
knowledge base, since the receiver’s data structures are known by the sender. The
OBJECT attribute enables to represent an object in form of a list. The complete
syntax of AgentCom is specified in (Appendix B). A detailed discussion of the
language syntax and semantics is provided in [Kumova; 2000d]. An evaluation of
AgentCom against the other ACLs and some close Internet protocols can be found in
[Kumova; 2001b].

Communicative Interaction Types

We interprete the relationships between communication, co—operation,

collaboration, and competition as it is sketched in the figure (Figure 5.12).

The relationships state that communication is necessary for the other structures.
The other structures are discussed in the following sections, in terms of alternative

modi an agent may enter.

65

Communication
Co- Colla— Com—
operation boration petition

Figure 5.12: Relationships Between Co—operation, Collaboration, And
Competition

5.6 The Co-operation Model

In co—operation mode, an agent knows only team goals It has no antagonistic
goals. It may have individual goals, but these will be sub—goals required to reach the
team goals independently. The communication partners can share their knowledge,

since their goals are not contradicting.

Co—operation skills are semantics defined over communication skills. They define
how some communication structures need to be applied to accomplish a specific task
that depends on other agents. Various strategics are discussed in the literature
[Kandzia et al.; 1997], [Kumova et al.; 1999], in order to enable homogeneous
and/or heterogeneous agents to co—operate with each other. For example, co—
operation between the RETSINA information gathering agents is supported by query
delegation to other agents [Paolucci et al. 2000]. The need for co—operation arises
for an agent, when at least one of its sub—goals can be satisfied alternatively or only

by another agent.

Planning already as a centralised algorithm is known to be NP—complete.
Planning as a distributed algorithm in a MAS introduces further complexity caused
by additional iterations for negotiation. Even knowledge base heterogeneity can
increase the complexity, if the homogenisation process requires further iterations.
We address all these problems with the co—evolutionary approach of the CEVOP
methodology, where the complexity is reduced, through the constraints of some

evaluation criteria, to the polynomial time O(n®*) (Appendix H).

The provided algorithmic solution for abstracting over heterogeneous knowledge
bases is generic, since there are no limitations for the populations of the co—
evolutionary algorithm. In general, the plans of homogeneous agents evolve in the
same search spaces, which is represented by one population, whereas the plans of
heterogeneous agents evolve in different search spaces, which is represented by

different populations.

5.7 The Collaboration Model

In this discussion, we identify collaboration as a special cases and as a sub—set of
co—operation and competition. This case is defined here over the co—operation

process of different systems.
Rationale For Differentiating Collaboration From Co—operation

In most cases and in almost all domains, except the military, the term
collaboration is used interchangeably with the term co—operation. Whereas, a strict
distinction is made between both in military terminology. Here, collaboration is
associated with supporting the enemy, in reaching its goals, against the goals of the
own side. Independently of how similar or opposite the final goals of the parties are,
any inter—party communication aims at satisfying a common sub—goal. Thus,
collaboration is usually a timely restricted kind of co—operation, compared to the
total time required for the final goal. On the other hand, a collaborating agent may

compete against its initial side, for this duration.

Since, even collaboration needs to be controlled by the related parties, we need a
clear differentiation between intra—-MAS and inter-MAS communication. For this
purpo'se, collaboration between MASs is thought as a kind of co—operation with

resource restrictions, such as time, knowledge, and participants.

67

A Definition For Collaboration

An AgentTeam MAS collaborates with an autonomous agent or another MAS, if

all conditions below are satisfied:

« A sub—goal of a MAS does not conflict with a goal of an autonomous agent or
another MAS.

« Some agents of the MAS co—operate directly with an autonomous agent or
another MAS by sharing their knowledge, until the agreed and non—conflicting
sub—goal is reached.

In order to provide for a harmonic and conflict—free co—operation inside a MAS,
no collaboration is allowed within a MAS. This can be guaranteed by building the
plans of the MAS by involving all agents into all planning processes.

5.8 The Competition Model

Provided that individuals’ objectives are initially not towards aggressivity,
damage, disruption, sabotage, or any other non—ideal, then competition is no goal in
that sense. However, contradicting goals can rise competition on shared resources, if
the resources are insufficient for all agents at a given time. In that case, shared
resources will be accessed concurrently. Generally, agent groups or single agents,
with conflicting goals will compete against each other, in order for each one to reach

its antagonistic goals.

Planning in a competitive environment makes sense only if it aims at reducing
competition in favour to co—operation. The CEVOP methodology provides a relative
simple algorithmic solution to achieve this by seeking always for co—operative plans
or sub—plans, if the evaluation criteria are defined appropriately. Where, the
remaining part represents potential for competition. On the other hand, it is also

possible to explicitly define competition, in order to explicitly learn plans with

68

improved competitive structures. This is again controlled by appropriate definition

of the evaluation criteria.

Principally, the plans of competing agents evolve in different search spaces,
which is represented by different populations. Competitive solutions will evolve by
mutually sharing the fitness of the other populations.

5.9 The Co-ordination Model

A control structure is necessary for each specific task. It synchronises conflicting
messages inside a task or between different tasks. Co—ordination is thought to be
orthogonal to computation [Papadopoulos et al.; 1998]. Therefore, co—ordination
languages [Ciancarini et al.; 1998] are used to implement related structures
independent from the computational structures. A practical approach to distinguish
between communication, co—operation, and co—ordination structures is to implement
each one in form of a different protocol. On the other hand, all communication—
oriented behavioural properties require these skills. For instance, negotiation is a
concrete concept that requires a combination of some communication, co—operation,
and co—ordination skills. Various co—ordination models and languages are proposed

in the literature [Papadopoulos et al.; 1998].

Control structures for the time of the application of a plan are different from
control structures for the planning process. The control structures of CEVOP are
inherent in the methodology. Control structures for the implementation of a plan are
not explicitly stated with CEVOP. After its generation though CEVOP a plan may be

extended by existing control languages to control its application.

69

. CHAPTER SIX
THE SOCCERTEAM PROTOTYPE

The AgentTeam framework is domain—independent, since its concepts are
designed domain—independent. Here, we introduce a prototype of AgentTeam,
which is implemented in the Soccer game domain. For this purpose, the generic
concepts of AgentTeam have been adopted for the SoccerTeam domain and
additional Soccer—specific concepts introduced. The CEVOP methodology
influences mainly the planning, co—operation, competition, co—and ordination
structures of the prototype. Therefore, these concepts are emphasised in this

description.”

6.1 Existing RoboCup Client Simulations

One international forum for testing Soccer playing agents is the RoboCup
simulation league [Chen et al.; 2001}, in which eleven team members co—operate
whilst competing against another team of eleven members. The success of the teams
is constantly increasing in each year’s competition. The goal set by the RoboCup

initiative is:

"By mid-21st century, a team of fully autonomous humanoid robot soccer players
shall win the soccer game, comply with the official rule of the FIFA (Fédération

* In the coding it became clear that the implemented of all here introduced features of
SoccerTeam and those of the officiel RoboCup Soccer simulation server, to be considered at
client side, would require a relative strong programming effort, which forced us to exclude it
from this dissertation. Hence, only the CEVOP methodology was implemented. Therefore, the
remaining parts of this chapter are design issue for SoccerTeam and are currently implemented
only partially.

70

Internationale de Football Association), against the winner of the most recent World

"

Cup.

The current state of the art however does not allow any comparison with this goal,
yet. The capabilities of current simulation teams are still far behind of those of any
human junior Soccer team. From the analysis of recent RoboCup competitions
[Asada et al.; 1999], [Tanaka et al.;2000] one can conclude that still much progress

is required in all areas of technology used in multi—agent Soccer teams.

About 30 teams are registered to each annual RoboCup competition since the first
in 1997. Each year some new teams appear, new ideas and design approaches are
introduced. Since our approach combines evolutionary computation and planning,
we will discuss here only related teams. First, each team’s major design issue is
given, then the team is discussed on this issue briefly. All of them are clients that run
with the official RoboCup Soccer simulation server [Chen et al.; 2001].

magmaFreiburg2000 [Dorrer; 1999]: Concurrent behaviour networks [Maes;
1989]

2. place RoboCup’99

- To increase the reactivity of an agent; e.g. the concurrent evaluation and

execution of say, kick, turn_neck commands
+ Planning of team strategies is not supported

« Analytical approach

TsinghuAolus [Yunpeng et al.; 2001]: Global planning from local perspective

« 1. place RoboCup’01
« Distributed planning by evaluating and synthesizing individual agent
behaviours

« Analytical approach

FC Portugal 2001 [Reis et al.; 2001]: Strategy levels; strategy tactics and

formations; agent roles

71

» 3. place RoboCup’01
» Three strategy levels: strategic behaviour; ball possession behaviour; ball
recovery behaviour

+ Analytical approach

Brainstormers 2002 [Riedmiller et al.; 2002]: Neural network reinforcement

learning of sample team strategies

2. place RoboCup’01
+ Neural network and analytical approach

Harmony [Hashimoto et al.; 2002]: Co—evolutionary learning within a neural
network [Pollack et al.; 1998]

+ Registered for RoboCup’02
+ Decision making with behaviour networks

« Evolution of team positioning from individual Soccer strategies in sample

games

Sean Luke [Luke; 1998]: Learning from sample random competitions by using

genetic programming

« No success at RoboCup’97, but RoboCup Scientific Challenge Award [Hedber
g; 1997]
« Evolution of a team from genetic programming (Soccer) functions through

competitive fitness

Darwin United [Andre et al.; 1999]: Genetic programming of agents that learn

team strategies

» No success at RoboCup’98

« Evolution of a team from genetic programming (Soccer) functions through

credit assignment

72

The latter two teams are the closest to our approach, but with the following
significant differences:

. Since at the team strategy level no domain information is given to the
algorithm, an exhaustive search is performed at this level of abstraction; we
give team strategies to the algorithm and seek for strategic game constellations.

- Team strategies are evolved from low—level Soccer strategies and random
games; we use low—level Soccer strategies, too, but simulate random games
through the evolutionary search.

. The team is evolved by using genetic programming; whereas we use co—

evolutionary algorithms.

In general, this approach is useful to show that evolutionary computation is
capable to evolve from primitive strategies of a specific domain higher—order
concepts through generalisation. However, the reason why they were not successful
in RoboCup competitions is that good Soccer team strategies were already
implemented by the teams with analytical approaches. On the other hand, in a
CEVOP run of SoccerTeam several team strategies are already given and the
algorithm evolves for sample constellations the best plan solution, which can be

interpreted as seeking for optimal applicable team strategies.

The major property that decided winners in all previous RoboCup competitions
was clearly the successful application of individual strategies, such as interception,
dribble, pass, shoot, and goal keeper skill. Successful application of team strategies

howeyver is still a challenge for all teams.

To summarise the RoboCup competition from the perspective of human Soccer
games, an average spectator may observer some general properties that are common
to all successful teams and conclude for the simulation league with: Relative simple
individual and team strategies, which are comparable with those of human primary
school players. And for the robot leagues: Dummy actions like those of two year old

humans, however more or less goal—-oriented.

73

SoccerTeam is not fully implemented, yet, so we cannot compare it with existing
teams. We believe that the CEVOP methodology can make an existing team
implementation more effective at the team strategy level, since, with the specific co—
evolutionary approach, it can be more successful than any analytical approach. Some
of the above discussed teams utilise soft—-computing approaches, too, however only
to learn some selected specific game constellations, which introduces an analytical
component into their approaches. With the CEVOP algorithm we explore and learn
all possible game constellations, without introducing too much analytical

components, which makes the solutions more generic.

6.2 Major Concepts

Before we start with the software design of SoccerTeam, it is important first to
realise the major domain—dependent and domain—independent concepts that will
influence the prototype the most. First of all, the sources for the sought concepts are
the Soccer game domain and the software engineering domain. From the former we
will synthesise concepts that will enable its successful projection onto the software
system SoccerTeam. The latter will provide us with concepts from the AgentTeam

framework and facilitate SoccerTeam’s engineering.

AgentTeam Framework Concepts

The concepts that will be borrowed are all AgentTeam models except the
knowledge base model, communication model, and collaboration model (Figure
6.1).

In the knowledge base model of AgentTeam semantic nets are used to store
heterogeneous data and manage it object—oriented. However, because of the real—
time constraints of the Soccer simulation server and the relative homogeneous
knowledge structure of a Soccer player, a simple knowledge base model will suffice

for SoccerTeam.

AgentTeam Framework » SoccerTeam Prototype
Architectural Model: » Architectural Model:
Knowledge Base Model
Behavioural Model Behavioural Model
Communication Model
Co-operation Model »Co-operation Model
Collaboration Model
Competition Model »Competition Model
Co-ordination Model »Co-ordination Model
CEVOP Methodology »CEVOP Methodology

74

— Adopting

Figure 6.1: AgentTeam. Concepts Adopted By SoccerTeam

The communication model of a bilingual agent proposed in AgentTeam also
addresses heterogeneity. Since, communication with the Soccer simulation server
and among a team has homogeneous structures, the simple protocol of the server

satisfies the requirements.

In case of Soccer and in terms of collaboration as it is defined in the AgentTeam
framework, a whole team or a member of it would collaborate with the opponent, if
they would give the opponent a chance to win a match. Such as to shoot an own
goal, to pass the ball to an opponent, never try to get the ball, etc. Since this is an
uninteresting case, by definition, we do not allow SoccerTeam or its members to

collaborate with the opponent.
Soccer Game Concepts
The Soccer regulations (Appendix C) define all necessary rules and the condition

for performing a valid game. Accordingly, the basic concepts of Soccer are the

following objects, which are only briefly described here:

75

» Game field: Is a rectangular play ground divided into two half, one for each
team. Each half has a goal, a goal area, and in front of it a penalty area.

- Ball: Is an elastic leather filled with air.

- Players: A player can shoot the ball with the feet several times, in order to
move it into the opponent’s goal.

+ Teams: Each team consists of 11 players, from which one is the goal keeper.

- Coaches: Each team may have a coach who communicates his team frequently
some meta knowledge.

- Game rules: Are set to be applied by all participants while a match.

« Match: Two teams meet on a game field and play according the rules for a
restricted time.

« Referees: Usually three referees monitor a match, in order to penalise rule
violations.

- Game constellation: The current location of the ball and the 22 players on the
field.

Architectural Abstractions

Based on the mentioned Soccer game abstractions and some additional
information on the objects of the game and their movements (Appendix D), we

construct following natural rule hierarchy (ZTable 6.1):

« Physics: At this level the game objects, ball and players, move according the
physical rules, location, gravity, momentum, and acceleration. These rules are
implemented in the RoboCup Soccer simulator through related functions.
Corresponding functions are implemented in SoccerTeam and are considered
for each movement. Correct implementation of the physical rules enables the

players to play more precise.

76

Table 6.1: Soccer Game Abstraction Levels

Abstraction | Objects Move According Purpose

Co—operative/Competitive

Teams | Combined Game Strategies Offensive/Defensive Game

Individuals | Primitive Game Strategies | Individual Offensive/Defensive Game

Game Code Game Rules Enabling Soccer Game

Physics Physical Rules Enabling Physical Objects World

« Game code: The officiel Soccer game regulations define the rules according to
which a specific match is carried out. The RoboCup server implements most of
the game rules. However, for some foul situations a human referee may decide
for a free—kick, such as surrounding the ball, intentionally blocking the
movement of other players, or flooding the server with messages, etc. [Chen et
al.; 2001}]. Corresponding rules are implemented in SoccerTeam and are
considered for each movement. Always complying to the game rules enables
the players to avoid fouls.

« Individuals: These are the autonomous players of the game that implement
individual game strategies, which are called primitive game strategies in
SoccerTeam. A player decides to apply a specific primitive game strategy
depending on the current game constellation. Optimal application of primitive
game strategies can provide a game advantage for the individual.

« Teams: The highest level for object movements are those of the teams. A team
movement is represented by several primitive game strategies. For a specific
game constellations, a combined game strategy is an individual plan that
proposes several successive primitive game strategies. Optimal application of

combined game strategies can provide a game advantage for the whole team.

We have combined these Soccer game abstractions in a hierarchy of object
movements. This hierarchy will serve as a skeleton for the system architecture of

SoccerTeam.

77

Soccer Game Strategies

Soccer game rules are necessary and sufficient to play correct Soccer and to win a
match randomly. A soccer game consists of a combination of various type of re—
occurring simple object movements, which must comply with the game rules. In
order for a team to win a game, these allowed movements are combined to different
types of strategics. When and how to apply a strategy depends on the current field
constellation. All here discussed game strategies have been considered in the plan

construction process of the CEVOP methodology for SoccerTeam.

In order to construct generic plans, the planning process within CEVOP does not
consider lower level Soccer strategies, such as interception, dribble, and kick. The
strategies will be considered in the plan implementation by each agent, depending on
the current constellation. In this sens, an individual strategy represents an individual

goal that can be reached by applying several low level strategies.

Learning While Planning

For SoccerTeam to be successful against competitors, it is essential that all
players should know all rules of all abstraction levels, before making decisions about
a specific game constellation. Meaning that a decision process for applying a
combined game strategy will require to evaluate recursively all related lower level
rules. However, recursively exploring all rules is too exhaustive. Instead, the
CEVOP methodology explores the search space randomly, towards a a desired
fitness function. The result after applying the CEVOP methodology is a pair of
offensive/defensive team plans for an initially random game constellations. This pair

represents a learned plan.

6.3 The Architectural Model

Our goal is to construct a team of Soccer players in form of a multi—agent system.

For this purpose, all the other models that were mentioned above, including the

78

CEVOP methodology, are combined in the architectural model to construct the

SoccerTeam prototype system.

Object Orientation

To fasten the development process of the software and to facilitate further
maintenance of the system, we have designed the prototype in an object—oriented
fashion. The basic idea is to abstract as much as possible Soccer game concepts and
specify them inside a hierarchy of super—class. In SoccerTeam the super—class Agent
implements nearly all functionality of a generic Soccer player and inherits its

properties to the classes Player and GoalKeeper (Appendix K).

6.4 The Knowledge Base Model

The knowledge base of a SoccerTeam agent has a relative simple structure that
consists of an array for each different types of knowledge. Following knowledge

structures are stored:

« All combined game strategies that resulted from a planning process with
CEVOP.

+ The most recently communicated messages from the other team members and
from the simulation server, which are necessary to decide the next primitive

game strategy.

6.5 The Behavioural Model

Since no other than the planning behaviour is implemented, the intelligence of the
players is restricted to the capabilities of the combined game strategies and the

decision mechanism.

79

Planning

Planning in SoccerTeam is a two—stage process:

1) Plan generation through CEVOP runs

2) Plan execution in SoccerTeam simulation runs

One CEVOP run usually output one plan for a specific game constellation. The
number of constellations, even for non—continues positions, is huge. Therefore, the
planning process is iterated until the overall grade of success of SoccerTeam

becomes satisfactory in simulation runs.
Objects Of The Planning Process

Following objects of the Soccer planning domain and their relationships are

essential for the planning process:

+ A plan usually consists of several plan steps.

+ A plan step is interpreted as a primitive game strategy that promises individual
success in a specific game constellation.

« A plan is interpreted as a combined game strategy, consisting of three
successive primitive game strategies that promise individual success for three
successive game constellations.

« A team strategy consists of one combined game strategy for each player, that
can be applied to the same specific game constellations. However, each player
autonomously decides which combined game strategy to apply to a specific

game constellations.
Planning Strategies

We have designed different types of game strategies as potential parts of a plan.
They are grouped into static game strategies (Appendix E) and dynamic game
strategies. The latter is further subdivided into basic game strategies, goalkeeper

strategies, primitive offensive game strategies, primitive defensive game strategies,

SRETIM KURULL

80

primitive game starting or continuing strategies, combined game strategies, and
coach’s game strategies (Appendix G). Where, the latter are meta strategies over the

others.

The applicability of a specific primitive strategy depends on the following

aspects:

« Allowed: According to the Soccer rules, some are allowed for all team
members, some only for the goal keepers. For example, catching the ball is
allowed only for the goal keepers within the penalty area.

- Possible: Applying a specific strategy may be allowed, but may not be possible
to a specific agent. For instance, only those sufficiently close to the ball may
dash it.

» Appropriate: Depending on the game situation, some are appropriate in the
specific situation of an agent, some are not. For instance, shooting a goal is
usually inappropriate for goal keepers; or defensive strategies are usually
inappropriate for the team members, if they are currently in the offensive

situation.

A primitive game strategy consists of the strategy type S and the relative distance
Ax, Ay, to be applied on a specific game constellation (Table 6.2).

Table 6.2: Structure Of A Primitive Game Strategy
S Ax Ay

In the plan generation process for constructing a combined game strategy, the
change of the game constellation, after all players’ first steps have been applied, is
successively considered in each of the remaining two plan steps. However, in the
plan execution process, after all players’ first steps have been applied, the resulting

game constellation may not be the same as planned. Two factors cause this effect:

81

« Each player has restricted sensor capabilities, which can cause to interprete the
current constellation differently and therefore plan differently.

« Each player has restricted actor capabilities, caused by noise, which may lead
to unexpected results for a plan.

« The opponent’s planning and execution approaches may be different, in case of

heterogeneous teams.

With respect to the objective of a plan, we differentiate two approaches:

+ Relative goal shooting: The number of combined strategies is set to a small
number, so that a team plan must not necessarily end up with goal shooting.
The objective here is to find, for a given constellation, the best plan.

+ Absolute goal shooting: The number of combined strategies is set to a large
number, so that a team plan must end up with goal shooting. The objective

here is, from a given constellation, to reach the opponent’s goal quickly.

While the planning process trough CEVOP, each defensive and offensive team
learns one team strategy. For the learning process, one team is fixed to be offensive
for all steps of a combined game strategy, and the other team is fixed to be always
defensive. Thus, planning three steps ahead aims at finding the most successful first
plan step for the current constellation. The remaining two steps represent actually a
success factor for the first step and strengthens its strategic value. After the first step
of a plan has been applied and the constellation has changed, another more suitable

combined game strategy may be chosen.

Strategies For Co—operation And Competition

Based on Soccer rules and individual strategies (Appendix E), we define team—
oriented strategies for co—operation and competition (Appendix G). These strategies

are expressed in form of the following chromosome evaluation criteria;

- Offensive goalkeeper: movelnFiled, focusBall
« Offensive players: movelnField, distanceTeamGoal, densityAroundBall
« Defensive goalkeeper: movelnFiled, focusBall

82

« Defensive player: movelnField, coverClosest

Optimising The Planning Process

In unsupervised learning, in iterative applications the CEVOP algorithm is
initialised always with random values. In this case, the set of combined game
strategies that covers all possible game constellations found is a statistical mean
value. This value is usually better than that of an exhaustive search. However, the
statistical mean value can further be reduced, if some heuristics are utilised, which
means that the learning process becomes supervised, with respect to initial game

constellations.

In supervised learning, the CEVOP algorithm is initialised with specific game
constellations, in order to get a solution for which no successful plan exists, yet.
Sample heuristics are specific game starting positions for throw—in, kick—off,
penalty, or free—kick. For this purpose, related game constellations schemes will be
identified and the players’ initial co—ordinates randomly concentrated around the

ball’s co—ordinates.

Learning

Theoretically, any plan that was not known by the agent and was found by
CEVOP from the set of all possible plans, represents a learning process. If the set of
primitive game strategies remain the same for all CEVOP runs and the most
significant game constellations have been learned, then the learning factor turns to
decrease with any further CEVOP run. Meaning, that any new plan will increasingly

approximate the already learned plans.

6.6 The Communication Model

The communication protocol of the Soccer simulation server [Chen et al.; 2001]

will be utilised additionally for inter—team communication of some primitive

83

concepts. A team member may send a message to the others, in order to transmit its

intention expressed by the information below:

» The coach wants the players to apply a specific meta strategy.
- The sender wants the receiver to pass the ball to the sender.

« The sender wants the receiver to know that the sender is about to pass the ball

to the receiver.

6.7 The Co-operation Model

Although, all 11 players of a team co—operate, because of the difficulty to apply
the same fitness function to heterogeneous populations, we must distinguish types

for co—operativ evolution depending on population variety:

« Co-operating homogeneous players: Since, the knowledge bases are
homogeneous, the plans of the 10 players can evolve in the same search space,
which is represented by one population. The same applies to goalkeeper plans.

« Co—operating heterogeneous players: Since, the knowledge bases are
heterogeneous, the plans of the 10 players evolve in a different search space
than those of the goal keeper, which is represented by two populations. Besides
the fitness function of each population, a fitness sharing function is defined,

which represents the co—operation relationship between these populations.

6.8 The Competition Model

We represent competition by different populations, since the sought solutions are
orthogonal and therefore require different fitness functions. Population variety no
more effects this situation, since we already have different populations. An explicit
fitness sharing function is not defined, since the competition relationships are

implied by designing the chromosome evaluation criteria accordingly orthogonal.

6.9 The Co-ordination Model

The co—operation structures, discussed above, imply some means for co—
ordination within the players of a team. Further control is implemented with the
meta strategies, which the coach may apply depending on specific game
constellations and overall match situations. In other words, we do not need to define

explicit control structures here.

6.10 Planning With CEVOP In SoccerTeam

The generic CEVOP methodology is adopted to the Soccer game domain by
simplifying some of its concepts and including further Soccer—specific attributes.
Particularly, the negotiation and adoption process can be simplified here, since
Soccer rules already provide predefined basic co—operation and competition
structures. The objective here is to generate for already given co—operation and

competition structures, represented in form of strategies, concrete plans.

In the co—operation, competition, and co—ordination models the principle
interaction structures found in Soccer game have implicitly been mapped onto the
principle interaction structures of the co—evolutionary algorithm. Now we present
the mapping of these structures in a compound form, inside the co—evolutionary
algorithm and discuss the further details of the algorithm.

Domain Mapping

Mapping the Soccer game strategies onto the co—evolutionary algorithm is one
crucial part of the methodology. It is give as follows:

+ Individual strategies of the team members (Appendix F) are encoded within the

genes, which is explained more detailed in the phenotype description below.

85

- Strategies for co—operation (Appendix G) between the goal keeper and the
other team members are represented in form of chromosome evaluation
criteria.

- The static strategies, strategic areas and learn granularity (Appendix E), are
considered directly within the chromosome evaluation criteria.

- Strategies for competition are enforced indirectly by designing the
offensive/defensive chromosome evaluation criteria appropriately (Appendix
G).

The result of a CEVOP run are field locations for all 22 team members, which
represents a pair consisting of an offensive and a defensive plan with three

successive plan steps.

Populations

The homogeneous/heterogeneous and co—operation/competition structures of
SoccerTeam are depicted in (Figure 6.2). The co—evolutionary algorithm will

operate with this schema of populations and relationships.

In Soccer game the goal keepers are competing, too. However, it is quite unlikely
that both meet on the field. Therefore this case is unrealistic and can be avoided in

the learning phase.

~Homogeneous
‘ "Co—operaﬁon
. 10-Players)-

" Homogeneous.
- Competition

Homogeneous ™
Co-eperation

Heterogeneous
Co-operation

Heterogeneous
- Co-eperation

No Interactions
(Goal Keeper)

No Interactions
(Goal Keeper)

Figure 6.2: Co—operative/Competitive Evolution Of The Four
Homogeneous/Heterogeneous Plan Populations

Phenotype Structure

86

A phenotype represents 11 combined game strategies S,;, one for each player.

Where p = 1, ..., 11. Each of them consists of i = 1, 2, 3 primitive game strategies

Sp'l, ves

, Spa with their relative locations Ax,,, Ay,

w» AXy13, Ayis, one for each

player (Table 6.3). Each row of the table represents one combined game strategy.

Three succeeding columns represent all first primitive game strategies of all 11

players. Thus, one phenotype represents, for a specific game constellation, a team

plan solution consisting of 11 plans, one for each player. Where each plan consists
further of three plan steps.

Table 6.3: Phenotype Structure Of A Combined Game Strategy

Sl.l AXL,I AYL,l SL,Z Axu Ayl_g Sl,3 AX['3

A}’L.B

Sll,l AXu,L A}’u,L Su,z AXu,z AYU.z Sll,3 AXu,a

AYu,B

87

Genotype-Phenotype Mapping

The structure of a genotype is defined by a function that maps sequentially each
symbol of a phenotype to its value range inside the genotype. Therefore, a
transformation in any direction is a sequentially ordered one—to—one mapping
between phenotype symbols and genotype genes. However, the combined game
strategy that is intended for the goal keeper is transform to genes of a separate

chromosome.

The Generic Co—evolutionary Algorithm

Following algorithm co—evolves the n = 4 populations according their m;

interaction types:

9) For all n=4 populations

9.1) Randomly pickup plan steps from P: for population A
10) For all n=4 populations

10.1) Cross-over inside A;

11) For all n=4 populations

11.1) Mutate distance values inside A:

12) For all n=4 populations

12.1) Calculate Fitness F; of Population A;

12.2) For all m; interaction relationships of
population A:

12.2.1) Calculate fitness Fi; for interaction of A: with
A; (1 # 3)

12.2.2) Fc = Fc + Fij

12.3) Fy' = (Fs + Fc / mi) / 2 and Fc = 0

13) IF fitness Fi1 AND ... AND F, satisfied OR other
termination THEN GO TO 7

14) For all n populations
14.1) Fitness selection on A;
14.2) GO TO 2

15) For all n populations

88

16) PRINT A;

A, is the plan population to be optimised. P; is the set of all possible individual
plan steps of agent i. Fitness F;' of population A, is determined by accumulating its
own fitness F; and all m fitness values for interrelationships Fj. F. represents the co—
operation and/or competition strengths of agent i with the others. The software
design of this algorithm is attached as (Appendix J).

Interpretation Of The Algorithm For The Case Of Homogeneous Co-

operation

In case of the 10 co—operating homogeneous players of a team, the set of all
possible plans P; is identical for all agents Aj, ..., Ayo. Thus, the plans can co-
operatively evolve inside a single population. For this purpose the plans of all these

players are represented inside a single chromosome.

On the other hand, the two goal keepers’ plans evolve in distinct populations,
since there is no interaction defined between them and since their plans are

heterogeneous to the other players.
Crossover

Uniform cross—over is applied on all genes, i.e. the primitive game strategies S, 1,

. 813,3 and the distance values Axl,l, Ayl,l, veey AX11,3, Ayl,a.
Mutation

Mutation is applied only on the distance values Axyi, Ayii, ..., AXi3, Ayia.
Where, the range is dependent on the related primitive game strategy.

89

Local Fitness

The definition of the fitness functions is a further critical part of the CEVOP
methodology, since they drive the populations towards the desired fitness. In local
fitness evaluation each population is evaluated independently by some criteria.
However, common to all is some functionality, which is further grouped depending

on the strategy to be applied. A brief description of these groups is given below.

Before the chromosomes of a population are evaluated by a criterion and after
cross—over and mutation has been applied, first some services routines perform some

semantic checks:

. First, all combined game strategies arec applied on the current game

constellation.
« A physically impossible move is evaluated to zero.

« A move that violates the game rules is evaluated to zero.

Some fitness evaluations for offensive strategies:

« A move of the ball towards the opponent’s goal is evaluated higher than a
move off the opponent’s goal.

- A move of the ball to a location closer to 90° angle to the goal is evaluated
higher than a move to a location closer to 0° angle.

« The fitness value of a combined game strategy is calculated by a distance
function that sorts all combined game strategies in decreasing distance, in
order to determine the offensive player with the ball Oy, to which the ball will

be passed next.

Some fitness evaluations for defensive strategies:

« If a player is the closest one from its team to the ball, then trying to get the ball
is evaluated higher for that player.

90

Global Fitness

In case of Soccer, there was no need to explicitly define interaction types for the
above designed co—operation/competition structures. They are implied by related

design of the criteria for local fitness evaluation.

Generalisation

The convergence behaviour of the co—evolutionary algorithm depends on each
criterion (Appendix L), since each fitness criterion shows different convergence
behaviour. However, since the fitness functions are normalised to the range [0..1],
the accumulated fitness value of each chromosome is expected to converge to 1. The
relationships between the criteria, especially those applied on the same chromosome,

is essential for the convergence (Figure 6.3).

The convergence behaviour of some of the criteria is currently inappropriately
designed and/or implemented. For instance, for some initial random constellations
the algorithm does not converge, such as if the ball is initially located in a distance to
the opponent’s goal less then the minimum required by the criterion
teamGoalDistanceRelative, then the algorithm will not converge, since this criterion

can never be satisfied. This may be a good example for an inappropriate criterion.

91

MovelnField
Z

Offensive Players: Offensive Players:

teamGoalDistanceRelati densityAroundB

I Solutions For One Population

Figure 6.3: Relationships Betw;een The Chromosome Evaluation Criteria
Combined Evaluated Structures

Implied by the properties plan variety and interaction type, the structures evolve

in some combinations. These combinations are recapitulated in the following:

« Each primitive game strategy and its distance values evolve combined to one
player strategy.

+ Three primitive game strategies with their distance values evolve to a

combined game strategy for one player.

« 11 combined game strategies evolve combined to one team strategy; one for

each team member.

« Two team strategies evolve combined to one pair of offensive/defensive team

strategy.
Overall Algorithmic Steps

The algorithmic steps of the CEVOP methodology are given below.

5) Apply the co-evolutionary algorithm for a
random/desired game constellation

92

6) Store the resulting combined game strategies for
players/goalkeepers in the knowledge base of each
player/goalkeepers, respectively

7) IF SoccerTeam is not successful in a simulation run
THEN GO TO 1

The number of iterations of this algorithm depends on the grade of success of the
team over another team in a simulation run. However, after a specific threshold, each
found combined game strategy will look increasingly similar to the previously found
strategies. Thus, after a number of iterations the found set of combined game
strategies will saturate with respect to its successfulness in simulation runs.
Therefore, the goal of the planning process is to find a set of combined game
strategies for a team, such that they cover all possible game constellations. In other
words, we are seeking for a set of combined game strategies that can provide for any

constellation a successful team plan.

The current SoccerTeam implementation can apply just one team primitive game

strategy for all team members, in order to inspect the generated plans on the monitor.

93

CONCLUSIONS

Our conclusions are many—fold. Therefore, we summarise them according some
aspects. Several new ideas are introduced here, which reflect potential improvements

and future research directions.

The CEVOP Methodology

« Improved plans: Co—operative and competitive planning with the CEVOP
methodology has the advantage that plans improve each other through co—
evolution.

« Domain independence: The methodology is though for all MAS domains. It is
principally independent, but specific solutions may restrict the algorithm to a
domain depending on the generality of the used evaluation criteria.

« Parallelism: The algorithm is inherently parallel. For example the computation
of each generation of a population can be parallelised to those of the other
populations, for the duration of each generation.

+ Fuzzyfication: In order to introduce further domain information into the
search, the evaluation criteria could be designed so that Fuzzy operations
evaluate the chromosomes. For instance, to represent multi—objective criteria
in a more flexible way.

« Multi-objective criteria: Could be utilised to represent more flexible co—

operation and competition strengths.

94

- Application areas: The domain—independent algorithmic CEVOP methodology
could principally be used as basic approach in any planning component and in
any MAS domain. Sample application domains, e-market MASs, information

processing MASS, production control MASs, etc.

AgentTeam

- Domain independence: All models of the framework are designed independent
from any domain.
« Multi-agent planning: The planning process includes co—operative and

competitive relationships of homogeneous and heterogeneous agents.

SoccerTeam

« Off-line planning: Because of the real-time constraints we have placed the
planning phase before the playing phase.

« Absolute goal-oriented plans: According the current policy relative goal—
oriented plans are generated by allowing only three primitive strategies for one
player with a maximum movement range of 60 meters and requiring a relative
move towards the goal. An absolute goal—oriented plan could initially start
close to the home goal, allow 20-30 primitive game strategies, and require to
end always with a goal.

+ Variable-length chromosomes: Since the movement within one primitive
strategy can be variable, we do not need variable length chromosomes here.

« Plan generation: With the CEVOP methodology individual plans, co—operative
plans, and competitive plans are generated within a single planning process.

« Further criteria: We have used only some important meta strategies as
evaluation criteria. Further meta strategies could improve the resulting plans,
such as covering the goal, allowing relative long passes, or fuzzyfying the
criteria.

« Covering all game constellations: By iterating the CEVOP algorithm multiple
times, one can find the smallest representative set of team plans that covers all

possible game constellations.

ACRONYMS

Following acronyms have been used throughout this work.

ANSI
ARCOL
B

BNF
CEVOP
d

d, d;

FIPA

HTTP
IP

KQML
MAS

O, Oj

American National Standards Institute
ARtimis COmmunication Language

Ball

Backus—Naur Form

Co—evolutionary Planning

Defensive player a attacks Oy, to get B
Defensive playing opponent i, j; wherei #j
Population of defensive combined game strategies
Foundation for Intelligent Physical Agents
Goal

HyperText Mark—up Language

HyperText Transport Protocol

Internet Protocol

Knowledge Base

Knowledge Interchange Format

Knowledge Query and Manipulation Language
Multi-agent System

Offensive player b with the ball

Offensive player i, j from the same team of player b; where i #t

andj#tandi#]

95

Offensive target player t from the same team of player b, to which

b will give a pass

Population of offensive combined game strategies

Di> Pi
P, P;
PP

[72]

pi

ci

Sai
SG
T, T,
URL

Plan step i, j

Plani, j

Possible plans

Rule

Primitive game strategy i
Combined game strategy i
Offensive game strategy i
Defensive game strategy i
Goal shoot area
Population 1, j

Universal Resource Locator
World Wide Web

96

97

REFERENCES

Referenced URLs where valid by May, 2002 !

Andre, David; 1995; "The automatic programming of agents that learn mental
models and create simple plans of action"; IJICAI-95; Morgan Kaufmann

Andre, David; Teller, A.; 1999; "Evolving Team Darwin United"; Asada, M.;
RoboCup—-98; LNCS; Springer; Heidelberg

Angeline, Peter J.; Pollack, Jordan B.; 1994; "Competitive environments evolve
better solutions for complex tasks"; Australian Electronics Engineering; Thomson
Business

Arora, Neeraj; Sen, Sandip; 1996; "Resolving Social Dilemmas Using Genetic
Algorithms"; Adaptation, Coevolution and Learning in Multiagent Systems;
AAAI Press; Menlo Park

Asada, Minoru; Kitano, Hiroaki; Noda, Itsuki; Veloso, Manuela; 1999; "RoboCup:
today and tomorrow — what we have learned"; Artificial Intelligence; Elsevier

Cadlayan, Alper; Harrison, Colin G., 1997, "Agent Sourcebook: A Complete Guide
to Desktop, Internet, and Intranet Agents”, John Wiley Sons Inc., New York

Bick, Thomas; Schwefel, Hans—Paul; 1992; "An Overview of Evolutionary
Algorithms for Parameter Optimization”; Evolutionary Computation 1(1), pp.1—
23

Bak, Per; Flyvbjerg, Henrik; Lautrup, Benny; 1992; "Evolution and Co—evolution in
a Rugged Fitness Landscape"; ALIFE III,

Balakrishnan, Karthik; 1998; "Biologically inspired computational structures and

processes for autonomous agents and robots"; Iowa State University

98

Baral, Chitta; Trejo, Raul; Kreinovich, Vladik; 1999; "Computational complexity of
planning and approximate planning in the presence of incompleteness”; IJCAI’99

Baray, Cristobal; 1999; "Evolution of Coordination in Reactive Multi—agent
Systems"; PhD thesis; Indiana University

Barone, Luigi; While, Lyndon; 1998; "Evolving Computer Opponents to Play a
Game of Simplified Poker"; ICEC’98;

Bicchieri, Cristiana; Pollack, Martha E.; Rovelli, Carlo; 1996; "The Potential for
Cooperation among Web Agents"; Adaptation, Coevolution and Learning in
Multiagent Systems; AAAI Press; Menlo Park

Bigus, Joseph P.; Bigus, Jennifer, 1998, "Constructing Intelligent Agents with Java —
A Programmer’s Guide to Smart Applications”, John Wiley Sons Inc., New York

Bonneville, Jacques; Hassas, Salima; 1996; "Towards a self—organizational approach
for a parallel computation in a distributed production rule based system";
Adaptation, Coevolution and Learning in Multiagent Systems; AAAI Press;
Menlo Park

Box, G.E.P.; 1957, "Evolutionary operation: a method of increasing industrial
productivity”, Applied Statistics, 6, 81-101

Brassard, Gilles; Bratley, Paul; 1988, "Algorithmics — Theory & Practice"; Prentice—
Hall; Englewood Cliffs

Bui, H.H.; Kieronska, D.; Venkatesh, S.; 1996; "Negotiating agents that learn about
others’ preferences”; Adaptation, Coevolution and Learning in Multiagent
Systems; AAAI Press; Menlo Park

Bull, Lawrence; Fogarty, Terence C.; 1996; "Evolutionarey Computing in
Cooperative Multi—agent Environments"; Adaptation, Coevolution and Learning
in Multiagent Systems; AAAI Press; Menlo Park

Cadlayan, Alper; Harrison, Colin G.; 1997; "Agent Sourcebook: A Complete Guide

to Desktop, Internet, and Intranet Agents"; John Wiley; New York

Cavazza, Marc; Mead, Steven J.; Strachan, Alexander I.; Whittacker, Alex; 2001; "A
Blackboard System for Interpreting Agent Messages"; AAAT

Chaib—draa, Brahim; Vanderveken, Daniel; 1998; "Agent Communication

Language: Towards a Semantics Based on Success, Satisfaction, and
Recursion"; Intelligent Agents V — Agent Theories, Architectures, and

Languages; Springer; Berlin, 1999

99

Chavez, Anthony; Moukas, Alexandros; Maes, Pattie, 1997, "Challenger: A Multi—
agent System for Distributed Resource Allocation”, Autonomous Agents’97,
Marina Del Ray

Cheikhrouhou, Morsy M.; Conti, Pierre; Labetoulle, Jacques; 1998; "Intelligent
Agents in Network Management — A State of the Art"; Networking and
Information Systems,

Chen, Liren; Sycara, Katia; 1997, "WebMate: A Personal Agent for Browsing and
Searching”, TR, Carnegie Mellon University, Pittsburgh

Chen, Mao; Foroughi, Ehsan; Heintz, Fredrik; Zahn, Xiangh Huang; Kapetanakis,
Spiros; Kostiadis, Kostas; Kummeneje, Johan; Noda, Itsuki; Obst, Oliver; Riley,
Pat; Steffens, Timo; Wang, Yi; Yin; Xiang; 2001; "RoboCup Soccer Server";
RoboCup Federation; http:// www.robocup.org/

Ciancarini, P.; Rossi, D.; 1998; "Coordinating Distributed Applets with Shada/Java";
SAC’98

Cliff, D.; Miller, G.F.; 1995; "Tracking the Red Queen: Measurements of adaptive
progress in coevolutionary simulations”; Moran, F.; Moreno, A.; Merelo, J. J.;
Cachon, P.; Advances in Artificial Life: Proceedings of the Third European
Conference on Artificial Life; ECAL95; LNCS; Springer; Heidelberg

Cohen, Philip R.; Cheyer, Michelle; Wang, Soon; Cheol, Bacg; 1994, "An Open
Agent Architecture”, AAAI Spring Symposium, pp. 1-8, March

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; 1990; "Introduction
to Algorithms"; MIT Press; Cambridge

Cramer, Michael Lynn; 1985; "A representation for the adaptive generation of
Simple Sequentis! programs”;Grefenstelle J.J.; Proceeding of the International
Comference on Genetic Algorithms and Their Applications; Morgan Kaufmann

Dam, Mads; 1997; "Analysis and Verification of Multiple-Agent Languages”,
LOMAPS’96; Lecture Notes in Computer Science, Springer; Berlin

Dawkins, R.; Krebs, J.R.; 1979; "Arms races between and within species"; Royal
Society of London;

Darwen, P.; Yao, X.; 1996; "Every niching method has its niche: fitness sharing and
implicit sharing compared”; Proc. of Parallel Problem Solving from Nature;
Lecture Notes in Computer Science; Springer

Darwin, Charles; 1859, "The Origin of Species”, John Murray; London

100

Desai, Bipin C.; 1990, "An Introduction to Database Systems”, West Publishing, St.
Paul

De Jong, Kenneth A.; 1975; "An Analysis of the Behavior of a Class of Genetic
Adaptive Systems"; PhD thesis; University of Michigan

De Jong, Kenneth A.; 1990; "Genetic—algorithm—based learning"; Kodratoff, Y.;
Michalski, R. S; Machine Learning; Morgan Kaufmann

De Jong, Kenneth A.; Spears, W. M.; 1991; "Learning Concept Classification Rules
Using Genetic Algorithms"; 12th International Joint Conference on Artificial
Intelligence; Sydney

d’Inverno, M.; Fisher, M.; Lomuscio, Luck, A.; M.; de Rijke, M.; Ryan, M,
Wooldridge, M.; 1997; "Formalisms for multi-agent systems"; Knowledge
Engineering Review;

Dix; Jiirgen; Mufioz—Avila, Héctor; Nau, Dana S.; 2000; "IMPACTing shop:
Planning in a Multi-Agent Environment"; CL—2000 Workshop on Computational
Logic in Multi—Agent Systems

Dominiak, Dana M.; 2001; "Genetic algorithms for agent evolution and resource
exchange in complex adaptive systems”; PhD thesis; Illinois Institute of
Technology

Dorrer, Klaus; 1999; "Motivation, Handlungskontrolle und Zielmanagement in
autonomen Agenten”;PhD thesis; Albert—-Ludwig Universitdt Freiburg

Durfee, E. H.; Lesser, V. R.; 1991; "Partial Global Planning: A Coordination
Framework for Distributed Hypothesis Formation"; IEEE Transactions on
Systems, Man, and Cybernetics

Duschka, Oliver M.; Genesereth, Michael R.; 1997; "Infomaster—An Information
Integration Tool", International Workshop on Intelligent Information Integration;
Freiburg

Eiter, Thomas; Mascardi, Viviana; 2001; "Comparing Environments for Developing
Software Agents"; INFSYS research report; Technische Universitét; Wien

Ellis, Margaret A.; Stroustrup, Bjarne; 1990; "The Annotated C++ Reference
Manual"; Addison—Wesley; New York

Engelmore, Robert; Morgan, Tony; 1988, "Blackboard Systems”, Edison—Wesley;
Wokingham

101

Evans, Eric; Rogers, Daniel; 1997, "Using Java Applets and CORBA for Multi—User
Distributed Applications", IEEE Internet Computing, Vol.1 No.3 pp.43-55

Ferber, Jacques; 1999; "Multi—agent Systems — An Introduction to distributed
artificial intelligence"; Addison—Wesley; New York

FIFA; 2001; "Laws of the Game"; Fédération Internationale de Football Association

Finin, Tim; Fritzson, RichMcKay, Donald, 1992, "A Language and Protocol to
Support Intelligent Agent Interoperability”,

Finin, Tim; Wiederhold, Gio; Weber, Jay; Genesereth, Michael; Fritzson, Richard;
McKay, Donald; McGuire, James; Pelavin, Richard; Shapiro, Stuart; Beck, Chris;
1993, "Specification of the KQML Agent—Communication Language”, draft,
http:// www.cs.cmu.edu/ ~softagents

Finin, Tim; Labrou, Yannis; Mayfield, James; 1994, "KQML as an Agent
Communication Language", Draft, http:// www.cs.umbc.edu/ kqml, University of
Maryland Baltimore County, Baltimore

FIPA; 1997; "Foundation for Intelligent Physical Agents"; FIPA 97 Specification,
part 2, Agent Communication Language, http:// drogo.cselt.stet.it/fipa/
spec/fipa97/fipa97.him

Fogel, J. Lawrence; Owens, AJ.; Walsh, M.J.; 1966; "Artificial Intelligence
Through Simulated Evolution"; John Wiley & Sons; New York

Franklin, S.; Graesser, A.; 1996; "Is It an Agent, or Just a Program?: A Taxonomy
for Autonomous Agents"; Intelligent Agents I1I: Agent Theories, Architectures,
and Languages; Proceedings of ECAI’96 Workshop

Fraser, A.S.; 1957; "Simulation of genetic systems by automatic digital computers”;
Australian Journal of Biological Sciences, 10, 484—491.

Friedman, G.J.; 1959; "Digital simulation of an evolutionary process", General
Systems Year Book; 4:171-184

Funes, Pablo Jose; 2001; "Evolution of complexity in real-world domains"; PhD
thesis; Brandeis University

Furguson, Innes A.; Karakoulas, Grigoris J.; 1996; "Multiagent Learning and
Adaptation in an Information Filtering Market"; Adaptation, Coevolution and
Learning in Multiagent Systems; AAAI Press; Menlo Park

102

Garland, Andrew; Alterman, Richard; 1996; "Multiagent Learning through
Collective Memory"; Adaptation, Coevolution and Learning in Multiagent
Systems; AAAI Press; Menlo Park

Genesereth, Michael R.; Keller, Arthur M.; Duschka, Oliver M.; 1997; "Infomaster:
An Information Integration System"; ACM SIGMOD

Gerber, Christian; 1999; "Evolution—Based Self—Adaptation as an Expression for the
Autonomy Degree in Multi-Agent Societies"; DFKI;

Goldberg, David Edward; Richardson, J.; 1987; "Genetic algorithms with sharing for
multimodal function optimization"; Proceedings of the Second International
Conference on Genetic Algorithms

Goldberg, David Edward; 1989; "Genetic Algorithms in Search, Optimization and
Machine Learning"; Eddison—Wesley

Goldberg, David Edward; Borgerson, J.; Vaughn, A.; Hawley, K.; Cunningham, C.;
Milner, J.; Zacarias, K.; Wagus, B.; Gadient, R.; Sutton, B.; Pelikan, M., Roth;
1997; "Genetic algorithms: a bibliography”; University of Illinois at Urbana—
Champaign

Goodwin, Richerd; 1994; "Formalizing Properties of Agents"; Journal of Logic and
Computation; Vol. 5, Issue 6

Grecu, Dan L.; Brown, David C.; 1996; "Learning To Design Together"; Adaptation,
Coevolution and Learning in Multiagent Systems; AAAI Press; Menlo Park

Green, Shaw; Hurst, Leon; Nangle, Brenda; Cunningham, Pddraig; Somers, Fergal;
Evans, Richard; 1997, "Software Agents: A review"; http:// www.cs.tcd.ie/
research_groups/aig/iag/pubreview.ps.gz

Grefenstette, John J.; 1989; "A system for learning control rules with genetic
algorithms"; Proc. Third Intl. Conf. Genetic Algorithms; Morgan Kaufmann

Grefenstette, John J.; 1991; "Lamarckian learning in multi—agent environments";
Proc. Fourth Intl. Conf. of Genetic Algorithms; Morgan Kaufmann

Grefenstette, John J.; 1992; "The evolution of strategies for multi—agent
environments"; Adaptive Behavior

Grefenstette, John; Daley, Robert; 1996; "Methods for Competitive and Cooperative
Co—evolution"; Adaptation, Coevolution and Learning in Multiagent Systems;
AAAI Press; Menlo Park

103

Grosso, P.; 1985; "Computer Simulations of Genetic Adaptation: Parallel
Subcomponent Interaction in a Multilocus Model"; PhD thesis; University of
Michigan

Gruber, Thomas R.; 1994, "Toward Principles for the Design of Ontologies Used for
Knowledge Sharing", Guarino, Nicola; Poli, Roberto; Formal Ontology in
Conceptual Analysis and Knowledge Representation, Kluwer Academic

Hashimoto, Keisuke; Kawamura, Hidenori; Yamamoto; Masahito; Ohuchi, Azuma;
2002; "Team Description for Harmony Co—evolutionary Positioning”;
RoboCup’02; LNAI; Springer; Heidelberg

Hayes—Roth, Barbara; Hayes—Roth, F.; Rosenschein, S.; Cammarata, S.; 1988,
"Modeling Planning as an Incremental Opportunistic Process"; Engelmore,
Robert; Morgan, Tony; Blackboard Systems; Edison—Wesley; Wokingham

Hayes—Roth, Barbara; 1992; "Opportunistic Control of Action in Intelligent Agents";
TR, Stanford University; Palo Alto

Haynes, Thomas; Lau, Kit; Sen, Sandip; 1996; "Learning Cases to Complement
Rules for Conflict Resolution in Multiagent Systems"; Adaptation, Coevolution
and Learning in Multiagent Systems; AAAI Press; Menlo Park

Hedberg, Sara; 1997; "Robots playing Soccer ? RoboCup poses a new set of Al
challenges"; IEEE Expert;

Heitkotter, Jorg; Beasley, David; 2001; "The Hich—~Hiker’s Guide to Evolutionary
Computation"; Uunet Deutschland GmbH; http:// surf.de.uu.net/ encore/www/

Hillis, W.D.; 1991; "Co—evolving parasits improve simulated evolution as an
optimization procedure”; Langton, C.; et al. Artificial Life II; Addision—-Wesley

Hobbes, Thomas; 1999; "Agent Communication Languages: The Current

Landscape"; IEEE Intelligent Systems; March

Holland, Jhon H.; 1975; "Adaptation in natural and artificial systems"; The
University of Michigan Press

Holland, Jhon H.; Reitman, J. S.; 1978; "Cognitive systems based on adaptive
algorithms"; Waterman, D. A.; Heyes—Roth, F.; Pattern-Directed Inference

Systems; Academic Press

104

Holland, O. E.; 1996; "Multiagent systems: Lessons from social insects and
collective robotics"; Adaptation, Coevolution and Learning in Multiagent
Systems; AAAI Press; Menlo Park

Horn, J.; 1997; "The nature of niching: genetic algorithms and the evolution of
optimal, cooperative populations”; PhD thesis; University of Illinois at Urbana—
Champaign

Huhns, Michael N.; 1997, "Ontologies for Agents", IEEE Internet Computing, Vol.1
No.6 pp.81-83

Huhns, Michael N.; Singh, Munindar P.; 1997, "Conversational Agents”, IEEE
Internet Computing, Vol.1 No.2 pp.73-75

Husbands, Philip; Mill, Frank; 1991; "Simulated coevolution as the mechanism for
emergent planning and scheduling”; Belew, Richard K.; Booker, ‘Lashon B.;
Proceedings of the Fourth International Conference on Genetic Algorithms;
Morgan Kaufmann

Iba, Hitoshi; 1998; "Evolutionary Learning of Communicating Agents"; Journal of
Information Sciences; Elsevier;

Iglesias, C. A.; Garijo, M.; Gonzdlez, J. C.; 1998; "A Survey of Agent—Oriented
Methodologies"; Singh, M. P.; Miiller, J. P.; Rao, A. S.; Intelligent Agents V.
Agent Theories, Architectures, and Languages, Lecture Notes in Articial
Intelligence; Springer

Joseph, W. Sullivan; Sharman, W. Tyler; 1991, "Intelligent User Interfaces”, ACM
Press, New York

Juillé, Hugues; Pollack, Jordan B.; 1998; "Coevolutionary Learning: A Case Study";
International Conference on Machine Learning

Kandzia, Peter; Klusch, Matthias; 1997; "Cooperative Information Agents"; CIA’97,
Lecture Notes in Artificial Intelligence; Springer; Berlin

Kaufman, Lar ; Welsh, Matt; 1995; "Running Linux"; O’reilly;

Kauffman, S. A.; 1993; "The origin of order"; Oxfort University Press

Kernighan, Brian W.; Ritchie, Dennis M.; 1983; "Programmieren in C mit dem C-
Reference Manual in deutscher Sprache”; CarlHanser Verlag; Wien

Knapik, Michael; Johnson, Jan; 1998; "Developing Intelligent Agents for Distributed
Systems: Exploring Architecture, Technologies, and Applications"; McGraw—
Hill; New York

Kniskern, Joel; Rauscher Mark D.; 2001; "Two models of host-enemy model";
Population Ecology; Springer; Toyo

Koza, John R.; 1989; "Hierarchical Genetic Algorithms Operating on Populations of
Compiler Programs"; Sridharan, N.S.; Eleventh Joint Conference on Artificial
Intelligence; Morgan Kaufmann; San Mateo

Koza, John R.; 1992; "Genetic Programming"; The MIT Press;, Cambridge

Krone, Oliver; Chantemargue, Fabrice; Dagaeff, Thierry, Schumacher, Michael;
Hirsbrunner, Béat; 1998, "Coordinating Autonomous Entities", SAC'98

Kummeneje, Johan; 2001, "RoboCup as a Means fo Research, Education, and
Dissemination"; Ph. Lic. Thesis; Stockholm University

Kumova, Bora 1., 1998c; "System Specification for an Example Distributed
Database"; Msc thesis; Dokuz Eyliil Universitesi; Izmir; http:// cs.deu.edu.tr/
~kumova

-Kumova, Bora 1.; Kut, Alp; 1999; "Agent-based System Co-operation"; PDP'99,
Madeira, http:// cs.deu.edu.tr/ ~kumova

Kumova, Bora 1.; 1999; "The Agent Model of AgentTeam"; TAINN'99; istanbul;
http:// cs.deu.edu.tr/ ~kumova

Kumova, Bora 1, 1999c, "A§ baglantih Uygulamalarin Akilli Bilesenlerle
Yeteneklerini Artirmak"; inet-tr'99; Ankara; http:// cs.deu.edu.tr/ ~kumova

Kumova, Bora I.; 2000a; "Flexible Distributed Database Management with
AgentTeam"; TASTED-Applied Informatics'00; Innsbruck; http:// cs.deu.edu.tr/
~kumova

Kumova, Bora I.; 2000b; "Object-oriented Design Concepts for Client-Broker-
Server-based Multi-agent Systems"; TAINN'00; Izmir; http:// cs.deu.edu.tr/
~kumova

Kumova, Bora 1.; 2000d; "The Agent Communication Language AgentCom and its
Semantics"; IASTED-AI'00; SAIS'01; ACTA Press

Kumova, Bora I.; 2000e, "Software Design Patterns for Intelligent Agents";
SSGRR'00; http:// cs.deu.edu.tr/ ~kumova

Kumova, Bora 1.; 2000f, "Object-oriented Design and Implementation of the Multi-
agent System AgentTeam"; ECOOP'00; OOPSLA'00; http:// cs.deu.edu.tr/
~kumova

Kumova, Bora I.; 2000g; "Yapay Us"; TRT2; http:// cs.deu.edu.tr/ ~kumova

Kumova, Bora 1.; 2000h; "Evaluation of the Object-orientation of a Multi-agent

" System"; ADVIS'00; http:// cs.deu.edu.tr/ ~kumova

Kumova, Bora I.; 2000i; "On the Improvement of Networked Applications with
Intelligent Components"; IASTED-SAE'00; http:// cs.deu.edu.tr/ ~kumova

Kumova, Bora I.; 2000j; "D.E.U. Internet Baglantili Dagitik Veritaban Taslag:"; inet-
tr'00; http:// cs.deu.edu.tr/ ~kumova

Kumova, Bora I.; 2001a; "Dynamic Re-configurable Transaction Management in
AgentTeam"; Euromicro PDP'01; http:// cs.deu.edu.tr/ ~kumova

Kumova, Bora 1; 2001b; "Evaluating Protocols for Intelligent Agent
Communication"; BAS'01; http:// cs.deu.edu.tr/ ~kumova

Kumova, Bora 1.; 2002a; "The Game Strategies of SoccerTeam"; TAINN'02; Istanbul
Universitesi; istanbul

Kumova, Bora I.; Imada, Akira; 2002b; "The Concepts of the SoccerTeam
Prototype"; ADVIS'02; Dokuz Eyliil Universitesi; izmir

Kumova, Bora 1.; Kut, Alp; 2002¢; "Akilli Yazilim Bilesenlerin Yapisal Ozellikleri":
Fen ve Miihendislik Dergisi; Dokuz Eylil Universitesi; {zmir

Labrou, Yannis; Finin, Tim; 1997, "Semantics for an Agent Communication
Language", Sing, Munindar P.; Rao, Anand; Wooldridge, Michael J.; 1998;
Intelligent Agents IV - Agent Theories, Architectures, and Languages; Springer,
Berlin

Lander, Susan E.; 1997, "Issues in Multiagent Design Systems", IEEE Expert,
Vol.12 No. 2 pp.18-26

Lesser, Victor R.; Corkill, Daniel D.; 1988; "The Distributed Vehicle Monitoring
Testbed: A Tool for Investigating Distributed Problem Solving Networks";
Engelmore, Robert; Morgan, Tony;, Blackboard Systems, Edison-Wesley;
Wokingham

Luke, Sean; 1998; "Genetic Programming Produced Competitive Soccer Softbot
Teams for RoboCup97"; GP98; J. Koza et al. ; Morgan Kaufmann; San Fransisco

Maes, Pattie; 1989, "The dynamics of action selection"; IJCAI'87, Morgan
Kaufmann

Maes. Pattie; 1995; "Modelling adaptive autonomous agents"; Langton, C.; Artificial
Life: An Overview; MIT Press; Cambridge

107

Mahfoud, S. W.; 1995; "Niching methods for Genetic Algorithms"; PhD thesis;
University of Illinois at Urbana—Champaign

Martin, David; Cheyer, Adasm J.; Moran, Douglas B.; 1999; "The Open Agent
Architecture: A Framework for Building Distributed Software Systems"; Applied
Artificial Intelligence;

Matsubara, Hitoshi; Noda, Itsuki; Hiraki, Kazuo; 1996; "Learning of Cooperative
actions in multi—agent systems: a case study of pass play in Soccer"; Adaptation,
Coevolution and Learning in Multiagent Systems; AAAI Press; Menlo Park

Maturana, F.; Balasubramanian, S.; Norrie, D.H.; 1996; "A Multi-Agent Approach
to Integrated Planning and Scheduling for Concurrent Engineering”; Proceedings
of the International Conference on Concurrent Engineering: Research and
Applications; Toronto

Mayfield, James; Labrou, Yannis; Finin, Tim; 1995, "Evaluation of KQML as an
Agent Communication Language”, Intelligent Agents Volume II — Proceedings of
the 1995 Workshop on Agent Theories, Architectures, and Languages;
Wooldridge, M.; Muller, J.P.; Tambe, M.; 1996; Lecture Notes in Artificial
Intelligence; Springer; Berlin

McCarth, J.; Hayes, P.J.; 1969; "Some Philosophical Problems from the Standpoint
of Artificial Intelligence";Machine Intelligence; Meltzer; Michie; Edinburgh
University Press

Michalewicz, Z.; 1996; "Genetic Algorithms + Data Structures = Evolution
Programs"; Springer—Verlag; Berlin

Miller, Brad L.; Shaw, Michael J.; 1995; "Genetic Algorithms with Dynamic Niche
Sharing for Multimodal Function Optimization"; ILLIGAL Report No. 95010

Nangsue, Phaderm; 1999; "An agent—oriented, massively distributed parallelization
model of evolutionary algorithms"; Clarkson University;

Nodine, Marian; Perry, Brad; Unruh, Amy; 1998, "Experience with InfoSleuth
Agent Architecture”, AAAI-98 Workshop on Software Tools for Developing
Agents

Nodine, Marian; Chandrasckara, Damith; 1998; "Agent Communities"; technical
report, MCC

108

Nolfi, Stefano; Floreano, Dario; 1998; "How co—evolution can enhance the adaptive
power of artificial evolution: Implications for evolutionary robotics"; LNCS;
Springer

Nolfi, Stefano; Floreano, Dario; 1999; "Learning and evolution"; Autonomous
Robots; Kluwer

Nwana, H. S.; Ndumu, D. T.; Lee, L. C.; Collis, J. C.; 1999; "ZEUS: A Toolkit for
Building Distributed Multi-Agent Systems"; Applied Artificial Intelligence
Journal,

Odubiyi, Judé B.; Kocur, David J.; Weinstein, Stuart M.; Wakin, Nagi; Srivastava,
Sadanand; Gokey, Chris; Graham, JoAnna; 1997, "SAIRE — A Scalable Agent—
based Information Retrieval Engine", Autonomous Agents’97, Marina Del Ray

Oei, C. K.; Goldberg, D. E.; Chang, S. J.; 1991; "Tournament selection, niching, and
the preservation of diversity";

Orfali, Robert; Harkey, Dan; Edwards, Jari; 1996, "The Essential Distributed Objects
Survival Guide", John Wiley & Sons; New York

Ossowski, Sascha; 1999; "Co—ordination in Artificial Agent Societies — Social
Structures and its Implications for Autonomous Problem—Solving Agents";
Springer; Berlin

Pagie, Ludo; Mitchel, Melanie; 2000; "A comparison of evolutionary and
coevolutionary search”; Santa Fe Institute

Paolucci, M.; Kalp, D.; Pannu, A.; Shehory, O.; and Sycara, K. 2000; "A planning
component for retsina agents"; Wooldridge, M.; Lesperance, Y.; Lecture Notes in
Artitcial Intelligence; Intelligent Agents VI; Springer

Papadopoulos, Georg A.; Arbab, Farhad; 1998; "Modeling Activities in Information
Systems using the Coordination Language MANIFOLD", SAC’98

Papadopoulos, Georg A.; Arbab, Farhad; 1998; "Coordination Models and
Languages", Advances in Computers, No 46, Academic Press

Paredis, Jan; 1995; "Coevolutionary Computation”; Artificial Life;

Paredis, Jan; 1996; "Coevolutionary Life-time Learning”; Voigt, Hans—Michael;
Ebeling, Werner; Rechenberg, Ingo; Schwefel, Hans—Paul; Parallel Problem
Solving from Nature; LNCS; Springer; Heidelberg

109

Paredis, Jan, Westra, R.; 1997; "Coevolutionary Computation for Path Planning";
Proceedings 5th European Congress on Intelligent Techniques and Soft
Computing; H.—-J. Zimmermann; Verlag Mainz

Paredis, Jan; 1998; "Coevolutionary Algorithms — The Handbook of Evolutionary
Computation"; Fogel, T.; Michalewicz, D. Z.; Oxford University Press

Pearson, Glen; 1985; "Mission Planning within the Framework of the Blackboard
Model"; Karna, Kamal N.; Expert Systems in Governmont Symposium; IEEE

Petridis, Miltos; Knight, Brian; 2001; "A blackboard architecture for a hybrid CBR
system for scientific software"; University of Greenwich

Pollack, Jordan B.; Blair, Alan D.; 1998; "Co—evolution in the successful learning of
Backgammon strategy"; Machine Learning;

Potter; Mitchell A.; De Jong, Kenneth A.; Grefenstette, John J.; 1995; "A
Coevolutionary Approach to Learning Sequential Decision Rules"; Proceedings of
the Sixth International Conference on Genetic Algorithms; Morgan Kaufmann

Potter, Mitchell A.; 1997; "The Design and Analysis of a Computational Model of
Cooperative Coevolution"; dissertation; George Mason University; Virginia

Potter; Mitchell A.; De Jong, Kenneth A.; 2000; "Cooperative Coevolution: An
Architecture for Evolving Coadapted Subcomponents”; Evolutionary
Computation; MIT Press

Potter, Mitchell A.; Meeden, Lisa A.; Schultz, Alan C.; 2001; "Heterogeneity in the
Coevolved Behaviors of Mobile Robots: The Emergence of Specialists”;
Proceedings of The Seventeenth International Conference on Artificial
Intelligence; Morgan Kaufmann

Prasad, M. V. Nagendra; Lesser, Victor R.; Lander, Susan E.; 1996; "Learning
Organizational Roles in a Heterogeneous Multi—agent System"; Adaptation,
Coevolution and Learning in Multiagent Systems; AAAT Press; Menlo Park

Puppala, Narendra; Sen, Sandip; Gordin, Maria; 1998; "Shared memory based
Cooperative Coevolution";IEEE Society;

Rechenberg, Ingo; 1964; "Kybernetischer Losungsweg eines Experimentellen
Problems", lecture at WGLR; Berlin

Rechenberg, Ingo; 1973; "Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution”, Fromman—Holzboog; Stuttgart

110

Reis, Luis Paulo; Lau, Nuno; Oliveira, Eugénio Costa; 2001; "Situation Based
Strategic Positioning for Coordinating a Team of Homogeneous Agents";
Balancing Reactivity and Social Deliberation in Multi-Agent Systems;
Hannebauer, Markus; Wendler, Jan; Pagello, Enrico; LNCS; Springer

Reiher, P.; Guy, R.; Yavis, M.; Rudenko, A.; 2000; "Automated Planning for Open
Architectures"; OpenArch ’2000,

Reynolds, Craig W.; 1994; "Competition, coevolution and the game of tag"; Brooks,
Rodney A.; Maes, Pattie; Fourth International Workshop on the Synthesis and
Simulation of Living Systems; MIT Press; Cambridge

Rich, Elaine; Knight, Kevin; 1991; "Artificial Intelligence", McGraw-Hill; New
York

Ridley, M.; 1993; "The Red Queen: Sex and the evolution of human nature"; Viking;
London

Riedmiller, M.; Merke, A.; Hoffmann, A.; Nickschas, M.; Withopf, D; Zacharias, Z.;
2002 "Brainstormers 2002 — Team Description”; RoboCup’02; LNAIL; Springer;
Heidelberg

Rosin, Christopher Darrell; Belew, Richard K.; 1997; "New methods for competitive
coevolution"; Evolutionary Computation

Rosin, Christopher Darrell; 1997; "Coevolutionary search among adversaries”;
University of California, San Diego

Roychowdhury, Shounak; Araro, Neeraj; Sen, Sandip; 1996; "Effects of local
information on group behavior”; Adaptation, Coevolution and Learning in
Multiagent Systems; AAAI Press; Menlo Park

Russell, Stuart J.; Norvig, Peter; 1995; "Artificial Intelligence — A Modern
Approach"; Prentice Hall; Englewood Cliffs

Sadek, D.; Bretier, P.; Panaget, F.; 1997, "ARCOL agent communication language
and MCP, CAP and SAP agent’s cooperativeness protocols”, proposal, France
Télécom

Sandholm, Tuomas W.; 1999; "Distributed rational decision making"; Weiss,
Gerhard; Multiagent Systems — A Modern Approach to Distributed Artificial
Intelligence; MIT Press, Cambridge

Schalkoff, J. Robert; 1990, "Artificial Intelligence: An Engineering Approach”,
McGraw—Hill, New York

111

Schmidhuber, Jiirgen; 1996; "A General Method for Multi—agent Reinforcement
Learning in Unrestricted Environments";. Adaptation, Coevolution and Learning
in Multiagent Systems; AAAI Press; Menlo Park

Schwefel, Hans—Paul; 1977; "Numerische Optimierung von Computermodellen
mittels der Evolutionsstrategie”, Birkhéuser; Basel

Sing, Munindar P.; Rao, Anand; Wooldridge, Michael J.; 1998; "Intelligent Agents
IV — Agent Theories, Architectures, and Languages"; ATAL’97; Springer; Berlin

Singh, Narinder; 1998, "Unifying Heterogeneous Information Models",
Communications of the ACM, Vol.41 No.5

Smith, I.; Cohen, P.; 1996; "Toward a Semantics for an Agent Communication

Language Based on Speech Acts"; AAAI’96;

Smith, R. E.; Forrest, S.; Perelson, A. S.; 1993; "Search for diverse cooperative
populations with genetic algorithms"; Evolutionary Computation;
SOAP; 1999; "Simple Object Access Protocol (SOAP) 1.1"; Apache; htip://
www.w3.org/ TR/SOAP

Stone, Peter; Veloso, Manuela; 1996; "Towards Collaborative and Adversarial
Learning: A Case Study in Robotic Soccer”; Adaptation, Coevolution and
Learning in Multiagent Systems; AAAI Press; Menlo Park

Stone, Peter; 1998; "Layered Learning in Multi—agent Systems”; PhD thesis;
Carnegie Mellon University

Sycara, Katia; Decker, Keith; Pannu, Anandeep; Williamson, Mike; Zeng, Dajun;
1997; "Distributed Intelligent Agents"; IEEE Expert; http:// www.cs.cmu.edu/
~softagents

Tahk, Min—Jea; Kim, Youdan; Nam, Changho; 1999; "Coevolutionary approaches to
structural optimization"; AIAA Journal; ATAA

Tanaka—Ishii, Kumiko; Frank, Ian; Arai, Katsuto; 2000; "Trying to Understand
RoboCup"; AI Magazine; AAAI

Vitek, Jan; Tschudin, Christian; 1997; "Mobile Object Systems — Towards the
Programmable Internet"; Springer; Berlin

Wooldridge, Michael; Jennings, Nicholas R.; 1995; "Intelligent Agents: Theory and

Practice"; The Knowledge Engineering Review

112

Wooldridge, Michael; 1998; "Verifiable Semantics for Agent Communication
Languages"; ICMAS’98; IEEE Computer

Wooldridge, Michael; Jennings, Nicholas R.; 1999; "The Co-operative Problem
Solving Process"; Journal of Logic & Computation;

Yao, X.; Liu, Y.; Darwen, P.; 1996; "How to make best use of evolutionary
learning"; Complex Systems — From Local Interactions to Global Phenomena;
I0S

Yao, Xin; 1997; "Automatic acquisition of strategies by co—evolutionary learning";
Proc. of the International Conference on Computational Intelligence and
Multimedia Applications

Yunpeng, Cai; Jiang, Chen; Jinyi, Yao; Shi, Li; 2001; "Global Planning from Local
Eyeshot: An Implementation of Observation—base Plan Coordination in CoboCup
Simulation Games";

Zeng, Dajun; Sycara, Katia; 1996; "Bayesian Learning in Negotiation"; Adaptation,
Coevolution and Learning in Multiagent Systems; AAAI Press; Menlo Park

113

APPENDIX

The following appendices provide additional information to the main work in two

alternative ways:

« Support a matter through a more detailed discussion of this work. For instance
the CEVOP methodology, the AgentTeam framework, and implementation—
oriented details of the SoccerTeam prototype.

. Support a matter through a more detailed discussion of another work. For
instance the official Soccer game regulations or the RoboCup Soccer

simulation server.

It was an important design issue to keep the appendices modular, so that they can

be studied independent from each other.

114

APPENDIX A

SYSTEM REPRESENTATION FORMS

Any system consists primarily of some functionality and some data. Early in the
history of software systems, in order to improve their maintenance, a separation of
mainly functional concepts from data—oriented concepts were proposed for the
design phase of the development process. For instance, representing a system in data
flow diagrams and flow charts in the design, or collecting data in a database and
functionality in libraries in the implementation. Theoretically, any pure data can be
represented by some pure functionality, and vice versa. For instance, for any data
sequence a representation in form of a function can be found, and vice versa. Thus,

various representation forms can be found for a single system.

To improve the maintainability even more, further representation forms have been
introduced over time, which can be classified in control—oriented, logic—oriented,
and object—oriented concepts. Since, any system represented in these abstractions
can be reduced to some functionality and data, function—oriented and data—oriented
representations appear again as a super—set (Figure A.I). This claim is supported by
the fact that the reverse is not always true. That is, not all functionality or data is
object—oriented or logical. Where, with logic we mean mathematical logic, such as

predicate logic and its extensions.

Since, functionality can be sub—divided into conditional and non—conditional
sequences, control-oriented representation emerges as another true subset of
function—orientation. For instance, it is possible to represent a system pure control—

oriented and data—oriented, without object—orientation or logic—orientation.

115

Object-oriented

Fl%nc:le%n- Control-oriented Data-
onen oriented

Logic-oriented

Figure A.1: Relationship Between System Representation Forms

The above information can be useful to design a system that is more flexible
against various types of heterogeneity. Solution approaches that cupe with
heterogeneity can increase the consistency of data and functionality of distributed
systems. Object—orientation as already proved itself as a successful approach for
hiding heterogeneity. We believe however that a system which provides
transformation capabilities for all discussed representation forms could be more

powerful, since in that case even a higher system abstraction would be reached.

116

APPENDIX B

BNF OF AGENTCOM

In order to shorten the way iterative rules are expressed and thereby increase
readability, exponential non—terminals extend this BNF. Thus, an exponential non—

terminal represents an iterative rule.

<session> ::= <message>
<message> ::= <sessionBegin>
({<give> | <take> | <create> | <delete>} <respond>)*
<sessionEnd>
<sessionBegin> ::= (SESSION_BEGIN <keyword>")
<sessionEnd> ::= (SESSION_END <keyword>")

<give> ::= (GIVE <keyword>")
<take> ::= (TAKE <keyword>")

<create> ::= (CREATE <keyword>")

<delete> ::= (DELETE <keyword>")

<respond> ::= (RESPOND <keyword>")

<keyword> ::= (ERROR eValue) | (ADDRESS aSource?’
aDestination®) |
(NAME nSource*' nDestination®) | (DOMAIN dvalue®) |
(SESSION_ID i) | (MESSAGE_ID j) | <object>'

<object> ::= (OBJECT oName instanceName {instanceValue®
(<property> <object>*)"})

<property> ::= ATTRIBUTE |VALUE | HAS | METHOD |
<operation>

<operation> ::=&& | || | = | @ | < | > !=]=1=

117

In case of synchronous communication, a response message is returned
synchronously. In case of asynchronous communication, a response message is sent

back from server to the client explicitly.

118

APPENDIX C

SOCCER GAME REGULATIONS

Soccer game regulation include the official game rules and the official rules for
controlling a match. Game strategies are applied by the players and are based on
game rules. They can improve the play strength of a team by utilising advantages

player constellations on the field and thus increase its chances to shoot a goal.

Official Rules

Although the official rules of FIFA [FIFA 2001] define the general standards for
Soccer, different types of leagues usually have their own specialised regulations and
measures for the field. Depending or player type, league, and size of the field, such
as men, women, robots, software agents, each league type possesses its different
standards. Common to all leagues however is that the symmetries of the field lines
are similar, which are referred here as the official lines (Figure C.1). Common are
also most of the basic rules for the game and the referees. For our purposes, we have
restricted our self to the official rules of the RoboCup Federation for the Simulation
league [Chen et al.; 2001].

119

LD ' -1

A 4

— Official Line

Figure C.1: Official Soccer Field Definition

Official Lines

The main field is surrounded by the four outer border lines, in which the players
may hit the ball continuously (Figure C.1I). The small four corner areas are located at
the corners of this field. The goal area is located in front of each goal and marked by
small boxes inside the field. The penalty areas are marked with the greater boxes that
incapsulate the goal areas. The penalty arcs are situated immediately in front of the
penalty areas. The cycle in the middle of the field is the kick—off area. The small
boxes behind the two goal areas and outside the field are depicted here only to show
the breadth of a goal.

120

APPENDIX D

ABSTRACTION LEVELS OF THE SOCCER
OBJECTS

The two major concepts of Soccer are the game object and the rules. Principally,
the rules are applied on the objects, in order to move them inside the field. One can
observe that the objects actually move at different levels (Figure D.I). Where each

higher level movement recursively consists of multiple lower level movements.

. Physical rules: Physical objects move according to physical rules. Human
soccer game is affected by the physical rules weight, volume, location, gravity,
momentum, friction, and acceleration. Current Soccer simulation server
versions [Chen et al.; 2001] have implemented the location, gravity,
momentum, and acceleration concepts for most types of possible game
movements.

« Game rules: Official Soccer game objects move according some game rules.
All game rules that require a movement must comply to physical rules. Such
as, turn of a player with a momentum factor, accelerate with a momentum
factor, sensor restrictions for hearing and seeing, or resource restrictions in
form of stamina.

« Individual rules: Individuals move according the game rules. All individual
rules of a single player, known in SoccerTeam as primitive game strategies,
should comply with the game rules, in order to be successful. For instance, a

short pass, a through in, or a corner kick.

121

Team Rules

Individual Rules

Game Rules

Physical Rules

Figure D.1: Object Movements Performed At Different Abstraction Levels

« Team rules: A team moves according individual rules, since a team move
consists of the movements of its individuals. All team rules, known in
SoccerTeam as combined game strategies, usually involve several players and
consist of several steps. Where each player performs a step simultaneously

with the others, by applying some individual rules.

122

APPENDIX E

SOCCERTEAM GAME STRATEGIES: STATIC

In this section, we describe the strategies that do not change during a match, and

thus remain constant in the planning process.

Strategic Areas

In human soccer game one can observe that attacking teams usually follow some
common strategies that depend on specific field locations, such as major acting

areas, major attack direction, and shoot areas (Figure E.I).

. Major acting areas: Back field, middle field, and front field are the major
acting areas on the Soccer field. Before each match the coach decides which
players and how many players to locate in these areas, which we call here team
distribution.

« Focus area: For a team to implement its strategies successfully, its members
should be located strategically near to the ball. To represent this information,
we define a circle around the location of the ball, in which most of the
members will be positioned most of the time of a match. The goalkeeper
however, may be outside this area, but will still focus the ball.

« Major attack direction: The major attack direction is clearly towards the
opponent’s goal. However, depending on the current player constellation, it
may be sometimes suitable to pass the ball backwards, in order to continue the

attack from a more advantages position.

123

SG

N\

Back/Front Field (F,) Middle Field (F,) Front/Back Field (Fy)
wenne B/F./Fr € Shoot Area (SG) +Goal (G)

Figure E.1: Strategic Field Lines And Areas

+ Shoot/defence areas (SG): These are the areas in which statistically most of the
goals are shoot. They incapsulate the official goal areas. Each team’s shoot
area is located immediately in front of the opponents goal. Each team’s

defence area is at the home side.

Learn Granularity

The selection of the grid line granularity of the field requires a compromise to be
made between faster learning of location insensitive rules and slower learning of
location sensitive rules. As result of our experiments, we have defined 1 meter grid
lines, which divide the field into 60x100 squares. Thus, a generated plan will have
player constellations with this distance granularity.

124

APPENDIX F

SOCCERTEAM GAME STRATEGIES:
INDIVIDUAL

In a specific game constellation each team member may apply one out of a set of
allowed possible, and/or appropriate individual strategies that we call primitive
strategies. The intention of the following dynamic game strategies is to move the ball
and/or the team member from its current location to a more advantages location. We
have considered here only two—dimensional strategies, but no three—dimensional
once, such as header, shoulder, jumping, kicking the ball high or over an opponent,

etc.

Basic Game Strategies

Depending on specific conditions, some basic strategies may be applied by all 22
team members. Some of them may be interpreted different in different situation,

which are discussed in the next sections.

(1)Focus ball: This strategy is not only always allowed, possible, and appropriate, it
is a necessity for each team member for all the time of a match. It gives the team
members the advantage to recognise immediately any change of the current game
situation.

(2)Move: This strategy is simply to move the team member to a new location, which
is allowed, possible, and appropriate for all team members in any situation.
However, following semantics need to be considered:

« Self pass: If the team member has the ball, then also the ball is moved to the

new location.

125

« Wait: The move distance may be zero. To fill-up some time by not moving
can be a tricky strategy. It has important advantages, such as saving the team
member’s stamina, waiting for a better match constellation, or initiating the
covering to disassociate.

(3)Pass: If a team member is sufficiently close to a ball, then it may pass the ball to a

suitable team member or shoot it to an advantages location.

Goalkeeper Strategies

Additionally to the capabilities of the other players, the goalkeeper can catch the
ball with the hands. Since this capability is restricted to the penalty area, a
goalkeeper can play more effectively inside this area. Usually, a goalkeeper does not
shoot a goal or is directly involved in attack or defence strategies at the front. The
goalkeeper becomes a major figure in those strategies, which are applied near the

home goal. Accordingly, following strategies are possible:

(4)Carry ball: The goalkeeper may move with the ball up to the penalty line, by
kicking or carrying it. This situation gives that team usually the advantage to start
a new attack. However, carrying the ball is allowed usually only for several
seconds.

(5)Catch ball: Catching the ball with the hands is allowed only within the penalty
area. It enables the goalkeeper to hold the ball from moving into the goal.

Primitive Offensive Game Strategies

The topmost goal of a team is to win the game. For this purpose, offensive

strategies enable it to shoot goals. Some important strategies are:

(6)Shoot goal: If a team member has the ball and is within the shoot area, then it
may shoot the ball towards the opponent goal. For the offensive goalkeeper this
strategy is usually inappropriate and for the defensive goalkeeper not possible.

(7)Move free: Usually, each offensive team member will be covered by a defensive
one. Each offensive player will try to free itself from the covering by moving

away, in order to enable a pass to itself.

126

Primitive Defensive Game Strategies

On the other hand, the primarily objective of the defensive team is to make it
difficult for the offensive team to shoot a goal and to get back the ball. This intention

is expressed with the following strategies:

(8)Get ball: Usually some closest defensive players attack the offensive team
member, in order to get the ball. This strategy is always allowed, possible, and
appropriate, even in the case when the goalkeeper has the ball.

(9)Cover closest: The most effective strategy to prevent the offensive team to
establish a strategy is to cover all its members. However, it is not always

appropriate, for instance to cover those which are too far from the attacked goal.

Game Starting Or Continuing Primitive Strategies

A Soccer game may be interrupted by various types of faults. All different
starting or continuing rules, such as kick—off, free—kick, corner kick, touch, penalty
are principally similar in the sense that they can be thought as special game
constellations, if we considered them as special snapshots that could occur any time
in normal play randomly. Therefore, for our purpose, which is to construct generic

plans for random constellations, it suffices to neglect them for the planning process.

Combined Game Strategies

Principally, any combination of the above discussed individual strategies may be
combined to an individual plan. Currently, for each random match constellation, an
individual plan consists of up to three primitive game strategies. The interpretation

of each primitive game strategy is as follows:

« 0. step: Initial random game constellation is generated, therefore all 22 team

members and the ball may not be located at strategic positions.

127

. 1. step: All 22 team members will be located now at strategic positions relative
to the ball. However, the applicability of this pair of offensive/defensive team
strategy within a specific SoccerTeam match is relative low, since the assumed
random constellation, which had led to this strategy, will probably never occur.

« 2. step: All 22 team members will be located again at strategic positions
relative to the ball. Since in the previous constellation all team members will
definitely be at strategic positions and therefore this situation is more realistic,
this strategy is significant more significant.

. 3. step: The same like for the previous step applies here. However, the
interpretation of this strategy is twofold. Like in chess, each step looked ahead
can improve the decision of the previous step applies here, too, but since, in
contrast to chess, all 22 figures may move simultaneously, each further step
looked ahead becomes much less probable. Nonetheless, exploring the third
strategy brings the advantage that more complicated solutions can be found.
For instance, depending on the current field constellation, it may be sometimes
suitable to pass the ball backward, in order to continue the attack from a more

advantages position.

128

APPENDIX G

SOCCERTEAM GAME STRATEGIES: CO-
OPERATIVE

Actually only the individual strategy pass directly implies co—operation.
However, to apply even this strategy requires a suitable team constellation, hence it
alone is not sufficient to establish co—operation. In order to generate suitable
constellations for a team and to enable an advantages application of the pass
strategy, we now propose some strategies for co—operation. These strategies can also
be considered as meta strategies, since they assume the existence of individual

strategies, such as the pass strategy, but do not explicitly specify them.

Team Strategy

Some offensive team strategies are:

» Pass distance: The pass strategy can be applied successfully only if there is at
least one sufficiently close team member. Preferably several team members
should be in pass distance, since alternative attack situations may irritate the
defensive team and thus give the offensive team an advantage.

« Density around ball: If most of the team members are located around the ball,
preferably some of them in pass distance, but most of them not too close and
not too wide, then the ball could be passed among the players quickly, in order
to gain more advantages constellations. The goalkeeper however, will usually

not directly be involved in this strategy.

129

« Ball-goal located: The most advantages passes are made to those players,
which are closer to the opponent’s goal than the current ball location.
Therefore, several team members should be positioned between the ball and

the opponent’s goal.

The definition of these strategies may appear similar, since they are usually
applied conjunctively. But this is not the case, because each of them could also be

applied independently from others relative successfully.

Following are important defensive team strategies:

« Cover goal: If the ball is relative close to the home goal, then most of the
defensive players should cover it by covering the closest offensive players
and/or by building a wall. This strategy is multi-objective. Depending on a
specific constellation, the defensive players may be required to comply to both
objectives in all three possible combinations.

« Cover back field: This strategy is though to become effective when the
offensive team is about to establish an attack strategy. The objective here is to
move most players into the home back field before the ball passes the middle
field line. This strategy is multi—objective with respect to the individual
strategy clover closest, since in a given constellation not all team members
should cover the back field, but some should cover those offensive players
behind the ball in the middle field.

Coach’s Game Strategies

In real soccer games, prior to a match and if necessary sometimes in brakes, each
coach sketches major strategies to be considered in all other strategies. These
strategies remain relative stable and can be disregarded only, when temporarily
another strategy appears to be more promising. For instance, they may be determined
by the coach dynamically throughout a match, in order to adapt his team to the
opponent’s capabilities and the current match situation. We represent most of the
coach strategies with a single generic strategy called teamDistribution. Its special

cases will explain its application varieties.

130

The distribution of the team over the major acting arcas back field (F;), middle
field (Fn), and front field (Fy) is represented in form of the triple (Fy, Fu, Fp).

« Defensive team distribution: For example (Fs, Fn, Fp) = (8, 2, 0).

. Offensive team distribution: For example (Fs, Fu, Fp) = (1, 2, 7).

. Initial team constellation for each game starting or continuing strategy.

. Strategies for the duration of each half and/or full time of a match, depending
on expected skills for both teams and their current situation; if related

information is available apriori.

A sample scenarios may demonstrate the significance of teamDistribution:

« Back field attack scenario: If the ball is in the back field and one of the own
team members gets the ball, then most of the team members should move
towards the opponent goal.
=& Goal: Most of the team members should be distributed over the middle and

front fields, in order to support the attacking team member.
= Rule: IF ball is in F, AND O, THEN (F,, F, Fp) = (Fo—, Fat+, Fett)

Where, O, is the offensive player with the ball, — indicates a decrease of the

value and ++ an increase.

All cases of teamDistribution may further be relativised, so that the players do not
actually need to be located in the respective acting areas, but within the crowd
around the ball relative in the back, in the middle, and in the front.

131

APPENDIX H

ALGORITHMIC COMPLEXITY OF CEVOP

A standard approach to determine the increase of the running time of an algorithm
with the size of the input data is the asymptotic notation [Brassard et al.; 1988],
[Cormen et al.; 1990]. We need to discuss this aspect of the CEVOP algorithm, since
it generates in one run only one pair offensive/defensive plan. However, usually
multiple such plans will be required and therefore the algorithm must be iterated
multiple times. Here we calculate the complexity of the inner loop of the CEVOP
algorithm, which consists solely of the co—evolutionary algorithm, according to the

asymptotic notation in general and for the SoccerTeam case.

Complexity Of The Generic CEVOP Algorithm

The major nested loops in CEVOP run for the number of populations,
chromosomes, and genes. Accordingly, the asymptotic lower, upper, and exact

bounds are, respectively:

« Q(n?), if the fitness is reached in the first generation

+ ©(n%), even if the algorithm converges, the exact number of generations is

usually unknown apriori

« O(n?), for the worst case of the algorithm

This is the general complexity of the algorithm without domain—specific
information However, without any chromosome evaluation criteria, the algorithm is
impractical. On the other hand, the complexity can increase with any further nested

loop of a criterion.

132

Complexity Of The CEVOP Algorithm Of SoccerTeam

In an extension of the CEVOP algorithm, we have inserted several criteria, which

introduce the algorithm some further nested loops. wherefore the complexity of the

whole algorithm increases. The criteria and their complexity is as follows:

movelnField: tm * ¢S —> Q(11 * 3) = Q(1); = O(n?); —> O(n?)
densityAroundBall: tm * ¢cS—> Q(11 * 3) = Q(1);=> O(n?); —> om?
teamGoalDistanceRelative: tm * cS—> Q(11 * 3) = Q(1);—> O(n*);—> O(n?)
coverClosest: ¢S * (tm + tm * tm + tm * tm * tm * tm) = ¢S * (tm + tm* + tm*)
S Q3 *(A1+112+11%)=Q(1); =>O®* (n+n*+n*)= o®®);
—> O(n%), if the distances are always already sorted
focusBall: 2 * ¢S —> Q2 * 3) = Q(1); > O(n); O(n)

Where the acronyms have following meaning:

¢S: number combined strategies, which is currently set to 3; but can be
increased.
tm: number team members, which can be either 1, 10, or 11, depending on the

specific criterion; which cannot be increased.

With the further assumptions that the number of populations and chromosomes

may be increased, we get the following complexity of the CEVOP algorithm for

SoccerTeam:

Q) * Q1) =Q@); O®’) * O(n’) =O(n°); O(r’) * O(n’) = O(n’)

Introducing further nested loops however, would increase the asymptotic upper

bound accordingly. Therefore, potential nested loops of a criterion should be

designed carefully. On the other hand, embedding the co—evolutionary algorithm

into a further loop for the purpose to generate another plan in each iteration, will

increase each of the above calculated complexity values by one dimension.

133

APPENDIX I

CONVERGENCE BEHAVIOUR OF A CEVOP
RUN

In various experimental runs we have tested different parameter value
combinations, ranging from 40% to 0% cross—over, 10% to 1% mutation, different
random value generator seeds, and different combinations of the chromosome

evaluation criteria. Relative good results were found for the following parameters:

« Chromosomes in each population: 100
+ Cross—over rate: 30%

« Mutation rate: 5%

For these parameter settings, we have selected one representative case for the
random value generator seed 810520 and the below chromosome evaluation criteria.
These criteria represent most of the discussed individual and co—operative Soccer

game strategies.

« Offensive goalkeeper: movelnFiled, focusBall
- Offensive players: movelnField, distanceTeamGoal, densityAroundBall
« Defensive goalkeeper: movelnFiled, focusBall

+ Defensive player: movelnField, coverClosest

Although the evaluation criteria do not require each other, most of them depend
on the value of the other. This can increase the number of generations. For instance,
focusBall aims at positioning the goal keeper in relative distance to the ball.
Therefore, the offensive players, including the ball, usually converge first, before the

others converge.

134

.
L

Fitness

Generation

“.. Offensive '\ Offensive \ Defensive . Defensive
Goalie Players Goalie Players

Figure L1: Fitness Veréﬁs Generation Of Each Population

On the other hand, slightly changes if the ball location can cause the dependent
criteria to evaluate lower values for the other players, for instance
densityAroundBall. In this sense, at the end of this dependency relationships are the
criteria for the defensive players. After all offensive players have been positioned,
the defensive players are located relative to them. Therefore, the defensive players

converge the latest.

coverClosest is implemented as an optimisation problem by itself and therefore is
more complex (Appendix H) than the others. Hence the defensive players population
requires relative more generations to converge to the desired fitness value, although

the offensive players had already converged (Figure 1.1).

The average fitness of the four populations reaches 1 at generation 24 (Figure
1.2). In most of the test cases that we have made, the algorithm converged within

20-30 generations in the average.

Fitness

135

Generation

Figure L.2: Average Fitness Versus Generation Over All Populations

136

N

APPENDIX J

CLASS DIAGRAM OF THE CEVOP SIMULATOR

The learning component of the SoccerTeam prototype is an application
independent form the SoccerTeam simulator client. Usually it is run several times to
generate several team plans for both, the offensive and defensive team. The result of

one run is principally one offensive/defensive pair of team plans.

Below is the object—oriented specification of the software design of the CEVOP
component. It is written entirely in C++ [Ellis et al.; 1990], [Kernighan et al.; 1983]
under Linux [Kaufman et al.; 1995]. First, each class, of the class diagramme
(Figure J.I), is described separately, thereafter the major control flow of a

programme run is traced.

SoccerTeamRule

This is the entry point of the programme where the main function is located.
Therefore, this part is actually not a class. It checks the inline—passes parameters,
creates an instance of CEVOP, and forwards it the parameters. A loop is provided
here, in which CEVOP may be called several times, in order to generate several pairs

of offensive/defensive team rules.

137

=

SoccerTeam
Rule

«&— Inheritance ~ @— Has (Create) (——Using (Access)
¥
Figure J.1: Class Diagram And Object Cardinality Of The CEVOP
Simulator
CEVOP

This class first creates the required instances of the classes Field and Goalie. It
implements the major loop and the termination condition of the co—evolutionary
algorithm. In each generation the genetic operations of the populations are called.
After the loop has terminated, the related calles to output the final result are placed
here. The global view of the co—evolutionary algorithm that is necessary to call
related methods for evaluating required co—operation and/or competition structures

is implemented here.

138
Statistics

This class utilises the standard random value generator to produce random values

in the desired ranges.
Population

A generic genetic algorithm is implemented with this class. It provides the basic
population and chromosome operations, such as cross—over, mutation, and fitness

selection. Some abstract methods enable to specialise the operations.
SoccerGroup

This class represents abstract Soccer players and their individual strategies as a
genetic algorithm population. Genetic algorithm related information is inherited
from the population class and specialised for the Soccer domain. This is done by
initialising the chromosome value ranges for cross—over and mutation. Further, in
each generation of the genetic algorithm, related methods are provided to call to
apply and evaluate each chromosome’s genes. Some abstract methods are used to

enable the implementation of special Soccer player types.

Goalie

The goalkeeper is a special Soccer player type, which is implemented in this
class. It inherits the generic Soccer player type behaviour and extends it with
goalkeeper related information, such as individual Soccer strategies that can be
applied only by a goalkeeper.

Pléyer

The player is a special Soccer player type, which inherits the generic Soccer

player type and extends it with player specific behaviour. Player strategies that are

139

usually not applied by a goalkeeper, such as attacking and shooting a goal, are

implemented in this class.

Field

The class Filed represents a Soccer match consisting of a field and the playing
teams. First, an initial random game constellation is generated, which represents a
snapshot of a match. Thereafter, in each generation, the constellation can be
modified according the related chromosome quadruples. The chromosome
evaluation criteria, which represent co—operation and competition structures of the
teams, are implemented in this class. Since the criteria are independent from each
other, they can be called in any order. Some methods are provided to restore the
initial field constellation at the begin of each genetic algorithm generation. Some
further functionality is implemented to save the current field constellation in a rule

base.

RuleBase

This class provides some functionality to store the given data in a permanent file.

Some methods allow to redirect the output to different files, whenever this is desired.

Programme Control Flow

The purpose of the CEVOP component is to generate pairs of team plans for an
initial random field constellation. The input data to this process is the number of
plans to be generated and a seed value for the random value generator. The flow of
control starts with these arguments in SoccerTeamRule and iterates within the
CEVOP loop. Inside one loop the control is given to SoccerGroup and Field,
depending on the desired execution sequence. In sub—sequent calles, control flows
from SoccerGroup and Field to Statistics and RuleBase.

The initial control flow starts with the following Linux shell command:

SoccerTeamRule <Rules#> <randomGeneratorSeed>

140

A

APPENDIX K

SOFTWARE DESIGN OF THE SOCCERTEAM
PROTOTYPE

According thé objective of the thesis, our goal was to show the feasibility of the
proposed planning approach. The implementation of SoccerTeam as a client to the
RoboCup Soccer simulation server was secondary. The following specification
represents the software design of the SoccerTeam prototype from an object—oriented
point of view (Figure K.I) to be used in a future implementation. In this first
development stage, we have restricted our selfs to the implementation solely of the
functionality for displaying the planning results within the official RoboCup Soccer

server monitor. This functionality is implemented in the SoccerTeam class.

SoccerTeam

The SoccerTeam class provides a few methods to read a given team plan from a
permanent file and to send the related field location co—ordinates to the RoboCup

Soccer simulation server. Each instance of this class represents one team member.

141

ommunication
SoccerTeam
Language
@

Knowledge Decision
Base Mechanism

4—Inheritance @ — Has (Create) 00— Using (Access)

Figure K.1: Class Diagram Of The SoccerTeam Software

Programme Control Flow

The control flows from the main function of the socket—connected test client of
the RoboCup Soccer simulation server to the related methods of a SoccerTeam

instance.

The initial control flow starts with the following Linux shell command:

SoccerTeam <TeamMember#> <offensiveDefensiveIndicator>
<planStep#>

142

APPENDIX L

SAMPLE OUTPUT OF A CEVOP RUN

The purpose of this discussion is to show the significance of the chromosome
evaluation criteria of the co—evolutionary algorithm. Where each criterion represents
a Soccer game strategy. The output of one run of the CEVOP programme is one pair
offensive/defensive plan. The RoboCup Soccer server monitor is used by
SoccerTeam only to display one steps of a team plan. The three steps of a plan are
discussed separately for both, the offensive and defensive team, with respect to the
criteria. The offensive team’s home is always on the left side, the defensive team’s
home on the right. The player’s numbers have no meaning in this discussion, since
the start sequence of the client processes does not always mach with the server

registration sequence .
Parameters Of The Sample CEVOP Run
The sample run was started with the following parameters, whereby some of them

are coded within the programme and some are passed as command line arguments:

« Random value generator seed: 810520
. Chromosomes in each population: 100
. Cross—over rate: 30%

o Mutation rate: 5%

Interpretation Of The CEVOP Output

In the initial random constellation the players are positioned anywhere inside the

field and the goalkeepers anywhere inside their goal area. (Figure L.I).

143

REETESTEN

i

Figure L.1: Snapshot Of The Initially Random Field Constellation

In the following figures a cycle indicates the player with the ball, solid arrows
show the movement of the ball and the related player, and dashed arrows show the
movements of the player to which the ball is passed. The sample CEVOP process

has generated following ball positioning and passing:

- 1. strategy: Player 2 makes a self pass
+ 2. strategy: Player 2 makes a self pass
« 3. strategy: Player 2 passes to player 1

As already mentioned above, the player numbers of the CEVOP output do not

match with those of the RobuCup Soccer simulation server !

144

| SoccerTeam355 010 Goeztepe before kick_off 6553

NN

Figure L.2: Snapshot After The First Team Strategy

After the first team strategy has been applied to the initial constellation (Figure
L.2), the interpretation is as follows:

» movelnField: Since all players are inside the field borders, this criterion is
fulfilled.

« distanceTeamGoalRelative: The ball moves a total of around 45 meters
towards the goal and therefore the requircd 30% of maximum 60 meter,
accumulated for all three steps, is satisfied.

« densityAroundBall: Four players are required to be in a distance up to 20 meter
and five players up to 40 meter. Since the accumulated distance of all players
is calculated, this criterion is satisfied. The ranges are indicated in the figure

with cycles around the ball.

145

T~

arne s &

A S i #30 il BT s i Vs

Cstart | (redoonnect scale 1,0 | detaild | modemde | quit

N\

' SoccerTean35 030 Goeztepe

NN

before kick_off 65535

SRINRNNNNNK MMM

Y

Figure L.3: Snapshot After The Second Team Strategy

« coverClosest: This criterion states that all defensive players should be in the
average at most up to 5 meter from an offensive player, which is here fulfilled.
« focusBall: The goalkeepers are required to be located less than 16% on the
abscissa and 10% on the ordinate of the distance of the ball from the goal. This

criterion is also satisfied for both goalkeepers.

The above criteria are all fulfilled also for the remaining constellation, as can be

seen in the figures (Figure L.3), (Figure L.4).

146

- odetail 1 mods move.
7
.
- SoccerTeam35-5 030 Goeztepe hefore_kick_off 65535 :
S SN S IR AN SN R R R RN

Figure L.4: Snapshot After The Third Team Strategy

