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research council of Turkey (TÜBİTAK) which had partially supported my work in this

thesis via a project titled "Beyond the Standard Model New Physics Researches using

iii



Antineutrino-Electron Scattering at Low Energy: Tensorial Non-standard Interactions

of Neutrino, Unparticle Physics, Extra Z-prime Boson Models and Little Higgs Boson

Models" under grant number 114F374.

With no doubt, I thank my precious real family in general and my dear father Jalal,

my sweetheart mother Siham and my lovely brother Isa and sisters Rasmia and Racha

in specific who had supported me from abroad throughout the entire process and who

was always there for me in my good as well as bad days. I dedicate all my work and

success to them!

Without your supports, it would have been almost impossible to withstand all the

troubles I have come across on the way. I will literally be grateful for all of you forever

for bearing the weight with me.

Ahmad AJJAQ

iv



LITTLE HIGGS BOSON MODELS RESEARCH VIA

NEUTRINO-ELECTRON ELASTIC SCATTERING CHANNEL AT LOW

ENERGY

ABSTRACT

The standard model (SM) of particle physics had aptly achieved a remarkable suc-

cess in describing the interactions of the subatomic world. Some serious problems,

however, put the SM in a critical situation, doubted its ability to be the whole story

of nature and motivated physicists to look for physics beyond the SM (BSM). The

hierarchy problem, which is one of the focal points in this thesis work, is a major prob-

lem within the SM by which the Higgs mass is unwillingly large. In this work, the

origin of the Higgs by the famous Higgs mechanism is first examined and then, as a

solution to the hierarchy problem, a model-dependent BSM theory dubbed little Higgs

models (LHMs) is extensively studied. In the scope of LHMs, two different classes

known as SU(5) littlest Higgs model (LTHM) with no T-parity and SU(3) simple little

Higgs model (SLHM) are theoretically and analytically examined using (anti)neutrino-

electron scattering channel at low energies. Theoretically, taking into consideration the

flavor conserving (FC) and flavor violating (FV) processes, the corrections of both of

these models to the SM νe (ν̄e)− e scattering cross section are calculated. Experimen-

tally, then, 90% C.L. (≈ 2 σ equivalence) bounds on the relevant free parameters of

both models are obtained utilizing TEXONO (ν̄ee) and LSND (νee) experiments.

Keywords: Standard model, beyond the standard model, hierarchy problem, Higgs,

Higgs mechanism, little Higgs models, flavor conserving, flavor violating, neutrino-

electron scattering, TEXONO, LSND
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NÖTRİNO-ELEKTRON ELASTİK SAÇILIM KANALINDAN DÜŞÜK

ENERJİLERDE LITTLE HIGGS MODEL ARAŞTIRMALARI

ÖZ

Parçacık fiziğinin standart modeli (SM), atomaltı dünyasının etkileşimlerini tarif

etmede dikkate değer bir başarı sağlamıştır. Bununla birlikte, bazı ciddi sorunlar SM’yi

doğanın tam bir öyküsü olabilme konusunda kritik duruma düşürerek, fizikçileri SM

ötesini araştırmaya motive etmiştir. SM’de Higgs kütlesine gelen kuantum düzeltme-

lerin oldukça büyük olmasından dolayı ortaya çıkan hiyerarşi problemi, bu tezin odak

noktalarından biridir. Bu çalışmada Higgs mekanizması ile Higgs’in kökeni incele-

nmiş ve daha sonra hiyerarşi probleminin bir çözümü olarak SM ötesi model bağımlı

little Higgs modelleri (LHM’ler) kapsamlı bir şekilde çalışılmıştır. LHM’ler kapsa-

mında, T-parite olmayan SU(5) littlest Higgs model (LTHM) ve SU(3) simple little

Higgs model (SLHM) olarak bilinen iki farklı sınıf, düşük enerjili nötrino-elektron sa-

çılım kanalı kullanılarak teorik ve analitik olarak incelenmiştir. Teorik olarak, flavor

conserving (FC) ve flavor violating (FV) göz önüne alınarak, bu modellerin her ikisi-

nin de νe (ν̄e)− e saçılma süreci için SM’ye gelen düzeltmeler hesaplanmıştır. Daha

sonra da, deneysel olarak, bu modellerin serbest parametrelerinin üzerindeki 90% C.L.

(≈ 2 σ ’a denk gelen) sınırlamalar TEXONO (ν̄ee) ve LSND (νee) deneyleri kullanıla-

rak elde edilmiştir.

Anahtar Kelimeler: Standart model, standart model ötesi, Hiyerarşi problemi,

Higgs, Higgs mekanizması, little Higgs modelleri, flavor conserving, flavor violating,

nötrino-elektron saçılması, TEXONO, LSND
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CHAPTER ONE

INTRODUCTION AND MOTIVATION

Known as “the theory of almost everything”, the standard model (SM) of particle

physics is an elegant weakly coupled quantum field theory used to describe, to a very

good extent, the behavior of all discovered fundamental particles. It is the whole story

of our everyday life but surely not that of the universe.

Despite its precise agreement with the results of almost all experiments carried out

at relatively low energies, there are still some good reasons for the crucial need of new

physics beyond the SM (BSM) at relatively high energies. As far as this thesis work is

concerned, the so-called “hierarchy problem” of the SM was one of the many reasons

that motivated particle physicists to look eagerly for new theories BSM. Indeed, at

very high energies, the mass of the SM Higgs boson suffers from quadratically diver-

gent radiative corrections mainly due to the SM electroweak gauge bosons, top quark

and the Higgs boson itself. That is, the SM can have the chance to survive at very

high energies if and only if its parameters are hugely fined-tuned in such a way to

get an accepted Higgs boson mass of at most a few hundred GeV . Actually, the SM

breaks down much earlier, at the TeV energy scale, due to its insufficient elucidation

of electroweak symmetry breaking (EWSB) by the Higgs mechanism.

In this regard and in an aim of solving the SM hierarchy problem without fine-

tuning its parameters, many BSM physics theories have been explored; the most recent

of which dubbed little Higgs (LH) theories will be the central theme of this thesis.

To better understand the presented problem and the expected solution, this thesis

work is designed as follows: Chapter 2 will be a precise introduction to what is known

as the SM of particle physics and its formulation with an emphasis on the neutrino

and the Higgs sectors. Chapter 3 will provide a comprehensive description of some of

the shortcomings of the SM with an emphasis on the hierarchy problem of the Higgs

boson mass hinting to the crucial need of BSM physics, in addition to an example
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of a model-idependent BSM theory known as scalar, pseudoscalar and tensorial non-

standard interaction (NSI) of neutrionos. As the main theme of this work, chapter 4

will display a great deal of theoretical calculations done for two different little Higgs

models (LHMs), suggested recently as a solution to the SM hierarchy problem. Chap-

ter 5 will contain all the analysis done in the scope of NSI of neutrinos and LHMs

using different low and high energy experimental data sets; TEXONO, LSND, LEP

and EWPD. Last but not least, chapter 6 will contain a brief summary of theoretical

and analytic results and will shed the light on some of our future works regarding this

topic.

At the end of the day and after doing all the long and tremendous theoretical calcu-

lations of LHMs suggested to solve the hierarchy problem of the SM, our main moti-

vation is to constraint some of their different free parameters at the low energy region.

Having done so, we can then compare our constraints with the corresponding ones put

by other collaborations at high energy regions. This would allow us to decide whether

it is advantageous to have a costly high energy experiment in the scope of LHMs or

otherwise low energy experiments can do the exact same job with less energy and less

money.

2



CHAPTER TWO

THE STANDARD MODEL

2.1 Review of the Standard Model

The standard model (SM) of particle physics is a gauge field theory that describes

the fundamental weak, electromagnetic and strong interactions between elementary

particles with the renormalizable quantum field theory, which is locally invariant under

an inner symmetry group SU(3)C× SU(2)L×U(1)Y and globally invariant under the

space-time transformations of the Poincaré group (Demirci, 2015).

Figure 2.1 A schematic diagram of the standard model of particle physics (Fehling, 2008)

As is schematically presented in Figure 2.1, it is made up of a total of 17 funda-

mental particles, categorized basically into two main groups of 12 fermions known

as the basic building blocks of matter and 5 bosons known as the force carriers. The

fermions are divided into 6 quarks, 3 charged leptons and 3 neutral leptons accompa-

nied in three generations. Excluding the dark matter and dark energy which form about

96% of the known universe, all other ordinary matter around us is made up mainly of

these fermions with an emphasis on the first generation ones being the lightest and most

3



stable ones. The bosons, however, are divided into 4 vector gauge bosons and 1 scalar

boson. The vector bosons are the corresponding mediators of the strong, electromag-

netic and weak forces that act on the matter particles via the exchange of force-carrier

particles. Particles of matter transfer discrete amounts of energy by exchanging bosons

with each other. Each fundamental force has its own corresponding boson – the elec-

tromagnetic force is carried by the “photon”, the weak force is carried by the “W and

Z bosons” and the “gluon” is responsible for the strong force. In addition to the scalar

boson which is the mediator of the Higgs field.

The particles of the SM are often displayed in groupings known as multiplets. A

particle multiplet is a combination of particles that transform into each other under

a symmetry transformation. The different field multiplets of the SM along with their

quantum numbers corresponding to each symmetry group are summarized in Table 2.1.

Table 2.1 The fields multiplets in the SM and their quantum numbers

Multiplets SU(3)C×SU(2)L×U(1)Y I II III

Quarks (s = 1
2 )

(
3,2,−1

6

) (
u
d

)
L

(
c
s

)
L

(
t
b

)
L(

3,1, 2
3

)
uR cR tR(

3,1,−1
3

)
dR sR bR

Leptons (s = 1
2 )

(
1,2,−1

2

) (
νe
e

)
L

(
νµ

µ

)
L

(
ντ

τ

)
L

(1,1,−1) eR µR τR

Higgs (s = 0)
(
1,2, 1

2

)
H =

(
h+

h0

)

Based on the SU(3)× SU(2)×U(1) symmetry group, the SM Lagrangian, which

describes the principle interactions between fermions, gauge bosons and Higgs bosons,

4



can be written as (Cottingham, 2007)

LSM =− 1
4

BµνBµν − 1
8

Tr
(
WµνWµν

)
− 1

2
Tr
(
GµνGµν

)
+(ν̄L, ēL) σ̃

µ iDµ

νL

eL

+ ēRσ
µ iDµeR + ν̄Rσ

µ iDµνR +(h.c.)

−
√

2
v

(ν̄L, ēL)φMeeR + ēRM̄e
φ̄

νL

eL


−
√

2
v

(−ēL, ν̄L)φ
∗Mν

νR + ν̄RM̄ν
φ

T

−eL

νL


+
(
ūL, d̄L

)
σ̃

µ iDµ

uL

dL

+ ūRσ
µ iDµuR + d̄Rσ

µ iDµdR +(h.c.)

−
√

2
v

(ūL, d̄L
)

φMddR + d̄RM̄d
φ̄

uL

dL


−
√

2
v

(−d̄L, ūL
)

φ
∗MuuR + ūRM̄u

φ
T

−dL

uL


+
(
Dµφ

)
Dµ

φ − m2
h

2v2

(
φ̄φ − v2

2

)2

,

(2.1)

where the first line corresponds to U(1), SU(2) and SU(3) gauge terms, the second

to lepton dynamical term, the third to electron, muon and tau mass term, the fourth to

neutrino mass term, the fifth to quark dynamical term, the sixth to down, strange and

bottom mass term, the seventh to up, charm and top mass term, and the last to Higgs

dynamical and mass term.

In the above Lagrangian,

• Bµ , Wµ and Gµ are the gauge boson vector potentials with their respective field

5



tensors given as

Bµν = ∂µBν −∂νBµ ,

Wµν = ∂µWν −∂νWµ +
ig2

2
(
WµWν −WνWµ

)
,

Gµν = ∂µGν −∂νGµ + ig3
(
GµGν −GνGµ

)
.

(2.2)

• the derivative operators are

Dµ

νL

eL

=

[
∂µ −

ig1

2
Bµ +

ig2

2
Wµ

]νL

eL

 ,

Dµ

uL

dL

=

[
∂µ +

ig1

6
Bµ +

ig2

2
Wµ + ig3Gµ

]uL

dL

 ,

DµνR =
[
∂µ

]
νR,

DµeR =
[
∂µ − ig1Bµ

]
eR,

DµuR =

[
∂µ +

2ig1

3
Bµ + ig3Gµ

]
uR,

DµdR =

[
∂µ −

ig1

3
Bµ + ig3Gµ

]
dR,

Dµφ =

[
∂µ +

ig1

2
Bµ +

ig2

2
Wµ

]
φ .

(2.3)

• φ is a two-component complex Higgs field that can have the form

φ
T =

1√
2
(0,v+h) (2.4)

with a vacuum expectation value (VEV)

〈φ〉T0 =
1√
2
(0,v) (2.5)

under SU(2) gauge invariance. Here v is a real constant such that Lφ (the last

line of Equation 2.1 with Dµ → ∂µ ) is minimized, and h is a residual Higgs field.

• h.c. infers the hermitian conjugation of previous terms; that is, ψ̄ = (h.c.)ψ =

ψ† = ψ∗T .
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• L and R denote respectively a left-handed fermion doublet and a right-handed

fermion singlet.

The SM of particle physics explains the interactions among elementary particles by

three main forces: electromagnetic, weak and strong. The weak forces, however, are

somehow strange compared to the other two fundamental forces as they get to conflict

by four main items:

• The weak forces are inescapable in a way that all the particles feel them, far from

the electromagnetic and strong interactions that are only sensitive to the charged

leptons and quarks, respectively.

• The force mediators of the weak interactions are extremely massive, unlike those

of the electromagnetic and strong interactions which are massless.

• In contrast to the electromagnetic and strong interactions, the weak interactions

violate parity (P) and charge conjugation (C) as well as their combination (CP).

• As opposed to the electromagnetic and strong interactions through which flavor

does not change, the weak interactions do change flavor and are therefore the

only forces responsible for true decays.

Nowadays, the electroweak theory of the SM is known -and without any suspect- as

the theory that incarnates the interactions of the elementary particles at the electroweak

scale. However, we have many signs from fields that are even outside high energy

physics that warn us to the fact that electroweak theory is an effective theory; a theory

that is brilliantly successful at the electroweak scale but not much far beyond that.

The three fundamental interactions managed by the SM are based on SU(3)×
SU(2)×U(1) gauge symmetry, where SU(3), SU(2) and U(1) reflect respectively the

symmetry of the strong, weak and electromagnetic interactions at high energies. At
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low energies, however, the weak interactions seem to represent a state of broken sym-

metry when combined with electromagnetic interactions, the reason they are treated as

an electroweak gauge theory (SU(2)L×U(1)Y →U(1)EM).

2.2 Higgs Mechanism and Spontaneous Symmetry Breaking

In this section, the light will be shed on the principle of gauge symmetry in general

and the mechanism through which the underlying symmetry of the SM electroweak

interactions is broken, the so-known Higgs mechanism (Englert et al., 1964; Higgs,

1964).

The principle of gauge invariance is the core ingredient of the electroweak and

strong theories of the SM of particle physics. It dates back to the 19th century when

the electromagnetic theory was first put, in which the electromagnetic scalar and vector

potentials were believed to be arbitrary and not restricted to have one absolute form.

That is to say, different forms of the vector potential (differing for example in a gradient

of some scalar function)

~A→ ~A′ = ~A+~∇χ (2.6)

produce the same physical fields ~E and ~B given in terms of V and ~A by

~E =−~∇V − ∂~A
∂ t

,

~B =~∇×~A,
(2.7)

as long as the scalar potential transforms simultaneously in the form

V →V ′ =V − ∂ χ

∂ t
(2.8)

to pay for the change in ~A.

Later in 1926, Fock realized that the wave equation of a charged particle under the
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effect of an external electromagnetic field is symmetric under some space-time U(1)

phase transformation φ → eiα(~x,t)φ , provided that the corresponding gauge bosons in

the theory transform in such a way as to compensate the change of phase.

Moreover, and around 1955, Yang and Mills announced the fact that the principle

of gauge invariance is not confined to U(1) phase transformations but could also be

extended to SU(2) isospin transformations. The main difference in the latter transfor-

mations and the reason it is more difficult to work with them is the incompatibility of

the group generators with one another.

Nevertheless, gauge invariance was at first distrusted to be a principle on which all

the modern interactions are built as it courageously demands all the gauge bosons in-

volved in the theory to be massless. This would not fit, for example, in the electroweak

theory because of its extremely massive gauge bosons. This problem can indeed be

approached in two ways: either the gauge bosons can get a mass term through spon-

taneous symmetry breaking of the Higgs mechanism as it is realized in electroweak

interactions or the bosons can not be seen due to confinement as it is realized in strong

interactions. Being interested in electroweak interactions and the Higgs mechanism,

the former will be our main topic in this section.

The Higgs mechanism -which is sort of assumed as part of the SM- is perhaps the

simplest possible or the most economic way that introduces the least number of degrees

of freedom to realize electroweak symmetry breaking (EWSB).

The key idea of the Higgs mechanism is the possibility of recognizing some sym-

metry of the theory at the level of the Lagrangian but not at the level of the ground state

of the symmetry. It is, however, not only a matter of symmetry but also a matter of the

intrinsic features of the spectrum of fields in the concerned theory that would modify

abruptly once working out over the ground state level of the theory.

It is very often heard that the Higgs field gives mass to particles that interact with it

and the bigness or smallness or maybe the full absence of the mass is usually related
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to the strength of the coupling of the particle with the field. To see how the Higgs

mechanism actually works, a very rough explanation is first needed followed by an

explicit representation of the mechanism in a simple abelian and non-abelian model

all the way towards the actual Higgs mechanism in Glashow-Weinberg-Salam (GWS)

model of the SM.

Suppose that some particle field ψ and its corresponding antiparticle field ψ̄ couples

to a Higgs field φ with a coupling constant g as is roughly given by the interaction term

gψ̄ψφ . (2.9)

By spontaneous symmetry breaking, the Higgs field breaks down into two compo-

nents; the first one, denoted by v, is a constant (VEV) and the second one, denoted by

H, is some new dynamic field and its quanta are the Higgs bosons as is given by

φ = v+H. (2.10)

Putting this into the interaction term of Equation 2.9 gives as a result

gψ̄ψv+gψ̄ψH. (2.11)

The second term represents an interaction among H, ψ and ψ̄ rather than φ , ψ

and ψ̄ as in the original interaction term. The first term, however, is where the mass

comes from. It is an interaction term between a particle and its antiparticle with no

third field. The interaction term that used to describe the coupling of the Higgs field

to other fields now describes the other fields coupling (quadratically) to themselves,

which in quantum field theory is interpreted as giving mass to a field. By this term, the

particles of the field ψ and the antiparticles of the field ψ̄ both have mass m = gv that

did not have it before. But by the Higgs field’s VEV, the massless fields managed to

gain a mass term "out of nothing" which is roughly what is meant by expression that
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the Higgs field gives mass to particles.

2.2.1 In U(1) Abelian Theory

In general, a family of N real scalar fields

~φ (x) : {φ1 (x) ,φ2 (x) , ...φN (x)}

in an interacting purely scalar theory obeying the following hypothetical "Klein-Gordon

analogous" Lagrangian density

L (~φ) =
1
2
(δµ

~φ)2− 1
2

µ
2~φ 2− 1

4
λ~φ 4 (2.12)

is symmetric under U(N) gauge theory at the Lagrangian level but not at the ground

state level of the symmetry.

Working out the N = 1 case is not the best decision as it is a simple, direct and

straightforward replacement of ~φ by φ , denoting only a one single real scalar field in

the theory.

Consider instead a family of N = 2 real scalar fields

~φ (x) : {φ1 (x) ,φ2 (x)}

with charge −g in a purely interacting scalar gauge theory. Working out this theory in

details is an advantage as all the methodology that is going to be developed here can

be applied for the actual Higgs mechanism of GWS theory of the SM but at a more

advanced level.

It is tremendously appropriate to switch to complex representation once dealing
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with two fields

Φ =
1√
2
(φ1 + iφ2) . (2.13)

The new defined complex scalar field Φ obeys the analogous form of the Lagrangian

of Equation 2.12 written in terms of the newly defined Φ as

L (Φ,Φ∗) = (∂ µ
Φ)∗ ∂µΦ−µ

2
Φ
∗
Φ−λ (Φ∗Φ)2 . (2.14)

Compared to the free spin-0 Klein-Gordon Lagrangian with a real scalar field φ

L (φ) =
1
2
(
δµφ

)2
+

1
2

m2
φ

2, (2.15)

the hypothesized Lagrangian seems to have a "wrong sign" in the mass term which

would consequently imply a tachyonic particle moving with v > c. This is, of course,

unusual in particle physics but has a very congenital clarification in quantum field

theory.

It is a straightforward mission to show that the hypothesized Lagrangian is globally

invariant under the abelian U(1) symmetry with the global transformation Φ→ eiαΦ.

However, such an invariance will clearly not be preserved under the local form trans-

formation Φ→ eiα(x)Φ.

The local invariance can be normally repaired with a new derivative operator

∂µ → Dµ ≡ ∂µ − igAµ (2.16)

with the gauge fields transform under U(1) as

Aµ(x)→ Aµ(x)+
1
g

∂µα(x), (2.17)
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in addition to a kinetic-like term from the Proca Lagrangian for the new vector gauge

field Aµ to allow it to propagate

−1
4

FµνFµν (2.18)

where the strength tensor for an abelian symmetry is simply

Fµν = ∂µAν −∂νAµ . (2.19)

Note that adding a mass term for the gauge field Aµ clearly violates the local gauge

invariance. In other words, the U(1) gauge symmetry requires Aµ to be massless.

Under these modifications, a locally U(1) symmetric Lagrangian of the complex

scalar field Φ can be reproduced from the original hypothesized Lagrangian as

L
(
Φ,Φ∗,Aµ ,Aµ

)
=
(
DµΦ

)∗
(Dµ

Φ)−µ
2
Φ
∗
Φ−λ (Φ∗Φ)2− 1

4
FµνFµν

=
[(

δµ + igAµ

)
Φ
∗ (δ µ − igAµ)Φ

]
−µ

2
Φ
∗
Φ

−λ (Φ∗Φ)2− 1
4

FµνFµν .

(2.20)

This Lagrangian, asides from being locally invariant, has one more very interesting

feature: the gauge fields Aµ that look massless at the Lagrangian level are indeed

massive at the ground state level. That is, when Φ goes to some constant value at the

minimum Φo, the square-bracketed term of the Lagrangian of Equation 2.20 yields

something that looks like

+igAµΦo (−igAµ
Φo) (2.21)

which can be a real mass term for the Aµ fields. Having roughly explained the origin

of the gauge fields’ mass term, we are going to elaborate on it in more details below.

Particle physicists usually treat fields as particle-like tiny localized fluctuations. The
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fields Φ(xµ) and Aµ(xµ) can then be written as

Φ(xµ) = Φ0 +δΦ(xµ),

Aµ(xµ) = Aµ0 +δAµ(xµ),
(2.22)

where the nod terms (Φ0 ≡< Φ > and Aµ0 ≡< Aµ >) are the background configu-

rations or the so-called VEVs of the corresponding fields and the delta terms (δφ =

1√
2
(δφ1 + iδφ2) and δAµ ) are the tiny fluctuations about the VEVs that can be treated

quantum mechanically. Note that the VEVs are most often assumed to be zero during

a calculation in particle physics.

Looking at a boring configuration of static solutions, externalizing the potential

V
(
|Φ|2

)
= µ

2
Φ
∗
Φ+λ (Φ∗Φ)2 (2.23)

with respect to Φ∗

∂V
∂Φ∗

=
(
µ

2 +2λ |Φ|2
)

Φ = 0 (2.24)

is enough to get the corresponding equation of motion of Φ.

The first trivial solution is  Φ = 0

Aµ = 0
(2.25)

or in terms of fluctuations  Φ(x) = 0+δΦ(x)

Aµ(x) = 0+δAµ(x).
(2.26)
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The Lagrangian governing fluctuations is then

L
(
δΦ,δΦ

∗,δAµ ,δAµ
)
=
[(

∂µ + igδAµ

)
δΦ
∗ (∂ µ − igδAµ)δΦ

]
−µ

2
δΦ
∗
δΦ−λ (δΦ

∗
δΦ)2− 1

4
F ′µνF ′µν

(2.27)

where

F ′µν = ∂µδAν −∂νδAµ . (2.28)

This Lagrangian also shares the local symmetry of the original Lagrangian L
(
Φ,Φ∗,Aµ ,Aµ

)
of Equation 2.20 under U(1) transformation.

The other non-trivial solution is Φ = Φo where |Φo|2 =− µ2

2λ

Aµ = 0
(2.29)

A one particular solution in terms of fluctuations can be then


φ1(x) =

√
− µ2

2λ
+δφ1(x)≡ v√

2
+η(x)

φ2(x) = 0+δφ2(x)≡ β (x)

Aµ(x) = 0+δAµ(x)≡ Aµ(x)

(2.30)

where η(x) and β (x) are respectively the fluctuations of the real and imaginary parts

of the complex scalar field Φ and Aµ(x) is the corresponding fluctuation of the vector

gauge field Aµ .
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The Lagrangian in terms of this particular solution becomes

L (η ,β ,Aµ) =

[
1
2
(
∂µη

)
(∂ µ

η)+µ
2
η

2
]
+

[
1
2
(
∂µβ

)
(∂ µ

β )

]
+

[
1

16π
FµνFµν

]
+

1
2

[(q
c

)2
AµAµ

]
+

{
q
h̄c

[
η
(
∂µβ

)
−β

(
∂µη

)]
Aµ

+
µ

λ

(q
c

)2
ηAµAµ +

1
2

(q
c

)2 (
β

2 +η
2)AµAµ

+λ µ
(
η

3 +ηβ
2)+ 1

4
λ

2 (
η

4 +η
3
β

3 +β
)}

+
(q

c

)(
∂µβ

)
Aµ −

(q
c

)2
.

(2.31)

This miracle-like Lagrangian summarizes all the incredible outcomes of the brilliant

Higgs mechanism in the simplest possible way as is realized in the simple U(1) abelian

systems. The gauge bosons Aµ that seemed massless at the Lagrangian level exhibited

a mass term mAµ
= g2 at the VEV level. Furthermore, upon choosing the VEV in the

direction of φ1, β (the oscillations about φ2) and consequently φ2 became a massless

boson (the so-called goldstone boson) which is later got "absorbed" by Aµ to gain

its missing longitudinal degree of freedom. This happened, however, at the expense

of the symmetry of the theory. Although, the original theory is still symmetric, such

symmetry is unseen at the level of VEV. We say that the symmetry has been broken or

more accurately hidden by the chose of VEV.

2.2.2 In SU(2) Non-abelian Theory

2.2.2.1 SU(2) with a Higgs Doublet

To illustrate the non-abelian Higgs mechanism, consider the example of SU(2)

gauge theory coupled to a doublet of complex scalar fields Φi (x). In terms of canoni-

cally normalized fields, the Lagrangian can be written as (Dawson, 1999)

L =−1
4

Fa
µνFaµν +DµΦ

∗iDµ
Φi−

λ

2

(
Φ
∗i

Φi−
v2

2

)2

, (2.32)
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where

DµΦi = ∂µΦi +
i
2

gAa
µ (σ

a)
j
i Φ j,

DµΦ
∗i = ∂µΦ

∗i− i
2

gAa
µΦ
∗ j (σa)i

j ,

Fa
µν = ∂µAa

ν −∂νAa
µ −gε

abcAb
µAc

ν .

(2.33)

For v2 > 0, the scalar potential has a local maximum at Φi = 0 while the minima

form a spherical shell Φ∗iΦi =
v2

2 in the C2 = R4 field space and are related by SU (2)

symmetries to

〈Φ〉= v√
2

0

1

 . (2.34)

Note that this VEV spontaneously breaks the SU (2) symmetry down to nothing;

there is no subgroup of SU (2) which leaves this VEV invariant. Consequently, it is

expected that all three vector fields Aa
µ (x) to become massive.

In the process, three would-be Goldstone scalars should be eaten by the Higgs

mechanism. Since the theory has two complex (or equivalently four real) scalars, only

one real scalar should survive un-eaten. Ironically, it is this un-eaten scalar σ (x) which

is called the physical Higgs field.

To see how this works, let us fix the unitary gauge where

Re Φ1 (x)≡ Im Φ1 (x)≡ Im Φ2 (x)≡ 0,

Φ(x) =
1√
2

 0

φr (x)

 with φr (x)> 0,
(2.35)

and then shift the φr field by the VEV

φr (x) = v+σ (x) . (2.36)
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For v = 0, such gauge fixing would be terribly singular but it is perfectly OK for

v 6= 0 and |σ (x) |< v which implies that φr (x) 6= 0.

In the unitary gauge, the physical Higgs field σ (x) is the only scalar field while

the rest are frozen by the gauge-fixing conditions of Equation 2.35. In terms of σ , the

scalar potential becomes

V =
λ

2

(
Φ

†
Φ− v2

2

)2

=
λ

8
(
2vσ +σ

2)2
=

λv2

2
σ

2 +
λv
2

σ
3 +

λ

8
σ

4,

(2.37)

where the first term is the mass term (m2 = λv2) while the remaining terms are self-

interactions.

More interestingly, the covariant derivative of the Higgs doublet Φ becomes

DµΦ =
1√
2

 0

∂µσ

+
ig
2

A3
µ

1 0

0 −1

 0

v+σ


+

ig
2

A1
µ

0 1

1 0

 0

v+σ

+
ig
2

A2
µ

0 −i

i 0

 0

v+σ


=

1√
2

 i
2g
(

A1
µ − iA2

µ

)
(v+σ)

∂µσ − i
2gA3

µ (v+σ)

 ,

(2.38)

hence

(
DµΦ

)† Dµ
Φ =

1
2

∣∣∣∣ i
2

g
(

A1
µ − iA2

µ

)
(v+σ)

∣∣∣∣2 + 1
2

∣∣∣∣∂µσ − i
2

gA3
µ (v+σ)

∣∣∣∣2
=

g2 (v+σ)2

8

((
A1

µ

)2
+
(

A2
µ

)2
)
+

g2 (v+σ)2

8

(
A3

µ

)2

+
1
2
(
∂µσ

)2
.

(2.39)

The last term in the above equation is the kinetic term for the Higgs scalar σ (x)

while the rest are mass terms for the vector fields and the interaction terms between

18



the vectors and the σ .

Indeed, all three vector fields Aa
µ achieve the same mass and similar interactions

L ⊃ g2 (v+σ)2

8
Aa

µAaµ

=
M2

2
Aa

µAaµ +
g2v
4

σAa
µAaµ +

g2

8
σ

2Aa
µAaµ ,

(2.40)

where

M2 =
g2v2

4
. (2.41)

2.2.2.2 SU(2) with a Higgs Triplet

Now consider the example of a partially broken gauge symmetry, SU(2) Higgsed

down to a U(1) subgroup, or equivalently SO(3)→ SO(2). This time, the scalar fields

Φa (x) are real and form a triplet of the SU(2) rather than a doublet. Thus, the La-

grangian density is (Dawson, 1999)

L =−1
4

Fa
µνFaµν +

1
2

DµΦ
aDµ

Φ
a− λ

8
(
Φ

a
Φ

a− v2)2
, (2.42)

where

DµΦ
a = ∂µΦ

a−gε
abcAb

µΦ
c,

Fa
µν = ∂µAa

ν −∂νAa
µ −gε

abcAb
µAc

ν .
(2.43)

Again, for v2 > 0 the scalar potential V (Φ) has a degenerate family of minima

which form a spherical shell ΦaΦa = v2 in the scalar field space R3, and all such
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minima are equivalent by SU(2)∼= SO(3) symmetries to

〈Φ〉=


0

0

v

 . (2.44)

This time, this VEV is invariant under the SO(2) subgroup of SO(3), or equivalently

under the U(1) subgroup of SU(2), generated by the T 3 (the third component of the

isospin T). Consequently, out of three vector fields Aa
µ , it is expected that A3

µ remains

massless while the other two fields A1,2
µ become massive.

In the process, the Higgs mechanism should eat two real scalar fields. Since we

only have three real scalars to begin with, only one scalar should survive un-eaten, the

physical Higgs field σ (x).

To see how this works, we fix the unitary gauge

Φ
1 (x)≡Φ

2 (x)≡ 0,Φ3 (x)> 0. (2.45)

As usual, this gauge is badly singular for Φ = 0 but it is OK for Φ(x) being close

to the VEV 〈Φ〉 6= 0.

Shifting Φ3 (x) by the VEV, we get

Φ
3 (x) = v+σ (x) , (2.46)

where σ (x) is the physical Higgs scalar, the only scalar remaining in the theory in the

unitary gauge.
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In terms of σ (x), the scalar potential becomes

V (σ) =
λ

8
(
2vσ +σ

2)2
=

λv2

2
σ

2 +
λv
2

σ
3 +

λ

8
σ

4, (2.47)

where the first terms give the Higgs scalar mass-squared (m2 = λv2).

More interestingly, the covariant derivative of the scalar triplet Φa (x) becomes

DµΦ
a =


0

0

∂µσ

−g


A1

µ

A2
µ

A3
µ

×


0

0

v+σ



=


−gA2

µ (v+σ)

gA1
µ (v+σ)

∂µσ

 ,

(2.48)

hence the covariant kinetic terms for the scalar become

1
2

DµΦ
aDµ

Φ
a =

1
2
(
∂µσ

)2
+

g2 (v+σ)2

2
×
((

A1
µ

)2
+
(

A2
µ

)2
)
. (2.49)

As usual, the first term of Equation 2.49 is the kinetic term for the physical Higgs

scalar σ while the second term contains mass terms

M2

2
×
((

A1
µ

)2
+
(

A2
µ

)2
)
, where M2 = g2v2, (2.50)

for the vector fields, but only for the A1
µ and A2

µ ; the third vector A3
µ remains massless.

The massless vector A3
µ (x) is the gauge field of the un-Higgsed SO(2)∼=U(1) sub-

group of the SO(3) ∼= SU(2). Interpreting the generator Q = gT 3 of this subgroup as

electric charge, we find that the massive vector fields or rather their combinations

W+
µ =

1√
2

(
A1

µ + iA2
µ

)
and W−µ =

1√
2

(
A1

µ − iA2
µ

)
(2.51)
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have charges ±g while the physical Higgs field σ is neutral.

For completeness sake, let us re-express the theory at hand (usually ccalled Georgi-

Glashow model) in terms of physical fields of definite charges. Using U(1)-covariant

derivatives

D̃µW±ν ± igA3
µW±ν , (2.52)

we have

W±µν =
1√
2

(
F1

µν ± iF±µν

)
= D̃µW±ν − D̃νW±µ , (2.53)

but

F3
µν = ∂µA3

ν −∂νA3
µ +2gIm

(
W+

µ W−ν
)
. (2.54)

Consequently, the Lagrangian of the whole model -the kinetic terms, the mass

terms, and the interactions- can be expressed as

L =
1
2
(
∂µσ

)2−V (σ)− 1
4

(
∂µA3

ν −∂νA3
µ +2gIm

(
W+

µ W−ν
))2

− 1
2

W+
µνW−µν +(M+gσ)2×W+

µ W−µ .

(2.55)

2.2.3 In the Glashow–Weinberg–Salam Theory of the Electroweak Interaction

Glashow-Weinberg-Salam theory (Glashow, 1961; Salam, 1968; Weinberg,

1967), also known as the SM electroweak theory, is -as its name implies- built upon

the unification of the SM weak and electromagnetic interactions into a one united

SU(2)W ×U(1)Y gauged theory of four gauge fields, W a
µ (a = 1,2,3) and Bµ . Its main

feature is the spontaneous breaking of the underlying electroweak symmetry down to

the U(1)EM after which three gauge fields, out of the four, become massive and me-
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diate the weak interactions while one gauge field remains massless and mediates the

electromagnetic interactions.

As is the case in the U(1) abelian theory, the reason behind this symmetry breaking

is what is known as the Higgs field H. It is defined in the SM electroweak theory

as a doublet of complex scalar fields, Hα(α = 1,2), rather than a singlet as it was in

the previous theory, with a hypercharge quantum number Y = 1
2 as is manifested by

Table 2.1 in Chapter 2. Accordingly,

DµHα (x) = ∂µHα +
ig′

2
τ

a
αβ

W a
µ (x)Hβ (x)+

ig
2

BµHα , (2.56)

where g and g′ are respectively the U(1)Y and SU(2)W gauge couplings.

The gauge fields (W a
µ and Bµ ) and the Higgs fields (Hα ) are the only bosonic fields

of the GWS theory. Asides from the other twenty four fermionic fields describing the

quarks and the leptons, the bosonic part of the theory’s Lagrangian is (Dawson, 1999)

L = −1
4

W a
µνW aµν − 1

4
BµνBµν +DµH†DµH− λ

2

(
H†H− v2

2

)2

, (2.57)

where

Bµν = ∂µBν −∂νBµ ,

W a
µν = ∂µW a

ν −∂νW a
µ −g′εabcW b

µW c
ν ,

H =

h+

h0

 & H† =
(

h+∗,h0∗
)
,

(2.58)

and DµH/
(
DµH

)† is the column/row vector form of DµHa/
(
DµHa

)∗ of Equation 2.56.

The scalar potential of the Higgs field in our GWS theory

V =
λ

2

(
H†H− v2

2

)2

(2.59)

has a local maximum rather than a minimum at H = 0, while its minima form a spher-
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ical shell H†H = v2

2 in the scalar field space C2 = R4. All such minima are related

to each other by the gauge symmetry, so we can safely assume without any loss of

generality that the Higgs fields have a VEV of

〈H〉0 ≡ 〈0|H|0〉=
1√
2

0

v

 . (2.60)

It is literally this VEV of the Higgs field that breaks three of the four gauge sym-

metries of the theory leaving one combination of the U(1)Y and U(1) subgroup of

the SU(2)2 unbroken. Indeed, the U(1)Y symmetry eiΘ(x)Ŷ acts on the Higgs fields as

H (x)→ eiyΘ(x)H (x) = e
i
2 Θ(x)H (x) while the SU(2)W symmetry eiΘ(x)T̂ 3 acts on the

SU(2) doublet H as H (x)→ e
i
2 Θ(x)τ3

H (x).

Merging both symmetries is the SU(2)W ×U(1)Y symmetry and it acts on H as

H (x)→ e
i
2 Θ(x)e

i
2 Θ(x)τ̂3

H (x) =

eiΘ(x) 0

0 1

H (x) , (2.61)

which indeed leaves the VEV of Equation 2.60 invariant. Thus the U(1) subgroup of

the electroweak SU(2)W ×U(1)Y generated by the operator

Q̂ = Ŷ + T̂ 3 (2.62)

remains unbroken. Physically, this subgroup is the U(1)Q gauge symmetry of electro-

magnetism and Q̂ is the electric charge operator (or rather electric charge in units of

e).

We shall see in a moment that one linear combination of the four SU(2)W ×U(1)Y

gauge fields corresponding to the Q̂ generator remains massless while the other three

combinations become massive via the Higgs mechanism. The same mechanism also

"swallows" or eliminates three scalar fields, which become the longitudinal compo-

nents of the three massive vector fields. Since the two complex Higgs fields are equiv-
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Figure 2.2 A schematic diagram of the core idea of the Higgs mechanism

alent to four real scalars, we end up with 4− 3 = 1 physical scalar field h(x), whose

quanta are called the physical Higgs particles that were experimentally detected by the

ATLAS and CMS experiments at the LHC in 2012. Figure 2.2 is a schematic illustra-

tion of the 4−3 = 1 equation.

The simplest way to see how this works is to fix the unitary gauge for the sponta-

neously broken symmetries. Note that any complex doublet H (x) can be SU(2)-rotated

to

H ′ (x) =U (x)H (x) =
1√
2

 0

h̃(x)

 for a real h̃(x)≥ 0. (2.63)

This gauge transform would be singular for H (x) ≈ 0 but it is nice and smooth for

H (x) in the vicinity of the VEV of Equation 2.60, so we may use it to fix the unitary

gauge h+ (x)≡ 0 and h0 (x)≡ 0. Once we fix this gauge, we are left with a single real

scalar field h̃(x), which we may now shift by its VEV,

h̃(x) = v+h(x) . (2.64)
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In terms of this shifted field,

H†H− v2

2
=

(v+h)2

2
− v2

2
= vh+

1
2

h2, (2.65)

and so the scalar potential becomes

V (h) =
λ

2

(
H†H− v2

2

)2

=
λ

2

(
vh+

1
2

h2
)2

=
λv2

2
h2 +

λv
2

h3 +
λ

8
h4, (2.66)

with m2 = λv2 > 0 for the physical Higgs field. Experimentally, v ≈ 246 GeV while

the physical Higgs mass is near 125 GeV , implying that λ ≈ 0.26.

On the other hand, the mass term of the vector fields emerge from the kinetic portion(
DµH

)† DµH of the Higgs doublets. Indeed, in the unitary gauge

DµH =
1√
2

 i
2g′
(

W 1
µ − iW 2

µ

)
h̃

∂µ h̃+ i
2

(
gBµ −g′W 3

µ

)
h̃


=

1√
2

 i
2g′
(

W 1
µ − iW 2

µ

)
(v+h)

∂µh+ i
2

(
gBµ −g′W 3

µ

)
(v+h)

 ,

(2.67)

and hence

(
DµH

)† DµH =
1
2
|∂µh+

i
2

(
gBµ −g′W 3

µ

)
(v+h) |2 + 1

2
| i
2

g′
(

W 1
µ − iW 2

µ

)
(v+h) |2

=
1
2
(
∂µh
)2

+
(v+h)2

8

(
gBµ −g′W 3

µ

)2
+

g′2 (v+h)2

8

(
W 1

µ

2
+W 2

µ

2
)
.

(2.68)

The first term on the last line is clearly the kinetic term for the physical Higgs field

while the rest is both the mass term for the vector fields as well as their interactions

with the physical Higgs field h(x). In particular, the vector mass terms can be obtained

from truncating the (v+h(x))2 factors to simply v2, thus

L vector
masses =

g2
2v2

8

(
W 1

µ

2
+W 2

µ

2
)
+

v2

8

(
g1Bµ −g2W 3

µ

)2
. (2.69)
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In particular, the W 1
µ and W 2

µ vector fields have masses

M2
W =

g2
2v2

4
=⇒ MW =

g2v
2

, (2.70)

while the W 3
µ and Bµ vector fields have a 2×2 mass matrix

M2 =
v2

4

 g2
2 −g2g1

−g2g1 g2
1

 , (2.71)

with mass eigenvalues

M2
Z =

(
g2

1 +g2
2
)

v2

4
& M2

A = 0 (2.72)

and corresponding mass eigenstates

Zµ (x) =W 3
µ (x)cosθ −Bµ (x)sinθ ,

Aµ (x) =W 3
µ (x)sinθ +Bµ (x)cosθ ,

(2.73)

where

θ = tan−1
(

g
g′

)
(2.74)

is the weak mixing angle or the Weinberg angle; experimentally, sin2
θ ≈ 0.23.

Physically, the Aµ (x) is the electromagnetic field whose quanta are massless pho-

tons, the Zµ (x) is the neutral weak field whose quanta are Z0 particles of mass MZ ≈
91 GeV , and the W 1,2

µ (x) or rather their linear combinations

W+
µ (x) =

W 1
µ (x)+ iW 2

µ (x)√
2

& W−µ (x) =
W 1

µ (x)− iW 2
µ (x)√

2
(2.75)

are the charged weak fields (electric charges g = ±1) whose quanta are W+ and W−

particles of mass MW ≈ 80 GeV .

Note that the experimentally found mass ratio between the W± and Z0 particles
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gives us the value of the weak mixing angle as

M2
W

M2
Z
=

g2
2

g2
1 +g2

2
=

1
1+ tan2 θ

= cos2
θ ,

=⇒ cos2
θ ≈ 0.77,

=⇒ sin2
θ ≈ 0.23.

(2.76)

In all the cases discussed above, symmetry breaking has taken place at the level

of the ground state of the scalar field in question. More generally, the phenomenon of

EWSB is recently one of the main concerns of particle physicists at the LHC and many

other particle accelerators. In the SM, the symmetry between elctromagnetic interac-

tions and weak interactions is assumed to be broken by the popular Higgs mechanism

which in turn gives mass to the electroweak gauge bosons W± and Z0.

As was explained before in this section, the Higgs mechanism generates the mass

property for the particles but, in doing so, it breaks simultaneously the symmetry em-

bedded in the theory.

A theory is said to be symmetric when a change of something in the Lagrangian

gives rise to the same Lagrangian. The term "symmetry breaking" is somehow mis-

leading as it only means that the symmetry that was at the level of the Lagrangian is

now not seen (or hidden) at the level of the VEV of the field.

To see this very briefly, consider the following potential for a real scalar field

V (φ) =
1
2

µ
2
φ

2 +
1
4

λφ
4. (2.77)

In the above potential, λ is always positive because otherwise V would be un-

bounded from below and would have no state of minimum energy. With the the as-

sumption λ > 0, there are only two possibilities of the theory
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Figure 2.3 Projection in the plane φ † = 0 of the potential V (φ) in the cases µ2 > 0 (left) and "Mexican

hat" µ2 < 0 (right)

• If µ2 > 0, the potential has the shape in Figure 2.3 (left) and clearly preserves the

symmetries of the Lagrangian. The state of lowest energy is that with φ = 0, the

vacuum state. The theory is simply quantum electrodynmaics with a massless

photon and a charged scalar field φ with a real (positive or negative) mass µ .

• More interestingly, if µ2 < 0, the potential has the "Mexican hat" shape shown

in Figure 2.3 (right). In this case the minimum energy state is not at φ = 0 but

rather at

< φ >=

√
−µ2

2λ
≡ v√

2
,

known as the VEV of φ which clearly breaks the global U(1) symmetry of the

original theory (potential or Lagrangian as a whole).

2.3 Neutrinos

The subatomic world is full of particles (like quarks, bosons..), each of which has

its own independent personality and behavior. One of the particles, however, is par-

ticularly weird and full of secrets, the nowadays so-called neutrino. Neutrinos are

sometimes known as the ghost of the subatomic world as they interact incredibly weak

with matter and less than any of the other known particles. Even though we are con-

stantly bombarded by them with indeed hundreds of trillions of neutrinos hitting us

every second, it took around thirty years to prove that they exist at all.
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2.3.1 History and Discovery

Neutrinos were first proposed by Pauli in 1930s as a solution to the energy conserva-

tion problem that arose from a study on a radioactive nuclear decay called beta decay.

He first gave them the name "neutron" after which Fermi renamed them as "neutrino"

being the small version of a neutron.

A beta decay is generally shown as

A
ZX → A

Z+1Y + e−, (2.78)

where Z is the atomic number (number of protons) and A is the atomic weight (number

of nucleons) of the corresponding element. X can be any radioactive nucleus (known as

the parent nucleus) that decays into a slightly lighter nucleus Y (known as the daughter

nucleus) accompanied by the emission of an electron (known at that time as a beta

particle, from which the name beta decay came out). The basic underlying process,

however, is the decay of a neutron to a proton with the emission of an electron which

is the reason why Y lies on the same row but one column ahead of X in the periodic

table.

The problem was that the energy of the original nucleus did not balance the com-

bined energy of the daughter nucleus and the electron, or simply EX 6= EY +Ee, saying

for the first glance that energy has been destroyed during the decay. More specifically,

if X is at rest then from conservation of momentum

Pµ

X = Pµ

Y +Pµ
e , (2.79)

where Pµ

X = (mX ,~0), Pµ

Y = (EY , ~pY ) and Pµ
e = (Ee, ~pe) and the invariant quantity P2 =

P ·P = PµPµ = m2, the electron energy is theoretically found to be (Griffiths, 2008)

Ee =
m2

X −m2
Y +m2

e
2mX

= constant. (2.80)
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Figure 2.4 The beta decay spectrum of tritium
(

3
1H→ 3

2He
)

(Lewis, 1970)

It turned out, however, that this equation shows only the maximum energy that the

emitted electron can have in the absence of any neutrinos. In contrast to Equation 2.80,

experiments have found that the energy of the emitted electrons is not fixed but vary

considerably as is clear in the beta decay spectrum of tritium given by Figure 2.4.

Only then, physicists came up with the idea that the reason of the non-steady elec-

tron energy (or in other words the missing energy) is the existence of an unobserved

ghost-like particle emitted in beta decay. That day was the birthday of the neutrino or

rather the antineutrino!

2.3.2 Sources and Significance

Although neutrinos do not leave any trace behind them, they are there and are indeed

the most abundant particles in the universe. They were first come to existence by the

big bang after which they continued to be produced naturally from natural sources and

are even generated by human via artificial sources as is manifested in Figure 2.5. The

most effective sources of neutrino productions are summarized as:
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Figure 2.5 Neutrino sources versus decades of energy with the cross section of ν̄ee elastic scattering

versus neutrino energy (for massless neutrinos) superimposed for comparison (Formaggio et al., 2012)

• Natural Sources

– Sun

Neutrinos originate from nuclear interactions and the biggest nuclear reac-

tor around us is the sun. Although it is about ninety million miles away

from the earth, the sun emits hundreds of trillions of neutrinos every sec-

ond from the thermal nuclear reactions of proton-proton fusions happening

at its core; p+ p → 2
1H++e++ν . Such neutrinos are usually called solar

neutrinos.

– Atmosphere

The primary cosmic rays (typically protons) coming from the universe col-

lide with the nuclei in the atmosphere of the earth generating a shower of

hadrons, like pions and kaons. These short-lived mesons eventually de-

cay into neutrinos and other mesons that invade the earth intensively. Such

neutrinos are usually called atmospheric neutrinos.

– Supernova

Neutrinos have been also suddenly detected in huge numbers from distant
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supernova. When a massive star at the end of its life collapses to a neutron

star by squashing protons and electrons, it radiates almost all of its binding

energy in the form of neutrinos; p+ e→ n+ν . Such neutrinos are usually

called supernova neutrinos.

– Terrestrial

Due to the remarkable abundance of radioactive elements within the earth,

neutrinos get emitted from these elements in decay processes. Such neutri-

nos are usually called terrestrial neutrinos.

• Artificial Sources

– Particle Accelerators

Particle accelerators are a good source of high energy muon-type neutri-

nos/antineutrinos. As their name may imply, they accelerate protons from

hydrogen gas close to the speed of light and then get them smashed into

a thick nuclear target (usually made up of graphite or beryllium) to pro-

duce a bunch of charged mesons (like pions and kaons) as well as pro-

tons and neutrons. Then by means of some magnetic field, a selection

of the positively/negatively charged pions occur. These short-lived pions

are then magnetically focused into a long tunnel where they spontaneously

decay into antimuons/muons and muon-type neutrinos/antineutrinos while

in flight. Then a block of aluminum, concrete and steel is used to filter

the muons/antimuons while leaving the neutrinos to pass through yield-

ing eventually a high-energetic pure beam of neutrino. Such neutrinos are

usually called accelerator neutrinos. Some famous examples of particle

accelerators are the large hadron collider (LHC), Japan proton accelerator

research complex (J-PARC), Fermi national accelerator laboratory (Fermi-

lab) and liquid scintillator neutrino detector (LSND).

– Nuclear Reactors

Nuclear reactors are a very intense source of electron-type antineutrinos

from the beta decays of the neutron-rich fission products. Such neutrinos

are usually called reactor neutrinos. One well-known nuclear reactor is
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the Taiwan experiment on neutrino (TEXONO) in which we are actively

engaging.

Having mentioned this, understanding neutrinos is an important step in understand-

ing the fundamental processes by which neutrinos can be produced. Many low energy

and high energy neutrino experiments have been launched worldwide for this aim.

2.3.3 Properties

Neutrinos are neutral leptons that belong to the fermion family with a spin angular

momentum quantum number s = 1
2 . They do not feel the electromagnetic and strong

forces because they neither carry an electric charge nor a color charge. And due to the

fact that gravitational forces are absent from the SM, neutrinos can only interact via

weak nuclear forces of the SM.

Figure 2.6 A schematic representation of the right-handedness and left-handedness of a particle

In the scope of the SM, neutrinos are massless and so they always travel at the speed

of light and it is impossible to reverse their direction of motion by getting into a faster-

moving reference system. Experimentally, neutrinos/antineutrinos have an intrinsic

left-handed/right-handed chirality (or equivalently helicity as long as mν = 0) defined
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by

H =
~P.~S

|~P.~S|
=

 +1 for right-handed antineutrinos

−1 for left-handed neutrinos
(2.81)

and shown by Figure 2.6.

There are three kinds or flavors of neutrinos; one kind is associated with electrons

and is known as electron-type neutrino and two others similarly associated with muons

and taus. The way scientists discovered that there are three different kinds of neutrinos

is that neutrinos seem to remember their origins. If, for instance, a neutrino created

from muons is made to collide with an atomic nucleus only muons will be generated

in the collision never electrons nor taus hinting to the fact that neutrinos do remember

how they have been made.

Although neutrinos were long believed to be massless, it is now known that there

are also three discrete neutrino masses, but they do not correspond uniquely to the three

flavors. This what makes neutrinos unique in the subatomic world as they can actually

change their identity by oscillating back and forth between their different flavors. More

on this will be given in the next chapter in the scope of non-standard interactions (NSIs)

of neutrinos.

2.4 Neutrino Interactions in the Standard Model

Neutrino-electron scattering is a purely leptonic process where a neutrino scatters

off an electron by the exchange of a virtual vector boson. The SM readily gives a

prescription to define neutrino-electron interactions via the leptonic neutral current

(NC) and charged current (CC) in the weak interaction Lagrangian.

In the SM, the scattering process νe (ν̄e)+e→ νe (ν̄e)+e proceeds via NC t-channel

Z boson exchange and CC t(s)-channel W boson exchange and therefore there interfer-

ence which is destructive does also contribute to the cross section. On the other hand,

35



the scattering process να (ν̄α)+ e→ να (ν̄α)+ e (where α 6= e) proceeds only via NC

t-channel Z boson exchange.

2.4.1 Antineutrino-Electron Elastic Scattering

There are two possible tree-level Feynman diagrams that contribute to the SM ν̄ee

elastic scattering process.

(a) (b)

Figure 2.7 Feynman diagrams of (a) Z-mediated and (b) W -mediated antineutrino-electron scattering in

the SM

• One is mediated by Z0 through a neutral weak process and is manifested by the

Feynman diagram in Figure 2.7 (a) with the corresponding amplitude given by

MZ =
GF√

2

[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
][

ū(k2)γµ

(
ge

V −ge
Aγ

5
)

u(p2)
]
.

(2.82)

• The other is mediated by W± through a charged weak process and is manifested
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by the Feynman diagram in Figure 2.7 (b) with the corresponding amplitude

given using Fierz transformation by

MW =
GF√

2

[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
][

ū(k2)γµ

(
1− γ

5
)

u(p2)
]
. (2.83)

Then the total amplitude can be simply written as

Mt = MZ +MW

=
GF√

2

[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
]

×
[
ū(k2)γµ

{
(ge

V +1)− (ge
A +1)γ

5
}

u(p2)
]
,

(2.84)

and then together with its hermitian conjugate M †
t , the spin-averaged amplitude square

is

〈
|Mt |2

〉
=

1
2 ∑

spins
|Mt |2

=
G2

F
4 ∑

spins

[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
][

v̄(p1)γ
ν

(
1− γ

5
)

v(k1)
]†

× ∑
spins

[
ū(k2)γµ

{
(ge

V +1)− (ge
A +1)γ

5
}

u(p2)
]

×
[
ū(k2)γν

{
(ge

V +1)− (ge
A +1)γ

5
}

u(p2)
]†
,

(2.85)

where using Casimir’s trick (Griffiths, 2008) yields

=
G2

F
4

Tr
[
γ

µ

(
1− γ

5
)
( /k1−mν)γ

ν

(
1− γ

5
)(

/p1−mν

)]
×Tr

[
γµ

{
(ge

V +1)− (ge
A +1)γ

5
}(

/p2 +me
)

×γν

{
(ge

V +1)− (ge
A +1)γ

5
}
( /k2 +me)

]
,

(2.86)

and then calculating the resulted traces yields

〈
|Mt |2

〉
= 16G2

F

[
(gV −gA)

2 (k1 · k2)(p1 · p2)+(gV +gA +2)2 (k1 · p2)(k2 · p1)

−m2
e (gV −gA)(gV +gA +2)(k1 · p1)

]
.

(2.87)
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Note that in all what follows, our manual calculations of traces have been also

checked out by "FeynCalc" (Mertig et al., 1991; Shtabovenko et al., 2016).

Plugging the necessary kinematic terms given in Equations B.3, B.4 and B.5 fol-

lowed by inserting
〈
|Mt |2

〉
into dσ

dT found in Appendix A

dσ

dT
=

〈
|M |2

〉
32πm2|~p1|2

,

where m2 ≡ me and |~p1|2 ≡ |~pν |2 = E2
ν −���

0
m2

ν = E2
ν gives as a final result

[
dσ

dT
(ν̄ee)

]
SM

=
G2

Fme

2π

[
(gV −gA)

2 +(gV +gA +2)2
(

1− T
Eν

)2

−(gV −gA)(gV +gA +2)
meT
E2

ν

] (2.88)

in terms of the weak couplings gV and gA.

This can also be written easily in terms of the weak mixing angle sin2
θW using the

fact that

gV =−1
2
+2s2

w,

gA =−1
2
,

(2.89)

or in terms of the right and left handed chiral coupling constants gL and gR using the

fact that

gL =
1
2
(gV −gA) = 2sin2

θW ,

gR =
1
2
(gV +gA) = 2sin2

θW −1,
(2.90)

and thus verifying the table given in Chapter 2.
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2.4.2 Neutrino-Electron Elastic Scattering

There are two possible tree-level Feynman diagrams that contribute to the SM pro-

cess of νee elastic scattering.

(a) (b)

Figure 2.8 Feynman diagrams of neutrino-electron scattering via the exchange of a (a) Z-boson (NC)

and (b) W -boson (CC) in the SM

• One is mediated by Z0 through a neutral weak process and is manifested by the

Feynman diagram in Figure 2.8 (a) with the corresponding amplitude given by

MZ =
GF√

2

[
ū(k1)γ

µ

(
1− γ

5
)

u(p1)
][

ū(k2)γµ

(
ge

V −ge
Aγ

5
)

u(p2)
]
.

(2.91)

• Another is mediated by W± through a charged weak process and is manifested

by the Feynman diagram in Figure 2.8 (b) with the corresponding amplitude
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given using Fierz transformation by

MW =
GF√

2

[
ū(k1)γ

µ

(
1− γ

5
)

u(p1)
][

ū(k2)γµ

(
1− γ

5
)

u(p2)
]
. (2.92)

Then the total amplitude can be simply written as

Mt = MZ +MW

=
GF√

2

[
ū(k1)γ

µ

(
1− γ

5
)

u(p1)
]

×
[
ū(k2)γµ

{
(ge

V +1)− (ge
A +1)γ

5
}

u(p2)
]
,

(2.93)

and then together with its hermitian conjugate M †
t , the spin-averaged amplitude square

is

〈
|Mt |2

〉
=

1
2 ∑

spins
|Mt |2

=
G2

F
4 ∑

spins

[
ū(k1)γ

µ

(
1− γ

5
)

u(p1)
][

ū(k1)γ
ν

(
1− γ

5
)

u(p1)
]†

× ∑
spins

[
ū(k2)γµ

{
(ge

V +1)− (ge
A +1)γ

5
}

u(p2)
]

×
[
ū(k2)γν

{
(ge

V +1)− (ge
A +1)γ

5
}

u(p2)
]†
,

(2.94)

where using Casimir’s trick yields

=
G2

F
4

Tr
[
γ

µ

(
1− γ

5
)(

/p1 +mν

)
γ

ν

(
1− γ

5
)
( /k1 +mν)

]
×Tr

[
γµ

{
(ge

V +1)− (ge
A +1)γ

5
}(

/p2 +me
)

×γν

{
(ge

V +1)− (ge
A +1)γ

5
}
( /k2 +me)

]
,

(2.95)

and then evaluating the traces yields

〈
|Mt |2

〉
= 16G2

F

[
(gV +gA +2)2 (k1 · k2)(p1 · p2)+(gV −gA)

2 (k1 · p2)(k2 · p1)

−m2
e (gV −gA)(gV +gA +2)(k1 · p1)

]
.

(2.96)
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Plugging the necessary kinematic terms and inserting
〈
|Mt |2

〉
into dσ

dT gives

[
dσ

dT
(νee)

]
SM

=
G2

Fme

2π

[
(gV +gA +2)2 +(gV −gA)

2
(

1− T
Eν

)2

−(gV −gA)(gV +gA +2)
meT
E2

ν

] (2.97)

in terms of the weak couplings (gV and gA) which can also be easily written in terms

of Weinberg angle and chiral couplings using Equations 2.89 and 2.90, respectively.

In general, the tree-level SM differential cross section for the process νe (ν̄e)+e→
νe (ν̄e)+ e is well known and can be expressed in the laboratory frame as (Bilmiş et

al., 2012, 1; Chen et al., 2014; Deniz et al., 2010, 1; Kayser et al., 1979)

[
dσ

dT
((ν̄

)
ee)
]

SM
=

2G2
Fme

π

[
a2 +b2

(
1− T

Eν

)2

−ab
meT
E2

ν

]
, (2.98)

where GF =
√

2
8

(
gw
MW

)2
is the Fermi coupling constant, me is the electron mass, T is the

electron recoil kinetic energy, Eν is the incoming neutrino energy, and the coefficients

a and b are given in Table 2.2 in terms of vector and axial vector coupling constants

(gV = −1
2 + 2s2

W and gA = −1
2 as predicted by the GWS model), electroweak mixing

angle (sin2θW ≡ s2
W ), and chiral coupling constants (gL and gR).

Table 2.2 Coefficients in the expression of the SM (ν̄
)
ee scattering cross section given by Equation 2.98

Process a b

1
2(gV −gA)

1
2(gV +gA +2)

ν̄e + e→ ν̄e + e s2
W s2

W + 1
2

gR gL +1

1
2(gV +gA +2) 1

2(gV −gA)

νe + e→ νe + e s2
W + 1

2 s2
W

gL +1 gR
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CHAPTER THREE

WHY TO GO BEYOND THE STANDARD MODEL

In an aim to test the SM and/or find an answer to some of its critical problems,

theoretical particle physicists have came up with a wide range of new physics scenarios

intended to look for physics BSM using different interaction channels. Until now, there

is no experimental evidence that neutrinos have some non-standard properties beyond

masses and mixing or some extra new interactions, different from the weak interaction,

not explained by the SM. Such interactions are often called non-standard interactions

(NSIs) of neutrinos. These interactions are interesting from a phenomenological point

of view, because they directly point out the presence of some new physics BSM. NSIs

of neutrinos is one concrete example of a model-independent BSM research. On the

other hand, unparticle physics (UP), extra Z′ gauge boson model, new light spin-1

boson (NLS1B) model, charged Higgs boson (CHB) model and little Higgs models

(LHMs) are some famous examples of model-dependent BSM researches.

3.1 Standard Model as an Effective Theory

Known as "the theory of almost everything", the SM of particle physics is a theory

whose predictions verify to a very good extent the data of almost all particle physics

experiments implemented at currently reachable energies.

Nevertheless, it is dubbed an effective theory that is valid only up to a certain en-

ergy scale Λ beyond which it gives up and dies. Clearly, the SM, which describes

interactions only through electromagnetic, weak and strong forces and which fails to

include the gravitational force, must cease to work at the Planck energy scale at which

the gravitational forces become comparable in strength to other forces. Indeed, the SM

breaks down much earlier, at the TeV energy scale, due to its insufficient elucidation

of electroweak symmetry breaking (EWSB) by the Higgs mechanism.

42



3.2 Shortcomings of the Standard Model

Despite its impressive success in describing all existing experimental data at cur-

rently available energies, the SM of particle physics suffers from some serious troubles

that are the main motivation for physics BSM. Below is a glance on some of them with

more emphasis on the last one as part of this thesis work:

I. Gravity

Obviously, the SM of particle physics, which embraced the electromagnetic, strong

and weak forces, disregarded the fourth fundamental force of nature known famously

as the gravitational force. It is not a long time ago since the discovery of gravitational

waves which may imply in the near future the existence of the logically hypothesized

mediator of the gravitational force, a particle which is absent from the SM, the graviton.

These gravitational fields are completely classical and it had been always a difficult

task for physicists to come up with a theory to quantize them and get them included

into the SM of particle physics.

II. Unification of the weak, strong and electromagnetic forces

Experiments show that the strong and weak forces become weaker and the electromag-

netic force becomes stronger as the energy increases. This is a good indication that

at incredibly high energies, the strength of the electromagnetic, weak and the strong

forces is probably the same. The SM, however, does not provide a unification of these

forces at very high energies.

III. Neutrino oscillation

Neutrino flavor changes, known also as neutrino oscillations, have been observed

and verified with numerous experiments involving atmospheric, solar, reactor and

accelerator-made neutrinos (Capozzi et al., 2016; Esteban et al., 2017; Patrignani et

al., 2016) .This phenomenon emphasizes that at least two of the neutrinos in the SM

have a nonzero mass, making this the first deviation from the SM as the mass property

is not there in the theory of the SM. Therefore, it is a fact that the SM needs to be
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revised in order to accommodate for massive and mixed neutrinos, which in turn leads

to physics beyond the SM.

VI. Number of generations

In the SM leptons and quarks are grouped into three generations with all the same prop-

erties except masses, but there is no explanation or limitation on the number of gen-

erations. The lightest and most stable particles make up the first generation, whereas

the less stable and heavier particles belong to the second and third generations. All

stable matter in the universe is made from particles that belong to the first generation;

any heavier particles quickly decay to the next most stable level. However, SM can not

explain why the other two generations are needed and whether or not there are more

generations.

V. The strong CP problem

The strong CP problem is a severe weakness of the SM. The SM -which imposes

non CP conserving hypothetical processes- failed to answer the perplexing question of

why strong interactions do not seem to break CP-symmetry as do the weak interactions

despite the fact that the laws governing both interactions are very similar in nature.

VI. Matter-antimatter asymmetry

Why we live in a matter-dominated universe? What happened to all the antimatter in

the early universe after the Big Bang? And by the fact that matter asymmetry is consis-

tently referred to as baryon asymmetry, how can this be the reason for our existence?

All these questions and many others have fiercely attacked the SM and were one of the

reasons to start thinking of other theories that could figure out such a mystery.

VII. Dark matter and dark energy

The SM was brilliantly successful in describing the behavior of our visible universe;

that is, everything we were able to witness by our experiments and apparatuses from the

large scale of galaxies down to the smallest possible scale of atoms. Indeed, this visible

universe appeared to be made up of a bunch of protons and neutrons surrounded by

electrons and packaged together into atoms constituting all the ordinary (or baryonic)
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matters around us. These, however, form less than 5% of the mass of the universe,

which is maybe one of the most shocking exploration happened in the 20th century.

The rest of the universe appears to be made up of a strange, invisible substance called

dark matter (25%) and a force that repels gravity known as dark energy (70%). Both

are still ambiguous and are not part of the SM, which means that it clearly cannot be

the ultimate story of the universe.

VIII. The Higgs hierarchy problem

The discovery of the long-awaited Higgs boson in 2012 at CERN’s large hadron col-

lider (LHC) (ATLAS collaboration, 2012; CMS collaboration, 2012) is not just a dis-

covery of a new particle in the SM theory but also an important sign for the existence

of new physics BSM, mainly because of the famous “SM Higgs hierarchy problem”.

Typically, in physics, it is more likely that a microscopic theory describes some

macroscopic behavior naturally without fine-tuning any parameter in the theory. A

hierarchy problem -sometimes called a naturalness or a fine-tuning problem- arises

when the value of a physical parameter in a theory needs to be carefully fine-tuned in

order to meet some experimental constraints.

Indeed, the SM Higgs boson has a "snowball’s chance in hell" as it suffers from

infinite quantum corrections leaving it with no option but to be much heavier than the

experimentally discovered one. These corrections are mainly due to the Higgs inter-

action with virtual particles of the SM quarks (mostly the top quark), gauge bosons

(W , Z and γ) and the Higgs boson itself, as is presented in Figure 3.1. There are, of

course, other possible diagrams of the Higgs interaction with gluons and other quarks

in addition to higher order diagrams, as is presented in Figure 3.2, but these are of

less importance which makes it sufficient to deal with the three lowest-order diagrams

presented as they contribute the most to the infinite radiations of the Higgs mass.

These misbehaved diagrams are the core reason of the hierarchy problem. The

Higgs particle can have an intermediate state of some virtual particle for a very short

period of time. That is to say, a Higgs coming with some momentum p can absorb
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top HiggsW,Z, γ

Figure 3.1 Feynman diagrams of the Higgs interaction with the SM top quark (left), gauge bosons

(center) and Higgs boson (right)

Figure 3.2 Higher order Feynman diagrams of the Higgs interaction with the SM particles

some particle with momentum k and have a total momentum of p+ k before going

back to its original state with momentum p. Keep in mind that in order to draw Feyn-

man diagrams, momentum should be conserved and so the incoming Higgs and the

outgoing Higgs should have the same momentum. The value of the virtual momen-

tum k, however, is totally arbitrary and one needs to sum over all possible values of

k or equivalently integrate over all possible four-vector k. Such momentum integrals

produce ultraviolet (UV) infinite divergences due to the countless values of possible

momenta. Clearly, a particle cannot have an infinite mass and so to obtain a practical

finite mass, one needs to regularize (or redefine) these integrals. The method used here

is the so-called "cut-off regularization" through which integration of momenta k is lim-

ited to some range k < Λ where Λ is the cut-off scale of the theory. Notwithstanding

its disadvantages, this method has an extremely straightforward and simple physical

explanation as compared to its nephew method known as "dimensional regularization"

through which integration of momenta k is carried out as a function of space-time

dimension d.

We will mathematically look at this problem by considering three different situa-

tions for three different cut-off values Λ (Maarten, 2004):
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Situation 1:

If we assume that the SM is the fundamental theory of nature and is available even at

very high energies, it should break down at the Planck mass-energy equivalent scale

Λ = MPlanck = 1.22091×1019 GeV , beyond which the estimation of loop diagrams is

out of our current knowledge. This would roughly yield a Higgs of mass 1019 GeV

instead of the experimentally discovered 125 GeV Higgs with an unnatural need of

about 1017 fine-tuning of the SM parameters. More accurately, if the SM breaks down

at Λ = MPlanck ≈ 1019 GeV , the contributions to the Higgs mass are

− 3
8π2 λ

2
t Λ

2 ≈ −
(

2×1015 TeV
)2

from the top loop, (3.1)

1
16π2 g2

Λ
2 ≈

(
0.7×1015 TeV

)2
from the gauge loop, (3.2)

1
16π2 λ

2
Λ

2 ≈
(

0.5×1015 TeV
)2

from the Higgs loop. (3.3)

The overall Higgs mass at one-loop order is then

m2
H = m2

tree−
[
(1−0.1225−0.0625)×1032](200 GeV )2 . (3.4)

If the Higgs mass is to be only a few hundred GeV , a fine tuning of order one part in

1032 among the tree-level parameters of the SM is required.

Situation 2:

Even much earlier, if we assume that the SM breaks down at Λ = 10 TeV , the contri-

butions to the Higgs mass are

− 3
8π2 λ

2
t Λ

2 ≈ −(2 TeV )2 from the top loop, (3.5)

1
16π2 g2

Λ
2 ≈ (0.7 TeV )2 from the gauge loop, (3.6)

1
16π2 λ

2
Λ

2 ≈ (0.5 TeV )2 from the Higgs loop. (3.7)

The overall Higgs mass at one-loop order is then

m2
H = m2

tree−
[
(1−0.1225−0.0625)×102](200 GeV )2 . (3.8)
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And again, if the Higgs mass is to be only a few hundred GeV , a fine tuning of order

one part in 100 among the tree-level parameters of the SM is required.

Situation 3:

However, assuming that the SM breaks down at Λ = 1 TeV , the contributions to the

Higgs mass are

− 3
8π2 λ

2
t Λ

2 ≈ −(0.2 TeV )2 from the top loop, (3.9)

1
16π2 g2

Λ
2 ≈ (0.07 TeV )2 from the gauge loop, (3.10)

1
16π2 λ

2
Λ

2 ≈ (0.05 TeV )2 from the Higgs loop. (3.11)

The overall Higgs mass at one-loop order is then

m2
H = m2

tree−
[
(1−0.1225−0.0625)×100](200 GeV )2 . (3.12)

This would give a Higgs mass of a few hundred GeV as is demanded by the SM without

a remarkable need for any fine tuning. Accordingly, the SM can survive naturally and

unaided by any new physics BSM up to energy scales of 1 TeV . The reason it should

not be shocking when our colliders and accelerators, operating at currently available

energies of 1 TeV , do not witness any significant departure from the SM.

As a simple graphical representation of the three situations above, the contributions

from the top, gauge and Higgs loops and the fine-tuning required to obtain an accept-

able Higgs mass in the SM with cut-offs Λ ≈ 1016 TeV , Λ = 10 TeV and Λ = 1 TeV

are shown in Figure 3.3.

Clearly, trying to re-normalize our SM theory to a very high scale was not success-

ful in resolving the problem of the infinite quantum corrections to the Higgs mass.

Although it succeeded in naturally describing all experimental data at relatively low

energies, the SM of particle physics is in a real critical situation when it comes to deal

with energies just above the 1 TeV where some serious fine-tuning of its parameters is

needed to be in agreement with the experimental data. At this point, the SM is regarded
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Figure 3.3 The fine-tuning required (red histogram) to obtain an acceptable Higgs mass in the SM with

cut-offs Λ≈ 1016 TeV , Λ = 10 TeV and Λ = 1 TeV

as an effective theory of a more global, fundamental theory expected at high energies.

This what actually urged particle physicists to look for new physics BSM with some

new heavy particles in there to hugely fine-tune the Higgs boson mass in such a way to

cancel these infinite corrections and leave it relatively light and not too far from W and

Z gauge bosons masses (around 125 GeV) as is experimentally observed by ATLAS

and CMS detectors. The solution we are going to elaborate here -which is the main

theme of this work- is known as little Higgs models (LHMs) with an emphasis on one

product group model named SU(5) littlest Higgs model (LTHM) and one simple group

model named SU(3) simple little Higgs model (SLHM).

Note that, at first glance, it seems that all the SM particles have a Planck-scale mass

because logically they can also have diagrams with a virtual loop of momentum k up

to MPlanck. It turns out that the hierarchy problem is special to scalar particles and the

only scalar particle in the SM theory is the Higgs particle. Fermions and gauge bosons

masses are somehow guarded by the mechanism of chirality and gauge invariance,

respectively.
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3.3 Scalar, Pseudoscalar and Tensorial Non-standard Interaction of Neutrinos

In this section, one example of a model-independent BSM researches known as

scalar, pseudoscalar and tensorial NSI of neutrinos is going to be carefully investigated

both theoretically and analytically via neutrino-electron elastic scattering channel.

By analogy to the experimental fact of quark flavor mixing where not only transi-

tions within the same generations but also cross-generational transitions are allowed

by the known non-unitary Kobayashi-Maskawa matrix through (Griffiths, 2008)
d′

s′

b′

=U


d

s

b

=


Uud = 0.974 Uus = 0.227 Uub = 0.004

Ucd = 0.227 Ucs = 0.973 Ucb = 0.042

Utd = 0.008 Uts = 0.042 Utb = 0.999




d

s

b

 , (3.13)

lepton flavors do also mix violating as a result lepton number conservation laws.

As upness-plus-downness, strangeness-plus-charmness and topness-plus-bottomness

are violated during cross-generational quark flavor transitions, electron lepton number,

muon lepton number and tau lepton number are also violated during lepton flavor mix-

ings. Such process are known as lepton flavor violating process and they are usually

split into three categories: charged lepton flavor violating (CLFV) processes where the

charged leptons (`= e−,µ−,τ−) undergo flavor transitions as is shown in Fig. 3.4 (a),

NSIs of neutrino where the neutral leptons (ν` = νe,νµ ,ντ ) undergo flavor transitions

as is shown in Fig. 3.4 (b) and 4-neutrino-NSI which is similar to NSI but with four

neutrinos as is shown in Fig. 3.4 (c).

A recent significant achievement in experimental particle physics is the discovery

of neutrino flavor transitions described primarily by the mechanism of neutrino oscil-

lations.

NSI of neutrinos is a model-independent framework that can be an effect of the

mechanism of neutrino oscillations. NSI of neutrinos is a good channel to look for

50



(a) (b) (c)
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νℓ′

ℓ ℓ

νℓ
4ν NSI

νℓ′

νℓ νℓ

Figure 3.4 Lepton flavor violating processes

physics BSM, because witnessing such interactions experimentally would imply the

existence of massive and therefore right-handed neutrinos as opposed by the beliefs of

the SM.

Neutrino flavor eigenstates are mixed with mass states by
νe

νµ

ντ

=U


ν1

ν2

ν3

=


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




ν1

ν2

ν3

 , (3.14)

where Ue1 measures the coupling of νe to ν1, and so on, and

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



×


eiρ 0 0

0 eiσ 0

0 0 1

 ,

(3.15)

where ci j ≡ cos(θi j) and si j ≡ sin(θi j), θi j are the leptonic mixing parameters, δ is the

Dirac CP-violating phase, ρ and σ are the Majorana CP-violating phases.

In the framework of NSI, neutrinos couple to the charged leptons (e−, µ− and τ−)

in the scalar, pseudoscalar and tensorial form in addition to the standard vector-axial

vector coupling form offered by the SM.

51



Figure 3.5 NSIs of neutrinos described as four-Fermi interaction with new couplings

In general, NSI of neutrinos can be described as a four-Fermi (a so called point-like

or zero-distance) interaction with new modified chiral coupling constants gL,R. The

corresponding Feynman diagram of the various forms of NSI for neutrino-electron

scattering is shown in Fig. 3.5.

The effective Lagrangian density for scalar/pseudoscalar interaction among leptons

and charged Higgs bosons can be written as

LS,P = ∑
α

∑
β

l̄α(OS,P)νβ , (3.16)

where OS,P is a general operator with scalar/pseudoscalar interactions and α , β = e,

µ , τ . For the case of the operator O , it is possible to find the general transformation

(Galtán et al., 2013)

2
[
l̄α
(

a+bγ
5
)

νβ

][
ν̄β

(
c+dγ

5
)

lα
]

=(a+b)(c+d)
(

l̄αPRlα ν̄β PRνβ +
1
4

l̄ασ
µνPRlα ν̄β σµνPRνβ

)
+(a+b)(c−d) l̄αγ

µPLlα ν̄β γµPRνβ

+(a−b)(c+d) l̄αγ
µPRlα ν̄β γµPLνβ

+(a−b)(c−d)
(

l̄αPLlα ν̄β PLνβ +
1
4

l̄ασ
µνPLlα ν̄β σµνPLνβ

)
.

(3.17)

The differential scattering cross section of scalar-pseudoscalar NSI of neutrino for
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ν̄ee and νee can be written respectively as

[
dσ

dT
(ν̄ee)

]S,P

NSI
=

2G2
Fme

π

{(
|ge,e

S |+ |g
e,e
P |
)2

+gRRe
(
ge,e

S −ge,e
P
)

−(gL +1)Re
(
ge,e

S −ge,e
P
) me

2E2
ν

}
,

(3.18)

and [
dσ

dT
(νee)

]S,P

NSI
=

2G2
Fme

π

{[(
|ge,e

S |+ |g
e,e
P |
)2

+gRRe
(
ge,e

S −ge,e
P
)]

×
(

1− T
Eν

)2

− (gL +1)Re
(
ge,e

S −ge,e
P
) me

2E2
ν

}
.

(3.19)

The effective Lagrangian density for tensorial interaction can be written as (Bar-

ranco et al., 2012; Deniz et al., 2017)

LT =−2
√

2GFε
f T

αβ

(
ν̄ασ

µν
νβ

)(
f̄ σµν f

)
, (3.20)

where ε
f T

αβ
is the strength of the tensorial NSI coupling with electrons, σ µν = [γµ ,γν ] =

γµγν − γνγµ and α, β = e, µ, τ .

The differential scattering cross section of tensorial NSI, however, can be written as

[
dσ

dT
((ν̄

)
ee)
]T

NSI
=

2G2
Fme

π
∑

β=e,µ,τ

(
ε

eT
eβ

)2
[

2
(

1− T
2Eν

)2

− meT
2E2

ν

]
. (3.21)
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CHAPTER FOUR

LITTLE HIGGS MODELS

In the same way supersymmetric theories try to stabilize the electroweak scale in

the ultraviolet (UV) zone by introducing superpartners of the SM particles, techni-

color theories do so by introducing new strong dynamics at scales not much above the

electroweak scale. Little Higgs models (LHMs) are one concrete example of techni-

color theories offered as another solution to the hierarchy problem of the SM. More

technically, these models are used to stabilize the SM Higgs boson mass against the

large uncontrolled quantum corrections, and thus stabilizing the electroweak scale at

v = 246 GeV employing the "collective symmetry breaking" mechanism (Perelstein,

2007; Schmaltz et al., 2005).

LHMs approach the problem by considering the Higgs a pseudo-Goldstone boson

(PGB) resulting from symmetry breaking of some global symmetry which in turn al-

lows it to get a relatively light mass free from any one-loop quadratic divergences via

symmetry breaking at the electroweak scale.

There are several variations of the LHMs, which differ at least in the assumed struc-

ture of the extended higher symmetry electroweak gauge group. They can be gener-

ally divided into two classes (Han et al., 2006): Product group models and Simple

group models. The SU(5) littlest Higgs model (LTHM) (Arkani-Hamed et al., 2002;

Perelstein, 2007; Schmaltz et al., 2005) and the SU(3) simple little Higgs model

(SLHM) (Kaplan et al., 2003; Perelstein, 2007; Schmaltz et al., 2005) are the basic

examples of these two kinds of LHMs, respectively.

4.1 The SU(5) Littlest Higgs Model

SU(5) LTHM is the most economical and the simplest extension of the SM, which

is the first model to be explicitly constructed based on the core ideas of little Higgs

theories.
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From a phenomenological point of view, it consists of a nonlinear σ model with a

global SU(5) symmetry and a locally gauged symmetry [SU(2)×U(1)]2. The global

SU(5) symmetry is broken down to its subgroup SO(5) at a scale f , which results in

fourteen PGBs. Four of these GBs are eaten by the new heavy bosons (Z0
H , A0

H and

W±H ) predicted by the model as a result of the breaking of [SU(2)×U(1)]2 (Arkani-

Hamed et al., 2002; Han et al., 2004; Na et al., 2011; Perelstein, 2007; Schmaltz

et al., 2005).

In the SU(5) LTHM, the quadratic divergences cancel between the WL and WH loops

with a partial cancellation between the ZL and ZH loops. Including the AH loop, how-

ever, leads to a complete cancellation of the quadratic divergences from the Z loop.

Compared with the neutrino-electron elastic scattering process in the SM, this pro-

cess in the SU(5) LTHM receives additional contributions from the correction terms of

the SM Z and W couplings and from some new heavy gauge bosons ZH , AH and WH .

In the framework of the SU(5) LTHM:

• the vertex factor for the coupling between neutral gauge bosons and leptons can

be written in the form

−i
gz

2
γ

µ

(
g f

V

′
−g f

A

′
γ

5
)
, (4.1)

where the new neutral vector g f
V

′
and axial vector g f

A

′
coupling constants depend

on the mixing parameters c (or s, s =
√

1− c2) and c′ (or s′, s′ =
√

1− c′2) and

the scale f . Note that the SM neutral weak coupling constant gz =
ge

swcw
with

ge = 2
√

πe is the electromagnetic coupling constant which is known essentially

as the charge of the electron.

• the vertex factor for the coupling between charged gauge bosons and leptons can
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be written in the form

−i
gw

2
√

2
g′γµ

(
1− γ

5
)
, (4.2)

where the new charged weak coupling constant g′ depends only on the mixing

parameter c (or s) and the scale f . Note that gw = ge
sw

in the SM.

• the propagator factor can take the form

−i

(
gµν − qµ qν

M2

q2−M2

)
≈ i

gµν

M2 (strictly in low energy region), (4.3)

where q and M refer respectively to the momentum transfer and the mass of the

mediator.

• the couplings of the SM Z and W intermediate vector gauge bosons and the

new heavy ZH , AH and WH bosons with leptons are given in Table 4.1, where

xW ′
Z = − 1

2cw
sc
(
c2− s2), xB′

Z = − 5
2sw

s′c′
(
c′2− s′2

)
and ye =

3
5 (for anomaly can-

cellation).

In the scope of neutrino-electron elastic scattering, the SU(5) LTHM involves both

flavor conserving (FC) and flavor violating (FV) processes denoted respectively by

νe (ν̄e)+e→ νe (ν̄e)+e and νe (ν̄e)+e→ να (ν̄α)+e (where α 6= e) and mediated by

the SM (Z and W ) and new heavy (ZH , AH and WH) gauge bosons.

Note that both neutral-current (NC) and charged-current (CC) interactions, medi-

ated respectively by the neutral and the charged gauge bosons, along with their inter-

ference, take part in the FC processes but only the NC interactions in the FV processes.
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Table 4.1 Couplings of the SM Z and W gauge bosons and the new heavy ZH , AH and WH gauge bosons

with leptons in the SU(5) LTHM (Aliev et al., 2008; Han et al., 2004; Poschenrieder et al., 2007)

SM SU(5) LTHM

Zνν̄ gν
V = 1

2 gν
V
′
= 1

2 − v2

f 2

[
cwxW ′

z
c
2s + swxB′

z
1

s′c′
(
ye− 4

5 +
1
2c′2
)]

gν
A = 1

2 gν
A
′
= gν

V
′

Zeē ge
V =−1

2 +2s2
w ge

V
′
=−1

2 +2s2
w− v2

f 2

[
−cwxW ′

z
c
2s + swxB′

z
1

s′c′
(
2ye− 9

5 +
3
2c′2
)]

ge
A =−1

2 ge
A
′
=−1

2 − v2

f 2

[
cwxW ′

z
c
2s + swxB′

z
1

s′c′
(
−1

5 +
1
2c′2
)]

Weν̄ g = 1 g′ = 1− 1
2

v2

f 2 c2 (c2− s2)
ZHνν̄ - gν

V
′
= 1

2cw
c
s

- gν
A
′
= gν

V
′

ZHeē - ge
V
′
=−1

2cw
c
s

- ge
A
′
= ge

V
′

AHνν̄ - gν
V
′
= sw

1
s′c′
(
ye− 4

5 +
1
2c′2
)

- gν
A
′
= gν

V
′

AHeē - ge
V
′
= sw

1
s′c′
(
2ye− 9

5 +
3
2c′2
)

- ge
A
′
=−sw

1
s′c′
(
−1

5 +
1
2c′2
)

WHeν̄ - g′ =−c
s

[
1+ 1

2
v2

f 2 s2 (c2− s2)]

4.1.1 Antineutrino-Electron Scattering

4.1.1.1 ν̄e + e→ ν̄e + e (FC)

Mediated by the SM light gauge bosons, there are two possible tree-level Feynman

diagrams for the FC process of ν̄ee elastic scattering.

• One is mediated by Z0 through a neutral weak process and is manifested by the

Feynman diagram in Figure 4.1 (a) with the corresponding amplitude given by

MZ =
2GF√

2
gν

V
′ [

v̄(p1)γ
µ

(
1− γ

5
)

v(k1)
][

ū(k2)γµ

(
ge

V
′−ge

A
′
γ

5
)

u(p2)
]
.

(4.4)

• The other is mediated by W± through a charged weak process and is manifested
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(a) (b)

Figure 4.1 Feynman diagrams of (a) Z-mediated and (b) W -mediated antineutrino-electron FC scattering

in the SU(5) LTHM along with the corresponding vertex and propagator factors

by the Feynman diagram in Figure 4.1 (b) with the corresponding amplitude

given using Fierz transformation by

MW =
GF√

2
g′2
[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
][

ū(k2)γµ

(
1− γ

5
)

u(p2)
]
. (4.5)

Then the total amplitude can be simply written as

Mt = MZ +MW

=
GF√

2

[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
]

×
[
ū(k2)γµ

{(
2gν

V
′
ge

V
′
+g′2

)
−
(

2gν
V
′
ge

A
′
+g′2

)
γ

5
}

u(p2)
]
,

(4.6)
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and together with its hermitian conjugate M †
t , the spin-averaged amplitude square is

〈
|Mt |2

〉
=

1
2 ∑

spins
|Mt |2

=
G2

F
4 ∑

spins

[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
][

v̄(p1)γ
ν

(
1− γ

5
)

v(k1)
]†

× ∑
spins

[
ū(k2)γµ

{(
2gν

V
′
ge

V
′
+g′2

)
−
(

2gν
V
′
ge

A
′
+g′2

)
γ

5
}

u(p2)
]

×
[
ū(k2)γν

{(
2gν

V
′
ge

V
′
+g′2

)
−
(

2gν
V
′
ge

A
′
+g′2

)
γ

5
}

u(p2)
]†
,

(4.7)

where using Casimir’s trick (Griffiths, 2008) yields

=
G2

F
4

Tr
[
γ

µ

(
1− γ

5
)
( /k1−mν)γ

ν

(
1− γ

5
)(

/p1−mν

)]
×Tr

[
γµ

{(
2gν

V
′
ge

V
′
+g′2

)
−
(

2gν
V
′
ge

A
′
+g′2

)
γ

5
}(

/p2 +me
)

×γν

{(
2gν

V
′
ge

V
′
+g′2

)
−
(

2gν
V
′
ge

A
′
+g′2

)
γ

5
}
( /k2 +me)

]
,

(4.8)

and then after evaluating the traces, the previous equation becomes

〈
|Mt |2

〉
= 64G2

F

[
gν

V
′2(

ge
V
′−ge

A
′)2

(k1 · k2)(p1 · p2)

+
(

gν
V
′ (

ge
V
′
+ge

A
′)
+g′2

)2
(k1 · p2)(k2 · p1)

−m2
egν

V
′ (

ge
V
′−ge

A
′)(

gν
V
′ (

ge
V
′
+ge

A
′)
+g′2

)
(k1 · p1)

]
.

(4.9)

Note that in all what follows, our manual calculations of traces have been also

checked out by "FeynCalc" (Mertig et al., 1991; Shtabovenko et al., 2016).

It is advantageous at this stage to pose and simplify the coupling constants of the

light SU(5) LTHM given in Table 4.1 before going on and plugging them into their
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places. So by the fact that

xW ′
Z =− 1

2cW
sc
(
c2− s2) ,

xB′
Z =− 5

2sW
s′c′
(
c′2− s′2

)
,

ye =
3
5
,

(4.10)

it follows that

gν
V
′

=
1
2
− v2

f 2

[
cwxW ′

z
c
2s

+ swxB′
z

1
s′c′

(
ye−

4
5
+

1
2

c′2
)]

=
1
2
+

v2

f 2

[
1
4

c2 (c2− s2)+ 5
2
(
c′2− s′2

)(
−1

5
+

1
2

c′2
)]

︸ ︷︷ ︸
≡B

2

=⇒ gν
V
′
=

1
2
(1+B) , (4.11)

where B = 2 v2

f 2

[1
4c2 (c2− s2)+ 5

2

(
c′2− s′2

)(
−1

5 +
1
2c′2
)]
.

ge
V
′

= −1
2
+2s2

w−
v2

f 2

[
−cwxW ′

z
c
2s

+ swxB′
z

1
s′c′

(
2ye−

9
5
+

3
2

c′2
)]

= −1
2
+2s2

w−
v2

f 2

[
1
4

c2 (c2− s2)− 5
2
(
c′2− s′2

)
3
(
−1

5
+

1
2

c′2
)]

︸ ︷︷ ︸
≡δge

V

=⇒ ge
V
′
=−1

2
+2s2

w +δge
V , (4.12)

where δge
V =− v2

f 2

[1
4c2 (c2− s2)− 5

2

(
c′2− s′2

)
3
(
−1

5 +
1
2c′2
)]
.

ge
A
′

= −1
2
+

v2

f 2

[
cwxW ′

z
c
2s

+ swxB′
z

1
s′c′

(
−1

5
+

1
2

c′2
)]

= −1
2
− v2

f 2

[
1
4

c2 (c2− s2)+ 5
2
(
c′2− s′2

)(
−1

5
+

1
2

c′2
)]

︸ ︷︷ ︸
≡δge

A

=⇒ ge
A
′
=−1

2
+δge

A, (4.13)
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where δge
A =− v2

f 2

[1
4c2 (c2− s2)+ 5

2

(
c′2− s′2

)(
−1

5 +
1
2c′2
)]
.

g′ = 1−1
2

v2

f 2 c2 (c2− s2)︸ ︷︷ ︸
≡δg′l

=⇒ g′ = 1+δg
′
l, (4.14)

where δg
′
l =−1

2
v2

f 2 c2 (c2− s2) .
Or, equivalently, expressing the vector and axial-vector coupling constants of the elec-

tron in terms of the left-handed and right-handed chiral coupling constants yields

gL
′

=
1
2

(
ge

V
′
+ge

A
′)

=
1
2

(
−1

2
+2s2

W +δge
V −

1
2
+δge

A

)
= −1

2
+ s2

W +
1
2
(δge

V +δge
A)︸ ︷︷ ︸

δgL

=⇒ gL
′
=−1

2
+ s2

W +δgL, (4.15)

where δgL =− v2

f 2

[1
4c2 (c2− s2)− 5

2

(
c′2− s′2

)(
−1

5 +
1
2c′2
)]
.

gR
′

=
1
2

(
ge

V
′−ge

A
′)

=
1
2

(
−1

2
+2s2

W +δge
V +

1
2
−δge

A

)
= s2

W +
1
2
(δge

V −δge
A)︸ ︷︷ ︸

δgR

=⇒ gR
′
= s2

W +δgR, (4.16)

where δgR = 5 v2

f 2

(
c′2− s′2

)(
−1

5 +
1
2c′2
)
.
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In terms of B, δgL, δgR, and δg′L given respectively by Equations 4.11, 4.15, 4.16

and 4.14, the spin-averaged amplitude in Equation 4.9 can be written as

〈
|Mt |2

〉
= 64G2

Fm2
e

[
(1+B)2 (gR +δgR)

2 E2
ν

+

{
(1+B)(gL +δgL)+

(
1+δg

′
L

)2
}2

(Eν −T )2

− (1+B)(gR +δgR)

{
(1+B)(gL +δgL)+

(
1+δg

′
L

)2
}

meT
]
,

(4.17)

where the corresponding kinematic terms found in Appendix B have been also plugged.

Finally, inserting
〈
|Mt |2

〉
into dσ

dT found in Appendix A as

dσ

dT
=

〈
|M |2

〉
32πm2|~p1|2

,

where m2 ≡ me and |~p1|2 ≡ |~pν |2 = E2
ν −���

0
m2

ν = E2
ν , gives as a final result

[
dσ

dT
(ν̄ee)

]FC

Light LT HM
=

2G2
Fme

π

[
(1+B)2 (gR +δgR)

2

+

{
(1+B)(gL +δgL)+

(
1+δg

′
L

)2
}2(

1− T
Eν

)2

− (1+B)(gR +δgR)

{
(1+B)(gL +δgL)

+
(

1+δg
′
L

)2
}

meT
E2

ν

]
.

(4.18)

On the other hand, mediated by the SU(5) LTHM new predicted heavy gauge

bosons, there are three possible tree-level Feynman diagrams for the FC process of

ν̄ee elastic scattering.

• One is mediated by Z0
H through a neutral weak process and is manifested by the
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(a) (b)

(c)

Figure 4.2 Feynman diagrams of (a) ZH -mediated, (b) AH -mediated and (c) WH -mediated antineutrino-

electron FC scattering in the SU(5) LTHM together with the convenient vertex and propagator factors

Feynman diagram in Figure 4.2 (a) with the corresponding amplitude given by

MZH =
g2

w

4c2
W M2

ZH

gν
V
′
ge

V
′ [

v̄(p1)γ
µ

(
1− γ

5
)

v(k1)
][

ū(k2)γµ

(
1− γ

5
)

u(p2)
]
.

(4.19)

• Another one is mediated by A0
H through a neutral weak process and is manifested

by the Feynman diagram in Figure 4.2 (b) with the corresponding amplitude
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given by

MAH =
g2

w

4c2
W M2

AH

gν
V
′ [

v̄(p1)γ
µ

(
1− γ

5
)

v(k1)
][

ū(k2)γµ

(
ge

V
′−ge

A
′
γ

5
)

u(p2)
]
.

(4.20)

• A last one is mediated by W±H through a charged weak process and is manifested

by the Feynman diagram in Figure 4.2 (c) with the corresponding amplitude

given after Fierz transformation by

MW H =
g2

w

8M2
WH

g′2
[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
][

ū(k2)γµ

(
1− γ

5
)

u(p2)
]
.

(4.21)

Then the total amplitude can be simply written as

Mt = MZH +MAH +MWH

=
g2

w
8

[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
]ū(k2)γµ


2

(
gν

V
′)

ZH

(
ge

V
′)

ZH

c2
W M2

ZH

+
2
(

gν
V
′)

AH

(
ge

V
′)

AH

c2
W M2

AH

+
g′2

M2
WH

−
2

(
gν

V
′)

ZH

(
ge

V
′)

ZH

c2
W M2

ZH

+
2
(

gν
V
′)

AH

(
ge

A
′)

AH

c2
W M2

AH

+
g′2

M2
WH

γ
5

u(p2)

 ,

(4.22)

where, to avoid any mingling among the couplings of the different mediators, the cor-

responding couplings of ZH and AH have been separated.
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Together with its hermitian conjugate M †
t , the spin-averaged amplitude square is

〈
|Mt |2

〉
=

1
2 ∑

spins
|Mt |2

=
g4

w
128 ∑

spins

[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
][

v̄(p1)γ
ν

(
1− γ

5
)

v(k1)
]†

× ∑
spins

ū(k2)γµ


2

(
gν

V
′)

ZH

(
ge

V
′)

ZH

c2
W M2

ZH

+
2
(

gν
V
′)

AH

(
ge

V
′)

AH

c2
W M2

AH

+
g′2

M2
WH


−

2
(

gν
V
′)

ZH

(
ge

V
′)

ZH

c2
W M2

ZH

+
2
(

gν
V
′)

AH

(
ge

A
′)

AH

c2
W M2

AH

+
g′2

M2
WH

γ
5

u(p2)


×

ū(k2)γν


2

(
gν

V
′)

ZH

(
ge

V
′)

ZH

c2
W M2

ZH

+
2
(

gν
V
′)

AH

(
ge

V
′)

AH

c2
W M2

AH

+
g′2

M2
WH


−

2
(

gν
V
′)

ZH

(
ge

V
′)

ZH

c2
W M2

ZH

+
2
(

gν
V
′)

AH

(
ge

A
′)

AH

c2
W M2

AH

+
g′2

M2
WH

γ
5

u(p2)


†

,

(4.23)

where using Casimir’s trick yields

=
g4

w
128

Tr
[
γ

µ

(
1− γ

5
)
( /k1−mν)γ

ν

(
1− γ

5
)(

/p1−mν

)]
×Tr

γµ


2

(
gν

V
′)

ZH

(
ge

V
′)

ZH

c2
W M2

ZH

+
2
(

gν
V
′)

AH

(
ge

V
′)

AH

c2
W M2

AH

+
g′2

M2
WH


−

2
(

gν
V
′)

ZH

(
ge

V
′)

ZH

c2
W M2

ZH

+
2
(

gν
V
′)

AH

(
ge

A
′)

AH

c2
W M2

AH

+
g′2

M2
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γ
5

( /p2 +me
)

× γν


2

(
gν
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(
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ZH
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W M2

ZH

+
2
(

gν
V
′)

AH

(
ge

V
′)

AH
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W M2

AH

+
g′2

M2
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
−

2
(

gν
V
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ZH

(
ge

V
′)
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ZH

+
2
(
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(
ge
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′)
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c2
W M2
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+
g′2

M2
WH

γ
5

( /k2 +me)

 ,

(4.24)
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and then evaluating the traces and plugging the necessary kinematic terms yield

〈
|Mt |2

〉
= 2g4

W m2
e



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ge
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W M4

AH

E2
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ZH
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ZH
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+
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(
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−
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(
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V
′)

ZH

(
ge

V
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(

ge
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W M2
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+
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gν
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)

AH

((
ge
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′2)

AH
−
(

ge
A
′2)

AH

)
c4

W M4
AH

+

g′2
(

gν
V
′)

AH

((
ge

V
′)

AH
−
(

ge
A
′)
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)
c2

W M2
AH

M2
WH

meT

 .

(4.25)

By plugging the corresponding values of the new coupling constants given in Ta-

ble 4.1, taking into account the condition for anomaly cancellation, three new terms

defined as

C1 =−1
2

c2

s2

(
MW

MZH

)2

, (4.26)

C2 = t2
W

(
−1

5 +
1
2c′2
)(
−2

5 + c′2
)

(s′c′)2

(
MW

MAH

)2

, (4.27)

C3 =
c2

s2

(
1+

1
2

v2

f 2 s2 (c2− s2))2( MW

MW H

)2

≈ c2

s2

(
MW

MW H

)2

, (4.28)
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pop out respectively from ZH , AH and WH in terms of which the spin-averaged ampli-

tude in Equation 4.25 can be written as

〈
|Mt |2

〉
=

2g4
W m2

e

M4
W

[
(2C2)

2 E2
ν +(C1 +C2 +C3)

2 (Eν −T )2

−2C2 (C1 +C2 +C3)meT

]
.

(4.29)

Finally, inserting Equation 4.29 into the general form of the differential cross sec-

tion found in Appendix A yields

[
dσ

dT
(ν̄ee)

]FC

Heavy LT HM
=

2G2
Fme

π

[
(2C2)

2 +(C1 +C2 +C3)
2
(

1− T
Eν

)2

−2C2 (C1 +C2 +C3)
meT
E2

ν

]
.

(4.30)

4.1.1.2 ν̄e + e→ ν̄α 6=e + e (FV)

Mediated by the SM light gauge bosons, there is only one possible tree-level Feyn-

man diagram which contributes to the FV process of ν̄ee elastic scattering.

It is mediated by Z0 through a neutral weak process and is manifested by the Feyn-

man diagram in Figure 4.3 with the corresponding amplitude given by

Mt =
2GF√

2
gν

V
′ [

v̄(p1)γ
µ

(
1− γ

5
)

v(k1)
][

ū(k2)γµ

(
ge

V
′−ge

A
′
γ

5
)

u(p2)
]
,

(4.31)

and then together with its hermitian conjugate M †
t , the spin-averaged amplitude square
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Figure 4.3 Feynman diagram of antineutrino-electron FV scattering via the exchange of a Z boson (NC)

in the SU(5) LTHM with the relevant vertex and propagator factors are also shown

is

〈
|Mt |2

〉
=

1
2 ∑

spins
|Mt |2

= G2
Fgν

V
′2

∑
spins

[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
][

v̄(p1)γ
ν

(
1− γ

5
)

v(k1)
]†

× ∑
spins

[
ū(k2)γµ

(
ge

V
′−ge

A
′
γ

5
)

u(p2)
][

ū(k2)γν

(
ge

V
′−ge

A
′
γ

5
)

u(p2)
]†
,

(4.32)

where using Casimir’s trick yields

= G2
Fgν

V
′2

Tr
[
γ

µ

(
1− γ

5
)
( /k1−mν)γ

ν

(
1− γ

5
)(

/p1−mν

)]
×Tr

[
γµ

(
ge

V
′−ge

A
′
γ

5
)(

/p2 +me
)

γν

(
ge

V
′−ge

A
′
γ

5
)
( /k2 +me)

]
,

(4.33)

and then evaluating the traces and plugging the corresponding kinematic terms therein
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yield

〈
|Mt |2

〉
= 64G2

Fgν
V
′2

m2
e

[(
ge

V
′−ge

A
′)2

E2
ν +
(

ge
V
′
+ge

A
′)2

(Eν −T )2

−
(

ge
V
′2−ge

A
′2
)

meT
]
.

(4.34)

In terms of B, δgL, and δgR, the spin-averaged amplitude in Equation 4.34 can be

written as

〈
|Mt |2

〉
= 64G2

Fm2
e

[
(1+B)2 (gR +δgR)

2 E2
ν +(1+B)2 (gL +δgL)

2 (Eν −T )2

−(1+B)2 (gR +δgR)(gL +δgL)meT
]
.

(4.35)

The differential scattering cross section can be finally found as

[
dσ

dT
(ν̄ee)

]FV

Light LT HM
=

2G2
Fme

π

[
(1+B)2 (gR +δgR)

2

+(1+B)2 (gL +δgL)
2
(

1− T
Eν

)2

−(1+B)2 (gR +δgR)(gL +δgL)
meT
E2

ν

]
.

(4.36)

Mediated by the SU(5) LTHM new predicted heavy gauge bosons, however, there

are two possible tree-level Feynman diagrams for the FV process of ν̄ee elastic scatter-

ing.

• One is mediated by Z0
H through a neutral weak process and is manifested by the

Feynman diagram in Figure 4.4 (a) with the corresponding amplitude given by

MZH =
g2

w

4c2
W M2

ZH

gν
V
′
ge

V
′ [

v̄(p1)γ
µ

(
1− γ

5
)

v(k1)
][

ū(k2)γµ

(
1− γ

5
)

u(p2)
]
.

(4.37)

• The other is mediated by A0
H through a neutral weak process and is manifested by

69



(a) (b)

Figure 4.4 Feynman diagrams of antineutrino-electron FV scattering via the exchange of (a) ZH and (b)

AH bosons in the SU(5) LTHM where the necessary vertex and propagator factors have been also given

the Feynman diagram in Figure 4.4 (b) with the corresponding amplitude given

by

MAH =
g2

w

4c2
W M2

AH

gν
V
′ [

v̄(p1)γ
µ

(
1− γ

5
)

v(k1)
][

ū(k2)γµ

(
ge

V
′−ge

A
′
γ

5
)

u(p2)
]
.

(4.38)

Summing both amplitudes, the total amplitude simply becomes

Mt =
g2

w
8

[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
]ū(k2)γµ
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(
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V
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W M2
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V
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AH
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V
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V
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V
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W M2
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+
2
(
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V
′)

AH

(
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W M2
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γ
5

u(p2)

 ,
(4.39)
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and then together with its hermitian conjugate M †
t , the spin-averaged amplitude square

is

〈
|Mt |2

〉
=

1
2 ∑

spins
|Mt |2

=
g4

w
128 ∑

spins

[
v̄(p1)γ

µ

(
1− γ

5
)

v(k1)
][

v̄(p1)γ
ν

(
1− γ

5
)

v(k1)
]†

× ∑
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(4.40)

where using Casimir’s trick yields

=
g4

w
128
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5
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(4.41)
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and then evaluating the traces and plugging the kinematic terms yield

〈
|Mt |2

〉
= 2g4

W m2
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(4.42)

or in terms of C1, C2 and C3

〈
|Mt |2

〉
=

2g4
W m2

e

M4
W

[
(2C2)

2 E2
ν +(C1 +C2)

2 (Eν −T )2

−2C2 (C1 +C2)meT ] .

(4.43)

Substituting the above equation into the differential cross section found in Appendix

A gives

[
dσ

dT
(ν̄ee)

]FV

Heavy LT HM
=

2G2
Fme

π

[
(2C2)

2 +(C1 +C2)
2
(

1− T
Eν
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−2C2 (C1 +C2)
meT
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]
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(4.44)
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4.1.2 Neutrino-Electron Scattering

4.1.2.1 νe + e→ νe + e (FC)

Mediated by the SM light gauge bosons, there are two possible tree-level Feynman

diagrams that contribute to the FC process of νee elastic scattering.

(a) (b)

Figure 4.5 Feynman diagrams of (a) Z-mediated and (b) W -mediated FC scattering of neutrino with

electron in the SU(5) LTHM with the appropriate vertex and propagator factors are also shown

• One is mediated by Z0 through a neutral weak process and is manifested by the

Feynman diagram in Figure 4.5 (a) with the corresponding amplitude given by

MZ =
2GF√

2
gν

V
′ [

ū(k1)γ
µ

(
1− γ

5
)

u(p1)
][

ū(k2)γµ

(
ge

V
′−ge

A
′
γ

5
)

u(p2)
]
.

(4.45)

• Another is mediated by W± through a charged weak process and is manifested

by the Feynman diagram in Figure 4.5 (b) with the corresponding amplitude
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given using Fierz transformation by

MW =
GF√

2
g′2
[
ū(k1)γ

µ

(
1− γ

5
)

u(p1)
][
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(
1− γ

5
)

u(p2)
]
.

(4.46)

Then the total amplitude can be simply written as

Mt = MZ +MW

=
GF√

2
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5
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]

×
[
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(
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5
}
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]
,

(4.47)

and together with its hermitian conjugate M †
t , the spin-averaged amplitude square is

〈
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〉
=

1
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(4.48)

where using Casimir’s trick yields
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(4.49)
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By evaluating the corresponding traces and plugging their results back, the previous

equation becomes

〈
|Mt |2

〉
= 64G2

Fm2
e
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′ (
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′
+ge
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)
meT

]
,

(4.50)

with the corresponding kinematic terms directly plugged.

In terms of B, δgL, δgR, and δg′L, the spin-averaged amplitude above can be ex-

pressed as

〈
|Mt |2

〉
= 64G2

Fm2
e

[{
(1+B)(gL +δgL)+
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′
L
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]
,

(4.51)

and finally substituting this into the differential cross section found in Appendix A

gives

[
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π
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meT
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]
.

(4.52)

Additionally, there are three possible tree-level Feynman diagrams for the FC pro-

cess of νee elastic scattering mediated by the SU(5) LTHM new predicted heavy gauge

bosons.

• One is mediated by Z0
H through a neutral weak process and is manifested by the
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(a) (b)

(c)

Figure 4.6 Feynman diagrams of the FC neutrino-electron scattering process transmitted by (a) ZH , (b)

AH and (c) WH bosons of the SU(5) LTHM in addition to the suitable vertex and propagator factors

Feynman diagram in Figure 4.6 (a) with the corresponding amplitude given by

MZH =
g2

w
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(4.53)
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• Another is mediated by A0
H through a neutral weak process and is manifested by

the Feynman diagram in Figure 4.6 (b) with the corresponding amplitude given

by

MAH =
g2

w

4c2
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gν
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]
.

(4.54)

• One another is mediated by W±H through a charged weak process and is mani-

fested by the Feynman diagram in Figure 4.6 (c) with the corresponding ampli-

tude given after Fierz reordering by
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(4.55)

Then the total amplitude can be simply written as
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(4.56)
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and together with its hermitian conjugate M †
t , the spin-averaged amplitude square is
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(4.57)

where using Casimir’s trick yields
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(4.58)
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(4.59)

where in the last step the corresponding traces with the necessary kinematics have been

plugged.

Again by substituting the values of the new coupling constants given in Table 4.1,

the spin-averaged amplitude in Equation 4.59 can be written in terms of C1, C2 and C3

as

〈
|Mt |2

〉
=

2g4
W m2

e

M4
W

[
(C1 +C2 +C3)

2 E2
ν +(2C2)

2 (Eν −T )2

−2C2 (C1 +C2 +C3)meT ] .

(4.60)

With this amplitude, the differential scattering cross section is

[
dσ
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(νee)

]FC

Heavy LT HM
=

2G2
Fme

π

[
(C1 +C2 +C3)

2 +(2C2)
2
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]
.

(4.61)
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4.1.2.2 νe + e→ να 6=e + e (FV)

Mediated by the SM light gauge bosons, there is only one possible tree-level Feyn-

man diagram for the FV process of νee elastic scattering.

Figure 4.7 Feynman diagram of Z-mediated neutrino-electron FV scattering in the SU(5) LTHM

It is mediated by Z0 through a neutral weak process and is manifested by the Feyn-

man diagram in Figure 4.7 with the corresponding amplitude given by

Mt =
2GF√

2
gν

V
′ [

ū(k1)γ
µ

(
1− γ

5
)

u(p1)
][

ū(k2)γµ

(
ge

V
′−ge

A
′
γ

5
)

u(p2)
]
,

(4.62)

and together with its hermitian conjugate M †
t , the spin-averaged amplitude square is

〈
|Mt |2

〉
=

1
2 ∑

spins
|Mt |2

= G2
Fgν
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∑
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5
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(
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5
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(4.63)
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where using Casimir’s trick yields

= G2
Fgν

V
′2

Tr
[
γ

µ

(
1− γ

5
)(

/p1 +mν

)
γ

ν

(
1− γ

5
)
( /k1 +mν)

]
×Tr

[
γµ

(
ge

V
′−ge

A
′
γ

5
)(

/p2 +me
)

γν

(
ge

V
′−ge

A
′
γ

5
)
( /k2 +me)

]
,

(4.64)

and evaluating the traces yields

〈
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〉
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(4.65)

where in the last step the kinematics have been plugged.

In terms of B, δgL, and δgR, the spin-averaged amplitude in Equation 4.65 can be

written as

〈
|Mt |2

〉
= 64G2

Fm2
e

[
(1+B)2 (gL +δgL)

2 E2
ν +(1+B)2 (gR +δgR)
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−(1+B)2 (gR +δgR)(gL +δgL)meT
]
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(4.66)

Finally, inserting
〈
|Mt |2

〉
into dσ

dT found in Appendix A gives as a final result

[
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meT
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]
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(4.67)

Mediated by the LTHM new predicted heavy gauge bosons, there are further two
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(a) (b)

Figure 4.8 Feynman diagrams of (a) ZH -mediated and (b) AH -mediated neutrino-electron FV scattering

in the SU(5) LTHM where the corresponding vertex and propagator factors are also shown

more possible tree-level Feynman diagrams that contribute to the FV process of νee

elastic scattering.

• One is mediated by Z0
H through a neutral weak process and is manifested by the

Feynman diagram in Figure 4.8 (a) with the corresponding amplitude given by

MZH =
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w

4c2
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ū(k2)γµ

(
1− γ

5
)

u(p2)
]
.

(4.68)

• The other is mediated by A0
H through a neutral weak process and is manifested by

the Feynman diagram in Figure 4.8 (b) with the corresponding amplitude given

by Equation

MAH =
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w
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(4.69)
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Then the total amplitude can be simply found as

Mt = MZH +MAH , (4.70)

where together with its hermitian conjugate
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(4.71)

the spin-averaged amplitude square can be written as
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ū(k1)γ

µ

(
1− γ

5
)

u(p1)
][
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ū(k2)γµ


2

(
gν

V
′)

ZH

(
ge

V
′)

ZH

c2
W M2

ZH

+
2
(

gν
V
′)

AH

(
ge

V
′)

AH

c2
W M2

AH


−

2
(

gν
V
′)

ZH

(
ge

V
′)

ZH

c2
W M2

ZH

+
2
(

gν
V
′)

AH

(
ge

A
′)

AH

c2
W M2

AH

γ
5

u(p2)


×
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= 2g4
W m2

e




(
gν

V
′2
)

AH

((
ge

V
′)

AH
−
(

ge
A
′)

AH

)2

c4
W M4

AH

(Eν −T )2

+


2
(

gν
V
′)

ZH

(
ge

V
′)

ZH

c2
W M2

ZH

+

(
gν

V
′)

AH

((
ge

V
′)

AH
+
(

ge
A
′)

AH

)
c2

W M2
AH


2

E2
ν

−


2
(

gν
V
′)

ZH

(
ge

V
′)

ZH

(
gν

V
′)

AH

((
ge

V
′)

AH
−
(

ge
A
′)

AH

)
c4

W M2
ZH

M2
AH

+

(
gν

V
′2
)

AH

((
ge

V
′2)

AH
−
(

ge
A
′2)

AH

)
c4

W M4
AH

meT

 ,

(4.74)

where in the second step Casimir’s trick have been applied and in the last step the trace

results and the necessary kinematics have been plugged.
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In terms of C1 and C2 then, the spin-averaged amplitude square is

〈
|Mt |2

〉
=

2g4
W m2

e

M4
W

[
(C1 +C2)

2 E2
ν +(2C2)

2 (Eν −T )2

−2C2 (C1 +C2)meT ] ,

(4.75)

and hence the differential cross section is

[
dσ

dT
(νee)

]FV

Heavy LT HM
=

2G2
Fme

π

[
(C1 +C2)

2 +(2C2)
2
(

1− T
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)2

−2C2 (C1 +C2)
meT
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ν

]
.

(4.76)

4.2 The SU(3) Simple Little Higgs Model

SU(3) SLHM is constructed by enlarging the SM SU(2)L×U(1)Y gauge group

to SU(3)×U(1)X . The SU(3)×U(1)X gauge symmetry is broken down to the SM

electroweak gauge group by two triplet complex scalar fields Φ1,2 with aligned VEVs

f1,2 of order a TeV , yielding three heavy gauge bosons denoted by Z′0, Y 0 and X± (or

W ′±) (Kaplan et al., 2003; Perelstein, 2007; Schmaltz et al., 2005).

In the SU(3) SLHM, the quadratic divergences cancel completely between the Z

and Z′ loops and between the W and X loops, with no any contribution from the Y loop

in neutrino-electron scattering due to the uncoupling portability of the Y gauge boson

with the charged leptons, as is seen in Table 4.2.

Similar to the SU(5) LTHM, the SU(3) SLHM produces contributions to the neutrino-

electron scattering process via some correction terms of the SM Zeē, Zνν̄ and Wēν

couplings and some additional terms of the new heavy gauge bosons predicted by the

model.

The possible tree-level Feynman diagrams for FC and FV processes in the SU(3)

SLHM are similar to those of the SU(5) LTHM with Z and W are again the SM gauge
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bosons and Z′, Y and X (replacing respectively ZH , AH and WH) are the new heavy

gauge bosons in the model at hand.

Table 4.2 Couplings of the SM Z and W gauge bosons and the new heavy Z′, Y and X gauge bosons

with leptons in the SU(3) SLHM (Aguila et al., 2011)

SM SU(3) SLHM

Zνν̄ gν
L = 1

2 gν
L
′
= 1

2
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1−δ 2

v
)
+δz
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√
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R
′
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w− 1
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L
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= s2

w− 1
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√
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(
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v
2

)
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′
= 0
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w
−δzs2

w

Y νν̄ - gν
L
′
= iδv

cw√
2

- gν
R
′
= 0

Yeē - ge
L
′
= 0

- ge
R
′
= 0

Xeν̄ - geν
L
′
=−iδv

cw√
2

- geν
R
′
= 0

In the framework of the SU(3) SLHM:

• the coupling constants of the SM Z and W as well as the new heavy Z′, Y and

X bosons with leptons are given in Table 4.2, where δz = −(1−t2
w)
√

3−t2
w

8cw
v2

f 2 and

δv =− 1√
2tβ

v
f .

• taking into consideration the couplings given in the above table, the vertex factor

of both NC and CC processes can be written in equivalence to Equations 4.1 and
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4.2 as

−igzγ
µ

(
g f

L

′
PL +g f

R

′
PR

)
, (4.77)

where g f
L

′
and g f

R

′
coupling constants depend on tβ ≡ f2

f1
and the scale f ≡√

f 2
1 + f 2

2 , with f1 and f2 being the VEVs of the two fields responsible of

symmetry breaking in the SU(3) SLHM. Note that PL = 1−γ5

2 and PR = 1+γ5

2

are some convenient projection operators for left-handed and right-handed cou-

plings, respectively.

Note that the only places where v2

f 2 corrections appear are in the definitions of the

physical states of the leptons (in δ 2
v ) and in the ZZ′ mixing (in δz) and obviously setting

these terms to zero reproduces again the original SM coupling constants.

In the scope of neutrino-electron elastic scattering, the SU(3) SLHM also involves

both FC and FV processes denoted respectively by νe (ν̄e)+e→ νe (ν̄e)+e and νe (ν̄e)+

e→ να (ν̄α)+e (where α 6= e) and mediated by the SM (Z and W ) and new heavy (Z′,

Y and X) gauge bosons. Using the appropriate Feynman diagrams, the vertex factor

given by Equation 4.77, the proper form of the propagator factor given by Equation 4.3

and the necessary [VFF] couplings given by Table 4.2, it is sufficient to present in de-

tails the contributions from the FC neutrino-electron scattering in the SU(3) SLHM

mediated by the light and heavy gauge bosons and then conclude directly by the full

formalism of the SU(3) SLHM as was done for the SU(5) LTHM.

Mediated by the SM light gauge bosons, the tree-level Feynman diagrams that con-

tribute for the FC process of νee elastic scattering are as follows:

• The 1st one, mediated by Z0 through a neutral weak process, has an amplitude
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amplitude given by

MZ =
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• The 2nd one, mediated by W± through a charged weak process, has an amplitude

given by
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where Fierz transformation has been applied.

Then the total amplitude can be simply written as
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(4.80)

and then together with its hermitian conjugate M †
t , the spin-averaged amplitude square

is

〈
|Mt |2

〉
=

1
2 ∑

spins
|Mt |2

= G2
F ∑

spins

[
ū(k1)γ

µ

(
1− γ

5
)
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][
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5
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× ∑
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[
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{(
gν

L
′
ge
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′
+

1
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W
geν
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)(

1− γ
5
)

+gν
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′
ge
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′ (

1+ γ
5
)}
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]

×
[
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{(
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′
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1
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W
geν
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′2
)(

1− γ
5
)

+gν
L
′
ge

R
′ (

1+ γ
5
)}

u(p2)
]†
,

(4.81)
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where using Casimir’s trick yields

= G2
FTr

[
γ

µ

(
1− γ

5
)(

/p1 +mν

)
γ

ν

(
1− γ

5
)
( /k1 +mν)

]
×Tr
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γµ
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gν

L
′
ge

L
′
+

1
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W
geν

L
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)(
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)
+gν
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′
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′ (

1+ γ
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/p2 +me
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×γν
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)(
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( /k2 +me)

]
,

(4.82)

and then plugging the values of the traces yields

〈
|Mt |2

〉
=

256G2
F

c4
W

[(
gν

L
′
ge

L
′
c2

W +geν
L
′2
)2

(k1 · k2)(p1 · p2)

+
(

gν
L
′
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R
′
c2

W

)2
(k1 · p2)(k2 · p1)

−m2
e

(
gν

L
′
ge

R
′
c2

W

)(
gν

L
′
ge

L
′
c2

W +geν
L
′2
)
(k1 · p1)

]
,

(4.83)

where our results of traces have been again conformed by "FeynCalc".

It is advantageous again to stop at this stage and simplify the coupling constants of

the light SU(3) SLHM given in Table 4.2 before going on and plugging them into their

places. So by the fact that

δz =−
(
1− t2

w
)√

3− t2
w

8cw

v2

f 2 ,

δv =−
1√
2tβ

v
f
,

(4.84)

the new coupling constants can be written as

gν
L
′

=
1
2
(
1−δ

2
v
)
+δz

1−2s2
w

2cw
√

3− t2
w

=
1
2
−1

4
v2

f 2

[
1
t2
β

+

(
1− t2

W
)(1

2 − s2
W
)

2c2
W

]
︸ ︷︷ ︸

≡B
2

=⇒ gν
L
′
=

1
2
(1+B) , (4.85)
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where B =−1
2

v2

f 2

[
1
t2
β

+
(1−t2

W)(
1
2−s2

W)
2c2

W

]
.

ge
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= s2
w−

1
2
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W
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= s2
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2
+δgL, (4.86)

where δgL =−1
8

v2

f 2
(1−t2

W)(
1
2−s2

W)
c2

W
.

ge
R
′

= s2
w−δz
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= s2
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W
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t2
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=⇒ ge
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′
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where δgR =+1
8

v2

f 2

(
1− t2

W
)

t2
W .

geν
L
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=
cw√
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1− δ 2

v
2
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=
cW√
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4
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f 2
1
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=⇒ geν
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cw√
2

(
1+δg

′
L

)
, (4.88)

where δg
′
L =−1

4
v2

f 2
1
t2
β

.

In terms of B, δgL, δgR and δg
′
L given respectively by Equations 4.85, 4.86, 4.87
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and 4.88, the spin-averaged amplitude in Equation 4.83 can be written as

〈
|Mt |2

〉
= 64G2

Fm2
e

[{
(1+B)(gL +δgL)+

(
1+δg

′
L

)2
}2

E2
ν

+(1+B)2 (gR +δgR)
2 (Eν −T )2

− (1+B)(gR +δgR)

{
(1+B)(gL +δgL)+

(
1+δg

′
L

)2
}

meT
]
,

(4.89)

where the necessary kinematic terms found in Appendix B have been also plugged.

Finally, inserting
〈
|Mt |2

〉
into dσ

dT found in Appendix A

dσ

dT
=

〈
|M |2

〉
32πm2|~p1|2

where m2 ≡ me and |~p1|2 ≡ |~pν |2 = E2
ν −���

0
m2

ν = E2
ν gives as a final result

[
dσ

dT
(νee)

]FC
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=
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Fme

π

[{
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2
(
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{
(1+B)(gL +δgL)

+
(

1+δg
′
L

)2
}

meT
E2

ν

]
.

(4.90)

Furthermore, mediated by the heavy gauge bosons predicted by the SU(3) SLHM,

there are three possible tree-level Feynman diagrams for the FC process of νee elastic

scattering given as following:

• The 1st one, mediated by Z′0 through a neutral weak process, has an amplitude
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given by

MZ′ =
g2

W

4c2
W M2

Z′
gν

L
′ [

ū(k1)γ
µ

(
1− γ

5
)
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{
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′ (
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′ (
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5
)}

u(p2)
]
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(4.91)

• The 2nd one, mediated by Y 0 through a neutral weak process, has an amplitude

given by

MY = 0. (4.92)

• The 3rd one, mediated by X± through a charged weak process, has amplitude

given after Fierz transformation by

MX =
g2

W

4c2
W M2

X
geν

L
′2 [
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(
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5
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(4.93)

Then the total amplitude can be simply written as

Mt = MZ′+MX

=
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w
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W
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(4.94)
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and together with its hermitian conjugate M †
t , the spin-averaged amplitude square is
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(4.95)

where using Casimir’s trick yields
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(4.96)

and then plugging our evaluation of the traces and the kinematic terms yield
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(4.97)

Now by plugging the values of the new coupling constants given in Table 4.2 and
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assuming δZ = δ 2
V = 0 at high energies, the new couplings become
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(4.98)

from which three new terms defined as

C1 = 2

(1
2 − s2

W
)2

c2
W
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3−4s2

W
) (MW
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, (4.99)

C2 =−1
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, (4.100)

C3 = 2

(1
2 − s2

W
)

t2
W

3−4s2
W

(
MW

MZ′

)2

, (4.101)

pop out from Z′ and X in terms of which the spin-averaged amplitude in Equation 4.97

can be written as

〈
|Mt |2

〉
=

2g4
W m2

e

M4
W

[
(C1 +C2)

2 E2
ν +C2

3 (Eν −T )2−C3 (C1 +C2)meT
]
.

(4.102)

Thus, the differential scattering cross section following Equation 4.102 can be rep-

resented as

[
dσ

dT
(νee)

]FC

Heavy SLHM
=
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Fme

π

[
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(4.103)
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CHAPTER FIVE

ANALYSIS AND DISCUSSION

Input Data

Being a purely leptonic process, the neutrino-electron elastic scattering provides a

good channel to test the SM theory at low and high energies. Many accelerator and

reactor experiments have been built worldwide for this aim. Some of them are shown

in Table 5.1 with their corresponding measured values of cross section and Weinberg

angle if available.

Table 5.1 A summary of the published measurements of cross section and weak mixing angle by some

νee and ν̄ee experiments (Deniz et al., 2010)

Experiment σexp sin2θW

LAMPF [10.0±1.5±0.9]×Eν ×10−45 cm2 0.249±0.063
Accelerator νe

LSND [10.1±1.1±1.0]×Eν ×10−45 cm2 0.248±0.051

Savannah River [0.87±0.25]×σV−A 0.29±0.05
(original) [1.70±0.44]×σV−A

Savannah River [1.35±0.4]×σSM -
(new analysis) [2.0±0.5]×σSM

Krasnoyarsk [4.5±2.4]×10−46 cm2/ f ission 0.22+0.7
−0.8

Reactor ν̄e

Rovno [1.26±0.62]×10−44 cm2/ f ission -

MUNU [1.07±0.34] event/day -

TEXONO [1.08±0.21±0.16]×σSM 0.251±0.031±0.024

In our analysis of LHM theories, however, only two independent data sets from

two different experiments, famously known as TEXONO and LSND experiments and

represented respectively by ν̄e + e→ ν̄e + e and νe + e→ νe + e, were adopted:

TEXONO experiment: Data from this experiment on ν̄ee scatterings was taken at
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the Kuo-Sheng Neutrino Laboratory (KSNL) with 29882/7369 kg day of reac-

tor ON/OFF exposure of a CsI(Tl) crystal scintillator array detector of effective

mass 187 kg and 3−8 MeVee energy range (Deniz et al., 2010) .

LSND experiment: Data from this experiment on νee scatterings was taken at the

Los Alamos Neutron Science Center using liquid scintillator detector exposed

to high energy νe’s produced at the proton beam stop with T ranges between

18−50 MeVee (Auerbach et al., 2001) .

After which, the results from both experiments were compared and superimposed to

have a more stringent analysis. Furthermore, results from some other experiments,

mainly LEP (the large electron-positron collider) and EWPD (electroweak precision

data), have been also superimposed where convenient in some of our analysis.

Fitting the experimentally measured event rates of (anti)neutrinos elastically scat-

tered off electrons to the theoretically estimated ones by the simple formula

σexp = p0×σtheo (5.1)

gives as a best fit result

p0 = 1.082±0.2124 (5.2)

by TEXONO experiment as is shown in Figure 5.1 (a) and

p0 = 0.9147±0.1033 (5.3)

by LSND experiment as is shown in Figure 5.1 (b).

By TEXONO experiment, ν̄ee electroweak interaction cross section, neutral vector

and axial vector coupling constants (gV and gA), weak mixing angle (θW ), neutrino

charge-radius squared and neutrino magnetic moment were measured. And by LSND

experiment, νee elastic scattering cross section and weak mixing angle were measured.
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Figure 5.1 The best fit result of (a) TEXONO and (b) LSND experimental measured values to the

theoretical ones

One of our previous work using both of these experimental data sets is shown in Fig-

ure 5.2, where the limits on (gV ,gA) space and sin2θW have been put. For complete-

ness, the corresponding result from Charm-II experiment has been also superimposed

as is given in the reference of Tanabashi et al. (2018), hinting that the limits achieved

by all these three experiments are in a good agreement with the electroweak precision

data.

Analysis Methods

The expected event rates σX can be evaluated for TEXONO experiment via

σX = ρe

∫
T

∫
Eν

[
dσ

dT

]′
X

dφ(ν̄e)

dEν

dEνdT (5.4)

and for LSND experiment via

σX =
∫

T

∫
Eν

[
dσ

dT

]
X

(
1
φ

dφ(νe)

dEν

)
dEνdT , (5.5)

where ρe is the electron number density per kg of target mass, dφ

dEν
is the (anti)neutrino
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Figure 5.2 The 90% C.L. allowed region put by TEXONO and LSND experiments on the (gV ,gA) space

and sin2θW

spectrum and φ is the total flux of the incident neutrinos. In this work, X represents

different theoretical models (SM, NSI of neutrinos, SU(5) LTHM, and SU(3) SLHM)

via (anti)neutrino-electron scattering channel.

The measurable differential cross section
[dσ

dT

]′
for TEXONO experiment corre-

sponds to convolution of the detector energy resolution to the physical differential

cross section
[dσ

dT

]
. In practice, the variations of

[dσ

dT

]
with energy are gradual so that

the resolution smearing does not significantly alter the measured spectra in the region

of interest. Indeed, the difference
[dσ

dT

]
−
[dσ

dT

]′
is less than 0.1%. Accordingly, reso-

lution effects can be neglected in this analysis.

The observed event rates σexp (expressed in units of kg−1MeV−1day−1) of the two

data sets used in this analysis were compared to the expected event rates σX evaluated

for different X channels and constraints were then derived.
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A minimum-χ2 analysis algorithm defined generally by

χ
2 = ∑

i=1

[
σexp (i)− (σSM (i)+σX (i))

∆stat (i)

]2

(5.6)

was performed in this work, where σexp (i) are the experimentally observed/measured

event rates, σSM (i) and σX (i) are respectively the theoretically expected/calculated

event rates on the ith data bin due to the SM and X (= NSI, SU(5) LTHM and SU(3)

SLHM) contributions, while ∆stat (i) are the corresponding statistical uncertainties of

the measurement.

The statistical uncertainties were derived by the minimum-χ2 method defined above.

The systematic uncertainties published by the experiments contribute to shifts of the

best fit values of the parameters of interest. The two contributions were added in

quadrature to give rise to the combined uncertainties from which the 90% C.L. limits

were derived using the prescription in the reference of Feldman et al. (1998).

Table 5.2 ∆χ2 as a function of confidence level and number of degrees of freedom (Teukolsky et al.,

1992)

N.D.F
C.L. 1 2 3 4 5 6

68.3 % 1.00 2.30 3.53 4.72 5.89 7.04

90 % 2.71 4.61 6.25 7.78 9.24 10.6

95.4 % 4.00 6.17 8.02 9.70 11.3 12.8

99 % 6.63 9.21 11.3 13.3 15.1 16.8

99.73 % 9.00 11.8 14.2 16.3 18.2 20.1

99.99 % 15.1 18.4 21.1 23.5 25.7 27.8

The constraints on the parameters in this work are expressed either as "best-fit ±
statistical± systematic uncertainties" at 1 σ level (68.3% confidence level) or as upper

and lower limits at 2 σ level (90% confidence level). The 1 σ level corresponds to
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χ2
min + 1 in a one-dimensional analysis and χ2

min + 2.3 in a two-dimensional analysis

while the 2 σ level corresponds to χ2
min+2.71 in a one-dimensional and χ2

min+4.61 in

a two-dimensional analysis as is given by Table 5.2.

5.1 NSI Analysis Results

The differential scattering cross sections for the scalar, pseudoscalar and tensorial

NSI of ν̄e scattered off e− using CsI(T l) as a target at some specific coupling parame-

ters are shown in Figure 5.3 as a function of the electron recoil kinetic energy. All of

which show similar behavior to the SM vector-axialvector coupling of ν̄e to e−. This

makes it an advantage to work upon NSI of neutrino in the low energy region where

the SM effects were measured with good accuracy.

Figure 5.3 Differential cross section as a function of the recoil energy T with typical reactor ν̄e spectra

for scalar, pseudoscalar and tensorial NSIs

And by a two-dimensional analysis of NSI of neutrinos, the 90% C.L. allowed re-

gions in ge,e
S -ge,e

P and {ge,e
S ,ge,e

P }-(g
e,e
T )2 parameter spaces as well as the upper bounds of

ge,e
T as a function of {ge,e

S ,ge,e
P } are displayed respectively in Figure 5.4 (b), (c) and (d),

where the TEXONO and LSND contributions are superimposed. Clearly, TEXONO
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data sets give more accurate limits on the corresponding NSI parameters compared to

those from LSND experiment.

(a) (b)

(c) (d)

Figure 5.4 (a) ∆χ2 of one-parameter-at-a-time analysis for ge,e
S,P, (ge,e

S=P)
2 and (ge,e

T )2, the 90% C.L.

allowed regions from TEXONO and LSND data sets in the parameter spaces of (b) ge,e
S − ge,e

P and (c)

ge,e
S

(
ge,e

P

)
− (ge,e

T )2, and (d) the 90% C.L. upper limits of ge,e
T as a function of ge,e

S and ge,e
P

By adopting a parameter-at-a-time analysis, the best fit results and the 90% C.L.

bounds of the scalar (ge,e
S ), pseudoscalar (ge,e

P ) and tensorial (ge,e
T ) NSI coupling pa-

rameters using TEXONO and LSND data sets are summarized in Table 5.3 with the

behavior of ∆χ2 for the different NSI parameters shown in Figure 5.4 (a). As is ex-

pected, the bounds put by both experiments on the NSI parameters are in a good agree-
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ment with each other, minding that the bound ranges put by TEXONO experiment are

more precise compared to those from LSND experiment.

Table 5.3 Bounds on NSI parameters from a one-dimensional analysis using TEXONO and LSND

data sets

TEXONO LSND

NSI Best Fit 90% C.L. Best Fit 90% C.L

Parameters Measurements (1 σ ) χ2/ndf Limits Measurements (1 σ ) Limits

Scalar ge,e
S = 8.7/9 −0.317 < ge,e

S = −0.880 <

ge,e
S (ge,e

P = 0) [3.27±6.39±3.10]×10−2 ge,e
S < 0.113 0.27±0.59±0.26 ge,e

S < 0.642

Pseudo-scalar ge,e
P = 8.7/9 −0.113 < ge,e

P = −0.642 <

ge,e
P (ge,e

S = 0) [−3.27±6.39±3.10]×10−2 ge,e
P < 0.317 −0.27±0.59±0.26 ge,e

P < 0.880

ge,e
S=P(g

e,e
S = ge,e

P ) (ge,e
S=P)

2 = 8.7/9 |ge,e
S=P|< 0.100 (ge,e

S=P)
2 = |ge,e

S=P|< 0.375

[0.19±0.38±0.31]×10−2 [3.47±4.78±4.36]×10−2

Tensorial (ge,e
T )2 = 8.7/9 |ge,e

T |<0.238 (ge,e
T )2 = |ge,e

T |< 0.401

ge,e
T [0.96±2.21±1.82]×10−2 [3.96±5.47±4.97]×10−2

5.2 SU(5) LTHM Analysis Results

The exclusion region for the mixing angle c of the SU(5) LTHM in the gauge sector

is given in Figure 5.5 by EWPD, where an exclusion limit of f ≤ 5100 GeV has been

put at 95% C.L. for the LTHM scale f .

The differential scattering cross sections of the SU(5) LTHM for the light, heavy

and interference terms using CsI(T l) as a target at some specific parameters are shown

in Figure 5.6 as a function of the electron recoil kinetic energy. All of which show

similar behavior to the SM vector-axialvector coupling of ν̄e to e−. This makes it an

advantage again to work upon LTHM in the low energy region where the SM effects

were measured with good accuracy.

By a two-dimensional analysis, the allowed regions given by TEXONO and LSND

at 90% C.L. in c2− c′2 parameter space at f = 500 GeV and f = 2 TeV are given

by Figure 5.7 (a) and (c), respectively. Hence then by some analytic method, the
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Figure 5.5 Exclusion limits at 95% C.L. (light blue) and 99% C.L. (dark blue) from EWPD and Higgs

data combined as a function of the SU(5) LTHM scale f with the thick black lines represent contours of

required fine-tuning (Reuter et al., 2013)
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Figure 5.6 Differential cross section as a function of the recoil energy T with typical reactor ν̄e spectra

for SU(5) LTHM
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corresponding upper and lower limits in c− c′ parameter space have been achieved

as is shown in Figure 5.7 (b) and (d) for f = 500 GeV and f = 2 TeV , respectively.

The contributions from LEP and EWPD experiments have been also superimposed for

comparison.

(a) (b)
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Figure 5.7 The 90% C.L. allowed regions in the (c2,c′2) parameter space for FC SU(5) LTHM at (a)

f = 500 GeV and (c) f = 2 TeV with their corresponding upper and lower bounds in the (c,c′) parameter

space given by (b) and (f) respectively from TEXONO and LSND data sets

Clearly from Figure 5.7 (b), the limits put by TEXONO on c′ are roughly constant

with about 0.75 as an upper limit and 0.5 as a lower limit. But the limits put on c

vary widely starting about 0.3 as a lower limit reaching 0.88 as an upper limit. On

the other hand, the upper and lower limits put by LSND both change significantly
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until around c = 0.4 where they give the best limit on c′ roughly as 0.59 < c′ < 0.61

before continuing to change again. Furthermore, reducing the errors of TEXONO

experimental measured values to 1% (which can be and have been actually done by

some sort of reducing the background events) shows a good agreement with EWPD

result given roughly as (0.5,0.6), a result that takes us back to the SM.

Comparing Figures 5.7 (b) and (d) deduces that as f increases, both the upper and

lower bounds of c and c′ given by all the experiments deteriorate especially for TEX-

ONO being a low energy experiment.

Moreover, by a one-dimensional analysis, the allowed ranges of c and c′ by a global

analysis from TEXONO and LSND experiments at 90% are listed in Table 5.4. Once

again the bounds show a similar behavior with the increase of f as was seen in the

previous two-dimensional analysis.

Table 5.4 Global bounds from TEXONO and LSND experimental data on c and c′ as a function of f

ranges at 90% C.L. via a one-dimensional statistical analysis

f c(c′ = 0.6) c′(c = 0.5)

500 GeV ≤ f ≤ 1 TeV 0.63≤ |c| ≤ 0.82 0.65≤ |c′| ≤ 0.69

1 TeV ≤ f ≤ 2 TeV 0.61≤ |c| ≤ 0.99 0.60≤ |c′| ≤ 0.75

2 TeV ≤ f ≤ 3 TeV 0.60≤ |c| ≤ 0.99 0.60≤ |c′| ≤ 0.80

3 TeV ≤ f ≤ 4 TeV 0.40≤ |c| ≤ 0.99 0.60≤ |c′| ≤ 0.85

f ≥ 4 TeV 0.15≤ |c| ≤ 0.99 0.40≤ |c′| ≤ 0.90

5.3 SU(3) SLHM Analysis Results

The exclusion region for the mixing angle tβ of the SU(3) SLHM in the gauge

sector is given in Figure 5.8 by EWPD, where an exclusion limit of f ≤ 3200 GeV has

been put at 95% C.L. for the SLHM scale f .
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Figure 5.8 Exclusion limits at 95% C.L. (light blue) and 99% C.L. (dark blue) from EWPD and Higgs

data combined as a function of the SU(3) SLHM scale f with the thick black lines represent contours of

required fine-tuning (Reuter et al., 2013)

Through a two-dimensional analysis, the upper and lower limits put respectively by

TEXONO and LSND experiments on the mixing angle tβ at 90% C.L. are shown in

Figure 5.9 as a function of the energy scale f . Again as f increases both limits given

by both experiments get worse and worse.

Table 5.5 Global bounds from TEXONO and LSND experimental data on tβ as a function of f ranges

at 90% C.L. via a one-dimensional statistical analysis

f tβ

500 GeV ≤ f ≤ 1 TeV 2.07≤ tβ ≤ 4.51

1 TeV ≤ f ≤ 2 TeV 1.26≤ tβ ≤ 5.33

2 TeV ≤ f ≤ 3 TeV 0.70≤ tβ ≤ 5.72

f ≥ 3 TeV 0.40≤ tβ ≤ 5.79

Moreover, by a one-dimensional analysis, the allowed ranges of tβ by a global anal-
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Figure 5.9 The upper and lower limits at 90% C.L. on tβ versus f from TEXONO and LSND experi-

mental measured values, respectively

ysis from TEXONO and LSND experiments at 90% are listed in Table 5.5. Once again

the bounds show a similar behavior with the increase of f as was seen in the previous

two-dimensional analysis.
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CHAPTER SIX

CONCLUSION AND PROSPECTS

Why we need new physics?, which are the open questions that the SM leave unan-

swered? and how new theories attempt to answer them? are the main questions that

we tackled in this thesis work. More precisely, we have described the unfortunate the-

oretical limitations of the SM and discussed new phenomena, beyond the normal ones

described by the SM, that have been proposed to overcome such limitations using a

particular BSM theory as an example. Although there are no hints for new physics

BSM in the collider experiments today, the urge to find new physics is always present.

The SM was our starting point in Chapter 2. It describes the world as it is known

today with an astonishing precision, introducing matter particles and force carrier parti-

cles known as the gauge bosons. All these particles have been observed experimentally

with the last one being the Higgs boson, a new piece of nature which was discovered a

few years ago. With the Higgs boson, the SM is a weakly coupled elegant theory that

fits almost all the data from any experiment ever done on Earth.

Despite its great success, the SM remains only a piece in a bigger puzzle or, in

other words, an effective theory in a more fundamental theory. In fact, it leaves many

problems unsolved. One of the problems and as a focal point in this work was the

hierarchy problem of the SM Higgs boson mass. The SM does not explain why the

Higgs boson is measured to be so light while at the same time quantum corrections to

its propagator boost its mass to much higher values.

A lot of thought has been given to this and other problems the SM comes with and

ways to mitigate them have been attempted by theorists all over the world. Theorists

have come up with many theories or models in many variance trying to address one

or more problems of the SM at a time. In some of them, they introduce extra space-

time dimensions as a way to explain why gravity is a much weaker force than the

other fundamental forces. In such theories, hypothetical force carrier particles called
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gravitons could be disappearing into extra dimensions after having been created, for

example, via the proton-proton collision at the LHC. There are many other theories or

models that introduce new particles or interactions. Common in many of these theories

is the presence of new heavy bosons similar to the W and Z bosons.

A large theoretical framework of BSM physics that has been developed in the last

decades is LHMs. It is currently one of the most discussed and studied BSM theo-

ries in the literature. Many different variations of LHMs exist; the most fundamental

of which are the SU(5) LTHM and the SU(3) SLHM which are two concrete exam-

ples of a product group symmetry and a simple group symmetry, respectively. All of

these models were built on the core idea that the Higgs boson is a PGB that arises

from spontaneous symmetry breaking. Hence then, by the mechanism of collective

symmetry breaking, the quadratic divergences to the Higgs mass cancel completely or

partially between the SM gauge bosons and the new heavy expected bosons leaving

the mass of the Higgs as light as it was experimentally observed.

Theoretically, in Chapter 4, we have calculated the contributions from the SU(5)

LTHM and the SU(3) SLHM to νe (ν̄e)+ e→ να (ν̄α)+ e differential scattering cross

section, where α = e and α 6= e correspond respectively to the FC and FV sectors of the

LHM of interest. These contributions come mainly from correction terms of the SM

couplings in addition to some slight corrections of new heavy gauge bosons which are

negligible and can be safely ignored. In general, both the SU(5) LTHM and the SU(3)

SLHM differential cross section for FC and FV (anti)neutrino-electron scattering can

be expressed in the electron rest frame as

[
dσ

dT
((ν̄

)
ee)
]
=

2G2
Fme

π

[
a2

L(H)+b2
L(H)

(
1− T

Eν

)2

−aL(H)bL(H)
meT
E2

ν

]
, (6.1)

where the coefficients aL and bL of the SU(5) LTHM are given in Table 6.1 in terms

of the correction terms of the SM Zνeν̄e, ZeLēL, ZeRēR and Weν̄e couplings found
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Table 6.1 Coefficients in the expression of the FC and FV SU(5) LTHM differential cross section of
(ν̄

)
ee scattering given by Equation 6.1

Process aL bL aH bH

ν̄e + e→ ν̄e + e (1+B)(gR +δgR) (1+B)(gL +δgL)+(1+δg′L)
2 2C2 C1 +C2 +C3

FC

νe + e→ νe + e (1+B)(gL +δgL)+(1+δg′L)
2 (1+B)(gR +δgR) C1 +C2 +C3 2C2

ν̄e + e→ ν̄α + e (1+B)(gR +δgR) (1+B)(gL +δgL) 2C2 C1 +C2

FV (α 6= e)

νe + e→ να + e (1+B)(gL +δgL) (1+B)(gR +δgR) C1 +C2 2C2

respectively as

B = 2
v2

f 2

[
1
4

c2 (c2− s2)+ 5
2
(
c′2− s′2

)(
−1

5
+

c′2

2

)]
,

δgL =− v2

f 2

[
1
4

c2 (c2− s2)− 5
2
(
c′2− s′2

)(
−1

5
+

c′2

2

)]
,

δgR = 5
v2

f 2

(
c′2− s′2

)(
−1

5
+

c′2

2

)
,

δg′L =−1
2

v2

f 2 c2 (c2− s2) ,
(6.2)

and the coefficients aH and bH in terms of some new corrections of ZH , AH and WH

found respectively as

C1 =−
1
2

c2

s2

(
MW

MZH

)2

,

C2 = t2
W

(
−1

5 +
1
2c′2
)(
−2

5 + c′2
)

(s′c′)2

(
MW

MAH

)2

,

C3 =
c2

s2

(
1+

1
2

v2

f 2 s2 (c2− s2))2( MW

MW H

)2

≈ c2

s2

(
MW

MW H

)2

,

(6.3)

as well as the coefficients aL, bL of the SU(3) SLHM are given in Table 6.2 in terms

of the correction terms of the SM Zνeν̄e, ZeLēL, ZeRēR and Weν̄e couplings calculated
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Table 6.2 Coefficients in the expression of the FC and FV SU(3) SLHM differential cross section of

νe (ν̄e)e scattering given by Equation 6.1

Process aL bL aH bH

ν̄e + e→ ν̄e + e (1+B)(gR +δgR) (1+B)(gL +δgL)+(1+δg′L)
2 C1 C3−C2

FC

νe + e→ νe + e (1+B)(gL +δgL)+(1+δg′L)
2 (1+B)(gR +δgR) C3−C2 C1

ν̄e + e→ ν̄α + e (1+B)(gR +δgR) (1+B)(gL +δgL) C1 −C2

FV (α 6= e)

νe + e→ να + e (1+B)(gL +δgL) (1+B)(gR +δgR) −C2 C1

respectively as

B =−1
2

v2

f 2

[
1
t2
β

+

(
1− t2

w
)(1

2 − s2
w
)

2c2
w

]
,

δgL =−1
8

v2

f 2

(
1− t2

w
)(1

2 − s2
w
)

c2
w

,

δgR =
1
8

v2

f 2

(
1− t2

w
)

t2
w,

δg′L =−1
4

v2

f 2
1
t2
β

,

(6.4)

and the coefficients aH and bH expressed in terms of new corrections from Z′ and X

are also calculated as

C1 = 2

(1
2 − s2

W
)2

c2
W
(
3−4s2

W
) (MW

MZ′

)2

,

C2 =−
1
2

1
t2
β

v2

f 2

(
MW

MX

)2

,

C3 = 2

(1
2 − s2

W
)

t2
W

3−4s2
W

(
MW

MZ′

)2

.

(6.5)

Then, by comparing our numerical results with the TEXONO and LSND experi-

mental measured values, we have obtained some precise bounds on the free parameters

of our models. The related results from LEP and EWPD experiments have been also
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superimposed to get a more stringent limits for the free parameters. As was presented

in Chapter 5, high energy experiments were able to put more precise limits on the cor-

responding parameters compared to those from low energy experiments, and this is

mainly to achieve a weakly coupled theory from a high energy scale f of the LHMs.

In the subsequent work, our numerical results from the SU(5) LTHM and the SU(3)

SLHM are going to be also compared with data from CHARM-II and Borexino experi-

ments to even achieve more precise limits on the relevant free parameters, which might

be compatible with those from the EWPD and flavor data. Moreover, three other prod-

uct gauge group LHMs found in the literature (known as SU(5) LTHM with T-parity,

SU(6) LHM and SU(2)C LTHM) and two other simple gauge group LHMs (known

as SU(4) SLHM and SU(9) SLHM) are going to be also theoretically and analytically

carefully studied via neutrino-electron elastic scattering channel at low energy.
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Bilmiş, S., Deniz, M., Li, H.B., Li, J., Liao, H.Y., Lin, S.T., Singh, V., Wong, H.T.,

113

https://arxiv.org/abs/1101.2936v2
http://dx.doi.org/10.1140/epjc/s10052-007-0505-2
http://dx.doi.org/10.1140/epjc/s10052-007-0505-2
https://arxiv.org/abs/hep-ph/0206021v2
https://arxiv.org/abs/1207.7214
https://arxiv.org/abs/1207.7214
https://link.aps.org/doi/10.1103/PhysRevD.63.112001
https://www.worldscientific.com/doi/abs/10.1142/S0217751X12501473
https://www.worldscientific.com/doi/abs/10.1142/S0217751X12501473
https://link.aps.org/doi/10.1103/PhysRevD.79.073011
https://link.aps.org/doi/10.1103/PhysRevD.73.113001
https://link.aps.org/doi/10.1103/PhysRevD.77.093014
http://www.sciencedirect.com/science/journal/03702693/662/4?sdc=1


Yıldırım, I.O., Yue, Q., & Zeyrek, M. (2012). Constraints on a noncommutative

physics scale with neutrino-electron scattering. Phys. Rev. D, 85, 073011.
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APPENDICES

Appendix A: Differential Scattering Cross Section

Note that due to its convenience in relativistic quantum field theories, h̄ = c = 1

have been used throughout this thesis work.

In the scope of scattering processes, the physical quantity of interest is usually the

scattering (differential) cross section which is roughly the likely hood of some par-

ticular event to occur. It can be evaluated in either the laboratory frame where the

target particle is at rest in a fixed target experiment or the center of mass frame where

the colliding particles have equal but opposite momenta in a collider experiment.

The general form of the differential scattering cross section for any scattering pro-

cess of the form

1+2→ 3+4+ ...+n

is given according to the famous Fermi’s Golden Rule by the formula (Griffiths, 2008)

dσ = |M |2×phase space

= |M |2 S

4
√

(p1 · p2)
2− (m1m2)

2
(2π)4

δ
4 (p1 + p2− p3− ...− pn)

×
n

∏
j=3

2πδ
(

p2
j −m2

j
)

θ
(

p0
j
) d4 p j

(2π)4 ,

(A.1)

where S = 1
s! is a statistical factor that corrects for s-counting of identical particles in

the final state, M (p1, p2, p3, ..., pn) is the corresponding amplitude that comprise all

the dynamical facts of the process of interest, p is the four-momentum vector of the

different particles and m is their corresponding mass. Note that the phase space that

comprise all the kinematical facts of the process allows to integrate over all outgoing

four-momenta subject to three kinematical constraints enforced by the delta and theta

functions.
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Solving for the constraints implied by the one-dimensional delta function together

with the theta step function, we can rewrite the differential cross section of Equa-

tion A.1 as

dσ = |M |2 S

4
√

(p1 · p2)
2− (m1m2)

2
(2π)4

δ
4 (p1 + p2− p3− ...− pn)

×
n

∏
j=3

1

2
√
|~p j|2 +m2

j

d3~p j

(2π)3

(A.2)

due to the fact that

d4 p = d p0d3~p (A.3)

and

δ
(

p2−m2)
= δ

[(
p0)2− (~p)2−m2

]
= δ

[(
p0)2−

(
(~p)2 +m2

)]
=

1

2
√
|~p|2 +m2

[
δ

(
p0−

√
|~p|2 +m2

)
+δ

(
p0 +

√
|~p|2 +m2

)]
,

(A.4)

where the second delta function is neglected by the constraint p0 > 0 set by the theta

function.

Throughout this thesis work, however, we were interested in a two-body scattering

process of the form

1+2→ 3+4,

namely neutrino-electron elastic scattering process

ν + e→ ν + e
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θ

φ

~p1 (incident ν)

~p2 = ~0 (fixed e−)

~p 3
(s
ca
tte
re
d
ν)

~p4 (recoiled e −
)

Figure A.1 A schematic diagram of neutrino-electron two-body collision in the lab frame

in the laboratory frame as is shown by Figure A.1.

In this case, the general differential cross section given by Equation A.2 is simply

dσ = |M |2 1

4
√

(p1 · p2)
2− (m1m2)

2
(2π)4

δ
4 (p1 + p2− p3− p4)

×

 1

2
√
|~p3|2 +m2

1

d3~p3

(2π)3

 1

2
√
|~p4|2 +m2

2

d3~p4

(2π)3

 (A.5)

by the fact that S = 1, m1 = m3 = mν and m2 = m4 = me.

The four-vector momenta in terms of temporal and spatial components can be writ-

ten in the lab frame as

p1 =
(

p0
1, ~p1

)
= (E1, ~p1) =

(√
|~p1|2 +m2

1 , ~p1

)
,

p2 =
(

p0
2, ~p2

)
= (E2, ~p2) =

(
m2 , ~0

)
,

p3 =
(

p0
3, ~p3

)
= (E3, ~p3) =

(√
|~p3|2 +m2

1 , ~p3

)
,

p4 =
(

p0
4, ~p4

)
= (E4, ~p4) =

(√
|~p4|2 +m2

2 , ~p4

)
.

(A.6)
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It follows that

(p1 · p2)
2− (m1m2)

2

= (E1m2− ~p1.~0)2− (m1m2)
2

= m2
2
(
E2

1 −m2
1
)

= m2
2|~p1|2

=⇒
√

(p1 · p2)
2− (m1m2)

2 = m2|~p1|, (A.7)

and

δ
4 (p1 + p2− p3− p4)

= δ
(

p0
1 + p0

2− p0
3− p0

4
)

δ
3(~p1 + ~p2− ~p3− ~p4)

= δ (E1 +m2−E3−E4)δ
3(~p1− ~p3− ~p4)

=⇒ δ
4 (p1 + p2− p3− p4) = δ

(√
|~p1|2 +m2

1 +m2−
√
|~p3|2 +m2

1

−
√
|~p4|2 +m2

2

)
δ

3 (~p1− ~p3− ~p4) .

(A.8)

Plugging the results of Equations A.7 and A.8 into Equation A.5 yields

dσ =
|M |2

64π2m2|~p1|
δ

(√
|~p1|2 +m2

1 +m2−
√
|~p3|2 +m2

1−
√
|~p4|2 +m2

2

)
√
|~p3|2 +m2

1

√
|~p4|2 +m2

2

× δ
3 (~p1− ~p3− ~p4) d3~p3 d3~p4.

(A.9)

To get rid of ~p3, for example, integrating over it allows to make the replacement
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~p3→ ~p1− ~p4 and consequently gives

dσ =
|M |2

64π2m2|~p1|

×
δ

(√
|~p1|2 +m2

1 +m2−
√
|~p1− ~p4|2 +m2

1−
√
|~p4|2 +m2

2

)
√
|~p1− ~p4|2 +m2

1

√
|~p4|2 +m2

2

d3~p4,

(A.10)

where

|~p1− ~p4|2 = |~p1|2 + |~p4|2−2|~p1||~p4|cosθ . (A.11)

Left is the integral over ~p4 which is convenient to do in spherical coordinates by

replacing the volume element d3~p4 with its equivalent spherical expression

d3~p4 = |~p4|2 sinθ d~p4 dθ dφ . (A.12)

In spherical coordinates then, Equation A.10 becomes

dσ

d|~p4|
=

|M |2
64π2m2|~p1|

|~p4|2√
|~p4|2 +m2

2

2π∫
0

dφ

×
π∫

0

dθ

 sinθ√
|~p1|2 + |~p4|2−2|~p1||~p4|cosθ +m2

1

×δ

(√
|~p1|2 +m2

1 +m2−
√
|~p4|2 +m2

2

−
√
|~p1|2 + |~p4|2−2|~p1||~p4|cosθ +m2

1

)}
,

(A.13)

where the φ integral is simply

2π∫
0

dφ = [φ ]2π

0 = 2π, (A.14)
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and the θ integral is

π∫
0

dθ sinθ

×
δ

(√
|~p1|2 +m2

1 +m2−
√
|~p4|2 +m2

2−
√
|~p1|2 + |~p4|2−2|~p1||~p4|cosθ +m2

1

)
√
|~p1|2 + |~p4|2−2|~p1||~p4|cosθ +m2

1

=

−1∫
1

du
δ

(√
|~p1|2 +m2

1 +m2−
√
|~p4|2 +m2

2−
√
|~p1|2 + |~p4|2−2|~p1||~p4|u+m2

1

)
√
|~p1|2 + |~p4|2−2|~p1||~p4|u+m2

1

=
1

|~p1||~p4|
.

(A.15)

in which the following change of variables

u≡ cosθ

du =−sinθdθ

(A.16)

have been used in the last step.

Inserting Equations A.14 and A.15 into Equation A.13 produces

dσ

d|~p4|
=

|M |2
64π2m2|~p1|

|~p4|2√
|~p4|2 +m2

2

2π

|~p1||~p4|

=
|M |2

32πm2|~p1|2
|~p4|√
|~p4|2 +m2

2

=⇒ dσ

|~p4|d|~p4|
=

|M |2
32πm2|~p1|2

1√
|~p4|2 +m2

2

.

(A.17)

In an aim to evaluate the differential cross section as a function of the recoil energy

of the target electron dσ

dT , it is convenient to define

T = E4−m4 (A.18)

as the recoil kinetic energy of the target particle.
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So it follows from the energy-momentum relativistic relation that

E2
4 −m2

4 = |~p4|2

=⇒ (E4−m4)(E4 +m4) = |~p4|2

=⇒ T (T +2m4) = |~p4|2

=⇒ 2(T +m4) dT = 2|~p4| d|~p4|,

(A.19)

where in the last step we have differentiated both sides of the equation.

As a final step, plugging the result of Equation A.19 into Equation A.17 gives rise

to

dσ

(T +m4) dT
=

|M |2
32πm2|~p1|2

1√
|~p4|2 +m2

2

=⇒ dσ

dT
=

〈
|M |2

〉
32πm2|~p1|2

(T +m4)√
|~p4|2 +m2

2

=⇒ dσ

dT
=

〈
|M |2

〉
32πm2|~p1|2

(A.20)

by the fact that
√
|~p4|2 +m2

2 (in Equation A.6) = T +m4 (in Equation A.18) = E4.
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Appendix B: Kinematic Terms

For the neutrino-electron elastic scattering process

ν (p1)+ e(p2)→ ν (k1)+ e(k2) ,

the different kinematic terms can be found using the law of conservation of momentum

p1 + p2 = k1 + k2, (B.1)

where p1 and k1 are respectively the incoming and outgoing momenta of neutrino while

p2 and k2 are those of electron.

In the lab frame, these momenta can be expressed in a four-vector notation as

p1 = (Eν ,~p1) ,

p2 =
(

me,~0
)
,

k1 =
(

E ′ν ,~k1

)
such that E ′ν = Eν −T,

k2 =
(

Ee,~k2

)
such that Ee = me +T,

(B.2)

where T is the recoil energy of the target electron.

It then follows that

•

(p1 + p2)
2 = (k1 + k2)

2

=⇒ �
�7

0
p2

1 + p2
2 +2p1 · p2 =�

�7
0

k2
1 + k2

2 +2k1 · k2

=⇒ m2
e +2p1 · p2 = m2

e +2k1 · k2

=⇒ p1 · p2 = k1 · k2 = meEν , (B.3)
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followed from the fact that

p1 · p2 = Eνme−��
�>

0
~p1.~0 = meEν .

•

(p2− k1)
2 = (k2− p1)

2

=⇒ p2
2 +�

�7
0

k2
1−2p2 · k1 = k2

2 +�
�7

0
p2

1−2k2 · p1

=⇒ m2
e−2p2 · k1 = m2

e−2k2 · p1

=⇒ p2 · k1 = k2 · p1 = me (Eν −T ) , (B.4)

followed from the fact that

p2 · k1 = meE ′ν −��
�>

0
~0.~k1 = me (Eν −T ) .

•

(p2− k2)
2 = (k1− p1)

2

=⇒ p2
2 + k2

2−2p2 · k2 =�
�7

0
k2

1 +�
�7

0
p2

1−2k1 · p1

=⇒ m2
e +m2

e−2p2 · k2 =−2k1 · p1

=⇒ 2
(
m2

e− p2 · k2
)
=−2k1 · p1

=⇒ k1 · p1 = meT , (B.5)

followed from the fact that

p2 · k2 = meEe−��
�>

0
~0.~k2 = me (me +T ) .
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