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RANKED SET SAMPLING FOR ENVIRONMENTAL RESEARCH IN

SUSTAINABLE SMART CITIES: ESTIMATION OF DEPENDENCE

MEASURES

ABSTRACT

In environmental problems, researchers face numerous obstacles and limitations.

The main ones are encountered at the sampling step. For example, some of them are

cost of sampling, measurement errors, the length of the sampling process, the inability

to collect sampling units because of environmental factors, etc. Thus, it is important

to select a sample that is representative of entire population. For this purpose, a single

random sample can be selected. Here the issue is howwell the population is represented

by the sample that is selected at once. Against this problem, ranked set sampling (RSS)

has been developed. RSS has been applied in many areas and has proven to be a cost

effective sampling scheme.

Let (X,Y ) be random vectors with the joint probability density function f(x, y)

and joint cumulative distribution F (x, y). The aim of the dissertation is to estimate

the dependence parameter of f(x, y). In environmental studies, there are a number of

issues in that should be examined by considering the correlation between random

variables (X and Y ) such as storage depth and translation time of water, various

measures of groundwater quality (pH, nitrate, sulfate, and chloride), flood volume and

its duration, flood peak and its volume, and so on. In this dissertation, maximum

likelihood estimates based on SRS, RSS, generalized modified RSS (GMRSS) and

extreme RSS (ERSS) are investigate for the dependence parameter of Gumbel (Type

I) bivariate exponential and Farlie-Gumbel-Morgenstern (FGM) type bivarite gamma

distribution. Also, likelihood ratio statistics are examined for testing the

independence. An application is given for likelihood ratio test in Gumbel (Type I)

bivariate exponential distribution. Furthermore, imperfect ranking case is examined

in the RSS procedure. For this purpose, maximum pseudo-likelihood based on RSS is

used in estimating the dependence parameter of bivariate normal distribution. On the

other hand, some non-parametric bootstrap techniques for confidence interval of
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dependence parameter are defined.

Keywords: Algorithm for sampling data, bivariate normal distribution, concomitants,

dependence parameter, FGM type bivariate gamma distribution, Gumbel’s (Type I)

bivariate exponential distribution, likelihood ratio test, maximum likelihood, maximum

pseudo-likelihood, order statistics, ranked set sampling
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SÜRDÜRÜLEBILIR AKILLI KENTLERDE ÇEVRESEL ARAŞTIRMALAR

IÇIN SIRALI KÜME ÖRNEKLEMESI: BAĞIMLILIK ÖLÇÜLERININ

KESTIRIMI

ÖZ

Çevre problemlerinde, araştırmacılar birçok engelle ve kısıtlamayla karşılaşırlar.

Bunların başlıcaları örnekleme aşamasında ortaya çıkar. Örneğin, örnekleme

maliyeti, ölçüm hataları, örnekleme süresi, çevresel faktörler nedeniyle örnekleme

birimlerinin toplanamaması gibi durumlar bunlardan bazılarıdır. Bu nedenle, bütün

kitleyi temsil eden bir örneklem seçmek önemlidir. Bu amaçla, tek bir rastgele

örneklem seçilebilir. Burada sorun, kitlenin bir seferde seçilen örneklem tarafından

ne kadar iyi temsil edildiğidir. Bu soruna karşı, sıralı küme örneklemesi (SKÖ)

geliştirilmiştir. SKÖ birçok alanda uygulanmış ve uygun maliyetli bir örnekleme

yöntemi olduğu kanıtlamıştır.

(X,Y ), bileşik olasılık yoğunluk fonksiyonunu f(x, y) ve bileşik kümülatif

dağılım fonksiyonunu F (x, y) ile rastgele vektörler olsun. Tezin amacı, f(x, y)’nin

bağımlılık parametresinin tahmin edilmesidir. Çevre çalışmalarında, suyun depolama

derinliği ve aktarma süresi, yer altı suyu kalitesinin çeşitli ölçümleri (pH, nitrat, sülfat

ve klorür), sel hacmi ve süresi, sel zirvesi ve sel hacmi gibi rastgele değişkenler (X ve

Y ) arasındaki korelasyonu dikkate alarak incelenmesi gereken birçok konu

bulunmaktadır. Bu tezde, Gumbel (Tip I) iki değişkenli üstel ve

Farlie-Gumbel-Morgenstern (FGM) tipi iki değişkenli gamma dağılımının bağımlılık

parametresi için SKÖ, genelleştirilmiş geliştirilmiş SKÖ ve uç SKÖ’ye dayalı en çok

olabilirlik tahminleri araştırılmıştır. Ayrıca, bağımsızlık testi için olabilirlik oranı

istatistikleri incelenmektedir. Gumbel (Tip I) iki değişkenli üstel dağılımında

olabilirlik oranı testi için bir uygulama sunulmuştur. Ayrıca, RSS prosedüründe

kusurlu sıralama durumu incelenmiştir. Bu amaçla, iki değişkenli normal dağılımın

bağımlılık parametresinin tahmininde SKÖ’ye dayalı en çok pseudo-olabilirlik

yöntemi kullanılmıştır. Diğer taraftan, bağımlılık parametresinin güven aralığı için

bazı parametrik olmayan bootstrap teknikleri tanımlanmıştır.
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CHAPTER ONE

INTRODUCTION

In the last two centuries, many economic activities have been industrialized, which

has had a significant impact on the environment and human health. According to the

World Health Organization, protecting human and animal populations from diseases

should be a top priority of a global health agenda, particularly in the case of

degenerative pathologies. Thus, studies on environmental pollution have become

more common, especially in recent years. Mostly, water and soil samples are

obtained for use in pollution research. Studies on animal tissues, on the other hand,

are a more pragmatic and indirect alternative than research on soil and water.

However, studies in the literature indicate that some metallic and metalloid pollutants

are present in mammals and quickly accumulate in a variety of tissues, including the

liver, kidneys, and hair. Ceruti et al. (2002) looked into the amount of lead in rodent

kidneys. Reynolds et al. (2006) investigated pocket gophers, a rodent species, to look

for signs of environmental metal pollution. For an integrated health risk assessment at

a mining site, Jasso-Pineda et al. (2007) examined soil and rodent-type heavy metal

accumulations. To study the effects of prolonged human exposure to environmental

pollutants, Minamia et al. (2009) measured basal levels of heavy metals in the tissue

of rodent organs. In order to investigate environmental pollution, Bortey-Sam et al.

(2016) examined the levels of heavy metals accumulated in the kidneys and livers of

lemmings. According to Hazratian et al. (2017), the Norway rat (Rattus norvegicus)

can be used as a bioindicator for lead and cadmium accumulation.

Collecting data is a critical step especially for environmental studies. At this step,

researchers face many challenges and constraints. Let us use an illustration to clarify.

Say our objective is to identify the source of pollution in a particular area. On a

square, rectangular, or triangular grid placed over the area to be sampled, evenly

spaced sampling locations are first created. This process is referred to as grid

sampling or systematic sampling (Shtiza & Tashko, 2009). Then, traps are set up at

each corner of the grid. According to biologists, the success rate of trapping rodents is
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between 3% and 10%. The contaminants are determined by examining the samples

from the captured animals’ hair and other tissues in a laboratory setting. When

considering the entire process, difficulties such as high transportation costs, poor

capture rates, drawn-out laboratory studies, and measuring errors are encountered. It

is important to select a sample that is representative of the area for all these

difficulties to make sense. Therefore, researchers should follow a sampling design.

Bhave & Sadhwani (2022) provided an excellent literature review on sampling in

environmental studies. This study looked at a variety of sampling techniques,

including judgmental sampling, simple random sampling (SRS), stratified sampling,

RSS, systematic sampling and grid sampling, adaptive cluster sampling, and

composite sampling. The authors also applied the sampling strategies to a real data

issue. In our work, we focus on the ranked set sampling (RSS) design, and it will be

discussed in the following section.

1.1 Ranked Set Sampling

McIntyre (1952, 2005) suggested the RSS procedure as a cost-effective sampling

strategy. In the interest of estimating the pasture yield in Australia, he used RSS

design. Because harvesting the crops is necessary for precise yield measurements, it

is expensive. First, the interested pasture was divided into the 25 quadrats. The 25

quadrats were then randomly assigned into the five sets. After that, the rth judgement

ranked quadrat is selected from the rth set where r = 1, · · · , 5. Keep in mind that the

rth judgement ranked quadrat is selected after a visual assessment of crop yield across

all quadrats in the rth set. Figure 1.1 illustrates how the five selected quadrats

represent the entire population. Instead of RSS, the five quadrats can be selected by

using SRS. In this situation, the five quadrats could have been selected from the entire

population (from different quantiles) or from the right tail (among maximum

quantiles) of the population distribution. Hence, it can be conclude that RSS provides

an estimator that is not only unbiased but also demonstrates equal or greater

efficiency compared to the estimator based on SRS.
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Figure 1.1 Dotted curve: The distribution of yields per quadrat and solid curves: distribution of samples
from sets of five random samples that are of the same rank

Assume that k is the set size and m is the number of cycle to provide a general

definition of RSS design. First, k2 units are selected from the interested population.

Then, these units are divided into the k sets at random. Let Srj = {Yr1j, Yr2j, · · · , Yrkj}

be the rth set in the jth cycle, r = 1, 2, · · · , k and j = 1, 2, · · · ,m. After that, without

actually measuring, the units in each set are ranked from the smallest to the largest,

Yr(1)j ≤ Yr(2)j ≤ · · · ≤ Yr(k)j . Here, it is possible to rank the units in each set by

using an auxiliary variable. This auxiliary variable could be the results of the preceding

experiment or a different variable that is correlated with the variable of interest, Y . In

addition, it is presumed that the measurement of the auxiliary variable is comparatively

simpler and/or more cost-effective than that of the variable of interest. On the other

hand, if an auxiliary variable is not available, the ranking procedure can be carried out

by visual inspecting the units in each set. A scenario for the ranking process is provided

in the example below.

Example 1 (Ozturk et al. (2005)) Let’s consider a scenario where we regularly

monitor the biological growth of young sheep with the aim of enhancing meat quality

and production. The problem is that young sheep require a lot of labor to restrain

because they are very active animals during the measurement procedure. The weights

at which the young sheep were born can be used as an auxiliary variable to rank the

young sheep’s current weights.

3



Following the ranking process, Yr(r)j is selected for full measurement from the rth set.

The first cycle is then complete and k measurements are obtained. If these steps are

repeated m cycles, mk measurements are taken. Eventually, a ranked set sample is

denoted by

RSS1(k,m) =


Y(1)1 Y(2)1 · · · Y(k)1

Y(1)2 Y(2)2 · · · Y(k)2
... ... ...

Y(1)m Y(2)m · · · Y(k)m


where RSS1 stands for ranked set sample with one variable. Note that Y(r)j is used

instead of Yr(r)j in the matrix for the sake of simplification. This procedure is also

known as balanced RSS design since m order statistics are collected for each of the

ranks (1, 2, · · · , k). We note that the parentheses () are utilized to denote the case of

perfect ranking. If there is a potential for imperfect ranking, the bracket [] is employed

in place of the parentheses (). In practice, the assumption of perfect ranking is

unrealistic.

Let us discuss about the unbiasedness and efficiency properties of themean estimator

based on RSS in the example below.

Example 2 (Wolfe (2012)) Let the set size is k and the number of cycle ism. A ranked

set sample RSS1(k,m) is selected from a population with distribution function F (y)

and density f(y). Under the perfect ranking case, the mean estimator based on RSS is

µ̂RSS =
1

mk

m∑
j=1

k∑
r=1

y(r)j. (1.1)

When the m = 1, µ̂RSS = Σk
r=1y(r)/(mk). Let us prove the unbiasedness of the mean

estimator.

E [µ̂RSS] =
1

k

k∑
r=1

E
[
Y(r)
]

(1.2)

where Y(r) has probability density function (PDF) of rth order statisic,

fr:k(y) =
k!

(r − 1)!(k − r)!
F r−1(y) [1− F (y)]k−r f(y) (1.3)
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and

E
[
Y(r)
]
=

∞∫
−∞

yfr:k(y)dy, (1.4)

for r = 1, 2, · · · , k. Combining Eq. (1.2) and Eq. (1.3), the following equation is

obtained.

E [µ̂RSS] =
1

k

k∑
r=1


∞∫

−∞

ky

(
k − 1

r − 1

)
[F (y)]r−1 [1− F (y)]k−r f(y)dy


=

∞∫
−∞

yf(y)

{
k∑
r=1

(
k − 1

r − 1

)
[F (y)]r−1 [1− F (y)]k−r

}
dy.

(1.5)

Letting i = r − 1 in (1.5),

k∑
r=1

(
k − 1

r − 1

)
[F (y)]r−1 [1− F (y)]k−r =

k−1∑
i=0

(
k − 1

i

)
[F (y)]i [1− F (y)](k−1)−i = 1

(1.6)

since the summation defined on i covers the entire sample space for a binomial random

variable with the parameters k − 1 and p = F (y). Then, it is seen that the µ̂RSS is

unbiased.

E [µ̂RSS] =

∞∫
−∞

kydy = µ. (1.7)

Now, we continue with the variance of µ̂RSS .

V [µ̂RSS] =
1

k2

k∑
r=1

V
[
Y(r)
]

(1.8)

Suppose that µ(r) = E
[
Y(r)
]
for r = 1, 2, · · · , k and

E
[(
Y(r) − µ

)2]
= E

[(
Y(r) − µ(r) + µ(r) − µ

)2]
= E

[(
Y(r) − µ(r)

)2]
+
(
µ(r) − µ

)2
= V ar

[
Y(r)
]
+
(
µ(r) − µ

)2
.

(1.9)
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The following equation is given by combining (1.8) and (1.9),

V [µ̂RSS] =
1

k2

{
k∑
r=1

E
[(
Y(r) − µ

)2]− k∑
r=1

(
µ(r) − µ

)2} (1.10)

E
[(
Y(r) − µ

)2] can be expressed as follows:
k∑
r=1

E
[(
Y(r) − µ

)2]
=

k∑
r=1

∞∫
−∞

k (y − µ)2
(
k − 1

r − 1

)
[F (y)]r−1 [1− F (y)]k−r f(y)dy

= k

∞∫
−∞

(y − µ)2 f (y)

{
k∑
r=1

(
k − 1

r − 1

)
[F (y)]r−1 [1− F (y)]k−r

}
dy.

(1.11)

Applying the binomial distribution, we ascertain that the inner sum is equal to one.

k∑
r=1

E
[(
Y(r) − µ

)2]
= k

∞∫
−∞

(y − µ)2 f (y) dy = kσ2 (1.12)

Using Eq. (1.10) and Eq. (1.12), it is evident that

V [µ̂RSS] =
1

k2

{
kσ2 −

k∑
r=1

(
µ(r) − µ

)2}
=
σ2

k
− 1

k2

k∑
r=1

(
µ(r) − µ

)2
. (1.13)

We know that the variance of the mean estimator based on SRS is V [µ̂SRS] = σ2/k.

Thus, it is obvious that V [µ̂RSS] ≤ V [µ̂SRS]. Each of the order statistics in

RSS1(k,m) reduces to a random sample of size m as the ranking quality decrease,

and as a result, µ(r) → µ. Under the imperfect ranking case, µ̂RSS is as efficient as

µ̂SRS .

FollowingMcIntyre (1952, 2005), Takahasi &Wakimoto (1968) examined themean

estimator based on RSS and demonstrated that µ̂RSS is an unbiased estimator with a

smaller variance compared to its counterpart in SRS, irrespective of the ranking issue.

Takahasi &Wakimoto (1968) clarified the relative efficiency (RE) of µ̂RSS with respect
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to µ̂SRS as follows:

1 ≤ V [µ̂SRS]

V [µ̂RSS]
≤ k + 1

2
(1.14)

The impact of ranking errors on mean estimator based on RSS was examined by Dell

& Clutter (1972). In this study, they defined a ranking error modelX = Y +ϵwhereX

and ϵ are independent and ϵ ∼ N(0, σ2
ϵ ). By using the ranking error model, an auxiliary

variable (X) can be generated. Following that, Y s are ranked by using the magnitudes

of Xs. Ranking is perfect if σ2
ϵ = 0; otherwise, is imperfect.

1.2 Ranked-based Sampling Designs

Developing ranked-based sampling designs is a remarkable topic in the literature.

In this section, we focus on ranked-based sampling designs that use auxiliary

variables. These designs are useful to obtain a sample from bivariate distributions.

Also, these sampling designs are particularly preferred by authors studying on

correlation estimation, ratio estimator, etc.

The RSS protocol with using auxiliary variable was first investigated by David &

Levine (1972) and developed in detail by Stokes (1977). Supposed that (X,Y ) are

random variables with absolutely continuous joint CDF F (x, y) and PDF f(x, y).

Assume that Ω = {(u1;X1, Y1), · · · , (uN ;XN , YN)} is the population where uc is the

name (or an equivalent number) of the cth location and, where the variablesXc and Yc
are characteristics of the cth location, c = 1, · · · , N . Suppose that the variable Y is

difficult to measure and/or rank, but that the variable X can be at least easily and/or

cheaply ranked in this population. RSS denotes ranked set sample with two variables

and is obtained by using following steps:

(I) Select the k2 locations from the Ω and these locations are divided into k sets at

random;

Srj = {ur1j, ur2j, · · · , urkj}

where r = 1, · · · , k and j = 1, · · · ,m.
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Table 1.1 A brief review of the RSS literature

Subjects Studies
Ranked-based sampling methods Samawi et al. (1996), Muttlak

(1997), Al-Saleh & Al-Kadiri
(2000), Muttlak (2003), Al-Saleh
& Zheng (2002), Gulay & Demirel
(2019)

Bootstrap techniques Chen et al. (2004), Hui et al. (2005),
Alirezaei Dizicheh et al. (2021),
Yamaguchi & Murakami (2021),
Samawi & Chen (2021), Taconeli &
de Lara (2022)

Estimating the population mean Haq et al. (2014) and Singh et al.
(2014)

Estimating the population variance Bilgin et al. (2004), Chen & Lim
(2011), Ozturk (2014), Ozturk &
Demirel (2016) and Mahdizadeh &
Zamanzade (2021)

Estimating the population proportion Terpstra (2004), Terpstra &
Liudahl (2004), Chen et al. (2007),
Göçoğlu & Demirel (2019),
Zamanzade & Mahdizadeh (2020)
and Mahdizadeh & Zamanzade
(2022)

Estimating the population distribution function Nazari et al. (2014), Sevil (2017),
Sevil & Yildiz (2017, 2020, 2021,
2023b, 2022a), Yildiz & Sevil
(2018, 2019) and Zamanzade
(2019)

Estimating the dependence parameter Stokes (1980), Modarres & Zheng
(2004), Al-Saleh & Samawi
(2005), Zheng & Modarres (2006),
Hanandeh & Al-Saleh (2013)

Regression Patil et al. (1993), Samawi &
Ababneh (2001), Chen & Wang
(2004), Al-Nasser & Radaideh
(2008)

Classification Hatefi et al. (2014), Hatefi et al.
(2015) and Hatefi et al. (2020)

(II) Rank the Xs from the smallest to the largest,

Xr(1)j ≤ Xr(1)j ≤ · · · ≤ Xr(k)j.
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(III) Take measurements Xr(r)j and its concomitant Yr[r]j from the Srj .

(IV) Repeat the steps (I)-(III), j = 1, · · · ,m,

RSS(k,m) =


(X(1)1, Y[1]1) (X(2)1, Y[2]1) · · · (X(k)1, Y[k]1)

(X(1)2, Y[1]2) (X(2)2, Y[2]2) · · · (X(k)2, Y[k]2)
... ... ...

(X(1)m, Y[1]m) (X(2)m, Y[2]m) · · · (X(k)m, Y[k]m)

 .

Stokes (1980) defined modified RSS (MRSS) which provides more efficient maximum

likelihood (ML) estimator than ML estimators based on SRS and RSS. The first two

steps in RSS and MRSS are identical. Following the second step,

(III) Take measurements Xr(1)j and its concomitant Yr[1]j from the Srj where r =

1, · · · , k and j = 1, · · · ,m.

(IV) Repeat the steps (I)-(III), j = 1, · · · ,m,

MRSS(k,m) =


(X1(1)1, Y1[1]1) (X2(1)1, Y2[1]1) · · · (Xk(1)1, Yk[1]1)

(X1(1)2, Y1[1]2) (X2(1)2, Y2[1]2) · · · (Xk(1)2, Yk[1]2)
... ... ...

(X1(1)m, Y1[1]m) (X2(1)m, Y2[1]m) · · · (Xk(1)m, Yk[1]m)

 .

Also, maximum ranked pairs Xr(k)j and Yr[k]j could be selected in step (III) of MRSS

procedure. Sevil & Yildiz (2022b) established a method, named as generalized MRSS

(GMRSS), in which any ranked pair can be selected. According to the definition of

GMRSS, Xτ(r)j and its concomitant Yr[τ ]j are measured from the set Sτj in the step

(III) of MRSS procedure where, τ = 1, · · · , k, j = 1, · · · ,m and r ∈ [1, k]. Thus, it

will be expressed as GMRSS(R = r) in the remaining sections.

Also, Sevil & Yildiz (2022b) investigated ML estimator based on extreme RSS

(ERSS) in case of even set size. This sampling procedure was suggested by Samawi

et al. (1996) as a practical scheme. Due to the fact that this sampling strategy does not
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require for ranking units in the set. Both RSS and ERSS begin with the same two

steps. After the second step,

(III) Take measurements Xr(1)j and its concomitant Yr[1]j from the Srj where r =

1, · · · , k/2 and j = 1, · · · ,m.

(IV) Take measurements Xr(k)j and its concomitant Yr[k]j from the Srj where r =

(k/2) + 1, · · · , k and j = 1, · · · ,m.

(V) Repeat the steps (I)-(IV), j = 1, · · · ,m,

ERSS(k,m) =



(
X1(1)1, Y1[1]1

)
· · ·

(
Xk/2(1)1, Yk/2[1]1

) (
Xk/2+1(k)1, Yk/2+1[k]1

)
· · ·

(
Xk(k)1, Yk[k]1

)(
X1(1)2, Y1[1]2

)
· · ·

(
Xk/2(1)2, Yk/2[1]2

) (
Xk/2+1(k)2, Yk/2+1[k]2

)
· · ·

(
Xk(k)2, Yk[k]2

)
... ... ... ...(

X1(1)m, Y1[1]m
)
· · ·

(
Xk/2(1)m, Yk/2[1]m

) (
Xk/2+1(k)m, Yk/2+1[k]m

)
· · ·

(
Xk(k)m, Yk[k]m

)

.

As an extension of RSS, bivariate RSS (BVRSS) was developed by Al-Saleh &

Zheng (2002). The steps of this sampling process are as follows:

(I) A random sample of size k4 is selected from the populationΩ for a given set size

k, and it is divided into k2 pools of size k2 each. Here, each pool is a square

matrix with k rows and k columns.

(II) For each k rows in the first pool, the minimum ranked value is determined by

judgement with respect to the variable X .

(III) For each of the k minimum values in Step (II), the pair that corresponds to the

smallest ranked value of the variable Y determined by judgement is selected.

This pair is denoted by (1, 1).

(IV) Following the step, the pair corresponding to the first minimum ranked value

in the variable X and the second minimum ranked value in the variable Y is

determined. These two values are represented by (1, 2).

(V) The sampling procedure is repeated until the (k, k) is selected from the k2th (last)

pool.
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By following these steps, k2 pairs are selected for full measurement among the k4 pairs

in one cycle. It is possible to measuremk2 pairs by repeating these steps k cycles. Let

us give an illustration for these steps in the following table.

1.3 Applications of Ranked Set Sampling in Environmental Researches

We briefly mentioned a few of the difficulties that make the sampling process

difficult at the beginning of the introduction. Despite these difficulties, RSS is a

useful sampling technique which provides efficient estimators for parameters of

environmental variables. In this section, we present some studies that have been given

environmental data applications.

Halls & Dell (1966) used the RSS procedure to select a sample from a

pine-hardwood forest. They observed that RSS provides considerably more efficient

estimator than SRS at estimating the weights of browse and herbage. Due to its ease

of collection, Cobby et al. (1985) recommended using the RSS process to increase the

precision of estimates when sampling grass and grass clover swards. Martin et al.

(1980) considered three different sampling procedure which are balanced RSS,

unbalanced RSS and SRS in estimating the value of a heathland located in a forest.

Lacayo et al. (2002) studied proportion estimator based on RSS and gave an example

of determining the plutonium content of soil samples for the application of the

proposed proportion estimator. They highlighted the existence of a robust correlation

between soil levels of americium and plutonium concentrations. Additionally, they

emphasized that measuring americium levels using a hand-held instrument is

significantly more cost-effective compared to conventional plutonium soil analysis

methods. Thus, plutonium concentration can be used as an auxiliary variable to rank

the americium concentration in the RSS procedure. Barnett (1999) investigated two

different positive skewed distributions which are lognormal and extreme value. The

author pointed out the widespread application of positive skewed distributions in

modelling environmental data as a reason for using these distributions. In this study,

the author looked at the mean estimator and discussed the effectiveness of these
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estimators under skewed distributions. Murray et al. (2000) conducted a

comprehensive investigation into the precision of the mean estimator based on RSS,

considering both perfect and imperfect ranking scenarios across a range of univariate

distributions. The authors also examined the total amount of deposit on the upper

surface of the leaf, along with the mean percentage of the upper leaf surface covered

by deposit. In order to estimate the mean and median of the crop production data from

the United States Department of Agriculture, Husby et al. (2006) proposed estimators

based on RSS. With and without replacement policies of RSS were examined by

Deshpande et al. (2006). These sampling policies were used to obtain empirical data

from the different finite populations which consists of measurements of height and

diameter for long-leafed pines. Wolfe (2012) used the RSS process to collect a

representative sample from gasoline in order to lower cost and improve the sampling

process for further analysis. Yildiz & Sevil (2019) studied empirical distribution

functions (EDFs) based on three different sampling designs in RSS. These EDFs have

been demonstrated to be superior to the EDF based on SRS for a variety of symmetric

and skewed distributions. These EDF estimators based on sampling designs were

applied to air quality data for illustrative purposes. Younes (2020) developed a new

decision-making process using median RSS. This process assisted Jordan in

improving and marketing its decentralized wastewater treatment policy.

In these studies, it is supposed that environmental observations are independent.

However, spatial structure could be seen among the observations. For this case, new

sampling techniques have been developed by combining ranked set and geostatistical

approaches. Robertson et al. (2021) introduced quasi-random RSS (QRSS). The

authors obtained that QRSS with k = 3 is more efficient than RSS with k = 20. Also,

the authors showed that QRSS performed well in comparison to balanced acceptance

sampling, a geostatistical sampling design. Robertson et al. (2022) combined a

spatially balanced sample with local ranking information. Also, the authors provided

a modified QRSS design. Horvitz-Thompson estimator for total parameter was

investigated for various spatial structures. The study demonstrated that local ranking

is an useful strategy and attractive alternative to QRSS.
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1.4 Literature Review on RSS-based Dependence Parameter Estimation

Some authors addressed the estimation of the correlation parameter using RSS and

its modifications. Supposed that (X,Y ) is a bivariate random vector with PDF

f(x, y) and cumulative distribution function (CDF) F (x, y). The ML estimator of the

dependence parameter is examined under the following three scenarios: (i) the

parameters of the variables X and Y are known, (ii) the parameters of the variable X

(which is more easily accessible) are known, but those of Y are not, and (iii) all

parameters are unknown. In each of the three scenarios, Stokes (1980) looked into the

ML estimator for dependence parameter of bivariate normal distribution using RSS.

Stokes (1980) demonstrated that the ML estimator of dependence parameter using

RSS in cases (i) is asymptotically as efficient as the ML estimator based on SRS.

Therefore, Stokes (1980) showed that using MRSS, which only needs the maximum

or minimum ranked units, can increase efficiency in three different cases. Modarres

& Zheng (2004) examined fisher information (FI) about the ML estimator of

dependence parameter. They considered the case (iii) and provided an explicit form

of FI matrix when (X,Y ) follows bivariate normal and extreme value distributions.

According to their findings, it is seen that the ML estimator using RSS for the

dependence parameter is as efficient as the ML estimator using SRS under cases (i)

and (ii); however, it is more efficient than the ML estimator based on SRS under case

(iii). In addition to FI, they obtained bootstrap and asymptotic confidence intervals

(CIs) for the dependence parameter under the cases (i) and (ii). They established that

the asymptotic CI provides better coverage probabilities for the dependence

parameter, whereas all coverage probabilities of bootstrap CIs are 1s. Al-Saleh &

Samawi (2005) considered BVRSS-based estimation of the dependence parameter of

bivariate normal distribution under the cases (i) and (iii). The authors provided a

non-parametric estimator based on BVRSS for the dependence parameter. Moreover,

modified ML estimator was studied, and an example was given for bivariate normal

distribution. Al-Saleh & Samawi (2005)’s research indicates that these estimators are

unbiased and have less variance than their counterparts in bivariate SRS design.

Zheng & Modarres (2006) proposed a robust correlation coefficient estimator based
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on RSS. They obtained the estimator by using the modified ML method. This

estimator is robust to common ranking errors. They demonstrated that the suggested

estimator is at least as efficient as the ML estimators based on SRS and RSS under the

case (iii). They investigate the performance of the proposed estimator under imperfect

and perfect ranking. Hanandeh & Al-Saleh (2013) looked at moving extreme RSS

(MERSS) to develop estimators for the dependence parameter of Downton’s Bivariate

Exponential Distribution using under the cases (i) and (iii). The authors established

that MERSS offers an unbiased estimator for the dependence parameter in case (i),

but not in case (iii). Additionally, the case (iii) is seen to have a negative effect on the

relative efficiencies.

Recently, the estimation of the dependence parameter for the Gumbel’s (Type I)

bivariate exponential distribution was taken into account by Sevil & Yildiz (2022b).

Also, Sevil & Yildiz (2023a) dealt with estimating the dependence parameter of

Farlie-Gumbel-Morgenstern (FGM) type bivariate gamma distribution. In subsequent

chapters, we will discuss the works in more detail.

1.5 Motivation and Outline of the Dissertation

In the environmental studies that should be investigated by taking into account the

correlation between random variables (X and Y ), such as water storage depth and

water translation time, various groundwater quality measures pH, nitrate, sulfate, and

chloride), flood volume and its duration, flood peak and its volume, and so on. It is

evident from the studies cited in the previous section that the bivariate normal

distribution was extensively studied. Therefore, some studies have recommended

looking into other bivariate distributions, particularly those where the two random

variables may have a conditionally nonlinear relationship, for example Stokes (1980)

and Al-Saleh & Samawi (2005). Because environmental quantities frequently have a

skewed distribution with a positive skewness rather than a normal distribution. Let us

provide some motivating examples.
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Example 3 (Moore & Clarke (1981)) A problem with rainfall runoff modelling was

discussed. They defined two variables called the storage depth s and the translation

time t in the section titled “A Bivariate Exponential Storage-Translation Model”. In

this section, they stated “a basin with thin soils in the higher altitude areas that are

furthest from the basin outfall is likely to have s and t negatively correlated”. They

established that the Gumbel’s (Type I) bivariate exponential distribution is the proper

distribution to use when modelling rainfall data.

Example 4 (Bárdossy (2006)) The quality of groundwater was examined using four

different parameters: pH, nitrate, sulfate, and chloride. This paper was presented

two theoretical copula-based models: Gaussian and non-Gaussian. Because of its

asymmetrical dependence, which is better suited to describing the spatial dependence

of groundwater quality parameters, this paper recommended the non-Gaussian copula.

Also, Bárdossy (2006) showed that the suggested copula-based models can be applied

with ease for geostatistical simulation.

Example 5 (Balakrishnan & Lai (2009)) Multivariate hydrological phenomena,

such as floods and storms, can be effectively modeled using a bivariate gamma

distribution, where the marginal distributions exhibit distinct scale and shape

parameters. Yue et al. (2001) examined bivariate gamma models to capture

hydrological events such as flood peaks and volumes, as well as flood volumes and

durations. A similar experiment was also conducted by Long & Krzysztofowicz

(1992).

However only a few studies have taken into account the estimation of the dependence

parameter in the scenario where the random variables have a conditionally nonlinear

relationship. In the dissertation, we investigate ML estimators under Gumbel’s (Type

I) bivariate exponential and FGM type bivariate gamma distributions.

The ranked-based sampling designs are presented in Section 1.2 under the

assumption that the Xs are perfectly ranked. Many authors in the literature offered
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ML estimators based on RSS and its modifications under the assumption. However,

perfect ranking assumption is not possible in practice. As a solution to the problem,

the dissertation provides a robust estimate based on RSS for correlation coefficient of

bivariate normal distribution.

The remaining of the dissertation is organized as follows. In the Chapter 2, we

present some approaches and algorithms to generate rank-based sampling designs from

a bivariate PDF.We consider the dependence parameters of Gumbel’s (Type I) bivariate

exponential and FGM type bivariate gamma distributions. ML estimators based RSS,

GMRSS(R = r) and ERSS are examined under perfect ranking. In Gumbel’s (Type

I) bivariate exponential distribution, likelihood ratio test (LRT) statistic based on RSS,

GMRSS(R = r) and ERSS are studied for testing H0 : θ = 0. An extensive Monte-

Carlo simulation results are presented. In Chapter 3, we take into account the imperfect

ranking case. We investigate maximum pseudo-likelihood (MPL) estimate based on

RSS for the correlation coefficient of bivariate normal distribution. A Monte-Carlo

simulation is performed for making comparison between MPL estimator based on RSS

and its counterparts in SRS and RSS. In Chapter 4, we define some concomitant based

non-parametric bootstrap techniques for CI of correlation coefficient. Finally, general

conclusions and final remarks are given in Chapter 5.
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CHAPTER TWO

STATISTICAL INFERENCE ON DEPENDENCE PARAMETER UNDER

PERFECT RANKING CASE

LetX and Y are correlated continuous random variables with the CDF F (x, y) and

PDF f(x, y). The CDFs and PDFs of marginals are notated by H(x), h(x), G(y) and

g(y). One of the random variables, let’s say X , is regarded as ranking criterion. In

order to assign ranks to Y s, ranking information from Xs are used. In this procedure,

Xs are deemed to be ranked perfectly. However, there may be an error in the ranking of

Y s since ranking quality depends on the magnitude of the correlation between X and

Y that is denoted by Cor(X,Y ). If Cor(X,Y ) = ±1, then Y s are perfectly ranked;

otherwise, they are not. On the other hand, Cor(X,Y ) = ±1 is unrealistic. Thus, it is

assumed that X(r) is the rth order statistic and Y[r] is its concomitant.

David (1973) coined the phrase “concomitant of order statistics”. The asymptotic

distribution of the concomitant was examined by David & Galambos (1974) under the

assumption that (X,Y ) follows bivariate normal distribution. Balasubramanian &

Beg (1998) provided the properties of Y[r] for Gumbel’s (Type I) bivariate exponential

distribution and recurrence relations between moments of concomitants.Abo-Eleneen

& Nagaraja (2002) studied FI in a single order statistic and its concomitant for FGM

family. Also, they gave an application using Gumbel’s (Type II) bivariate exponential

distribution. Nagaraja (2003) discussed the fundamentals of the distribution theory as

well as methods for simulating functions of the concomitants. Joint distribution of

Y -order statistic and Y -concomitant of X-order statistic was developed by He (2007)

and He & Nagaraja (2009). Moreover, He (2007) investigated FI matrix for Type II

right censored samples that is selected from bivariate normal, Downton’s bivariate

exponential and Gumbel’s (Type II) bivariate exponential distributions. Wang (2008)

examined the distribution of concomitants of order statistics under the assumption is

that X is an equally correlated multivariate normal sample. The distribution of Y[r]
was considered by Bairamov & Bekci (2012) for FGM family with uniform

marginals. From Downton, Marshall-Olkin, Gumbel’s and FGM bivariate exponential
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distributions, He et al. (2013) suggested algorithms for generating order statistics and

their concomitants. Their algorithms, however, are not useful for the simulation of

RSS(k,m). In the dissertation, we investigate this issue and develop various

algorithms. For FGM bivariate Lomax distribution, Philip & Thomas (2017)

discussed the estimation of the parameters associated with the distribution of the

concomitant variable based on RSS.

Suppose that (X(r)j, Y[r]j) is RSS(k,m) where r = 1, · · · , k and j = 1, · · · ,m.

Thus, there are m pairs for a fixed rank r. In the pairs, X has the same PDF of rth

order statistic which is given by Eq. (1.3) and is denoted by hr:k(x). The joint PDF of

the pairs (X(r)j, Y[r]j) can be written as following:

fr:k (x, y) = hr:k (x) f (y|x)

=
k!

(r − 1)!(k − r)!
Hr−1(x) [1−H(x)]k−r f(x, y).

(2.1)

On the other hand, the PDF of Y is expressed as follows:

g[r:k](y) =

∞∫
−∞

fr:k (x, y) dx

=
k!

(r − 1)!(k − r)!

∞∫
−∞

Hr−1(x) [1−H(x)]k−r f(x, y)dx.

(2.2)

If (X,Y ) follows bivariate normal distribution with the parameters µx, µy, σ2
x, σ2

y and

ρ, Yi can be expressed in the following form,

Yi = µy + ρ
σy
σx

(Xi − µx) + ϵi, (2.3)

whereXi and ϵi are mutually independent for i = 1, · · · , n. Here, ϵi has mean E [ϵi] =

0 and variance V [ϵi] = σ2
y (1− ρ2). Similar to Eq. (2.3), the form of Y[r] is given by

Y[r] = µy + ρ
σy
σx

(
X(r) − µx

)
+ ϵ[r], (2.4)
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where ϵ[r] is independent of the X(r) for r = 1, · · · , k. Letting,

αr = E

[
X(r) − µx

σx

]
, and βrs = Cov

[
X(r) − µx

σx
,
X(s) − µx

σx

]
(2.5)

the following formulas can be found, e.g. in David & Nagaraja (2004) (formulas

(6.8.3a-d) p. 145),

E
[
Y[r]
]
= µy + ρσyαr

V
[
Y[r]
]
= σ2

y

(
ρ2βrr + 1− ρ2

)
Cov

[
X(r), Y[s]

]
= ρσxσyβrs

Cov
[
Y[r], Y[s]

]
= ρ2σ2

yβrs r 6= s.

(2.6)

In the rest of the chapter, we will deal with estimating the dependence parameter

of the Gumbel’s (Type I) bivariate exponential and Farlie-Gumbel-Morgenstern type

bivariate gamma distribution using RSS and its modifieds.

2.1 Gumbel’s (Type I) Bivariate Exponential Distribution

RSS, GMRSS(R = r), and ERSS are the three sampling techniques that we take

into consideration in this section where r ∈ [1, k]. This section first provides

ranked-based algorithms to generate data from Gumbel’s (Type I) bivariate

exponential distribution. By using ML method, this section enhances estimators

based on RSS, GMRSS(R = r), and ERSS for the association parameter of

Gumbel’s (Type I) bivariate exponential distribution. Also, we examine LRTs based

on RSS, GMRSS(R = r), and ERSS to determine if there is a statistically

significant association between the random variables.
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2.1.1 Preliminaries

Bivariate exponential distributions are frequently used in reliability and survival

analysis, Balakrishnan & Lai (2009). Numerous bivariate exponential distributions

have been proposed in the literature to model the aging and failure processes of two

components. Three different bivariate exponential distributions known as Type I, Type

II and Type III were proposed by Gumbel (1960).

Suppose that (X,Y ) be a bivariate random vector with absolutely continuous joint

CDF F (x, y),

F (x, y) = 1− exp{−x}− exp{−y}+ exp{−x− y− θxy}, 0 < x, y <∞, (2.7)

and the joint PDF f(x, y)

f(x, y) = [(1 + θx) (1 + θy)− θ] exp{−x− y − θxy}, 0 < x, y <∞ (2.8)

where marginals follow standard exponential distributions and 0 ≤ θ ≤ 1. Figure 2.1

presents illustrations for the Eqs. (2.7) and (2.8).

The joint survival function is given by

F̄ (x, y) = exp{−x− y − θxy}, 0 < x, y <∞ (2.9)

The conditional PDF of Y given X = x is

f (y|x) = f (x, y)

f (x)

= [(1 + θx) (1 + θy)− θ] exp{−y − θxy}
(2.10)

The conditional mean and variance of Y given X = x are expressed as follows:

E [Y |X = x] =
1 + θ + θx

(1 + θx)2
, (2.11)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.1 Gumbel’s (Type I) bivariate exponential distribution; (a): Joint PDF for θ = 0, (b): Joint
CDF for θ = 0, (c): Joint PDF for θ = 0.4, (d): Joint CDF for θ = 0.4, (c): Joint PDF for θ = 0.6, (d):
Joint CDF for θ = 0.6, (c): Joint PDF for θ = 1, and (d): Joint CDF for θ = 1

21



and

V [Y |X = x] =
(1 + θ + θx)2 − 2θ2

(1 + θx)4
. (2.12)

The following equation gives the joint expectation of XY ,

E[XY ] =
1

θ
e1/θE1

(
1

θ

)
(2.13)

where

Ei (ω) =

∞∫
1

ξ−i exp {−ωξ} dξ (2.14)

Thus, the correlation coefficient between X and Y is,

Cor (x, y) = ρ =
E (XY )− E (X)E (Y )√

V (X)V (Y )

=
1

θ
eθ

−1

E1

(
1

θ

)
− 1

(2.15)

where ρ ranges from 0when θ = 0 to−0.40365when θ = 1. The correlation coefficient

between the variables is drawn and given by Figure 2.2.

(a) (b)

Figure 2.2 Correlation between X and Y ; (a): θ = 0 and (b): θ = 1
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Barnett (1985) investigated estimating the association parameter, θ, based on SRS

for Gumbel’s (Type I) bivariate exponential distribution. Balasubramanian & Beg

(1998) provided the properties of Y[r] for r = 1, · · · , k. In this study, the PDF of Y[1]
was obtained using Eq. (2.2).

g[1:k](y) =

∞∫
0

exp {−y (1 + θx)} [(1 + θx) (1 + θy)− θ]n exp {−nx} dx

= n exp {−y}
∞∫
0

exp {− (θy + n) x} [θx (1 + θx) + (1 + θy)− θ] dx

=

[
n− n (n− 1)

θ (y + n/θ)
− n (n− 1)

θ (y + n/θ)2

]
exp {−y} , y ≥ 0.

(2.16)

Then, the PDF of Y[r] was defined by using the connections of PDFs of order statistics,

g[r:k](y) =
k∑

i=k−r+1

(−1)i−k+r−1

(
i− 1

k − r

)(
k

i

)
g[1:i](y)

=
k∑

i=k−r+1

(−1)i−k+r−1

(
i− 1

k − r

)(
k

i

)
[
i− i (i− 1)

θ (y + i/θ)
− i (i− 1)

θ (y + i/θ)2

]
exp {−y}

(2.17)

2.1.2 Algorithms to Generate Ranked-based Samples

To generate dependent random variables (X,Y ) from Gumbel’s (type I) bivariate

exponential distribution, we consider the conditional distribution approach.

Approach I (Conditional Distribution Approach): This notion is frequently credited

to Rosenblatt (1952). In this approach, X is first simulated from f(x), and Y is

subsequently simulated from the conditional PDF f(y|x). Which one should be the

initial variable, and which one should be obtained conditionally on the initial variable

are possible questions. Rubinstein (1981) straightforwardly acknowledged that there

is no known method for determining the optimal order of variable representation in a

vector to minimize Central Process Unit (CPU) time. See Balakrishnan & Lai (2009)
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and Devroye (1986) for examples of how this approach has been used with various

bivariate probability distributions. The conditional distribution in Eq. (2.10) can be

expressed as follows after some algebraic manipulation:

f (y|x) = (θ (1 + θx) y + 1 + θx− θ) exp {− (1 + θx) y}

=
θ

1 + θx

(
(1 + θx)2 y exp {− (1 + θx) y}

)
+

1 + θx− θ
1 + θx

((1 + θx) exp {− (1 + θx) y})

(2.18)

The first part of the Eq. (2.18) is gamma (2, (1 + θx)) and the second part is

Exp (1 + θx). Based on the Eq. (2.18), Devroye (1986) defined the following

algorithm. We define an R function which is named as BiExp(n,theta) where n is the

Algorithm 1: Generating data from Gumbel’s (type I) BED

Step I: Generate X , T ∼ Exp(1);
Step II: Generate U ∼ Unif(0, 1);
Step III: IF U ≤ θ

1+θX
, THEN;

Generate E ∼ Exp(1);
T ← T + E;

Step IV: RETURN (X ,Y = T
1+θX

). THEN;

number of observations and theta controls the magnitude of the dependence between

random variables X and Y .

To generate complete and censored samples including order statistic and its

concomitant, there are some approaches which are investigated by He et al. (2013).

However, since different stochastic mechanisms are used in RSS, these approaches

are not applicable to generate RSS data from bivariate distributions. The

ranked-based algorithms that we suggest in this section use the subsequent approach.

Approach II (Ranked Sets): In this approach, the rth set of size k is generated from

the CDF F (x, y) for r = 1 · · · , k. Following that, the set is ranked in accordance with

its X-values. From the rth set, the pairs (X(r)j, Y[r]j) are identified for r = 1, · · · , k.

The other pairs are used in the ranking process and then are discarded. This approach

is simple to use with various bivariate probability distributions. On the other hand, we

can say that time lost in ranking is this approach’s disadvantage. Parallel processing
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and vectorized simulation can, however, overcome it. Also, we note that Y -values

can be selected as ranking criteria instead of X-values. This case has no impact on

CPU usage or outputs. Based on this approach, we define the Algorithm 2. We

Algorithm 2: Generating the RSS(k,m) from Gumbel’s (type I) BED

Step I: Generate the pairs (Xi, Yi) by using Algorithm 1 where i = 1, · · · , k;
Step II: Rank the pairs according to their X-values;
Step III: Select X(r)j and its concomitant Y[r]j;
Step IV: Repeat (1)-(3), r = 1, · · · , k and j = 1, · · · ,m;
Step V: RETURN (X(r)j ,Y[r]j).

provide an R function RSS(k,m,theta) where k is the set size, m is the number of cycle

and theta is the value of the dependence parameter θ.

The another ranked-based algorithm is given to generate GMRSS(R = r) from

the Gumbel’s (type I) bivariate exponential distribution. Based on the following

approach, Algorithm 3 is built.

Approach III (Basic Approach): This is a basic simulation approach for generating

order statistics, see He et al. (2013). First, n sets are constructed from F (x, y). After

ranking the sets according to their X-values, the rth ranked pairs (X(r), Y[r]) are

selected and the others are discarded. In the Algorithm 3, we have to choose a rank

value r ∈ [1, k]. Then, the algorithm provides pairs (Xτ(r)j ,Yτ [r]j) from fr:k(x, y). For

Algorithm 3: Generating the GRSS(R = r)) from Gumbel’s (type I) BED

Step I: Generate the pairs (Xi, Yi) by using Algorithm 1 where i = 1, · · · , k;
Step II: Rank the pairs according to their X-values;
Step III: Select Xτ(r)j and its concomitant Yτ [r]j;
Step IV: Repeat (1)-(3), τ = 1, · · · , k and j = 1, · · · ,m;
Step V: RETURN (Xτ(r)j ,Yτ [r]j).

the Algorithm 3, we use the R function GMRSS(k,m,R, theta) where k is the set

size, m is the number of cycle, R is the rank value r and theta is the value of the

dependence parameter.

We take into account that n/2 pairs are selected for each minimum and maximum as

25



we investigated the effects of f1:k(x, y) and fk:k(x, y) in combination on ML estimator

for the dependence parameter. This sampling procedure is known as ERSS in case of

even set size which is developed by Samawi et al. (1996). The following approach is

given for generating ERSS.

Approach IV (Extreme Ranks): The n sets of size k are generated from F (x, y). After

ranking the sets by using theirX-values, the minimum ranked pairs (Xr(1)j ,Yr[1]j) from

the n/2 sets and the maximum ranked pairs (Xr(k)j ,Yr[k]j) are selected from the others.

To achieve this, at least one of the set size k and the number of cycles m have to be

even. For example, k/2 pairs are selected for each extreme rank when the set size is

even, and the number of cycles is odd. On the other hand, minimum ranked pairs are

selected in the firstm/2 cycles while maximum ranked pairs are selected from all sets

in the remaining cycles. To obtain the ERSS(k,m), we follow the steps in Algorithm

4. Note that the Algorithm 4 is used under the case where the set size is even. With

Algorithm 4: Generating ERSS(k,m) from Gumbel’s (type I) BED

Step I: Generate the pairs (Xi, Yi) by using Algorithm 1 where i = 1, · · · , k;
Step II: Rank the pairs according to their X-values;
Step III: Select Xτ(1)j and its concomitant Yτ [1]j for 1 ≤ τ ≤ k/2;
Step IV: Select Xτ(k)j and its concomitant Yτ [k]j for k/2 < τ ≤ k;
Step V: Repeat (1)-(3), τ = 1, · · · , k and j = 1, · · · ,m;
Step VI: RETURN (Xτ(r)j ,Yτ [r]j) for r ∈ {1, k}.

a small adjustment to the algorithm, it can be used when the set size is odd. Also, we

construct an R function ERSS(k,m,theta) where k is the set size, m is the number of

cycle and theta is the value of the dependence parameter.

These R functions mentioned in this section can are available at

https://github.com/YCS92/GenerateRankedBasedSamples.
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2.1.3 Maximum Likelihood Estimates

2.1.3.1 Simple Random Sampling

Let (Xi, Yi) be a simple random sample which is generated using Algorithm 1 (or

is selected from a population). Here, the issue is estimating the correlation coefficient

which is presented by Eq. (2.15). For this issue, the following estimator can be used,

ρ̂ =
1

θ̂
exp(θ̂−1)E1

(
1

θ̂

)
− 1. (2.19)

This issue establishes into the problem of estimating θ, as evident in Eq. (2.19).

Barnett (1985) introduced the ML and method of moment estimators of θ. Barnett

(1985) demonstrated in this study that the ML estimator based on SRS is more

efficient than the method of moment estimator based on SRS. In this section, we

discuss the ML estimator based on SRS which is denoted by θ̂SRS . Let us define the

likelihood function LSRS =
n∏
i=1

f (xi, yi). Then, log-likelihood function is given by

LSRS(θ) =
n∑
i=1

ln [(1 + θxi) (1 + θyi)− θ]−
n∑
i=1

(xi + yi + θxiyi) . (2.20)

The first derivative of the LSRS(θ) with respect to θ is

∂LSRS(θ)

∂θ
=

n∑
i=1

xi(1 + θyi) + yi(1 + θxi)− 1

(1 + θxi)(1 + θyi)− θ
−

n∑
i=1

xiyi = 0

n∑
i=1

xi(1 + θyi) + yi(1 + θxi)− 1

(1 + θxi)(1 + θyi)− θ
=

n∑
i=1

xiyi

(2.21)

Barnett (1985) obtained the approximate value of θ̂SRS by using a computer algorithm.

2.1.3.2 Ranked Set Sampling

Assume that RSS(k,m) is generated (or is selected from a population) by using

Algorithm 2. The rth ranked pairs
(
X(r)j, Y[r]j

)
in the sample RSS(k,m) follows the
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PDF, fr:k(x, y), which is given by Eq. (2.1) where r = 1, · · · , k and j = 1, · · · ,m. The

likelihood function isLRSS =
m∏
j=1

k∏
r=1

fr:k
(
x(r)j, y[r]j

)
. The log-likelihood is presented

by the following equation.

LRSS (θ) =
m∑
j=1

k∑
r=1

ln
(
f(r:k)

(
x(r)j, y[r]j

))
=

m∑
j=1

k∑
r=1

ln
(

k!

(r − 1)! (k − r)!

)

+
m∑
j=1

k∑
r=1

(r − 1) ln
(
F
(
x(r)j

))
+

m∑
j=1

k∑
r=1

(k − r) ln
(
1− F

(
x(r)j

))
+

m∑
j=1

k∑
r=1

ln
(
f
(
x(r)j, y[r]j

))
.

(2.22)

Given that θ appears in f(x, y) of f(r:k)(x, y), the first derivative of the last term of

LRSS (θ) with respect to θ yields the subsequent equation.

∂LRSS(θ)

∂θ
=

m∑
j=1

k∑
r=1

y[r]j
(
1 + θyr(r)j

)
+ x(r)j

(
1 + θy[r]j

)
− 1(

1 + θy[r]j
) (

1 + θx(r)j
)
− θ

−
m∑
j=1

k∑
r=1

x(r)jy[r]j = 0

(2.23)

It is possible to determine the approximate value of the ML estimator based on RSS

(θ̂RSS) by solving the one of the Eqs. (2.22) and (2.23).

2.1.3.3 Generalized Modified Ranked Set Sampling

Now, we suppose that GMRSS(R = r) is generated (or is selected from a

population) by using the Algorithm 3. The pairs
(
Xτ(r)j, Yτ [r]j

)
in GMRSS(R = r)

have the PDF, fr:k(x, y), which is provided by Eq. (2.1). The likelihood function is
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LGMRSS(R=r) =
m∏
j=1

k∏
τ=1

fr:k
(
xτ(r)j, yτ [r]j

)
and the log-likelihood is

LGMRSS(R=r) (θ) =
m∑
j=1

k∑
τ=1

ln
(
f(r:k)

(
xτ(r)j, yτ [r]j

))
= mk ln

(
k!

(r − 1)! (k − r)!

)
+

m∑
j=1

k∑
τ=1

(r − 1) ln
(
F
(
xτ(r)j

))
+

m∑
j=1

k∑
τ=1

(k − r) ln
(
1− F

(
xτ(r)j

))
+

m∑
j=1

k∑
τ=1

ln
(
f
(
xτ(r)j, yτ [r]j

))
.

(2.24)

The following equation is obtained by taking the first derivative of LGMRSS(R=r) (θ)

with respect to θ.

∂LGMRSS(R=r)(θ)

∂θ
=

m∑
j=1

k∑
τ=1

yτ [r]j
(
1 + θxτ(r)j

)
+ xτ(r)j

(
1 + θyτ [r]j

)
− 1(

1 + θyτ [r]j
) (

1 + θxτ(r)j
)
− θ

−
m∑
j=1

k∑
t=1

xτ(r)jyrτ [r]j = 0,

(2.25)

By solving equation (2.24) or (2.25), it is possible to calculate the approximate value

of the ML estimator based on GMRSS(R = r) (θ̂GMRSS(R=r)).

2.1.3.4 Extreme Ranked Set Sampling

Let the pairs
(
Xτ(r)j, Yτ [r]j

)
are generated (or is selected from a population) by using

Algorithm 4 where r ∈ {1, k}. Recall that half of the sample is drawn from f1:k(x, y)

and the others are drawn from fk:k(x, y). Thus, the likelihood function is LERSS =
m∏
j=1

k/2∏
r=1

(
f1:k

(
xr(1)j, yr[1]j

)) m∏
j=1

k∏
r=(k/2)+1

(
fk:k

(
xr(k)j, yr[k]j

))
. Following that, the log-
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likelihood function is

LERSS (θ) =
m∑
j=1

k/2∑
r=1

ln
(
f(1:k)

(
xr(1)j, yr[1]j

))
+

m∑
j=1

k∑
r=(k/2)+1

ln
(
f(k:k)

(
xr(k)j, yr[k]j

))
= A+B,

(2.26)

where

A =
mk

2
ln (k) + (k − 1)

m∑
j=1

k/2∑
r=1

ln
(
1− F

(
xr(1)j

))
+

m∑
j=1

k/2∑
r=1

f
(
xr(1)j, yr[1]j

) (2.27)

and

B =
mk

2
ln (k) + (k − 1)

m∑
j=1

k∑
r=(k/2)+1

F
(
xr(k)j

)
+

m∑
j=1

k∑
r=(k/2)+1

f
(
xr(k)j, yr[k]j

)
.

(2.28)

A′ and B′ represent the first derivatives of A and B with respect to θ, respectively.

A′ =
m∑
j=1

k/2∑
r=1

yr[1]j
(
1 + θxr(1)j

)
+
(
1 + θyr[1]j

)
xr(1)j − 1(

1 + θyr[1]j
) (

1 + θxr(1)j
)
− θ

−
m∑
j=1

k/2∑
r=1

xr(1)jyr[1]j,

(2.29)

and

B′ =
m∑
j=1

k∑
r=(k/2)+1

yr[k]j
(
1 + θxr(k)j

)
+
(
1 + θyr[k]j

)
xr(k)j − 1(

1 + θyr[k]j
) (

1 + θxr(k)j
)
− θ

−
m∑
j=1

k∑
r=(k/2)+1

xr(k)jyr[k]j.

(2.30)
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Thus,
∂LERSS(θ)

∂θ
= A′ +B′ = 0 (2.31)

An approximate value of θ̂ERSS can be obtained by solving the Eqs. (2.18) or (2.21).

2.1.4 Simulation Results

By building a comprehensive Monte Carlo simulation, the given ML estimators

from the previous sections are examined in terms of biases and relative efficiencies.

Since there are no closed forms of θ̂SRS , θ̂RSS , θ̂GMRSS(R=r) and θ̂ERSS , we use

optimize function (Brent, 2013) in R statistical programming language. In the Monte

Carlo simulation, we use this R function to determine the global maximum points of

the log-likelihood functions which are given in Eqs. (2.20), (2.22), (2.24) and (2.26).

Throughout the Monte Carlo simulation, 10, 000 samples are generated by using R

functions in Section 2.1.2. It is supposed that the values of dependence parameter are

θθθ = {0, 0.2, 0.4, 0.6, 0.8, 1}, the set sizes are kkk = {3, 4, 5, 6} and the number of cycles

aremmm = {2, 5, 10, 15}. Remember that the extreme ranked set sample contains both

mk/2 minimum and mk/2 maximum ranked units. Therefore, the set sizes are

considered in ERSS as kkk = {2, 4, 6, 8}. The bias of the ML estimators is estimated by

using the following equation:

Bias(θ̂ψ) =
1

10, 000

10,000∑
w=1

∣∣∣θ̂ψ,w − θ∣∣∣ (2.32)

where ψ = SRS, RSS, GMRSS(R = r) and ERSS. Mean square error (MSE) values

of the ML estimators are obtained by following equations:

MSE(θ̂ψ) =
1

10, 000

10,000∑
w=1

(
θ̂ψ,w − θ

)2
. (2.33)

Relative efficiencies (REs) are obtained by using MSEs of the ML estimators.

RE(θ̂ψ′ , θ̂SRS) =
MSE(θ̂SRS)

MSE(θ̂ψ′)
(2.34)
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where ψ′ = RSS, GMRSS(R = r) and ERSS.

Table 2.1 presents the bias values of θ̂SRS and θ̂RSS . In Table 2.1, the ML

estimators based on SRS and RSS appear to be biased, and the biases of the ML

estimators appear to be decreasing as sample size n = mk increases. Barnett (1985)

demonstrated that the ML estimator for SRS has a substantial bias even for large

sample sizes (e.g., n = 100). On the other hand, as noted by Barnett (1985), bias

values decrease while theta values are approaching zero or one. When θ = 0 or 1,

Bias(θ̂RSS) is between 0.3 and 0.055 for n = 6 and n = 90, respectively. On the

other hand, Bias(θ̂RSS) takes values in [0.127, 0.372] when θ = 0.4 or 0.6. Also, it is

obvious to see that Bias(θ̂SRS) ≈ Bias(θ̂RSS). The REs of the ML estimator based

Table 2.1 The values of Bias(θ̂SRS) and Bias(θ̂RSS)

θ = 0 θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8 θ = 1

m k SRS RSS SRS RSS SRS RSS SRS RSS SRS RSS SRS RSS
2 3 0.296 0.300 0.357 0.361 0.371 0.372 0.353 0.351 0.297 0.295 0.199 0.207

4 0.253 0.260 0.325 0.323 0.348 0.344 0.333 0.330 0.280 0.279 0.182 0.185
5 0.230 0.220 0.299 0.303 0.328 0.327 0.314 0.313 0.267 0.262 0.175 0.167
6 0.206 0.201 0.284 0.283 0.307 0.310 0.298 0.300 0.252 0.249 0.158 0.151

5 3 0.178 0.182 0.257 0.253 0.289 0.286 0.279 0.279 0.234 0.234 0.145 0.147
4 0.146 0.150 0.230 0.230 0.263 0.259 0.257 0.255 0.214 0.215 0.127 0.128
5 0.131 0.126 0.209 0.205 0.238 0.236 0.238 0.235 0.200 0.204 0.114 0.114
6 0.115 0.111 0.191 0.189 0.218 0.220 0.221 0.218 0.189 0.190 0.109 0.106

10 3 0.110 0.115 0.190 0.187 0.217 0.219 0.220 0.221 0.190 0.189 0.106 0.107
4 0.094 0.094 0.165 0.164 0.189 0.192 0.197 0.197 0.173 0.171 0.097 0.096
5 0.081 0.080 0.149 0.148 0.173 0.174 0.178 0.180 0.159 0.160 0.086 0.086
6 0.071 0.069 0.137 0.133 0.156 0.156 0.167 0.167 0.152 0.149 0.077 0.079

15 3 0.089 0.086 0.157 0.158 0.182 0.183 0.188 0.189 0.167 0.165 0.090 0.086
4 0.069 0.070 0.134 0.136 0.160 0.159 0.169 0.166 0.151 0.149 0.078 0.080
5 0.062 0.062 0.122 0.121 0.141 0.141 0.149 0.150 0.139 0.137 0.070 0.069
6 0.054 0.055 0.111 0.111 0.129 0.127 0.138 0.139 0.130 0.131 0.063 0.064

on RSS with respect to the ML estimator based on SRS are presented in Table 2.2.

This table demonstrates that the ML estimator based on RSS is as efficient as the ML

estimator based on SRS. For researchers who study RSS and its extensions, the

outcome might come as a surprise. However, Stokes (1980) also found similar

results, and proposed a new RSS technique known as MRSS. In all three cases (1, 2,

and 3), it was demonstrated that MRSS offers more efficient ML estimator than SRS

and RSS by Stokes (1980).

In addition to RSS, we examine Bias(θ̂GMRSS(R=r)) and RE(θ̂GMRSS(R=r), θ̂SRS)
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Table 2.2 The values of RE(θ̂RSS , θ̂SRS)

m k θ = 0 θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8 θ = 1

2 3 0.984 0.976 0.993 1.018 1.023 0.961
4 0.968 1.006 1.018 1.012 1.011 0.985
5 1.070 0.976 1.004 1.011 1.043 1.073
6 1.043 1.005 0.987 0.993 1.011 1.071

5 3 0.969 1.017 1.016 1.002 1.031 0.989
4 0.982 0.999 1.020 1.014 0.994 0.987
5 1.049 1.020 1.011 1.029 0.963 1.006
6 1.088 1.021 0.981 1.026 0.988 1.040

10 3 0.946 1.017 0.977 0.997 1.015 0.996
4 1.021 1.017 0.975 1.010 1.021 1.010
5 1.006 0.996 0.988 0.984 0.988 0.994
6 1.028 1.058 1.008 1.002 1.026 0.970

15 3 1.034 0.999 0.984 0.990 1.025 1.050
4 0.985 0.979 1.010 1.036 1.014 0.970
5 1.014 1.028 0.991 0.993 1.029 1.049
6 1.004 0.966 1.034 0.995 0.993 0.992

for different rank values r, r = 1, · · · , k. The Figures 2.3-2.10 provides the bias and

RE values. The rank values (r) are seen in x-axis. According to the Figures 2.3-2.6, we

can say that θ̂GMRSS(R=r) for r = 1 and r = k have slightly lower biases than θ̂SRS and

θ̂RSS . Also, we observe thatGMRSS(R = k) is slightly better thanGMRSS(R = 1).

When θ = 0 or 1, Bias(θ̂GMRSS(R=k)) is between 0.25 and ≤ 0.05 under n = 6 and

n = 90, respectively. When θ = 0.4 or 0.6, Bias(θ̂GMRSS(R=k)) is in the interval

[0.125, 0.35]. As the number of cycles increase, the bias of θ̂GMRSS(R=r) reduces.

The estimated relative efficiencies of θ̂GMRSS(R=r) with respect to θ̂SRS are presented

by the Figures 2.7-2.10. In these figures, it is obviously seen that GMRSS(R = k)

providesmore efficientML estimator of dependence parameter thanGMRSS(R = 1),

SRS and RSS even if the set size is 3 and the number of cycles is 2. Also, the REs are

not monotone increasing or decreasing as the number of cycles increase.

Since GMRSS(R = 1) (or GMRSS(R = k)) ranked pairs has better

performance than SRS and RSS, we aim to combine two different procedure using

ERSS. We investigate ML estimator based on ERSS in terms of its bias and

efficiency. Figures 2.11 and 2.12 give the biases and REs, respectively. In the Figure

2.11, it can be seen that the bias values range between 0.4 and 0.1 as the set size

increases (form = 2). On the other hand, the bias values range between 0.25 and 0.05
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Figure 2.3 Form = 2, estimated bias values of θ̂GMRSS(R=r); (a): k = 3, (b): k = 4, (c): k = 5, and
(d): k = 6

while the set size increases (for m = 15). In Figure 2.12, the REs of the ML

estimators based on RSS, GMRSS(R = 1), GMRSS(R = k) and ERSS with

respect to ML estimator based on SRS are provided. It can be observed that the REs

reduce while θ → 1. Also, there is no monotone increasing or decreasing in REs as

the number of cycles increases. On the other hand, it seems that

RE(θ̂GMRSS(R=r), θ̂SRS) > RE(θ̂ERSS, θ̂SRS) > RE(θ̂GMRSS(R=r), θ̂SRS) ≥

RE(θ̂RSS, θ̂SRS) except for k = 8, m = 10, 15 and θ = 1. For k = 8,
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Figure 2.4 Form = 5, estimated bias values of θ̂GMRSS(R=r); (a): k = 3, (b): k = 4, (c): k = 5, and
(d): k = 6

GMRSS(R = 1) provides the highest RE when the number of cycles is m = 10, 15

and θ = 1. It is shown that the increase in the value of θ less effect on

RE(θ̂GMRSS(R=1), θ̂SRS) then the other estimators.
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Figure 2.5 For m = 10, estimated bias values of θ̂GMRSS(R=r); (a):k = 3, (b):k = 4, (c):k = 5, and
(d):k = 6
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Figure 2.6 Form = 15, estimated bias values of θ̂GMRSS(R=r); (a): k = 3, (b): k = 4, (c): k = 5, and
(d): k = 6
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Figure 2.7 For m = 2, the estimated values of RE(θ̂GMRSS(R=r), θ̂SRS); (a): k = 3, (b): k = 4, (c):
k = 5, and (d): k = 6
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Figure 2.8 For m = 5, the estimated values of RE(θ̂GMRSS(R=r), θ̂SRS); (a): k = 3, (b): k = 4, (c):
k = 5, and (d): k = 6
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Figure 2.9 Form = 10, the estimated values of RE(θ̂GMRSS(R=r), θ̂SRS); (a): k = 3, (b): k = 4, (c):
k = 5, and (d): k = 6
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Figure 2.10 For m = 15, the estimated values of RE(θ̂GMRSS(R=r), θ̂SRS); (a):k = 3, (b):k = 4,
(c):k = 5, and (d):k = 6
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Figure 2.11 The estimated values of Bias(θ̂ERSS); (a): m = 2, (b): m = 5, (c): m = 10, and (d):
m = 15
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Figure 2.12 The estimated values of RE(θ̂ψ′ , θ̂SRS); (a): m = 2, (b): m = 5, (c): m = 10, and (d):
m = 15 where ψ′ = RSS, GMRSS(R = 1), GMRSS(R = k) and ERSS (longdash: RSS, dashed:
GMRSS(R = 1), solid: GMRSS(R = k) and dotted: ERSS)
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2.1.5 Likelihood Ratio Statistic for Testing the Independence

Let (X,Y ) is a sample and λψ(x, y) is a LRT statistic for testingH0 : θ = θ0 versus

H1 : θ 6= θ0 where ψ = SRS, RSS, GMRSS(R = 1), GMRSS(R = k) and ERSS.

λψ (x, y) = exp
(
Lψ (θ0)− Lψ

(
θ̂ψ

))
, (2.35)

where θ0 = 0 and θ̂ψ are ML estimators for SRS, RSS, GMRSS(R = 1),

GMRSS(R = k) and ERSS. Also, Lψ () are log-likelihood functions and are given

by Eqs. (2.20), (2.22), (2.24), (2.26.) The rejection region is defined as follows:

{(x, y) : λψ (x, y) ≤ cψ} (2.36)

where cψ is any number satisfying 0 ≤ cψ ≤ 1 and is called cut off point.

Remark 1 We note that the distribution of λψ (x, y) depend on the quality of ranking

of X . Hence, in practical terms, it is not feasible to obtain precise critical values as

the quality of ranking remains unknown. Against the problem, critical values can be

obtained by using a Monte Carlo simulation, see Weer & Basu (1980). Eventually, the

critical values can be used to test the null hypothesis.

The Algorithm 5 provides cut of points cψ for each of the sampling methods, ψ = SRS,

RSS, GMRSS(R = 1), GMRSS(R = k) and ERSS. We note that the values of cψ

Algorithm 5: For critical value

Step I: Draw a sample of size n by using one of the methods;
Step II: Calculate the LRT statistic by using Eq. (2.22) λψ,t (x, y);
Step III: Repeat (1)-(2), t = 1, · · · , 100, 000;
Step IV: The (100, 000× α) percentage point of the λψ,1 (x, y) ≤ · · · ≤;

λψ,100,000 (x, y) is the approximate cψ.

do not depend on the values θ0. The values of cψ are presented in Appendices section.

Estimated type I errors and the powers of LRTs for SRS, RSS, GMRSS(R = 1),
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GMRSS(R = k) and ERSS are obtained by using Algorithm 6 and are given in Table

2.3. For theAlgorithm 6, we note that I (λψ,s(x, y) ≤ cψ) is an indicator function taking

Algorithm 6: For type I and powers

Step I: Draw a sample of size n by using one of the methods;
Step II: Calculate the LRT statistic by using Eq. (2.22) λψ,t (x, y);
Step III: Repeat (1)-(2), t = 1, · · · , 10, 000;

Step IV: Power of LRTψ ≈ 1
10,000

10,000∑
s=1

I (λψ,s(x, y) ≤ cψ).

the value 1 if λψ,s(x, y) ≤ cψ and 0 otherwise. According to the table, the LRTs based

on SRS, RSS, GMRSS(R = 1), GMRSS(R = k) and ERSS hold the nominal

α = 0.05 for θ = 0. Also, it is noted that power of theGMRSS(R = k) based the test

statistic approaches 1 more quickly than those of the other test statistics while θ → 1.

2.2 Farlie-Gumbel-Morgenstern Type Bivariate Gamma Distribution

The goal of the section is to investigate estimation of dependence parameter of

FGM type bivariate gamma distribution. We examine ML estimators based on SRS,

RSS, GMRSS(R = r). We make comparison among these estimators in Monte

Carlo simulation. Results that support those found in the previous section have

occurred.

2.2.1 Preliminaries

Assume that U = H(x) and V = G(y) where the random variables X and Y are

continuous. Then, C is called copula which is joint distribution of U and V . According

to Sklar’s theorem (Sklar, 1959), the bivariate copula is defined,

F (x, y) = P [H(X) ≤ H(x), G(Y ) ≤ G(y)] = C(H(x), G(y)) = C (u, v) (2.37)
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Table 2.3 Estimated Type I errors and powers of LRT based on SRS, RSS, GMRSS(R = 1),
GMRSS(R = k) and ERSS at α = 0.05

LRTSRS LRTRSS LRTGMRSS(R=1) LRTGMRSS(R=k) LRTERSS

θ
k
m

2 5 10 15 2 5 10 15 2 5 10 15 2 5 10 15 2 5 10 15

0 2 0.052 0.049 0.048 0.045 0.051 0.049 0.050 0.054 0.053 0.046 0.049 0.054 0.049 0.049 0.048 0.048 0.051 0.048 0.052 0.049
3 0.048 0.051 0.048 0.052 0.049 0.048 0.049 0.049 0.053 0.051 0.052 0.052 0.053 0.051 0.048 0.051 ∗ ∗ ∗ ∗
4 0.048 0.054 0.049 0.047 0.050 0.051 0.052 0.045 0.050 0.057 0.047 0.051 0.051 0.048 0.052 0.053 0.051 0.049 0.052 0.051
5 0.050 0.050 0.048 0.051 0.051 0.050 0.050 0.051 0.049 0.049 0.050 0.048 0.051 0.050 0.050 0.051 ∗ ∗ ∗ ∗
6 0.050 0.048 0.052 0.052 0.052 0.050 0.053 0.050 0.051 0.046 0.046 0.053 0.051 0.049 0.047 0.052 0.047 0.050 0.046 0.053
7 0.049 0.049 0.051 0.048 0.047 0.052 0.055 0.049 0.050 0.055 0.051 0.047 0.049 0.049 0.053 0.052 ∗ ∗ ∗ ∗
8 0.051 0.047 0.049 0.051 0.049 0.048 0.050 0.052 0.052 0.050 0.049 0.052 0.049 0.049 0.052 0.052 0.049 0.048 0.048 0.051

0.2 2 0.081 0.110 0.147 0.205 0.081 0.118 0.168 0.205 0.086 0.098 0.130 0.168 0.087 0.114 0.188 0.261 0.084 0.117 0.158 0.211
3 0.096 0.138 0.206 0.273 0.096 0.131 0.196 0.273 0.091 0.127 0.187 0.231 0.106 0.181 0.302 0.425 ∗ ∗ ∗ ∗
4 0.098 0.163 0.253 0.334 0.108 0.157 0.252 0.342 0.108 0.160 0.225 0.301 0.136 0.259 0.456 0.626 0.126 0.206 0.341 0.464
5 0.113 0.181 0.294 0.406 0.116 0.179 0.298 0.412 0.122 0.186 0.291 0.370 0.176 0.356 0.615 0.780 ∗ ∗ ∗ ∗
6 0.126 0.207 0.336 0.466 0.120 0.203 0.339 0.464 0.135 0.220 0.333 0.446 0.217 0.449 0.739 0.893 0.179 0.336 0.548 0.727
7 0.120 0.232 0.374 0.511 0.133 0.234 0.380 0.515 0.145 0.242 0.377 0.488 0.277 0.563 0.840 0.950 ∗ ∗ ∗ ∗
8 0.141 0.255 0.420 0.561 0.141 0.251 0.417 0.557 0.167 0.281 0.440 0.551 0.320 0.651 0.908 0.983 0.236 0.479 0.745 0.888

0.4 2 0.127 0.210 0.340 0.462 0.123 0.197 0.328 0.469 0.127 0.181 0.278 0.354 0.136 0.221 0.400 0.572 0.128 0.203 0.342 0.460
3 0.144 0.269 0.451 0.615 0.153 0.272 0.459 0.623 0.156 0.251 0.395 0.522 0.190 0.384 0.679 0.846 ∗ ∗ ∗ ∗
4 0.178 0.336 0.567 0.736 0.179 0.337 0.571 0.736 0.185 0.326 0.525 0.667 0.269 0.595 0.876 0.973 0.235 0.449 0.733 0.882
5 0.200 0.394 0.659 0.827 0.204 0.403 0.663 0.831 0.231 0.410 0.642 0.778 0.375 0.757 0.966 0.998 ∗ ∗ ∗ ∗
6 0.228 0.468 0.738 0.883 0.226 0.457 0.750 0.883 0.261 0.484 0.729 0.860 0.487 0.874 0.995 1.000 0.368 0.723 0.946 0.992
7 0.248 0.509 0.796 0.921 0.251 0.512 0.800 0.921 0.312 0.562 0.808 0.922 0.593 0.946 0.999 1.000 ∗ ∗ ∗ ∗
8 0.282 0.567 0.839 0.948 0.278 0.567 0.847 0.952 0.346 0.639 0.858 0.953 0.691 0.982 1.000 1.000 0.515 0.886 0.993 1.000

0.6 2 0.171 0.309 0.531 0.708 0.168 0.314 0.536 0.711 0.168 0.276 0.455 0.585 0.190 0.349 0.639 0.815 0.172 0.307 0.540 0.699
3 0.218 0.421 0.703 0.855 0.222 0.428 0.706 0.857 0.232 0.398 0.636 0.777 0.288 0.616 0.901 0.980 ∗ ∗ ∗ ∗
4 0.263 0.548 0.820 0.938 0.261 0.535 0.827 0.940 0.294 0.546 0.788 0.907 0.422 0.832 0.988 0.999 0.349 0.692 0.936 0.988
5 0.311 0.632 0.894 0.974 0.318 0.628 0.897 0.976 0.364 0.648 0.887 0.965 0.584 0.947 1.000 1.000 ∗ ∗ ∗ ∗
6 0.372 0.700 0.934 0.988 0.357 0.697 0.938 0.990 0.429 0.745 0.942 0.987 0.720 0.985 1.000 1.000 0.566 0.930 0.998 1.000
7 0.406 0.767 0.963 0.996 0.401 0.774 0.967 0.996 0.493 0.823 0.972 0.997 0.834 0.998 1.000 1.000 ∗ ∗ ∗ ∗
8 0.448 0.814 0.980 0.999 0.447 0.822 0.983 0.998 0.555 0.871 0.989 0.999 0.908 0.999 1.000 1.000 0.766 0.990 1.000 1.000

0.8 2 0.224 0.441 0.722 0.871 0.221 0.437 0.714 0.872 0.210 0.389 0.636 0.784 0.237 0.485 0.797 0.939 0.219 0.448 0.716 0.873
3 0.293 0.601 0.872 0.963 0.294 0.604 0.867 0.962 0.320 0.559 0.827 0.933 0.390 0.786 0.980 0.998 ∗ ∗ ∗ ∗
4 0.372 0.717 0.941 0.988 0.369 0.710 0.943 0.990 0.408 0.737 0.932 0.984 0.572 0.944 0.999 1.000 0.492 0.859 0.988 1.000
5 0.435 0.805 0.979 0.998 0.433 0.804 0.979 0.998 0.515 0.841 0.977 0.997 0.743 0.992 1.000 1.000 ∗ ∗ ∗ ∗
6 0.518 0.868 0.990 1.000 0.510 0.873 0.992 1.000 0.606 0.914 0.993 1.000 0.873 0.999 1.000 1.000 0.747 0.987 1.000 1.000
7 0.565 0.915 0.996 1.000 0.571 0.919 0.997 1.000 0.683 0.951 0.998 1.000 0.944 1.000 1.000 1.000 ∗ ∗ ∗ ∗
8 0.608 0.944 0.999 1.000 0.628 0.948 0.999 1.000 0.760 0.978 1.000 1.000 0.977 1.000 1.000 1.000 0.916 1.000 1.000 1.000

1 2 0.280 0.567 0.851 0.953 0.270 0.568 0.850 0.951 0.255 0.523 0.788 0.910 0.288 0.607 0.902 0.982 0.278 0.570 0.847 0.954
3 0.376 0.738 0.956 0.992 0.377 0.742 0.955 0.994 0.398 0.738 0.936 0.987 0.480 0.889 0.995 1.000 ∗ ∗ ∗ ∗
4 0.474 0.843 0.986 0.999 0.476 0.858 0.988 0.999 0.526 0.883 0.987 0.999 0.686 0.984 1.000 1.000 0.616 0.947 0.999 1.000
5 0.566 0.917 0.998 1.000 0.569 0.924 0.996 1.000 0.665 0.951 0.999 1.000 0.854 0.999 1.000 1.000 ∗ ∗ ∗ ∗
6 0.650 0.953 0.999 1.000 0.650 0.958 0.999 1.000 0.781 0.983 1.000 1.000 0.947 1.000 1.000 1.000 0.874 0.998 1.000 1.000
7 0.708 0.978 1.000 1.000 0.714 0.980 1.000 1.000 0.847 0.995 1.000 1.000 0.983 1.000 1.000 1.000 ∗ ∗ ∗ ∗
8 0.765 0.985 1.000 1.000 0.764 0.988 1.000 1.000 0.900 0.998 1.000 1.000 0.995 1.000 1.000 1.000 0.972 1.000 1.000 1.000
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where F (x, y) is joint CDF on R2 with marginal CDFs H(x) and G(y). If H(x) and

G(y) are continuous, C is unique for a pair (U, V ) ∈ [0, 1]2. The density function of

the bivariate copula can be expressed by taking partial derivatives of C.

c (u, v) =
∂2C (u, v)

∂u∂v
(2.38)

Thus, f(x, y) = c (u, v)h(x)g(y) where h(x) and g(y) are the PDFs of marginals. The

following property gives some characteristics of C.

Property 2.2.1 Let C be bivariate copula defining on [0, 1]2,

1. C(u, 1) = u and C(1, v) = v for every u ∈ [0, 1] and v ∈ [0, 1].

2. C(u, 0) = C(0, v) = 0 for every u ∈ [0, 1] and v ∈ [0, 1].

3. C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0 for every u1, u2, v1 and v2

in [0, 1] such that u1 ≤ u2 and v1 ≤ v2.

Let cu(v) be conditional distribution function for V given U = u,

cu(v) = P [V ≤ v|U = u] = lim
∆u→0

C (u+∆u, v)− C(u, v)
∆u

=
∂C(u, v)

∂u
(2.39)

The following theorem indicates that cu(v) exists and is nondecreasing almost

everywhere v ∈ [0, 1].

Theorem 2.2.2 (Nelsen (2007)) Let C be a copula. For any v ∈ [0, 1], the partial

derivative ∂C (u, v) /∂u exists and 0 ≤ ∂C(u,v)
∂u

≤ 1 for almost all u, and for such v

and u. Moreover, the function v 7→ ∂C (u, v) /∂u is defined and nondecreasing almost

everywhere on v ∈ [0, 1].

FGM is a quite attractive distribution family due to its straightforward structure and

provide a modelling the dependence between two random variables. The distribution

family was introduced by Morgenstern (1956), Gumbel (1960) and Farlie (1960). Let
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H(x) and G(y) are CDFs of the marginals, the joint CDF of the random variables X

and Y on R2 is given by

F (x, y) = H(x)G(y) [1 + λ (1−H(x)) (1−G(y))] (2.40)

and the corresponding joint PDF is

f(x, y) = h(x)g(y) [1 + λ (1− 2H(x)) (1− 2G(y))] (2.41)

where h(x) and g(y) are PDFs of the marginals. In the Eqs. (2.40) and (2.41), λ denotes

the dependence parameter where −1 ≤ λ ≤ 1. If λ = 0, the random variables are said

to be independent; however, if λ = 1 (or λ = −1), they are said to be dependent. Also,

FGM family is known as a “bivariate copula with cubic section in both u and v” where

u = H(x) and v = G(y). Nelsen et al. (1997) first coined this phrase and defined the

following equation. Suppose that C is a bivariate copula with cubic section,

C(u, v) = uv + uv (1− u) (1− v) [A1v (1− u)+

A2 (1− v) (1− u) + B1uv +B2u (1− v)] (2.42)

whereA1, A2,B1 andB2 are the points in the region which is given by the Figure 2.13.

If A1 = A2 = B1 = B2 = λ, then the expression of FGM is obtained from the Eq.

Figure 2.13 The region for copulas cubic section (Nelsen et al., 1997)
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(2.42).

C (u, v) = uv [1 + λ (1− u) (1− v)] (2.43)

where u, v ∈ [0, 1]. Since FGM is a popular copula family, several researchers have

studied on FGM distribution family, see Bairamov & Kotz (2000), Abo-Eleneen &

Nagaraja (2002), Ucer & Yildiz (2012), Ucer & Gurler (2012), Gurler et al. (2015),

Yildiz & Ucer (2017).

D’Este (1981) and Gupta & Wong (1984) considered FGM family with gamma

marginals. The PDFs of the random variables X and Y on R2 are

h(x) =
1

Γ (a)
e−xxa−1, x > 0, a ≥ 0, (2.44)

and

g(y) =
1

Γ (b)
e−yyb−1, y > 0, b ≥ 0. (2.45)

where α and β are shape parameters ofX and Y , respectively. The CDFs of the random

variables X and Y ,

H(x) =
γ (a, x)

Γ (a)
, and G(y) =

γ (b, y)

Γ (b)
. (2.46)

Also, Γ(.) and γ(., .) are gamma and incomplete gamma functions, respectively. The

following figure illustrates the joint PDF and CDF for FGM type bivariate gamma

distribution. Some characteristics of FGM type bivariate gamma distribution was

investigated by Gupta & Wong (1984). In their work, the joint moment function was

defined as follows:

M (s, t) = (1− s)−a (1− t)b
[
1 +

2I
(
a, 0; (1− s)−1)
I (a, 0; 1)

2I
(
b, 0; (1− t)−1)
I (b, 0; 1)

]
(2.47)

where

I (a, w;ϑ) =

ϑ∫
0

xa−1

(x+ 1)2a+w
dx. (2.48)
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(a) (b)

Figure 2.14 FGM type bivariate gamma with parameters a = 2, b = 5 and λ = 0.7; (a): Joint PDF and
(b): Joint CDF

The correlation coefficient between X and Y is,

Cor(x, y) = ρ = λK (a)K (b) . (2.49)

where

K (a) =
Γ (2a)

22a−1Γ2 (a)
√
a
. (2.50)

An illustration for the correlation coefficient betweenX and Y is given by the following

figure. Thus, the estimator for ρ is,

ρ̂ = λ̂K (â)K
(
b̂
)
. (2.51)

The regression function was also provided as following:

E [Y |X = x] = E [Y ] + λE [Y ]

{
2I (a, 1; 1)

B (a, a+ 1)
− 1

}
{2F (x, y)− 1}

= a+
λaΓ (a+ 1/2)√

π (a+ 1)
{2F (x, y)− 1} .

(2.52)
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(a) (b)

Figure 2.15 Correlation between X and Y ; (a): λ = 0 and (b): λ = 1

where the duplication formula is

Γ (a) Γ (a+ 1/2) = 21/2−2aΓ (2a)
√
2π. (2.53)

2.2.2 Algorithms to Generate Ranked-based Samples

This section provides some algorithms that use copula tools. First, we have to

generate the pairs (X,Y ) with a joint distribution function F (x, y). Sklar’s theorem

states that we need generate standard uniform random variables whose joint CDF is

C, which is given by Eq. (2.43), and then transform those uniform random variables.

To generate the pairs (U, V ) from C, the conditional distribution approach can be

used. This approach is provided by Approach I in the Section 2.1.2.

Using the approach and Theorem 2.2.2, the Algorithm 7 was provided by Johnson
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(1987) and Nelsen (2007). Recall that cu is conditional distribution function,

cu(v) = P [V ≤ v|U = u] = lim
∆u→0

C (u+∆u, v)− C (u, v)

∆u
=
∂C (u, v)

∂u

= [1 + λ (1− 2u)] v − λ (1− 2u) v2.

(2.54)

A quasi-inverse (c−1
u ) of cu was given by Johnson (1987). The author obtained the c−1

u

by solving the equation, [1 + λ (1− 2u)] v − λ (1− 2u) v2 = p, which is quadratic

in v. This equation has one root for 0 < p < 1 and it is v = c−1
u (p) = 2ζ

ϖ+κ where

κ = 1 + λ (1− 2u) and ϖ =
√

κ2 − 4 (κ − 1) p. In the Algorithm 7, H−1 and G−1

Algorithm 7: Generating data from FGM type bivariate gamma distribution

Step I: Generate u and p from i.i.d. random variables U(0, 1);
Step II: κ = 1 + λ (1− 2u) and ϖ =

√
κ2 − 4 (κ − 1) p;

Step III: Set v = c−1
u (ζ) = 2ζ

ϖ+κ ;
Step IV: The desired pair is (u, v);
Step V: X = H−1(u) and Y = G−1(v);
Step VI: RETURN (X,Y ).

are inverse functions ofH andG, respectively. The desired pair (X,Y ) can be obtained

by using “qgamma” function in R statistical programming language because there is no

closed form of inverse function of gamma distribution function.

Algorithm 2 and Algorithm 3 are useful for generating RSS and GMRSS(R = r)

data from FGM type bivariate gamma distribution, but this time Algorithm 7 is used in

the first step of the algorithms. We construct R functions for generating ranked-based

samples from FGM type bivariate gamma distribution and these R functions will be

provided upon request.

2.2.3 Maximum Likelihood Estimates

Suppose thatΘ = (a, b, λ)T is a parameter vector including shape parameters (α and

β) and dependence parameter (λ). In this section, ML estimators based on SRS, RSS

and GMRSS(R = r) are investigated under the case (i) which assumes that shape

parameters are known. Examining the ML estimators for λ beginning with case (i),
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can be useful and provide some guidance for cases (ii) and (iii).

2.2.3.1 Simple Random Sampling

It is assumed that (Xi, Yi), i = 1, · · · , n, is a simple random sample. The likelihood

function is

LSRS =
n∏
i=1

f(xi, yi) (2.55)

and the log-likelihood function is defined

LSRS(λ) =
n∑
i=1

log f(xi, yi) (2.56)

First derivative of the log-likelihood function provides the following equation.

∂LSRS(λ)

∂λ
=

n∑
i=1

f ′(xi, yi)

f(xi, yi)

=
n∑
i=1

(1− 2ui) (1− 2vi)

1 + λ (1− 2ui) (1− 2vi)
= 0

(2.57)

where f ′(xi, yi) is the first derivative of the f(xi, yi)with respect to λ. In the Eq. (2.57),

u = H−1(x) and v = G−1(y). By using a numerical optimization method, the Eqs.

(2.56) or (2.57) can be solved and the ML estimator based on SRS λ̂SRS is obtained.

The variance of λ̂SRS is defined by the following equation.

V
(
λ̂SRS

)
=

{
−E

[
∂2LSRS (λ)

∂λ2

]}−1

=

{
E

[
n∑
i=1

(
(1− 2ui) (1− 2vi)

1 + λ (1− 2ui) (1− 2vi)

)2
]}−1 (2.58)

2.2.3.2 Ranked Set Sampling

Suppose that RSS(k,m) is obtained from FGM type bivariate gamma distribution.

In RSS(k,m), the pairs (X(r)j, Y[r]j) follows the joint PDF fr:k(x, y) where
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r = 1, · · · , k and j = 1, · · · ,m. The likelihood function is given by

LRSS =
m∏
j=1

k∏
r=1

fr:k
(
X(r)j, Y[r]j

)
(2.59)

Following that, the log-likelihood function is defined by

LRSS(λ) =
m∑
j=1

k∑
r=1

log fr:k
(
X(r)j, Y[r]j

)
=

m∑
j=1

k∑
r=1

log
(

k!

(r − 1)!(k − r)!

)

+
m∑
j=1

k∑
r=1

(r − 1) log
(
H(x(r)j)

)
+

m∑
j=1

k∑
r=1

(k − r) log
(
1−H(x(r)j)

)
+

m∑
j=1

k∑
r=1

log
(
f(x(r)j, y[r]j)

)

(2.60)

Since λ appears in f(x, y),

∂LRSS (λ)

∂λ
=

m∑
j=1

k∑
r=1

f ′(x(r)j, y[r]j)

f(x(r)j, y[r]j)

=
m∑
j=1

k∑
r=1

(
1− 2u(r)j

) (
1− 2v[r]j

)
1 + λ

(
1− 2u(r)j

) (
1− 2v[r]j

) = 0

(2.61)

where u(r)j = F−1(x(r)j) and v[r]j = G−1(y[r]j). The Eq. (2.60) or (2.61) can be solved

by using a computer algorithm and the ML estimator based on RSS (λ̂RSS) is obtained.

Also, the variance of λ̂RSS can be found by using the following equation

V
(
λ̂RSS

)
=

{
−E

[
∂2LRSS (λ)

∂λ2

]}−1

=

E
 m∑
j=1

k∑
r=1

( (
1− 2u(r)j

) (
1− 2v[r]j

)
1 + λ

(
1− 2u(r)j

) (
1− 2v[r]j

))2


−1 (2.62)
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2.2.3.3 Generalized Modified Ranked Set Sampling

Now, we investigate the ML estimator based on GMRSS(R = r) (λ̂GMRSS(R=r)).

Let GMRSS(R = r) is generated (or is selected from a population) from FGM type

bivariate gamma distribution. The following equation gives the likelihood function.

LGMRSS(R=r) =
m∏
j=1

k∏
τ=1

fr:k
(
Xτ(r)j, Yτ [r]j

)
, (2.63)

The log-likelihood function is

LGMRSS(R=r)(λ) =
m∑
j=1

k∑
τ=1

log fr:k
(
Xτ(r)j, Yτ [r]j

)
=mk log

(
k!

(r − 1)!(k − r)!

)
+ (r − 1)

m∑
j=1

k∑
r=1

log
(
H(xτ(r)j)

)
+ (k − r)

m∑
j=1

k∑
r=1

log
(
1−H(xτ(r)j)

)
+

m∑
j=1

k∑
r=1

log
(
f(xτ(r)j, yτ [r]j)

)

(2.64)

First derivative of LGMRSS(R=r)(λ) with respect to λ gives

∂LGMRSS(R=r) (λ)

∂λ
=

m∑
j=1

k∑
τ=1

f ′(xτ(r)j, yτ [r]j)

f(xτ(r)j, yτ [r]j)

=
m∑
j=1

k∑
r=1

(
1− 2uτ(r)j

) (
1− 2vτ [r]j

)
1 + λ

(
1− 2uτ(r)j

) (
1− 2vτ [r]j

) = 0

(2.65)
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where uτ(r)j = F−1(xτ(r)j) and vτ [r]j = G−1(yτ [r]j). By solving the Eq. (2.64) or

(2.65), λ̂GMRSS(R=r) can be found. The variance of λ̂GMRSS(R=r) is defined as follows:

V
(
λ̂GMRSS(R=r)

)
=

{
−E

[
∂2LGMRSS(R=r) (λ)

∂λ2

]}−1

=

E
 m∑
j=1

k∑
τ=1

( (
1− 2uτ(r)j

) (
1− 2vτ [r]j

)
1 + λ

(
1− 2uτ(r)j

) (
1− 2vτ [r]j

))2


−1

(2.66)

2.2.4 Simulation Results

In this section, aMonte Carlo simulation is presented. UsingAlgorithm 2, Algorithm

3 andAlgorithm 7, 10, 000 samples are generated. The values of dependence parameter,

the sample sizes and the set sizes are taken to be λ = {−0.5, 0, 0.5}, n = {30, 60, 90}

and k = {3, 5}, respectively. Tables 2.4-2.6 provides values of λ̂ℑ, RE and relative

information (RI) where = = SRS, RSS, GMRSS(R = r) where r ∈ [1, k]. REs are

calculated as follows:

RE =
MSE

(
λ̂SRS

)
MSE

(
λ̂RSS

) , REr =
MSE

(
λ̂SRS

)
MSE

(
λ̂GMRSS(R=r)

) , (2.67)

where

MSE(λ̂ℑ) =
1

10, 000

10,000∑
w=1

(
λ̂ℑ,w − λ

)2
, (2.68)

for ==SRS, RSS and GMRSS(R = r). Also, the RIs are expressed as follows:

RI =
FI
(
λ̂SRS

)
FI
(
λ̂RSS

) , RIr =
FI
(
λ̂SRS

)
FI
(
λ̂GMRSS(R=r)

) , (2.69)

where FI is fisher information,

FI
(
λ̂SRS

)
= −E

[
∂2LSRS (λ)

∂λ2

]
, F I

(
λ̂RSS

)
= −E

[
∂2LRSS (λ)

∂λ2

]
and FI

(
λ̂GMRSS(R=r)

)
= −E

[
∂2LGMRSS(R=r) (λ)

∂λ2

] (2.70)
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We obtain the first and second derivatives of the log-likelihoods with respect to λ by

using “optim” function in R programming language. In the R function,method is set to

“L-BFGS-B”. According to Table 2.4, it is seen that λ̂SRS ≈ λ̂RSS . On the other hand,

Table 2.4 Estimated values (λ̂SRS , λ̂RSS) and relative efficiencies of λ̂RSS with respect to λ̂SRS .

λ n k λ̂SRS λ̂RSS RE RI
−0.5 30 3 −0.458 −0.455 0.984 0.998

5 −0.458 −0.449 0.981 1.007
60 3 −0.485 −0.490 1.032 0.993

5 −0.485 −0.489 1.016 1.007
90 3 −0.498 −0.498 0.994 1.002

5 −0.498 −0.497 1.037 0.999
0 30 3 0.002 −0.001 1.002 1.014

5 0.002 0.000 1.001 0.999
60 3 −0.004 −0.001 1.035 0.999

5 −0.004 0.000 1.017 0.995
90 3 −0.006 0.001 1.004 1.003

5 −0.006 0.003 1.016 1.002
0.5 30 3 0.459 0.458 0.975 1.007

5 0.459 0.456 0.976 0.991
60 3 0.492 0.482 0.982 1.000

5 0.492 0.486 0.987 0.992
90 3 0.498 0.493 0.990 0.999

5 0.498 0.496 0.997 1.000

it is observed that λ̂RSS is as efficient as λ̂SRS . Despite the fact that these results come

as surprise to researchers who study on RSS and its extensions, similar results can be

seen in Stokes (1980) and Sevil & Yildiz (2022b). In Table 2.5, GMRSS(R = 1)

Table 2.5 Estimated values (λ̂R=r) and relative efficiencies of λ̂R=r with respect to λ̂SRS (k = 3).

λ n λ̂R=1 λ̂R=2 λ̂R=3 RER=1 RIR=1 RER=2 RIR=2 RER=3 RIR=3

−0.5 30 −0.461 −0.417 −0.471 1.139 1.222 0.695 0.569 1.130 1.229
60 −0.496 −0.463 −0.492 1.202 1.218 0.656 0.572 1.144 1.213
90 −0.499 −0.483 −0.501 1.138 1.213 0.658 0.570 1.179 1.210

0 30 0.005 −0.001 −0.004 1.175 1.216 0.707 0.583 1.154 1.207
60 0.002 −0.006 0.001 1.147 1.202 0.630 0.597 1.230 1.194
90 −0.005 −0.004 −0.003 1.228 1.196 0.618 0.604 1.185 1.191

0.5 30 0.465 0.400 0.459 1.165 1.230 0.650 0.570 1.126 1.218
60 0.492 0.467 0.488 1.177 1.216 0.660 0.574 1.193 1.223
90 0.505 0.487 0.500 1.208 1.207 0.658 0.573 1.221 1.211

λ̂R=r is λ̂GMRSS(R=r) for r ∈ [1, k]

and GMRSS(R = 3) provides smaller biases than the GMRSS(R = 2). Also, the

ML estimator based on GMRSS(R = 1) and GMRSS(R = 3) are more efficient

than the ML estimators based on SRS, RSS and GMRSS(R = 2). Moreover, there

is no evidence that REs and RIs are not monotone increasing or decreasing function

of n. Table 2.6 demonstrates that GMRSS(R = 1) and GMRSS(R = 5) provides

unbiased and more efficient ML estimators for dependence parameter than SRS, RSS,

GMRSS(R = r) where 1 < r < k. The REs and RIs decrease as the r is increasing

57



Table 2.6 Estimated values (λ̂R=r) and relative efficiencies of λ̂R=r with respect to λ̂SRS (k = 5).

λ n λ̂R=1 λ̂R=2 λ̂R=3 λ̂R=4 λ̂R=5 RER=1 RIR=1 RER=2 RIR=2 RER=3 RIR=3 RER=4 RIR=4 RER=5 RIR=5

−0.5 30 −0.489 −0.432 −0.379 −0.426 −0.475 1.456 1.667 0.792 0.689 0.543 0.399 0.753 0.686 1.460 1.665
60 −0.497 −0.481 −0.439 −0.477 −0.503 1.530 1.623 0.787 0.683 0.506 0.396 0.744 0.689 1.457 1.624
90 −0.501 −0.488 −0.457 −0.490 −0.497 1.549 1.614 0.743 0.691 0.470 0.397 0.713 0.692 1.605 1.600

0 30 −0.005 0.002 −0.002 0.002 −0.005 1.424 1.571 0.792 0.695 0.602 0.406 0.801 0.703 1.451 1.581
60 0.000 0.000 0.004 −0.004 −0.002 1.542 1.549 0.741 0.713 0.498 0.425 0.734 0.713 1.536 1.563
90 −0.001 0.006 0.000 −0.007 −0.005 1.535 1.557 0.709 0.713 0.456 0.429 0.718 0.713 1.576 1.551

0.5 30 0.480 0.430 0.371 0.423 0.483 1.485 1.655 0.792 0.687 0.545 0.399 0.775 0.697 1.455 1.675
60 0.496 0.476 0.439 0.475 0.496 1.497 1.630 0.775 0.684 0.523 0.398 0.724 0.690 1.503 1.610
90 0.497 0.486 0.455 0.489 0.502 1.520 1.605 0.761 0.686 0.481 0.399 0.741 0.689 1.504 1.597

λ̂R=r is λ̂GMRSS(R=r) for r ∈ [1, k]

for 1 ≤ r ≤ (k + 1)/2. Also, it is seen that REs and RIs are increasing in r for

(k + 1)/2 ≤ r ≤ k.
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CHAPTER THREE

STATISTICAL INFERENCE ON DEPENDENCE PARAMETER UNDER

IMPERFECT RANKING

In RSS process, there are two potential ranking errors: one is brought on by ordering

of X and the other by ordering of Y when ρ is low. The chapter’s objective is to look

into dependence parameter estimators under the case when the random variable X is

ranked imperfectly. This is an important issue since the assumption of perfect ranking

could not be realistic especially for environmental researches.

To provide our rationale, let us consider a scenario where (X,Y ) represents an

absolutely continuous random vector characterized by the joint CDF, F (x, y), and

PDF, f(x, y). In the given literature on the estimation of dependence parameter, it is

assumed that Xr(1)j ≤ Xr(2)j ≤ · · · ≤ Xr(k)j from the rth set and the rth smallest X ,

sayX(r)j , is selected from the set where r = 1, · · · , k and j = 1, · · · ,m. On the other

hand, the concomitant variable is denoted by Y[r]j since Y s are ranked by using Xs.

Because the ordering of the Y s could be imperfect depending on the correlation

coefficient between X and Y . Nevertheless, we now assume that Xs are ranked

imperfectly. Under the imperfect ranking assumption, the pairs are
(
X[r]j, Y[r]j

)
are

selected from the rth set for the jth cycle. In this case, the ML estimator for

dependence parameter performs poorly because the joint PDF of
(
X[r]j, Y[r]j

)
deviates from fr:k(x, y). This issue has motivated us to develop a robust estimator.

In this chapter, we investigate MPL estimate of dependence parameter of bivariate

normal distribution. An adaptation of ML methodology which is based on ranks was

used to estimate dependence parameters by Genest & Favre (2007). This kind of

methodology was first described by Genest et al. (1995) and then it was studied by

Shih & Louis (1995). For estimating the dependence parameter of FGM copula, Ucer

& Yildiz (2012) preferred the MPL methodology.

Let (Xi, Yi), i = 1, · · · , n, be random sample from a continuous bivariate

distribution with CDF, F (x, y), and PDF, f(x, y). Using the transformations
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U = H(x) and V = G(y), the copula form C is obtained. This form is given by Eq.

(2.26). Suppose that Ĥ(x) and Ĝ(y) are EDFs,

Ĥ(x) =
1

n

n∑
i=1

I (Xi ≤ x) , and Ĝ(y) =
1

n

n∑
i=1

I (Yi ≤ y) (3.1)

where I (Xi ≤ x) is an indicator function taking the value 1 ifXi ≤ x and 0 otherwise.

The empirical log-likelihood function is defined as follows:

L (ρ) =
n∑
i=1

log
[
c
(
H̃ (Xi) , G̃(Yi)

)]
(3.2)

where

H̃(x) =
n

n+ 1
Ĥ(x), and G̃(y) =

n

n+ 1
Ĝ(y). (3.3)

Also, c is joint PDF of the random variables U and V . It is assumed that

(<1,S1) , · · · , (<n,Sn) are the pairs of rank of (X,Y ). The log-likelihood based on

ranks can be expressed as following:

L (ρ) =
n∑
i=1

log
[
c

(
<i

n+ 1
,
Si

n+ 1

)]
. (3.4)

In this form, H̃(x) = <i/(n+ 1) and G̃(y) = Si/(n+ 1) for all i ∈ 1, · · · , n.

It is proved that the following equation has a unique root ρ̂ by Genest et al. (1995).

∂L (ρ)

∂ρ
=

n∑
i=1

c′
( ℜi

n+1
, Si

n+1

)
c
( ℜi

n+1
, Si

n+1

) = 0 (3.5)

where c′ = ∂c(u, v)/∂ρ. Also,

ρ̂ ≈ N

(
ρ,
v2

n

)
(3.6)

where v̂2 = δ̂2/φ2. Here, δ̂2 and φ2 are sample variances,

δ̂2 =
1

n

n∑
i=1

(
Mi − M̄

)2 (3.7)
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and

φ2 =
1

n

n∑
i=1

(
Ni − N̄

)2 (3.8)

whereM andN are pseudo-observations with means M̂ and N̂ , respectively. To obtain

pseudo-observations, the procedure is followed.

1. We redeclare the initial data (X1, Y1), · · · , (Xn, Yn) in a manner thatX1 < · · · <

Xn.

2. ℓρ, ℓu, and ℓv are computed by using ℓ(ρ, u, v) = log(c(u, v)). Then Ni andMi

are obtained,

Ni = ℓ

(
ρ̂,

i

n+ 1
,
Si

n+ 1

)
(3.9)

and

Mi = Ni −
1

n

n∑
j=1

ℓρ

(
ρ̂,

j

n+ 1
,
Sj

n+ 1

)
ℓu

(
ρ̂,

j

n+ 1
,
Sj

n+ 1

)

− 1

n

n∑
Sj≥Si

ℓρ

(
ρ̂,

j

n+ 1
,
Sj

n+ 1

)
ℓv

(
ρ̂,

j

n+ 1
,
Sj

n+ 1

) (3.10)

3.1 Existing Correlation Coefficient Estimators based on RSS

Suppose that the pairs (X,Y ) follows bivariate normal distribution with the

parameters µx, µy, σx, σy and ρ. Joint PDF of (X,Y ) is,

f(x, y;µx, µy, σx, σy, ρ) =
1

2πσxσy
√
1− ρ2

exp {−d/2} , (3.11)

where

d =
1

1− ρ2

[(
x− µx
σx

)2

− 2ρ

(
x− µx
σx

)(
y − µy
σy

)
+

(
y − µy
σy

)2
]
.

In the literature, some robust estimators based on RSS were investigated for

dependence parameter (ρ). RSS(k,m) is selected from a population having bivariate

normal distribution. In this section, we introduce correlation coefficient estimators for
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dependence parameter of bivariate normal distribution.

First, Stokes (1980) investigated ML estimator based on RSS and MRSS for

estimating the dependence parameter of bivariate normal distribution. Let

(X(r)j, Y[r]j) be ranked set sample of size mk where r = 1, · · · , k and j = 1, · · · ,m.

The joint PDF of rth ranked pairs is

fr:k (x, y) =
k!

(r − 1)! (k − r)!
Φr−1

(
x− µx
σx

)[
1− Φ

(
x− µx
σx

)]k−r
×

f (x, y;µx, µy, σx, σy, ρ)

(3.12)

where Φ (x) is the CDF of X ∼ N(0, 1). The log-likelihood function was given as

follows:

LRSSML
(ρ) =

m∑
j=1

k∑
r=1

log
(

k!

(r − 1)! (k − r)!

)
+

(r − 1) log
(
Φ

(
x(r)j − µx

σx

))
+

(k − r) log
[
1− Φ

(
x(r)j − µx

σx

)]
+

log
(
f
(
x(r)j, y[r]j;µx, µy, σx, σy, ρ

))
(3.13)

By taking the first derivative of the Eq. (3.13), the following cubic equation is obtained.

∂LRSSML
(ρ)

∂ρ
= mkσ2

xσ
2
yρ
(
1− ρ2

)
+

σxσy
(
1 + ρ2

) m∑
j=1

k∑
r=1

(
x(r)j − µx

) (
y[r]j − µy

)
−

ρ

[
σ2
y

m∑
j=1

k∑
r=1

(
x(r)j − µx

)2
+ σ2

x

m∑
j=1

k∑
r=1

(
y[r]j − µy

)2]
= 0

(3.14)

The solution of the cubic equation provides the value of theML estimator based on RSS

for dependence parameter. Under case (i), Stokes (1980) showed that the ML estimator

based on RSS is as efficient as its counterpart in SRS. Therefore, Stokes (1980) defined

MRSS procedure that requires only minimum or maximum ranked pairs. Then the

author showed that the ML estimator based on MRSS is more efficient than the ML
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estimators based on SRS and RSS. After that, case (ii) was investigated. First, µy and

σ2
y need to be estimated in this case. Stokes (1980) used the RSS counterparts of the

estimators suggested by Barnett et al. (1976) for that. The author proposed following

estimators

µ̂y = Ȳ −RSy
(
X̄ − µ̂x

)
/Sx, and σ̂2

y = S2
y

(
1−R2 + R2σ2

x/S
2
x

)−1/2
, (3.15)

and

ρ̂RSS = (Rσx/Sx)
(
1−R2 + R2σ2

x/S
2
x

)−1/2 (3.16)

where

S2
x = Σm

j=1Σ
k
r=1

(
x(r)j − X̄

)2
/mk, S2

y = Σm
j=1Σ

k
r=1

(
y[r]j − Ȳ

)2
/mk,

and

RSxSy = Σm
j=1Σ

k
r=1

(
x(r)j − X̄

) (
y[r]j − Ȳ

)
/mk.

Furthermore, X̄ = Σm
j=1Σ

k
r=1x(r)j/mk and Ȳ = Σm

j=1Σ
k
r=1y[r]j/mk. Stokes (1980)

proved that ρ̂RSS is more efficient than its counterpart in SRS under case (ii). Also,

Stokes (1980) studied the MLE of ρ under case (iii) and the author noted that the closed

form of the ML estimator of ρ based on RSS is not present even when the ranking is

perfect.

Zheng & Modarres (2006) suggested the following sample correlation coefficient.

ρ̂ZM =

m∑
j=1

k∑
r=1

(
x(r)j − X̄

) (
y[r]j − Ȳ

)
[
m∑
j=1

k∑
r=1

(
x(r)j − X̄

)2 m∑
j=1

k∑
r=1

(
y[r]j − Ȳ

)2]1/2 (3.17)

The authors stated that the estimator is obtained by using partial likelihood equation,

m∑
j=1

k∑
r=1

∂ log f
(
x(r)j, y[r]j;µx, µy, σx, σy, ρ

)
∂ρ

= 0 (3.18)

Thus, ρ̂ZM was called as a modified maximum likelihood (MML) estimate in this study.
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It should be noted that MML was proposed by Mehrotra & Nanda (1974). In their

work, ρ̂ZM was investigated when all parameters are unknown (case (iii)). They made

comparison between ρ̂ZM and its counterpart ρ̂SRS where

ρ̂SRS =

n∑
i=1

(
xi − X̄

) (
yi − Ȳ

)
[
n∑
i=1

(
xi − X̄

)2 n∑
i=1

(
yi − Ȳ

)2]1/2 (3.19)

The authors obtained that ρ̂ZM has smaller variance than ρ̂SRS under either perfect or

imperfect ranking. On the other hand, the REs of ρ̂ZM with respect to ρ̂SRS showed

that ρ̂ZM should be used when the correlation between X and Y is strong (ρ ≥ 0.75)

and k ≥ 6. Also, the authors proved that the Eq. (3.17) is a robust estimator against

imperfect ranking.

Hui et al. (2009) developed pseudo ML (PML) estimates for dependence parameter

of bivariate normal distribution under the case when µx and σ2
x are known (case (ii)).

Without loss of generality, it is assumed that µx = 0 and σ2
x = 1. The authors used two

consistent estimators,

Ȳ =
1

mk

m∑
j=1

k∑
r=1

y[r]j, (3.20)

and

σ̂2
y =

1

mk

m∑
j=1

k∑
r=1

(
y[r]j − Ȳ

)2 (3.21)

to estimate µy and σ2
y . Then, the pseudo log-likelihood function is

LRSSPML
(ρ) =

m∑
j=1

k∑
r=1

log(fr:k
(
x(r)j, y[r]j

)
)

=
m∑
j=1

k∑
r=1

(r − 1) log
(
Φ
(
x(r)j

))
+

m∑
j=1

k∑
r=1

(k − r) log
(
1− Φ

(
x(r)j

))
+

m∑
j=1

k∑
r=1

log
(
f
(
x(r)j, y[r]j; Ȳ , σ̂

2
y , ρ
))

(3.22)
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where Φ (x) is the CDF of X ∼ N(0, 1). Thus,

∂LRSSPML
(ρ)

∂ρ
= ρ3 − ρ2

mk

m∑
j=1

k∑
r=1

(
x(r)j

y[r]j − Ȳ
σ̂y

)
−

ρ

{
1− 1

mk

m∑
j=1

k∑
r=1

(
x2(r)j +

(
y[r]j − Ȳ

)2
σ̂2
y

)}
−

1

mk

m∑
j=1

k∑
r=1

(
x(r)j

y[r]j − Ȳ
σ̂y

)
= 0

(3.23)

Using a numerical algorithm, (3.22) or (3.23) can be solved to obtain value of PML

estimator (ρ̂HMZ). Then the authors gave numerical comparisons among the

estimators ρ̂RSS , ρ̂ZM , ρ̂SRS , ρ̂HMZ . In the simulation study, samples are selected

from bivariate normal and contaminated bivariate normal distributions. To obtain

contaminated distribution, samples are generated from f(x, y; 0, 0, 1, 1, ρ) with 90%

probability and f(x, y; 0, 0, 9, 9, ρ) with %10 probability. According to their results,

ρ̂HMZ is more efficient than ρ̂SRS and ρ̂ZM for larger ρ, while being slightly less

efficient when ρ → 0. Moreover, ρ̂HMZ is less efficient than ρ̂RSS when ρ is large

while being relatively more efficient when ρ→ 0. For contaminated bivariate normal

distribution, ρ̂HMZ is more efficient than the other three estimators for small ρ but

less efficient for large ρ.

3.2 Maximum Pseudo Likelihood Estimates

3.2.1 MPL Estimator from Simple Random Sample

Let (Xi, Yi), i · · · , n, be a simple random sample that follows bivariate normal

distribution function and the copula form of the joint density in the Eq. (3.11) is,

c (u, v) =
1√

(1− ρ2)
exp

[
− ρ2

2 (1− ρ2)

{(
Φ−1 (u)

)2
+
(
Φ−1 (v)

)2}
+

ρ

1− ρ2
Φ−1 (u) Φ−1 (v)

]
(3.24)
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where ρ ∈ (0, 1), u = H(x), v = G(y) and Φ−1 is inverse CDF, see Balakrishnan &

Lai (2009). The empirical likelihood function is

LSRSMPL
=

[
1√

(1− ρ2)

]n
exp

[
− ρ2

2 (1− ρ2)

n∑
i=1

{(
Φ−1 (ui)

)2
+
(
Φ−1 (vi)

)2}
+

ρ2

1− ρ2
n∑
i=1

Φ−1 (ui) Φ
−1 (vi)

]
(3.25)

where ui = H̃(xi) and vi = G̃(xi) that are calculated by using Eq. (3.3) for i =

1, · · · , n. The empirical log-likelihood function is defined as following:

LSRSMPL
(ρ) =

−n
2

log
(
1− ρ2

)
− ρ2

2 (1− ρ2)

n∑
i=1

{(
Φ−1 (ui)

)2
+
(
Φ−1 (vi)

)2}
+

ρ

1− ρ2
n∑
i=1

Φ−1 (ui) Φ
−1 (vi)

(3.26)

By taking the first derivative of LSRSMPL
(ρ) with respect to ρ,

∂LSRSMPL
(ρ)

∂ρ
=

nρ

1− ρ2
− ρ

(1− ρ2)2
n∑
i=1

{(
Φ−1 (ui)

)2
+
(
Φ−1 (vi)

)2}
+

1 + ρ2

1− ρ2
n∑
i=1

Φ−1 (ui) Φ
−1 (vi)

(3.27)

3.2.2 MPL Estimator from Ranked Set Sample

We suppose that (X(r)j, Y[r]j) are the pairs in RSS(k,m) for r = 1, · · · , k and

j = 1, · · · ,m. The joint density of (X(r)j, Y[r]j) is given as

fr:k (u, v) =
k!

(r − 1)! (k − r)!
ur−1 [1− u]k−r c (u, v) (3.28)
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where u = H(x), v = G(y) and c(u, v) is given by Eq. (3.24). The empirical log-

likelihood function for RSS is

LRSSMPL
(ρ) =

m∑
j=1

k∑
r=1

log
(

k!

(r − 1)! (k − r)!

)
+

m∑
j=1

k∑
r=1

(r − 1) log
(
u(r)j

)
+

m∑
j=1

k∑
r=1

(k − r) log
(
1− u(r)j

)
− mk

2
log
(
1− ρ2

)
−

ρ2

2 (1− ρ2)

m∑
j=1

k∑
r=1

{(
Φ−1

(
u(r)j

))2
+
(
Φ−1

(
v[r]j
))2}

+

ρ

(1− ρ2)

m∑
j=1

k∑
r=1

Φ−1
(
u(r)j

)
Φ−1

(
v[r]j
)

(3.29)

where

u(r)j = H̃∗ (x(r)j) = mk

mk + 1
Ĥ∗ (x(r)j)

v[r]j = G̃∗ (y[r]j) = mk

mk + 1
Ĝ∗ (y[r]j) . (3.30)

For estimating the distribution function, Stokes & Sager (1988) proposed EDF based

on RSS that is presented as following:

Ĥ∗ (x) =
1

mk

m∑
j=1

k∑
r=1

I
(
X(r)j ≤ x

)
, and Ĝ∗ (y) =

1

mk

m∑
j=1

k∑
r=1

I
(
Y[r]j ≤ y

)
.

(3.31)

Both Ĥ∗ (x) and Ĝ∗ (y) are unbiased forH(x) andG(y). Also, Stokes & Sager (1988)

showed that variance of the EDF based on RSS is smaller than or equal to variance

of the EDF based on SRS. Thus, the following equation is obtained by taking the first
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derivative of LRSSMPL
(ρ) with respect to ρ,

∂LRSSMPL
(ρ)

∂ρ
=

mkρ

1− ρ2
− ρ

(1− ρ2)2
m∑
j=1

k∑
r=1

{(
Φ−1

(
u(r)j

))2
+
(
Φ−1

(
v[r]j
))2}

+

1 + ρ2

1− ρ2
m∑
j=1

k∑
r=1

Φ−1
(
u(r)j

)
Φ−1

(
v[r]j
)
= 0

(3.32)

The MPL estimator for RSS is denoted by ρ̂Y T . Note that Y and T are the initials

of the authors. Estimated value of ρ̂Y T is obtained by using a numerical algorithm for

solving the Eq. (3.29) in the Monte Carlo simulation.

3.3 Simulation Results

In this section, the developed estimator ρ̂Y T compare with three other estimators of

the correlation coefficient that are ρ̂SRS , ρ̂ZM , and ρ̂HMZ . We consider case (iii) which

are µx, µy, σx, and σy are unknown. However, ρ̂HMZ was investigated under case (ii)

by Hui et al. (2009). Therefore, the following equation is used instead of Eq. (3.22) to

obtain ρ̂HMZ under the case (iii).

LRSSPML
(ρ) =

m∑
j=1

k∑
r=1

log(fr:k
(
x(r)j, y[r]j

)
)

=
m∑
j=1

k∑
r=1

(r − 1) log
(
Φ
(
x; X̄, σ̂2

x

))
+

m∑
j=1

k∑
r=1

(k − r) log
(
1− Φ

(
x; X̄, σ̂2

x

))
+

m∑
j=1

k∑
r=1

log
(
f
(
x(r)j, y[r]j; X̄, Ȳ , σ̂

2
x, σ̂

2
y , ρ
))

(3.33)

where the consistent estimators are used

X̄ =
m∑
j=1

k∑
r=1

X(r)j/mk, and σ̂2
x =

m∑
j=1

k∑
r=1

(
X(r)j − X̄

)2
/mk (3.34)
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for estimating the µy and σx.

In the simulation, we consider bivariate normal distribution with parameters µx = 0,

µy = 0, σx = 1, σy = 1, ρ = 0.1, 0.5, 0.9, k = 3, 4, 5, 6, 7, 8, and m = 5, 10, 15. The

results are obtained based on 10, 000 trials. For the imperfect ranking case, we used

the following imperfect ranking model,

zi = Xi +∆i (3.35)

where ∆i ∼ N(0, σ2
∆) for i = 1, · · · , k. The imperfect ranking model is known as

visual ranking model that is suggested by Dell & Clutter (1972). If σ2
∆ = 0, ranking

is performed perfectly, otherwise, it is performed imperfetcly. The following equation

was defined by Nahhas et al. (2002).

Corr (z, X) =
σ2
x√

σ2
x + σ2

∆

(3.36)

In the simulation, we suppose that σ2
∆ = 0.778, so Corr (z, X) = 0.75.

Algorithm 2 can be used to generate ranked set samples, but in this case, (Xi, Yi) are

constructed using bivariate normal distribution, i = 1, · · · , k. For imperfect ranking,

Xs are first ranked using z-values, and then Y s are ordered using ranks of Xs.

In this simulation, estimated values and REs of ρ̂Y T with respect to ρ̂SRS , ρ̂ZM , and

ρ̂HMZ are obtained. For the estimated values and MSEs, the following equations are

used.

ρ̂h =
1

10, 000

10,000∑
i=1

ρ̂h,i, and MSE (ρ̂h) =
1

10, 000

10,000∑
i=1

(ρ̂h,i − ρ)2 , (3.37)

where h = SRS,ZM,HMZ , and Y T . The REs are computed by using the Eq. (3.32).

RE (ρ̂SRS, ρ̂h′) =
MSE (ρ̂SRS)

MSE (ρ̂h′)
, (3.38)

where h′ = ZM,HMZ, and Y T . The results are presented in the Table 3.1. In this
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table, we observe that ρ̂Y T has larger biases than the other estimators especially when ρ

is small. However, these biases of ρ̂Y T reduce as n = mk increases. On the other hand,

it is seen that the bias values do not vary depending on the ranking quality. Also, we can

say that ρ̂SRS , ρ̂ZM , and ρ̂HMZ are unbiased estimators for ρ under perfect and imperfect

ranking. According to the REs in Table 3.1, ρ̂Y T is more efficient than ρ̂SRS and ρ̂ZM .

Also, ρ̂Y T is less efficient than ρ̂HMZ when ρ → 0 but more efficient for larger ρ.

Additionally, it is noted that REs do not increase or decrease monotonically while n =

mk increases. However, there is an evidence that REs increase monotonically as ρ→

1. When ρ ≥ 0.5, it should be noted that the REs under perfect ranking are mostly

higher than those under imperfect ranking. In other words, if the Xs are not perfectly

ranked, ρ̂ZM and ρ̂HMZ loss efficiency even if Y is highly correlated with X . Thus, it

appears that the proposed estimator is robust to the imperfect ranking case. In particular,

RE (ρ̂ZM , ρ̂Y T ), and RE (ρ̂HMZ , ρ̂Y T ) are similar when ρ ≥ 0.5 and n = mk ≥ 25.
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Table 3.1 The estimated values (ρ̂h) for h = SRS, ZM , HMZ, and Y T and relative efficiencies of
ρ̂Y T with respect to ρ̂SRS , ρ̂ZM , and ρ̂HMZ

Perfect ranking Perfect ranking
Yes No Yes No

ρ m k ρ̂SRS ρ̂ZM ρ̂HMZ ρ̂Y T ρ̂ZM ρ̂HMZ ρ̂Y T RE1 RE2 RE3 RE1 RE2 RE3

0.1 5 3 0.099 0.098 0.098 0.232 0.095 0.095 0.228 1.008 1.916 1.027 1.004 2.027 1.078
4 0.098 0.099 0.099 0.202 0.099 0.099 0.205 1.009 1.918 1.077 1.039 2.007 1.117
5 0.096 0.103 0.103 0.186 0.100 0.100 0.184 1.029 1.906 1.132 1.036 1.912 1.136
6 0.099 0.097 0.097 0.170 0.099 0.099 0.171 0.980 1.745 1.126 1.003 1.766 1.101
7 0.098 0.099 0.099 0.159 0.100 0.100 0.162 0.973 1.730 1.128 1.000 1.773 1.166
8 0.098 0.099 0.099 0.152 0.102 0.102 0.155 1.017 1.768 1.194 1.009 1.702 1.153

10 3 0.101 0.100 0.100 0.171 0.098 0.098 0.170 0.970 1.760 1.102 1.018 1.809 1.128
4 0.101 0.101 0.101 0.154 0.100 0.100 0.156 1.021 1.782 1.212 0.999 1.748 1.180
5 0.100 0.101 0.101 0.143 0.097 0.097 0.141 1.005 1.699 1.218 1.011 1.686 1.207
6 0.100 0.098 0.098 0.134 0.099 0.099 0.135 1.009 1.620 1.203 1.014 1.623 1.212
7 0.100 0.099 0.099 0.129 0.100 0.100 0.130 0.996 1.606 1.261 0.992 1.573 1.212
8 0.099 0.100 0.100 0.126 0.102 0.102 0.129 1.013 1.556 1.238 1.012 1.537 1.219

15 3 0.101 0.097 0.097 0.145 0.101 0.101 0.150 0.984 1.715 1.178 1.043 1.737 1.195
4 0.097 0.102 0.102 0.137 0.099 0.099 0.134 1.052 1.673 1.246 0.997 1.614 1.201
5 0.100 0.098 0.098 0.126 0.096 0.096 0.125 0.999 1.548 1.196 1.013 1.569 1.219
6 0.101 0.100 0.100 0.123 0.099 0.099 0.123 1.016 1.513 1.222 1.014 1.491 1.218
7 0.099 0.099 0.099 0.119 0.101 0.101 0.120 0.986 1.431 1.196 1.006 1.473 1.210
8 0.098 0.099 0.099 0.115 0.100 0.100 0.117 0.999 1.408 1.203 1.002 1.419 1.200

0.5 5 3 0.486 0.496 0.499 0.576 0.491 0.494 0.572 1.037 1.125 1.151 1.006 1.096 1.103
4 0.492 0.497 0.498 0.561 0.495 0.496 0.561 1.030 1.072 1.120 1.020 1.075 1.131
5 0.495 0.497 0.498 0.552 0.495 0.496 0.552 1.042 1.056 1.118 1.067 1.084 1.176
6 0.493 0.501 0.501 0.547 0.500 0.500 0.548 1.057 1.061 1.126 0.993 1.003 1.062
7 0.492 0.501 0.501 0.541 0.494 0.494 0.539 1.034 1.036 1.113 0.996 1.000 1.110
8 0.495 0.500 0.500 0.537 0.498 0.498 0.537 0.986 0.990 1.073 1.043 1.045 1.154

10 3 0.493 0.496 0.497 0.546 0.496 0.496 0.546 1.057 1.063 1.150 0.964 0.974 1.063
4 0.493 0.498 0.498 0.536 0.498 0.498 0.538 1.042 1.043 1.135 1.037 1.040 1.126
5 0.496 0.500 0.500 0.533 0.496 0.496 0.530 1.074 1.074 1.163 0.992 0.992 1.115
6 0.497 0.499 0.499 0.526 0.497 0.497 0.527 1.039 1.039 1.136 1.029 1.029 1.130
7 0.497 0.500 0.500 0.524 0.497 0.497 0.524 1.066 1.066 1.166 0.997 0.997 1.126
8 0.497 0.501 0.501 0.523 0.499 0.499 0.523 1.051 1.051 1.153 0.989 0.989 1.115

15 3 0.494 0.497 0.497 0.534 0.496 0.496 0.533 1.013 1.014 1.137 1.008 1.010 1.129
4 0.496 0.499 0.499 0.527 0.499 0.499 0.528 1.075 1.075 1.185 1.024 1.024 1.159
5 0.496 0.500 0.500 0.524 0.498 0.498 0.522 1.046 1.046 1.156 0.987 0.987 1.116
6 0.497 0.499 0.499 0.520 0.499 0.499 0.520 1.046 1.046 1.143 1.008 1.008 1.141
7 0.498 0.500 0.500 0.518 0.500 0.500 0.518 1.054 1.054 1.172 0.986 0.986 1.142
8 0.499 0.501 0.501 0.517 0.499 0.499 0.516 1.054 1.054 1.175 1.033 1.033 1.186

0.9 5 3 0.893 0.898 0.898 0.905 0.895 0.895 0.904 1.075 1.075 1.964 1.067 1.067 2.026
4 0.894 0.899 0.899 0.903 0.897 0.897 0.903 1.194 1.194 1.924 1.048 1.049 1.847
5 0.896 0.900 0.900 0.903 0.898 0.898 0.901 1.264 1.264 1.870 1.050 1.050 1.722
6 0.897 0.901 0.901 0.903 0.899 0.899 0.901 1.309 1.310 1.793 1.062 1.062 1.688
7 0.898 0.901 0.901 0.903 0.899 0.899 0.901 1.242 1.243 1.707 1.093 1.093 1.726
8 0.897 0.901 0.901 0.903 0.899 0.899 0.902 1.298 1.298 1.752 1.070 1.070 1.644

10 3 0.896 0.899 0.899 0.902 0.898 0.898 0.902 1.129 1.129 1.744 0.984 0.984 1.715
4 0.898 0.899 0.899 0.901 0.898 0.898 0.901 1.144 1.145 1.716 1.023 1.023 1.672
5 0.899 0.900 0.900 0.901 0.899 0.899 0.901 1.169 1.169 1.710 1.047 1.047 1.674
6 0.899 0.900 0.900 0.902 0.900 0.900 0.901 1.152 1.152 1.719 1.034 1.034 1.672
7 0.899 0.900 0.900 0.901 0.900 0.900 0.901 1.198 1.198 1.724 1.048 1.048 1.698
8 0.899 0.900 0.900 0.901 0.900 0.900 0.901 1.252 1.253 1.729 1.051 1.051 1.654

15 3 0.898 0.899 0.899 0.901 0.898 0.898 0.901 1.048 1.048 1.607 1.048 1.048 1.716
4 0.898 0.900 0.900 0.901 0.899 0.899 0.901 1.106 1.106 1.680 1.018 1.018 1.603
5 0.899 0.900 0.900 0.901 0.900 0.900 0.901 1.145 1.146 1.741 1.059 1.059 1.694
6 0.899 0.900 0.900 0.901 0.900 0.900 0.901 1.190 1.190 1.757 1.069 1.069 1.730
7 0.899 0.900 0.900 0.901 0.900 0.900 0.901 1.126 1.126 1.660 1.050 1.050 1.713
8 0.899 0.900 0.900 0.901 0.900 0.900 0.901 1.184 1.184 1.700 1.029 1.029 1.664

RE1 : RE (ρ̂SRS , ρ̂ZM ), RE2 : RE (ρ̂SRS , ρ̂HMZ), RE3 : RE (ρ̂SRS , ρ̂Y T ). Bold faced values shows the largest REs
in the rows for perfect and imperfect ranking.
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CHAPTER FOUR

CONCOMITANT BASED BOOTSTRAP TECHNIQUES

Modarres & Zheng (2004) conducted a study on constructing confidence intervals

for the dependence parameter of the bivariate normal distribution using parametric

bootstrap. Surprisingly, they found that all coverage probabilities of the bootstrap

confidence intervals were 1, suggesting that further research was needed on the

bootstrap method for the dependence parameter. In light of that, this section aims to

address this issue and proposes non-parametric bootstrap methods based on

concomitants. In this section, different nonparametric bootstrap techniques are

introduced.

4.1 Bootstrap Techniques for Univariate RSS

Suppose that RSS1(k,m) is an original sample which is selected from a

population. Let the following table be transpose of the matrix RSS1(k,m). By using

the techniques, a bootstrap sample

{
Y ∗
(1)1, · · · , Y ∗

(1)m

}
, · · · ,

{
Y ∗
(k)1, · · · , Y ∗

(k)m

}
(4.1)

are obtained. Chen et al. (2004) defined the following procedure that is called bootstrap

Table 4.1 Ranked set sample of sizemk

Cycles
Judgement ranks 1 2 · · · m

1 Y[1]1 Y[1]2 · · · Y[1]m
2 Y[2]1 Y[2]2 · · · Y[2]m
...

...
... . . . ...

k Y[k]1 Y[k]2 · · · Y[k]m

RSS by row (BRSSR).

I: A sample of size k is drawn with replacement from rth row of the Table 4.1.
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II: The Step I is repeated for each r = 1, · · · , k.

This procedure provides m units from each stratum. The other two methods were

suggested by Modarres et al. (2006). These methods were named bootstrap RSS

(BRSS) and mixed row bootstrap RSS (MRBRSS). The BRSS process is described

below.

I: A sample of size k2 is drawn with replacement from the whole of Table 4.1.

II: These units are split into k sets of k units each.

III: The units in each set are ranked in ascending order.

IV: From the rth set, the rth ranked unit is selected and is represented by Y ∗
(r) for

r = 1 · · · , k.

V: The first four steps are repeatedm times and the bootstrap sample in Eq (4.1) is

obtained.

MRBRSS combined the BRSSR and BRSS.

I: A unit is randomly selected from each row of Table 4.1.

II: The k units are ranked from the smallest to the largest. The smallest unit, let’s

say Y ∗
(1), is then selected.

III: Steps I and II are repeated k times. At the rth repetition of the process, Y ∗
(r) is

selected.

IV: The first three steps are repeated m times to obtain the bootstrap sample in Eq

(4.1).

For these bootstrap techniques, a literature review is provided by Chatterjee &

Ghosh (2022).
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4.2 Concomitant based Non-parametric Bootstrap Techniques

In this section, we provide some non-parametric bootstrap techniques based on

BRSSR, BRSS, and MRBRSS. Suppose that RSS(k,m) is selected from a

population and the transpose of the matrix RSS(k,m) is given by the following table.

Let ϱ̂ is the sample correlation coefficient that is obtained by using pairs
(
X(r)j, Y[r]j

)
Table 4.2 Ranked set sample of sizemk

Cycles
Judgement ranks 1 2 · · · m

1
(
X(1)1, Y[1]1

) (
X(1)2, Y[1]2

)
· · ·

(
X(1)m, Y[1]m

)
2

(
X(2)1, Y[2]1

) (
X(2)2, Y[2]2

)
· · ·

(
X(2)m, Y[2]m

)
...

...
... . . . ...

k
(
X(k)1, Y[k]1

) (
X(k)2, Y[k]2

)
· · ·

(
X(k)m, Y[k]m

)
in the Table 4.2 where r = 1, · · · , k and j = 1, · · · ,m. For the illustration purpose,

we assume that ϱ̂ is calculated by using the Eq. (3.12). Now, we aim to obtain

(1 − α)% confidence interval at significance level α. There are several ways to

confidence interval of dependence parameter ρ. For example, Modarres & Zheng

(2004) provided parametric bootstrap and asymptotic confidence intervals of ϱ of

bivariate normal distribution under case (i) and case (ii). The non-parametric

approach is another option that has not been studied in the literature yet. We define

concomitant based BRSSR (CBRSSR), BRSS (CBRSS) and MRBRSS (CBRSSR) as

following.

Method 1: Concomitant based BRSSR (CBRSSR)

I: The pairs
(
X∗

(r)1, Y
∗
[r]1

)
, · · · ,

(
X∗

(r)m, Y
∗
[r]m

)
are selected from the rth row of the

Table 4.2.

II: Repeat the Item I k times, r = 1, 2, · · · , k, to obtain a bootstrap ranked set sample(
X∗

(r)j, Y
∗
[r]j

)
, j = 1, 2, · · · ,m.

III: By using the Eq. (3.17), ϱ̂M1 is obtained.
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IV: Repeat the Items I-III B times to obtain
{
ϱ̂M1
1 , · · · , ϱ̂M1

B

}
.

V: Construct a 100(1− α)% percentile confidence interval,

(
ϱ̂M1
(α/2), ϱ̂

M1
(1−α/2)

)
,

where ϱ̂M1
(α/2) and ϱ̂M1

(1−α/2) are the points corresponding to the α/2 and 1 − α/2

percentiles of the distribution of ϱ̂M1, respectively.

Method 2: Concomitant based BRSS (CBRSS)

I: Select k2 pairs from the whole of the Table 4.2.

II: Split them into k sets at random. Let rth set is

{(X∗
r1, Y

∗
r1) , · · · , (X∗

rk, Y
∗
rk)}

for r = 1, · · · , k.

III: Rank the X-values in ascending order,

X∗
r(1) ≤ · · · ≤ X∗

r(k)

IV: Select
(
X∗

(r)1, Y
∗
[r]1

)
from the rth set for each r = 1, · · · , k.

V: Repeat the Steps I-IVm times to obtain
(
X∗

(r)j, Y
∗
[r]j

)
where j = 1, · · · ,m.

VI: By using the Eq. (3.17), ϱ̂M2 is obtained.

VII: Repeat the Items I-VI B times to obtain
{
ϱ̂M2
1 , · · · , ϱ̂M2

B

}
.

VIII: Construct a 100(1− α)% percentile confidence interval,

(
ϱ̂M2
(α/2), ϱ̂

M2
(1−α/2)

)
,

where ϱ̂M2
(α/2) and ϱ̂M2

(1−α/2) are the points corresponding to the α/2 and 1 − α/2

percentiles of the distribution of ϱ̂M2, respectively.
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Method 3: Concomitant based MRBRSS (CBRSS)

I: Select one pairs at random from each row of the Table 4.2.

II: Rank the X-values in ascending order and select
(
X∗

(1), Y
∗
[1]

)
.

III: Repeat the Steps I and II k times. At the rth repetition of the procedure, select(
X∗

(r)1, Y
∗
[r]1

)
.

IV: Repeat the Steps I-IIIm cycles to obtain
(
X∗

(r)j, Y
∗
[r]j

)
where j = 1, · · · ,m.

V: By using the Eq. (3.17), ϱ̂M3 is obtained.

VI: Repeat the Items I-V B times to obtain
{
ϱ̂M3
1 , · · · , ϱ̂M3

B

}
.

VII: Construct a 100(1− α)% percentile confidence interval,

(
ϱ̂M3
(α/2), ϱ̂

M3
(1−α/2)

)
,

where ϱ̂M3
(α/2) and ϱ̂M3

(1−α/2) are the points corresponding to the α/2 and 1 − α/2

percentiles of the distribution of ϱ̂M3, respectively.

This issuewill be evaluated as a future work. Making comparisons between different

sample correlation coefficients could be meaningful. Also, other bootsrap confidence

intervals can be considered in addition to the percentile bootstrap.
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CHAPTER FIVE

CONCLUSION

RSS is quite attractive sampling scheme in the environmental studies. It has been

observed that estimators based on RSS have outperformed their counterparts in many

problems. Thus, it can be seen that the sampling process is vital. Also, the sampling

process becomes even more crucial when taking into account the challenges

encountered in the environmental studies during the process. In this dissertation, SRS,

RSS, GMRSS(R = r) and ERSS sampling procedures are studied. The sampling

procedures can be easily applied to environmental problems. If some information

about the data, such as location, is recorded in the computer, an algorithm can be

defined for the sampling step. Upon request, we will provide the R functions used for

the sampling schemes. Note that the rank-based samples from a given bivariate

probability distribution can be generated using these algorithms. They can, however,

be used to draw a sample from a population with a few mirror adjustments in codes.

Particularly in case where the random variables have a conditionally nonlinear

relationship, there is a few studies on estimating the dependence parameter.

Therefore, it can be said that there is a considerable gap in the literature. This

dissertation addresses this gap. In this dissertation, the dependence parameters of

Gumbel (type I) bivariate exponential, FGM type bivariate gamma and bivariate

normal distributions are investigated.

Some concluding remarks and suggestions are listed below in light of the findings

of the dissertation.

• The first part of the Chapter 2 provides ML estimators RSS, GMRSS(R = r),

and ERSS for the dependence parameter of Gumbel (type I) bivariate

exponential distribution. The developed estimators are compared with Barnett’s

ML estimator based on SRS (Barnett, 1985).

I. We can say that the biases range from 0 and 0.4 for all studied ML
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estimators. However, it is observed that GMRSS(R = k) provides ML

estimator with the lowest degree of bias.

II. RSS offers an ML estimator as efficient as its counterpart in SRS.

III. It is obvious that the ML estimator based on GMRSS(R = 1) (or r = k)

and ERSS have lowerMSEs than theML estimator based on SRS and RSS.

IV. Furthermore, the power of test statistics based onGMRSS(R = k) is seen

to reach 1 more quickly.

V. In comparison to RSS, and ERSS, the GMRSS(R = r) procedure makes

it easier to obtain sample of size n = mk because the measurements are

only obtained from a specific rank. As a result, the authors suggest using

GMRSS(R = k) to estimate the dependence parameter of (type I)

bivariate exponential distribution.

• The second part of the Chapter 2 gives ML estimators for the dependence

parameter of FGM type bivariate gamma distribution.

I. It is observed that there is no significant difference between the ML

estimator based on SRS and RSS in terms of their estimated values, REs

and RIs.

II. It is showed that ML estimator based on GMRSS(R = 1) (or r = k)

has smallest bias value when the set size is k. Also, GMRSS(R = 1)

and GMRSS(R = k) provides more efficient ML estimators than other

sampling designs.

III. Furthermore, it can be seen that the findings from this part of Chapter 2

confirm those from the first part of Chapter 2.

• In the Chapter 3, we investigate MPL estimator (ρ̂Y T ) based on RSS for the

dependence parameter of bivariate normal distribution. The developed estimator

is compared with its counterparts in SRS and RSS under perfect and imperfect

ranking cases.

I. It is seen that ρ̂Y T is a biased estimator for the dependence parameter. The
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bias values decrease while the sample size increases. Also, we can say that

other estimators are unbiased.

II. According to the REs, it is obvious that ρ̂Y T is more efficient than ρ̂RSSSRS

and ρ̂RSSZM
.

III. On the other hand, ρ̂Y T appears to be less efficient than ρ̂RSSHMZ
as ρ→ 0

but more efficient for larger ρ.

IV. The REs under imperfect ranking case are relatively higher than those under

perfect ranking case when ρ ≥ 0.5. Thus, the ρ̂Y T seems to be robust to

the imperfect ranking case.

V. Most importantly, this chapter offers different perspective by discussing an

alternative approach to MML. This approach does not require estimating

the parameters of X and Y . We only need to know the copula form of the

bivariate probability distribution and EDFs.
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APPENDICES

Appendix 1: Critical values for LRT statistics

Table A.1 Values of cψ , ψ = SRS, RSS, GMRSS(R = 1), GMRSS(R = k) and ERSS

m k LRTSRS LRTRSS LRTGMRSS(R=1) LRTGMRSS(R=k) LRTERSS
2 2 0.292 0.288 0.302 0.277 0.289

3 0.242 0.242 0.250 0.208 −
4 0.218 0.221 0.225 0.189 0.210
5 0.211 0.212 0.232 0.196 −
6 0.213 0.208 0.233 0.204 0.216
7 0.206 0.204 0.241 0.208 −
8 0.211 0.209 0.249 0.208 0.221

5 2 0.210 0.211 0.227 0.194 0.212
3 0.212 0.212 0.229 0.201 −
4 0.214 0.215 0.246 0.210 0.220
5 0.216 0.213 0.252 0.216 −
6 0.221 0.219 0.258 0.217 0.227
7 0.223 0.225 0.262 0.226 −
8 0.225 0.224 0.265 0.226 0.229

10 2 0.214 0.216 0.232 0.204 0.214
3 0.218 0.216 0.244 0.213 −
4 0.224 0.224 0.254 0.225 0.228
5 0.227 0.229 0.264 0.228 −
6 0.232 0.231 0.259 0.232 0.232
7 0.232 0.233 0.260 0.233 −
8 0.235 0.235 0.267 0.231 0.240

15 2 0.220 0.225 0.234 0.216 0.219
3 0.226 0.224 0.252 0.220 −
4 0.230 0.229 0.259 0.231 0.236
5 0.235 0.241 0.261 0.234 −
6 0.234 0.237 0.265 0.237 0.237
7 0.232 0.236 0.259 0.236 −
8 0.236 0.237 0.263 0.242 0.240
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