

DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ONLINE HANDWRITTEN MATHEMATICAL

EXPRESSION RECOGNITION

by

Onur ÖZDEMİR

June, 2015

İZMİR

ONLINE HANDWRITTEN MATHEMATICAL

EXPRESSION RECOGNITION

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

in Computer Engineering

by

Onur ÖZDEMİR

June, 2015

İZMİR

iii

ACKNOWLEDGMENTS

I would like to thank my adviser Dr. Özlem ÖZTÜRK for her support throughout

my master study. Her guidance and experiences have expanded my vision.

Onur ÖZDEMİR

iv

ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION

RECOGNITION

ABSTRACT

Widespread usage of smartphones and tablets and their input and output units

which are on the same surface, make softwares which support to automatic detection

of handwritten symbols and drawings and allow to reorganization in creation of e-

documents, more important.

Aim of this study is to develop a system which supports to recognition of online

handwritten mathematical expression and solving equations and creation of its

documents on touchscreen devices. The online handwritten mathematical expression

recognition system is composed of five main modules: Symbol detection, symbol

recognition, parsing, exporting and solving. In symbol detection, minimum spanning

tree data structure is used so as to detect symbols from the strokes of expression. The

detected symbols are sent to the symbol recognition module. Here, strokes of the

detected symbols are converted to standart form by being preprocessed.Soon after

features which is used for classification are extracted. Afterwards, symbols are

recognized by using k-means clustering algorithm. All the recognized symbols are

sent to parsing module in order to find hierarchical structures of the input expression

according to predefined mathematical rules. Then parsed expression is converted to

AsciiMathML and MathML which are standard mathematical markup language.

Finally, text expressions are sent to solving module so as to determine the types of

equations and solving process is performed.

Keywords: Online handwritten recognition, pattern recognition, machine learning

v

EL YAZISI İLE YAZILAN MATEMATİKSEL İFADELERİ TANIMA

ÖZ

Akıllı telefon ve tabletlerin yaygınlaşması ve bu cihazların girdi çıktı birimlerinin

aynı yüzeyde olması e-belgelerin oluşturulmasında el yazısı sembol ve çizimlerin

otomatik algılanmasına ve yeniden düzenlenmesine imkan sağlayan yazılımları

önemli hale getirmiştir.

Bu çalışmada dokunmatik ekrana sahip cihazlarda el yazısı ile girilen

matematiksel ifadelerin tanınmasını, çözülmesini ve belgelerinin oluşturulmasını

sağlayan sistemin geliştirilmesi amaçlanmaktadır. Çevrimiçi elyazısı ile yazılan

matematiksel ifadeleri tanıma sistemi beş ana kısımdan oluşmaktadır: Sembol tespit

etme, sembol tanıma, ayrıştırma, dışa aktarma ve denklem çözme. Sembol tespit

etme kısmında asgari tarama ağacı veri yapısı kullanıcı tarafından girilen ifadedeki

vuruşların birlikte veya tek olarak sembol olup olmadığını tespit etmek için

kullanılmıştır. Tespit edilen semboller sembol tanımlama kısmına gönderilir. Burada

tespit edilen sembollerin vuruşları önişlemden geçerek standart forma getirilir.

Sonrasında standart forma getirelen vuruşların sınıflandırma kısmında kullanılacak

olan öznitelikleri çıkarılır. Daha sonra k-ortalama algoritması kullanılarak semboller

tanımlanır. Girilen ifadedeki tüm semboller tanımlandıktan sonra ifade belirli

matematiksel kurallara göre hiyerarşik yapılara ayrıştırılmak üzere ayrıştırma

kısmına gönderilir. Ayrıştırılan ifade dışa aktarım kısmında standart matematiksel

biçimlendirme dilleri olan AsciiMathML ve MathML' e çevrilir. Son olarak metin

haline getirilen ifade denklem çözme kısmına gönderilir. Burada ifadenin hangi

denklem tipine uyduğu tespit edilerek çözümü gerçekleştirilir.

Anahtar kelimeler: Çevrimiçi elyazısı tanıma, örüntü tanıma, makine öğrenmesi

vi

CONTENTS

Page

M.Sc THESIS EXAMINATION RESULT FORM...ii

ACKNOWLEDGMENTS...iii

ABSTRACT..iv

ÖZ...v

LIST OF FIGURES...viii

LIST OF TABLES..x

CHAPTER ONE – INTRODUCTION...1

CHAPTER TWO – ARCHITECTURE...4

2.1 Symbol Detection...5

2.2 Symbol Recognition...6

2.2.1 Preprocessing..7

2.2.2 Feature Extracture..9

2.2.3 Recognition..10

2.3 Parsing..13

2.4 Exporting..16

2.5 Solving...18

CHAPTER THREE – EVALUATION...22

3.1 Data Collection...22

3.2 Trainning and Recognition...23

3.3 Data Collector Application..25

3.4 Math Solver Application..27

CHAPTER FOUR – RESULTS..31

vii

CHAPTER FIVE – CONCLUSION...38

REFERENCES..40

viii

LIST OF FIGURES

Page

Figure 1.1 The types of handwritting styles: (a) box discrete symbols (b) space

discrete symbols (c) run-on discretely symbols (d) pure cursive

handwritting..1

Figure 2.1 Block diagram of the online handwritten mathematical expression

recognition system...4

Figure 2.2 Minumum spanning tree of strokes...6

Figure 2.3 Found symbols are shown in its bounding box...6

Figure 2.4 Shifting process of symbol 4...7

Figure 2.5 Shifting and scaling process of symbol 4..8

Figure 2.6 Some original symbols which is inputed by the user..................................8

Figure 2.7 Normalized and resampled symbols..9

Figure 2.8 K-nearest neighbors algorithm..11

Figure 2.9 A single model of a neuron...12

Figure 2.10 Some rules : a. Horizantal pairs b. Subexpresion c. Superscript d.

Overscript..14

Figure 2.11 Bounding box of symbols and baselines belong to x and √....................14

Figure 2.12 Expression tree of the mathematical expression given in Figure 2.11....16

Figure 2.13 MathML output for the expression in Figure 2.11..................................18

Figure 2.14 Pseudo code for infix to postfix expression conversion algorithm.........19

Figure 3.1 The flow of data collection steps...22

Figure 3.2 The flow of training steps..23

Figure 3.3 The flow of recognition steps..24

Figure 3.4 Screenshot of the Data Collector application..25

Figure 3.5 An example of a symbol map file. A row of file consists of symbol name,

symbol and type...26

Figure 3.6 Screenshot of the Math Solver application for simultaneous linear

equations..27

Figure 3.7 Convert file contents..29

Figure 3.8 Solve file contents...29

ix

Figure 3.9 Screenshot of Math Solver application for complex expression which

consists of horizontal pairs, superscrip and subexpression rules...........30

Figure 3.10 Screenshot of the Math Solver application for calculation with no

unknown and high degree equation...30

x

LIST OF TABLES

Page

Table 2.1 Symbol features obtained from the feature extraction submodule..............9

Table 2.2 Supported MathML tag elements by the current system............................17

Table 3.1 Descriptions for basic components of Data Collector application.............26

Table 3.2 Descriptions for basic components of Math Solver application.................28

Table 4.1 Recognition results of k-nearest neighbors for digits.................................31

Table 4.2 Recognition results of k-nearest neighbors for lower case letters (Latin

alphabet)...32

Table 4.3 Recognition results of k-nearest neighbors for Greek symbols..................32

Table 4.4 Recognition results of k-nearest neighbors for operators...........................32

Table 4.5 Recognition results of neural networks for digits.......................................33

Table 4.6 Recognition results of neural networks for lower case letters (Latin

alphabet)...34

Table 4.7 Recognition results of neural networks for Greek symbols........................34

Table 4.8 Recognition results of neural networks for operators.................................35

Table 4.9 Accuracy rates of k-nearest neighbors algorithm for different k

values…….…………….…………………………..................................35

Table 4.10 Accuracy rates of neural networks algorithm for different number of

hidden layer neurons…..36

1

CHAPTER ONE

INTRODUCTION

Mathematical expression is the combination of numbers, letters and mathematical

symbols that have the mathematical meaning described by the rules of mathematical

operators (Z. Les & M. Les, 2015). The online handwritten mathematical expression

recognition is about the recognition of combination of numbers, letters and

mathematical symbols which are written by hand or stylus. This recognition is still

difficult problem for computers in spite of being easy for humans. Since writing style

varies from person to person. Besides symbols can be various in shape and size

depending on type and speed of the handwriting. Different writing styles are given in

Figure 1.1.

Grouping strokes into symbol is one of the recognition problems. It is called

stroke segmentation or symbol detection problem. In case of box discrete symbols,

strokes are already segmented by users when each symbol is written in a box. Spaced

discrete symbols require symbol segmentation. In run-on discretely symbols, strokes

can touch or overlap one another. Therefore, symbols cannot be easily separated one

from another. Pure cursive handwriting requires advanced stroke segmentation. Since

several symbols can be made one stroke (Tappert, Suen & Wakahara, 1990). The

scope of this study, spaced discrete symbols are selected so as to narrow down the

problem.

Figure 1.1 Types of handwriting styles: (a) box discrete symbols (b) spaced discrete symbols (c) run-

on discretely symbols (d) pure cursive handwriting.

Handwritten recognition methods can be divided into two groups: Offline and

online methods (Plamondon & Srihari, 2000). Offline methods convert handwriting

2

on paper to digital data, and then recognize the digital data. Online methods provide

a means for the recognition of handwriting as the user performs a writing.

An advantage of online methods is that they obtain the temporal or dynamic

information of the writing. This information consists of the number of strokes, the

order of the strokes, the direction of the writing for each stroke, and the speed of the

writing within each stroke (Tappert et al., 1990). Also, online methods allow users to

instantly correct errors.

However, offline methods cannot obtain any temporal or dynamic information of

the writing. And in some cases, handwriting on paper cannot be clear and readable.

But offline methods do not need any special device and are used for all existing

documents.

There have been many studies on the recognition of online mathematical

expressions. Although there are many different methods for the online expression

recognition, generally similar procedures are followed in such systems. These can be

summarized in 4 steps: Preprocessing, partitioning, feature extraction and

recognition.

Preprocessing generally consists of reduction of noise caused by hardware such as

smoothing, thinning, etc. and normalization caused by the user such as baseline drift

correction, size normalization, stroke length normalization, etc. (Tappert et al.,

1990). In the partitioning step, expression is separated into symbols. There exist

many methods for partitioning. One of the methods is that user indicates to finish a

symbol writing by means of a sign. In some other methods, spaces between symbols

and time information are used for partitioning. Another method requires symbols to

be written into separate boxes by the user. Hence, partitioning problem is

automatically solved. In feature extraction, a data space which only consists of key

information of symbols is generated. In recognition, many algorithms are used for

recognition of symbols such as artificial neural networks, k-nearest neighbors etc.

(LeCun et al., 1995)

3

In this study, an online handwritten mathematical expression recognition

(OHMER) system is developed for touchscreen devices. It supports the recognition

of online handwritten mathematical expression and solution of the equations and

conversion to a standard text expression.

OHMER system is composed of five modules: symbol detection, symbol

recognition, parsing, exporting and solving.

The key components of OHMER system are symbols. A symbol is a sequence of

strokes. A stroke is defined as a sequence of points. Symbol detection module

determines which strokes are grouped into a symbol.

Symbol recognition module uses symbols obtained from symbol detection

module. First, orientation and ordering of symbol strokes are standardized. For scale

and translation invariance, size and coordinates are normalized. Then, symbol is

resampled and sent to feature extraction. In this submodule, features of symbol are

extracted. Features are x coordinates and y coordinates and rate change. Extracted

features are sent to recognition. K-nearest neighbors algorithm is used to find the

optimum symbol among the symbol set.

After all symbols are recognized, the input expression is ready in order to be

analyzed relationship between parts of the expression. For this, predefined rules are

used. Predefined rules are set of rules and describing how to parse the expression.

According to these rules, input expression is parsed in the parsing module.

Then, expression tree which is generated in parsing module is converted text

expressions such as AsciiMathML, MathML (Gray, 2007).

Finally, text expressions are sent to solving module so as to determine types of

equations and solving process is performed.

4

CHAPTER TWO

ARCHITECTURE

Block diagram of OHMER system can be seen in Figure 2.1. Main modules of the

system are listed below:

- Symbol Detection

- Symbol Recognition

- Parsing

- Exporting

- Solving

Figure 2.1 Block diagram of the online handwritten mathematical expression recognition system.

5

2.1 Symbol Detection

Purpose of the symbol detection module is to find unknown symbols which are

not classified yet, from raw strokes. The system use minimum spanning tree

approach (Matsakis, 1990) in order to combine strokes into a symbol.

First, connected and undirected a graph of strokes is constructed. In order to adapt

strokes to the graph basic attributes of stroke are considered. These attributes are

bounding box and location. Bounding box is the area defined by the minimum and

maximum x, y coordinates of a stroke. Location holds the coordinates of the center

of the bounding box.

Vertex of the connected and undirected graph corresponds to stroke location and

edge weight is determined as the Euclidean distance between two strokes.

For each edge (u, v) ∈ G, set

 (2.1)

where:

u, v: Vertices of edge. They correspond to location of strokes.

G: Graph of strokes

The system finds a minimum spanning tree from the constructed graph using

Kruskal’s algorithm. Kruskal’s algorithm finds a minimum spanning tree for a

connected weighted graph, i.e., it finds a subset of the edges that forms a tree that

includes every vertex, where the total weight of all the edges in the tree is minimized

(Jayalakshmi, 2007).

Locations, bounding boxes and minimum spanning tree of strokes are shown in

Figure 2.2.

6

Figure 2.2 Minimum spanning tree of strokes.

After finding minimum spanning tree (MST), all bounding boxes of strokes which

correspond to vertices of MST, are examined. If extended bounding boxes intersect

each other, strokes corresponding to the intersected bounding boxes are grouped into

a symbol.

Figure 2.3 Found symbols are shown in its bounding box.

2.2 Symbol Recognition

In this module, the unknown symbols are recognized using their extracted

features. Submodules of the symbol recognition are listed below:

- Preprocessing

- Feature Extraction

- Recognition

7

2.2.1 Preprocessing

Strokes of unknown symbols have to be standardized in order to increase accuracy

of the recognition. Goal of this submodule is to remove unnecessary data and

generate standard data space. The standard data space is one dimensional vector

consists of stroke points and change rates.

One of the most important tasks in preprocessing is to perform transformation of

strokes of the unknown symbols. There are four types of transformation: orientation,

ordering, shifting and scaling.

In orientation process, strokes are put in standard directions. Then, strokes of the

symbols are put into a standard ordering according to angles of strokes in ordering

process (Matsakis, 1990).

In shifting process, (x, y) points of strokes are translated by amount dx and dy.

Amount dx and dy are distance between top-left corner of symbol bounding box and

origin.

For each (x, y) point ∈ stroke, set

 (2.2)

Figure 2.4 Shifting process of symbol 4.

8

In scaling process, symbol bounding box is scaled to unit bounding box. For this,

(x, y) points of strokes are scaled by sx and sy. sx and sy are ratio of size bounding

box and unit bounding box.

For each (x, y) point ∈ stroke, set

 (2.3)

Figure 2.5 Shifting and scaling process of symbol 4.

Another important task in preprocessing submodule is to resample stroke points

using linear interpolation. Hence, numbers of points in all symbols are equalized.

For point (x1, y1) and point (x2, y2) ∈ stroke, set the interpolant point (x, y)

 (2.4)

Figure 2.6 Some original symbols which is inputted by the user.

9

Figure 2.7 Normalized and resampled symbols.

2.2.2 Feature Extraction

Unknown symbols obtained via preprocessing module are used for feature

extraction. Symbol features are extracted from the preprocessed unknown symbols.

These features are obtained using stroke descriptors. Stroke descriptors are x, y

coordinates and rate of change of coordinates.

x, y coordinates: x and y coordinates of strokes of symbols

Rate of change of coordinates: Second derivative of x and y coordinates. This

feature is important for curved symbols.

Table 2.1 Symbol features obtained from the feature extraction submodule.

Feature

Description

x-coordinates

x-coordinates of strokes of symbol

y-coordinates

y-coordinates of strokes of symbol

change rate of x-coordinates

second derivation of x-coordinates

change rate of y-coordinates

second derivation of y-coordinates

10

2.2.3 Recognition

In recognition submodule, k-nearest neighbors (KNN) and artificial neural

networks algorithms are used for symbol classification.

First, k-nearest neighbor algorithm is implemented. The k-nearest neighbors

(KNN) algorithm is a method to classify objects based on nearest training examples

in the feature space. KNN is one of the simplest machine-learning algorithms. An

object classified by a majority vote of its neighbors, with the object being assigned to

the class most common amongst its k nearest neighbors. In order to identify

neighbors, the objects are represented by position vectors in the multi-dimensional

feature space. Usually the Euclidean distance is adopted, though other distance

measures, such as the Manhattan distance, could in principle be used instead. (Yu,

Lu, Lou, & Wang, 2010)

A basic example is given in Figure 2.8. A training set consists of two classes with

five instances a piece, as indicated by of blue and red dots. And feature space is two-

dimensional. Class can be assigned by a majority vote of the k nearest neighbors.

The test sample (green dot) should be classified either to the first class of blue dots or

to the second class of red dots. If k = 3 (solid line circle) it is assigned to the

second class because there are 2 red dots and only 1 blue dot inside the inner

circle. If k = 5 (dashed line circle) it is assigned to the first class (3 blue dots vs. 2 red

dots inside the outer circle).

11

Figure 2.8 K-nearest neighbors algorithm.

Next, feed-forward artificial neural network is implemented. Feed-forward

artificial neural network is a structured hierarchical layered network. Neurons are

arranged in a layered configuration containing an input layer, one or two hidden

layers, and an output layer. And the nodes in one layer are connected only to the

nodes in the next layer (Dougherty, 2013).

Each of neurons has several input links (it takes the output values from several

neurons in the previous layer as input) and several output links (it passes the

response to several neurons in the next layer). A single model of a neuron is given in

Figure 2.9.

Figure 2.9 A single model of a neuron.

12

The values retrieved from the previous layer are summed up with certain weights,

individual for each neuron, plus the bias term.

 ∑

 (2.5)

The sum is transformed using the activation function f which is chosen sigmoid

function for all neurons.

 ⁄ (2.6)

The neural network training algorithm (Neural Networks, n.d.) is as follows:

1. Take the feature vector as input. The vector size is equal to the size of the

input layer.

2. Pass values as input to the first hidden layer.

3. Compute outputs of the hidden layer using the weights and the activation

functions.

4. Pass outputs further downstream until you compute the output layer.

The weights are computed by the training algorithm. The algorithm takes multiple

input vectors with the corresponding output vectors, and iteratively adjusts the

weights to enable the network to give the desired response to the provided input.

Finally, classification results are compared between k-nearest neighbors and

artificial neural network algorithms. Both algorithms are tested on the same dataset.

Dataset has 28 symbols and each symbol has 200 samples. %75 of dataset is used for

training and %25 for test. Accuracy of k-nearest neighbors algorithm is 96.71 percent

for k=2, while accuracy of neural network algorithm is 94.42 percent for 36 hidden

layers. Both algorithms had shown similar performance regarding accuracy rate. But

k-nearest neighbors is preferred because of simplicity.

13

2.3 Parsing

This module aims to build an expression tree from known symbols of the given

mathematical expression. After the symbol recognition, the known symbols are sent

to parsing module to obtain hierarchical structures of the expression.

All symbols have a bounding box. Bounding box is defined as the area enclosed

by the minimum and maximum x, y coordinates. Symbols of the expression are

analyzed as structural according to a set of rules. These rules are geometrical

relationship between bounding box of symbols and describing how to parse the

expression.

The geometrical relationships are used to determine the rules. The rules can be

subexpressions, superscripts, horizontal pair, or etc. Some rules are given in Figure

2.10.

Figure 2.10 Some rules: a. Horizontal pairs b. Subexpression c. Superscript d. Over script.

OHMER system currently supports the horizontal pairs, subexpression and

superscripts rules. Further rules could be employed in a similar fashion.

14

The system takes into account symbol location and baseline. Symbol location is

expressed in terms of the coordinates of the center of the bounding box, whereas

baseline represents the horizontal line of symbol. Examples of symbol bounding box

and baseline are demonstrated in Figure 2.11. The system parses the expression and

constructs an expression tree using these two attribute together with the supported

rules. The expression tree is a tree of symbols that represents hierarchical structure of

the expression.

Figure 2.11 Bounding boxes of symbols and baselines belong to x and √.

The expression tree has three main parts: a root node, branches and nodes. The

root node is the starting point of the tree. Both root node and other nodes contain

symbols. Branches correspond to rules and each node has branches as many as the

number of the rules.

The expression tree construction algorithm is given as follows:

Leftmost symbol of the expression is assigned to root node. The root node is then

set as the current node.

Repeat until all symbols of the expression are assigned to other nodes:

1. A symbol list is populated according to subexpression rule of current node. If

subexpression branch of current node is null and the symbol list is not empty,

leftmost symbol of the symbol list is assigned to new node. And new node is

added to subexpression branch of current node. The new node is then set as

the current node. And go to loop condition.

15

2. A symbol list is populated according to superscript rule of current node. If

superscript branch of current node is null and the symbol list is not empty,

leftmost symbol of the symbol list is assigned to new node. And new node is

added to superscript branch of current node. The new node is then set as the

current node. And go to loop condition.

3. A symbol list is populated according to horizontal pairs rule of current node. If

horizontal pairs branch of current node is null and the symbol list is not

empty, leftmost symbol of the symbol list is assigned to new node. And new

node is added to horizontal pairs branch of current node. The new node is then

set as the current node. And go to loop condition.

4. If parent of current node is not null, the parent is then set as the current node.

And go to loop condition.

Expression tree of the mathematical expression given in Figure 2.11 is

demonstrated in Figure 2.12.

16

Figure 2.12 Expression tree of the mathematical expression given in Figure 2.11

2.4 Exporting

In exporting module, an equivalent text expression is generated according to the

equation tree.

AsciiMathML is a linear mathematical markup language for displaying

mathematical expression in web pages (Gray, 2007). It is generated to visit each node

in the expression tree according to pre-order type of depth-first traversal.

17

Pre-order visiting steps:

1. Traverse the data part of root element (or current element)

2. Traverse the left subtree by recursively calling the pre-order function.

3. Traverse the middle subtree by recursively calling the pre-order function.

4. Traverse the right subtree by recursively calling the pre-order function.

Pre-order of the expression tree in Figure 2.12: x, √, 2, a, +, b, =, ∝

AsciiMathML output for the expression in Figure 2.11:

 ∝ (2.7)

AsciiMathML output for the expression in Figure 2.3:

 (2.8)

MathML, a mathematical markup language, is generated to parsing the

AsciiMathML expression. It is used for integrating mathematical expression into web

pages (Wright, 2000).

MathML uses tags to describe the various parts of a mathematical expression.

Variables, operators, radicals, and fractions are the fundamental elements of

MathML.

Table 2.2 Supported MathML tag elements by the current system.

Tags Description

<mi>x</mi>

Tag elements for variables.

<mn>2</mn>

Tag elements for numbers.

<mo>+</mo>

Tag elements for operators.

<mrow> </mrow> Tag elements for group the expression.

18

Table 2.2 Supported MathML tag elements by the current system. (cont.)

<msup> </msup> Tag elements for create superscript.

<msqrt> </msqrt> Tag elements for create square root.

MathML output for the expression in Figure 2.11 can be seen in Figure 2.13.

Figure 2.13 MathML output for the expression in Figure 2.11.

2.6 Solving

Generated text expression is sent to solving module so as to perform the following

three types of calculations:

- Solve calculations with no unknown.

- High degree equations.

- Simultaneous linear equations.

If there happens to be no unknowns in the text expression, such as 2+3,

5*2+4/3=?, (2+3)*5, etc., First infix expression which is human readable is

converted to postfix notation. The advantage of postfix notation is to be written

expressions without needing for parenthesis and it is easier to evaluate in a computer.

For instance, the expression (2+3)*4 in postfix notation would be 23+4*.

19

In order to convert infix to postfix expression, we need a stack for operators and a

string to store postfix expression. Pseudo code for infix to postfix expression

conversion algorithm is given in Figure 2.14.

Then postfix expression is scanned form left to right for evaluating. Each time a

number is found, it is pushed to stack. If an operator is found, two numbers are

popped from stack and a calculation is performed according to the operator and the

result is pushed to stack. At the end, only the result of the expression remains on the

stack.

Figure 2.14 Pseudo code for infix to postfix expression conversion algorithm

If text expression contains second or more degree equation with one unknown

such as x^2+4x=?, 4x^2+3x+5=2x^2+x+7, etc., the expression is considered as a

polynomial equation. First, polynomial equations of form P(x) = Q(x) are converted

to P(x) = 0, where P(x) and Q(x) are polynomials. Then P(x) = 0 equation is solved.

Special cases of such polynomial equations are quadratic, cubic, quartic, etc. Current

20

version of OHMER supports only quadratic equations. The system solves quadratic

equations using quadratic formula.

 √

 (2.9)

If text expression contains first degree equations with one or more unknown, the

system solves simultaneous linear equations using Cramer's rule.

In general, we may write simultaneous linear equations in the form:

 (2.10)

which in vector notation is

 ⃗ ⃗ (2.11)

where

x: A n-dimensional vector the elements of which represent the solution of

equations.

c: The constant vector of the system of equations.

A: The matrix of the system's coefficients.

We can write the solution to these equations as

 ⃗ ⃗ (2.12)

where

21

 : Inverse of the coefficient matrix.

Cramer's rule is probably the best known method that to find the solution without

finding the inverse of the matrix (Collins, 2003). The system finds determinant of the

matrix A so as to use this method.

Determinant of the matrix A:

 ∑

 (2.13)

where

 : The determinant of the matrix A with the ith row and jth column removed.

General solution of equation is given by:

 |

| [] (2.14)

This solution requires evaluating the determinant of the matrix A as well as an

augmented matrix where the jth column has been replaced by the elements of the

constant vector.

22

CHAPTER THREE

EVALUATION

3.1 Data Collection

Data Collector application is developed for rapid data collection. The data were

collected in set of 200 samples for each symbol using this application. The flow of

data collection steps are illustrated Figure 3.1.

Figure 3.1 The flow of data collection steps.

First, the system is initialized, and allows users to input strokes. Input strokes are

preprocessed and features are extracted. Then features are stored in dataset file. The

dataset file is text file that contains a list of features.

23

3.2 Training and Recognition

The flow of training steps are illustrated Figure 3.2.

Figure 3.2 The flow of training steps.

The dataset file is loaded after the system is initialized. Then model data is

generated from dataset which is computed according to k-nearest neighbors

algorithm.

24

The flow of recognition steps are illustrated Figure 3.3.

Figure 3.3 The flow of recognition steps.

The model data file is loaded after the system is initialized. Interface of the system

allows users to input strokes. Input strokes are preprocessed and features are

extracted. Distances are calculated. Then, nearest symbol is found.

3.3 Data Collector Application

 Data Collector android application is developed. It provides a graphical user

interface for collecting data, and it is used for rapid data collection. A screenshot of

the application is shown in Figure 3.4.

25

Figure 3.4 Screenshot of the Data Collector application.

The application allows the user to draw samples of each symbol using stylus or

finger. It creates dataset file and builds model data using k-nearest neighbors

algorithm. It also supports to recognize a symbol according to model data for testing.

The user interface of application contains the components given in Table 3.1.

Table 3.1 Descriptions for basic components of Data Collector application.

Component

Description

Draw Area

Allows the user to draw symbols for data

collection.

Display Area

Displays a sample which is selected.

Symbol List List of the name of symbols.

Sample List

List of file names of collected sample.

Clear

Clear the draw area.

Add Sample

Create a sample file for drawing symbol.

Delete Sample

Delete a sample file which is selected.

Train

Allows the user to generate dataset and

model data from raw data.

Recognize Allows the user to test model data.

26

The application uses symbol map file. This file stores all symbols’ information.

New symbols can be added to the system or existing symbols can be updated by

editing the symbol map file. An example of a symbol map file is given in Figure 3.5

Figure 3.5 An example of a symbol map file. A row of file consists of symbol name, symbol and type.

3.4 Math Solver Application

Math Solver android application is developed. It provides a graphical user

interface for online handwritten mathematical expression recognition system. It

supports Turkish and English language and multiline for entering multiple equations.

OpenCV Machine Learning Library (MLL) is used for the k-nearest neighbors

algorithm implementation in the application. The current version can recognize

spaced discrete handwritten symbols. Besides, current version also supports

27

horizontal pairs, subexpression, superscript rules and performs calculations.

Screenshots of the Math Solver are shown in Figure 3.6, 3.9 and 3.10.

Figure 3.6 Screenshot of the Math Solver application for simultaneous linear equations.

Table 3.2 Descriptions for basic components of Math Solver application.

Component

Description

Draw Area

Allows the user to draw mathematical

expressions.

Raw Data Field

Displays the raw text expressions.

AsciiMathML Field

Displays the AsciiMathML text

expressions.

MathML Field

Displays the MathML text expression.

28

Table 3.2 Descriptions for basic components of Math Solver application. (cont.)

Draw Stroke Enables pen mode which allows the user

to draw strokes.

Delete Stroke Enables eraser mode which allows the

user to remove strokes.

Clear Clear the drawing area.

TR/EN Change language.

Convert Converts input expressions which are in

draw area to text expressions and creates

convert file.

Solve Solves input expressions which are

converted to text and creates solve file.

Load DataModel/Train Loads model data which is generated in

recognition module.

The application produces a convert file. A convert file stores text expressions

corresponding to the input expressions drawn in the application area. Convert file of

the input expression given in Figure 3.6 is demonstrated in Figure 3.7.

The application also produces a solve file. Solve file stores results of converted

input expressions. Solve file of the same expression is given in Figure 3.8.

29

Figure 3.7 Convert file contents.

Figure 3.8 Solve file contents.

30

Figure 3.9 Screenshot of Math Solver application for complex expression which consists of horizontal

pairs, superscript and subexpression rules.

Figure 3.10 Screenshot of the Math solver application for calculation with no unknown and high

degree equation.

31

CHAPTER FOUR

RESULTS

K-nearest neighbors and neural networks algorithms are used in the system.

Results of both algorithms are compared in order to determine the classification

algorithm. Both algorithms are tested on the same dataset. Dataset has 28 symbols

and each symbol has 200 samples. %75 of dataset is set for training and %25 for

testing. Accuracy of k-nearest neighbors algorithm is 96.71 percent, while accuracy

of neural networks algorithm is 94.42 percent. All symbols except the ones that are

similar in shape are recognized with high accuracy. Recognition results of k-nearest

neighbors and neural networks are shown in the following tables.

Table 4.1 Recognition results of k-nearest neighbors for digits.

Symbol Class Result Accuracy Rate

True False False False

0

0 %100

50

1

1 0 2 y %86

43 5 1 1

2

2 %100

50

3

3 %100

50

4

4 %100

50

5

5 %100

50

6

6 4 8 %88

44 1 5

7

7 %100

50

8

8 %100

50

9

9 y %96

48 2

32

Table 4.2 Recognition results of k-nearest neighbors for lower case letters (Latin alphabet).

Symbol Class Result Accuracy Rate %

True False False False

a

a 0 %98

49 2

b

b %100

50

c

c 0 (%92

46 1 3

d

d %100

50

x

x ∝ θ * %94

47 1 1 1

y

y %100

50

z

z %100

50

Table 4.3 Recognition results of k-nearest neighbors for Greek symbols.

Symbol Class Result Accuracy Rate %

True False False False

∝

∝ %100

50

β

β 5 %98

49 1

θ

θ %100

50

Table 4.4 Recognition results of k-nearest neighbors for operators.

Symbol Class Result Accuracy Rate %

True False False False

*

* %100

50

/

/ 2 - %96

48 1 1

33

Table 4.4 Recognition results of k-nearest neighbors for operators. (cont.)

Symbol Class Result Accuracy Rate %

True False False False

+ + y %98

49 1

-

- 0 / %68

34 1 15

√

√ %100

50

(

(0 %96

48 2

)

) %100

50

=

= %100

50

Table 4.5 Recognition results of neural networks for digits.

Symbol Class Result Accuracy Rate

True False False False

0

0 2 %98

49 1

1

1 0 y %78

39 5 6

2

2 %100

50

3

3 %100

50

4

4 %100

50

5

5 %100

50

6

6 0 8 √ %90

45 1 2 2

7

7 %100

50

34

Table 4.5 Recognition results of neural networks for digits. (cont.)

Symbol Class Result Accuracy Rate

True False False False

8 8 1 6 %96

48 1 1

9

9 3 y %92

46 1 3

Table 4.6 Recognition results of neural networks for lower case letters (Latin alphabet).

Symbol Class Result Accuracy Rate %

True False False False

a

a 0 %96

48 2

b

b %100

50

c

c (%88

44 6

d

d %100

50

x

x 1 β θ %94

47 1 1 1

y

y) %98

49 1

z

z %100

50

Table 4.7 Recognition results of neural networks for Greek symbols.

Symbol Class Result Accuracy Rate %

∝

∝ %100

50

β

β z %98

49 1

θ

θ %100

50

35

Table 4.8 Recognition results of neural networks for operators.

Symbol Class Result Accuracy Rate %

True False False False

*

* %100

50

/

/ 2 9 %96

48 1 1

+

+ z %98

49 1

-

- √ /) %26

13 1 34 2

√

√ %100

50

(

(0 %96

48 2

)

) %100

50

=

= %100

50

According to recognition results, some symbols (such as -, /, c, () which are very

similar in handwriting expressions, are recognized with low accuracy rates. Those

result rates can be increased by selecting better features and collecting more samples.

In case of false symbol recognition, user interface of the system allows the user to

correct errors by stroke deletion and re-drawing.

Accuracy rates of k-nearest neighbors algorithm are given in Table 4.9 for

different k values.

Table 4.9 Accuracy rates of k-nearest neighbors algorithm for different k values.

k Result Accuracy Rate %

True False
50 1270 130 %90.71

30 1306 94 %93.28

20 1319 81 %94.21

15 1331 69 %95.07

36

Table 4.9 Accuracy rates of k-nearest neighbors algorithm for different k values. (cont.)

k Result Accuracy Rate %

14 1329 71 %94.92

13 1333 67 %95.21

12 1331 69 %95.07

11 1335 65 %95.35

10 1334 66 %95.28

9 1340 60 %95.71

8 1340 60 %95.71

7 1344 56 %96.00

6 1350 50 %96.42

5 1350 50 %96.42

4 1351 49 %96.50

3 1351 49 %96.50

2 1354 46 %96.71

1 1353 47 %96.64

Accuracy rates of neural networks algorithm are given in Table 4.10 for different

number of hidden layer neurons.

Table 4.10 Accuracy rates of neural networks algorithm for different number of hidden layer neurons.

Number of hidden layer

neurons

Result Accuracy Rate %

True False

8 461 939 %31.92

10 482 918 %34.42

16 498 902 %35.57

20 527 873 %37.64

24 797 603 %56.92

32 937 463 %66.92

35 1282 118 %91.57

36 1322 78 %94.42

37 1144 256 %81.71

38 899 501 %64.21

40 934 466 %66.71

48 1000 400 %71.42

72 1046 354 %74.71

76 1197 203 %85.50

144 1305 95 %93.21

Current system successfully supports three mathematical rules: horizontal pairs,

subexpression and superscript. Other rules could be easily incorporated in to the

system in order to parse complex expressions such as fractions.

37

100 equations which consist of 30 calculations with no unknown, 30 high degree

equations, 40 simultaneous linear equations, are entered in the system. The system

successfully solves all equations that are successfully recognized.

38

CHAPTER FIVE

CONCLUSION

An online handwritten mathematical expression recognition system is developed

within the scope of this study. Symbol detection, symbol recognition, parsing,

exporting and solving techniques are introduced for the online recognition system.

The first module of the system architecture is symbol detection. Minimum

spanning tree approach is applied to group raw strokes into symbols. Thus, raw

strokes are converted to unknown symbols using distance between strokes as

threshold.

The second module of the system architecture is symbol recognition which

consists of three submodules. Unknown symbols are sent to preprocessing for

standardization of strokes. For this, normalization processes is applied to strokes of

unknown symbols such as stroke shifting, scaling, etc. Then standardized unknown

symbols are sent the feature extraction. Here, some representative data about strokes

are obtained. Finally, the obtained features are computed based on k-nearest

neighbors algorithm and nearest symbols are found in recognition.

The third module of the system architecture is parsing. The aim of this module is

to construct an expression tree according to predefined rules which determine

geometrical relationships of symbols.

The fourth module of the system architecture is exporting. Math text expressions

are generated according to the expression tree structure in this module.

The last module of the system architecture is solving. This module evaluates math

text expressions and performs calculations.

Data Collector and Math Solver applications are developed on Android operating

system in order to implement the overall system. Math Solver application allows the

39

user to divide draw area into lines so as to enter system of linear equations. It also

supports Turkish and English languages.

The applications are tested on Samsung N9000 smartphone. The smartphone

configuration is 1.9 ghz quad core processor, 3 gb ram and 5.7" 1920 x 1080 pixels

display with 386 ppi resolution and s-pen stylus. It is well enough for applications of

online mathematical expression recognition system.

All symbols except the ones that are similar in shape are recognized with high

accuracy. Overall accuracy of the system is 96.71 percent. The system could consider

other information about symbols in order to increase the rate of recognition. This

information could be the ratio of symbol size relative to each other and symbol

position relative to baseline.

If smartphone and tablets are used more effectively in education, problems

regarding mathematical expressions recognition will be made more attractive for

researchers.

40

REFERENCES

Collins, G. W. (2003). Fundamental numerical methods and data analysis. Case

Western Reserve University.

Dougherty, G. (2013). Pattern recognition and classification: An introduction. New

York: Springer Science Business Media

Gray, J. (2007) ASCIIMathML: Now everyone can type MathML. MSOR

Connections, 7 (3), 26-30.

Jayalakshmi, N. (2007). Data structure using C++. New Delhi: Firewall Media.

LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., et al. (1995).

Comparison of learning algorithms for handwritten digit recognition. Bell

Laboratories, Holmdel, NJ 07733, USA.

Les, Z., & Les, M. (2015). Shape understanding system: Machine understanding and

human understanding. Switzerland: Springer International.

Matsakis, N. (1999). Recognition of handwritten mathematical expressions. Master’s

Thesis, Massachusetts Institute of Technology, Cambridge, MA.

Neural Networks (n.d.). Retrieved May 17, 2015, from

http://docs.opencv.org/2.4.9/modules/ml/doc/neural_networks.html

Plamondon, R., & Srihari, S.N. (2000). Online and off-line handwriting recognition:

A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22 (1), 63 – 84.

http://docs.opencv.org/2.4.9/modules/ml/doc/neural_networks.html

41

Tapia, E., & Rojas, R. (2004). Recognition of on-line handwritten mathematical

expressions using a minimum spanning tree construction and symbol dominance.

Freie Universit¨at Berlin, Institut für Informatik.

Tappert, C.C., Suen, C.Y., & Wakahara, T. (1990). The state of the art in online

handwriting recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12 (8), 787 – 808.

Wright, F. J. (2000). Interactive mathematics via the web using MathML. SIGSAM

Bulletin, 34 (2), 49 – 57.

Yu, F., Lu, Z., Lou, H., & Wang, P. (2010). Three-dimensional model analysis and

processing. Hangzhou: Zhejiang University Press.

