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EXTRACTION OF VASCULAR TREES FOR LIVING DONATED LIVER 

TRANSPLANTATION 

 

ABSTRACT 

 Pre-surgical evaluations of living donated liver transplantation require accurate 

segmentation of liver vasculature. Expert radiologists carry out this procedure either 

manually or using semi-automatic software tools. Manual delineation is very time 

consuming and tedious work and segmentation accuracy is largely dependent on the 

expert’s abilities and very susceptible to human error. Semi-automatic methods are 

faster, however require advanced interaction mechanisms and iterative optimization. 

Thus, there is a need for automated methods. 

Unfortunately, the vascular tree of the liver is very complex and show high 

variability. Moreover, the contrast-enhanced images may contain significant amount 

of artifacts and task associated difficulties. Therefore, the development of a fully 

automatic method becomes a challenging task. Currently, there is no well-established 

datasets for comparative analysis of existing methods. This makes is it hard to propose 

improvements due to the lack of qualitative analysis of different techniques on a 

benchmark dataset.   

In this thesis, first, a database, which consists of 35 abdominal computed 

tomography angiography datasets, is collected and hepatic and portal veins are 

annotated manually. The process is carefully supervised by an experienced radiologist. 

Some of the well-known vessel segmentation methods were tested and their 

performances were analyzed. Finally, deep learning based methods were applied to 

reflect the performance of emerging deep models. After extensive experimentation, 

DeepMedic architecture is shown to achieve the best performance. An automatic 

system, which employs combinations of multi planar reconstructions, is developed. 

The obtained results are shown to outperform both the existing methods and the 

individual utilization of deep models.  

Keywords:  Liver vascular tree, segmentation, computed tomography
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CANLI VERİCİLİ KARACİĞER NAKLİ İÇİN KARACİĞER DAMAR 

AĞACI BÖLÜTLEME 

 

ÖZ 

 Canlı vericili karaciğer nakli öncesinde karaciğer damar ağacının doğru bir şekilde 

bölütlenmesi gerekir. Uzman radyologlar bu prosedürü manuel olarak veya yarı 

otomatik yazılım araçlarını kullanarak gerçekleştirmektedir. Elcil etiketleme çok 

zaman alıcı ve sıkıcı bir işlemdir ve yöntemin doğruluğu, büyük ölçüde uzmanın 

yeteneklerine bağlıdır ve insan hatasına oldukça duyarlıdır. Yarı otomatik yöntemler 

daha hızlıdır, ancak gelişmiş etkileşim mekanizmaları ve yinelemeli optimizasyon 

gerektirir. Bu nedenle, otomatik yöntemlere ihtiyaç vardır. 

Ne yazık ki, karaciğerin damar ağacları oldukça karmaşık ve hastalar arası 

değişkenlik gösteren yapılardır. Üstelik, kontrastı arttırılmış görüntüler önemli 

miktarda gürültü içerebilmektedirler. Bu nedenlerden dolayı, tam otomatik bir 

yöntemin geliştirilmesi zorlu bir görev haline gelir. Halihazırda, mevcut yöntemlerin 

karşılaştırmalı analizi için sağlam bir veri seti bulunmamaktadır. Bu durum, bir 

değerlendirme veri kümesi üzerinde farklı tekniklerin nicel analizlerinin yapılmamış 

olmasından dolayı iyileştirme önermeyi zorlaştırmaktadır. 

Bu tez çalışmasında ilk olarak 35 abdominal bilgisayarlı tomografi anjiyografi veri 

kümesinden oluşan bir veri tabanı toplanmış, hepatik ve portal damarlar elcil olarak 

etiketlenmiştir. İşlem deneyimli bir radyolog tarafından dikkatle denetlenmiştir. 

Bilinen damar bölütleme yöntemlerinden bazıları test edilmiş ve performansları analiz 

edilmiştir. Son olarak, geliştirilen derin modellerin performansını yansıtmak için derin 

öğrenme temelli yöntemler uygulanmıştır. Kapsamlı deneylerden sonra, DeepMedic 

mimarisinin en iyi performansı sağladığı görülmüştür. Çok düzlemsel 

rekonstrüksiyonların kombinasyonlarını kullanan bir otomatik sistem geliştirilmiştir. 

Elde edilen sonuçların hem mevcut yöntemlerden hem de derin modellerin bireysel 

kullanımından daha iyi performans gösterdiği gözlemiştir. 

Anahtar kelimeler:  Karaciğer damar ağacı, bölütleme, bilgisayarlı tomografi 
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CHAPTER ONE   

INTRODUCTION 

 

Accurate analysis of liver vasculature in three dimensions (3D) is essential for 

variety of medical procedures – e.g. preoperative planning, treatment of hepatic 

diseases, computer-aided diagnosis.  Moreover, it is also used for medicine education, 

which significantly benefits from advanced models and realistic simulations. The 

details of some particular applications can be given as follows: 

Living donated liver transplantation is a surgical operation where part of the donor’s 

liver is transplanted to another patient. Pre-surgical planning for transplantation 

requires precise knowledge of liver vascular morphology (Selver et al., 2008). 

Furthermore, the donor’s suitability for the operation can be determined by carrying 

out a volumetric approximation of the liver with vasculature analysis, thus providing 

an understanding of postoperative liver function (Selle, Preim, Schenk, & Peitgen, 

2002).  

Localization of the liver lesions is based on the lesion’s position relative to the 

surrounding hepatic vessels (Fasel et al., 1988). Hepatocellular carcinoma is the most 

common liver cancer and is the primary source of cancer-related deaths worldwide 

(Balogh et al., 2016). The most common therapy for hepatocellular carcinoma is 

radiofrequency treatment. Blood vessels around the tumor can disturb the thermal 

process by acting as coolers. Therefore, the knowledge of the vessels neighboring the 

tumor is crucial in order to determine the most suitable path for the insertion of the 

interstitial applicator (Esneault, Lafon, & Dillenseger, 2010).  

In the late stages of the liver cancer, the only cure is the liver resection, which is a 

surgical operation that requires the doctors to remove the diseased tissue. Such an 

operation necessitates the patients to meet a list of preconditions. Patients’ suitability 

for the procedure depends on the position and the size of the tumor, as well as the 

postoperative liver function, which is another critical point to consider (Reitinger, 

Bornik, Beichel, & Schmalstieg, 2006). In this regard, detailed analysis of the liver 

vasculature should consists of all three vessel sub-systems (Abdel-Misih, & 

Bloomston, 2010): 
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1. Hepatic vessels that transport de-oxygenated blood from the liver to the heart, 

2. Portal vessels that transport nutrient-rich blood from intestines to the liver, 

3. The hepatic artery carries oxygenated blood from the heart to the liver. 

Occlusion of one of these vessels can obstruct the drainage or supply for some liver 

parts (Lehmann et al., 2008).   

Computer tomography angiography (CTA) is the most common radiographic 

imaging technique to acquire the liver vascular tree. An intra-vascular contrast agent 

is injected to the patient before the scanning, which is more visible on x-ray images 

and causes vessels to appear brighter compared to the liver parenchyma. Form image 

processing point of view, this process enables enhanced intensity levels for blood filled 

regions and makes segmentation easier for the main branches. 

During routine clinical workflow, vessel segmentation is mostly carried out by 

radiologists, who manually annotate all vessels on abdominal multi-slice CTA slices. 

This process is a tedious, time-consuming work that is susceptible to human error. 

Therefore, automatic liver-vessel segmentation is an area of interest for a lot of 

researchers. Vessel structure of the liver is very complex and varies a lot for each 

individual, to the point where it differs from commonly accepted structures. 

Additionally, the existence of tumors and previous operations on the liver can alter 

the usual vessel structure (Conversano et al., 2011).  

Semi-automatic methods like region growing, fast marching or centerline tracking 

ease and speed up the task, reduce the manual interaction and lower the inter-expert 

variability (Lesage, Angelini, Bloch, & Funka-Lea, 2009). Region growing is method 

with lower computational complexity and relatively higher speed, whose main 

principle is to collect voxels that have similar intensity levels together. Jiang et al. 

(2013), proposed a region growing vessel segmentation method based on the Fourier 

transform of the vascular region. However, these methods require advanced interaction 

mechanisms with at least one expert clinician and iterative optimization of the 

segmentation results to reach the desired level of accuracy.  
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Unfortunately, angiographic acquisitions show high variations in image quality 

and, contrast level of vessels due to the changes in imaging time and conditions.  We 

classify the reasons of these variations in image quality as follows: 

1. The miscalculation of timing: The time period between the injection of the 

contrast agent and the beginning of the scanning is miscalculated. Therefore, 

contrast agent is not in the desired location of the vessel during the scanning 

and enhancement of the vessels are not achieved. As a result, obtained CTA 

images show poor quality and vessel borders are not clearly identifiable. Figure 

1.1 (a) demonstrates an example CTA slice with miscalculated timing, where 

vessels are almost invisible.  

2. Artefacts: Artefacts and noise might further drop the quality of rendering. 

Hepatic and portal vessels may look connected, some parts of parenchyma may 

appear brighter and look like vessels, noise may obscure the appearance of 

vessels. As an example, Figure 1.1 (b) presents a CTA slice, where top part of 

the liver appears even brighter that the actual vessels.  

3. Interslice distance: High slice thickness alters the adequate appearance of 

vessels in 3D. Figure 1.1 (c) is the coronal view of a liver that was reconstructed 

from axial plane images. High interslice distance causes low quality vessel 

appearance, which is more visible on the left side of the inferior vena kava. 

4. Transient hepatic attenuation: The liver is the only organ with dual blood 

supply. Approximately 70% of its perfusion comes from the portal vein, and 

30% comes from the hepatic artery (Wong, Desser, & Jeffrey, 2008).  Transient 

hepatic attenuations are areas of enhancement on CTA that occur as results of  

localized variations in the proportion of hepatic arterial and portal venous blood 

supply. Figure 1.1 (d) demonstrates an example, where transient hepatic 

attenuation is marked with red arrows. Enhanced area is similar looking to the 

surrounding vessel tissue and may cause false vessel segmentation results. 

5. Non-uniform attenuation: Non-uniform blood velocity in vessel complicates the 

vascular imaging (Murphy, Aghayev, & Steigner, 2018). A short acquisition 

time is preferable in order to obtain uniform opacification on vessels. 

Investigation the example given in Figure 1.1 (e), it can be seen that vessels on 

the right hand side of the liver have lower intensity values. This phenomenon 
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may misguide the methods whose operation principle are based on vessels’ 

intensities.  

Besides the angiographic acquisition, computed tomography itself has general 

drawbacks and limitations. Artefacts may seriously degrade the imaging quality.  

Physics-based artefacts are caused due to the physical process of CT acquisition. 

Patient-based artefacts result from such reasons as patient movements or metal 

objects that are present in or on the patient. Scanned-based artefacts are caused due 

to the imperfections in scanner functions (Barrett & Keat, 2004). Beam hardening, 

partial volume and undersampling are physics-based artefacts. Figure 1.1 (f) 

presents a slice with beam hardening, an artefact that occurs when the beam passing 

through the tissues with different density causes dark density lines (Chen & Chen, 

1999). 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 1.1 Examples of quality losses and artifacts. (a) Quality loss due to miscalculation of timing, (b) 

artefact causing top part of the parenchyma to appear brighter, (c) high inter slice thickness, (d) transient 

hepatic attenuation, (e) non uniform attenuation, (f) beam hardening 

This thesis consists of six chapters. First chapter describes the purpose of the study, 

clinical importance of liver vessel segmentation. A literature analysis is made on vessel 

segmentation methods and grand challenges are described in chapter two. Third 

chapter presents the various performance evaluation metrics for vessel segmentation 

methods. VEELA dataset is described in fourth chapter. The process of creation of the 

dataset, and encountered problems are presented. Results of four segmentation 

methods after tested on the abdominal CTA dataset and compared to the ground truth 

are described in chapter five. Sixth chapter describes the deep learning based semantic 

segmentation method DeepMedic, this method’s training process for the vessel 

segmentation problem, and the developed approach for combining the DeepMedic 

results and increasing the segmentation performance. Seventh chapter is the 

conclusion. 
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CHAPTER TWO  

LITERATURE ANALYSIS 

 

Many methods were suggested for this task.  

One of the most commonly used vessel segmentation methods was proposed by 

Frangi & Niessen (1998).  This method focuses on detection light tubular structures 

on a dark background (or dark tubular structures on light background) and depends on 

the eigenvalues decomposition of the Hessian matrix of the 3D data. If three 

eigenvalues (𝜆1, 𝜆2, 𝜆3) are assumed to follow |𝜆3| > |𝜆2| > |𝜆1| for each voxel, then 

the vesselness condition can be written as |𝜆1|  ≈ 0, |𝜆1| < |𝜆2|, 𝜆2 ≈ 𝜆3. Many vessel 

segmentation methods are based on Hessian matrix eigenvalues. However, these 

methods were not tested on liver vasculature due to its complex structure.  

Many methods depend on the intensity difference between vessels and parenchyma, 

thus in cases where vessel intensity changes throughout the CTA slices due to before 

mentioned artefacts segmentation performances drop significantly. 

A lot of new studies on biomedical segmentation field make use of deep learning 

algorithms. DeepMedic (Kamnitsas et al., 2017) is a 3D deep learning algorithm that 

was developed for brain lesion segmentation, and obtained 89.8% DSC value for 

BRATS2015 challenge. DeepVess (Haft-Javaherian et al., 2019) focuses on brain 

vasculature segmentation on 3D in vivo multiphoton microscopy images and managed 

to get 81.63% DSC scores with post-processing. 3D U-net (Çiçek, Abdulkadir, 

Lienkamp, Brox, & Ronneberger, 2016) is deep learning algorithm that can be trained 

with sparse annotation, the algorithm was tested on Xenopus kidney dataset and 

achieved an average of 0.863 Intersection over Union (IoU). Many other segmentation 

algorithms are based on 3D-Unet structure. Overall, deep learning algorithms show 

promising results. They are very good at learning intricate structures and determining 

the relations between several modalities. Furthermore, they are fed with the raw data, 

do not require the user to determine features of the data. However, liver vessel 

segmentation with deep learning has not been a subject in any recent publications.  
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Besides the complexity of the problem, a gold standard ground truth dataset does 

not exist. There are known vessel datasets. Peripheral Artery: Vein Enhanced 

Segmentation (PAVES) includes magnetic resonance angiography volumes of the 

lower leg where arterial and venous vasculature can be observed. Digital retinal images 

for vessel Extraction (DRIVE) dataset present 20 train and 20 test jpeg compressed 

images of the retinal vasculature. However, to the best of our knowledge, a publicly 

available liver vasculature dataset does not exist. Many liver-vessel segmentation 

papers test their methods on some kind on annotated data.  (Lorigo et al., 2001) state 

that the performance of the developed liver-vessel segmentation method was 

qualitatively assessed due to the difficulty of obtaining ground truth for a dataset of 

this level complexity. 

A lot of papers are getting published every year on various subjects in the 

biomedical field. Many of these papers’ tasks were tackled by previous researches. 

However, obtaining a fair comparison of these methods is a difficult task. New papers 

often times include the performance results of older methods; however adaptation of 

the methods may differ and present unfair performance results for otherwise successful 

methods. Furthermore, evaluation of the developed methods are often times carried 

out on datasets that are not publically available and the credibility of these datasets 

cannot be assessed. Usage of the “bad” datasets lead to misleading achievements 

(Jimenez-del-Toro, Müller, & Krenn, 2016). Grand challenges provide public datasets 

for shared problems, thus allowing the comparison of many researchers’ works on 

uniform fields. Many of the submitted methods are published, therefore creating novel 

solutions for long standing problems.  

Gliomas are the most common brain tumors (Schwartzbaum, L Fisher, Aldape, & 

Wrensch, 2006). There is a lot of research targeting the disease; however, there is still 

need for accurate clinical diagnosis methods. Multimodal Brain Tumor Segmentation 

Challenge (BRATS), organized in MICCAI2012 (Menze et al., 2015) for this issue. 

Participants were provided with an annotated dataset consisting of 65 multi-contrast 

magnetic resonance (MRI) scans of glioma patients and 65 artificial scans generated 

by a simulation software. Challenge received multiple algorithms that perform better 

on different tumor sub-regions. An overall high performance was achieved by fusing 
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together several successful algorithms, and fused algorithm performed better on all sub 

regions compared to the individual methods.  Annotated dataset is still publically 

available, allowing the subject to be tackled by many researchers.  

Shape, size and appearance variations of the anatomical structures are often the 

results of some underlying diseases. Segmentation of the structures is done manually 

and there is need for an automated method. VISCERAL anatomy benchmark 

(Jimenez-del-Toro et al., 2016) included the results of state of art methods for 

segmentation of anatomical structures. All algorithms were implemented in a cloud 

and were tested by challenge administrators. A manually annotated dataset with 120 

computed tomography (CT) and MRI volumes that contained 1295 anatomical 

structures in total was prepared for the challenge. Unlike the previous similar 

challenges, the test set was not available for the participants, furthermore challenge 

aimed the segmentation of the all anatomical structures as opposed to specific organs 

and a region of interests were not provided. Results of the participating algorithms 

were fused in order to create a Silver Corpus and the segmentation on test dataset 

performed better than all algorithms in the benchmark. The dataset, Silver Corpus and 

the evaluation framework is still publically available.   

Breast cancer is the most frequent cancer type among women (Bándi, Geessink, & 

Manson, 2019).  CAMELYON17 challenge was organized in order to provide a 

uniform comparison field for automated cancer metastases detection in lymph nodes 

algorithms. A train set consisting of 899 whole-side images (WSIs) was provided for 

the participants and submitted algorithms were tested on a test set with 500 WSIs. 37 

algorithms were submitted, all methods were based on deep learning and post-

processing. The kappa metric was used for the evaluation, participant performances 

varied between 0.89 to 0.13 kappa values and combination algorithms formed with top 

performing methods lead to the best performance results with up to 0.93 kappa values. 

Overall, it can be concluded that apart from providing credible datasets and fair 

evaluation for the researchers, challenges often times useful in generating ensemble 

algorithms that perform better than individual methods. Many other challenges on 

various topics were organized throughout the years, (i.e. MRI cardiac multi-structure 

segmentation (Bernard, Lalande, & Zotti, 2018), retinal optical coherence tomography 



9 

fluid detection and segmentation (Bogunović, Venhuizen, & Klimscha, 2019), 

segmentation of white Matter hyperintensities (Kuijf, Biesbroek, & de Bresser, 2019), 

however to the best of our knowledge there have been no challenges on the vessel 

segmentation.  
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CHAPTER THREE  

  EVALUATION METRICS 

 

The success of vessel segmentation methods is evaluated with respect to ground 

truth data that was manually annotated by an expert radiologist.   

Evaluation metrics mainly use values true positive (TP), false positive (FP), true 

negative (TN) and false negative (FN). Positive refers to voxels that are classified as 

vessel and negative refers to voxels that are classified as background.  

Most commonly used performance evaluation metrics for blood vessel 

segmentation are accuracy, sensitivity (true positive rate), specificity and dice 

similarity coefficient (DSC). Accuracy is the ratio of true predictions to all predictions. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                    (3.1) 

Sensitivity measures the ratio of correctly identified vessels to all vessels. 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3.2) 

 DSC is an overlap measure where twice the number of voxels in the intersection 

of segmentation and ground truth data is divided by the total number of true voxels in 

both segmentation and ground truth data. 

DSC =
|𝑋∩𝑌|

|𝑋|+|𝑌|
=

2𝑇𝑃

𝐹𝑃+𝐹𝑁+2𝑇𝑃
   (3.3) 

where X and Y are two binary datasets. 

Specificity is another common measure that indicates the ratio of correctly labeled 

negative voxels. Low specificity value for a segmentation algorithm indicates a high 

false positive rate (FPR) (Moccia, De Momi, El Hadji, & Mattos, 2018).  

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
    and     FPR =

𝐹𝑃

𝑇𝑁+𝐹𝑃
   (3.4) 
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Positive predictive value (PPV) is the probability that a voxel that is identified as 

positive by the algorithm belongs to a vein. Negative predictive value (NPV) is the 

probability that a voxel that is identified as negative by the algorithm is a part of the 

background.  

PPV = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    and     NPV =

𝑇𝑁

𝑇𝑁+𝐹𝑁
   (3.5) 

Apart from comparing voxels of the segmentation and ground truth, considering the 

structural constraint of a vessel is useful for the evaluation. Gegúndez-Arias, Aquino, 

Bravo, & Marín (2012) propose three evaluation metrics.  It is known that the vessels 

are continuous structures, hence it is expected that the number connected components 

in the segmentation results to be very few, ideally one. Therefore the connectivity 

measure penalizes the algorithm according to the difference between connected 

components in the result and in the ground truth.  

Connectivity =  1 − min (1,
|#𝐶(𝑆𝐺)−#𝐶(𝑆)|

#(𝑆𝑔)
)  (3.6) 

Where min is the minimum function, 𝑆𝐺 is the ground truth data and 𝑆 is the 

segmentation result.  #𝐶(𝑆𝐺) and #𝐶(𝑆) are the number of connected components in 

ground truth and segmentation result respectively. #(𝑆𝑔) is the total number of voxels 

of the ground truth. 

Since ground truth images are often manually annotated vessel borders and width 

may show slight variations for each annotator. Therefore area measure evaluates the 

overlapping areas between the segmentation and ground truth while also providing a 

tolerance for slight width differences. 

Area =
#((𝛿𝛼(𝑆)∩𝑆𝐺)∪(𝑆∩𝛿𝛼(𝑆𝐺)))

#(𝑆∪𝑆𝐺 )
   (3.7) 

𝛿𝛼 is the morphological dilation operation with a disc of  𝛼 radius. The value of 𝛼 

determined the level of tolerance to the width variations. 

Length factor measures the level of similarity in terms of length.  
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Length =
#((𝜑(𝑆)∩𝛿β(𝑆𝐺))∪(𝛿𝛽(𝑆)∩φ(𝑆𝐺)))

#(𝜑(𝑆)∪𝜑(𝑆𝐺))
    (3.8) 

where 𝜑 is the skeletonization operation and 𝛿𝛽 is the morphological dilation 

operation with a disc of  𝛽 radius. 

Cohen’s kappa coefficient (𝜅) is the measure of agreement between two observers 

(Ben-David, 2008).  If segmentation algorithm is accepted as the observer number one 

and the ground truth is accepted as observer number two, kappa will define the success 

of the algorithm while also taking into account the of agreement between two classes 

occurring by chance.  

𝜅 =
Accuracy−𝑝𝑒

1−𝑝𝑒
    (3.9)  

where 𝑝𝑒 is the probability of agreement occurring by chance. 
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CHAPTER FOUR   

VESSEL EXTRACTION AND EXTRICATION FOR LIVER ANALYSIS 

DATASET – VEELA 

 

4.1 VEELA 

Our datasets were obtained randomly from Dokuz Eylül University Radiology 

Department’s Picture Archiving and Communication System (PACS). 35 Abdominal 

CTA volumes consist of 12-bit DICOM images with 512 x 512 resolution. Slice 

thickness of datasets vary between 2 and 3.2 mm, with 90 slices per volume on 

average. Pixel spacing are around 0.68 x 0.68 mm. 

Scans belong to 22 female and 13 male potential liver donors. The patient ages 

ranged from 18 to 57, with an average of 37 years.  

4.2 Extraction of Liver Vascular Trees 

For the manual segmentation we focused on hepatic and portal vessels. Annotations 

were done for 35 CTA volumes for each individual slice with an open source program 

3D Slicer (Fedorov, Beichel, & Kalpathy-Cramer, 2012). Datasets were loaded to the 

program with the DICOM module, noise was filtered with curvature anisotropic 

filtering. By adjusting window level and width, vessel were made more visible. Figure 

4.1shows an example labelling process. 
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Figure 4.1 An example labeling process in 3D slicer 

Hepatic vessels were labeled with blue and portal vessel were labeled with red 

color. Some of the labeled slices are given in Figure 4.2. 
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Figure 4.2 Labeled example slices 
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The program generated 3D models of the labeled vessels and examining these 

models allows us to control the labels for continuity. Examples of 3D models for portal 

and hepatic veins separately are given in Figure 4.3. Figure 4.4 demonstrates some of 

the computer generated example models. 

. 

  

(a) (b) 

  

(c) (d) 

 

Figure 4.3 Example 3D models for separate vein systems for (a) a hepatic vein system, (b) a portal vein 

system, (c) close up of a hepatic vein, (d) close up of a portal vein 
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(a) (b) 

  

(c) (d) 

 
 

(e) (f) 

 

Figure 4.4 Example 3D models 
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All manual segmentations were controlled by an expert radiologist in axial, coronal 

and sagittal planes. 

4.3 Challenges encountered during labeling 

Manual segmentation process requires a lot of attention, it is very tedious and time 

consuming. Labeling of each dataset takes around 8-10 hours together with required 

additional time during which the labels are being controlled by another expert.  

Main issues encountered during segmentation are caused due to the unavoidable 

reasons affecting the imaging quality. Due to the routine clinical standards of 

acquisition, some visual quality degradations occur because of the high slice thickness.  

For some datasets, the time elapsed between the injection of the contrast agent and 

beginning of the scan was not correctly adjusted. This situation led to the inability to 

achieve the desired intensity differences between the vessel tissue and the liver 

parenchyma. Imaging quality loss not only prevents vessel border to be clearly 

identified, but also some visible vessel structures may appear different than their actual 

size and shape. This makes the images unsuitable as the extracted anatomical structure 

of the vessels will be erroneous. 

There are also some CTA artifacts that may cause incorrect labeling. Beam 

hardening is an artifact that occurs when the beam passing through the tissues with 

different density causes dark density lines (Boas & Fleischmann, 2012). It may cause 

distortions in the image, causing the vessel shape to be misinterpreted. 

Transient hepatic attenuations (Chen & Chen, 1999) cause some parts of the 

parenchyma to be brighter than the remaining tissue and bright areas may be 

misinterpreted as vessels.  
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CHAPTER FIVE   

APPLICATION OF COMMON VESSEL SEGMENTATION  

METHODS AND RESULTS 

 

Four vessel segmentation methods were tested for 20 CTA datasets and results were 

evaluated with respect to the manually annotated ground truth data. 

5.1 Used Methods 

5.1.1 Hessian Eigenvalues – Frangi Method 

Frangi et al. (Frangi & Niessen, 1998) proposed a vessel segmentation method 

based on eigenvalue decomposition of the Hessian matrix that detects tubular 

structures. Eigen values are calculated for each voxel in the volume and are sorted 

according to |𝜆3| > |𝜆2| > |𝜆1|. 

For a voxel to have a high vesselness value: 

(i) |𝜆1| value needs to be as small as possible, ideally zero, 

(ii) 𝜆3 and 𝜆2 values need to be high in magnitude and of the same polarity. 

Polarity of eigenvalues are determined according to the color of the vessels. For 

bright vessel structures on dark background 𝜆3 and 𝜆2 values need to be negative, for 

dark vessel structures on light background 𝜆3 and 𝜆2 values need to be positive. 

Vessels on CTA volumes are known to be bright.  

Each eigenvalue indicates the amount of change in its direction. Since vessels are 

tubular structures, the eigenvalue that follows the vessel’s direction is expected to be 

the smallest. At the same time other two eigenvalues are expected to be high at vessel 

borders due to the intensity difference. Hence, Frangi’s vesselness criteria can be 

summarized as given in (5.1): 

|𝜆1| ≈ 0, |𝜆1| < |𝜆2|, 𝜆2 ≈ 𝜆3    (5.1) 
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Three different measures are constructed using obtained eigenvalues. First measure 

ℛ𝐵 calculates the deviation from the blob-like structure, however is not able to 

differentiate line-like and plate-like structures.  

ℛ𝐵 =
|𝜆1|

√|𝜆2𝜆3|
     (5.2) 

Second measure ℛ𝐴 is the ratio of two highest eigenvalues, and distinguishes 

between plate-like and line-like structures. 

ℛ𝐴 =
|𝜆2|

|𝜆3|
      (5.3) 

First two measures make use of the geometric structure of the vessels. However it 

is known that in CTA images vessel are brighter than parenchyma. Third measure is 

calculated with the norm of Hessian matrix. 

𝑆 =  √∑ 𝜆𝑗
2

𝑗≤𝐷      (5.4) 

where D is the number of eigenvalues. 

This value is low for the background voxels and larger for the voxels that belong to 

the vessel, since at least one of the eigenvalues is going to be large.  

Finally, vesselness function can be written as: 

𝒱𝑜(𝑠) =  {
0                                                                                        if 𝜆2 > 0 or 𝜆3 > 0,

(1 − exp (−
ℛ𝐴
2

2𝛼2
)) exp (−

ℛ𝐵
2

2𝛽2
) (1 − exp (−

𝑆2

2𝑐2
)) otherwise                 

 

 (5.5) 

where 𝛼, 𝛽 and 𝑐 are tuning parameters and need to be adjusted for datasets. 

5.1.2 Hessian Eigenvalues – Jerman Method 

Jerman et al. (Jerman, Pernus, Likar, & Spiclin, 2016) proposed another method 

based on eigenvalue decomposition of the Hessian matrix. Eigenvalues are calculated 

similar to the Frangi et al. method. First, a volumetric ratio that is given in (5.6) is 

considered in order to determine spherical structures.  
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𝑉𝑅 =  |𝜆1𝜆2𝜆3| [
3

|𝜆1|+|𝜆2|+|𝜆3|
]
3

   (5.6) 

Herein by including the spherical structures, bifurcations, lesions and tumors are 

also considered. In order to enhance elongates structures, 𝜆1 is substituted with  𝜆2−𝜆1  

since 𝜆1 ≪ 𝜆2. Rounded structures where 𝜆1 ≈ 𝜆2 ≈ 𝜆3 are repressed since 𝜆2−𝜆1 

will be equal to zeros. Hence 𝜆1 is removed from the equation. 

In order to enhance the vesselness value for eigenvalues with lower magnitudes, 

𝜆3 are regularized with the scale 𝑠: 

𝜆𝜌(𝑠) = {

𝜆3                      if 𝜆3 > 𝜏max
𝑥
𝜆3(𝑥, 𝑠),      

𝜏 max
x
𝜆3(𝑥, 𝑠) if 0 < 𝜆3 ≤ max

𝑥
𝜆3(𝑥, 𝑠),

0                       otherwise                            

  (5.7) 

where 𝜏 is a regularization parameter between zero and one. Lower 𝜏 values lead to 

more intense outputs. 

In order to be able to enhance the structures with elliptic cross-sections, 𝜆𝜌 is 

substituted with 𝜆𝜌 − 𝜆2 and the response for structures with 𝜆2 ≥ 𝜆𝜌/2 is set to one. 

Finally Jerman’s vesselness function can be summarized as given in (5.8). 

𝒱𝑃 =

{
 
 

 
 0                                    if 𝜆2 ≤ 0 ⋁𝜆𝜌 ≤ 0,

1                                    if 𝜆2 ≥ 𝜆𝜌/2 > 0,

𝜆2
2(𝜆𝜌 − 𝜆2) [

3

𝜆2+𝜆𝜌
]
3

otherwise               

   (5.8) 

 

5.1.3 Multilevel Thresholding – Otsu Method 

Otsu method (Otsu, 1979) allows for an automatic threshold selection for 

segmentation of gray level images. Method searches for a threshold value that 

minimizes inter-class variability for the segmented image. 

An image that was segmented with the 𝑘 value consists of background and 

foreground classes, which are represented with 𝐶0 and 𝐶1 respectively. Assuming that 
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image has 𝐿 gray level values, 𝐶0 includes pixels with [1, … , 𝑘] levels and 𝐶1 includes 

pixels with levels [𝑘 + 1,… , 𝐿]. The probabilities of class occurrences can be written 

as 𝜔0 = ∑ 𝑝𝑖
𝑘
𝑖=1  and 𝜔1 = ∑ 𝑝𝑖

𝐿
𝑖=𝑘+1 , where 𝑝𝑖 is the probability of each gray level. 

The mean class levels are 𝜇0 and 𝜇1. Class variances are 𝜎0 and 𝜎1. The validity of the 

threshold level is determined by the measures given in (4.9). 

𝜆 =
𝜎𝐵
2

𝜎𝑊
2 ,        𝜅 =

𝜎𝑇
2

𝜎𝑊
2 ,        𝜂 =

𝜎𝐵
2

𝜎𝑇
2    (5.9) 

where 𝜎𝑇 is the variance of the whole picture and rest of the variables are given in 

(5.10).  

𝜎𝑊
2 = 𝜔0𝜎0

2 + 𝜔1 𝜎1
2,          𝜎𝐵

2 = 𝜔0𝜔1(𝜇1 − 𝜇0)
2  (5.10) 

A 𝑘 value that maximizes one of the measures given in (4.9) can be chosen as 

threshold. Multi-level thresholding is obtained by choosing more 𝑘 values. For 

instance, image is segmented into the three classes 𝐶0, 𝐶1 and 𝐶2 with two threshold 

values 0 < 𝑘1 < 𝑘2 < 𝐿. 

5.1.3 K-Means Clustering 

K-means clustering method (Dhanachandra, Manglem, & Chanu, 2015) divides an 

image into K clusters. First K numbers of cluster centers are selected randomly, all 

points in the dataset are appointed into clusters according to their Euclidean distance 

to the cluster centers. After assigning all the points new cluster centers are calculated 

and process is repeated until change in points’ positions is less than pre-determined 

threshold value. 

5.2 Results 

Methods mentioned in previous section were tested with 20 CTA datasets and 

results were compared with the manually annotated ground truth data. Visualization 

of segmentation results for one dataset are given in Figure 4.1. Performance evaluation 

results are presented value in Table 4.1 in terms of mean DSC and standard deviation.  

 



23 

 

  

(a) (b) 

 
 

(c) (d) 

 

(e) 

 

Figure 5.1 Results of the segmentation algorithms. (a) Ground truth, (b) Frangi, (c) Jerman, (d) 

multilevel Otsu, (e) K-means clustering 

 



24 

Table 5.1 Mean DSC results and standard deviations for vessel segmentation methods 

Method Frangi Jerman Otsu K-means 

Mean DSC 0.28 0.5 0.25 0.31 

Standard deviation 0.07 0.04 0.15 0.19 

 

All methods were unsuccessful in segmenting inferior vena kava, which has a lower 

intensity value compared to the other vessels. Furthermore, all of the methods failed 

in establishing continuous shapes.  

  



25 

CHAPTER SIX   

PROPOSED DEEP LEARNING STRATEGY 

 

6.1 Training DeepMedic 

DeepMedic (Kamnitsas, et al., 2017) is a 3D convolutional neural network (CNN) 

that was developed brain tumor segmentation in multimodal MRI scans for 

BRATS2015 challenge. CNN architecture is coupled with a 3D conditional random 

field (CRF).  

DeepMedic is a dual path, 11 layers deep 3D convolutional neural network. Medical 

scans are scanned with two different scales simultaneously, in order to include both 

local and larger contextual information. During post-processing 3D conditional 

random fields are used to decrease false positives. The convolutional model is given 

in Figure 6.1. 

 

Figure 6.1 Model of DeepMedic The kernel sizes of both pathways are given as 53 for the purpose of 

reducing figure’s size and actual kernels are of 33 size (Kamnitsas et al., 2017) 

We trained used liver vasculature CTA datasets, with manual annotations as ground 

truth data. In addition, liver segmentations that were generated for previous studies 

were used as region of interest (ROI) maps in order to decrease the computational 

workload. Datasets were also reconstructed for coronal and sagittal planes and training 

process was repeated. Two PCs with 4 gb Nvidia 960M gpu and and 8 gb Nvidia 

Quadro 4000 gpu. Trainings were done in 35 epochs each with 20 subepochs. 

10 of the 35 total datasets were used as for training. Training process took around 

32 hours for axial plane and 20 hours for coronal and sagittal planes. Training process 
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in terms of accuracy, sensitivity, precision (positive predictive value) and DSC for 

training in with three orthogonal planes in Figure 6.2. 

  

(a) (b) 

  

(c) (d) 

Figure 6.2 Training process for datasets in three orthogonal planes: (a) Mean accuracy, (b) sensitivity, 

(c) precision and (d) mean dice values over 35 epochs. Smaller figures only show mean results for each 

epochs and ignores individual subepoch results 

Boxplots for training and test sets’ final DSC values for axial, coronal and sagittal 

planes are given in Figure 6.3. 
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(a) (b) (c) 

Figure 6.3 Final DSC values for training sets, test sets and all sets in (a) axial, (b) coronal and (c) sagittal 

planes 

Since ground truth images were manually labeled, vessels that were found by the 

algorithm and vessels that were manually labeled may have varying vessel borders. In 

fact, same annotator may label same vessels with slightly different borders each time 

the labelling process is repeated. The difference images obtained by subtracting ground 

truth image and the result are given in Figure 6.4. Thin lines show the disagreement in 

vessel border. These borders are not necessarily indicator of false segmentation, 

however they cause drop in DSC result. Therefore, the area metric that was described 

in Evaluation Metrics section was applied to all datasets with 𝛼 = 1 and 𝛼 = 2. 

Boxplot of comparison between DSC and area values for all datasets is given in Figure 

6.5.  

 

Figure 6.4 Difference between ground truth and results. Thin lines in images indicate disagreement in 

vessel borders between algorithm results and ground truth labels 
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(a) (b) (c) 

Figure 6.5 Comparison between DSC value and Area values with α = 1 and α = 2. (a) Results on axial 

plane, (b) coronal plane and (c) sagittal plane 

 

Training with different planes, helps the network to learn different parts of the 

vessels. Since vessel structure is more visible in coronal plane, network training was 

shorter in comparison and mean dice and area values were higher. Inhomogeneity in 

intensity difference may lead to false positives; however reconstructing the volume 

may help the training process. Looking at Figure 6.6 where three example results are 

shown, it can be seen that mistakes that were done by one training process were not 

repeated by the others. Hence, false positive rate can be lowered by taking the 

intersection volume of three results. 
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(a)                                                          (b) 

 

(c) 

Figure 6.6 Example results of training process for axial, coronal and sagittal planes, and volumes that 

were obtained from the intersection of these three results 

 

Figure 6.7 shows the DSC results for every dataset in axial, coronal and sagittal 

planes, and DSC results of the volumes that were obtained by taking the intersections 

and unions of these results. Additionally DSC results where FPs were removed from 

the datasets are given in Figure 6.8. 
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Figure 6.7 DSC results of all training that were performed in axial, coronal and sagittal planes, and DSC 

results of the volumes that were obtained with intersections and unions of these results 

 

 

Figure 6.8 DSC results of axial, coronal, sagittal planes, intersection volumes and union volumes where 

FPs are removed 
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6.2 Combining DeepMedic Results 

Developed approach that makes use of the continuity feature of the vascular trees 

for combining deep medic results for three orthogonal planes and increasing dice 

coefficient is summarized below: 

1. A main frame was constructed by taking the intersection of training results in 

axial, coronal and sagittal planes.  

2. Then remaining volumes were obtained by subtracting the main frame from all 

of the results is axial, coronal and sagittal planes. 

3. Connected component analysis was performed for the main frame and for the 

remaining volumes.  

4. Each component  of the remaining frames was combined with the main frame 

if the number of connected components in resulting volume was equal or lower 

than the previous state of the main frame.  

5. The combined parts were removed from the results and the process was repeated 

until number of components were not decreasing anymore.  

Change in DSC, false positive rate, true positive rate and true negative rate during 

the process for an example dataset is given in Figure 6.9, change of mean values for 

all sets is given in Figure 6.10. 

Increase in Dice coefficient and true positive and decrease in false negative rate are 

very desirable effects. And while the increase in false positive rate presents itself as an 

issue, range of FPR is very low (10−4). 
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(a) (b) 

  

(c) (d) 

 

Figure 6.9 Change in parameters in terms of (a) Dice coefficient, (b) true positive rate, (c) false positive 

rate and (d) false negative rate 
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(a)      (b) 

  

(c) (d) 

    

Figure 6.10 Change in parameters in terms of (a) Dice coefficient, (b) true positive rate, (c) false positive 

rate and (d) false negative rate for all datasets 
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CHAPTER SEVEN  

CONCLUSION 

 

In this thesis, a liver vascular tree ground truth dataset was generated for 35 

abdominal CTA scans. For the best of our knowledge, this is the first dataset for liver 

vasculature. 

Liver vasculatures are very complex structures, therefore development of an 

accurate segmentation method is a challenging task. However deep learning methods 

show promising results. A deep learning based method DeepMedic was trained from 

scratch with the dataset that was sliced in axial, coronal and sagittal planes. Each 

training allowed the network to learn different aspects of the vasculature. A connected 

component based method was used to combine all these results. Mean performance 

was increased in terms of Dice coefficient, true positive rate and true negative rate. 

However false positive rate was increased, therefore an additional method for 

decreasing FPR needs to be developed.   

A region growing was applied on ground truth images where obtained vessel 

segmentation results were used as seed points. Results had over 90% DSC scores. This 

tells us that the vast majority of vessel branches were segmented correctly, however 

vessels in proximal regions or vessel that have unexpected intensity values or vessel 

whose appearance were obstructed by the presence of noise cause a decrease in overall 

DSC scores. Hence, it can be said that current method shows very promising results 

and, very high performance results may be obtained with some additional steps. 
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